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Preface  

Forest	resources	are	crucial	 in	the	context	of	sustainable	development	and	
climate	change	mitigation.	Dynamic	 information	on	 the	 location	and	evo
lution	 of	 forest	 resources	 are	 needed	 to	 properly	 define,	 implement,	 and 	
evaluate	 strategies	 related	 to	 multilateral	 environmental	 agreements	 such	
as	the	UN	Framework	Convention	on	Climate	Change	(UNFCCC)	and	the	
Convention	 on	 Biological	 Diversity.	 For	 the	 global	 change	 scientific	 com
munity	 and	 the	 UNFCCC	 process,	 it	 is	 important	 to	 tackle	 the	 technical	
issues	surrounding	the	ability	to	produce	accurate	and	consistent	estimates	
of	greenhouse	gas	emissions	and	removals	from	forest	area	changes	world
wide	and	at	the	country	level.	

The	following	compilation	of	chapters	constitutes	a	review	of	why	and	how	
researchers	currently	use	remotely	sensed	data	to	study	forest	cover	extent	
and	 loss	 over	 large	 areas.	 Remotely	 sensed	 data	 are	 most	 valuable	 where	
other	 information,	 for	example,	 forest	 inventory	data,	are	not	available,	or	
for	analyses	of	 large	areas	 for	which	such	data	cannot	be	easily	acquired.	
The	ability	of	a	satellite	sensor	to	synoptically	measure	the	land	surface	from	
national	 to	 global	 scales	 provides	 researchers,	 governments,	 civil	 society,	
and	private	industry	with	an	invaluable	perspective	on	the	spatial	and	tem
poral	dynamics	of	forest	cover	changes.	The	reasons	for	quantifying	forest	
extent	 and	 change	 rates	 are	 many.	 In	 addition	 to	 commercial	 exploitation	
and	local	livelihoods,	forests	provide	key	ecosystem	services	including	cli
mate	regulation,	carbon	sequestration,	watershed	protection,	and	biodiver
sity	conservation,	to	name	a	few.	Many	of	our	land	use	planning	decisions	
are	made	without	full	understanding	of	the	value	of	these	services,	or	of	the	
rate	at	which	they	are	being	lost	in	the	pursuit	of	more	immediate	economic	
gains	through	direct	forest	exploitation.	Our	collection	of	papers	begins	with	
an	introduction	on	the	roles	of	forests	in	the	provision	of	ecosystem	services	
and	the	need	for	monitoring	their	change	over	time	(Chapters	1	and	2).	

We	follow	this	introduction	with	an	overview	on	the	use	of	Earth	observa
tion	datasets	in	support	of	forest	monitoring	(Chapters	3	through	5).	General	
methodological	differences,	 including	walltowall	mapping	and	sampling	
approaches,	as	well	as	data	availability,	are	discussed.	For	largearea	moni
toring	applications,	the	need	for	systematically	acquired	low	or	no	cost	data	
cannot	 be	 overstated.	 To	 date,	 data	 policy	 has	 been	 the	 primary	 impedi
ment	 to	 largearea	 monitoring,	 as	 national	 to	 global	 scale	 forest	 monitor
ing	requires	large	volumes	of	consistently	acquired	and	processed	imagery.	
Without	this,	there	is	no	prospect	for	tracking	the	changes	to	this	key	Earth	
system	resource.	

The	main	section	of	the	book	covers	forest	monitoring	using	optical	data	
sets	 (Chapters	 6	 through	 14).	 Optical	 datasets,	 such	 as	 Landsat,	 constitute	

vii




	
	 	

	

	

	
	
	

	
	

	

	

		 	

	

	
	

viii	 Preface



the	 longest	 record	 of	 the	 Earth	 surface.	 Our	 experience	 of	 using	 them	 in	
mapping	and	monitoring	forest	cover	is	greater	than	that	of	other	datasets	
due	 to	 the	 relatively	 rich	 record	 of	 optical	 imagery	 compared	 to	 actively	
acquired	data	sets	such	as	radar	imagery.	The	contributions	to	this	section	
range	from	indicator	mapping	at	coarse	spatial	resolution	to	samplebased	
assessments	 and	 walltowall	 mapping	 at	 medium	 spatial	 resolution.	 The	
studies	presented	span	scales,	environments,	and	themes.	For	example,	forest	
degradation,	 as	 opposed	 to	 standreplacement	 disturbance,	 is	 analyzed	 in	
two	chapters.	Forest	degradation	is	an	important	variable	regarding	biomass,	
emissions,	and	ecological	integrity,	as	well	as	being	a	technically	challenging	
theme	to	map.	Chapters	6	through	14	also	present	a	number	of	operational	
systems,	from	Brazil’s	PRODES	and	DETER	products,	 to	Australia’s	NCAS	
system.	These	chapters	represent	the	maturity	of	methods	as	evidenced	by	
their	incorporation	by	governments	into	official	environmental	assessments.	
The	 fourth	 section	 covers	 the	 use	 of	 radar	 imagery	 in	 forest	 monitoring	
(Chapter  15).	 Radar	 data	 have	 a	 long	 history	 of	 experimental	 use	 and	 are	
presented	here	as	a	viable	data	source	for	global	forest	resource	assessment.	

We	believe	that	this	book	is	a	point	of	departure	for	the	future	advancement	
of	 satellitebased	 monitoring	 of	 global	 forest	 resources.	 More	 and	 more	
observing	systems	are	being	launched,	methods	are	quickly	maturing,	and	the	
need	for	timely	and	accurate	forest	change	information	is	increasing.	If	data	
policies	are	progressive,	users	of	all	kinds	will	soon	have	the	opportunity	to	
test	and	implement	forest	monitoring	methods.	Our	collective	understanding	
of	forest	change	will	improve	dramatically.	The	information	gained	through	
these	studies	will	be	critical	 to	 informing	 	policies	 that	balance	 the	various	
demands	 on	 our	 forest	 resources.	 The	 transparency	 provided	 by	 Earth	
observation	 data	 sets	 will,	 at	 a	 minimum,	 record	 how	 well	 we	 perform	 in	
this task.	

We	 deeply	 thank	 Prof.	 Emilio	 Chuvieco	 from	 the	 University	 of	 Alcalá	
(Spain)	who	gave	us	the	opportunity	to	publish	this	book	and	supported	and	
encouraged	us	in	its	preparation.	We	also	sincerely	thank	all	the	contributors	
who	kindly	agreed	to	take	part	 in	this	publication	and	who	together	have	
produced	a	highly	valuable	book.	

Frédéric	Achard	and	Matthew	C.	Hansen	
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1	
Why
Forest
Monitoring
Matters

for
People
and
the
Planet


Ruth	DeFries	

Columbia
University


CONTENTS	

1.1	 	Introduction	

In	 children’s	 tales,	 forests	 loom	 as	 dark	 and	 dangerous	 places	 holding	
mysterious	and	magical	secrets.	Hansel	and	Gretel	ventured	into	the	forbid
den	 forest	 to	 encounter	 a	 childeating	 witch.	 A	 vicious	 wolf	 tricked	 Little	
Red	Riding	Hood	when	she	strayed	into	the	forest.	Forests	are	also	places	of	
enchantment,	 the	home	of	Snow	White’s	seven	dwarfs,	elves	and	nymphs,	
and	the	castle	of	the	illfated	prince	in	Beauty
and
the
Beast.	The	stories	revere	
forests	for	their	magic	and	revile	them	for	the	perils	that	lurk	within.	

This	 dual	 view	 of	 forests	 persists	 until	 today.	 On	 the	 one	 hand,	 forests	
are	 roadblocks	 to	 progress	 that	 occupy	 space	 more	 productively	 used	 for	
agriculture.	As	slash	and	burn	agriculture	made	its	way	northward	from	the	
Mediterranean	coast	through	Europe,	beginning	about	4,000	years	ago	until	
the	first	centuries	of	the	common	era,	forests	were	replaced	by	settled	agri
culture	 (Mazoyer	 and	 Roudart	 2006).	A	 similar	 story	 played	 out	 in	 North	
America	in	the	last	few	centuries,	with	European	expansion	preceded	by	the	

1
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Native	American’s	use	of	fire	to	manage	forests	(Williams	2006).	Throughout	
the	 currently	 industrialized	 world,	 wholesale	 clearing	 of	 forests	 enabled	
agriculture	to	expand	and		economies	to	grow.	A	similar	dynamic	is	currently	
underway	in	tropical	regions,	where	economic	growth	often	goes	handin
hand	 with	 agricultural	 expansion	 into	 forested	 areas	 (DeFries	 et	 al.	 2010).	
There	is	no	doubt	that	clearing	of	forests	for	agriculture	played	a	major	role	
in	the	expansion	of	the	human	species	into	new	areas,	the	growth	in	popula
tion	from	5	million	during	the	dawn	of	agriculture	to	over	7	billion	today,	
and	 increasing	 prosperity	 (Mazoyer	 and	 Roudart	 2006).	 In	 this	 sense,	 the	
fairy	tale’s	view	of	forests	as	harmful	places	that	are	better	off	cleared	reso
nates	with	the	experience	of	human	history.	

The	opposite	side	of	 the	dual	view	reveres	 forests	 for	 the	 large	range	of	
beneficial	services	they	provide	for	humanity.	Tangible	goods	such	as	tim
ber	 or	 recreation	 are	 apparent.	 Less	 apparent	 are	 intangible	 services	 such	
as	 climate	 regulation,	 biodiversity,	 and	 watershed	 protection.	 These	 regu
lating	ecosystem	services	are	only	beginning	 to	be	quantified	and	under
stood	 (Millennium	Ecosystem	Assessment	2005).	Without	consideration	of	
regulating	services	from	forests,	if	the	economic	value	of	land	use	following	
clearing	is	greater	than	the	economic	value	of	standing	forests,	the	decision	
to	deforest	is	likely	to	ensue.	This	has	been	the	calculus	for	millennia	of	for
est	clearing	that	has	reduced	over	40%	of	the	world’s	forest	cover	(Figure 1.1).	

FIGURE	1.1	
Approximate	 percent	 of	 the	 global	 land	 surface	 currently	 (ca.	 1990)	 occupied	 by	 major	 for
ests	 types	 and	 the	 percent	 previously	 converted	 to	 agriculture.	 (Values	 for	 current	 percent	
from	Wade,	T.,	et	al.,
Conserv.
Ecol.,	7,	7,	2003	and	values	for	converted	percent	derived	from	
Stokstad,	E.
Science,	308,	41,	2005,	except	for	boreal	forests	which	is	from	Table	C2	in	Scholes,	R.,	
et	al.	Summary:	Ecosystems	and	their	services	around	the	year	2000.	In	Hassan,	R.,	et	al.,	eds.	
Ecosystems
and
Human
Well-Being:
Current
State
and
Trends,	vol	1.	Washington,	DC:	Island	Press,	
2005,	2–23.)	
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Forest	conversion	varies	greatly	in	different	forest	types	in	different	parts	of	
the	world.	Nearly	70%	of	Mediterranean	forests	and	almost	60%	of	temperate	
deciduous	 and	 dry	 tropical	 forests	 have	 been	 converted	 to	 agriculture.	
Tropical	moist	broadleaf	forest	and	boreal	forests	still	have	substantial	areas	
of	forest	remaining.	

Remaining	 forests	and	 the	services	 they	provide	are	 increasingly	under	
pressure	from	both	economic	and	biophysical	forces.	With	increases	in	pop
ulation,	per	capita	consumption,	and	shifts	to	animalbased	diets,	demand	
for	 agricultural	 products	 is	 estimated	 to	 increase	 by	 at	 least	 50%	 by	 2050	
(Godfray	 et	 al.	 2010;	 Nelleman	 et	 al.	 2009;	 Royal	 Society	 of	 London	 2009).	
Increasing	yield	rather	than	expansion	explains	the	bulk	of	the	vast	increase	
in	agricultural	production	in	the	last	century	and	is	likely	to	continue	to	be	
the	 main	 factor	 in	 meeting	 future	 food	 demand	 (Mooney	 et	 al.	 2005),	 but	
agricultural	 expansion	 is	 also	 likely	 to	 continue	 into	 the	 future.	 Tropical	
forest	 and	 woodlands	 are	 the	 only	 biomes	 with	 substantial	 area	 remain
ing	 for	 agricultural	 expansion.	 In	 the	 past	 few	 decades,	 over	 80%	 of	 agri
cultural	expansion	in	the	tropics	occurred	into	intact	and	disturbed	forests	
(Gibbs	et al.	2010).	Rapid	clearing	of	tropical	forests	in	the	last	few	decades	
has	enabled	escalating	production	of	commodities	such	as	oil	palm,	soy,	and	
sugarcane	in	response	to	rising	demand	(Johnston	and	Holloway	2007).	This	
pressure	on	tropical	forests	and	woodlands,	particularly	in	South	America	
and	Africa,	will	only	continue	in	the	future	with	competition	of	land	for	food	
production	and	biofuels.	

Ecological	 and	 climatic	 factors	 in	 addition	 to	 economic	 forces	 are	 cre
ating	 pressures	 on	 forests.	 In	 tropical	 forests,	 dry	 conditions	 combined	
with	ignition	sources	create	conditions	conducive	to	fires	(Chen	et	al.	2011;	
van der	Werf	et	al.	2008).	In	temperate	and	boreal	latitudes,	anomalously	
dry	years	lead	to	large	forest	fires,	such	as	the	Russian	fires	of	2010	(Baltzer	
et al.	2010).	Warmer	conditions	promote	insect	outbreaks,	such	as	the	pine	
beetle	infestation	of	western	North	America,	leading	to	loss	of	forest	stands	
(Kurz et	al.	2008).	

These	multiple	economic,	climatic,	and	ecological	forces	acting	in	differ
ent	parts	of	the	world	reverberate	to	alter	the	services	that	forests	perform,	
including	 habitats	 that	 forests	 provide	 for	 other	 species	 and	 the	 ability	 of	
forests	to	sequester	carbon	and	regulate	climate.	As	both	knowledge	of	the	
role	of	forests	in	providing	ecosystem	services	and	the	pressures	on	forests	
increase,	the	ability	of	communities,	countries,	and	globalscale	policy	mak
ers	to	monitor	forests	becomes	paramount.	

Forests	in	different	parts	of	the	world	contribute	differentially	to	ecosys
tem	services,	depending	on	the	economic	and	ecological	setting.	For	exam
ple,	from	an	ecological	point	of	view,	boreal	and	peat	forests	regulate	climate	
through	their	large	stores	of	belowground	carbon	while	tropical	forests	con
tain	nearly	all	of	their	carbon	aboveground.	From	a	socioeconomic	point	of	
view,	in	dry	tropical	forests	with	relatively	dense	populations	of	poor,	forest
dependent	people,	for	example,	forests	contribute	substantially	to	livelihood	
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needs	such	as	fuel	wood	and	fodder	for	livestock	(Miles	et	al.	2006).	In	tem
perate	forests,	the	recreation	value	of	forests	for	populations	with	disposable	
income	for	tourism	or	the	need	to	protect	watersheds	for	large	urban	centers	
becomes	more	 important.	This	heterogeneity	 in	services	and	pressures	on	
forests	create	varying	needs	for	monitoring	in	different	parts	of	the	world.	

This	 introductory	chapter	describes	a	 framework	 for	assessing	 land	use	
and	ecological	processes	affecting	forests	and	the	implications	for	a	range	of	
ecosystem	services.	The	chapter	then	addresses	the	evolving	needs	for	forest	
monitoring	in	light	of	information	needs	to	maintain	these	services.	

1.2		 Soc	 ioeconomic	and	Ecological	Processes	Affecting		

Forests:	What	Processes	Need	to	Be	Monitored?	

Methods	and	approaches	to	monitor	forest	extent	and	condition	depend	on	
the	processes	of	 interest	 to	 the	user	of	 the	 information.	These	processes—	
for	 example,	 changes	 in	 productivity,	 deforestation,	 or	 increases	 in	 forest	
cover—vary	greatly	in	different	forest	regions	around	the	world	and	change	
over	time	depending	on	economic	and	ecological	factors.	These	myriad	pro
cesses	acting	on	forests	require	considerable	thought	in	designing	monitor
ing	 efforts	 that	 are	 flexible	 and	 appropriate	 to	 the	 processes	 occurring	 in	
different	forest	regions.	

1.2.1	 Land	Use	Processes	

The	generalized	schematic	of	land	use	transitions	that	accompany	economic	
development	provides	a	framework	to	view	pressures	on	forests	and	impli
cations	for	ecosystem	services	(DeFries	et	al.	2004;	Mustard	et	al.	2004).	The	
extent	 and	 condition	 of	 forests	 are	 intricately	 tied	 to	 land	 use	 change,	 as	
demand	for	timber,	food,	and	other	agricultural	products	creates	pressures to	
use	forests	or	clear	them	to	make	way	for	croplands	and	pasture.	Pressure	
to use	forested	land,	in	turn,	is	connected	to	transitions	that	typically	occur in	
the	 course	 of	 urbanization,	 development,	 and	 structural	 transformations	
in the	economy	from	predominance	of	agrarian	to	industrial	sectors.	Land	
use	 typically	 follows	 a	 trajectory	 from	 presettlement	 wildlands	 with	 low	
population	 densities,	 to	 frontier	 clearing	 and	 subsistence	 agriculture	 with	
people	reliant	on	local	food	production,	to	higher	yield	intensive	agriculture	
to	support	urban	populations.	Although	the	details	and	speed	of	transitions	
vary	greatly	in	different	places	and	at	different	times	in	history,	this	general	
pattern	 describes	 the	 overall	 trajectory.	 Different	 places	 around	 the	 world	
can	be	viewed	 from	a	 lens	of	 their	position	within	 this	 stylized	 trajectory.	
On	the	one	hand,	the	southern	Brazilian	state	of	Mato	Grosso,	for	example,	
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FIGURE	1.2	
Generalized	 land	 use	 transition	 that	 accompanies	 economic	 development,	 urbanization,	
and	 shift	 from	 agrarian	 to	 industrial	 economies	 (DeFries	 et	 al.	 2004;	 Mustard	 et	 al.	 2004).	
Accompanying	 proportion	 of	 landscape	 in	 forest	 cover	 (dark	 line)	 first	 declines	 and	 then	
increases	with	the	forest	transition	(Mather	1992;	Rudel	et	al.	2005;	Walker	1993).	Proportions	
of	landscape	are	hypothetical,	do	not	represent	actual	data,	and	depict	only	general	patterns	
that	vary	in	different	places.	Processes	shift	from	logging	and	deforestation	to	degradation	and	
regrowth	as	regions	progress	through	stages	in	land	use	and	forest	transitions.	

is	currently	undergoing	a	very	rapid	transition	from	wildlands	to	intensive	
agriculture,	 with	 rapid	 frontier	 clearing	 that	 largely	 bypasses	 the	 step	 of	
subsistence	agriculture.	South	Asia,	on	the	other	hand,	moved	through	the	
frontier	clearing	of	wildlands	millennia	ago,	but	much	of	the	land	remains	in	
smallscale	farming	for	subsistence	and	local	markets	(Figure	1.2).	

In	 forested	 areas,	 land	 use	 transitions	 accompany	 a	 characteristic	 tra
jectory	 in	 forest	 extent	 and	 condition.	 In	 the	 early,	 wildland	 stage	 of	 the	
land	use	transition,	forests	cover	extensive	areas	with	lowintensity	use	for	
hunting,	collection	of	 foods	and	medicines,	or	shifting	cultivation	by	 low	
densities	 of	 indigenous	 peoples.	 With	 frontier	 clearing,	 logging	 of	 valu
able	tree	species	might	occur	followed	by	deforestation	and	an	increasingly	
fragmented	 forest.	 As	 the	 transition	 moves	 into	 a	 period	 of	 subsistence	
agriculture,	remaining	forest	patches	are	likely	to	be	heavily	used	for	fuel	
wood,		fodder,	and	nontimber	forest	product	collection.	Forest	degradation,	
currently	extensive	in	dry	tropical	forests	of	Asia,	is	the	main	pressure	on	
forests	during	a	subsistence	stage	of	a	land	use	transition.	With	urbaniza
tion,	 economic	 growth,	 and	 agricultural	 intensification,	 the	 wellknown	
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“forest	 transition”	 of	 increasing	 forest	 cover	 has	 been	 observed	 in	 many	
countries	(Mather	1992;	Rudel	et	al.	2005;	Walker	1993).	Rudel	et	al.	(2005)	
identify	two	pathways	through	which	increasing	forest	cover	occurs.	One	
pathway	is	an	increase	in	planted	trees	incentivized	by	a	shortage	of	timber;	
such	was	the	case	in	Europe.	The	other	pathway	is	through	abandonment	
of	less	productive	agricultural	land	as	economic	growth	brings	smallscale	
farmers	to	urban	areas	and	food	production	is	transported	from	productive	
agricultural	areas.	Such	was	the	case	in	New	England,	where	forest	cover	
rebounded	in	areas	of	abandoned	agriculture.	

Land	use	and	forest	transitions	provide	a	framework	to	assess	monitoring	
needs	in	light	of	the	varying	pressures	on	forests	at	different	stages	along	
the	transition.	Forest	areas	in	distant	wildlands	are	not	likely	to	be	under
going	 rapid	 change,	 consequently	 requiring	 less	 frequent	 monitoring	 for	
human	impacts.	In	frontier	forests	undergoing	a	transition	from	wildlands,	
deforestation	and	degradation	from	unsustainable	logging	are	the	activities	
requiring	 monitoring.	 Places	 in	 a	 mode	 of	 smallscale	 farming	 with	 local	
reliance	 on	 forest	 patches	 for	 livelihood	 needs	 are	 subject	 to	 degradation.	
Monitoring	for	deforestation	in	such	locations	is	less	relevant	and	degrada
tion	is	more	likely	to	be	important.	Finally,	in	the	later	stages	of	a	land	use	
transition,	 regrowth	 of	 forests	 becomes	 an	 important	 process,	 requiring	 a	
monitoring	strategy	to	identify	increases	rather	than	decreases	of	tree	cover.	

As	 different	 places	 move	 through	 land	 use	 and	 forest	 transitions,	 the	
processes	 that	 require	 monitoring	 will	 shift.	 Monitoring	 efforts	 for	 defor
estation	might	most	usefully	 focus	on	frontier	regions	and	monitoring	for	
degradation	in	postfrontier	remaining	forest	patches.	Monitoring	to	identify	
regrowth	is	most	relevant	in	those	places	undergoing	agricultural	abandon
ment.	Methods	vary	to	monitor	these	different	processes,	requiring	flexibil
ity	in	monitoring	efforts	as	processes	requiring	monitoring	change.	

1.2.2	 Ecological	Processes	

As	 with	 land	 use	 processes,	 ecological	 processes	 affecting	 forests	 vary	 in	
different	places.	The	types	of	ecological	processes	that	may	be	important	for	
monitoring	systems	to	identify	include:	

Biome
shifts
in
response
to
climate
change:	Climate	change	is	already		leading	to	
shifts	in	boundaries	of	forests	biomes	in	high	latitudes	(Beck	et	al.	2011).	In	
the	tropics,	a	biome	shift	between	savanna	and	forest	has	been	hypothesized	
with	a	drier	climate	and	increased	fires	(Hirota	et	al.	2010).	As	the	process	
of	biome	shifts	is	heterogeneous	and	conflicting	evidence	arises	from	differ
ent	places,	a	remote	sensing	approach	is	critical	to	enable	observations	over	
large	areas.	Shifts	in	forest	boundaries	have	major	consequences	for	carbon	
storage	and	biophysical	feedbacks	to	climate	through	changes	in	albedo	and	
evapotranspiration	of	the	land	surface.	A	longterm	monitoring	system	that	
enables	 observations	 of	 changes	 in	 forest	 boundaries	 allows	 earth	 system	
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models	to	incorporate	dynamic	interactions	between	vegetation	and	climate	
in	the	growing	field	of	dynamic	vegetation	models	(Gonzalez	et	al.	2010).	The	
ability	to	monitor	such	changes	over	large	areas	at	fine	spatial	resolution	is	
becoming	more	feasible.	

Changes
in
forest
ecosystems
in
response
to
atmospheric
chemistry:	Enhanced	for
est	productivity	and	biomass	accumulation	attributable	to	fertilization	from	
elevated	 carbon	 dioxide	 concentrations	 is	 controversial	 but	 may	 explain	
increased	productivity	and	biomass	accumulation	in	tropical	forests	(Lewis	
et	al.	2009).	Nitrogen	deposition	is	another	forcing	factor	on	forest	productiv
ity,	with	studies	suggesting	an	effect	on	species	composition	and	ecosystem	
function	 in	 temperate	 and	 northern	 Europe	 and	 North	 America	 (Bobbink	
et al.	2010).	Longterm	monitoring	of	productivity	cannot	attribute	the	cause	
of	any	observed	changes,	but	is	a	critical	piece	to	unraveling	the	responses	of	
forests	to	changing	atmospheric	chemistry.	

Fire:	The	ability	to	monitor	active	fires	(Justice	et	al.	2002)	and	burned	areas	
(Giglio	et	al.	2010)	with	remote	sensing	has	developed	rapidly.	Many	types	
of	 fires	 affect	 forests,	 including	 intentionally	 set	 deforestation	 fires,	 fires	
escaped	from	land	management,	and	fires	ignited	by	lightning.	The	extent	
to	which	these	fires	occur	depends	on	multiple	factors	such	as	climate,	fuel	
loads,	and	ignition	sources.	Fire	is	a	particularly	complex	phenomenon	that	
combines	climatic,	ecological,	and	human	factors	(Bowman	et	al.	2009).	

A	framework	to	identify	monitoring	needs	through	a	lens	of	economic	and	
ecological	processes	creates	the	need	for	multiple	approaches	that	can	vary	
through	space	and	time.	To	date,	global	monitoring	with	remote	sensing	has	
focused	predominantly	on	forest	extent.	As	methods	develop,	robust	global	
forest	 monitoring	 in	 the	 longer	 term	 should	 assess	 changes	 occurring	 in	
response	to	the	full	suite	of	processes	affecting	forests	throughout	the	world.	

1.3	 Ecosystem	Services	from	Forests	

Monitoring	systems	aim	to	 identify	changes	 in	 the	extent	and	condition	of	
forests	so	that	timely	and	effective	policies	can	be	put	in	place	to	avoid	nega
tive	consequences	 for	ecosystem	services.	Forests	provide	many	ecosystem	
services	 that	 accrue	 benefits	 at	 proximal,	 downstream,	 and	 distal	 scales.	
Similar	to	the	processes	affecting	forests	discussed	above,	ecosystem	services	
from	 forests	 and	 their	 beneficiaries	 vary	 across	 forest	 regions	 according	 to	
socioeconomic	 and	 ecological	 settings.	 Consequently,	 monitoring	 methods	
and	approaches	need	 to	vary	depending	on	 the	ecosystem	services	of	con
cern.	A monitoring	system	that	aims	to	be	applied	to	the		implementation	of	
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TABLE	1.1	

Some	Ecosystem	Services	Accruing	to	Beneficiaries	at	Different	Spatial	Scales	from	
Forests	in	Varying	Stages	of	Land	Use	Transitions	

Location	of	

Beneficiary	 Forest	Condition	by	Stage	of	Land	Use	Transition	

Wildlands
Prior
to
Frontier
 Forest
Fragments
 Regrowth
with

Clearing
 Embedded in
Small-Scale
 Agricultural


Agricultural
Land
 Intensification


Proximate
 Livelihood	needs	and	 Livelihood	needs	and	

local	regulating	services	 local	regulating	services	

(e.g.,	pollination)	for	low	 for	high	density	of	

density	of	forest forest-dependent	people	

dependent	people	
Downstream
 Prevention	of	soil	erosion,	 Prevention	of	soil	

flood	regulation,	water	 erosion,	�ood	

purification	 regulation,	water	

purification	

Distal
 Carbon	storage,	 Biodiversity	in	forest	 Carbon	
biodiversity	 fragments	 sequestration,	

biodiversity	in	
secondary	forest	

Note:	 Dominant	ecosystem	service	of	each	stage	based	on	author’s	judgment	is	in	bold.	

REDD	(reducing	emissions	from	deforestation	and	degradation),	for		example,	
requires	observations	of	forest	extent	and	biomass	while	a	system	aimed	at	
biodiversity	requires	monitoring	of	habitat	and	forest	structure.	The	follow
ing	highlights	the	range	of	ecosystem	services	from	forests	at	different	scales	
(Table	1.1).	

Proximal:	Ecosystem	services	 from	forests	play	a	particularly	essential	role	
for	 forestdependent	 people	 throughout	 the	 global	 South	 (Agrawal	 et	 al.	
2011).	Natural	capital	from	forests	is	a	disproportionately	large	component	
for	millions	of	poor	households	and	communities	relying	directly	on	forests	
for	 livelihood	 needs.	 Services	 from	 forests	 include	 fuel	 wood,	 fodder	 for	
livestock,	 nontimber	 forest	 products	 to	 generate	 income,	 meat	 for	 protein,	
and	medicinal	plants.	On	 the	one	hand,	 regulating	 services	 such	as	 clean	
water,	pollination,	disease	regulation,	and	pest	control	as	well	as	spiritual	
and	 cultural	 importance	 of	 forests	 are	 more	 difficult	 to	 quantify	 but	 are	
important	 locally.	 On	 the	 other	 hand,	 forests	 and,	 particularly,	 protected	
areas	harbor	species	that	provide	a	disservice	to	local	communities	by	crop	
raiding	and	 livestock	predation	affecting	 local	residents	 (White	and	Ward	
2010)	and	spread	of	zoonotic	diseases	(Keesing	et	al.	2010).	

Downstream:	The	watershed	protection	value	of	forests	has	garnered	the	most	
tractable	implementation	of	payment	for	ecosystem	service	schemes.	Forests	
buffer	 runoff	 to	 regulate	 floods	 and	 filter	 water	 to	 improve	 water	 quality.	
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Wellknown	examples	of	forest	conservation	for	watershed	protection	include	
watersheds	for	the	surface	water	supply	of	urban	areas	such	as	New	York	City	
and	Quito,	Ecuador	(Postel	and	Thompson	2005).	In	addition	to	downstream	
users,	 another	 example	 of	 the	 role	 of	 forests	 at	 a	 regional	 scale	 is	 through	
energy	 balance	 and	 evapotranspiration,	 such	 as	 the	 Amazon	 basin	 where	
deforestation	 leads	 to	 decreases	 in	 basinwide	 precipitation	 of	 climate	 and	
downwind	transport	of	vapor	(Davidson	et	al.	2012).	

Distal:	 Globalscale	 services	 from	 forests	 accrue	 to	 beneficiaries	 living	
far	 away.	 Carbon	 storage	 to	 maintain	 carbon	 in	 vegetation	 rather	 than	 as	
a	greenhouse	gas	in	the	atmosphere	is	a	critical	role	for	forests.	Terrestrial	
vegetation	and	litter	combined	contain	approximately	the	same	amount	of	
carbon	as	the	atmosphere	(850	and	780	Pg,	respectively),	with	forests	a	par
ticularly	 important	 reservoir	 for	 carbon	 (Houghton	 2007).	 Tropical	 forests	
are	exceptionally	valuable	for	biodiversity	in	terms	of	species	richness,	fam
ily	richness,	and	species	endemism	(Mace	et	al.	2005).	Distal	beneficiaries	of	
biodiversity	value	the	knowledge	of	existence	as	well	as	the	functional	role	
of	 biodiversity	 for	 disease	 regulation,	 resilience	 to	 disturbance,	 and	 other	
functions	(Thompson	et	al.	2011).	

In	sum,	forests	provide	a	myriad	of	ecosystem	services	that	vary	in	differ
ent	forest	regions.	Aboveground	carbon	storage	and	biodiversity	are	particu
larly	relevant	in	humid	tropical	forests.	Local	livelihood	needs	are	relevant	
in	dry	tropical	forests,	and	watershed	protection	is	particularly	relevant	in	
forests	 upstream	 of	 urban	 centers	 reliant	 on	 surface	 water.	 Communities,	
national	governments,	and	global	policy	makers	place	varying	priorities	on	
different	ecosystem	services.	For	example,	local	communities	may	place	little	
value	on	carbon	and	biodiversity	services	that	accrue	to	distal	beneficiaries,	
while	 global	 policy	 makers	 may	 place	 little	 value	 on	 forest	 products	 and	
other	livelihood	needs	for	local	communities.	This	mismatch	in	scales	and	
differences	in	priorities	about	which	ecosystem	services	are	most	important	
create	tensions	for	designing	monitoring	systems.	

The	importance	of	different	ecosystem	services	may	vary	through	time	as	
places	move	through	land	use	transitions.	Monitoring	systems	designed	to	
address	particular	ecosystem	services	might	require	flexibility	as	priorities	
shift.	For	example,	if	carbon	storage	is	the	rationale	for	a	monitoring	program,	
the	focus	might	be	on	frontier	regions	aimed	at	reducing	deforestation	and	
on	 latestage	 transitions	 aimed	 at	 sequestering	 carbon	 through	 regrowth	
(Lambin	and	Meyfroidt	2011).	If	the	rationale	were	rather	on	local	livelihood	
needs	 for	 forest	products,	a	monitoring	system	would	 focus	on	places	 in	a	
subsistence	stage	of	the	land	use	transition	to	monitor	degradation.	For	water
shed	protection,	riparian	forest	cover	would	be	of	primary	importance.	

In	 reality,	 existing	 monitoring	 systems	 have	 not	 explicitly	 identified	
the	rationale	 in	 terms	of	ecosystem	services.	Monitoring	systems	 ideally	
would	be	relevant	 for	multiple	ecosystem	services	 to	make	effective	use	
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of	 the	 investment.	As	 monitoring	 systems	 are	 implemented	 in	 different	
countries	throughout	the	developing	world	in	different	stages	of	land	use	
transitions,	explicit	consideration	of	the	ecosystem	services	of	interest	may	
be	a	useful	undertaking.	

1.4	 Evolving	Capabilities	for	Forest	Monitoring	

Forest	monitoring	to	date	(FAO	2010;	Forest	Survey	of	India	2005;	INPE	2007)	
has	 mainly	 focused	 on	 the	 areal	 extent	 of	 forest	 cover	 and	 changes	 over	
time.	Other	variables	of	forest	condition	are	increasingly	becoming	possible	
to	 monitor	 from	 satellites.	 Biomass,	 a	 key	 variable	 for	 carbon	 storage,	 has	
traditionally	been	collected	through	groundbased	inventories.	Recent	abili
ties	to	assess	biomass	using	remote	sensing	(Saatchi	et	al.	2006)	are	promis
ing	technological	advances	that	are	becoming	more	amenable	to	operational	
implementation.	Monitoring	degradation	from	logging	with	the	spatial	pat
tern	characteristic	of	the	Amazon	has	also	advanced	to	be	operational	(Asner	
et	al.	2006;	Souza	Jr.	et	al.	2005).	These	advances	represent	major	progress	for	
subnational,	national,	and	global	efforts	to	monitor	forests	and	the	ecosys
tem	services	they	provide.	

While	 these	 advances	 are	 major	 achievements,	 several	 aspects	 of	 forest	
condition	 are	 still	 in	 need	 of	 methodological	 development	 to	 address	 the	
full	range	of	ecosystem	services	and	socioeconomic	and	ecological	processes	
affecting	 forests	 in	 different	 parts	 of	 the	 world.	 One	 such	 need	 is	 forest	
degradation	 related	 to	 local	 uses	 such	 as	 fuel	 wood	 collection	 and	 forest	
grazing,	 such	 as	 occurring	 extensively	 in	 Asian	 forests	 with	 high	 density	
of	poor	populations	dependent	on	local	ecosystem	services.	While	monitor
ing	of	degradation	characteristics	of	logging	in	the	Amazon	has	advanced,	
monitoring	of	degradation	from	other	local	uses	has	not	progressed	to	the	
same	degree.	Another	aspect	that	has	not	been	incorporated	in	monitoring	
is	postclearing	land	use.	The	land	use	and	management	following	defores
tation,	such	as	fertilizer	use,	agricultural	activity,	and	crop	type	and	diver
sity,	has	implications	for	ecosystem	services	and	is	required	information	to	
assess	the	impact	of	deforestation	(Galford	et	al.	2010).	While	methods	have	
advanced	 to	 assess	 postclearing	 land	 use	 in	 terms	 of	 pasture	 versus	 crop	
(Macedo	 et  al.	 2012),	 other	 aspects	 of	 land	 management	 require	 attention.	
Finally,	the	importance	of	lands	outside	forests	for	ecosystem	services	such	
as	biodiversity,	socalled	land	sharing,	is	evident,	given	the	inability	to	pro
tect	 enough	 lands	 to	 preserve	 all	 biodiversity.	 India’s	 national	 monitoring	
efforts	to	assess	trees	outside	forests	(Forest	Survey	of	India	2005)	is	a	step	
toward	addressing	this	need.	Additional	forest	variables	including	vegeta
tion	structure	and	connectivity	are	integral	yet	unrealized	aspects	of	moni
toring	to	maintain	ecosystem	services.	
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1.5	 Conclusion	

Interest	 and	 investments	 in	 forest	 monitoring	 systems	 have	 risen	 sharply,	
mainly	 in	 anticipation	 of	 REDD.	 Monitoring	 systems	 at	 global,	 national,	
subnational,	 and	 community	 levels	 are	 all	 components	 of	 the	 interest	 in	
establishing	monitoring	systems.	As	these	investments	move	forward,	it	is	
timely	to	consider	the	purposes	of	a	monitoring	system	in	terms	of	which	
land	usedriven	and	ecological	processes	need	to	be	captured	and	how	the	
information	can	be	used	to	track	changes	in	ecosystem	services.	

Forests	 in	 different	 parts	 of	 the	 world	 are	 facing	 pressures	 from	 both	
economic	and	biophysical	factors.	For	instance,	tropical	forests	are	under	pres
sure	from	economic	forces	for	agricultural	expansion,	while	forests	in	high	
latitudes	are	moving	northward	due	to	climate	change.	Land	use	and	forest	
transition	frameworks	provide	a	context	to	identify	the	processes	affecting	
forests	in	varying	paths	along	a	development	trajectory,	with	deforestation	
and	degradation	altering	forests	in	early	stages	and	regrowth	in	later	stages	
with	agricultural	intensification	and	urbanization.	From	a	biophysical	point	
of	 view,	 ecological	 processes	 related	 to	 biome	 shifts	 from	 climate	 change,	
enhanced	productivity	from	changing	atmospheric	chemistry,	and	fire	are	
altering	forest	extent	and	biomass.	Monitoring	approaches	vary	depending	
on	which	processes	are	of	interest.	For	example,	a	monitoring	system	to	track	
human	land	use	change	would	most	effectively	focus	on	frontier	regions	and	
less	on	wildlands.	If	the	process	of	interest	is	productivity	change,	a	compre
hensive	monitoring	of	biomass	in	wildlands	is	needed.	

Approaches	for	monitoring	systems	also	vary	depending	on	which	eco
system	services	are	of	 interest	 to	 the	user.	Forests	provide	a	multitude	of	
ecosystem	 services	 at	 a	 range	 of	 scales.	 Some	 services	 accrue	 benefits	 at	
proximal	(e.g.,	forest	products	for	local	livelihoods),	some	downstream	(e.g.,	
watershed	 protection),	 and	 some	 at	 distal	 scales	 (e.g.,	 carbon	 storage	 and 	
biodiversity).	Perspectives	on	which	ecosystem	services	are	most	important	
depend	on	the	user.	Local	communities	are	likely	to	place	more	importance	
on	those	ecosystem	services	of	value	to	their	needs	while	global	policy	mak
ers	are	likely	to	place	importance	on	globalscale,	distal	services.	

Traditionally,	 forest	 monitoring	 and	 inventories	 have	 been	 designed	
around	the	commercial	value	of	 forests.	With	 increasing	emphasis	on	the	
value	of	forests	for	carbon	storage,	conservation	of	biodiversity,	watershed	
protection,	and	a	myriad	of	other	ecosystem	services,	the	focus	for	monitor
ing	systems	becomes	more	complex.	Explicit	consideration	of	the	ecosystem	
services	of	interest	and	the	methods	required	to	monitor	changes	in	those	
services	 require	 attention	 to	 design	 systems	 that	 are	 relevant	 for	 a	 coun
try’s	circumstances.	Advancements	in	technologies	that	enable	monitoring	
of	biomass,	postclearing	land	use,	forest	structure,	and	other	attributes	are	
rapidly	developing	and	offer	 a	wide	menu	of	possibilities	 for	monitoring	
systems.	
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Carbon	Stocks	(PgC)		 (Forests)	

Atmosphere	 825	
Land	 2,000	
Vegetation	 500	(436)	
Soil	 1,500	(426)	
Ocean	 39,000	
Surface	 700	
Deep	 38,000	
Fossil	fuel	reserves	 10,000	

Annual
Flows
(PgC
yr–1)


Atmosphere–oceans	 90	
Atmosphere–land	 120	(65)	

Net
Annual
Exchanges
(PgC
yr–1
Averaged
over
2000–2009)


Fossil	fuels	 7.7	
Land	use	change	 1.1	(1.0)	
Atmospheric	increase	 4.1	
Oceanic	uptake	 2.3	
Residual	terrestrial	sink	 2.4	(2.4)	
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2.1	 Introduction	

Forests	are	important	in	the	global	carbon	cycle	because	they	hold	in	their	
vegetation	 and	 soils	 about	 as	 much	 carbon	 as	 is	 held	 in	 the	 atmosphere	
(Table  2.1),	 and,	 with	 an	 annual	 GPP	 of	 65	 PgC	 yr–1	 (Beer	 et  al.	 2010),	
forests	 	circulate	 about	 8%	 of	 the	 atmosphere’s	 carbon	 each	 year	 through	
photosynthesis	 and	 respiration.	 These	 exchanges	 are	 part	 of	 the	 natural	
carbon	cycle.	More	important	from	the	perspective	of	climate	change	is	the	
role	that		forests	play	in	altering	the	concentration	of	atmospheric	CO2	over	
decades	to	centuries.	This	chapter	discusses	forests	in	that	role.	It	begins	with	
a	brief	 review	of	 the	global	 carbon	cycle	and	goes	on	 to	discuss,	first,	 the	
global	carbon	sink	measured	in	forest	inventories,	second,	sources	and	sinks	
of	carbon	that	result	from	direct	human	use	of	forests,	and,	third,	possible	

TABLE	2.1	

Stocks	and	Flows	of	Carbon	
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reasons	why	the	results	 from	inventories	and	analyses	of	 land	use	change	
do	not	agree.	The	chapter	ends	with	a	discussion	of	the	processes	affecting	
carbon	storage	on	 land	 that	are	and	are	not	amenable	 to	monitoring	with	
satellites.	

Note	 that	 forests	 affect	 climate	 through	 emissions	 of	 chemically	
and	 radiatively	 active	 gases	 other	 than	 CO2,	 including	 other	 carbon	
compounds.	Further,	changes	in	forest	area	affect	climate	biogeophysically	
as	well	as	biogeochemically	through	effects	on	albedo,	surface	roughness,	
and	 evapotranspiration	 (e.g.,	 Pongratz	 et  al.	 2010).	 NonCO2	 gases	 and	
biophysical	effects	are	not	considered	here.	

2.2	 Global	Carbon	Cycle	

The	global	carbon	cycle	 is	 the	exchange	of	carbon	between	the	four	major	
reservoirs:	atmosphere,	oceans,	land,	and	fossil	fuels.	This	chapter,	and	most	
of	carbon	cycle	science,	is	concerned	with	anthropogenic	carbon,	that	is,	the	
amount	of	carbon	emitted	each	year	from	combustion	of	fossil	fuels	and	land	
use	 change	 and	 the	 sinks	 for	 that	 carbon	 in	 the	 atmosphere,	 oceans,	 and	
land.	Forests	play	a	major	role	in	both	the	emissions	of	carbon	from	land	use	
change	and	the	sinks	of	carbon	on	land.	

Figure	 2.1	 shows	 the	 annual	 sources	 and	 sinks	 of	 carbon	 in	 the	 major	
global	 reservoirs	 over	 the	 last	 century	 and	 a	 half.	 The	 most	 noticeable	

FIGURE	2.1	
Annual	sources	(+)	and	sinks	(–)	in	the	global	carbon	budget.	Note	that	the	net	terrestrial	flux	
was	consistently	a	net	source	before	1940,	but	has	been	a	variable	and	growing	sink	in	recent	
decades.	



	
	 	

	
	
	
	
	
	

	
	
	

	 	
	
	
	
	
	
	

	 	

	

	 	 	
	 	 	

1980s	 1990s	 2000–2009	

Fossil	fuel	emissions	 5.5	±	0.3	 6.4	±	0.4	 7.7	±	0.5	
Land	use	change	 1.5	±	0.7	 1.6	±	0.7	 1.1	±	0.7	
Atmospheric	increase	 –3.4	±	0.1	 –3.1	±	0.2	 –4.1	±	0.1	
Oceanic	uptake	 –2.0	±	0.6	 –2.2	±	0.7	 –2.3	±	0.4	
Residual	terrestrial	sink	 –1.6	±	1.0	 –2.7	±	1.0	 –2.4	±	1.0	
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TABLE	2.2	

Global	Carbon	Budget	

Source:	 From	 Le	 Quéré,	 C.,	 et	 al.,	 Nature
 GeoSci.,	 2,	 831,	 2009	 and	 http://	
www.globalcarbonproject.org/carbonbudget/09/files/	
GCP2010_CarbonBudget2009.pdf.	

Notes:	 Units	are	PgC	yr–1.	Positive	values	indicate	sources	of	carbon	to	the	
atmosphere;	 negative	 values	 indicate	 sinks,	 or	 removals	 from	 the	
atmosphere.	

feature	 of	 the	 history	 is	 the	 increasing	 rate	 at	 which	 carbon	 has	 been	
emitted	from	combustion	of	fossil	fuels	(including	cement	production	and	
gas	flaring).	In	recent	decades,	the	emissions	have	grown	from	5.5	PgC	yr–1	

averaged	 for	 the	 1980s	 to	 6.4	 PgC	 yr–1	 for	 the	 1990s	 to	 7.7	 PgC	 yr–1	 over	
the	 period	 2000–2009	 (Table	 2.2).	 After	 a	 slump	 in	 2009	 from	 the	 global	
financial	crisis,	fossil	fuel	emissions	were	above	9	PgC	in	2010	(Peters	et al.	
2012).	The	annual	emissions	from	fossil	 fuels	are	calculated	from	reports	
from	the	United	National	Energy	Statistics.	The	error	is	thought	to	be	±6% 

(Le Quéré	et al.	2009).	
The	figure	also	reveals	that	the	sinks	for	carbon	in	the	atmosphere,	land,	

and	oceans	have	increased	over	time,	in	proportion	to	annual	emissions.	
In	1958	the	average	concentration	of	CO2	 in	air	at	Mauna	Loa	was	about	
315	ppm;	in	2010	it	was	about	390	ppm.	Today	there	are	nearly	200	stations,	
worldwide,	where	weekly	flask	samples	of	air	are	collected,	analyzed	for	
CO2	and	other	constituents,	and	where	 the	resulting	data	are	 integrated	
into	 a	 consistent	 global	 data	 set	 (http://www.esrl.noaa.gov/gmd/ccgg/).	
The	 rate	 of	 increase	 in	 concentrations	 averaged	 about	 1	 ppm	 yr–1	 in	 the	
1950s	 and	 1960s,	 about	 1.5  ppm	 yr–1	 in	 the	 1980s	 and	 1990s,	 and	 about	
1.9 ppm	yr–1	between	2000	and	2009.	The	increase	of	1.9	ppm	CO2	yr–1	 is	
equivalent	to	an	increase	of	~4	PgC	yr–1.	The	error	is	0.04	PgC	yr–1	(Canadell	
et al.	2007).	

The	annual	uptake	of	carbon	by	the	world’s	oceans	is	based	on	ocean	gen
eral	circulation	models	coupled	to	ocean	biogeochemistry	models	(Le	Quéré	
et al.	2009),	corrected	to	agree	with	the	observed	uptake	rates	over	1990–2000	
(Canadell	et al.	2007).	The	error	in	the	modeled	oceanic	sink	is	thought	to	be	
0.4	PgC	yr–1.	

There	 are	 no	 direct	 measurements	 of	 terrestrial	 sources	 or	 sinks	 glob
ally.	 Instead,	 the	 annual	 net	 exchange	 of	 carbon	 between	 land	 and	 the	

http://www.globalcarbonproject.org
http://www.globalcarbonproject.org
http://www.globalcarbonproject.org
http://www.esrl.noaa.gov
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atmosphere	is	calculated	by	the	difference	between	the	annual	release	of	
carbon	from	fossil	fuels	and	the	annual	accumulations	in	the	atmosphere	
and	oceans.	The	total	emissions	must	balance	the	total	sinks.	The	net	ter
restrial	 flux	 of	 carbon	 was	 a	 small	 source	 before	 1940	 and	 a	 sink	 after.	
That	 sink	 is	 variable	 year	 to	 year	 and	 appears	 to	 have	 grown	 in	 recent	
decades.	It	averaged	1.3	PgC	yr–1	between	2000	and	2009.	The	role	of	for
ests	in	the	historic	source	of	carbon	and	the	more	recent	sink	is	the	topic	
of	this	chapter.	

2.3	 Forest	Inventories	

A	recent	paper	by	Pan	et al.	(2011)	summarized	the	results	of	measurements	
obtained	through	forest	inventories.	Countries	in	temperate	zone	and	boreal	
regions	have	systematic	forest	inventories	that	periodically	measure	the	vol
umes	of	timber.	Biomass	and	carbon	densities	can	be	calculated	from	these	
measurements	of	wood	volume.	The	inventories	often	include	measurement	
of	belowground	carbon	stocks	and	coarse	woody	debris	on	the	forest	floor,	
and	estimates	are	also	made	of	the	storage	of	carbon	in	wood	products	and	
land	 fills.	 Because	 nearly	 all	 forests	 are	 sampled	 in	 these	 inventories,	 the	
change	in	carbon	storage	from	one	inventory	to	another	represents	the	total	
change	 in	 forest	 carbon,	 including	 wood	 products—a	 net	 sink	 in	 temper
ate	and	boreal	forests	of	1.22	PgC	yr–1	averaged	over	the	period	2000–2007	
(Table 2.3).	

This	measured	sink	is	a	net	sink	composed	of	both	releases	of	carbon	from	
fire,	storms,	disease,	and	logging	and	uptake	of	carbon	in	growing	forests.	It	
is	worth	noting	that	the	sampling	used	to	obtain	these	estimates	is	arguably	
better	for	measuring	changes	in	wood	volume	in	existing	forests	than	it	is	for	
measuring	changes	in	forest	area.	A	satellitebased	approach	might	provide	
more	accurate	estimates	of	changes	in	forest	area.	

The	net	sink	 for	 the	world’s	 temperate	zone	and	boreal	 forests	does	not	
mean	that	all	such	forests	were	sinks.	Canadian	forests,	 for	example,	were	
a	 small	 source	 over	 1990–2007,	 and	 European	 forests	 were	 a	 net	 source	
over	2000–2007,	according	to	analyses	of	forest	inventories	(Pan	et al.	2011).	
Furthermore,	studies	based	on	analyses	of	satellite	data	suggest	that	forest	
area	has	been	declining,	for	example,	in	the	eastern	United	States	(Drummond	
and	Loveland	2010;	Jeon	et al.	2011).	

Systematic	inventories	of	forests	are	rare	in	tropical	countries.	However,	
small	permanent	plots	(generally	~1	ha)	have	been	inventoried	for	years	
in	 the	 unmanaged,	 or	 intact,	 forests	 of	 Amazonia	 (Phillips	 et  al.	 2004,	
2008)	and	Africa	(Lewis	et al.	2009).	These	inventories	show	an	average	
net	accumulation	of	0.84	MgC/ha	yr–1	in	biomass.	The	total	area	of	tropi
cal	forests	in	2010	was	1949	million	ha	(FAO	2010),	but	the	area	of	intact	



	
	
	
	
	
	
	

	
	

	
	

	




	 	

	 	 	
	 	 	

	

	
	

1980s	 1990s	 2000–2007	

A.
Forest
Inventories


Temperate	and	boreal	forests	(a)	 –1.17	±	0.11	 –1.28	±	0.12	 –1.22	±	0.11	
Intact	tropical	forests	(b)	 –1.33	±	0.35	 –1.02	±	0.47	 –1.19	±	0.41	
Total 	 –2.50 	 –2.30 	 –2.41	

B.
LULCC


Temperate	and	boreal	forests	

Gross	uptake	(c)	 –1.38	 –1.48	 –1.56	
Gross	emissions 	 1.51 	 1.53 	 1.52	
Net	flux 	 0.13 	 0.05 	 –0.04	

Tropical	forests	

Gross	uptake	(d)	 –1.57	±	0.50	 –1.72	±	0.54	 –1.64	±	0.52	
Gross	emissions	 3.03	±	0.49	 2.82	±	0.45	 2.94	±	0.47	
Net	tropical	LULCC	flux	(e)	 1.46	±	0.70	 1.10	±	0.70	 1.30	±	0.70	

Net	flux	for	tropical	forest	(b	+ e) 	 0.13 	 0.08 	 	 0.11	
Net	global	forest	sink	(a	+	b	+	e)	 –1.04	±	0.79	 –1.20	±	0.85	 –1.11	±	0.82	
Gross	global	forest	sinka	(a	+	b	+ d) 	 –4.07 	 –4.02 	 –4.05	
Gross	global	forest	sinkb	(a	+	b	+	c	+ d) 	 –5.45 	 –5.50 	 –5.61	
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TABLE	2.3	

Average	Annual	Net	Source	(+)	or	Sink	(–)	for	Carbon	Based	on	(A)	Forest	Inventories	
and	(B)	LULCC	

Source:
 From	Pan,	Y.,	et	al.,	Science	333,	988,	2011.	
a	 As	reported	by	Pan	et	al.	(2011).	
b	 With	gross	uptake	in	temperate	and	boreal	forests	(c)	included.	

forests,	for	which	this	average	accumulation	applies,	was	smaller.	At	least	
557	 million	 ha	 of	 forest	 are	 estimated	 by	 Houghton	 (2010,	 unpublished	
data;	global	results	reported	in	Friedlingstein	et al.	2010)	to	be	managed,	
that	is,	recovering	from	wood	harvest	or	in	the	fallow	portion	of	shifting	
cultivation.	Subtracting	this	area	of	managed	forests	from	the	total	area of	
tropical	forests	yields	the	area	of	intact	forests	(1,392	million	ha)	and	thus	
a	 net	 carbon	 sink	 in	 these	 unmanaged	 tropical	 forests	 of	 1.19	 PgC  yr–1	

(Table	2.3).	
The	carbon	sink	in	the	world’s	 inventoried	forests	was	2.4	PgC	yr–1	 (1.22	

in	 temperate	zone	and	boreal	 forests	and	1.19	PgC	yr–1	 in	 the	unmanaged	
forests	of	the	tropics).	In	contrast,	the	net	terrestrial	sink	calculated	from	the	
global	carbon	balance	(Section	2.2)	was	1.3	PgC	yr–1	in	the	same	period	(1990–	
2007).	The	difference	 implies	a	source	of	1.1	PgC	yr–1	 either	 in	ecosystems	
other	than	forests	or	in	the	managed	forests	of	the	tropics	not	included	in	
the	inventories.	The	source/sink	for	managed	tropical	forests	is	determined	
from	 an	 analysis	 of	 land	 use	 change,	 described	 below	 (Houghton	 2010,	
unpublished	data).	
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2.4	 Land	Use	Change	(Direct	Anthropogenic	Effects)	

Managed	lands,	or	those	lands	directly	affected	by	land	use	and	land	cover	
change	 (LULCC),	 can	 lead	 to	either	 sources	or	 sinks	of	 carbon,	and	many	
analyses	 of	 LULCC	 have	 attempted	 to	 estimate	 those	 sources	 and	 sinks.	
“Land	use”	 refers	 to	management	within	a	 land	cover	 type.	For	 example,	
the	harvest	of	wood	does	not	change	the	designation	of	 the	 land	as	forest	
although	the	land	may	be	temporarily	treeless.	“Land	cover	change,”	in	con
trast,	refers	to	the	conversion	of	one	cover	type	to	another,	for	example,	the	
conversion	 of	 forest	 to	 cropland.	 Note	 that	 “deforestation”	 as	 used	 in	 this 	
chapter	 refers	 to	 the	 conversion	 of	 forest	 to	 another	 land	 cover.	 Logging, 	
even	clearcut	logging,	is	not	deforestation	unless	it	is	followed	by	a	land	use	
without	forest	cover,	for	example,	cropland.	

Ideally,	 LULCC	 would	 be	 defined	 broadly	 to	 include	 not	 only	 human
induced	changes	in	land	cover,	but	all	forms	of	land	management	(e.g.,	tech
niques	 of	 harvesting).	 The	 reason	 for	 this	 broad	 ideal	 is	 that	 the	 net	 flux	
of	carbon	attributable	to	management	is	that	portion	of	a	terrestrial	carbon	
flux	that	might	qualify	for	credits	and	debits	under	a	postKyoto	agreement.	
However,	it	is	perhaps	impossible	to	separate	management	effects	from	nat
ural	and	indirect	effects	(e.g.,	CO2	fertilization,	N	deposition,	or	the	effects	of	
climate	change).	Furthermore,	the	ideal	requires	more	data,	at	higher	spatial	
and	temporal	resolutions,	than	have	been	practical	(or	possible)	to	assemble	
at	the	global	level.	Thus,	most	analyses	of	the	effects	of	LULCC	on	carbon	
storage	have	focused	on	the	dominant	(or	documentable)	forms	of	manage
ment	and,	to	a	large	extent,	ignored	others.	

Recent	estimates	of	the	flux	of	carbon	from	LULCC	are	shown	in	Figure 2.2.	
Most	of	these	emissions	in	recent	decades	have	been	from	the	tropics,	while	
the	net	annual	flux	of	carbon	from	regions	outside	the	tropics	has	been	nearly	
zero	(Houghton	2010,	unpublished	data).	This	near	neutrality	does	not	indi
cate	a	lack	of	activity	outside	the	tropics.	Rather,	the	sources	of	carbon	from	
wood	 harvest	 are	 largely	 balanced	 by	 the	 sinks	 in	 regrowing	 forests	 har
vested	in	previous	years.	Annual	gross	emissions	and	rates	of	uptake	from	
LULCC	are	nearly	as	great	 in	 temperate	and	boreal	regions	as	 they	are	 in	
the	tropics	(Richter	and	Houghton	2011).	Rates	of	wood	harvest,	for	example,	
are	nearly	the	same	in	both	regions.	The	main	difference	between	the	two	
regions	is	that	forests	are	being	lost	in	the	tropics,	while	forest	area	has	been	
expanding	in	Europe,	China,	and	the	United	States.	

The	 global	 net	 flux	 of	 carbon	 from	 LULCC	 based	 on	 these	 estimates	 is	
approximately	1.0	PgC	yr–1	for	the	last	three	decades	and	1.1	PgC	yr–1	for	the	
years	2000–2009	(Houghton	2010,	unpublished	data).	Forests	accounted	for	
90%–95%	of	this	net	source,	and	the	global	carbon	budget	is	essentially	bal
anced:	the	emissions	from	LULCC	in	the	tropics	(1.3	PgC	yr–1)	are	more	than	
offset	by	a	sink	in	the	forests	of	all	regions	(2.4	PgC	yr–1)	as	determined	from	
forest	inventories	(see	more	details	in	Section	2.4.3).	
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FIGURE	2.2	
Recent	estimates	of	the	net	emissions	of	carbon	from	land	use	and	land	cover	change	(LULCC).	
Houghton’s	estimate	(2010,	unpublished	data),	which	is	used	as	an	example	throughout	this	
chapter,	is	highlighted.	

The	 discussion	 below	 focuses	 on	 identifying	 the	 reasons	 underlying	
differences	among	the	many	estimates	in	Figure	2.2.	Differences	are	grouped	
into	two	major	categories:	(1)	data	for	rates	of	LULCC	and	carbon	density	
and	(2) the	types	of	LULCC	processes	included	in	the	analyses.	

2.4.1	 Data	Used	to	Define	Changes	in	Forest	Area	and	Carbon	Density	

All	of	the	approaches	for	calculating	the	emissions	of	carbon	from	LULCC	
consider	the	areas	affected	(e.g.,	deforested	or	reforested)	and	the	emission	
coefficients	 (carbon	 lost	 or	 gained	 per	 hectare	 following	 a	 change	 in	 land	
management).	The	approaches	differ,	first,	in	the	data	used	to	define	changes	
in	the	areas	of	croplands	and	pastures;	and,	second,	in	the	way	carbon	stocks	
and	changes	in	carbon	stocks	are	estimated	(some	are	modeled;	others	are	
specified	from	observations).	

A	significant	difference	among	approaches	is	the	spatial	resolution	of	the	
analysis.	The	nonspatial	approach	of	bookkeeping	models	 (e.g.,	Houghton	
2010,	unpublished	data)	cannot	represent	the	spatial	heterogeneity	of	biomes,	
and	 thus	 the	 emissions	 calculated	 with	 mean	 carbon	 densities	 for	 large	
regions	may	be	biased.	In	contrast,	spatially	explicit	information	on	changes	
in	 forest	 area,	 especially	 when	 combined	 with	 spatially	 explicit	 estimates	
of	 biomass	 density,	 should	 provide	 more	 accurate	 estimates	 of	 the	 carbon	
emissions	from	LULCC.	Compared	with	nationally	aggregated	estimates	of	
change	used	in	bookkeeping	models,	spatially	explicit	data	reduce	uncertain
ties	by	identifying	where	and	which	forests	types	have	undergone	change.	
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As	biomass	density	can	vary	substantially	within	a	country	and	across	forest	
types,	satellite	data	provide	a	clear	benefit.	The	spatial	colocation	of	defores
tation	with	carbon	density	will	greatly	improve	the	precision	of	carbon	emis
sions,	including	the	sources	and	sinks	from	ecosystems	not	directly	affected	
by	land	use	or	land	cover	change	(Houghton	and	Goetz	2008).	

Note	 that	although	processbased	models	are	 spatially	explicit	 (Pongratz	
et  al.	 2009;	 Shevliakova	 et  al.	 2009),	 the	 historical	 data	 for	 simulating	 land	
cover	change	rarely	are.	Maps,	at	varying	resolutions,	exist	 for	many	parts	
of	 the	 world,	 but	 only	 during	 the	 satellite	 era	 (Landsat	 began	 in	 1972)	 are	
spatial	data	on	land	cover	change	available,	in	theory.	In	fact,	there	are	many	
holes	 in	 the	coverage	of	 the	earth’s	surface	until	1999	when	the	first	global	
acquisition	strategy	for	moderate	spatial	resolution	data	was	undertaken	with	
the	Landsat	Enhanced	Thematic	Mapper	Plus	Sensor	(Arvidson	et al.	2001).	
The	longterm	acquisition	plan	of	Landsat	ETM+	data	ensures	annual	global	
acquisitions	of	the	land	surface.	However,	cloud	cover	and	phenological	vari
ability	limit	the	ability	to	provide	annual	global	updates	of	forest	extent	and	
change.	The	only	other	satellite	system	to	provide	global	coverage	of	the	land	
surface	 is	 the	 ALOS	 PALSAR	 instrument,	 which	 also	 includes	 an	 annual	
acquisition	strategy	for	the	global	land	surface	(Rosenqvist	et al.	2007).	

Remote	 sensing–based	 information	 on	 recent	 land	 cover	 change	 has	
been	 combined	 with	 regional	 statistics,	 such	 as	 from	 FAO,	 to	 reconstruct 	
spatially	 explicit	 land	 cover	 reconstructions	 covering	 more	 than	 the	 satel
lite	era	(Ramankutty	and	Foley	1999;	Goldewijk	2001;	Pongratz	et al.	2008).	
Historical	changes	in	LULCC	are	important	for	today’s	sources	and	sinks	of	
carbon	because	the	emissions	of	carbon	from	deforestation	are	not	instanta
neous.	Woody	debris	generated	at	the	time	of	disturbance	may	take	decades	
to	decompose.	Similarly,	the	uptake	of	carbon	by	secondary	forests	continues	
for	decades	and	centuries	after	these	forests	begin	to	grow.	In	the	absence	of	
spatial	data	on	biomass	density,	the	longterm	history	of	LULCC	is	necessary	
to	simulate	changes	in	biomass	density	resulting	from	management.	The	bio
mass	density	of	forests	cleared	for	agriculture	today	depends,	in	large	part,	
on	how	long	those	forests	have	had	to	recover	from	previous	harvests.	On	
the	other	hand,	if	spatial	estimates	of	biomass	density	are	obtained	directly,	
documentation	of	disturbance	history	may	no	longer	be	required.	

2.4.2			 	Other	Differences	among	Estimates	of	Carbon		
Emissions	from	Land	Use	Change	

Besides	 differences	 in	 data	 used	 to	 estimate	 deforestation	 rates	 and	 car
bon	density,	the	variability	in	flux	estimates	also	results	from	the	types	of	
land	use	included.	All	of	the	analyses	in	Figure	2.2	included	deforestation,	
either	by	using	satellite	data	on	forest	cover	or	by	inferring	changes	in	forest	
area	by	combining	data	on	the	expansion	and	abandonment	of	agricultural	
area	(cropland	and	pasture)	with	information	on	the	distribution	of	natural	
vegetation.	
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Forest
degradation:	Some	of	 the	estimates	 in	Figure	2.2	also	 included	 	forest	
management,	 wood	 harvest,	 or	 other	 management	 practices	 that	 change	
the	carbon	density	within	forests.	The	reduction	in	biomass	density	within	
forests	 as	 a	 result	 of	 land	 use	 is	 defined	 here	 as	 degradation.	 Logging	 in	
Amazonia,	 for	 example,	 added	 15%–19%	 to	 the	 emissions	 of	 carbon	 from	
deforestation	alone	(Huang	and	Asner	2010).	For	all	the	tropics,	harvests	of	
wood	and	shifting	cultivation,	together,	added	28%	to	the	net	emissions	cal
culated	on	the	basis	of	land	cover	change	alone	(Houghton	2010,	unpublished	
data).	Globally,	these	rotational	uses	of	land	added	32%–35%	more	to	the	net	
emissions	 from	 deforestation	 (Shevliakova	 et  al.	 2009).	 Thus,	 those	 analy
ses	that	have	included	wood	harvest	and	shifting	cultivation	yield	higher,	
and	presumably	more	comprehensive,	estimates	of	the	net	emissions	from	
LULCC.	

Indirect
anthropogenic
effects:	While	bookkeeping	models	use	rates	of	growth	
and	 decay	 that	 are	 fixed	 for	 different	 types	 of	 ecosystems,	 processbased	
models	simulate	the	processes	of	growth	and	decay	as	a	function	of	climate	
variability	and	trends	in	atmospheric	composition.	Because	effects	are	partly	
compensating	(e.g.,	deforestation	under	increasing	CO2	leads	to	higher	emis
sions	because	CO2	fertilization	increases	carbon	stocks,	but	regrowth	is	also	
stronger	as	CO2	 fertilization	has	a	more	pronounced	impact	on	regrowing	
than	on	mature	forest),	a	CO2	fertilization	effect	is	not	likely	to	be	a	major	
factor	in	accounting	for	differences	among	emission	estimates.	In	one	study,	
the	 combined	 effect	 of	 changes	 in	 climate	 and	 atmospheric	 composition	
increased	LULCC	emissions	by	about	8%	over	the	industrial	era	(Pongratz	
et al.	2009).	There	are	doubtlessly	other	 interactions	as	well	between	envi
ronmental	 changes	 and	 management.	 These	 interactions	 make	 attribution	
difficult;	that	is,	are	the	sources	and	sinks	the	result	of	management	or	the	
indirect	effect	of	environmental	change?	

There	 is	another	(indirect)	effect	of	deforestation.	As	forests	are	 lost,	 the	
sink	capacity	on	land	is	diminished.	This	effect	has	been	called	the	“net	land	
use	amplifier	effect”	(Gitz	and	Ciais	2003)	and	the	“loss	of	additional	sink	
capacity”	(Pongratz	et al.	2009).	In	models,	the	strength	of	this	effect	depends	
on	the	atmospheric	CO2	concentration.	These	indirect	effects	account	for	a	
portion	of	the	variability	among	emission	estimates.	

2.4.3	 Sources	and	Sinks	of	Carbon	from	Land	Use	Change	

The	sources	and	sinks	of	carbon	from	LULCC	are	significant	in	the	global	
carbon	budget	 (Table	2.2).	Globally,	 the	annual	emissions	of	carbon	from	
LULCC	were	larger	than	the	emissions	from	fossil	fuels	until		~mid 	twentieth	
century.	 Since	 ~1945,	 the	 emissions	 from	 fossil	 fuels	 have	 increased	
dramatically,	 while	 the	 emissions	 from	 land	 use	 have	 remained	 nearly	
constant	at	1–1.5	PgC	yr–1.	Thus	the	contribution	of	LULCC	to		anthropogenic	
carbon	emissions	has	varied	from	about	33%	of	total	emissions	over	the	last	
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150	years	(Houghton	1999)	to	about	12%	in	2008	(van	der	Werf	et al.	2009).	
The	declining	fraction	is	largely	the	result	of	the	accelerated	rise	in	fossil	
fuel	emissions.	

It	is	important	to	note	that	these	emissions	from	LULCC	are	net	emissions.	
They	include	both	sources	and	sinks	of	carbon	from	land	use—sources	when	
forests	are	converted	to	croplands	or	pastures	and	sinks	when	forests	regrow	
following	 harvest	 or	 following	 abandonment	 of	 croplands	 or	 pastures.	 In	
fact,	the	gross	sources	and	sinks	from	land	use	and	recovery	are	two	to	three	
times	 greater	 than	 the	 net	 source	 (Richter	 and	 Houghton	 2011).	 The	 error	
associated	with	the	net	flux	of	carbon	from	LULCC	is	thought	to	be	±0.7 PgC	
yr–1	(Le	Quéré	et al.	2009).	

It	should	be	clear	that	the	net	flux	of	carbon	from	LULCC	is	not	equivalent	
to	the	“emissions	of	carbon	from	deforestation,”	although	the	terms	are	used	
interchangeably	in	the	literature.	The	former	includes	other	forms	of	manage
ment	besides	deforestation,	for	example,	degradation	of	forests.	Further,	the	
net	flux	of	carbon	from	LULCC	includes	sources	and	sinks	of	carbon	from	
nonforests.	Cultivation	of	prairie	soils,	 for	example,	 results	 in	a	 loss	of	soil	
carbon	 unrelated	 to	 forests.	 Over	 the	 last	 150	 years,	 forests	 accounted	 for	
between	84%	and	96%	of	the	annual	net	flux	from	LULCC.	The	fraction	has	
varied	through	history;	in	recent	decades	forests	have	accounted	for	90%–95%.	

2.4.3.1	 Land	Use	Change	in	Tropical	Forests	

Recall	 that	managed	 forests	were	not	 included	 in	 the	 forest	 inventories	of	
the	 tropics	 (Section	 2.3).	 The	 net	 carbon	 balance	 for	 managed	 forests	 was	
determined	by	simulating	LULCC,	specifically	deforestation	for	crops,	pas
ture,	and	shifting	cultivation;	reforestation	following	abandonment	of	these	
land	uses;	and	harvest	of	wood	products	(Houghton	2010,	unpublished	data).	
LULCC	in	the	tropics	is	estimated	to	have	caused	a	net	source	of	1.3	(±0.7)	
PgC	yr–1	over	the	period	1990–2007.	The	gross	emissions	were	2.9	PgC	yr–1	

(from	deforestation	and	harvests);	gross	uptake	 in	 secondary	 forests	aver
aged	1.6	±	0.5	PgC	yr–1	(Table	2.3).	

2.4.3.2	 Land	Use	Change	in	Boreal	and	Temperate	Zone	Forests	

The	 forest	 inventories	of	boreal	 and	 temperate	zone	 forests	 included	both	
managed	and	unmanaged	forests	and	thus	provide	enough	information	to	
determine	the	net	effect	of	forests	in	the	carbon	cycle.	This	inventorybased	
estimate	 of	 flux	 is	 very	 different	 from	 the	 flux	 determined	 from	 analysis	
of	LULCC.	The	net	sink	obtained	from	forest	inventories	was	1.22	PgC	yr–1	

over	the	period	2000–2007	(Table	2.3).	In	contrast,	the	net	sink	obtained	from	
LULCC	was	nearly	zero	(a	net	sink	of	0.04	PgC	yr –1),	with	gross	emissions	of	
1.52	PgC	yr–1	and	a	gross	sink	of	1.56	PgC	yr–1	(Houghton	2010,	unpublished	
data).	The	major	reason	for	the	large	difference	in	the	two	estimates	of	the	
sink,	aside	from	errors,	is	believed	to	be	that	forests	are	accumulating	carbon	
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in	response	to	environmental	changes,	and	these	environmental	responses	
are	not	included	in	Houghton’s	(2010,	unpublished	data)	bookkeeping	model	
(see	Section	2.5.1.2).	

2.4.3.3	 Global	Summary	of	LULCC	

The	world’s	forests	were	a	net	sink	of	1.1	PgC	yr–1	over	the	period	2000–2007	
(Pan	et al.	2011)	 (Table	2.3).	This	net	sink	 includes	a	source	of	1.3	PgC	yr–1	

from	deforestation	and	harvests	 (LULCC)	and	a	sink	of	2.4	PgC	yr–1	mea
sured	in	forest	inventories.	These	estimates	yield	a	balanced	global	carbon	
budget.	The	net	terrestrial	sink	(1.3	PgC	for	the	period	1990–2009)	is	approxi
mately	equal	to	the	net	sink	in	forests	(1.1	PgC	yr–1).	

The	gross	uptake	of	carbon	by	the	world’s	forests	was	estimated	by	Pan	
et al.	(2011)	to	be	4.05	±	0.67	PgC	yr–1	(2.41	in	intact	forests	and	1.64	in	managed	
forests	in	the	tropics).	But	this	estimate	of	a	gross	uptake	is	an	underestimate	
because	the	sink	of	1.22	PgC	yr–1	 in	temperate	zone	and	boreal	forests	is	a	
net	sink,	not	a	gross	sink.	Adding	the	gross	uptake	in	these	forests,	obtained	
from	LULCC	(Houghton	2010,	unpublished	data),	yields	a	gross	uptake	of	
5.61	PgC	yr–1	(4.05	+	1.56)	for	the	world’s	forests.	

2.5	 Global	Carbon	Cycle	Revisited:	Residual	Terrestrial	Sink	

The	source	of	carbon	from	LULCC	explains	a	part	of	the	net	terrestrial	carbon	
flux	and,	thereby,	helps	define	a	different	residual	terrestrial	flux	(Figure 2.3).	
Figure	2.3	is	similar	to	Figure	2.1	except	the	net	terrestrial	flux	of	Figure	2.1	
has	been	broken	into	a	net	flux	from	land	use	change	(always	a	net	source	
historically)	 and	 a	 terrestrial	 residual	 flux.	 The	 residual	 flux	 is	 calculated	
by	difference,	just	as	the	net	terrestrial	flux	was	calculated	by	difference	in	
Figure 2.1.	It	is	noteworthy	that	the	net	terrestrial	flux	and	the	LULCC	flux	
were	approximately	equal	before	~1925.	Before	this	date	the	LULCC	flux	was

the	net	 terrestrial	flux.	Only	 in	 recent	decades	has	 there	been	another	 ter
restrial	sink	unexplained	by	LULCC.	It	should	be	recognized	that	terrestrial	
carbon	models	calculate	an	annual	carbon	sink	consistent	with	the	sink	calcu
lated	by	difference	(Le	Quéré	et al.	2009).	Differences	among	estimates	for	the	
future,	however,	suggest	that	those	models	are	not	reliable	enough	to	predict	
the	future	terrestrial	carbon	sink/source	(Cramer	et al.	2001;	Friedlingstein	
et al.	2006).	

In	sum,	forests	account	(1)	for	90%–95%	of	the	net	emissions	from	LULCC	
and	 (2)	 for	 nearly	 all	 the	 residual	 terrestrial	 sink	 (Pan	 et  al.	 2011).	 Thus,	
forests	 are	 important,	 both	 as	 a	 source	 of	 carbon	 to	 the	 atmosphere	 from	
human	 activity	 and	 as	 a	 sink	 for	 carbon	 through	 natural	 processes	 not	
entirely	understood.	Obviously,	forest	management	can	be	used,	and	is,	to	
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FIGURE	2.3	
Annual	sources	(+)	and	sinks	(–)	in	the	global	carbon	budget.	The	terrestrial	flux	is	partitioned	
into	a	flux	from	land	use	change	and	a	residual	terrestrial	sink.	

accumulate	carbon	on	land	(the	gross	sink	from	LULCC,	globally,	is	about	
3 PgC yr–1)	(Richter	and	Houghton	2011),	but	the	emissions	from	deforestation	
have	dominated	the	effects	of	management	to	date.	

2.5.1	 What	Explains	the	Residual	Terrestrial	Sink?	

The	 residual	 terrestrial	 sink	 incorporates	 all	 of	 the	 errors	 from	 the	 other	
terms	in	the	global	carbon	budget	and	has	an	error	on	the	order	of	1	PgC	yr–1.	
The	analysis	of	data	from	forest	inventories	suggests	a	net	sink	of	2.4	PgC	yr–1	

over	the	period	1990–2007	that	was	presumably	driven	by	some	combination	
of	processes,	some	already	considered	in	analyses	of	 land	use	change	and	
others	not	considered.	The	sections	below	consider	potential	 carbon	sinks	
driven	by	processes	not	yet	included	in	analyses	of	land	use	change.	

Aside	from	cumulative	errors,	the	residual	terrestrial	sink	may	be	attrib
uted	 to	 two	 types	 of	 explanations:	 (1)	 omissions	 of	 management	 practices	
from	analyses	of	LULCC	and	(2)	factors	other	than	management	that	affect	
terrestrial	carbon	storage.	

2.5.1.1	 Management	Effects	Not	Included	in	Analyses	of	Land	Use	Change	

Before	discussing	aspects	of	management	that	may	account	for	the	residual	ter
restrial	sink,	it	is	important	to	recall	that	the	residual	flux	does	not	include	the	
sinks	of	carbon	in	forests	regrowing	as	a	result	of	direct	activity	(logging,	aban
donment,	etc.).	These	sinks	are	part	of	the	global	carbon	source	from	LULCC.	

Management	 activities	 not	 included	 in	 analysis	 of	 land	 use	 change	
(e.g., use of	fertilizers	in	forest	management)	may	have	increased	the	storage	



	
	
	

	

	
	

	
	

	

	
	
	
	
	

	
	

	

	

	
	 	

	
	
	
	

28	 Global
Forest
Monitoring
from
Earth
Observation


of	carbon	on	land.	Two	other	examples	are	given	below.	To	the	extent	these	
processes	are	important,	they	would	decrease	the	net	source	calculated	from	
land	use	change	and,	thereby,	decrease	the	residual	terrestrial	sink,	as	well.	
A	third	example	increases	estimates	of	both	terrestrial	fluxes.	

Aquatic
 transport:
 Erosion
 and
 redeposition
 of
 carbon:	 One	 uncertainty	 with	
respect	to	changes	in	soil	carbon	with	cultivation	concerns	the	fate	of	car
bon	lost	from	soil.	A	25%–30%	loss	of	carbon	from	the	top	meter	in	the	years	
following	 cultivation	 has	 been	 observed	 repeatedly	 (Post	 and	 Kwon	 2000;	
Guo	and	Gifford	2002;	Murty	et al.	2002)	and	is	generally	assumed	to	have	
been	released	to	the	atmosphere.	However,	some	of	it	may	have	been	moved	
laterally	 to	 a	 different	 location	 (erosion).	 Much	 of	 the	 transported	 carbon	
may	 be	 released	 to	 the	 atmosphere	 through	 subsequent	 decomposition,	
either	during	transport	or	once	incorporated	in	sediment.	If	so,	the	loss	of	
carbon	was	counted	in	analyses	of	land	use	change.	However,	if	the	organic	
carbon	 settles	 in	 anaerobic	 environments	 and	 decomposition	 is	 inhibited,	
the	carbon	will	be	sequestered,	at	least	temporarily.	

The	carbon	discharged	to	the	oceans	is	only	a	fraction	of	the	carbon	enter
ing	rivers	from	terrestrial	ecosystems	by	way	of	soil	respiration,	leaching,	
chemical	weathering,	and	physical	erosion.	Although	most	of	the	carbon	is	
released	to	the	atmosphere	in	transport,	as	much	as	0.6	PgC	may	be	buried	
in	the	sediments	of	floodplains,	lakes,	reservoirs,	and	wetlands	(Berhe	et al.	
2007;	Tranvik	et al.	2009;	Aufdenkampe	et al.	2011).	If	the	sink	includes	some	
of	 the	 observed	 loss	 of	 carbon	 from	 the	 top	 meter	 of	 soil,	 then	 the	 emis
sions	of	carbon	to	the	atmosphere	from	land	use	change	have	been	overes
timated.	The	estimated	sink	from	erosion/deposition	is	large,	responsive	to	
both	land	use	change	and	changes	in	climate,	and	ought	to	be	considered	in	
the	global	carbon	balance.	Furthermore,	this	buried	carbon	is	important	as	
a	potential	source	of	methane.	Freshwater	ecosystems	release	an	estimated	
0.1	PgC	yr–1	as	methane.	The	carbon	emissions	are	small,	but	the	radiative	
emissions	are	enough	 to	account	 for	25%	of	 the	estimated	 terrestrial	 sink	
(Bastviken	et al.	2011).	

Woody
 encroachment:	 Another	 possible	 explanation	 for	 the	 residual	 sink	 is	
“woody	encroachment.”	The	expansion	of	trees	and	woody	shrubs	into	herba
ceous	lands,	although	it	cannot	be	attributed	definitively	to	natural,	indirect	
(climate,	CO2),	or	direct	effects	 (fire	suppression,	grazing),	 is,	nevertheless,	
happening	in	many	regions.	Scaling	it	up	to	a	global	estimate	is	problemati
cal,	however	(Archer	et al.	2001),	in	part	because	the	areal	extent	of	woody	
encroachment	 is	 unknown	 and	 difficult	 to	 measure.	 Also,	 the	 increase	 in	
vegetation	 carbon	 stocks	 observed	 with	 woody	 encroachment	 is	 in	 some	
cases	 offset	 by	 losses	 of	 soil	 carbon	 (Jackson	 et  al.	 2002).	 Finally,	 woody 	
encroachment	may	be	offset	by	its	reverse	process,	woody	elimination,	an	
example	of	which	is	the	fireinduced	spread	of	cheatgrass	(Bromus tectorum)	
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into	the	native	woody	shrub	lands	of	the	Great	Basin	in	the	western	United	
States	(Bradley	et al.	2006).	

The	 net	 effect	 of	 woody	 encroachment	 and	 woody	 elimination	 is,	 thus,	
uncertain,	not	only	with	 respect	 to	net	 change	 in	carbon	storage,	but	also	
with	respect	to	attribution.	It	may	be	an	unintended	effect	of	management,	or	
it	may	be	a	response	to	indirect	or	natural	effects	of	environmental	change.	

Emissions
from
draining
and
burning
of
peatlands:	Not	all	of	the	processes	left	
out	of	analyses	of	land	use	change	would	reduce	the	net	carbon	source	if	they	
were	included.	Some	processes	act	to	increase	the	emissions	and	increase	the	
residual	terrestrial	sink	as	well.	One	such	process	is	the	draining	and	burn
ing	of	tropical	swamp	forests	for	the	establishment	of	oil	palm	plantations	
in	Southeast	Asia.	This	use	of	land	is	thought	to	add	0.3	PgC	yr–1	to	the	net	
emissions	of	carbon	from	land	use	change	(Hooijer	et al.	2010).	The	elevated	
carbon	emissions	from	these	and	other	wetlands	have	not	been	included	in	
global	estimates	of	emissions	from	land	cover	change.	

2.5.1.2	 	 	Indirect	and	Natural	Effects	(Processes	Not	
Directly	Related	to	Management)	

Two	 other	 processes	 besides	 the	 direct	 effects	 of	 management	 (LULCC)	
account	for	changes	in	terrestrial	carbon	storage:	indirect	effects	(rising	con
centrations	of	CO2,	deposition	of	reactive	nitrogen,	climate	change)	and	natu
ral	effects,	including	changes	in	disturbance	regimes	(Marlon	et al.	2008).	

Effects
 of
 CO2,
 N
 deposition,
 and
 climate
 change
 on
 carbon
 storage
 of
 forests

(indirect
 anthropogenic
 effects):	 Three	 environmental	 factors	 are	 generally	
thought	 to	 explain	 increases	 in	 plant	 productivity	 and,	 thereby,	 carbon	
storage:	 CO2	 fertilization,	 nitrogen	 deposition,	 and	 changes	 in	 climate	
(Schimel	1995).	Increased	concentrations	of	CO2	are	thought	to	have	caused	
increased	biomass	density	in	tropical	forests	(Lewis	et al.	2004).	Nitrogen	
deposition	 is	 believed	 to	 be	 especially	 important	 in	 the	 northern	 mid	
latitudes	(Thomas	et al.	2010).	And	changes	in	temperature	and	moisture	
are	 important,	particularly	 through	earlier	and	 longer	growing	seasons.	
Competition	among	 these	 factors	 to	explain	 the	 residual	 terrestrial	 sink	
has	existed	for	nearly	as	long	as	the	sink	has	been	recognized.	The	relative	
strengths	are	unknown.	

Changes
in
disturbance
regimes:	Natural	disturbance	regimes	(including	recov
ery)	 may	 themselves	 change	 over	 decades	 or	 centuries,	 causing	 carbon	 to	
accumulate	during	some	periods	and	to	be	lost	during	others	(Marlon	et al.	
2008;	Wang	et al.	 2010).	A	 reduction	 in	disturbances	over	 the	 last	decades	
may	have	shifted	more	forests	to	a	phase	of	recovery	with	attendant	sinks.	It	
must	be	noted,	however,	that	in	many	regions	the	effects	of	climate	change	
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(droughts	and	fires)	appear	to	have	caused	additional	carbon	to	be	lost	rather	
than	accumulated	(Gillett	et al.	2004;	Westerling	et al.	2006;	Kurz	et al.	2008).	
Apparently	the	increased	releases	of	carbon	from	fires,	storms,	diseases,	and	
logging	are	offset	by	regrowth	or	enhanced	growth	elsewhere.	

2.5.2	 Sources	and	Sinks	of	Carbon	in	the	Net	Residual	Terrestrial	Sink	

Like	the	net	source	of	carbon	from	LULCC,	the	residual	terrestrial	sink	is	also	
a	net	 sink,	 including	both	sources	and	sinks	of	 carbon.	 Its	existence	 today	
does	not	 imply	that	 it	will	continue	to	grow,	or	that	 it	will	continue	at	all.	
Model	experiments	suggest	that	the	drying	effects	of	a	warmer	climate	may	
cause	dieback	of	tropical	forests	in	Amazonia	(Cox	et al.	2000),	a		prediction	
looking	more	reasonable	after	two	100year	droughts	occurred	there	in	the	
last	decade	(Phillips	et al.	2009;	Lewis	et al.	2011).	In	boreal	forests,	too,	not	
only	have	fires	increased	in	recent	decades	(Stocks	et al.	2003;	Kasischke	and	
Turetsky	2006;	Westerling	et al.	2006),	but	the	productivity	of	the	forests,	at	
first	observed	to	have	increased,	has	declined	since	~1990	(Goetz	et al.	2007),	
most	likely	in	response	to	drought	stress.	And	an	unusually	large	fire	in	the	
Alaskan	 tundra	 (Mack	 et  al.	 2011)	 may	 foreshadow	 increased	 sources	 of	
carbon	from	those	ecosystems	too.	

2.5.3	 Is	the	Residual	Terrestrial	Sink	Changing?	Or	Will	It	Change?	

Remarkably,	 the	 proportions	 of	 anthropogenic	 carbon	 emissions	 (fossil	 fuel	
and	 land	use	change)	 taken	up	by	 the	atmosphere,	oceans,	and	 land	have	
changed	little	in	the	last	50	years.	In	other	words,	the	annual	accumulations	
of	carbon	on	land	and	in	the	oceans	have	increased	in	proportion	to	emis
sions.	Over	the	years	2000–2009,	the	annual	emissions	from	fossil	fuels	and	
land	use	change	accumulated	in	the	atmosphere	(~47%),	the	oceans	(~26%),	
and	 land	 (~27%)	 (Table	 2.2).	 There	 is	 little	 sign	 of	 any	 saturation	 of	 these	
sinks.	 Some	 scientists	 argue	 that	 the	 airborne	 fraction	 (the	 increase	 in	 the	
atmosphere	 divided	 by	 total	 emissions)	 has	 increased	 slightly,	 suggesting	
that	the	sinks	may	be	beginning	to	saturate	(Canadell	et al.	2007;	Le	Quéré	
et al.	2009),	but	others	argue	that	that	 increase	cannot	be	observed	against	
the	yeartoyear	variability	in	the	airborne	fraction	and	the	uncertainty	of	the	
land	use	flux	(Knorr	2009).	

There	are	other	problems	with	interpreting	the	airborne	fraction.	Changes	in	
the	airborne	fraction	may	be	influenced	by	the	nonlinear	responses	of	oceanic	
uptake	to	changes	in	the	rate	of	emissions	(Gloor	et al.	2010).	The		oceanic	sink	
is	not	determined	by	a	single	carbon	reservoir	that	mixes	 infinitely	fast,	as	
assumed	in	the	linear	analyses.	Rather,	variations	in	the	“CO2	sink	rate,”	if	
calculated	with	a	singlebox	model,	will	result	from	variations	in	the	growth	
rate	of	the	sources,	with	no	change	in	the	rate	constants	of	ocean	mixing.	The	
land	and	ocean	sinks	may,	indeed,	be	slowing,	but		demonstrating	it	through	
observations	of	the	airborne	fraction	will	be	difficult.	
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2.6		 	Which	Sources	and	Sinks	of	Carbon		

Are	Observable	from	Space?	

Data	from	satellites	have	been	used	successfully	to	measure	changes	in	forest	
area,	 but	 it	 has	 been	 more	 difficult	 to	 determine	 from	 satellite	 data	 alone	
whether	those	changes	are	anthropogenic	or	not,	and,	if	they	are,	whether	
they	represent	a	land	cover	change	(e.g.,	conversion	of	forest	to	cropland)	or	
a	land	use	(logging	and	subsequent	recovery).	

Aside	from	changes	in	forest	area,	however	(and	changes	in	area	are	the	
changes	that	involve	the	greatest	changes	in	carbon),	there	are	other	issues	
that	 need	 attention.	 This	 chapter	 concludes	 with	 a	 discussion	 of	 three 	
questions:	

r� Can	changes	in	terrestrial	carbon	be	measured	from	space?	

r� Can	the	net	carbon	balance	of	terrestrial	ecosystems	be	more	easily	
measured	if	sources	and	sinks	are	unevenly	distributed?	

r� Can	 losses	 and	 gains	 of	 terrestrial	 carbon	 be	 attributed	 to	 direct	
management,	as	opposed	to	indirect	environmental	effects?	

2.6.1	 Can	Changes	in	Terrestrial	Carbon	Be	Measured	from	Space?	

For	aboveground	woody	biomass,	although	different	methods	have	yielded	
wildly	different	estimates	for	large	regions	in	the	past	(Houghton	et al.	2001),	
new	satellitebased	methods	look	promising	(Hall	et al.	2011;	Le	Toan	et al.	
2011).	Mapping	change	in	biomass	density	over	large	regions	is	in	its	infancy,	
and	testing	maps	over	large	areas	remains	a	challenge,	but	instruments	com
ing	online	will	most	likely	enable	measurements	at	higher	and	higher	spatial	
resolutions.	The	new	study	by	Baccini	et al.	(2011)	represents	a	step	in	this	
direction.	

In	 contrast	 to	 aboveground	 biomass,	 changes	 in	 belowground	 carbon	
stocks,	woody	debris,	and	wood	products	will	have	to	be	modeled,	but	the	
good	news	is	that	changes	in	aboveground	biomass	account	for	~90%	of	the	
net	carbon	flux	(2000–2009),	while	changes	in	soil	carbon,	wood	products,	and	
woody	debris	account	for	only	20%,	10%,	and	0%	of	the	net	flux,	respectively	
(Figure	2.4).	The	sum	is	more	than	100%	because	during	this	interval	carbon	
accumulated	in	wood	products,	while	it	was	lost	from	biomass	and	soils.	

Large,	 rapid	changes	 in	aboveground	biomass	are	more	easily	observed	
than	small,	slow	changes.	This	observation	means	that	satellites	are	biased	
toward	detecting	deforestation	while	missing	the	slower	rates	of	accumula
tion	of	biomass	during	growth.	

The	existence	of	delayed	fluxes	 implies	 that	methods	 for	estimating	flux	
must	include	data	on	historical	land	cover	activities	and	associated	informa
tion	on	the	fate	of	cleared	carbon.	Such	historical	data	are	not	included	in	all	
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FIGURE	2.4	
Average	annual	flows	of	carbon	(PgC	yr–1)	in	the	world’s	terrestrial	ecosystems	as	a	result	of	land	
use	change	over	the	period	2000–2009.	The	sum	of	exchanges	with	the	atmosphere	is	equiva
lent	to	the	sum	of	changes	in	the	four	pools	(a	flux	of	1.1	PgC	yr–1	from	land	to	atmosphere).	

analyses,	especially	in	those	using	remote	sensing	data	where	information	is	
available	only	since	the	1970s	at	best.	How	far	back	in	time	does	one	need	to	
conduct	analyses	in	order	to	estimate	current	emissions	accurately,	or,	alter
natively,	how	much	are	current	emissions	underestimated	by	ignoring	legacy	
fluxes?	Ramankutty	et	al.	(2007)	explored	these	questions	using	a	sensitivity	
analysis	of	Amazonia.	Their	“control”	study	used	historical	land	use	informa
tion	beginning	in	1961	and	calculated	annual	fluxes	for	the	period	1961–2003.	
When	they	repeated	the	analysis	ignoring	historical	 land	use	prior	to	1981,	
they	underestimated	the	1990–1999	emissions	by	13%;	when	they	repeated	it	
ignoring	data	prior	to	1991,	they	underestimated	emissions	by	62%.	However,	
if	more	of	 the	cleared	carbon	was	burned	and	 less	decayed,	 the	underesti
mated	emissions	were	reduced	to	4%	and	21%,	respectively.	

In	 another	 analysis	 of	 deforestation	 and	 reforestation	 in	 Amazonia,	
Houghton	et al.	(2000)	found	that	the	annual	emissions	of	carbon	from	accu
mulated	wood	products	and	slash	were	three	to	four	times	higher	than	the	
annual	 emissions	 from	 burning.	 The	 legacy	 from	 secondary	 forests	 was	
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also	 large	 in	 this	 analysis,	 accounting	 for	 an	 annual	 sink	 as	 large	 as	 the	
annual	source	from	burning.	Sources	and	sinks	of	carbon	from	changes	in	
above	ground	biomass	are	amenable	to	measurement.	Sources	from	accumu
lated	wood	products	or	downed	woody	debris	will	require	historical	infor
mation	and	modeling.	

2.6.2			 	Can	the	Net	Carbon	Balance	of	Land	Be	More	Easily		
Measured	if	Sources	and	Sinks	Are	Unevenly	Distributed?	

In	the	worst	case,	the	net	terrestrial	sink	is	distributed	evenly	over	the	land	
surface	and,	thus,	is	so	small	per	hectare	that	it	would	to	be	impossible	to	mea
sure.	On	the	other	hand,	many	disturbances	involve	changes	large	enough	to	
be	observed	remotely.	Furthermore,	 the	gross	fluxes	 from	disturbance	and	
recovery	 are	 two	 to	 three	 times	 greater	 and	 thus	 more	 readily	 identified	
than	the	net	source/sink	(Richter	and	Houghton	2011).	Several	recent	stud
ies	suggest	that	changes	in	forest	biomass	are	more	frequent	than	generally	
expected.	More	than	half	of	the	hectares	of	an	oldgrowth	tropical	forest	in	
Costa	Rica,	for	example,	showed	(with	airborne	lidar)	either	losses	or	gains	
of	carbon	over	7	years	(Dubayah	et al.	2010),	and	a	recent	study	with	Landsat	
showed	that	small	gaps	associated	with	tree	falls	in	Central	Amazonia	were	
numerous	enough	to	account	for	an	area	equivalent	 to	40%	of	 that	region’s	
annual	deforestation	(NegrónJuárez	et al.	2011).	

These	results	on	the	one	hand,	raise	 the	hope	that	change	may	be	more	
common,	and	thus	more	readily	detected	and	measured,	than	expected.	That	
is,	the	net	terrestrial	sink	is	not	distributed	evenly	over	the	land	surface.	On	
the	other	hand,	the	errors	associated	with	the	more	easily	measured	sources	
and	sinks	may	make	estimation	of	a	net	global	change	no	more	accurate	than	
it	would	be	if	the	change	were	evenly	distributed	over	the	terrestrial	surface.	
Furthermore,	 the	 recent	 examples	 of	 finescale	 changes	 in	 carbon	 density	
may	be	no	more	than	“noise”	in	longer	term	trends	or	largearea	averages.	
Changes	might	be	better	observed	over	large	regions	using	coarse	resolution	
imagery,	 sampled	 with	 highresolution	 lidar,	 for	 a	 more	 accurate	 estimate	
of	average	change.	If	the	goal	is	to	understand	individual	trees	in	a	stand,	
coarse	resolution	would,	of	course,	not	be	appropriate.	

2.6.3			 	Can	Losses	and	Gains	of	Terrestrial	Carbon	Be		
Attributed	to	Direct	Management,	as	Opposed		
to	Indirect	Environmental	Effects?	

Besides	 the	policy	 reasons	 for	distinguishing	direct	 anthropogenic	 effects	
from	 environmental	 effects,	 the	 scientific	 reason	 for	 attribution	 is	 to	 bet
ter	understand	the	current	global	carbon	cycle	and	to	better	predict	future	
changes.	One	goal	is	to	understand	the	individual	processes	responsible	for	
what	 is	 now	 referred	 to	 as	 the	 residual	 terrestrial	 flux.	 The	 global	 carbon 	
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budget	has	advanced	from	recognizing	a	single	net	terrestrial	flux	of	carbon	
(Figure	2.1)	to	recognizing	two	terrestrial	fluxes:	an	LULCC	flux	and	a	resid
ual	terrestrial	flux	(Figure	2.3).	Both	of	these	net	fluxes	can	be	further	divided,	
for	example,	into	gross	fluxes	or	into	different	causal	mechanisms.	Changes	
driven	by	natural	disturbances	and	recovery	(structural	changes)	are	clearly	
different	from	changes	driven	by	enhanced	or	retarded	growth	rates	(meta
bolic	changes).	Some	will	lend	themselves	to	observation	from	space;	others	
will	remain	in	the	residual	category	until	models	are	good	enough	or	data	
are	specific	enough	to	enable	additional	distinctions.	
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3.1	 	Introduction	

As	 presented	 in	 Chapters	 1	 and	 2,	 forests	 provide	 crucial	 ecosystem		
	services.	In	this	respect,	it	is	important	to	tackle	the	technical	issues	sur
rounding	 the	 ability	 to	 produce	 accurate	 maps	 and	 consistent	 estimates		
of	 forest	 type,	 location,	 area,	 condition,	 and	 changes	 in	 these	 factors	 at		
scales	 from	 global	 to	 local.	 Remotely	 sensed	 data	 from	 earth	 observing		
satellites	are	crucial	to	such	efforts.	Recent	developments	in	regional	and		
global	monitoring	of	tropical	forests	from	earth	observation	have	profited		
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immensely	from	changes	made	to	the	data	policy	and	conditions	of	data	
access	 imposed	 by	 major	 providers	 of	 imagery	 from	 earth	 observing	
satellites—changes	that	have	made	access	to	suitably	processed	imagery	
far	easier,	far	cheaper,	and	far	more	wide	reaching	in	terms	of	both	geo
graphic	coverage	and	time.	On	July	23,	1972,	the	United	States	launched	
Landsat	 1.	 This	 civilian	 polarorbiting	 imaging	 satellite	 carried	 a	 four
channel	multispectral	scanner	(MSS),	which	provided	images	suitable	for	
many	forest	mapping	applications.	Its	successor	is	still	flying	on	the	quite	
remarkable	Landsat	5.	We	thus	have	an	unbroken	record	of	observations	
stretching	back	over	almost	four	decades.	

Imaging	 sensors	 on	 earth	 observing	 satellites	 measure	 electromagnetic	
radiation	(EMR)	reflected	or	emitted	from	the	Earth’s	surface	and	use	these	
measurements	as	a	source	of	information	concerning	our		planet’s	physical,	
chemical,	 and	 biological	 systems.	 Satellites	 in	 geostationary	 orbit	 provide	
frequent	 images	 of	 a	 fixed	 view	 of	 one	 side	 of	 Earth	 (as	 often	 as	 every	
15 minutes	in	the	case	of	Europe’s	Meteosat	secondgeneration		instruments),	
while	 those	 in	polar	orbits,	 like	Landsat,	 image	 the	entire	planet’s	 	surface	
every	 day	 or	 every	 couple	 of	 weeks	 or	 so,	 depending	 on	 the	 spatial	
characteristics	 of	 the	 sensor;	 images	 with	 detailed	 spatial	 measurements	
(1–30  m)	 are	 	usually	 only	 available	 once	 or	 twice	 a	 month—for	 example,	
Landsat	5 and	7	(both	still	flying	at	the	time	of	writing)	image	every	16	days	
at	 30	 m	 resolution,	 while	 coarser	 resolution	 imagery	 (e.g.,	 the	 MODerate	
resolution	Imaging	Spectroradio	meter	[MODIS]	sensor	on	Terra	at	250	m	or	
the	SPOT	satellites’	VGT	sensor	at	1	km)	is	provided	every	day.	Most		satellite	
sensors	record	EMR	beyond	the	sensitivity	of	the	human	eyemeasurements	
in	the	near	and	shortwave	infrared	wavelengths,	for	example,	help	differenti
ate	between	vegetation	types	and	condition;	shortwave	and	thermal	infrared	
wavelengths	 are	 essential	 for	 mapping	 and	 monitoring	 forest	 fires;	 and	
measurements	in	the	microwave	wavelengths	(from	imaging	radar		systems)	
can	even	“see”	through	clouds.	

Because	the	information	is	captured	digitally,	computers	can	be	used	to	pro
cess,	store,	analyze,	and	distribute	the	data;	and	because	the	information	is	an	
image	captured	at	a	particular	time	and	place,	it	provides	a	permanent	record	
of	prevailing	environmental	conditions.	As	the	same	sensor	on	the	same	plat
form	is	gathering	the	images	for	all	points	on	the	planet’s	surface,	these	mea
surements	 are	 globally	 consistent	 and	 	independent—important	 attributes	
where	monitoring,	 reporting,	 and	verification	 (MRV)	 linked	 to	 	multilateral	
environmental	 agreements,	 such	 as	 the	 UN	 Framework	 Convention	 on	
Climate	 Change	 (UNFCCC)	 or	 the	 Convention	 on	 Biological	 Diversity,	 are	
concerned.	

Earth	 observation	 from	 space	 has	 become	 more	 widely	 accepted	 and	
widely	 adopted	 as	 well	 as	 technologically	 more	 and	 more	 sophisticated.	
The	 latest	 systems	 launched,	 such	 as	 the	 FrancoItalian	 Pleiades	 system	
(the	 first	 of	 which	 was	 launched	 December	 17,	 2011),	 combine	 very	 high	
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spatial	resolution	(70	cm)	with	a	highly	maneuverable	platform,	capable	of	
providing	an	image	of	any	point	on	the	surface	(cloud	cover	permitting)	with	
a	24	h	 revisit	period.	Earth	observation	 from	space	has	also	become	more	
important	due	to	 the	significant	 impact	 that	modern	human	civilization	 is	
having	on	 the	Earth—over	7	billion	people	are	putting	 relentless	pressure	
on	our	planet,	and	the	forests	are	certainly	feeling	this.	Forty	years	ago,	the	
United	States	was	largely	the	only	source	of	imagery—today	there	are	more	
than	25	spacefaring	nations	flying	imaging	systems.	In	1972	Landsat	1	was	
the	only	civilian	satellite	capable	of	imaging	Earth	at	a	level	of	spatial	detail	
appropriate	for	measuring	any	sort	of	quantitative	changes	in	forests—today	
there	are	more	than	40	satellites	on	orbit	that	can	provide	suitable	imagery	
(or	 at	 least	 they	 could,	 if
 they	 had	 a	 suitable	 data	 acquisition,	 archiving,	
processing,	access,	and	distribution	policy).	This	chapter	introduces	the	use	
of	earth	observation	technology	to	monitor	forests	across	the	globe.	

3.2	 Scope	of	the	Book	

Monitoring	 forest	 areas	on	anything	greater	 than	 local	or	 regional	 scales	
would	 be	 a	 major	 challenge	 without	 the	 use	 of	 satellite	 imagery,	 in	
particular,	for	large	and	remote	regions.	Satellite	remote	sensing		combined	
with	 a	 set	 of	 ground	 measurements	 for	 verification	 plays	 a	 key	 role	 in	
determining	loss	of	forest	cover.	Technical	capabilities	and	statistical	tools	
have	 advanced	 since	 the	 early	 1990s,	 and	 operational	 forest	 monitoring	
systems	at	the	national	level	are	now	a	feasible	goal	for	most	developing	
countries	 in	 the	 tropics	 (Achard	 et	 al.	 2010).	 Improved	 global	 observa
tions	 can	 support	 activities	 related	 to	 multilateral	 environmental	 agree
ments,	 such	 as	 the	 Reducing	 Emissions	 from	 Deforestation	 and	 Forest	
Degradation	 (REDD)plus	 readiness	 mechanism	 of	 the	 UNFCCC.	 While	
the	primary	 interest	of	countries	 in	 forest	cover	monitoring	would	occur	
at	 national	 or	 subnational	 levels,	 global	 or	 pantropical	 monitoring	 can	
contribute	 through	 (1)	 	identifying	 critical	 areas	 of	 change,	 (2)	 helping	 to	
establish	areas	within	countries	 that	require	detailed	monitoring,	and	(3)	
ensuring	consistency	of	national	efforts.	The	main	requirements	of	global	
monitoring	systems	are	that	they	measure	changes	throughout	all	forested	
area,	use	consistent	methodologies	at	repeated	intervals,	and	verify	results.	
Verification	is	usually	a	combination	of	finer	resolution	observations	and/	
or	ground	observations.	

This	 chapter	 provides	 an	 overview	 of	 operational	 remote	 sensing	
approaches	used	to	monitor	forest	cover	over	large	areas.	Many	methods	
of	 satellite	 imagery	 analysis	 can	 produce	 adequate	 results	 from	 global	
to	 national	 scales.	 One	 of	 the	 key	 issues	 for	 forest	 cover	 monitoring	 is	
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that	satellite	data	need	to	be	interpreted	(digitally	or	visually)	for		forest	
cover	 change,	 i.e.,	 focusing	 on	 the	 interdependent	 interpretation	 of	
multi	temporal	imagery	to	detect	and	characterize	changes.	Four	general	
remote		sensing–based	approaches	are	currently	used	for	capturing	forest	
cover	trends:	

1.	Statistical	 sampling	designed	 to	estimate	deforestation	 from	mod
erate	 spatial	 resolution	 imagery	 from	 optical	 sensors	 (typically	
10–30 m	resolution).	

2.	Global	land	cover	mapping	and	identification	of	areas	of	rapid	forest	
cover	changes	from	coarse	spatial	resolution	imagery	from	optical	
sensors	(typically	250	m	to	1	km	resolution).	

3.	Nested		 approach	 with	 coarse	 and	 moderate	 spatial	 resolution	
imagery	from	optical	sensors,	i.e.,	analysis	of	walltowall	coverage	
from	coarseresolution	data	to	identify	locations	of	large	deforesta
tion	 fronts	 for	 further	 analysis	 with	 a	 sample	 of	 moderate	 spatial	
	resolution	data.	

4.	Analysis	of	walltowall	coverage	from	moderate	spatial	resolution	
imagery	from	optical	or	radar	sensors.	

The	 use	 of	 moderateresolution	 satellite	 imagery	 for	 the	 historical	
assessment	of	deforestation	has	been	boosted	by	changes	to	the	policy	that	
determines	access	and	distribution	of	data	from	the	U.S.	Landsat	archive.	
In	 the	1990s,	 the	National	Aeronautics	and	Space	Administration	(NASA)	
and	the	U.S.	Geological	Survey	(USGS)	developed	a	global	dataset	from	the	
Landsat	archives.	Initially	known	as	the	GeoCoverTM	program,	this	became	
the	Global	Land	Survey	(GLS)	and	provided	free	and	open	access	to	selected	
scenes	 covering	 the	 whole	 surface	 of	 the	 planet	 making	 up	 the	 specific	
epochs	 (1990,	2000,	2005,	and	2010)	 for	 the	program.	The	GLS	database	 is	
described	 in	 Chapter	 4	 together	 with	 the	 freely	 available	 complementary	
database	of	coarseresolution	MODIS	imagery.	In	December	2008,	the	U.S.	
government	revised	its	Landsat	data	policy	and	released	the	entire	Landsat	
archive	at	no	charge.	Together	the	GLS	and	the	U.S.	open	access	data	policy	
mean	that	anyone	interested	in	global	forest	monitoring	now	has	access	to	
an	archive	of	data	spanning	four	decades	and	covering	most	points	on	the	
Earth’s	surface	multiple	 times	over	 this	period.	This	powerful	resource	 is	
now	 being	 used	 for	 statistical	 sampling	 on	 a	 global	 scale.	 The	 statistical	
sampling	strategies	for	the	use	of	moderateresolution	satellite	imagery	are	
described	in	Chapter	5.	The	technical	details	of	the	most	prominent	forest	
ecosystem	 monitoring	 approaches	 are	 provided	 in	 Chapters	 6	 through	
14.	 Finally,	 Chapter	 15	 covers	 the	 use	 of	 synthetic	 aperture	 radar	 (SAR)	
technology	 and	 Chapter	 16	 gives	 some	 perspectives	 of	 future	 satellite	
remote		sensing	imagery	and	technology.	

The	content	of	the	book	is	introduced	briefly	hereafter.	
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3.3		 Use	of	Moderate	Spatial	Resolution	Imagery	

Nearly	 complete	 pantropical	 coverage	 from	 the	 Landsat	 satellites	 is	
now	 available	 at	 no	 cost	 from	 the	 Earth	 Resources	 Observation	 Systems	
(EROS)	Data	Center	(EDC)	of	the	USGS.	A	recent	product,	called	the	GLS,	
was	derived	by	 reprocessing	GeoCover	data,	a	 selection	of	good	quality,	
orthorectified,	 and	 geodetically	 accurate	 global	 land	 dataset	 of	 Landsat	
MSS,	 Landsat	 TM,	 and	 Landsat	 ETM+	 satellite	 images	 with	 a	 global	
coverage,	 which	 was	 created	 by	 NASA	 for	 the	 epochs	 of	 the	 mid1970s	
at 60	m	×	60	m	resolution	and	ca.	1990,	ca. 2000,	mid2000s,	and	ca.	2010	at	
28.5	m	×	28.5	m	resolution.	

These	GLS	datasets	play	a	key	role	 in	establishing	historical	deforesta
tion	rates,	although	in	some	parts	of	 the	tropics	 (e.g.,	Western	Colombia,	
Central	Africa,	and	Borneo)	persistent	cloud	cover	is	a	major	challenge	to	
using	these	data.	For	these	regions,	the	GLS	datasets	can	be	complemented	
by	remote	sensing	data	from	other	satellite	sensors	with	similar	characteris
tics,	in	particular	sensors	in	the	optical	domain	with	moderate	spatial	reso
lution	(Table 3.1).	The	GLS	datasets	are	described	in	full	detail	in	Chapter	4.	

3.4		 Sa	 mpling	Strategies	for	Forest	Monitoring		

from	Global	to	National	Levels	

An	analysis	that	covers	the	full	spatial	extent	of	 the	forested	areas	with	
moderate	spatial	resolution	imagery,	 termed	“walltowall”	coverage,	 is	
ideal,	but	is	certainly	challenging	over	very	large,	heterogeneous	areas	and	
has	commensurate	constraints	on	resources	for	analysis.	China’s	Institute	
for	 Global	 Change	 Studies	 at	 Tsinghua	 University	 and	 the	 National	
Geomatics	Center	of	China	have	 recently	 completed	a	first	global	wall
towall	map	at	 30	m	 resolution,	 though	 this	groundbreaking	new	map	
is	 still	 under	 validation.	 For	 digital	 analysis	 with	 moderateresolution	
satellite	 images	 at	 pantropical	 or	 continental	 levels,	 sampling	 is,	 as	 of	
today,	still	the	norm.	Several	approaches	have	been	successfully	applied	
by	sampling	within	the	total	forest	area	so	as	to	reduce	costs	of	and	time	
spent	 on	 analysis.	 A	 sampling	 procedure	 that	 adequately	 represents	
deforestation	events	can	capture	deforestation	trends.	Because	deforesta
tion	events	are	not	randomly	distributed	in	space,	particular	attention	is	
needed	to	ensure	that	the	statistical	design	is	adequately	sampled	within	
areas	of	potential	deforestation	(e.g.,	in	proximity	to	roads	or	other	access	
networks)	 using	 highdensity	 systematic	 sampling	 when	 resources	 are	
available.	 The	 sampling	 strategies	 for	 forest	 monitoring	 from	 global	 to	
national	levels	are	described	in	Chapter	5.	
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TABLE	3.1	

Availability	of	Moderate	Resolution	(20	m	×	20	m–50	m	×	50	m)	Optical	Sensors	

Resolution	and	

Nation	 Satellite/Sensor	 Coverage	 Feature	

United	States	 Landsat	5	TM	

United	States	 Landsat	7	ETM+ 

United	States/	 Terra	ASTER	
Japan	

India	 IRSP6	LISSIII	

China/Brazil	 CBERS2	HRCCD	

United	Kingdom	 UKDMC	

France	 SPOT5	HRV	

Spain/United	 Deimos1	and	
Kingdom	 UKDMC2	

Japan	 ALOS	AVNIR2	

30	m	×	30	m		
180	km	×	180	km		

30	m	×	30	m		
180	km	×	180	km		

15	m	×	15	m		
60	km	×	60	km		

23.5	m	×	23.5	m	
140	km	×	140	km	

20	m	×	20	m	
113	km	swath	

32	m	×	32	m		
160	km	×	660	km		

5	m	×	5	m/		
20	m	×	20	m		

60	km	×	60	km		
22	m	×	22	m		

640	km	swath		

10	m	×	10	m		
70	km	×	70	km		

This	satellite	offered	images	
every	16	days	to	any	
satellite	receiving	station	
during	its	27year	lifetime	
It	stopped	acquiring	
images	in	November	2011	

On	May	31,	2003,	the	failure	
of	the	scan	line	corrector	
resulted	in	data	gaps	
outside	of	the	central	
portion	of	images	
(60 km wide)	

Data	are	acquired	on	request	
and	are	not	routinely	
collected	for all areas	

Used	by	India	for	its	forest	
assessments	

Experimental;	Brazil	uses	
ondemand	images	to	
bolster	coverage	

Commercial	(DMCii);	Brazil	
uses	alongside	Landsat	
data.	Full	coverage	of	
subSaharan	Africa	
acquired	in	2010	

Commercial;	Indonesia	and	
Thailand	use	alongside	
Landsat	data	

Commercial	(DMCii);	new	
version	of	UKDMC;	
launched	in	July	2009	

Launched	in	January	2006.	
Global	systematic	
acquisition	plan	
implemented	2007–2010.	
Stopped	in	April 2011	

For	the	Forest	Resources	Assessment	2010	programme	(FRA	2010),	the	Food	
and	Agriculture	Organisation	of	the	UN	(FAO)	has	extended	its	monitoring	
of	forest	cover	changes	at	global	to	continental	scales	to	complement	national	
reporting.	The	remote	sensing	survey	(RSS)	of	FRA	2010	has	been	extended	
to	all	 lands.	The	survey	aimed	at	estimating	forest	change	for	 the	periods	
1990–2000–2005	based	on	a	sample	of	moderateresolution	satellite	imagery.	
The	methodology	used	for	this	global	survey	is	described	in	Chapter	7.	
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3.5		 	Identification	of	Hot	Spots	of	Deforestation		

from	Coarse-Resolution	Satellite	Imagery	

Global	land	cover	maps	provide	a	static	depiction	of	land	cover	and	cannot	
be	 used	 to	 map	 changes	 in	 forest	 areas	 due	 to	 uncertainty	 levels	 that	 are	
higher	than	levels	of	area	changes.	However,	land	cover	maps	can	serve	as	
a	baseline	against	which	future	change	can	be	assessed	and	can	help	locate	
forest	areas	that	need	to	be	monitored	for	change.	

Coarse	spatial	resolution	(from	250	m	×	250	m	to	1	km	×	1	km)	satellite	
imagery	is	presently	used	for	global	land	or	forest	cover	mapping.	In	the	late	
1990s,	global	or	pancontinental	maps	were	produced	at	around	1 km	× 1 km	
resolution	 from	 a	 single	 data	 source:	 the	 advanced	 very	 highresolution	
radiometer,	 or	 AVHRR	 sensor	 (Table	 3.2).	 From	 2000	 onward,	 new	 global	
land	cover	datasets	were	produced	at	similar	 resolution—1 km	×	1 km—	
from	advanced	earth	observation	sensors	(VEGETATION	on	board	SPOT4	
and	SPOT5,	and	the	MODIS,	on	board	the	Terra	and	Aqua	platforms).	These	
products,	 GLC2000	 (Bartholomé	 and	 Belward	 2005)	 and	 MODIS	 global	
land	cover	product	 (Friedl	et	al.	 2010),	allowed	 for	a	 spatial	and	 thematic	
refinement	 of	 the	 previous	 global	 maps	 owing	 to	 the	 greater	 stability	 of	

TABLE	3.2	

Main	Global	Land	Cover	Maps	Derived	from	Remote	Sensing	Data	from	
1 km × 1 km	to	300	m	×	300	m	Spatial	Resolution	

Map	Title	 Domain	 Sensor	 Method	

IGBP	Discover	 Global	
1	km	

NOAAAVHRR	 12	monthly	vegetation	indices	from	
April	1992	to	March	1993	

University	of	
Maryland	(UMD)	

Global	
1	km	

NOAAAVHRR	 41	multitemporal	metrics	from	
composites	from	April	1992	to	
March	1993	

TREES	 Tropics	
1	km	

NOAAAVHRR	 Mosaics	of	single	date	classifications	
(1992–1993)	

FRA	2000	 Global	
1	km	

NOAAAVHRR	 Updated	from	the	IGBP	dataset	

MODIS	Land	Cover	
Product	Collection	4	

Global	
1	km	

TERRA	MODIS	 12	monthly	composites	from	
October	2000	to	October	2001	

Global	Land	Cover	
2000	(GLC2000)	

Global	
1	km	

SPOTVGT	 Global	365	daily	mosaics	
for the year	2000	

VCF	 Global	
500	m	

TERRA	MODIS	 Annually	derived	phenological	
metrics	

MODIS	Land	Cover	
Product	Collection	5	

Global	
500	m	

TERRA	MODIS	 12	monthly	composites	plus	annual	
metrics—version	of	year	2005	
released	in	late	2008	

GlobCover	 Global	
300	m	

Envisat	MERIS	 6	bimonthly	mosaics	from	mid2005	
to	mid2006	
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the	platforms	and	spectral	characteristics	of	the	sensors.	An	international	
initiative	was	also	carried	out	to	harmonize	existing	and	future	land	cover	
datasets	at	1 km	resolution	to	support	operational	observation	of	the	Earth’s	
land	surface	(Herold	et	al.	2006).	

More	 recently,	 new	 global	 land	 cover	 datasets	 at	 finer	 spatial	 resolu
tion	(from	250	m	×	250	m	to	500	m	×	500	m)	were	generated	from	TERRA
MODIS	or	ENVISATMERIS	sensors.	The	two	key	products	at	this	scale	are	
the	vegetation	continuous	field	(VCF)	product	(Hansen	et	al.	2005)	and	the	
GlobCover	map	(Arino	et	al.	2008).	The	MODISderived	VCF	product	depicts	
subpixel	vegetation	cover	at	a	spatial	resolution	of	500	m	×	500	m.	The	sys
tematic	geometric	and	radiometric	processing	of	MODIS	data	has	enabled	
the	implementation	of	operational	land	cover	characterization	algorithms.	
Currently,	10	years	(2000–2010)	of	global	VCF	tree	cover	are	now	available	to	
researchers	and	are	being	incorporated	into	various	forest	cover	and	change	
analyses.	The	2005	version	of	the	MODIS	global	land	cover	product	has	been	
generated	at	500	m	×	 500	m	resolution,	with	substantial	differences	 from	
previous	 versions	 arising	 from	 increased	 spatial	 resolution	 and	 changes	
in	the	classification	algorithm	(Friedl	et	al.	2010).	The	GlobCover	initiative	
produced	a	global	land	cover	map	using	the	300	m	resolution	mode	from	
the	MERIS	sensor	onboard	the	ENVISAT	satellite.	Data	have	been	acquired	
from	December	1,	2004,	to	June	30,	2006,	and	then	during	the	full	year	2009.	
A	 global	 land	 cover	 map	 was	 generated	 from	 these	 data	 from	 automatic	
classification	tools	using	equalreasoning	areas.	This	product	has	comple
mented	previous	global	products	and	other	existing	comparable	continen
tal	products,	with	improvement	in	terms	of	spatial	resolution.	These	global	
products	can	also	be	used	as	complementary	forest	maps	(Figure	3.1)	when	
they	do	not	already	exist	at	the	national	level,	in	particular,	for	ecosystem	
stratification	 to	 help	 in	 the	 estimation	 of	 forest	 biomass	 through	 spatial	
extrapolation	methods.	

Static	forest	cover	maps	are	particularly	useful	as	a	stratification	tool	in	
developing	sampling	approaches	 for	 forest	change	estimation.	For	such	
purposes,	reporting	the	accuracy	of	 these	products	 is	essential	 through	
the	 use	 of	 agreed	 protocols.	 The	 overall	 accuracies	 of	 the	 GLC2000,	
MODIS,	and	GlobCover	global	land	cover	products	have	been	reported	at	
68%,	75%,	and	73%	respectively,	though	it	is	important	to	remember	that	
these	 accuracy	 figures	 relate	 to	 all	 classes	 of	 land	 cover—the	 accuracy	
with	which	forest	cover	types	are	mapped	are	higher	than	these	overall	
averages.	

A	first	global	map	of	the	main	deforestation	fronts	in	the	1980s	and	1990s	
has	been	produced	in	the	early	2000s	(Lepers	et	al.	2005).	This	map	combines	
the	 knowledge	 of	 deforestation	 fronts	 in	 the	 humid	 tropics	 using	 expert	
knowledge,	available	deforestation	maps,	and	a	timeseries	analysis	of	tree	
cover	based	on	NOAA	AVHRR	8	km	resolution	data.	In	this	exercise,	the	use	
of	expert	knowledge	ensured	that	areas	of	major	change	not	detected	with	
the	satellitebased	approaches	were	not	overlooked.	More	recently,	a	more	
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detailed	quantification	of	gross	forest	cover	 loss	at	a	global	scale	has	been	
produced	for	the	period	2000–2005	from	MODIS	imagery.	MODISindicated	
change	was	used	to	guide	sampling	of	Landsat	 image	pairs	 in	estimating	
forest	 extent	 and	 loss	 (Hansen	 et	 al.	 2010).	 The	 MODIS	 forest	 cover	 loss	
mapping	method	is	presented	in	Chapter	6.	

The	Brazilian	PRODES	monitoring	system	for	the	Brazilian	Amazon	also	
uses	 a	 hotspot	 approach	 to	 identify	 critical	 areas	 based	 on	 the	 	previous	
year’s	 monitoring.	 These	 critical	 areas	 are	 priorities	 for	 analysis	 in	 the	
following	year.	Other	databases	such	as	 transportation	networks,	popula
tion	changes	 in	 rural	areas,	and	 the	 locations	of	government	 resettlement	
program	can	be	used	 to	help	 identify	areas	where	a	more	detailed	analy
sis	needs	to	be	performed.	Since	May	2005,	the	Brazilian	government	also	
has	been	running	the	DETER	(Detecção	de	Desmatamento	em	Tempo	Real)	
system	 which	 serves	 as	 an	 alert	 in	 almost	 real	 time	 (every	 15	 days)	 for	
deforestation	events	 larger	 than	25	ha.	The	system	uses	MODIS	data	and	
WFI	data	on	board	the	CBERS2	satellite	(260	m	×	250	m	resolution)	and	a	
combination	of	linear	mixture		modeling	and	visual	analysis.	This	approach	
is	described	in	Chapter	8.	

3.6		 N	 ested	Approach	with	Coarse-	and		

Moderate-Resolution	Data	

Analysis	 of	 coarseresolution	 data	 can	 identify	 locations	 of	 rapid	 and	
large	deforestation	fronts,	though	such	data	are	unsuitable	on	their	own	to	
determine	rates	of	deforestation	based	on	changes	in	forest	area.	A	nested	
approach	 in	 which	 walltowall	 coarseresolution	 data	 are	 analyzed	 to	
identify	locations	requiring	further	analysis	with	moderateresolution	data	
can	 reduce	 the	 need	 to	 analyze	 the	 entire	 forested	 area	 within	 a	 country.	
Coarseresolution	data	have	been	available	from	the	MODIS	sensor	for	no	
cost	since	2000	(see	Chapter	4	for	the	description	of	this	dataset).	In	some	
cases,	it	is	possible	to	identify	deforestation	directly	with	coarseresolution	
data.	Clearings	for	 largescale	mechanized	agriculture	are	detectable	with	
coarseresolution	 data	 based	 on	 digital	 analysis.	 However,	 coarse	 spatial	
resolution	data	do	not	directly	allow	for	accurately	estimating	 forest	area	
changes,	 given	 that	 most	 change	 occurs	 at	 subpixel	 scales.	 Small	 agricul
tural	clearings	or	clearings	for	settlements	require	finer	resolution	data	(<50	
m	×	50	m)	to	accurately	detect	clearings	of	0.5–1	ha.	A	nested	approach	that	
takes	advantage	of	both	coarse	spatial	resolution	satellite	data	and	the	large	
Landsat	data	archive	to	estimate	humid	tropical	forest	cover	change	is	pre
sented	in	Chapter	6.	This	method	employs	a	fusion	of	coarse	spatial	resolu
tion	MODIS	data	and	moderate	spatial	resolution	Landsat	data	to	estimate	
and	map	forest	cover	change	as	in	the	studies	of	Hansen	et	al.	(2008;	2010).	
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Estimates	 of	 forest	 clearing	 are	 	generated	 from	 the	 relatively	 	finescale	
resolution	Landsat	and,	 through	 the	use	of	 the	 regression	models,	 can	be	
extended	to	the	continuous	MODIS	data.	

3.7		 A	 nalysis	of	Wall-to-Wall	Coverage	from	Moderate		

Spatial	Resolution	Optical	Imagery	

A	few	large	countries	or	regions,	in	particular	India,	the	Congo	Basin,	Brazil,	
the	European	Union,	the	United	States,	Australia,	and	the	Russian		federation,	
have	 demonstrated	 for	 many	 years	 already	 that	 operational	 walltowall	
systems	 over	 very	 large	 regions	 or	 countries	 can	 be	 established	 based	 on	
moderateresolution	satellite	imagery.	

The	use	of	satellite	remote	sensing	technology	to	assess	the	forest	cover	
of	the	whole	of	India	began	in	early	1980s.	The	first	forest	map	of	the	coun
try	 was	 produced	 in	 1984	 at	 1:1	 million	 scale	 by	 visual	 interpretation	 of	
Landsat	 data.	 The	 Forest	 Survey	 of	 India	 (FSI)	 has	 since	 been	 assessing	
the	forest	cover	of	the	country	on	a	2year	cycle.	Over	the	years,	there	have	
been	improvements	both	in	the	remote	sensing	data	and	in	the	interpreta
tion	techniques.	The	12th	biennial	cycle	has	been	completed	from	digital	
interpretation	of	satellite	data	collected	from	October	2008	to	March	2009	
by	the	Indian	satellite	IRS	P6	(sensor	LISS	III	at	23.5	m	×	23.5	m	resolution)	
with	a	minimum	mapping	unit	of	1	ha	 (FSI	2011).	The	entire	assessment	
from	 the	procurement	of	 satellite	data	 to	 the	 reporting,	 including	 image	
rectification,	interpretation,	ground	truthing,	and	validation	of	the	changes	
by	the	state/province	forest	department,	takes	almost	2	years.	The	interpre
tation	 involves	a	hybrid	approach	combining	unsupervised	classification	
in	 raster	 format	 and	 onscreen	 visual	 interpretation	 of	 classes.	 Accuracy	
assessment	is	carried	out	independently	using	randomly	selected	sample	
points	verified	on	the	ground	(field	inventory	data)	or	with	satellite	data	at	
5.8	m	×	5.8 m	resolution	and	compared	with	interpretation	results.	In	the	
last	assessment,	4,291	validation	points	randomly	led	to	an	overall	accuracy	
level	of	the	assessment	of	92%.	

Data	 fusion	 approaches	 are	 also	 being	 employed	 to	 produce	 spatially	
exhaustive,	 or	 walltowall,	 estimates	 and	 maps	 of	 forest	 cover	 clear
ing	 within	 the	 humid	 tropics.	 In	 the	 Congo	 Basin,	 MODIS	 and	 Landsat	
data	are	used	to	create	timeseries	multispectral	composites,	forest	area,	
and		forest	cover	change	maps	of	the	entire	basin	at	the	Landsat	scale	for	
the	 years	 2000,	 2005,	 and	 2010.	 MODIS	 data	 are	 used	 to	 radiometrically	
normalize	 Landsat	 data,	 which	 are	 then	 related	 to	 training	 sites	 using	
supervised	 classification	 algorithms.	 This	 approach,	 which	 is	 currently	
being	applied	pantropically,	is	presented	in	Chapter	8.	
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Brazil	has	been	measuring	deforestation	rates	in	Brazilian	Amazonia	since	
the	1980s.	The	Brazilian	National	Space	Agency	(INPE)	produces	annual	esti
mates	of	deforestation	in	the	Legal	Amazon	using	a	comprehensive	annual	
national	monitoring	program	called	PRODES.	Spatially	explicit	results	of	the	
analysis	of	the	satellite	imagery	are	published	every	year	(http://www.obt.	
inpe.br/prodes/).	The	PRODES	project	has	been	producing	the	annual	rate	
of	gross	deforestation	since	1988	using	a		minimum	mapping	(change	detec
tion)	unit	of	6.25	ha,	with	the	release	of	estimates	foreseen	around	the	end	of	
each	year.	This	approach	is	presented	in	Chapter	9.	

Selective	logging	and	smallscale	forest	clearing	in	heterogeneous	land
scapes	require	data	with	moderatetofine	spatial	resolution,	more	complex	
computer	algorithms	capable	of	detecting	less	pronounced	differences	 in	
spectral	 reflectance,	 and	 greater	 involvement	 of	 an	 interpreter	 for	 visual	
analysis	 and	 verification.	 Methods	 have	 been	 developed	 and	 applied	 for	
regional	mapping	of	vegetation	type	and	condition	(forest	cover,	deforesta
tion,	degradation,	regrowth)	using	Landsat	imagery	in	annual	time	steps	
in	 the	 Amazon	 basin.	 A	 review	 of	 methods	 for	 the	 monitoring	 of	 forest	
degradation	is	made	in	Chapter	10.	

Chapter	 11	 describes	 the	 development	 of	 two	 recently	 released	 high
resolution	 panEuropean	 forest	 maps	 produced	 for	 the	 years	 2000	 and	
2006.	The	underlying	satellite	and	auxiliary	datasets	are	presented	with	an	
overview	of	the	methodology	and	the	main	processing	steps	that	governed	
their	 production.	 Validation,	 as	 a	 most	 important	 aspect	 of	 applicability,	
receives	special	attention,	and	the	outlook	highlights	some	aspects,	such	as	
differences	arising	from	“forest	use”	versus	“forest	cover”	concepts,	which	
are	important	for	prospective	users.	

The	United	States	relies	on	its	national	forest	 inventory	for	domestic	and	
international	 reporting	 of	 forest	 change.	 The	 U.S.	 Forest	 Inventory	 and	
Analysis	(FIA)	program	collects	data	on	a	set	of	over	300,000	plots	across	the	
United	States.	A	range	of	attributes	are	collected	in	addition	to	stand	volume,	
including	stand	age,	species	composition,	and	management	practice.	Plots	are	
resampled	on	a	5	to	10year	cycle,	depending	on	the	state.	While	FIA	is	well	
suited	for	estimating	national	forest	statistics,	it	is	not	designed	to	accurately	
capture	local	dynamics	due	to	disturbance	and	other	rare	events.	The	desire	
for	consistent,	geospatial	 information	on	forest	disturbance	and	conversion	
has	invigorated	the	application	of	Landsattype	remote	sensing	technology	for	
forest	monitoring	in	the	United	States.	Recent	increases	in	computing	power,	
coupled	with	the	gradual	opening	of	the	Landsat	archive	for	free	distribution,	
have	resulted	in	researchers	undertaking	increasingly	ambitious	programs	in	
largearea	forest	dynamics	monitoring.	In	Chapter 12,	several	of	these	efforts	
are	described,	focusing	on	nationalscale	work	in	the	United	States.	

Australia	 has	 developed	 a	 system	 to	 account	 for	 carbon	 emissions	 and	
removals	from	the	land	sector,	called	the	National	Carbon	Accounting	System	
(NCAS).	A	key	component	of	this	system	is	to	track	areas	of	land	use	change.	
The	NCAS	Land	Cover	Change	Program	(NCASLCCP)	produces	finescale	
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continental	mapping	and	monitors	the	extent	and	change	in	vegetation	cover	
using	Landsat	satellite	imagery	from	1972	to	2011	and	continues	on	an	annual	
update	 cycle,	 making	 it	 one	 of	 the	 most	 intensive	 land	 cover	 monitoring	
programs	of	its	kind	in	the	world.	The	approach	is	described	in	Chapter	13.	

A	 forest	 fire	 monitoring	 information	 system	 (FIRMS)	 has	 been	 devel
oped	for	 the	Russian	 territory	by	 the	Russian	Academy	of	Sciences	and	 is	
run	by	the	Forest	Fire	Protection	Service	of	the	Federal	Forest	Agency	since	
the	year	2003.	The	system	covers	the	entire	territory	of	Russia	and	provides	
daily	 information	 on	 burned	 areas	 in	 support	 to	 fire	 management	 activi
ties	and	fire	impact	assessments.	Satellite	remote	sensing	technology	is	the	
main	source	of	data	in	the	system,	in	particular	data	from	TerraMODIS	and	
LandsatTM/ETM+	 sensors	 acquired	 since	 the	 year	 2000.	 Three	 different	
burnt	area	products	are	generated:	at	1	km	resolution,	at	250	m	resolution,	
and	at	about	30	m	resolution.	

3.8	 Forest	Monitoring	with	Radar	Imagery	

Optical	midresolution	data	have	historically	been	the	primary	tool	for	forest	
monitoring.	However,	SAR	provides	opportunities	for	forest	mapping	and	
monitoring,	not	least	because	data	can	be	acquired	regardless	of	sun	illumi
nation	and	weather	conditions,	which	is	particularly	relevant	in	the	tropics	
where	cloud	cover,	smoke	and	haze	are	prevalent.	Through	empirical	rela
tionships	with	SAR	data	or	more	complex	algorithms	based	on		polarimetry	
or	interferometry,	the	threedimensional	structure	of	forests	can	be	retrieved,	
particularly	as	transmitted	microwaves	of	different	frequency	and	polariza
tion	penetrate	 through	and	interact	with	components	of	 the	forest	volume	
(e.g.,	leaves,	branches,	and/or	trunks)	and	the	underlying	surface.	Changes	
in	vegetation	cover	and	structure	over	time	can	also	be	detected	and	linked	
with	the	processes	of	deforestation,	degradation,	or	regeneration.	Despite	the	
potential	of	SAR,	users	are	still	comparatively	few	because	of	the	challenges	
in	interpreting,	processing,	and	analyzing	radar	data	and	until	recently,	the	
limited	availability	of	consistent	radar	data	at	regional	to	global	levels.	SAR
operating	space	agencies	are,	however,	beginning	to	acknowledge	the	data	
problem	 and,	 following	 the	 example	 of	 the	 global	 systematic	 acquisition	
strategy	 implemented	 for	 the	Advanced	 Land	 Observing	 Satellite	 (ALOS)	
Phased	 Arrayed	 Lband	 SAR	 (PALSAR)	 through	 the	 Kyoto	 and	 Carbon	
(K&C)	Initiative,	are	making	efforts	to	ensure	regular	and	systematic	acquisi
tions	over	large	regions	as	part	of	forthcoming	satellite	missions.	Whilst	SAR	
data	are	unlikely	to	fully	replace	optical	sensors	in	forest	monitoring	activi
ties,	 they	 provide	 a	 useful	 complementary,	 supplementary	 or	 additional	
resource	for	monitoring	activities.	A	background	to	SAR	and	examples	of	its	
use	for	forest	monitoring	are	provided	in	Chapter	15.	
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3.9		 	Use	of	Fine	Spatial	Resolution	Imagery		

for	Accuracy	Assessment	

Whether	 through	walltowall	or	 samplebased	approaches,	key	require
ments	 lie	 in	verification	that	 the	methods	are	reproducible,	provide	con
sistent	 results	 when	 applied	 at	 different	 times,	 and	 meet	 standards	 for	
assessment	 of	 accuracy.	 Ground	 reference	 data	 (or	 information	 derived	
from	very	fine	spatial	resolution	imagery	that	can	be	considered	as	being	
surrogate	 to	 ground	 reference	 data)	 are	 generally	 recommended	 as	 the	
most	appropriate	data	to	assess	the	accuracy	of	forest	cover	change	esti
mation,	 although	 their	 imperfections	 may	 introduce	 biases	 into	 estima
tors	of	change.	Reporting	the	overall	accuracy	(i.e.,	not	only	the	statistical	
accuracy	usually	called	precision,	but	also	the	interpretation	accuracy)	is	
an	essential	component	of	a	monitoring	system.	Interpretation	accuracies	
of	 80%–95%	 are	 achievable	 for	 monitoring	 changes	 in	 forest	 cover	 with	
moderateresolution	 imagery	 when	 using	 only	 two	 classes:	 forest	 and	
nonforest.	Interpretation	accuracies	can	be	assessed	through	in
situ	obser
vations	or	analysis	of	very	fineresolution	airborne	or	satellite	data.	While	
it	 is	 difficult	 to	 verify	 change	 from	 one	 time	 to	 another	 on	 the	 ground	
unless	 the	 same	 location	 is	 visited	 at	 two	 different	 time	 periods,	 a	 time	
series	of	fine	(to	very	fine)	resolution	data	can	be	used	to	assess	the	accu
racy	of	forest	cover	change	maps.	

A	new	challenge	is	to	provide	a	consistent	coverage	of	fineresolution	satel
lite	imagery	for	global	forest	cover	monitoring,	i.e.,	at	least	a	statistical	sample	
or,	more	challenging,	a	walltowall	coverage.	Current	plans	for	the	Landsat	
Data	Continuity	Mission,	 the	 launch	of	which	 is	 scheduled	 for	early	2013,	
and	the	European	Sentinel2,	scheduled	for	mid2014,	will	both	adopt	global	
data	acquisition	strategies	and	both	(at	least	at	the	time	of	writing)	will	allow	
free	and	open	access	to	their	data.	The	finer	resolution	(from	1	m	×	1	m	up	to	
10	m	×	10	m)	can	be	expected	to	facilitate	the	derivation	of	more	precise	for
est	area	estimates	and	canopy	cover	assessment	and	therefore	more	reliable	
statistical	 information	on	 forest	area	changes,	 in	particular,	 for	estimating	
forest	degradation	and	forest	regrowth.	
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CONTENTS	

4.1	 Introduction	

All	 land	remote	 sensing	data	 from	 the	U.S.	government	earth	observation	
missions	 are	 available	 to	 anyone	 worldwide	 on	 a	 nondiscriminatory	
basis.	U.S.	missions	are	global	in	scope	and	emphasis	and	follow	practices	
that	 ensure	 systematic	 data	 acquisition,	 archiving,	 and	 accessibility.	 This	
chapter	focuses	solely	on	data	from	two	U.S.	government	earth	observation	
missions	commonly	used	for	global	land	studies:	the	Moderate	Resolution	
Imaging	 Spectroradiometer	 (MODIS)	 and	 Landsat	 sensors.	 Another	 U.S.	
mission	 used	 for	 earlier	 global	 investigations,	 the	 Advanced	 Very	 High
Resolution	Radiometer	 (AVHRR)	 from	National	Oceanic	and	Atmospheric	
Administration	(NOAA)	polar	orbiters,	will	not	be	addressed	since	the	end	
of	the	AVHRR	era	is	imminent.	The	followon	to	AVHRR,	the	Visible	Infrared	
Imager	Radiometer	Suite	(VIIRS)	instrument,	is	a	new	earth	observation	data	
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source	launched	in	late	2011	that	will	build	on	the	MODIS	and	AVHRR	data	
processing	and	dissemination	models	(Justice	et	al.	2010).	

Acquisition	practices	determine	the	amount	and	extent	of	global	imagery	
available	to	users.	For	most	U.S.	earth	observation	programs,	systematic	global	
collection	strategies	ensure	the	availability	of	imagery	over	time	and	space.	
NASA,	 NOAA,	 and	 the	 U.S.	 Geological	 Survey	 (USGS)	 earth	 observation	
missions	 all	 systematically	 acquire	 global	 data.	 The	 NOAA’s	AVHRR	 and	
NASA’s	MODIS	acquire	complete	global	coverage	on	a	daily	basis,	and	the	
USGS	Landsat	mission	uses	the	longterm	acquisition	plan	(LTAP)	to	guide	
the	collection	of	global	seasonal	coverage	(Arvidson	et al. 2006).	

However,	 data	 can	 be	 available	 yet	 not	 practically	 accessible.	 If	
data  query	 and	 access	 tools	 associated	 with	 archived	 data	 sets	 are	
inadequate,	efficient	access	to	data	may	be	cumbersome	and	reduce	data	
use. Perhaps more significant	for	global	studies	is	data	policy.	U.S.	earth	
observation	policy	has	long	had	unrestricted	access	to	imagery.	NASA	and	
NOAA	have	historically	stressed	free	and	open	access	to	archives,	while	
the	 USGS	 followed	 a	 “cost	 of	 filling	 user	 request”	 (COFUR)	 policy	 and	
charged	per	image	fees.	The	cost	of	those	fees	has	varied	over	the	40year	
history	of	Landsat,	with	per	scene	charges	for	electronic	data		ranging	from	
a	low	of	$200	per	scene	to	a	high	of	$4400	per	scene.	For	studies	spanning	
long	temporal	periods	and/or	large	geographic	areas,	the	cost	of	Landsat	
data	was	too	often	prohibitive.	For	Landsat,	the	cost	of	scenes	made	global	
land	mapping	applications	effectively	prohibitive	for	most	researchers	and	
organizations.	Recognizing	this	limitation,	the	USGS,	with	NASA	support,	
changed	the	Landsat	data	policy	in	late	2008,	and	now	all	Landsat	data	are	
available	at	no	cost	to	any	user	(Woodcock	et	al.	2008).	

For	an	earth	observation	system	to	enable	largearea	land	cover	charac
terization	and	monitoring,	 it	must	meet	certain	data	requirements.	These	
requirements	include	(1)	systematic	global	acquisitions,	(2)	available	at	low	
or	no	cost,	(3)	with	easy	access,	and	(4)	featuring	geometric	and/or	radio
metric	preprocessing.	AVHRR	data	were	the	first	such	data	sets	processed	
to	this	standard,	for	example,	the	Pathfinder	(James	and	Kalluri	1994)	and	
global	 inventory	 monitoring	 and	 modeling	 studies	 (GIMMS)	 data	 sets	
(Los	et	al.	1994).	The	MODIS	has	advanced	 this	concept	 through	 the	use	
of	a	land	science	team	to	develop,	implement,	and	iterate	standard	image	
products	(Justice	et	al.	2010).	Data	from	other	coarse	spatial	resolution	sen
sors	 such	 as	 SPOT	 VEGETATION	 also	 meet	 the	 criteria	 outlined	 above	
(Maisongrande	et	al.	 2004).	For	moderate	 spatial	 resolution	satellite	data	
sets	 such	as	Landsat,	progress	 in	achieving	a	data	policy	and	processing	
system	that	fulfills	these	requirements	has	been	more	problematic.	Future	
advancement	 of	 the	 earth	 observation	 science	 community	 will	 largely	
depend	on	applying	the	experiences	developed	with	coarse	spatial	resolu
tion	data	sets	to	those	at	moderate	spatial	resolution.	Recent	developments	
with	 Landsat	 indicate	 a	 promising	 future	 for	 global	 moderateresolution	
data	set	availability.	
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4.2		 C	 hanging	Medium-Resolution	Data		

Policies	to	Enable	Global	Studies	

The	first	freely	available	global	coverage	of	medium	spatial	resolution	imag
ery	was	processed	by	Earth	Satellite	Corporation	as	 the	GeoCover	data	set	
(Tucker	et al.	2004)	and	more	recently	augmented	and	reprocessed	by	NASA	
and	the	USGS	as	the	global	land	survey	(GLS)	data	set	(Gutman	et	al.	2008).	
GeoCover	data	were	first	distributed	by	the	Global	Land	Cover	Facility	at	the	
University	of	Maryland	 (http://glcf.umd.edu/)	and	 the	USGS,	and	down
load	volumes	demonstrated	the	high	interest	in	and	demand	for	free	moderate	
spatial	resolution	data	over	large	areas.	The	GLS	data	sets	currently	consist	of	
singlebest	growing	season	images	for	decadal	and	middecadal	epochs	(1990,	
2000,	2005,	2010)	and	have	been	used	in	a	host	of	largearea	mapping	projects	
(Hansen	et	al.	2010;	Huang	et	al.	2008;	Masek	et al.	2008).	

In	the	mid2000s,	Brazil’s	Instituto	Nacional	de	Pesquisas	Espaciais	(INPE)	
furthered	 the	 mediumresolution	 free	 data	 revolution	 by	 announcing	 that	
all	Brazilian	Landsatclass	imagery	would	be	available	at	no	cost.	This	was	
the	first	official	government	data	policy	 to	 institute	a	nocost	provision	of	
medium	 spatial	 resolution	 data.	 The	 USGS	 followed	 suit,	 and	 since	 then,	
other	providers	are	moving	to	more	open	pricing	models	(e.g.,	the	European	
Space	 Agency	 for	 Sentinel2).	 The	 Committee	 on	 Earth	 Observations	
Satellites	 (CEOS)	 recently	 established	 a	 data	 democracy	 initiative	 that	 is	
working	toward	improving	access	to	earth	observations	and	expanding	their	
use	through	nocost	access	to	data,	improved	data	dissemination,	provision	
of	affordable	software	and	other	analysis	tools,	and	capacity	building.	

The	2008	decision	by	the	USGS	to	make	U.S.	held	Landsat	data	available	
to	anyone	at	no	cost	serves	as	an	example	of	the	impact	of	a	free	and	open	
data	policy	(Loveland	and	Dwyer	in	press;	Wulder	et	al.	in	press).	Late	that	
year,	 the	 USGS	 announced	 the	 end	 of	 the	 Landsat	 data	 purchase	 era	 and	
the	beginning	of	“Webenabled”	access	 to	 the	USGS	Landsat	archive.	Web
enabling	 was	 a	 euphemism	 for	 making	 all	 data	 available	 at	 no	 cost	 over	
the	Internet.	In	addition	to	making	data	available	at	no	cost,	the	USGS	also	
began	providing	Landsat	data	in	an	orthorectified	format.	As	a	result,	users	
now	receive		applicationready	imagery	processed	to	a	single	format—Level	
1	Terrain	(L1T).	These	changes	immediately	improved	the	costeffectiveness	
and	efficiency	of	most	Landsat	applications.	Additionally,	the	longestablished	
and	studied	radiometric	calibration	of	Landsat	(Chander	et	al.	2009)	ensures	
consistent	spectral	response	across	space	and	through	time.	

The	response	to	the	Landsat	policy	change	has	been	significant.	Prior	to	the	
policy	change,	annual	Landsat	data	sales	peaked	in	2001	when	approximately	
23,000	products	were	sold.	In	the	first	full	year	that	Landsat	data	were	free,	more	
than	1.1	million	images	were	distributed,	and	the	following	year,	the	number	
of	scenes	more	than	doubled	to	2.4	million	images	and	continues	to	rise.	Users	
in	more	than	180	countries	download	Landsat	data	annually.	Also	noteworthy	
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is	that	the	demand	for	data	from	the	historical	archive	increased	significantly	
in	addition	to	the	demand	for	newer	data.	Considering	the	Landsat	7	ETM+ 

collection,	prior	to	the	freedata	era,	users	had	accessed	approximately	7%	of	
the	ETM+	archive.	Now,	more	than	65%	of	the	archive	has	been	used.	

The	 new	 data	 policy	 truly	 revolutionized	 the	 use	 of	 Landsat	 data	 for	
education,	 research,	 and	 applications,	 which	 therefore	 increased	 societal	
benefits	of	the	40year	Landsat	archive.	With	the	USGS	decision	in	late2008	
to	make	Landsat	data	available	at	no	cost	to	users,	all	major	sources	of	land	
remote	 sensing	 data	 from	 U.S.	 government	 programs	 are	 also	 free.	 There	
are	significant	signs	that	other	earth	observation	data	providers	are	moving	
toward	more	open,	nocost	data	policies.	

4.3	 MODIS		Data	

Since	before	its	launch,	MODIS	has	had	a	land	science	team	tasked	with	gen
erating	data	sets	that	meet	the	requirements	of	global	land	monitoring	(Justice	
et al.	1998,	2002).	The	MODIS	land	science	team	is	funded	by	NASA	to	develop	
and	maintain	the	science	algorithms	and	processing	software	used	to	generate	
the	MODIS	land	products	and	is	responsible	for	coordinating,	developing,	and	
undertaking	protocols	to	evaluate	product	performance,	both	on	a	systematic	
basis	through	quality	assessment	activities	and	on	a	periodic	basis	through	vali
dation	campaigns	(Masuoka	et	al.	2010).	The	MODIS	land	products	are	gener
ated	in	a	gridded	format	with	standard	geometric	and	radiometric		corrections	
and	perpixel	quality	information	(Masuoka	et	al.	2010;	Roy	et	al.	2002;	Vermote	
et	al.	2002;	Wolfe	et	al.	1998).	The	MODIS	archive	is	systematically	reprocessed	as	
new	and	improved	versions	of	core	land	processing	algorithms	are	developed.	

MODIS	products,	constituting	a	13year	record,	are	available	online	at	dis
ciplinespecific	data	centers	within	the	NASA	Earth	Observing	System	Data	
and	Information	System	(EOSDIS).	Portals	for	searching	and	downloading	
MODIS	 land	products	can	be	accessed	via	 the	Land	Processes	Distributed	
Active	Archive	 Center	 (LP	 DAAC)	 (https://lpdaac.usgs.gov/).	 The	 prod
ucts	are	also	available	through	science	team–led	portals.	Looking	forward,	
the	 experience	 and	 lessons	 learned	 from	 MODIS	 processing	 and	 delivery	
will	be	a	model	for	global	processing	of	moderate	spatial	resolution	data.	

4.4	 Landsat	Data	

The	 USGS	 at	 the	 Earth	 Resources	 Observation	 and	 Science	 (EROS)	 Center	
manages	the	global	Landsat	archive.	EROS	has	been	the	steward	of	the	Landsat	
archive	since	the	first	Landsat	was	launched	in	July	1972.	The	EROS	archive	

https://lpdaac.usgs.gov
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currently	includes	over	3	million	images	with	approximately	300	new	Landsat	
ETM+	 scenes	 added	 to	 the	 archive	 every	 day.	 The	 LTAP	 described	 previ
ously	is	ensuring	that	seasonal	global	coverage	is	systematically	acquired	and	
added	to	the	Landsat	archive.	If	Landsat	7	continues	to	acquire	data	until	its	
fuelbased	endoflife	in	2017,	and	when	the	Landsat	Data	Continuity	Mission	
(LDCM)	begins	collecting	its	planned	400	daily	global	images	in	January	2013	
(Irons	et	al.	in	press),	700	Landsat	images	per	day	will	be	added	to	the	archive.	
This	should	improve	the	role	of	Landsat	for	global	investigations.	

The	depth	of	historical	global	Landsat	coverage	varies	over	 the	40year	
history	of	the	program	due	to	both	technical	and	policy	factors.	For	exam
ple,	 the	 commercialization	 of	 Landsat	 in	 the	 1980s	 and	 1990s	 resulted	 in	
a	 reduction	 of	 global	 acquisitions,	 and	 the	 loss	 of	 Landsat	 5	 data	 relay	
capabilities	 restricted	 TM	 acquisitions	 to	 regions	 with	 direct	 reception	
ground	 stations.	 In	 addition,	 a	 significant	 portion	 of	 global	 Landsat	 cov
erage	resides	 in	archives	controlled	by	Landsat	 International	Cooperators	
(ICs).	Approximately	5	million	Landsat	scenes	are	estimated	to	be	in	inter
national	archives	maintained	by	the	ICs,	and	perhaps	as	many	as	3	million	
of	these	scenes	are	unique	and	not	duplicated	in	the	EROS	Landsat	archive.	
The	IC	Landsat	collections	add	significant	historical	depth	and	breadth	for	
global	studies—if	the	global	science	and	applications	user	community	has	
access	 (Loveland	 and	 Irons	 2007).	 The	 USGS	 is	 working	 closely	 with	 the	
ICs	to	consolidate	as	much	of	these	historical	holdings	as	possible	into	the	
EROS	Landsat	archive.	Most	ICs	recognize	the	value	of	this	initiative	and	
are	strong	participants.	

All	new	and	archived	USGS	EROS	Landsat	data	are	available	to	anyone	
at	no	cost.	In	order	to	provide	data	for	free,	EROS	simplified	and	automated	
Landsat	 productgeneration	 capabilities	 and	 data	 specifications.	 Using	 the	
modular	 Landsat	 productgeneration	 system	 (LPGS),	 when	 new	 Landsat	
7 data	are	received	and	archived	at	EROS,	an	automated	cloud	cover	assess
ment	 algorithm	 computes	 the	 percentage	 of	 cloud	 cover	 for	 each	 scene	 as	
an	attribute	for	inventory	metadata.	Scenes	that	are	acquired	with	less	than	
60%	cloud	cover	are	 immediately	processed	to	generate	L1T	products.	The	
processed	L1T	data	are	temporarily	available	in	a	disk	cache	for	immediate	
download	for	approximately	90	days	before	new	additions	cause	the	older	
images	 to	 “roll	 off”	 the	 disk.	 However,	 all	 3	 million	 images	 in	 the	 EROS	
archive,	regardless	of	cloud	cover,	are	available	“on	demand.”	In	cases	where	
the	 needed	 data	 are	 not	 immediately	 available,	 an	 ondemand	 processing	
request	can	be	submitted	and	when	the	data	have	been	processed,	an	email	
is	 sent	 to	 the	 requestor	 with	 a	 universal	 resource	 locator	 from	 which	 to	
retrieve	the	data.	The	current	processing	capacity	of	LPGS	is	approximately	
3,500	scenes	per	day,	although	as	many	as	9,000	scenes	have	been	processed	
in	a	single	day.	The	LPGS	will	continue	to	evolve	and	improve	data	process
ing	and	access	as	resources	allow.	

Landsat	 L1T	 data	 sets	 provide	 consistent,	 orthorectified,	 and	 calibrated	
Landsat	scenes	for	users.	All	EROS	Landsat	data	are	calibrated	to	a	common	
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radiometric	standard,	instrument	performance	is	constantly	monitored,	and	
scenes	are	orthorectified	to	a	consistent	global	set	of	ground	control	points	
(Table	4.1).	

Access	to	both	processed	and	archived	Landsat	data	is	available	primarily	
through	the	EarthExplorer	and	Global	Visualization	Viewer	(GloVis)	inter
faces,	both	of	which	can	be	used	to	search	and	query	the	archive.	In	addition	
to	USGS	Landsat	holdings,	the	series	of	Landsat	satellites	have	also	collected	
scenes	for	locations	outside	the	United	States	that	are	not	archived	or	distrib
uted	by	the	USGS	EROS	Center	(see	Figure	4.1	for	a	map	of	active	Landsat	
ground	stations).	Landsat	ICs	also	have	unique	archives	containing	data	that	
are	not	duplicated	in	the	EROS	archive.	Landsat	scenes	from	the	IC	ground	
stations	must	be	ordered	directly	from	the	specific	station	that	acquired	the	
data.	Data	prices,	 formats,	 and/or	processing	options	may	vary	according	

TABLE	4.1	

Landsat	L1T	Product	Specifications	

Product	type	 Systematic	or	precision	terrain	correction	pending	availability	
of	ground	control	points	

Pixel	size	 30	m	(TM,	ETM+),	60	m	(MSS)	
Map	projection	 Universal	transverse	mercator	
Datum	 WGS84	
Orientation	 Northup	
Resampling	method	 Cubic	convolution	
Output	format	 GeoTIFF	
Geometric	accuracy	 ~30	m	RMSE	(United	States),	~50	m	RMSE	(Global)	

FIGURE	4.1	
(See	color	insert.)	Active	Landsat	ground	stations.	(More	details	are		available	at	http://land
sat.usgs.gov/about_ground_stations.php.)	

http://www.landsat.usgs.gov
http://www.landsat.usgs.gov
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to	the	data	provider.	A	complete	list	of	ground	stations	and	Web	addresses	
for	accessing	their	Landsat	collections	is	available	at	http://landsat.usgs.gov/	
about_ground_stations.php.	

4.5	 Accessing	Data	

There	 are	 a	 number	 of	 interfaces	 available	 for	 accessing	 MODIS	 and	
Landsat	data.	The	GloVis	is	an	intuitive,	graphicalbased	tool	for	satellite	
and	other	 image	data	products	with	access	 to	 several	EROS	data	collec
tions	(http://glovis.usgs.gov).	Through	a	graphical	map	display,	any	area	
of	 interest	 can	 be	 selected,	 and	 all	 available	 graphical	 images	 matching	
search	criteria	can	immediately	be	viewed.	For	Landsat	data,	it	is	also	pos
sible	to	navigate	to	adjacent	scene	locations	in	order	to	identify	additional	
compatible	 coverage.	 Controllable	 criteria	 include	 cloud	 cover	 limits,	
date	limits,	userspecified	map	layer	displays,	scene	list	maintenance,	and	
access	to	metadata.	An	ordering	interface	allows	the	nocost	download	of	
selected	images.	

EarthExplorer	provides	online	search,	graphical	display,	data	download,	
and	exports	of	metadata	to	support	users	with	access	to	the	broader	collec
tion	of	Earth	science	data	sets	within	the	EROS	archive.	It	is	a	more	complex	
and	 traditional	 query	 tool	 in	 comparison	 to	 GloVis.	 However,	 it	 offers	 a	
number	of	additional	capabilities	including:	

r� Map	viewer	for	viewing	overlay	footprints	and	graphical	overlays	

r� Data	access	tool	to	search	and	discover	data	

r� Textual	query	capability	

r� Keyhole	markup	language	(KML)	export	capability	to	interface	with	
Google	Earth	

r� Save	or	export	queries,	results,	and	map	overlay	for	reuse	

r� User	authentication	service	for	access	to	specialized	data	sets	and	tools	

A	new	tool	named	Reverb	is	now	in	operation	and	is	planned	as	the	“next	
generation	Earth	science	discovery	tool,”	providing	a	means	for	discovering,	
accessing,	 and	 invoking	 NASA	 data	 products	 and	 services	 (http://reverb.	
echo.nasa.gov).	Searches	can	query	by	platform,	instrument	and	sensor,	or	
specific	 campaign	 and	 can	 be	 refined	 spatially,	 temporally,	 or	 by	 process
ing	 level	and	product	 type.	Reverb	 is	 recommended	 for	accessing	MODIS	
data.	 There	 is	 considerable	 crossfertilization	 between	 the	 various	 search	
systems.	For	example,	Reverb	can	also	serve	as	an	interface	to	other	archives,	
including	those	of	Advanced	Spaceborne	Thermal	Emission	and	Reflection	
Radiometer	(ASTER)	and	AVHRR.	

http://www.landsat.usgs.gov
http://www.landsat.usgs.gov
http://www.glovis.usgs.gov
http://www.reverb.echo.nasa.gov
http://www.reverb.echo.nasa.gov
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4.6	 Conclusion	

U.S.	earth	observation	initiatives	are	now	consistently	committed	and		managed	
for	use	in	global	land	studies.	Especially	critical	are	the	use	of	systematic	global	
acquisition	strategies	and	nondiscriminatory,	nocost	access	 to	 the	acquired	
data.	 Continuation	 of	 these	 practices	 and	 the	 timely	 launch	 of	 followon	
missions	are	essential	next	steps	in	ensuring	that	current	investments	in	global	
land	studies	are	continued	into	the	future.	The	launch	of	LDCM	potentially	
extends	the	Landsat	record	for	another	5–10	years	(until	2018–2023),	but	after	
that	no	followon	capability	 is	currently	authorized.	On	the	other	hand,	the	
MODIS	record	is	currently	transitioning	to	the	VIIRS	era	as	this	next		generation	
of	NOAA	polar	orbiters	becomes	operational.	An	operational	moderate	spatial	
resolution	 land	monitoring	program	has	been	proposed,	 the	National	Land	
Imaging	 Program	 (Office	 of	 Science	 and	 Technology	 Policy	 2007),	 but	 no	
substantive	investment	made	to	date	for	its	implementation.	

As	moderate	 spatial	 resolution	data	policies	and	processing	mimic	 those	
of	coarser	resolution	data,	new	science	capabilities	will	be	enabled.	The	next	
few	years	are	quite	possibly	going	to	be	Landsat’s	“golden	years,”	the	time	
in	which	the	Landsat	program	achieves	 its	 full	potential	 for	global	studies.	
Free	Landsat	data,	the	consolidation	of	international	holdings	into	the	EROS	
archive,	 the	expanded	availability	of	 these	data	 in	a	consistently	processed	
format,	and	new	global	coverage	from	Landsat	7	and	the	LDCM	are	enabling	
and	improving	the	use	of	Landsat	for	global	studies.	Innovative	improvements	
in	 Landsat	 data	 products	 and	 delivery	 systems,	 such	 as	 the	 WebEnabled	
Landsat	Data	(WELD)	system	developed	by	Roy	et	al.	 (2010),	will	serve	as	
catalysts	for	improved	global	use	of	Landsat.	The	integrated	use	of	systemati
cally	acquired	multiresolution,	multitemporal,	multispectral	global	data	sets,	
such	as	MODIS	and	Landsat,	will	become	a	standard	scientific	practice.	
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5.1		 Introduction	

Remote	 sensing	 plays	 a	 key	 role	 in	 forest	 monitoring	 because	 it	 offers	 a	
costeffective	option	for	frequent	observation	of	vast	areas	of	forest.	Forest	
attribute	maps	derived	from	remote	sensing	may	be	integrated	with	forest	
inventory	data	 in	a	variety	of	ways	within	a	forest	monitoring	framework	
(Corona	2010).	The	effective	use	of	remote	sensing	to	produce	maps	of	for
est	attributes	has	been	described	and	convincingly	demonstrated	elsewhere	
in	 this	book.	These	maps	serve	 the	critical	purpose	of	providing	spatially	
explicit	information	for	forest	attributes.	The	focus	of	this	chapter	is	not	on	
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monitoring	forests	by	complete	coverage	mapping	but	on	taking	advantage	
of	remote	sensing	via	a	sampling	approach	to	forest	monitoring.	Whereas	it	
is	sometimes	too	costly	and	time	consuming	to	obtain	walltowall	coverage	
using	the	quality	of	imagery	and	processing	desired	for	a	particular	forest	
monitoring	objective,	sampling	provides	the	opportunity	to	apply	measure
ment	and	observation	protocols	to	a	much	smaller	total	area,	and	this	may	
allow	for	the	use	of	very	highresolution	imagery	or	sophisticated	classifica
tion	 methods	 that	 otherwise	 would	 not	 be	 practical	 for	 a	 complete	 cover
age	assessment.	A	samplingbased	monitoring	framework	targets	aggregate	
properties	such	as	the	total	area	of	forest	and	the	area	of	forest	cover	change.	
A	 traditional	 intensive	 groundbased	 forest	 inventory	 approach	 to	 forest	
monitoring	is	another	option	based	on	sampling.	But	in	this	chapter,	remotely	
sensed	data,	defined	as	data	from	sensors	placed	on	aircraft	or	spacebased	
platforms,	are	assumed	to	be	the	basis	for	forest	monitoring.	

Forest	 monitoring	 can	 be	 applied	 to	 a	 variety	 of	 forest	 characteristics,	 for	
example	forest	cover	and	biomass.	In	this	chapter,	the	focus	will	be	on	monitor
ing	forest	cover.	The	attention	to	forest	cover	allows	for	framing	the	monitoring	
objective	as	an	area	estimation	problem,	an	objective	commonly	addressed	in	
mapping	applications	using	remotely	sensed	data	(Gallego	2004).	Area	estima
tion	can	be	approached	in	two	ways.	One	approach	is	to	compute	area	from	
a	complete	coverage	map	of	the	target	region,	for	example,	using	a	complete	
coverage	map	of	deforestation	to	compute	the	area	deforested.	Mayaux	et al.	
(2005,	 374–375)	 review	 applications	 in	 which	 global	 land	 cover	 and	 	forest	
mapping	efforts	are	used	as	the	basis	for	estimating	the	area	of	deforestation.	
The	 other	 approach	 is	 to	 estimate	 the	 area	 of	 deforestation	 from	 a	 sample.	
By	 requiring	 information	 on	 a	 smaller	 subarea	 of	 the	 full	 region,	 sampling	
offers 	advantages	of	 significant	 cost	 reduction	 (e.g.,	 fewer	 satellite	 images	or 	
fewer	people	to	interpret	aerial	photographs)	and	better	accuracy	of	the	mea
surements	of	area.	Mayaux	et al.	 (1998)	critique	 the	 limitations	and	practical	
advantages	of	the	two	approaches.	A	further	advantage	of	remote	sensing	is	
that	it	offers	an	option	for	forest	monitoring	based	on	a	consistent	methodology	
that	can	allow	for	more	direct	regional	comparisons,	for	example,	of	regional	
rates	of	forest	change	than	is	possible	when	methods	used	for	monitoring	vary	
by	region.	Hansen	et al.	(2010)	and	the	FRA	2010	remote	sensing	survey	(Ridder	
2007;	FAO	2009)	are	examples	in	which	regional	comparisons	have	been	facili
tated	because	regionally	consistent	sampling	and	analysis	protocols	have	been	
applied	to	remote	sensing	assessments	of	forest	change.	

The	area	estimation	objective	highlights	a	distinction	between	 two	com
mon	uses	of	maps	constructed	from	satellite	imagery.	The	spatially	explicit	
information	 of	 pattern	 and	 location	 conveyed	 by	 a	 map	 is	 critical	 to	 some	
applications,	 whereas	 in	 other	 applications,	 information	 aggregated	 over	 a	
specified	region	is	sufficient.	The	latter	applications	address	aggregate	prop
erties	such	as	totals,	means,	or	proportions,	for	example,	area	of	forest	cover,	
proportion	of	area	of	deforestation,	or	total	biomass.	These	aggregate	prop
erties	or	population	parameters	can	be	estimated	from	a	sample.	When	the	
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objective	is	to	estimate	area,	a	statistical	comparison	between	the	mapping	
and	sampling	approaches	can	be	framed	in	terms	of	accuracy	and	precision.	
Is	the	map	sufficiently	accurate	to	provide	valid	change	estimates	(i.e.,	bias	
attributable	to	classification	error	is	negligible)?	Is	the	samplebased	estimate	
sufficiently	precise	to	provide	useful	change	estimates	(i.e.,	sampling	variabil
ity	is	small	relative	to	the	quantity	being	estimated)?	Stehman	(2005)	provides	
guidance	for	evaluating	the	tradeoff	between	precision	(sampling	variabil
ity)	and	accuracy	(measurement	or	interpretation	error)	for	estimating	area.	

Samplebased	forest	monitoring	using	remotely	sensed	data	has	been	suc
cessfully	implemented	to	provide	estimates	of	forest	cover	and	forest	cover	
change	over	the	tropics	(e.g.,	Achard	et al.	2002)	and	global	forest	biomes	(e.g.,	
Hansen	et al.	2010).	The	global	Forest	Resources	Assessment	(FRA)	remote	
sensing	survey	(FAO	2009)	is	another	recent	application	of	a	samplebased	
forest	monitoring	activity.	These	 successful	operational	monitoring	efforts	
are	the	outcome	of	years	of	research	and	development	probing	the	question	of	
how	largearea	forest	monitoring	can	be	accomplished	with	the	aid	of	remote	
sensing.	The	basic	theory	and	methods	underlying	the	sampling	approach	
to	forest	monitoring	are	reviewed	in	this	chapter.	Although	much	progress	
has	been	made	developing	appropriate	sampling	methods,	additional	work	
is	needed	to	further	refine	and	understand	the	methods	of	current	practice	
and	to	develop	new	methods	for	more	costefficient	and	accurate	forest	mon
itoring	using	remotely	sensed	data.	The	prospects	 for	samplebased	forest	
monitoring	in	the	future	are	discussed	in	the	closing	section	of	this	chapter.	

5.2	 Fundamental	Sampling	Concepts	and	Methods	

In	this	section,	basic	concepts	and	methods	of	sampling	are	defined	to	estab
lish	the	context	for	samplebased	forest	monitoring.	The	approach	described	
takes	a	finite	population	sampling	perspective	in	which	the	region	of	interest	
(e.g.,	a	country,	a	continent,	or	the	forested	biomes	of	earth)	is	partitioned	into	
a	set	of	N	nonoverlapping	elements	or	spatial	units	(e.g.,	5	km	×	5	km	units)	
called	the	universe.	For	each	element	of	the	universe,	one	or	more	attributes	
or	measurements	may	be	obtained	(e.g.,	area	of	forest	cover	or	area	of	for
est	degradation	for	each	unit).	A	population	will	refer	to	a	collection	of	these	
measurements	for	all	N	units	of	the	universe,	and	a	parameter	is	defined	as	
a	number	that	describes	an	aggregate	property	of	this	population	(e.g.,	total	
area	of	forest	cover,	or	percent	loss	of	forest	cover).	A	sample	is	a	subset	of	the	
N	elements	of	the	universe,	and	a	sample	therefore	consists	of	one	or	more	
such	elements.	

Although	landscapes	are	truly	continuous,	the	finite	population	perspec
tive	 usually	 provides	 a	 close	 approximation	 to	 reality.	 For	 example,	 if	 the	
objective	is	to	obtain	the	total	area	of	forest	for	a	region,	dividing	the	area	
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into	5	km	×	5	km	units	and	summing	the	forest	area	over	all	N	such	units	in	
the	region	will	yield	the	same	total	area	as	a	measurement	of	area	from	the	
unpartitioned	(full)	region.	Some	forest	characteristics	may	be	less	amenable	
to	a	sampling	approach;	for	example,	certain	landscape	pattern	metrics	such	
as	contiguity	of	patches	or	landscape	diversity	may	not	be	estimated	well	via	
a	sampling	approach	(Hassett	et al.	2012).	But	for	estimating	area	and	change	
in	 area,	 the	 finite	 population	 sampling	 perspective	 provides	 a	 frequently	
used,	familiar	approach	that	is	simple,	practical,	flexible,	and	effective.	

A	sampling
strategy	consists	of	three	major	components:	the	sampling	design,	
response	design,	and	analysis.	The	sampling	design	is	the	protocol	by	which	a	
subset	of	the	universe	(i.e.,	the	sample)	is	selected.	For	example,	the	subset	could	
be	100	sampling	units	where	each	sampling	unit	is	5 km	× 5 km.	The	response	
design	is	the	protocol	for	obtaining	the	measurements	of	each	sampling	unit.	
For	example,	the	response	design	for	the	objective	of	monitoring	area	of	forest	
cover	would	be	the	protocol	implemented	to	measure	the	area	of	forest	cover	of	
each	unit	sampled.	The	protocol	may	include	specification	of	the	imagery	to	use,	
the	classification	method	applied	to	the	imagery,	and	the	definition	of	forest.	The	
analysis	protocol	includes	the	formulas	used	to	estimate	parameters	of	interest	
and	the	standard	errors	associated	with	these	estimates.	

5.2.1	 Basic	Sampling	Designs	

Once	the	region	to	be	monitored	has	been	partitioned	into	N	spatial	units	or	
elements	that	constitute	the	universe,	a	variety	of	sampling	designs	may	be	
considered	to	select	the	sample.	Choosing	a	sampling	design	requires	three	
main	decisions:	(1)	Will	stratification	be	used?	(2)	Will	the	sampling	unit	be	a	
cluster?	(3)	Will	the	primary	selection	protocol	be	simple	random,	systematic,	
or	something	else?	The	answers	to	these	three	questions	will	determine	the	
sampling	design.	Examples	of	sampling	designs	created	by	different	com
binations	of	these	decisions	exist	in	applications	to	forest	monitoring	using	
remotely	sensed	data	(Section	5.3).	Considerations	influencing	each	of	these	
decisions	are	briefly	reviewed.	

Stratification	 is	 the	 process	 of	 grouping	 the	 N	 elements	 of	 the	 universe	
into	 strata	 such	 that	 each	 element	 belongs	 to	 one	 and	 only	 one	 stratum.	
Stratification	 is	 generally	 used	 for	 two	 purposes.	 If	 the	 objectives	 specify	
reporting	forest	characteristics	by	region	(e.g.,	by	continent,	country,	or	prov
inces	within	a	country),	strata	may	be	defined	by	 these	reporting	regions.	
Typically,	the	sampling	design	is	then	developed	with	the	goal	of	allocating	
the	 sample	 such	 that	 each	 stratum	 has	 a	 sufficient	 sample	 size	 to	 achieve	
acceptable	standard	errors	for	estimates	of	that	stratum.	Stratification	thus	
can	be	used	to	avoid	the	problem	that	a	reporting	region	that	occupies	a	rela
tively	small	proportion	of	the	full	area	monitored	will	have	too	few	sample	
units	to	obtain	precise	estimates	for	that	region.	

Another	use	of	stratification	is	to	define	strata	to	minimize	the	standard	
error	 of	 an	 estimate.	 The	 optimization	 is	 attained	 by	 defining	 strata	 such	
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that	 strata	 means	 differ	 from	 one	 another	 and	 elements	 within	 a	 stratum	
have	 similar	 responses.	 For	 example,	 if	 the	 objective	 is	 to	 estimate	 forest	
cover	loss,	the	strata	could	be	advantageously	defined	by	the	amount	of	for
est	cover	loss,	and	strata	representing	no	loss,	low	loss,	moderate	loss,	and	
high	loss	may	be	defined	based	on	the	available	information	of	forest	cover	
loss	 for	 each	 of	 the	 N	 elements.	 Stratifying	 for	 the	 purpose	 of	 improving	
precision	requires	that	ancillary	data	related	to	the	response	of	interest	are	
available.	For	example,	Hansen	et al.	(2010)	used	complete	coverage,	MODIS
derived	forest	cover	loss	as	ancillary	data	to	define	strata	related	to	Landsat
derived	gross	 forest	cover	 loss,	where	Landsatderived	 loss	was	 the	 target	
measurement	for	the	assessment.	

A	cluster	is	a	group	of	elements	of	the	universe	that	is	sampled	as	a	single	
entity.	For	example,	 the	basic	element	of	 the	universe	may	be	defined	as	a	
1 km	×	1	km	unit,	and	a	10	km	×	10	km	group	of	100	such	units	could	be	
defined	as	a	cluster.	A	cluster	sampling	protocol	would	then	be	applied	to	the	
10	km	×	10	km	cluster	units,	but	the	data	would	be	collected	at	the	support	of	
the	1	km	×	1	km	units	within	a	cluster.	In	the	terminology	of	cluster	sampling,	
the	10	km	×	10	km	unit	 is	 labeled	a	primary	sampling	unit	 (PSU)	and	 the	
1 km ×	1	km	unit	is	called	a	secondary	sampling	unit	(SSU).	

Cluster	 sampling	 may	 be	 implemented	 as	 either	 onestage	 or	 twostage	
sampling	 (additional	 stages	 are	 possible	 but	 the	 discussion	 here	 will	 be	
limited	 to	 two	stages).	The	first	 stage	of	 sampling	 is	always	a	 selection	of	
PSUs.	For	onestage	cluster	sampling,	all	SSUs	within	each	sampled	PSU	are	
observed	so	only	one	stage	of	sampling	is	used.	Onestage	cluster	sampling	
is	thus	very	similar	to	defining	an	element	of	the	universe	based	on	the	PSU.	
For	example,	the	10	km	×	10	km	units	(PSUs)	could	be considered	the	ele
ments	of	 the	universe	because	 the	1	km	 ×	 1	km	units	are	always	 selected	
in	groups	of	100	defined	by	 the	PSU.	The	only	difference	between	a	 sam
ple	of	10	km	×	10	km	units	and	a	onestage	cluster	sample	of	1	km	×	1	km	
units	grouped	into	sets	(PSUs)	of	100	is	that	for	the	cluster	sample,	the	data	
would	be	recorded	for	each	1	km	×	1	km	unit	within	the	PSU,	whereas	this	
measurement	on	each	1	km	×	1	km	unit	would	likely	not	be	retained	if	the	
10 km × 10 km	unit	is	defined	as	the	element	of	the	universe.	

In	 twostage	cluster	 sampling,	a	 sample	of	SSUs	 is	 selected	within	each 	
sampled	firststage	PSU.	Twostage	cluster	sampling	is	motivated	by	the	rec
ognition	that	typically	units	spatially	proximate	to	each	other	will	have	rela
tively	similar	values,	and	this	spatial	correlation	of	the	sample	observations	
will	 tend	to	 inflate	the	standard	errors	of	estimates	from	cluster	sampling	
relative	 to	 a	 more	 spatially	 dispersed	 sample	 of	 the	 same	 size.	 So	 instead	
of	 sampling	all	 SSUs	within	a	 sampled	PSU,	a	 sample	of	SSUs	 is	 selected 	
and	the	cost	and	time	savings	achieved	by	the	lower	effort	per	PSU	can	be	
allocated	to	increase	the	number	of	PSUs	sampled.	

The	choice	of	whether	to	use	clusters	is	typically	driven	by	cost.	When	the	
primary	data	are	obtained	from	remote	sensing,	the	cost	of	the	imagery	and	
the	time	required	to	obtain	and	process	the	imagery	are	key	considerations.	
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For	example,	if	RapidEye	imagery	is	used,	the	size	of	the	PSU	may	be	defined	
to	be	a	portion	of	a	RapidEye	image	so	that	the	number	of	RapidEye	images	
that	must	be	purchased	is	limited.	Cluster	sampling	allows	control	over	the	
spatial	distribution	of	the	sample	because	of	the	spatial	grouping	of	elements	
into	a	fixed	number	of	sampled	clusters.	

Whether	clusters	or	strata	are	present,	 it	 is	necessary	to	specify	a	proto
col	for	selecting	the	elements	of	the	sample.	For	simple
random	selection	of	a	
sample	size	of	n	sampling	units,	the	sample	is	selected	such	that	all	possible	
sets	of	n	units	have	the	same	probability	of	being	selected.	For	example,	if	
the	universe	 is	first	partitioned	 into	strata	and	simple	random	selection	 is	
implemented	 in	each	 stratum,	 the	design	 is	 called	 stratified	 random	sam
pling.	For	cluster	sampling,	the	simple	random	selection	protocol	could	be	
used	to	select	a	firststage	sample	of	PSUs,	or	applied	within	sampled	PSUs	
to	select	a	secondstage	sample	of	SSUs.	For	a	systematic	selection	protocol,	a	
random	starting	element	or	location	is	selected,	and	the	remaining	sample	
elements	are	selected	based	on	 their	 location	 in	a	 list	of	all	N	 elements	of	
the	universe	or	based	on	their	spatial	location	relative	to	the	random	start
ing	 location.	Systematic	selection	can	also	be	applied	 in	combination	with	
strata	and	clusters.	For	example,	if	strata	are	present,	the	elements	sampled	
within	a	stratum	can	be	selected	via	the	systematic	protocol.	Similarly,	both	
stages	of	twostage	cluster	sampling	could	be	implemented	via	a	systematic	
selection	protocol.	Some	considerations	 influencing	 the	choice	of	 selection	
protocol	are	discussed	in	Section	5.5.	

5.2.2		 Inclusion	Probabilities	and	Probability	Sampling	

A	useful	general	perspective	of	sampling	design	is	obtained	by	focusing	on	
inclusion
probabilities.	An	inclusion	probability	is	defined	as	the	probability	
that	a	particular	element	of	the	universe	is	included	in	the	sample.	That	is,	
prior	to	selecting	the	actual	sample,	for	a	given	element	of	the	universe,	what	
is	 the	 probability	 of	 that	 element	 being	 included	 in	 the	 sample	 selected?	
Inclusion	 probabilities	 thus	 inform	 about	 the	 process	 of	 sample	 selection.	
For	simple	random	sampling	of	n	elements	from	a	universe	of	N	elements,	
the	inclusion	probability	is	n/N	 for	each	element.	For	systematic	sampling	
from	a	list	of	N	elements,	if	the	sampling	interval	is	K	(i.e.,	select	every	Kth	
element	after	a	random	selection	of	the	first	sample	element),	the	inclusion	
probability	is	1/K	for	each	element	(see	Overton	and	Stehman	1995	for	addi
tional	examples).	

Inclusion	 probabilities	 play	 an	 important	 role	 in	 defining	 a	 probability

sample.	Specifically,	a	probability	sample	is	defined	by	two	conditions:	(1) the	
inclusion	probabilities	for	all	elements	in	the	sample	must	be	known	and	
(2) the	inclusion	probabilities	for	all	elements	of	the	universe	must	be	greater	
than	zero.	The	rationale	for	these	conditions	is	explained	in	Overton	and	
Stehman	(1995).	For	this	chapter,	it	suffices	to	recognize	that	a	probability	
sampling	protocol	conveys	a	degree	of	statistical	rigor	to	the		samplebased	
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estimates	and	inference.	For	the	basic	sampling	designs		typically	used	in	
practice	(e.g.,	simple	random	sampling,	systematic	sampling,	stratified	ran
dom	sampling,	and	onestage	and	twostage	cluster	sampling	with	either	
simple	random	or	systematic	sampling	for	each	stage),	the	inclusion	prob
abilities	are	known	and	these	designs	meet	 the	conditions	of	probability	
sampling	 (Särndal	 et  al.	 1992).	 If	 the	 sampling	 design	 does	 not	 follow	 a 	
standard	 selection	 protocol,	 it	 is	 necessary	 to	 establish	 that	 the	 protocol	
meets	the	conditions	defining	a	probability	sample.	Some	practical,	but	ad	
hoc	 selection	 protocols	 may	 create	 very	 challenging	 problems	 for	 defin
ing	 inclusion	 probabilities,	 and	 for	 very	 complex	 selection	 protocols	 the	
inclusion	probabilities	may	be	intractable.	

5.2.3	 Inference	

The	process	of	generalizing	from	the	sample	data	to	describe	characteristics	
of	the	full	population	is	called	inference.	Clearly,	an		understanding	of	infer
ence	 is	necessary	when	a	sampling	approach	to	 forest	 	monitoring	 is	used.	
The	two	approaches	to	inference	most	frequently	used	in	finite population	
sampling	are	design	and	modelbased	inference.	The	two	approaches		differ	
primarily	in	how	uncertainty	or	variability	is	represented	as	determined	by	
the	definition	of	the	“variable”	in	each	approach.	

In	designbased	inference,	the	observations	obtained	for	each	element	of	
the	population	are	treated	as	fixed	constants	and	therefore	the	response	or	
observation	is	not	considered	a	variable.	The	uncertainty	in	designbased	
inference	is	attributable	to	the	randomization	determining	which	elements	
of	the	universe	are	selected	for	observation.	It	is	variation	of	the	estimate	
from	sample	to	sample	that	is	the	uncertainty	of	interest	in	designbased	
inference,	and	consequently	the	sampling	design	is	of	paramount	impor
tance.	 Specifically,	 for	 a	 given	 universe	 and	 sampling	 design,	 the	 sample

space	is	defined	as	the	set	of	all	possible	samples	that	could	be	selected	by	
that	particular	design.	For	each	possible	sample	from	a	given	population,	
the	estimate	of	the	parameter	of	interest	would	differ	for	different	samples.	
For	example,	suppose	the	target	parameter	is	the	area	of	deforestation	over	
a	5year	period.	A	systematic	 sample	of	10	km	 ×	 10	km	units	 is	 selected 	
by	randomly	locating	a	grid,	with	each	grid	point	separated	by	250	km.	If	
the	sample	is	repeated	by	a	second	random	placement	of	the	grid,	the	esti
mate	of	deforestation	is	likely	to	change.	In	designbased	inference,	it	is	the	
variability	of	an	estimate	over	all	possible	samples	comprising	the	sample	
space	 that	 characterizes	uncertainty.	Because	 the	 sampling	design	deter
mines	 the	 sample	 space,	 the	 name	 “designbased”	 inference	 is	 naturally	
applied.	

For	 modelbased	 inference,	 the	 response	 observed	 for	 each	 element	 of	
the	population	is	viewed	as	a	variable,	and	inference	is	conditional	on	the	
sample	obtained.	For	example,	the	values	of	a	finite	population	y1,	y2,	.	.	.	,	yN


are	viewed	as	realizations	of	 the	random	variables	Y1,	Y2,	.	.	.	,	YN.	The	goal	
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is	to	estimate	some	function	of	all	the	y’s	in	the	population,	h(y1,	y2,	.	.	.	,	yN),	
for	example,	the	mean	or	total	(Valliant	et al.	2000,	2).	After	the	sample	of	n

elements	has	been	obtained,	estimating	h(y1,	y2,	.	.	.	,	yN)	entails	predicting	a	
function	of	the	unobserved	Y’s.	A model	is	used	for	this	purpose.	The	model	
typically	incorporates	an	auxiliary	variable	(denoted	x)	that	is	related	to	Y.	
The	model	would	then	include	a	specification	of	how	the	variable	Y	is	related	
to	x,	this	relationship	being	represented	by	the	model	M.	For	example,	the	
model	M	could	be	a	simple linear	relationship	between	the	expected	value	of	
Y	and x,	EM(Yi) = βxi
(i
= 1, 2,	.	.	.	,	N),	with	the	covariance	between	the	variables	
Yi	and	Yj	specified	as	covM	(Yi, Yj) = σ2xi	if i
= j	and	covM	(Yi,	Yj)	=	0	if	i
≠ j

(Valliant	et al.	2000,	4).	The	model	and	observed	sample	data	are	the	basis	for	
predicting	the	unobserved	Y’s,	so	the	probability	model		specified	plays	a	key	
role	in	modelbased	inference.	An	example		applying	modelbased	inference	
is	provided	at	the	end	of	Section	5.4.	

The	 choice	 of	 inference	 framework	 impacts	 sampling	 design	 decisions.	
Designbased	inference	is	predicated	on	the	sampling	design	being	a	prob
ability	 sampling	 design.	 Therefore,	 if	 designbased	 inference	 will	 be	 used,	
only	probability	sampling	designs	should	be	considered.	Conversely,	model
based	inference	does	not	require	a	probability	sample.	The	model	specified	
for	modelbased	inference	may	take	into	account	the	fact	that	the	sample	was	
obtained	via	cluster	sampling	or	stratified	sampling,	but	this	would	represent	
a	model	specification	choice	and	not	a	required	dependence	of	the	inference	
on	the	sample.	However,	advocates	of	modelbased	 inference	often	cite	 the	
potential	 advantage	 that	 randomization	 provides	 to	 avoid	 accusations	 that	
a	sample	was	subjectively	chosen	to	achieve	certain	outcomes.	Modelbased	
inference	can	be	conducted	with	a	probability	sample,	but	designbased	infer
ence	 cannot	 be	 conducted	 unless	 a	 probability	 sampling	 design	 has	 been 	
implemented.	

5.2.4	 Estimation	

Once	the	sample	has	been	selected	and	the	data	obtained,	a	variety	of	esti
mators	may	be	available	to	estimate	a	parameter	of	interest.	For	probability	
sampling	designs	and	designbased	inference,	a	general	unbiased	estimator	
of	a	population	total	is	the	Horvitz–Thompson	estimator.	Suppose	the	obser
vation	on	element	u	of	the	sample	is	denoted	yu	and	the	inclusion	probability	
for	element	u	is	denoted	πu.	If	Y	is	the	population	total	(i.e.,	the	sum	of	yu	over	
all	N	elements	of	the	population),	the	Horvitz–Thompson	estimator	of	Y	is	

where	the	summation	is	over	the	elements	of	the	sample.	For	example,	 if	
yu	is	the	area	of	deforestation	for	element	u	and	Y	is	the	total	area	of	defor
estation	for	the	region,	then	Y	can	be	estimated	from	a	probability	sample	
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using	 the	 Horvitz–Thompson	 estimator.	 For	 the	 basic	 sampling	 designs	
typically	used	 in	practice,	 the	Horvitz–Thompson	estimator	simplifies	 to	
a	special	case	formula.	For	example,	for	a	simple	random	sample	of	n	ele

�ments,	the	estimator	simplifies	to	Y Ny ,	where	 y 	is	the	sample	mean	of	
the	response	yu,	and	for	stratified	random	sampling	of	nh	elements	from	the	
Nh	available	in	stratum	h (H	strata	total),	the	Horvitz–Thompson	estimator	
simplifies	to	

where	yh	is	the	sample	mean	in	stratum	h.	
In	most	applications,	it	is	possible	to	obtain	an	auxiliary	variable	xu	that	

is	associated	with	the	response	of	 interest,	yu.	Such	an	auxiliary	variable	
may	be	used	to	advantage	to	reduce	the	standard	error	of	 the	parameter	
estimate.	A	widely	applicable	estimator	for	this	purpose	is	the	generalized	
regression	 estimator	 (GRE)	 (see	 Särndal	 et  al.	 (1992,	 225)	 for	 full	 details	
of	 this	 estimator).	 More	 familiar	 simple	 estimators	 such	 as	 the	 ratio	 and	
regression	estimators	applied	to	simple	random	sampling	are	special	cases	
of	this	general	form.	Because	the	GRE	encompasses	a	variety	of	models	of	
the	 relationship	between	 the	 response	y	 and	one	or	more	auxiliary	vari
ables,	the	GRE	is	almost	always	better	(i.e.,	more	precise)	than	the	general
ized	difference	estimator	(Särndal	et al.	1992,	section	6.3).	The	GRE	belongs	
to	the	class	of	“modelassisted	estimators”	(Särndal	et al.	1992,	227).	These	
estimators	employ	a	model	to	information	in	one	or	more	auxiliary	vari
ables	to	improve	precision	of	estimates,	but	the	estimators	are	not	depen
dent	on	the	validity	of	the	model,	and	inference	is	still	design	based.	

5.2.5	 Desirable	Design	Criteria	

Choosing	 a	 sampling	 design	 for	 forest	 monitoring	 using	 remote	 sensing	
should	be	guided	by	the	monitoring	objectives	and	by	desirable	design	crite
ria	specified	for	a	particular	application.	A	list	of	potential	desirable	criteria	
follows,	but	the	prioritization	of	these	criteria	will	be	different	depending	on	
the	specific	application.

	 1.		The
 sampling
 protocol
 satisfies
 the
 requirements
 of
 a
 probability


sampling
design.	As	previously	stated,	this	criterion	is	essential	to		
support	designbased	inference,	but	is	optional	for	modelbased		
inference.

	 2.	The
sampling
design
is
easy
to
implement.	Simplicity	of	design	can	be	
a	major	virtue.	It	is	critical	that	the	design	is	implemented	correctly,		
so	a	simple	protocol	is	advantageous	in	this	regard.	Also,	a	simple		
design	is	simpler	to	analyze,	as,	for	example,	when	using	a	model
assisted	estimator	to	improve	precision	(Section	5.2.4).	
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	 3.	 The
design
is
cost-effective.	The	rationale	for	this	criterion	is	obvious	
because	a	design	goal	should	be	to	obtain	adequately	precise	esti
mates	 (i.e.,	 acceptably	 small	 standard	 errors)	 for	 the	 lowest	 cost	
possible.	 Of	 course,	 what	 constitutes	 “adequate	 precision”	 will	 be	
application	dependent.

	 4.	The
 sample
 is
 spatially
 well
 distributed
 (i.e.,	 spatially	 balanced).	 If	 the	
sample	 units	 are	 spatially	 dispersed	 throughout	 the	 target	 region,	
the	sample	has	intuitive	appeal	and	often	results	in	smaller	standard	
errors.

	 5.	 The
 standard
 errors
 of
 estimates
 resulting
 from
 the
 design
 are
 small.	 In	
designbased	inference,	this	would	mean	that	estimates	of	the	target	
parameter	from	different	samples	would	be	relatively	similar.

	 6.	An
unbiased
or
nearly
unbiased
estimator
of
variance
is
available.	This	crite
rion	specifies	that	standard	errors	quantifying	the	uncertainty	of	the	
estimates	can	be	provided	without	undue	reliance	on	approximations	
other	than	those	related	to	the	need	for	a	large	sample	size	to		justify	
the	 variance	 approximation.	 This	 criterion	 becomes	 	particularly	
relevant	when	considering	the	use	of	systematic	sampling	because	a	
variance	approximation	will	need	to	be	used	as	an	unbiased	estimator	
of	variance	is	not	available	for	systematic	sampling.

	 7.	 A
change
 in
sample
size
can
be
accommodated
before
 the
 full
sample
has

been
selected.	This	criterion	is	valuable	because	the	final	cost	of	com
pleting	the	sample	data	collection	is	often	difficult	to	predict,	so	it 	
may	be	necessary	to	reduce	the	sample	from	the	initial	target	size,	or	
in	rare	cases	it	may	be	possible	to	increase	the	sample	size.	Budgets	
also	sometimes	change,	and	the	sample	size	may	need	to	be	reduced	
or	increased	accordingly.

	 8.	The
design
 is
 transparent
 and
 familiar
 to
users
 of
 the
 information.	This	
criterion	may	be	particularly	relevant	if	nonscientists	will	be	using	
the	monitoring	results	to	inform	policy	decisions.	Transparency	may	
include	information	of	actual	plot	locations	or	specific	details	of	how	
randomization	is	incorporated	into	the	selection	protocol.	

5.3		 	Applications	of	Sampling	to	Estimate	Forest		

Cover	Change	from	Remotely	Sensed	Data	

Published	 studies	 demonstrating	 the	 application	 of	 a	 sampling	 approach	 to	
forest	monitoring	based	on	remote	sensing	are	reviewed.	The	review	focuses	
on	two	broad	categories:	actual	applications	in	which	forest	monitoring	based	
on	remotely	sensed	data	has	been	implemented	and	evaluative		studies	in	which	
different	sampling	design	and	estimation	strategies	have	been	compared.	The	
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application	studies	are	discussed	first,	followed	by	the	design	evaluation	stud
ies	(Section	5.4).	The	applications	are	presented	in	chronological	order.	

The	United	Nations	Food	and	Agriculture	Organization’s	(FAO)	FRA	in	1990	
is	a	landmark	application	of	a	sampling	approach	employing	satellite	imagery	
to	derive	estimates	of	forest	change.	The	FRA	1990	design	used	117	Landsat	
scenes	as	the	sampling	units	(FAO	1996).	The	design	was	stratified	based	on	
three	major	geographic	regions	(Africa,	Latin	America,	and	Asia)	and	10	sub
regions	 among	 the	 three	 major	 regions.	 The	 sample	 size	 allocated	 to	 these	
regions	was	based	on	the	expected	area	of deforestation,	as	predicted	for	each	
subnational	unit	based	on	prevalence	of	forest,	human	population	size,	and	per	
capita	income.	An	additional	level	of	stratification	(FAO	1996,	8)	was	based	on	
forest	cover	in	Asia	and	Latin	America	(>70%,	40%–70%,	and	10%–40%,	where	
cover	was	derived	from	countryspecific	inventories)	and	on	dominant	forest	
types	in	Africa	(forest,	woodland,	or	tree	savanna	for	the	three	strata).	Thus	
both	purposes	of	stratification	were	accommodated	in	this	design:	stratifica
tion	for	regional	reporting	and	stratification	for	minimizing	standard	errors	
of	estimates.	Within	each	sampled	Landsat	scene,	a	subsample	of	points	was	
obtained	using	a	2	km	×	2	km	grid.	The	land	cover	class	was	interpreted	from	
Landsat	imagery	at	each	sample	point	of	the	dot	grid	to	obtain	area	estimates	
for	 each	 frame	 or	 PSU.	 To	 assess	 change	 in	 forest	 cover,	 the	 sampling	 unit 	
was	defined	as	“the	overlap	area	of	a	pair	of	multidate	Landsat	scenes”	(FAO	
1996,	7).	The	FRA	2000	assessment	employed	the	same	sample	as	the	FRA	1990,	
with	an	additional	time	period	included	to	estimate	change	from	1990	to	2000.	
This	design	employs	a	combination	of	design	elements	discussed	in	Section	
5.2.1.	The	sampling	design	may	be	labeled	as	a	twostage	cluster	sample,	with	
stratified	random	sampling	used	at	the	first	stage	to	select	a	sample	of	Landsat	
scenes	 (PSUs)	 and	 systematic	 sampling	 used	 at	 the	 second	 stage	 to	 select	
points	(SSUs).	

The	TREES	II	design	(Richards	et al.	2000)	was	implemented	for	estimat
ing	deforestation	in	the	humid	tropical	forests	for	the	time	period	1990–1997.	
This	design	employed	full	and	quarter	Landsat	scenes	as	the	sampling	units,	
with	n
=	104	sampled	out	of	a	possible	N
=	740	units.	The	sampling	design	
had	five	strata	based	on	percent	forest	cover	and	percent	deforestation	within	
each	of	the	740	units	(Richards	et al.	2000,	1480).	Gallego’s	(2005,	370)	retro
spective	assessment	of	the	TREES	II	design	concluded	that	it	was	statistically	
sound	but	overly	 complicated.	As	a	 simplification	of	 the	TREES	 II	design,	
Gallego	(2005)	proposed	employing	stratification	to	partition	variability	of	
change	(i.e.,	low	and	high	variation)	and	selecting	sample	locations	from	a	
systematic	grid.	Similar	to	the	TREES	II	design,	the	proposed	modification	
is	still	strongly	linked	to	using	Landsat	scenes	as	the	basis	for	defining	the	
sampling	unit.	The	study	region	would	first	be	partitioned	by	a	tessellation	
based	on	Landsat	scenes	that	accounted	for	scene	overlap.	The	sample	units	
created	by	this	partitioning	are	unequal	in	size	(area),	and	Gallego	(2005)	sug
gested	implementing	a	design	where	the	units	are	sampled	with	probability	
proportional	to	their	area.	
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Mayaux	et al.	(2005)	provide	a	retrospective	critique	of	both	the	FRA	1990	
and	TREES	II	designs.	They	suggest	that	stratified	sampling	based	on	forest	
distribution	and	fragmentation,	as	determined	from	coarseresolution	sat
ellite	imagery,	should	be	considered	(Mayaux	et al.	2005,	382).	Knowledge	
of	deforestation	hot	spots	should	also	be	used,	possibly	via	stratification,	to	
improve	precision.	Mayaux	et al.	(2005)	proposed	a	design	for	future	FRA	
global	assessments,	suggesting	a	large	systematic	sample	of	10	km	×	10 km	
blocks	 located	 at	 the	 intersections	 of	 1°	 lines	 of	 latitude	 and	 longitude.	
This	 sample	would	consist	of	approximately	10,000	 sample	units.	Such	a 	
design	represents	a	shift	from	the	strong	dependence	on	Landsat	images	
of	 the	 TREES	 II	 and	 FRA	 1990,	 but	 as	 described	 in	 Mayaux	 et  al.	 (2005),	
it	would	not	 incorporate	stratification	based	on	the	anticipated	degree	of	
deforestation.	

Hansen	et al.	(2008)	selected	a	stratified	random	sample	of	18.5 km	× 18.5 km	
units	 to	 estimate	 gross	 forest	 cover	 loss	 during	 2000–2005	 in	 the	 humid	
tropical	forest	biome.	The	strata	were	determined	based	on	MODISderived	
forest	cover	loss	for	each	of	the	N	units,	and	the	estimated	gross	forest	cover	
loss	 was	 quantified	 using	 Landsat	 imagery.	 A	 similar	 stratified	 design	
was	 implemented	 in	 the	 boreal	 and	 temperate	 forest	 biomes	 (Potapov	
et al.	2008)	and	the	dry	tropical	forest	biome	(Hansen	et al.	2010).	The	use	
of	a	common stratified	sampling	design	and	Landsatderived	gross	forest	
cover	 loss	 for	 all	 four	 forested	 biomes	 is	 an	 example	 of	 how	 application	
of	a	consistent	methodology	can	facilitate	comparisons	of	rates	of	change	
at	a	global scale	 (Hansen	et al.	2010).	Hansen	et al.	 (2008,	2010)	employed	
a	 regression	 estimator	 (Section	 5.2.4)	 to	 estimate	 gross	 forest	 cover	 loss,	
and	 the	 reported	 standard	 errors	 from	 this	 modelassisted	 strategy	 were
	generally	small.	

The	 FRA	 2010	 remote	 sensing	 survey	 is	 another	 example	 in	 which	 the	
consistency	 of	 methodology	 leads	 to	 global	 comparisons	 of	 forest	 change	
uncompromised	by	confounding	differences	in	methods	of	measuring	forest	
change.	The	FRA	2010	remote	sensing	survey	is	a	systematic	sample	with	the	
sample	units	(10	km	×	10	km	blocks)	centered	at	the	intersections	of	1°	lines	of	
latitude	and	longitude	(Ridder	2007;	FAO	2009).	Duveiller	et al.	(2008)	report	
results	 from	an	 intensified	FRA	sample	 to	estimate	 forest	cover	change	 in 	
Central	Africa	between	1990	and	2000.	The	sample	grid	points	were	located	
at	 every	 0.5°	 intersection	 of	 latitude	 and	 longitude,	 yielding	 a	 fourfold	
increase	in	sample	size	over	the	1°	intersection	grid.	A	total	of	571	sample	
blocks	(10 km	×	10	km)	were	selected,	although	cloud	cover	prevented	analy
sis	of	some	sample	blocks.	The	estimates	of	forest	change	had	reasonably	low	
standard	errors,	demonstrating	the	operational	success	of	the		methodology	
(Duveiller	et al.	2008,	table	2).	

Levy	 and	 Milne	 (2004)	 review	 samplebased	 studies	 for	 estimating	
afforestation	and	deforestation	in	Great	Britain.	The	National	Countryside	
Monitoring	Scheme	(NCMS)	of	Scottish	Natural	heritage	 is	a	sample	of 	
487	1	km	×	1	km	plots,	with	change	interpreted	from	aerial	photographs	
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taken	in	the	1940s	and	1980s.	The	countryside	survey	is	based	on	381 plots,	
also	1	km	×	1	km,	distributed	throughout	Great	Britain.	The	countryside	
survey	 incorporates	 stratification	 based	 on	 “underlying	 environmental	
characteristics	 such	 as	 climate,	 geology	 and	 physiology”	 (Fuller	 et	 al.	
1998,	103).	

Leckie	et al.	(2002)	describe	a	study	to	report	deforestation	and	its	carbon	
consequences	 for	 Canada.	 The	 sampling	 design	 is	 linked	 to	 the	 ongoing	
Canadian	National	Forest	Inventory	sample	of	2	km	×	2	km	photoplots	cen
tered	at	points	on	a	20	km	×	20	km	grid.	Stratification	by	expected	deforesta
tion	level	is	incorporated	in	the	sampling	design.	In	the	high	deforestation	
strata,	 the	 sampling	 grid	 is	 intensified	 to	 10	 km 	×	 10	 km	 to	 increase	 the 	
sample	 size.	 Interpretation	 of	 Landsat	 imagery	 is	 proposed	 to	 obtain	 the	
deforestation	data.	

Dymond	 et  al.	 (2008)	 employed	 a	 stratified	 sampling	 design	 to	 estimate 	
change	in	forest	area	between	1990	and	2002	for	a	portion	of	the	South	Island	
of	New	Zealand.	The	six	strata	defined	were	nonforest	no	change,	twoforest	
no	 change	 strata	 (one	 for	 which	 a	 spectral	 difference	 was	 noted,	 the	 other	
for	which	no	spectral	difference	was	observed),	a	forest	to	nonforest	change	
stratum,	a	nonforest	 to	 forest	change	stratum,	and	a	“big	clumps”	stratum	
that	could	include	to	forest	or	from	forest	change,	with	these	changes	occur
ring	in	clumps	of	5	ha	or	more.	This	“big	clumps”	stratum	was	expected	to	
contain	most	of	the	change	that	could	be	identified	from	Landsat	imagery,	so	
this	stratum	was	exhaustively	sampled	(censused).	For	the	other	five	strata,	
sample	points	were	randomly	selected	within	each	stratum.	Dymond	et al. 	
(2008)	found	that	this	stratified	design	was	much	more	efficient	than	simple	
random	sampling.	

To	summarize	these	application	studies,	a	variety	of	sampling	designs	
have	 proven	 to	 be	 effective	 for	 monitoring	 forest	 change	 from	 remotely 	
sensed	data.	Many	of	the	basic	design	options	described	in	Section	5.2.1	
have	 been	 implemented	 in	 practice.	 Most	 studies	 employed	 a	 spatial	
sampling unit,	with	the	FRA	1990	design	and	Dymond	et al.	(2008)	being	
exceptions	 for	 which	 point	 sampling	 was	 implemented	 (the	 FRA	 1990	
did	use a spatial	sampling	unit	at	the	first	stage	of	the	twostage	cluster	
design).	 The	 early	 use	 of	 Landsat	 scenes	 or	 quarter	 scenes	 as	 the	 sam
pling	units	has	generally	been	replaced	in	favor	of	smaller	spatial	units.	
Stratification	is	present	in	the	majority	of	the	designs	implemented,	with	
the	FRA	2010	 remote	 sensing	survey	being	 the	most	notable	application	
not	using	stratification.	Twostage	sampling	in	which	the	PSU	is	subsam
pled	 was	 implemented	 in	 the	 FRA	 1990	 design,	 but	 was	 not	 present	 in	
any	other	design	included	in	this	review.	Systematic	sampling	is	used	at	
some	stage	of	the	sampling	design	in	the	FRA	1990,	FRA	2010,	TREES	II,	
and	the	Canadian inventory	(Leckie	et al.	2002).	Simple	random	selection,	
usually	within	strata,	was	used	in	the	applications	of	Hansen	et al.	(2008,	
2010),	 Dymond	 et  al.	 (2008),	 and	 the	 surveys	 of	 Great	 Britain	 (Levy	 and	
Milne 2004).	
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5.4	 Studies	Evaluating	Sampling	Design	Options	

As	the	first	noteworthy	effort	to	employ	sampling	of	remotely	sensed	data	
to	monitor	 forests,	 the	FRA	1990	remote	sensing	survey	 triggered	a	series	
of	 studies	 evaluating	 the	 effectiveness	 of	 sampling	 for	 forest	 monitoring	
using	remotely	sensed	data.	An	early	and	influential	study	by	Tucker	and	
Townshend	(2000)	expressed	concern	that	the	FRA	1990	sampling	approach	
would	 not	 yield	 sufficiently	 precise	 estimates	 of	 deforestation	 unless	 the	
sample	size	was	extremely	large.	Tucker	and	Townshend’s	(2000)	conclusions	
were	based	on	an	investigation	of	deforestation	for	countryspecific	estima
tion	for	Bolivia,	Colombia,	and	Peru.	The	populations	evaluated	were	based	
on	 complete	 coverage	 deforestation	 for	 these	 countries.	 Each	 country	 was	
partitioned	by	Landsat	scenes	(41,	61,	and	45	for	Bolivia,	Colombia,	and	Peru,	
respectively),	and	the	variability	of	samplebased	estimates	for	simple	ran
dom	sampling	of	these	scenes	was	evaluated.	Tucker	and	Townshend	(2000)	
found	that	a	large	proportion	of	the	available	scenes	had	to	be	sampled	to	
obtain	precise	estimates	of	deforestation.	SanchezAzofeifa	et al.	(1997)	also	
noticed	that	high	variances	of	deforestation	estimates	could	occur	when	the	
sampling	unit	was	a	satellite	scene.	SanchezAzofeifa	et al.	(1997)	examined	a	
population	of	202	Landsat	scenes	from	the	Brazilian	Amazon	for	which	com
plete	coverage	change	information	was	available.	They	demonstrated	that	a	
stratified	design	with	strata	defined	by	“persistence”	improved	the	precision	
of	the	sample	estimates	relative	to	simple	random	sampling,	where	Sanchez
Azofeifa	et al.	(1997,	183)	defined	persistence	in	terms	of	“scenes	presenting	
some	degree	of	deforestation	on	time	Ti	will	present	more	but	no	less	defor
estation	between	time	Ti	and	time	Ti+1	of	total	deforestation.”	Czaplewski	
(2003)	presented	evidence	to	indicate	that	the	problems	encountered	by	these	
studies	were	diminished	when	sampling	was	applied	to	larger	regions,	such	
as	continental	or	global	estimates	of	deforestation.	

These	early	studies	initiated	a	healthy	debate	of	central	issues	of	the	sam
pling	 approach	 including	 the	 choice	 of	 sampling	 unit	 and	 the	 tradeoffs	
between	cost	and	variability	of	sampling	more	but	smaller	sampling	units.	
These	initial	studies	focused	on	Landsat	scenes	as	the	sampling	unit,	but	rel
atively	quickly	(e.g.,	Tomppo	et al.	2002;	Stehman	et al.	2003)	it	became	appar
ent	that	using	such	a	large	sampling	unit	was	a	major	contributor	to	the	poor	
performance	of	the	sampling	approach	observed	by	Tucker	and	Townshend	
(2000)	 and	 SanchezAzofeifa	 et  al.	 (1997).	 Tucker	 and	 Townshend’s	 (2000)	
Bolivia	 population	 of	 N
 =	 41	 Landsatbased	 sampling	 units	 included	 one	
unit	 that	 comprised	 40%	 of	 the	 total	 deforestation	 of	 the	 region,	 and	 four	
scenes	 accounted	 for	 70%	 of	 the	 total	 deforestation	 of	 Bolivia.	 Tucker	 and 	
Townshend’s	(2000)	analysis	of	the	Bolivia	population	is	noteworthy	because	
it	identified	that	one	or	a	few	units	with	very	high	deforestation	may	occur	
and	have	substantial	impact	on	the	standard	error	of	the	samplebased	esti
mate	of	change.	Outliers	and	their	effect	on	the	precision	of	estimated	change	
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is	an	issue	to	be	taken	seriously.	The	shift	to	using	sampling	units	smaller	
than	Landsat	scenes	diminishes	the	impact	of	such	outliers	on	the	precision	
of	the	area	estimates.	

Tomppo	 et  al.	 (2002)	 continued	 the	 evaluation	 of	 potential	 designs	 for	
continental	 and	 global	 forest	 assessments	 such	 as	 the	 FRA.	 Their	 results	
were	 based	 on	 a	 meticulously	 constructed	 hypothetical	 population	 of	
deforestation.	Two	sizes	of	sampling	units	were	evaluated:	a	150	km	×	150	
km	 sampling	 unit	 (corresponding	 approximately	 to	 the	 area	 of	 a	 Landsat	
image)	and	a	10	km	×	10	km	sampling	unit.	Stratification	was	implemented	
geographically	using	10	FRA	ecological	zones	to	control	the	distribution	of	
the	sample	among	zones,	and	an	additional	level	of	stratification	was	defined	
using	the	Dalenius–Hodges	rule	(Cochran	1977)	to	determine	strata	bound
aries	 based	 on	 the	 continuous	 variable	 Advanced	 Very	 High	 Resolution	
Radiometer	(AVHRR)	change.	The	sample	was	then	allocated	equally	to	five	
strata	created	within	each	geographic	stratum.	Tomppo	et	al.	 (2002)	found	
that	the	10	km	×	10	km	unit	was	more	effective	than	the	150 km	×	150	km	unit	
when	the	stratified	sampling	design	was	implemented.	Further,	stratification	
by	AVHRR	change	improved	the	standard	errors	of	the	estimates.	

The	 planned	 use	 of	 systematic	 sampling	 for	 the	 FRA	 2010	 remote	 sens
ing	survey	prompted	several	studies	investigating	this	design.	As	noted	ear
lier,	the	FRA	2010	sampling	design	is	a	systematic	sample	of	10	km	×	10	km	
blocks	located	at	the	intersections	of	the	1°	lines	of	latitude	and	longitude.	
Steininger	et al.	(2009)	evaluated	the	estimates	that	would	be	obtained	from	
the	 FRA	 2010	 design	 if	 that	 design	 were	 to	 be	 applied	 to	 digital	 maps	 of 	
deforestation	for	six	regions	(the	five	countries	of	Bolivia,	Colombia,	Ecuador,	
Peru,	and	Venezuela	and	the	Brazilian	Amazon)	and	the	area	represented	by	
all	six	regions	combined.	This	study	also	included	a	comparison	of	different	
size	sampling	units	ranging	from	5	km	×	5	km	to	50	km	×	50	km	and	investi
gation	of	various	grid	densities	(0.25°	intersections	of	latitude	and	longitude	
up	to	2°	intersections).	Steininger	et al.	(2009)	concluded	that	the	FRA	design	
is	clearly	acceptable	at	 the	continental	 level,	but	countryspecific	estimates	
may	be	problematic.	For	a	fixed	sample	size,	a	larger	sample	unit	is	obviously	
better,	but	Steininger	et al.	(2009)	present	results	that	provide	insight	into	the	
tradeoffs	between	smaller	standard	errors	but	increasing	cost	as	the	area	of	
the	sampling	units	increases.	

Eva	et al.	 (2010)	conducted	a	study	analogous	 to	 that	of	Steininger	et al.	
(2009)	to	evaluate	the	performance	of	the	FRA	2010	design	estimates	when	
applied	 to	 French	 Guiana	 (1990–2006	 change)	 and	 the	 Brazilian	 Legal	
Amazon	(BLA)	(2002–2003	change).	Again	complete	coverage	deforestation	
information	 derived	 from	 Landsat	 imagery	 was	 the	 basis	 for	 evaluating	
the	 samplebased	 estimates.	 The	 sampling	 unit	 was	 20	 km	 ×	 20	 km,	 and	
the	sample	size	was	n
=	330	for	the	BLA.	The	estimated	standard	error	of	
0.10	million	 ha	 (based	 on	 nine	 replicate	 samples	 of	 the	 1°	 intersections	 of	
latitude	and	longitude)	obtained	for	the	BLA	is	miniscule	relative	to	the	esti
mate	of	2.81	million	ha	of	deforested	area.	For	French	Guiana,	the	systematic	
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sample	was intensified	to	0.25°	grid	intersections	(a	16fold	increase	over	the	
standard	FRA	grid	spacing	of	1°	intersections),	resulting	in	a	sample	size	of	
108	sample	units	 (approximately	12%	of	 the	 total	area),	and	the	size	of	 the	
sampling	unit	was	reduced	to	10	km	×	10	km.	For	this	intensified	sample,	the	
estimated	standard	error	was	about	6.8%	of	the	estimated	area	of	deforesta
tion.	The	design	of	the	Eva	et al.	(2010)	study	did	not	include	comparison	of	
systematic	sampling	to	simple	random	sampling,	but	it	can	be	expected	that	
the	systematic	design	improved	upon	the	standard	errors	that	would	have	
been	obtained	from	simple	random	sampling.	

Broich	et al.	(2009)	investigated	the	relative	precision	of	systematic,	strati
fied	random,	and	simple	random	sampling	using	a	population	of	Landsat
derived	 2000–2005	 deforestation	 for	 the	 BLA.	 The	 strata	 were	 based	 on	
MODISderived	 change	 for	 the	 18.5	 km	 ×	 18.5	 km	 units	 partitioning	 the	
study	region.	The	systematic	sampling	design	was	modeled	after	the	FRA	
2010	 design	 of	 sampling	 at	 1°	 intersections	 of	 latitude	 and	 longitude	 and 	
an	 intensified	 version	 of	 that	 design	 with	 sampling	 units	 at	 0.5°	 intersec
tions.	Broich	et al.	(2009,	table	3	and	table	4)	found	that	both	systematic	and	
stratified	sampling	were	improvements	over	simple	random	sampling,	and	
both	 were	 operationally	 very	 effective	 for	 estimating	 deforestation	 based	
on	 the	 standard	 errors	 relative	 to	 the	 annual	 rate	 of	 deforestation	 for	 the	
study	area	(population)	that	was	0.55%	 (percent	of	area).	The	1°	systematic	
sample	 (325  sample	units)	yielded	a	 standard	error	of	 0.05%,	 the	 stratified	
random	 sample	 (150	 sample	 units)	 yielded	 a	 standard	 error	 of	 0.03%,	 and	
the	0.5°	systematic	sample	(1,310	sample	units)	yielded	a	standard	error	of	
0.02%.	For	this	particular	study,	the	stratified	design	was	more	effective	than	
systematic	sampling,	the	advantage	being	attributable	to	the	effectiveness	of	
the	 MODISbased	 stratification.	 Further	 investigation	 would	 be	 needed	 to	
confirm	the	utility	of	a	similar	approach	to	stratification	for	other	locations	
and	different	time	periods.	

Stehman	et  al.	 (2011)	used	 the	 same	population	of	deforestation	 for	 the	
BLA	investigated	by	Broich	et al.	(2009)	to	demonstrate	the	utility	of	stratified	
random	sampling	for	adapting	a	global	forest	monitoring	design	to	achieve	
regional	reporting	objectives.	The	stratified	sampling	design	employed	by	
Hansen	et al.	(2008)	for	the	humid	tropical	forests	could	be	augmented	using	
the	same	stratified	design	to	address	the	objective	of	estimating	deforesta
tion	by	states	within	the	BLA.	The	ability	to	augment	a	stratified	continen
tal	or	global	 sample	parallels	 the	use	of	 an	 intensified	 systematic	 sample	
(Eva	et al.	2010)	to	produce	country	or	regionspecific	estimates	for	the	FRA	
2010	design.	The	analyses	also	permitted	comparing	the	standard	errors	for	
simple	 random,	systematic,	and	stratified	random	sampling	 for	 the	states	
within	 the	BLA.	When	compared	on	 the	basis	of	 equal	 sample	 size,	both	
systematic	and	stratified	random	sampling	were	better	than	simple	random	
sampling,	 and	 for	 most	 states,	 stratified	 random	 sampling	 had	 a	 smaller	
standard	 error	 than	 systematic	 sampling	 (Stehman	 et	 al.	 2011,	 table  5).	
Similar	to	the	precautions	expressed	for	interpreting	the	Broich	et al.’s	(2009)	
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results,	the	strong	advantage	gained	by	the	MODISbased	stratification	in	
the	BLA	would	not	necessarily	extend	to	other		geographic	locations	or	time	
periods.	

These	evaluative	studies	have	progressed	from	the	precautionary	findings	
revealed	by	Tucker	and	Townshend	 (2000)	 to	strong	confirmation	 that	 the	
sampling	approach	can	yield	estimates	with	relatively	small	standard	errors.	
However,	the	sampling	design	must	be	chosen	based	on	recognizing	some	
of	 the	potential	pitfalls,	 the	 foremost	of	which	 is	 that	very	 large	sampling	
units	(e.g.,	Landsat	scenes)	should	be	avoided.	The	evaluative	studies	support	
the	results	of	the	actual	applications	(Section	5.3)	of	samplebased	estimates	
of	forest	change	in	that	the	small	standard	errors	observed	in	practice	are	
substantiated	by	empirical	investigation	of	the	sampling	designs	applied	to	
known	populations	of	deforestation.	

The	majority	of	the	research	examining	different	sampling	design	options	
has	focused	on	the	basic	sampling	designs	outlined	in	Section	5.2.1	(system
atic,	 stratified	 random,	 and	 cluster	 sampling).	 Several	 designs	 outside	 this	
traditional	 realm	 have	 been	 considered.	 Magnussen	 et  al.	 (2005)	 evaluated	
adaptive	 cluster	 sampling	 (ACS),	 a	 sampling	 design	 that	 is	 advocated	 as 	
efficient	and	practical	 for	rare	but	spatially	clustered	phenomena,	exactly	a	
scenario	often	envisioned	for	forest	cover	change.	Magnussen	et al.’s	(2005)	
general	recommendation	was	that	“ACS	remains	attractive	when	the	average	
cost	of	adaptively	adding	a	PU	[population	unit]	to	the	initial	sample	is	low	
relative	to	the	average	cost	of	sampling	a	PU	at	random.”	This	condition	would	
not	be	met	when	working	with	a	satellite	scene	as	the	PU.	If	the	PU	is	smaller	
than	a	Landsat	 scene,	 for	example,	when	using	a	10	km	×	 10	km	unit,	 the 	
condition	described	may	be	satisfied	because	if	the	adaptive	procedure	calls	
for	additional	PUs	(the	10	km	×	10	km	units)	within	a	scene	in	which	other	
PUs	have	been	interpreted,	 this	would	be	 less	costly	than	obtaining	a	new	
PU	in	a	different	Landsat	scene.	Magnussen	et al.	 (2005)	expressed	several	
additional	reservations	regarding	the	use	of	ACS,	noting	that	practical	experi
ence	with	ACS	is	still	limited	and	that	design	effects	(i.e.,	precision	improve
ments)	and	costs	can	be	highly	variable.	They	further	noted	that	it	is	likely	
that	a	rule	for	terminating	the	adaptive	selection	process	would	be	needed	to	
avoid	cost	overruns	(i.e.,	to	avoid	uncontrolled	progression	to	selecting	new	
sample	units	from	the	adaptive	steps	of	the	protocol),	thus	adding	complexity	
to	the	design,	and	that	the	effect	of	population	structure	on	ACS	is	so	complex	
that	 it	 is	difficult	 to	predict	 success	of	ACS	 for	a	given	application.	ACS	 is	
more		complex	to	implement	and	analyze,	so	the	advantages	gained	must	be	
sufficient	to	overcome	this	burden	of	greater	complexity.	

When	stratified	sampling	is	used	to	increase	the	sample	size	of	sampling	
units	with	anticipated	high	forest	cover	change,	the	design	is	an	example	of	
an	unequal	probability	sampling	design.	That	is,	the	inclusion	probabilities	
for	units	in	different	strata	are	different.	The	extension	of	unequal	probability	
sampling	to	a	design	for	which	the	inclusion	probabilities	are	proportional	to	
an	auxiliary	variable	x	(denoted	as	πpx	designs)	is	another	option	to	consider.	
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Giree	(2011)	implemented	a	πpx	design	in	a	study	of	gross	forest	cover	loss	
in	Malaysia,	where	x	was	the	area	of	change	derived	from	AVHRR	for	1990–	
2000.	 The	 rationale	 for	 implementing	 a	 πpx	 design	 instead	 of	 a	 stratified	
design	was	related	to	the	options	for	estimation	(Section	5.2.4).	A	special	case	
of	the	general	regression	estimator	applicable	to	a	stratified	random	design	is	
the	separate	regression	estimator,	and	this	estimator	requires	a	sample	size	
of	25–30	per	stratum	to	ensure	that	the	estimator	is	not	biased.	Because	the	
sample	size	for	the	entire	Malaysia	study	was	a	modest	n
=	25 units	(each	
18.5	km	×	18.5	km),	a	stratified	design	combined	with	the	separate	regression	
estimator	would	have	been	a	risky	proposition.	The	πpx	design	allowed	the	
option	to	use	the	auxiliary	variable	x	to	increase	the	sample	size	of	higher	
change	units,	and	the	general	regression	estimator	could	still	be	applied	to	
the	sample	of	25	units	without	concern	for	bias	attributable	to	a	small	sample	
size.	For	the	πpx	design	implemented	and	using	the	Horvitz–Thompson	esti
mator	(Equation	5.1),	Giree	(2011)	estimated	the	annual	gross	forest	cover	loss	
for	Malaysia	during	1990–2000	to	be	0.43	million	ha	per	year	with	a	standard	
error	of	0.04	million	ha	per	year.	Thus	despite	the	small	sample	size,	the	πpx

design	yielded	a	reasonably	small	standard	error	relative	to	the	estimated	
rate	of	deforestation.	

The	sample	obtained	by	Giree	(2011)	is	useful	to	illustrate	the	application	
of	 modelbased	 inference.	 Suppose	 that	 Yi	 is	 the	 area	 of	 deforestation	 for	
1990–2000	obtained	from	Landsat	and	xi	is	the	area	of	deforestation	obtained	
from	AVHRR	on	unit	i
(where	each	unit	is	18.5	km	×	18.5	km).	The	AVHRR	
value	(xi)	is	available	for	all	N
=	958	units	comprising	Malaysia	(i.e.,	the	entire	
population),	but	 the	Landsat	deforestation	 is	available	 for	only	 the	 n
=	 25	
sample	blocks	selected	by	the	πpx	design	described	in	the	preceding	para
graph.	Following	Valliant	et al.	(2000,	section	5.5.1),	suppose	that	the	model	
relating	Yi	to	xi	is	a	quadratic	model	of	the	form	

2 2where	 ei	 is	 distributed	 with	 mean	 0	 and	 variance	 vi = xi σ .	 The	 predicted	
value	for	unit	(block)	i,	i = 1,..., N , 	is	

where	the	estimates	of	the	β’s	are	obtained	by	least	squares.	If	s	denotes	the	
elements	selected	for	the	sample	and	r	denotes	the	remaining	(not	sampled)	
elements	 in	 the	 population,	 the	 modelbased	 estimator	 for	 the	 population	
total	(based	on	the	model	specified	above)	is	

T =∑Yi +∑Y� i 
s r 

The	estimator	T	does	not	take	into	consideration	that	the	sampling	design	was		
πpx	and	instead	is	entirely	dependent	on	the	specified	model.	The	“prediction		
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theory”	basis	of	 the	estimator	 is	also	apparent	because	 the	second	 term	of	
T
is	a	sum	of	the	predicted	values	of	Yi	for	the	elements	of	the	population	that	
were	not	observed	in	the	sample.	For	the	Giree	(2011)	sample	data	for	1990–	
2000	deforestation	in	Malaysia,	the	modelbased	estimator	is	0.35	million	ha	
per	year	(slightly	below	the	0.43	million	ha	per	year	for	the	designbased	esti
mate).	The	standard	error	for	the	modelbased	estimate	was	0.07	million	ha	
per	year	(based	on	the	specified	model	and	equation	5.1.6,	p.	130	of	Valliant	
et  al.	 2000).	 Although	 it	 is	 tempting	 to	 compare	 the	 standard	 errors	 of	 the 	
designbased	and	modelbased	estimators,	the	two	approaches	to	inference	
employ	very	different	definitions	of	variability,	and	it	does	not	seem	relevant	
to	compare	variances	that	constitute	very	different	representations	of	uncer
tainty.	In	practice,	the	analysis	using	a	modelbased	estimator	should	include	
evaluation	 of	 competing	 models	 and	 an	 assessment	 of	 the	 goodness	 of	 fit	
of	 the	data	to	model	assumptions.	These	details	are	omitted	for	reasons	of	
brevity.	

5.5			 Disc	 ussion	of	Sampling	Applications		

and	Evaluative	Studies	

Several	general	tendencies	emerge	from	this	review	of	applications	and	eval
uative	 studies	 of	 forest	 monitoring	 sampling	 designs	 for	 remotely	 sensed	
data.	The	degree	to	which	the	sampling	design	is	tailored	to	the	spatial	char
acteristics	of	the	satellite	imagery	ranges	from	a	strong	dependence	in	which	
Landsat	scenes	or	quarter	scenes	are	used	as	the	sampling	units	(Richards	
et al.	2000;	Tucker	and	Townshend	2000;	Czaplewski	2003;	Gallego	2005)	to	
virtually	no	dependence	on	the	imagery	for	defining	sampling	units	(Leckie	
et al.	2002;	Levy	and	Milne	2004;	Mayaux	et al.	2005;	Hansen	et al.	2008,	2010).	
Gallego	 (2005)	 notes	 that	 choosing	 the	 size	 of	 the	 sampling	 unit	 to	 corre
spond	to	the	specific	imagery	to	be	used	to	interpret	forest	cover	or	change	is	
justified	when	working	with	sensors	with	approximately	fixed	image	frames	
(e.g.,	Landsat	TM),	but	otherwise	becomes	more	complicated.	In	a	longterm	
monitoring	program,	or	in	cases	where	several	sources	of	imagery	might	be	
used,	the	advantages	of	choosing	the	sampling	unit	linked	to	a	single	imag
ing	framework	are	diminished.	

For	 studies	 covering	 continental	 or	 global	 change,	 an	 initial	 stratifica
tion	 by	 biomes,	 ecoregions,	 or	 other	 large	 areas	 is	 typically	 implemented,	
although	the	FRA	remote	sensing	survey	is	a	notable	exception.	Geographic	
strata	are	typically	meaningful	regions	for	reporting	results,	and	they	also	
serve	to	aggregate	relatively	homogeneous	forest	types	together,	which	may	
be	 advantageous	 for	 better	 precision	 of	 continental	 or	 global	 estimates	 of	
change.	 In	 most	 of	 these	 studies	 targeting	 the	 objective	 of	 estimating	 the	
area	of	 forest	change,	 stratification	based	on	a	proxy	or	surrogate	 for	 true	
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change	must	be	used.	The	goal	is	to	create	strata	in	which	change	is	relatively	
uniform	 within	 each	 stratum,	 thus	 creating	 smaller	 withinstratum	 vari
ances.	Stratification	also	allows	for	increasing	the	sample	size	in	the	higher	
variability	strata.	

Many	of	the	desirable	design	criteria	specified	in	Section	5.2.5	are	promi
nent	 in	 the	 sampling	 designs	 implemented	 in	 practice	 for	 forest	 monitor
ing	 using	 remotely	 sensed	 data.	 All	 of	 the	 sampling	 designs	 reviewed	 in	
this	chapter	satisfy	the	conditions	defining	a	probability	sampling	design.	
This	 noteworthy	 feature	 suggests	 that	 the	 importance	 of	 rigorous	 design
based	 inference	 combined	 with	 a	 probability	 sampling	 design	 has	 been	
recognized	at	the	design	planning	stage.	Most	of	the	applications	reviewed	
met	the	second	desirable	design	criterion	of	being	simple	to	implement.	The	
two	most	commonly	used	sampling	designs,	systematic	(e.g.,	the	FRA	2010	
design)	and	stratified	random	(e.g.,	Dymond	et	al.	2008;	Hansen	et al.	2008,	
2010),	 are	 straightforward	 to	 implement.	 The	 two	 examples	 of	 more	 com
plex	sampling	designs	presented	in	this	chapter	were	ACS,	investigated	by	
Magnussen	et al.	(2005),	and	sampling	with	probability	proportional	to	an	
auxiliary	variable	x,	where	x	 could	be	a	measure	of	 forest	cover	 loss	 from	
coarser	resolution	imagery	(Giree	2011)	or	x	could	simply	be	the	area	(size)	
of	each	element	 in	the	partition	of	 the	universe	(Gallego	2005).	A	majority	
of	the	designs	reviewed	included	some	capacity	for	distributing	the	sample	
spatially	(criterion	4),	either	by	implementing	a	systematic	selection	protocol	
or	by	incorporating	geographic	stratification.	The	sampling	designs	imple
mented	 in	practice	 (Section	5.3)	produced	standard	errors	 that	were	small 	
enough	that	the	estimates	would	likely	be	viewed	as	credible	for	most	uses	
of	the	estimates	(criterion	5).	

An	unbiased	estimator	of	variance	is	not	available	for	systematic	sampling,	
and	 the	 estimated	 variance	 is	 then	 based	 on	 an	 approximation	 (desirable	
design	criterion	6).	A	simple	approximation	 is	 to	use	a	variance	estimator	
appropriate	 for	 simple	 random	 sampling,	 and	 this	 approximation	 is	 typi
cally	a	biased	overestimate	of	the	variance	for	the	systematic	design.	Such	
an	overestimate	of	variance	is	often	acceptable	because	it	is	conservative	(i.e.,	
it	does	not	underreport	the	uncertainty	of	the	estimate),	but	a	conservative	
estimate	also	will	not	reflect	the	true	precision	of	the	estimate.	Thus	it	may	
be	that	systematic	sampling	has	produced	a	very	precise	estimate,	but	the	
estimated	standard	error,	being	a	conservative	overestimate,	will	not	reflect	
that	precision.	Stratified	random	sampling	does	permit	an	unbiased	estima
tor	of	variance.	

Most	sampling	designs	can	be	implemented	in	a	manner	that	will	allow	
for	changing	the	sample	size	“in	progress”	(criterion	7).	Simple	random	and	
stratified	random	protocols	are	particularly	easy	 to	 truncate	 to	 reduce	 the 	
target	 sample	 size	 or	 extend	 to	 increase	 the	 target	 sample	 size	 while	 still 	
maintaining	 the	 fundamental	 features	of	 the	design	 (Stehman	et al.	 2011).	
Intensifying	 a	 systematic	 sample	 is	 straightforward	 simply	 by	 changing	
the	grid	density	 (e.g.,	decreasing	 the	distance	between	grid	points	by	half	
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increases	the	sample	size	fourfold).	Less	severe	changes	in	sample	size	will	
require	 breaking	 up	 the	 strict	 grid	 structure.	 For	 example,	 to	 add	 10	 new	
sample	units,	the	original	grid	spacing	could	be	halved	and	10	units	selected	
at	random	from	the	introduced	new	grid	points.	To	reduce	the	sample	size	
from	the	initial	grid,	sample	units	could	be	randomly	deleted,	although	this	
assumes	that	the	existing	sample	up	to	the	point	of	sample	termination	had	
been	selected	in	a	random	order.	Both	of	these	sample	size	modifications	of	
a	systematic	grid	will	produce	a	final	sample	that	does	not	adhere	exactly	to	
the	initial	full	grid	structure	and	will	therefore	diminish	some	of	the	advan
tages	of	the	systematic	sample.	

The	 last	 desirable	 design	 criterion,	 “transparency,”	 is	 difficult	 to	 assess	
because	 it	 depends	 on	 individual	 experience	 with	 sampling	 methods	
and	 theory.	 The	 designs	 implemented	 in	 practice	 for	 forest	 monitoring	
(Section  5.3)	 are	 probability	 sampling	 designs,	 which	 conveys	 a	 strong	
element	of	transparency	to	the	process	if	one	is	familiar	with	the	theory	of	
designbased	 inference	 and	 estimation.	 Systematic	 sampling	 is	 intuitively	
appealing	and	therefore	transparent	to	nonscientists	because	of	the	uniform	
spatial		distribution	of	the	sample	across	a	region	and	because	of	the	obvious	
explanation	for	why	sample	points	are	located	where	they	are.	A	probability	
sample	based	on	simple	random	selection	may	be	misconstrued	by	layper
sons	 as	 having	 been	 subjectively	 selected	 to	 focus	 on	 specific	 locations	 to 	
bias	the	results	in	a	particular	fashion.	Similarly,	intensifying	the	sampling	
effort	within	some	strata	may	be	misunderstood	by	laypersons	as	an	effort	to	
increase	the	sample	size	within	areas	of	high	deforestation,	thus	“obviously”	
biasing	the	estimates	in	the	minds	of	those	not	aware	of	the	weighted	esti
mation	approaches	required	with	unequal	probability	sampling	designs	(see	
Equations	5.1	and	5.2).	It	is	an	interesting	question	of	how	individual	percep
tions	(e.g.,	various	levels	of	understanding	of	sampling	theory	and	practice)	
should	 influence	 the	 decisionmaking	 process	 when	 considering	 different	
sampling	design	options	for	a	given	application.	

5.6		 Sa	 mpling	for	Forest	Monitoring	Using		

Remotely	Sensed	Data:	A	Look	Ahead	

Despite	 past	 operational	 successes	 of	 remote	 sensing–based	 forest	 moni
toring	 using	 a	 sampling	 approach,	 much	 room	 for	 improvement	 exists	 to	
develop	more	accurate,	more	precise,	and	more	costeffective	methods.	One	
of	 the	 biggest	 concerns	 with	 forest	 monitoring	 by	 remote	 sensing	 is	 mea
surement	error—are	the	remote	sensing	measurements	of	 forest	attributes	
such	as	cover	or	deforestation	sufficiently	accurate?	Measurement	error	can	
be	 viewed	 as	 having	 two	 components:	 bias	 and	 variability.	 Measurement	
bias	 refers	 to	 a	 consistent	 over	 or	 underrepresentation	 of	 the	 true	 value	
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of	 the	 response,	 and	 measurement	 variability	 refers	 to	 the	 differences	 in	
the	observed	response	over	multiple	replications	of	 the	measurement	pro
cess	 (Särndal	 et  al.	 1992).	 For	 example,	 if	 the	 area	 of	 deforestation	 for	 a	
10	km	× 10 km	unit	is	obtained	by	a	human	interpreter	working	with	satel
lite	 imagery	or	aerial	photographs,	we	can	envision	replicated	realizations	
of	this	measurement	by	different	interpreters.	If	the	average	result	of	these	
repeated	 observations	 of	 deforestation	 differs	 from	 the	 true	 value	 of	 the	
unit,	measurement bias	 is	present.	 If	 the	 repeated	observations	vary	 from	
interpreter	to	interpreter,	measurement	variability	is	present.	It	 is	straight
forward	to	quantify	measurement	variability	by	having	different	interpret
ers	examine	the	same	sampling	unit,	but	it	is	less	obvious	how	to	quantify	
	measurement	bias.	

A	 fundamental	 premise	 of	 the	 sampling	 approach	 to	 forest	 monitoring	
is	that	the	best	available	protocols	for	obtaining	the	target	forest	measure
ments	are	being	used.	The	assessment	of	measurement	bias	would	require	
that	 a	 more	 accurate	 measurement	 protocol	 existed,	 and	 that	 it	 would	 be	
possible	 to	 estimate	 measurement	 bias	 based	 on	 what	 would	 likely	 be	 a	
relatively	small	sample	(i.e.,	if	a	larger	sample	size	using	the	more	accurate	
protocol	were	available,	this	measurement	protocol	would	be	the	basis	of	the	
monitoring	estimates).	For	example,	 if	Landsat	 is	 the	bestquality	 imagery	
that	 can	 be	 affordably	 used	 in	 a	 samplebased	 monitoring	 program,	 then 	
it	 would	 be	 possible	 to	 spot	 check	 the	 Landsat	 interpretations	 using	 very	
highresolution	imagery	and	a	more	detailed	(i.e.,	more	accurate)	interpreta
tion	 	protocol,	 and	 this	 would	 provide	 a	 way	 to	 assess	 measurement	 bias.	
Specific	 	sampling	 designs	 to	 incorporate	 the	 assessment	 of	 measurement	
error	have	not	received	much	attention.	

Another	 challenging	 question	 is	 how	 to	 construct	 the	 sampling	 design	
for	longterm	forest	monitoring	based	on	remotely	sensed	data.	A	number	
of	 factors	 play	 into	 this	 decision.	 Over	 time,	 it	 is	 possible	 that	 improved	
methods	(e.g.,	better	imagery,	more	accurate	classification	methods)	will	be	
developed	for	measuring	the	forest	characteristics	of	interest.	The	sampling	
design	should	be	able	to	incorporate	these	improved	options.	For	example,	
if	new	sources	of	imagery	prove	to	be	better,	the	sampling	design	must	be	
able	to	accommodate	a	potential	change	in	the	footprint	of	different	imagery.	
A	good	illustration	of	this	problem	is	the	early	emphasis	on	using	Landsat	
scenes	as	sampling	units.	Even	if	these	large	sample	units	had	proven	to	be	
effective	for	use	with	Landsat,	it	is	likely	that	smaller	sampling	units	would	
now	be	more	desirable	for	the	very	highresolution	imaging	options	that	sub
sequently	have	become	available.	

A	number	of	challenging	questions	remain	to	be	resolved	regarding	the	
three	 primary	 decisions	 that	 determine	 a	 sampling	 design	 (Section	 5.2.1).	
Consider	 the	 cluster	 sampling	 decision	 first.	 The	 primary	 advantage	 of	
cluster	sampling	is	the	savings	in	time	and	cost	of	working	with	a	sample	
that	is	spatially	constrained	in	the	sense	that	the	sample	may	be	controlled	to	
fall	within	a	fixed	number	of	clusters	or	PSUs.	When	working	with	a	specific	
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source	 of	 imagery,	 cluster	 sampling	 allows	 for	 controlling	 the	 number	 of	
images	that	must	be	processed	(e.g.,	a	Landsat	or	an	IKONOS	image).	Gallego	
(2012)	demonstrated	that	sampling	a	relatively	small	number	of	SSUs	within	
each	PSU	is	adequate	from	the	standpoint	of	statistical	precision,	and	little	
advantage	is	gained	by	onestage	cluster	sampling.	The	qualitative	nature	of	
Gallego’s	(2012)	result	is	not	surprising,	but	the	quantitative	revelation	that	
such	a	small	number	of	SSUs	would	generally	be	adequate	is	eye	opening.	
Gallego’s	 (2012)	 result	 suggests	 that	 twostage	 cluster	 sampling	 should	 be 	
given	serious	consideration.	Onestage	cluster	sampling	may	still	be	a	good	
design	 option	 for	 other	 reasons	 (e.g.,	 when	 landscape	 pattern	 and	 other	
landscape	context	information	is	desirable),	but	twostage	sampling	is	clearly	
a	strong	option	when	estimating	area	is	the	primary	objective.	

Although	stratification	has	been	demonstrated	to	be	effective	for	estimating	
area	(Tomppo	et al.	2002;	Broich	et al.	2009;	Stehman	et al.	2011),	the	precau
tions	noted	about	the	portability	of	these	results	to	other	regions	for	which	
forest	change	dynamics	may	be	different	should	be	heeded.	In	a	longterm	
forest	 monitoring	 setting,	 the	 benefit	 of	 stratification	 would	 almost	 surely	
diminish	over	time.	However,	it	may	still	be	worthwhile	to	include	stratifica
tion	simply	because	estimating	a	relatively	rare	event	such	as	change	with	
acceptably	small	standard	errors	may	be	difficult	otherwise.	If	the	monitoring	
is	retrospective	(e.g.,	estimating	forest	change	from	1980	to	2010),	then	even	
though	multiple	time	periods	of	change	may	be	of	interest	(e.g.,	every	5year	
period),	it	may	still	be	possible	to	develop	an	effective	stratification	based	on	
change	throughout	the	full	monitoring	period.	Because	archival	imagery	and	
other	information	exist	pertaining	to	changes	that	have	taken	place,	it	is	pos
sible	to	stratify	by	change	based	on	auxiliary	information.	In	the	design	of	a	
forwardlooking	(prospective)	monitoring	program,	the	ability	to	choose	an	
effective	stratification	may	become	more	tenuous.	In	the	prospective	setting,	
the	strata	must	be	defined	by	expected	change	 if	 the	sample	data	must	be 	
obtained	in	real	time	(i.e.,	when	it	is	not	feasible	to	use	archival	imagery).	

For	 longterm	monitoring	with	periodic	reporting	(e.g.,	5year	time	peri
ods),	 the	 question	 of	 permanent	 sample	 plots	 versus	 allowing	 the	 sam
ple	 locations	 to	 change	 over	 time	 is	 another	 important	 consideration.	 For	
example,	if	estimates	are	desired	for	each	5year	period	over	a	30year	total	
period	of	monitoring,	sample	locations	will	need	to	be	paired	(i.e.,	the	initial	
and	end	date)	for	any	given	5year	period	to	estimate	gross	change.	But	the	
decision	of	whether	to	use	permanent	plots	for	the	entire	30year	monitor
ing	window	will	depend	on	the	situation.	For	example,	in	a	region	of	rapid	
cycling	from	forest	clearing	to	regrowth	to	clearing,	the	30year	time	series	
from	permanent	plots	may	prove	invaluable.	Conversely,	in	a	less	dynamic	
region	in	which	at	most	one	change	will	occur	in	the	30year	period,	it	may	
be	advantageous	to	focus	more	on	the	individual	5year	estimates.	This	may	
lead	 to	 implementing	 a	 stratification	 that	 is	 advantageous	 for	 each	 5year 	
estimate,	but	not	necessarily	a	stratification	useful	for	any	other	time	period,	
and	consequently	a	new	set	of	paired	plots	would	be	selected	for	each	5year	
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period.	In	a	prospective	monitoring	program,	particularly	one	that	may	have	
regulatory	ramifications,	it	would	be	preferable	to	have	the	sample	locations	
“hidden”	from	the	parties	involved	so	that	forest	management	of	the	sample	
locations	is	not	different	from	forest	management	of	the	general	population.	
However,	 not	 revealing	 sample	 locations	 would	 seem	 to	 conflict	 with	 the	
desirable	 design	 criterion	 of	 transparency.	 Consequently,	 permanent	 plot	
locations	for	prospective	regulatory	monitoring	could	be	problematic.	If	new	
sample	 locations	 are	 selected	 for	 each	 reporting	 interval,	 these	 problems	
with	permanent	plots	would	be	avoided.	Sampling	design	decisions	will	be	
strongly	influenced	by	practical	considerations.	Additionally,	studies	inves
tigating	 the	 precision	 of	 permanent	 sample	 locations	 versus	 more	 flexible	
sample	 arrangements	 should	 be	 conducted	 for	 various	 scenarios	 of	 forest	
change.	

Twophase	 sampling	 is	 often	 an	 effective	 design	 for	 generalpurpose	
monitoring	 (see	 Fattorini	 et  al.	 2004	 for	 a	 specific	 example	 application)	
and	has	a	 relatively	 long	history	of	use	 for	 forest	 inventory.	 In	 twophase	
sampling,	a	large	firstphase	sample	is	selected,	and	one	or	more	auxiliary	
variables	 are	 measured	 for	 each	 unit	 sampled.	 A	 secondphase	 sample	 is	
then	 selected,	 typically	 from	 the	 firstphase	 sample	 units,	 and	 the	 target	
measurements	are	obtained	for	the	smaller	secondphase	sample.	In	contrast	
to	twostage	cluster	sampling	in	which	the	sampling	units	are	different	sizes	
for	 the	 two	stages,	 it	will	be	assumed	that	 the	sampling	units	are	defined	
similarly	at	both	phases	for	twophase	sampling.	The	auxiliary	information	
from	the	larger	firstphase	sample	may	be	used	in	two	ways.	One	option	is	to	
use	the	auxiliary	variables	in	a	modelassisted	estimator.	The	other	option	is	
to	use	the	auxiliary	information	to	stratify	the	firstphase	sample	units	and	
to	then	select	a	stratified	sample	at	the	second	phase.	Twophase	sampling	
for	stratification	is	a	practical	option	when	it	is	not	feasible	to	stratify	all	N

elements	of	the	universe.	

5.7	 Conclusions	

The	 complete	 coverage	 mapping	 and	 samplingbased	 approaches	 should	
coexist	in	a	forest	monitoring	program	as	both	approaches	address	impor
tant	and	sometimes	different	objectives.	The	full	coverage,	spatially	explicit	
information	provided	by	maps	is	an	invaluable	resource.	But	typically	there	
will	be	higher	quality	information	than	what	was	used	to	construct	the	map,	
and	 this	 higher	 quality	 information	 becomes	 affordable	 and	 practically	
manageable	 for	 only	 a	 sample	 of	 the	 full	 region.	 Thus	 a	 sample	 in	 which	
higher	 quality	 imagery	 and	 more	 accurate	 measurement	 protocols	 can	 be	
applied	becomes	the	basis	of	an	estimate	for	aggregate	properties	of	the	forest	
characteristics	to	be	monitored.	The	samplebased	approach	to	monitoring	
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forest	cover	and	change	in	forest	cover	has	been	proven	to	be	operationally	
effective	in	a	number	of	studies.	Efforts	to	refine	these	methods	to	produce	
more	accurate	and	precise	estimates	of	forest	characteristics	should	continue	
to	take	advantage	of	new	developments	of	higher	quality	imagery	and	better	
classification	methods.	
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6.1	 Introduction	

6.1.1	 MODIS	

The	 MODIS	 (Moderate	 Resolution	 Imaging	 Spectroradiometer)	 sensor	
onboard	NASA’s	Terra	 spacecraft	has	advanced	 largearea	 land	monitor
ing	 during	 its	 10plus	 years	 of	 operation.	 Compared	 to	 heritage	 instru
ments	 such	 as	 the	 advanced	 very	 highresolution	 radiometer	 (AVHRR)	
meteorological	 sensor,	 MODIS	 represented	 a	 significant	 gain	 in	 global	
land	mapping	and	monitoring	capabilities.	First,	the	MODIS	sensor	has	a	
finer	instantaneous	field	of	view	compared	to	other	global	daily	observing	
systems,	 including	 bands	 with	 250,	 500,	 and	 1000	 m	 spatial	 resolutions.	
Second,	MODIS	was	built	with	seven	bands	specifically	designed	for	land	
cover	monitoring	by	avoiding	wavelengths	affected	by	atmospheric	scat
tering	and	absorption.	Third,	 the	250	m	spatial	 resolution	of	 the	red	and	
nearinfrared	 bands	 was	 designed	 specifically	 to	 enable	 the	 monitoring	
of	 land	cover	change	 (Justice	et al.	1998).	Other	sensors	with	global	 land	
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monitoring	 capabilities,	 including	 SPOT	 VEGETATION	 and	 ENVISAT	
MERIS,	 with	 1  km	 and	 300	 m	 spatial	 resolutions,	 respectively,	 have	 also	
been	designed	for	land	monitoring	applications.	However,	MODIS	retains	
the	finest	 spatial	 resolution	observational	 capability	 for	 this	 class	of	 sen
sors.	While	a	second	MODIS	sensor	onboard	NASA’s	Aqua	spacecraft	was	
launched	in	2002,	MODIS	Terra	data	have	been	more	widely	used	in	land	
cover	analyses	and	are	the	data	used	in	the	study	presented	here.	

6.1.2	 Global	Forest	Cover	Mapping	to	Date	

A	viable	solution	to	examining	trends	in	forest	cover	change	over	large	areas	is	
to	employ	remotely	sensed	data.	Satellitebased	monitoring	of	forest	clearing	
can	be	implemented	consistently	across	large	regions	at	a	fraction	of	the	cost	
of	obtaining	extensive	ground	inventory	data.	Forest	inventories	are	typically	
unable	to	quantify	forest	dynamics	at	annual	intervals	due	to	the	costs	and	
logistical	challenges	of	frequently	revisiting	plots.	On	the	other	hand,	remotely	
sensed	data	enable	the	synoptic	quantification	of	forest	cover	and	change	at	
regular	intervals,	providing	information	on	where	and	how	fast	forest	change	
is	 taking	place	at	annual	or	finer	 time	scales	 (INPE	2008).	While	numerous	
nationalscale	forest	change	products	exist,	global	forest	change	characteriza
tions	are	comparatively	rare.	Initial	global	forest	mapping	efforts	focused	on	
static	map	products	of	forest	cover,	typically	as	part	of	multiclass	land	cover	
classifications.	The	IGBP	DISCover	project	(Loveland	et al.	2000)	used	1	km	
AVHRR	data	to	produce	a	global	land	cover	product	that	included	forest	leaf	
type	and	longevity	classes,	as	did	Hansen	et al.	(2000)	with	the	University	of	
Maryland	(UMD)	land	cover	map.	Friedl	et al.	(2002)	advanced	these	efforts	in	
creating	the	standard	MODIS	land	cover	product	(MOD12Q1),	and	Bartholomé	
et al.	(2005)	used	SPOT	VEGETATION	data	to	produce	the	Global	Landcover	
2000	(GLC2000)	product,	both	of	which	contained	multiple	forest	type/density	
classes.	Similarly,	the	Globcover	initiative	used	300	m	ENVISAT	MERIS	data	
to	produce	a	global	multiforest	class	land	cover	map	for	2005–2006	(Arino	et al.	
2007).	Forests	as	a	specific	target	have	been	mapped	at	the	global	scale	as	well.	
Global	subpixel	percent	tree	cover	maps	have	been	generated	using	AVHRR	
data	 (Hansen	 and	 DeFries	 2004)	 and	 as	 a	 standard	 product	 using	 MODIS	
data,	the	vegetation	continuous	field	(VCF)	of	percent	tree	cover	(Hansen	et al.	
2003).	Regarding	global	forest	change,	the	8	km	AVHRR	Pathfinder	data	set	
was	used	to	estimate	tree	cover	change	from	1982	to	1999	from	timesequential	
percent	tree	cover	maps	(Hansen	and	DeFries	2004).	

6.1.3	 Global	Forest	Cover	Loss	Mapping	Using	MODIS	

A	more	recent	global	forest	cover	change	assessment	employed	MODIS	data	
to	quantify	gross	forest	cover	loss	(Hansen	et al.	2010).	In	this	study,	MODIS	
500	 m	 forest	 cover	 loss	 indicator	 maps	 were	 used	 to	 stratify	 biomes	 into	
homogeneous	regions	with	respect	to	change	(high,	medium,	and	low	forest	
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cover	loss	strata).	Within	each	stratum,	samples	of	Landsat	data	were	drawn	
and	analyzed	in	order	to	estimate	forest	cover	extent	in	2000	and	forest	cover	
loss	 from	 2000	 to	 2005.	 Stratumspecific	 regression	 estimators	 incorporat
ing	the	MODISderived	forest	cover	loss	data	as	an	auxiliary	variable	were	
applied	to	generate	the	final	forest	cover	loss	estimates.	These	results	demon
strated	the	effectiveness	of	using	the	MODIS	forest	cover	loss	data	to	provide	
a	spatially	finegrained	stratification	that	offered	an	improvement	over	more	
generalized	hot	spot	stratifications	subjectively	delineated	to	define	low	and	
high	forest	clearing	strata	(Achard	et al.	2002).	

The	focus	of	this	study	is	to	extend	this	previous	MODIS	work	and	map	
indicated	 forest	 cover	 loss	 at	 250	 m	 spatial	 resolution	 over	 the	 2000–2010	
period.	To	do	so,	a	turnkey	algorithm	is	run	on	the	2000–2005	and	2005–2010	
epochs.	Previous	work	on	multiyear	forest	cover	change	quantification	using	
AVHRR	data	employed	a	recalibrated	model	for	each	year	of	analysis	(Hansen	
and	DeFries	2004).	However,	as	MODIS	data	feature	consistent	radiometric	
calibration	(Vermote	et al.	2002),	it	is	expected	that	the	change	signal	being	
trained	upon	may	be	reliably	and	repeatedly	captured	over	time.	Our	previ
ous	work	with	MODIS	has	employed	turnkey	models	applied	annually	to	
identify	change	(Hansen	et al.	2008;	Potapov	et al.	2008).	For	this	study,	we	
employ	a	fixed	characterization	algorithm	for	the	2000–2005	and	2005–2010	
epochs.	Calibration	issues	with	MODIS	have	been	studied,	and	a	degrada
tion	of	the	nearinfrared	band	quantified	for	MODIS	Terra	(Wang	et al.	2012).	

Given	this	fact,	the	use	of	turnkey	approaches	to	repeatedly	mapping	land	
cover	with	the	Terra	instrument	has	come	into	question	(Vermote	E.,	personal	
communication).	We	present	the	following	results	more	as	a	demonstration	
of	global	change	mapping	methods	and	not	as	a	definitive	 longterm	envi
ronmental	change	record.	MODIS	data	are	imaged	nearly	daily	at	the	global	
scale,	improving	the	probability	of	cloudfree	acquisitions.	This	hightempo
ral	acquisition	 frequency	ensures	a	consistent	and	 largely	cloudfree	 image	
feature	space	at	annual	time	scales.	However,	the	moderate	spatial	resolution	
of	MODIS	is	a	limitation	for	area	estimation	of	forest	cover	loss	as	much	forest	
disturbance	occurs	at	subMODIS	pixel	scales.	The	most	appropriate	use	of	
MODIS	for	forest	monitoring	is	as	an	alarm	or	hot	spot	indicator	(INPE	2008;	
Hansen	 et  al.	 2010;	 Shimabukuro	 et	 al.	 2012).	Area	 estimation	 requires	 the	
integration	of	MODIS	with	a	higher	spatial	resolution	sensor,	such	as	Landsat	
or	another	medium	spatial	resolution	data	source.	MODISonly	products	such	
as	the	ones	presented	in	this	study	capture	relative	rates	of	forest	cover	loss	
across	space	and	through	time,	with	a	considerable	omission	rate	for	small
scale	forest	disturbances.	

The	 method	 presented	 here	 demonstrates	 a	 global	 assessment	 of	 forest	
cover	loss	using	MODIS	data	from	2000	to	2010.	For	this	study,	forest	clearing	
equals	gross	forest	cover	loss	during	the	study	period	without	quantification	
of	contemporaneous	gains	in	forest	cover	due	to	reforestation	or	afforestation.	
Forest	cover	loss	is	defined	as	a	standreplacement	disturbance	of	a	forest,	
where	forest	is	defined	as	an	assemblage	of	trees	having	a	height	of	5	m	or	
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greater	and	a	canopy	crown	cover	in	excess	of	25%	at	the	MODIS	pixel	scale.	
The	method	could	be	implemented	repeatedly	for	both	forest	cover	loss	and	
gain	 in	establishing	 internally	consistent	biomescale	 trends	 in	both	gross	
and	net	forest	cover	loss	and	gain.	

6.2	 Data	

The	 2000–2011	 global	 Terra/MODIS	 250	 m	 data	 16day	 composite	 data	 set	
(MOD44C,	collection	5)	from	the	University	of	Maryland	was	used.	This	data	
set	was	originally	created	as	an	input	to	the	vegetative	continuous	fields	and	
vegetative	 cover	 conversion	product	and	 is	described	 in	Carroll	 et  al.	 (2010).	
Four	reflective	bands—band	1/red	(620–670	nm),	band	2/near	infrared	(841–	
876	nm),	band	6/shortwave	infrared	(1,628–1,652	nm),	and	band 7/shortwave	
infrared	(2,105–2,155	nm),	along	with	band	31/thermal	(10,780–11,280	nm)	and	
computed	normalized	difference	vegetation	index	(NDVI)—were	used.	

Sixyear	 MODIS	 metrics	 were	 derived	 for	 2000	 through	 2005	 and	 2005	
through	 2011.	 Metrics	 have	 been	 shown	 to	 enable	 largearea	 mapping	 by	
generalizing	 the	 multispectral	 feature	 space,	 enabling	 signature	 exten
sion	 over	 large	 areas	 (Reed	 et  al.	 1994;	 DeFries	 et  al.	 1995;	 Hansen	 et  al.	
2005).	Each	band	was	ranked	individually	and	by	temperature	and	NDVI.	
Ranked	metrics	 calculated	 for	all	bands	 included	0,	 10,	 25,	 50,	 75,	 90,	 and	
100	percentiles.	Averages	between	percentiles	were	also	calculated.	Annual	
metrics	were	generated	and	used	as	metrics	and	as	 inputs	to	a	timeseries	
regression	calculation.	Means	of	 the	three	values	corresponding	to	highest	
annual	NDVI	and	band	31	brightness	temperature	were	derived	and	used	as	
the	annual	inputs	and	for	the	regression	calculation.	

An	 extensive	 Landsatscale	 training	 data	 set	 was	 produced	 for	 calibrating	
the	 algorithm.	 Nationalscale	 products	 for	 Indonesia	 (Broich	 et  al.	 2011);	 the	
Democratic	Republic	of	the	Congo	(Potapov	et al.	in	press);	European	Russia	
(Potapov	et al.	2011);	Quebec,	Canada;	and	Brazil,	along	with	an	additional	203	
image	pairs,	were	used	as	training	data.	The	majority	of	the	training	data	were	
from	the	2000	to	2005	epoch.	Only	the	Indonesia	and	Democratic	Republic	of	
the	Congo	data	included	2005–2010	change	data.	The	Landsatscale	forest	cover	
loss	 maps	 were	 aggregated	 to	 the	 MODIS	 grid	 as	 percent	 forest	 cover	 loss.	
A total	of	over	23,000,000	pixels	at	MODIS	scale	were	available	as	training	data.	

6.3	 Algorithm	

Decision	trees	are	a	type	of	distributionfree	machine	learning	tool	appro
priate	 for	 use	 with	 remotely	 sensed	 data	 sets	 (Michaelson	 et	 al.  1994;	
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Hansen	 et  al.	 1996;	 Freidl	 and	 Brodley	 1997).	 They	 are	 the	 primary	
algorithmic	tool	used	in	the	standard	MODIS	land	VCF	products	(Hansen	
et al.	2003).	The	VCF	products	depict	 the	per	pixel	percent	cover	of	basic	
vegetation	traits,	such	as	herbaceous	and	tree	cover.	As	trees	are	distribu
tion	free,	they	allow	for	the	improved	representation	of	training	data	within	
the	 multispectral	 space.	 The	 relationship	 between	 the	 independent	 and	
dependent	variables	need	not	be	monotonic	or	linear.	This	allows	for	more	
flexible	subsetting	of	the	multispectral	image	space	not	feasible	with	many	
other	methods	and	 is	most	appropriate	 for	 largearea	studies	 that	 feature	
complicated	multispectral	signatures.	In	addition,	the	tree	structure	enables	
the	interpretation	of	the	explanatory	nature	of	the	independent	variables.	

Trees	 can	 accept	 either	 categorical	 data	 in	 performing	 classifications	
(classification	trees)	or	continuous	data	in	performing	subpixel	percent	cover	
estimations	(regression	trees)	(Breiman	et al.	1984).	For	this	study,	we	used	the	
regression	tree	algorithm	of	the	SPlus	statistical	package	(Clark	and	Pergibon	
1992)	 to	 depict	 percent	 forest	 cover	 loss.	 Methods	 to	 avoid	 	overfitting	 of	
tree	models	are	available.	One	such	approach	entails	 	performing	multiple,	
independent	 runs	 of	 decision	 trees	 via	 sampling	 with	 replacement.	 This	
procedure	 is	 called	bagging	 (Breiman	1996).	A	10%	 sample	of	 the	 training	
data	was	used	to	create	each	tree,	which	related	the	dependent	percent	forest	
cover	loss	variable	to	the	set	of	MODISindependent	variables.	Eleven	trees	
were	generated,	and	 the	median	percent	 forest	cover	 loss	 from	all	bagged	
trees	was	retained	as	the	per	pixel	result.	To	reduce	errors	of		commission,	we	
thresholded	the	output	product	at	30%	forest	cover	loss,	converting	each	map	
to	a	yes/no	forest	cover	loss	estimate	per	250	m	MODIS	pixel.	

6.4	 Results	

Figure	6.1	shows	a	globalscale	annual	growing	season	metric	derived	from	
shortwave	 infrared,	 nearinfrared,	 and	 red	 growing	 season	 imagery	 from	
2000.	 The	 spectral	 feature	 space	 is	 largely	 cloud	 free,	 but	 persistent	 haze	
and	partial	cloud	cover	exist	in	the	Andes	Mountains	of	Colombia,		northern	
Brazil,	 the	 central	 African	 coast	 along	 the	 Gulf	 of	 Guinea,	 and	 montane	
Borneo	and	New	Guinea	(the	haze	and	residual	cloud	cover	are	not	visible	in	
the	figure).	The	humid	tropics	are	the	only	region	where	atmospheric	effects	
are	present	in	the	MODIS	metric	feature	space.	Other	potential	limitations,	
such	as	seasonal	forests	and	variable	growing	season	length,	are	not	readily	
apparent	in	the	metric	feature	space.	

Figures	6.2	and	6.3	provide	an	example	of	the	derived	metric	feature	space	
for	 an	 area	 of	 Mato	 Grosso,	 Brazil,	 and	 Quebec,	 Canada,	 	respectively.	 For	
these	subsets,	blue	represents	year	2000	growing	season	band	7	 	shortwave	
infrared	reflectance	 (mean	of	 the	band	7	values	corresponding	 to	 the	 three	
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FIGURE	6.2	
(See	color	 insert.)	400	km	×	400	km	subset	centered	on	12°	4’	S,	55°	59’	W	in	Mato	Grosso,	
Brazil.	Falsecolor	composite	of	MODIS	band	7	growing	season	metrics—blue:	2000	mean	band	
7	shortwave	infrared	reflectance	from	the	three	greenest	16day	composite	periods,	green:	dif
ference	in	the	2000	and	2005	mean	band	7	shortwave	infrared	reflectance	from	the	three	green
est	16day	composite	periods,	and	red:	difference	in	the	2005	and	2010	mean	band	7	shortwave	
infrared	reflectance	from	the	three	greenest	16day	composite	periods.	

FIGURE	6.3	
(See	color	insert.)	400	km	×	400	km	subset	centered	on	51°	45’	N,	72°	8’ W	in	Quebec,	Canada.	
Falsecolor	 composite	 of	 MODIS	 band	 7	 growing	 season	 metrics—blue:	 2000	 mean	 band	 7	
shortwave	infrared	reflectance	from	the	three	greenest	16day	composite	periods,	green:	differ
ence	in	the	2000	and	2005	mean	band	7	shortwave	infrared	reflectance	from	the	three	greenest	
16day	composite	periods,	and	red:	difference	 in	 the	2005	and	2010	mean	band	7	shortwave	
infrared	reflectance	from	the	three	greenest	16day	composite	periods.	
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greenest	16day	composite	periods).	Areas	that	are	dark	in	this	metric	are typ
ically	forest	(water	has	been	masked	out	prior	to	analysis).	Green	represents	
the	difference	for	this	metric	from	2000	to	2005	and	red	the		difference	from	
2005	to	2010.	Pixels	that	have	high	increases	for	this	metric,	and	have	an	ini
tial	dark	state	 (~<5%	 reflectance),	are	 likely	 to	represent	 forest	disturbance.	
For	the	Brazil	subset,	a	dramatic	reduction	in	forest	cover	loss	can	be	inferred	
from	this	falsecolor	composite	image.	The	proportion	of	2000–2005	change	
dwarfs	that	from	2005	to	2010.	For	the	Canada	subset,	a	less	dramatic	reduc
tion	 is	 observed,	 related	 to	 a	 predominantly	 firedriven	 dynamic.	 The	 tree	
bagging	algorithm	formalized	the	labeling	of	all	forest	cover	loss	pixels.	

The	global	total	of	MODIS	hot	spot	pixels	covered	500,000	km2	from	2000 to	
2005	and	360,000	km2	from	2005	to	2010.	The	total	MODISindicated	forest	
cover	loss	represents	50%	of	the	total	area	of	gross		forest	cover	loss from	the	
MODIS/Landsat	study	of	Hansen	et al.	(2010).	In	other	words,	the	Landsat	
samplebased	area	estimate	of	gross	forest	cover	loss equaled 1,011,000	km2,	
while	the	MODIS	hot	spot	mapped	area	equaled	500,000	km2.	The MODIS
indicated	forest	cover	loss	pixels	were		aggregated	to	the	same	sampling	grid	
as	the	Hansen	et al.	study	and	compared.	The	following	relation	yielded	an	
r2	of	0.64	and	a	standard	error	of 1.73%:	

Areas	 from	 the	 Hansen	 et  al.	 (2010)	 study	 were	 reported	 only	 for	 those	
regions	or	nations	that	had	sufficient	Landsat	samples	to	provide	a	reason
able	 uncertainty	 estimate.	 These	 areas	 included	 the	 four	 major	 forested	
biomes	(humid	tropical,	dry	tropical,	temperate,	and	boreal),	all	continents	
except	Antarctica,	and	countries	with	over	1,000,000	km2	of	forest	cover	in	
2000.	The	gross	forest	cover	loss	data	from	Hansen	et al.	(2010)	are	plotted	
against	the	MODISindicated	change	in	Figure	6.4.	

The	degree	of	forest	cover	loss	omission	in	the	MODIS	data	is	clear.	As	
stated	 before,	 fully	 half	 of	 the	 global	 forest	 cover	 loss	 from	 the	 Hansen	
et al.	(2010)	study	is	not	mapped	with	MODIS.	Regardless,	there	is	a	strong	
overall	 relationship.	Areas	where	smallscale	disturbance	predominates,	
such	as	Africa,	feature	the	highest	proportion	of	omitted,	or	cryptic,	change.	
In	 Figure	 6.4	 the	 continent	 of	 Africa	 and	 the	 nation	 of	 the	 Democratic	
Republic	 of	 the	 Congo	 have	 the	 highest	 ratio	 of	 MODIS/Landsat	 area	
of	 forest	 loss	 to	 MODISindicated	 forest	 loss.	 This	 reflects	 the	 finer	 and	
more	 diffuse 	pattern	 of	 forest	 change	 in	 Africa	 where	 most 	clearing	 is 	
performed	 in	 swidden	 	agricultural	 settings	 too	 small	 for	 	quantification	
using	 MODIS	 data.	 Areas	 with	 large	 agroindustrial	 clearing,	 such	 as	
Brazil,	South	America	as	a	whole,	and	Indonesia,	have	the	lowest	omission	
rates.	

The	model	was	applied	to	the	two	study	intervals,	and	a	comparison	of	
the	amount	of	change	hot	spots	was	made.	Figures	6.5	and	6.6	illustrate	the	
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FIGURE	6.4	
Plot	of	area	of	MODISindicated	forest	cover	loss	versus	gross	forest	cover	loss	area	for	reported	
regions.	(From	Hansen,	M.C.,	et al.,	Proc.
Natl.
Acad.
Sci.,	107,	8650,	2010.)	

global	distribution	of	MODISindicated	forest	cover	loss.	The	most	obvious	
change	in	the	patterns	of	forest	cover	loss	is	found	in	Brazil.	As	Shimabukuro	
et al.	(2012)	report,	the	Brazilian	government	has	sought	to	reduce	the	clear
ing	of	Amazonian	forests,	efforts	that	have	included	the	use	of	satellite	data	
as	an	enforcement	tool.	The	global	results	from	Figures	6.5	and	6.6	confirm	
this	 reduction.	 Contrary	 to	 this	 trend	 is	 a	 marked	 increase	 in	 the	 clearing	
of	 the	 Chaco	 woodlands	 of	 Bolivia,	 Paraguay,	 and	Argentina	 between	 the	
two	 periods.	 Africa	 is	 largely	 absent	 of	 largescale	 change,	 with	 only	 the	
agroforestry	of	South	Africa	evident	at	this	scale.	For	tropical	Asia,	Indonesia	
exhibits	a	rise	in	forest	cover	loss	over	the	study	period.	Epochal	variation	at	
higher	latitudes	is	less	evident	and	largely	due	to	variations	in	high	latitude	
fire	dynamics	as	well	as	storm	damage.	In	general,	forest	cover	losses	due	to	
fire	appear	greater	in	the	2000–2005	interval	than	in	the	2005–2010	interval	
(see	Alaska,	Siberia,	and	Australia).	Areas	of	active	forestry	practices	feature	
prominently	in	both	epochs.	

Figures	6.7	through	6.9	show	the	change	in	MODISindicated	forest	cover	
loss	 over	 the	 study	 period.	 At	 the	 biome	 scale,	 significant	 reductions	 in	
forest	 cover	 loss	 within	 the	 humid	 tropical	 and	 boreal	 biomes	 are	 found.	
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Brazil’s reduced	clearing	drives	the	humid	tropical	change,	while	less	forest	
cover	loss	due	to	fire	drives	the	boreal	forest	change.	At	the	continental	scale,	
the	same	dynamics	are	evident,	with	Europe	and	Africa	exhibiting	little	or	no	
change	in	forest	cover	loss.	For	countries	with	greater	than	1 Mha	of	year	2000	
forest	cover,	only	Indonesia	exhibits	a	clear	increase	in	forest	cover	loss.	
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FIGURE	6.7	
MODISindicated	forest	cover	loss	totals	per	forested	biome	for	the	2000–2005	and	2005–2010	
epochs.	
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FIGURE	6.9	
MODISindicated	forest	cover	loss	totals	per	country	for	the	2000–2005	and	2005–2010	epochs	
(only	countries	with	greater	than	1,000,000	km2	of	forest	cover	in	2000).	

The	 results,	 as	 shown	 in	 Figure	 6.4,	 have	 significant	 errors	 of	 omission,	
mainly	 related	 to	 the	 coarse	 scale	 of	 observation,	 as	 stated	 previously.	
Obvious	 commission	 errors	 are	 associated	 largely	 with	 two	 environmen
tal	dynamics.	First,	residual	haze	and	cloud	cover	impact	the	metric	space	
and	lead	to	noiserelated	commission	errors	in	a	few	humid	tropical	regions	
referred	 to	earlier.	Second,	wetlands	are	very	dynamic	 in	 their	patterns	of	
spectral	change	as	floods	arrive	and	recede	along	with	attendant	vegetation	
responses.	 Wetland	 formations	 are	 another	 source	 of	 forest	 change	 com
mission	error.	Finally,	the	uncertainty	regarding	the	radiometric	stability	of	
the	Terra	instrument	could	significantly	impact	the	repeated	use	of	a	single	
model	 over	 the	 two	 5year	 intervals.	 Further	 study	 is	 required	 to	 resolve	
the	impact	of	Terra’s	radiometric	degradation	on	the	observed	forest	extent	
changes	of	this	study,	particularly	between	the	two	5year	epochs.	

6.5	 Conclusion	

The	combined	hightemporal	observation	frequency	and	moderate	spatial	reso
lution	of	MODIS	data	enable	global	forest	change	indicator	mapping.	The	abil
ity	to	synoptically	characterize	forest	disturbance	at	the	global	scale	allows	for	
direct	comparison	of	change	rates	through	time	and	across	space.	The	continu
ous	acquisition	of	multispectral	observations	at	the	global	scale	for	10+ years	
illustrates	 the	 value	 of	 operational	 systems	 in	 quantifying	 environmental	
dynamics.	As	noted,	such	analyses	are	dependent	on	a	stable	radiometric	data	
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source.	 While	 MODIS	 is	 not	 an	 operational	 system,	 it	 enables	 the	 develop
ment	of	methods	that	can	be	implemented	with	operational	systems	such	as	
the	recently	launched	VIIRS	(Visible	Infrared	Imager	Radiometer	Suite)	instru
ment	(Justice	et al.	2010).	This	is	a	critical	monitoring	tool	of	indicators	of	global	
change,	such	as	forest	dynamics,	and	its	value	will	only	increase	with	the	length	
of	the	hightemporal,	moderate	spatial	resolution	data	record.	

Our	results	document	a	pervasive	and	changing	global	forest	disturbance	
dynamic.	Overall,	a	reduction	in	standreplacement	forest	disturbance	from	
2000	to	2005	and	2005	to	2010	was	found.	However,	the	data	represent	only	
indications	 of	 forest	 cover	 loss,	 not	 an	 estimation	 of	 total	 area,	 and	 may	
also	be	affected	by	degradation	of	 the	Terra	sensor.	Differences	 in	epochal	
change	 illustrated	here	are	a	 function	of	 the	scale	of	MODIS	observations.	
Definitive	quantification	of	aerial	change	over	time	could	be	different	than	
that	observed	with	MODIS	and	would	require	finer	scale	timeseries	imag
ery	for	either	direct	forest	area	loss	estimation	or	calibration	of	the	MODIS	
indicator	 product.	 The	 clearest	 reduction	 in	 forest	 cover	 loss	 occurred	 in	
Brazil	and	is	related	to	policy	and	enforcement	efforts	to	improve	regulation	
of	 forest	clearing	 in	 the	Brazilian	Amazon.	Forest	cover	 loss	related	to	fire	
appeared	to	decline	over	the	two	epochs	as	well.	The	drivers	of	global	forest	
change	are	many,	and	the	spatial	patterns	seen	in	the	MODIS	change	prod
ucts	capture	four	principle	drivers:	(1)	agroindustrial	scale	clearing	related	to	
land	use	conversions	and	forestry	practices,	(2)	fire,	(3)	disease,	and	(4)	storm	
damage.	Attributing	each	identified	change	pixel	to	a	specific	driver	would	
greatly	enhance	the	utility	of	the	data	for	a	host	of	land	use	and	biogeochemi
cal	cycle	modeling	applications.	

The	ability	 to	quantify	both	forest	cover	extent	and	change	 independent	
of	land	use	designations	is	important	in	generating	a	consistent	narrative	of	
global	forest	change.	Global	observing	systems	such	as	MODIS	enable	such	
quantifications,	but	are	limited	in	area	estimation.	As	the	discipline	moves	
forward,	hightemporal	observations	will	be	needed	at	finer	resolutions	 in	
order	 to	 generate	 global	 forest	 cover	 extent	 and	 change	 maps	 that	 can	 be	
used	directly	in	estimating	area	change.	Landsat	data,	which	have	included	
a	global	acquisition	strategy	(Arvidson	et al.	2001)	and	are	now	freely	avail
able	(Woodcock	et al.	2008),	will	be	the	data	source	to	extend	the	methods	
developed	using	MODIS	to	finer	spatial	scales.	
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7.1	 Introduction	

This	chapter	presents	an	operational	remote	sensing	approach	for	monitoring	
forest	cover	at	continental	and	global	levels,	based	on	a	statistical	sampling	
design	 and	 on	 satellite	 imagery	 from	 optical	 sensors	 of	 moderate	 spatial	
resolution	(30	m	×	30	m	resolution).	

There	are	two	main	approaches	to	forest	characterization	and	monitor
ing	with	remotely	sensed	data	(Achard	et	al.	2010):	analyses	that	cover	the	
full	spatial	extent	of	the	forested	areas,	termed	“walltowall”	coverage,	or	
those	that	select	a		statistical	sample	of	forested	areas	for	careful		analysis	and	
extrapolate	the	findings	to	the	entire	area	of	interest.	Walltowall	mapping	
has	long	been	done	with	relatively	coarse	spatial		resolution		satellite	data	and,	
currently,	 moderate	 spatial 	resolution 	walltowall 	analyses	 are 	possible	
(see	 following	 Chapters	 9	 to	 13	 for	 examples	 of	 walltowall	 analyses).	
However,	spatially	exhaustive	analyses	are	challenging	 to	operationalize	
on	 frequent	 time	 intervals	 and	 over	 very	 large,	 heterogeneous	 areas.	
Statistical	 sampling	 approaches,	 therefore,	 serve	 an	 important	 role	 in	
providing	 costeffective,	 timely,	 repeatable	 estimates	 of	 forest	 character
istics	over	 large	areas	and	at	 frequent	 time	 intervals	 (e.g.,	Brink	and	Eva	
2009;	Broich	et	al.	2009;	Duveiller	et	al.	2008;	Eva	et	al.	2010).	A	sampling	
procedure	that	adequately	represents	deforestation	events	(e.g.,	through	a	
sufficiently	 dense	 systematic	 or	 stratified	 sample	 in	 space	 and	 time)	 can	
capture	deforestation	trends.	

Whichever	overall	approach	is	chosen,	sampling	or	walltowall,	the	spa
tial	unit	of	analyses	or	minimum	mapping	unit	(MMU)	must	also	be	decided	
upon.	 There	 are	 two	 main	 choices	 for	 this.	 In	 pixelbased	 approaches,	
the	 smallest	 unit	 of	 analysis	 is	 the	 individual	 image	 pixel.	 Objectbased 	
approaches	 use	 pixel	 clustering	 algorithms	 to	 create	 spectrally	 homoge
nous	pixel	groupings,	which	are	thereafter	treated	as	individual	units	for	
analysis.	

For	 the	Global	Forest	Resources	Assessment	2010	 (FRA	2010),	 the	FAO	
(Food	 and	 Agriculture	 Organization	 of	 the	 UN)	 has	 extended	 its	 global	
and	 continental	 monitoring	 of	 forest	 cover	 changes	 to	 include	 analysis	
of	remotely	sensed	land	cover	and	land	use	as	a	complement	to	standard	
national	reporting.	The	survey	applies	objectbased	image	analysis	methods	
to	a	globally	distributed,	systematic	sample	of	moderateresolution	satellite	
imagery	to	estimate	forest	land	cover	and	land	use	change	for	the	periods	
1990–2000	 and	 2000–2005.	 The	 FAO	 has	 produced	 estimates	 of	 tropical	
forest	 cover	 changes	 as	 part	 of	 past	 assessments	 (FRA	 1990,	 2000),	 but	
the	 remote	 sensing	 survey	 (RSS)	 of	 FRA	 2010	 has	 been	 extended	 to	 all	
lands	(FAO	et	al.	2009).	This	survey	has	been	conducted	by	a	partnership	
between	FAO	and	its	member	countries,	 the	European	Commission	Joint	
Research	 Centre	 (JRC)	 as	 the	 main	 scientific	 partner,	 South	 Dakota	 State	
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University,  the  United	 States	 Geological	 Survey	 (USGS),	 and	 the	 U.S.	
National	Aeronautics	and	Space	Administration	(NASA).	Over	200	national	
experts	from	106	countries	have	participated	in	the	survey.	

This	chapter	presents	the	scientific	and	technical	methods	that	have	been	
developed	 for	 monitoring	 forest	 cover	 changes	 in	 the	 framework	 of	 this	
global	survey.	

7.2	 Sampling	Strategy	

The	 grid	 system	 selected	 for	 the	 global	 systematic	 sample	 is	 a	 rectilinear	
grid,	based	on	degrees	of	geographical	latitude	and	longitude	(Figure 7.1),	
that	 enables	 a	 straightforward	 implementation,	 and	 easy	 location	 and	
understanding	 (Mayaux	 et	 al.	 2005).	 Although	 stratified	 sampling	 is	
generally	 preferable	 for	 improving	 the	 efficiency	 of	 land	 cover	 change	

FIGURE	7.1	
(See	color	insert.)	Example	of	time	series	(for	years	1990,	2000,	and	2005)	of	Landsat	satellite	
imagery	over	one	sample	site	in	the	Amazon	Basin	(20	km	×	20	km	size).	Forests	appear	in	dark	
green,	deforested	areas	(agriculture	and	pastures)	appear	in	light	green	or	pink.	



	
	
	
	
	
	
	
	
	
	
	
	
	
	

114	 Global
Forest
Monitoring
from
Earth
Observation


estimation	 (Stehman	 et	 al.	 2011),	 a	 systematic,	 nonstratified	 sampling	 has	
been	implemented	because:	

	 1. 		This	sampling	scheme	 is	 intended	 to	be	also	used	 for	 future	 time		
periods	(for	year	2010	and	later),	and	it	is	impossible	to	reliably	pre
dict	where	deforestation	“hot	spots”	will	be	located	in	future	years.	

	 2.	The	systematic	sample	scheme	can	be	easily	intensified	for	specific	
purposes,	 in	 particular	 for	 assessment	 at	 a	 national	 level	 or	 for	 a		
particular	ecosystem.	Indeed,	a	number	of	countries	supported	by		
FAO	are	already	carrying	out	national	forest	assessments	based	on	
an	 intensification	of	 the	global	 sampling	scheme	 (http://www.fao.	
org/forestry/nfma).		

The	 global	 systematic	 sampling	 approach	 has	 already	 been	 tested	 against	
walltowall	 reference	 data	 over	 the	 Brazilian	 Amazonia	 basin	 (Eva	 et	 al.	
2010).	It	has	also	been	intensified	and	tested	for	the	Congo	River	basin	region	
for	 the	1990–2000	period	(Duveiller	et	al.	2008)	and	for	 the	French	Guiana	
territory	(Eva	et	al.	2010),	demonstrating	its	potential	to	estimate	forest	cover	
changes	from	continental	to	regional	levels	(Broich	et	al.	2009).	

Globally,	the	survey	involved	13,690	sample	sites.	Sampling	has	not	been		
performed	 for	 latitudes	 higher	 than	 75°	 north	 or	 south.	 At	 most	 sites,	 the	
area	surveyed	was	10	km		×	10	km,	which	represents	approximately	1%	of		
the	world’s	land	surface.	In	the	tropics,	the	area	surveyed	for	each	site	was	
20	 km	 ×	 20	km	for	 the	period	1990–2000,	which	represents	approximately	
3.6%	of	the	tropics.	

7.3	 Acquisition	of	Satellite	Imagery	

Nearly	complete	global	coverage	from	the	Landsat	satellites	is	now	available	
at	no	cost	from	the	Earth	Resources	Observation	Systems	(EROS)	Data	Center	
(EDC)	of	the	USGS	(http://eros.usgs.gov/).	A	recent	product,	called	the	Global	
Land	Survey	(GLS),	represents	a	global	archive	of	good	quality,	orthorectified	
and	 geodetically	 accurate	 image	 acquisitions	 from	 Landsat	 Multispectral	
Scanner	 (MSS),	 Landsat	 Thematic	 Mapper	 (TM),	 and	 Landsat	 Enhanced	
Thematic	Mapper	(ETM+)	sensors	focused	on	the	epochs	ca.	1975,	ca.	1990,	
ca.	2000,	mid2000s,	and	ca.	2010	(Gutman	et	al.	2008).	These	GLS	data	sets	
play	a	key	role	in	establishing	historical	deforestation	rates	(Masek	et al.	2008),	
although	in	some	parts	of	the	tropics	(e.g.,	Western	Colombia,	Central	Africa,	
and	Borneo)	persistent	cloud	cover	is	a	major	challenge	for	using	these	data	
(Ju	et	al.	2009;	Linquist	et	al.	2008).	For	these	regions,	the	GLS	data	sets	can	be	
complemented	by	remote	sensing	data	from	other	satellite	sensors	with	similar	
characteristics,	 in	 particular,	 optical	 sensors	 of	 moderate	 spatial	 resolution.	
The	GLS	data	sets	are	described	with	full	details	in	Chapter	4.	

http://www.fao.org
http://www.fao.org
http://www.eros.usgs.gov


	

	

		
	

 

Use
of
a
Systematic
Statistical
Sample
with
Moderate-Resolution
Imagery
 115		

For	each	sample	location	of	the	systematic	grid,	the	available	Landsat	data	
(from	 TM	 or	 ETM	 sensors)	 were	 sought	 from	 the	 GLS	 database	 (primary	
data	source).	These	data	were	downloaded	at	full	resolution	(30	m	×	30	m).	
Image	subsets	of	20	km	×	20	km	covering	the	sample	sites	were	extracted	in	
UTM	projection	(Potapov	et	al.	2011).	The	sample	site	target	size	is	10	km × 

10 km,	but	a	5	km	buffer	has	been	used	for	data	extraction	and	processing	
in	order	to	keep	contextual	information.	In	the	event	of	the	data	being	unac
ceptable	(due	to	cloud	cover	or	artifacts	from	visual	screening	assessment),	
replacement	 data	 were	 sought	 from	 different	 sources	 with	 the	 help	 of	 the	
GEOSS	(Global	Earth	Observing	System	of	Systems)	Land	Surface	Imaging	
Constellation.	 In	particular,	 for	the	4,016	sample	sites	covering	the	tropics,	
2,868	 suitable	 image	 pairs	 were	 found	 for	 the	 period	 1990–2000	 from	 the	
GLS	data	sets,	representing	71.6%	of	the	tropical	sample	(Beuchle	et	al.	2011).	
Better	alternatives	could	be	found	for	26.6%	of	these	4,016	sites,	substituting	
cloudy	 or	 missing	 GLS	 data	 sets	 at	 one	 or	 the	 other	 epoch	 or	 both	 (GLS
1990	or	GLS2000).	Gaps	were	filled	from	the	USGS	Landsat	archives	(1,070	
samples),	 data	 from	 other	 Landsat	 archives	 (e.g.,	 GISTDA,	ACRES,	 INPE;	
53	 samples),	 or	 with	 alternatives	 to	 Landsat,	 i.e.,	 15	 samples	 from	 SPOT	
(Satellite	Pour	l’Observation	de	la	Terre).	This	increased	the	effective	number	
of	sample	pairs	to	3,945,	representing	98%	of	all	target	samples.	No	suitable	
image	pairs	were	found	for	71	confluence	points,	which	were	not	randomly	
distributed,	but	mostly	concentrated	in	the	Congo	basin,	where	around	15% 

of the	region	remains	unsampled.	There	is	a	higher	number	of	missing	sites	
in	the	second	period	assessed	(2000–2005)	in	particular	for	tropical	regions,	
due	to	the	malfunctioning	of	the	line	scanner	on	the	Landsat	7	ETM	sensor	
after	 June	 1,	 2003,	 which	 corrupts	 around	 25%	 of	 each	 image	 acquisition	
(Maxwell	 2004).	 The	 missing	 sites	 in	 the	 tropics	 for	 the	 2000–2005	 period	
are	 mainly	 located	 in	 Central	 America,	 Ecuador,	 the	 Colombian	 Choco,	
the	Guianas,	the	southern	ridge	of	West	Africa,	 the	western	part	of	Congo	
basin	 (South	 Cameroon,	 Equatorial	 Guinea,	 Gabon,	 and	 Western	 Congo),	
Central	 Democratic	 Republic	 of	 Congo,	 Eastern	 Tanzania,	 and	 Indonesia	
(Kalimantan,	Sulawesi,	and	Irian	Jaya).	

7.4	 Preprocessing	of	Satellite	Imagery	

For	each	sample	site,	satellite	image	subsets	(from	1990,	2000,	and	2005)	were	
preprocessed	for	geometric	control,	radiometric	calibration	and	normaliza
tion,	segmentation,	and	classification.	Prior	to	the	object	segmentation	and	
classification	steps,	radiometric	correction	to	a	common	radiometric	scale	is	
required	in	order	to	apply	standard	supervised	classification	algorithms	to	
the	full	imagery	data	set,	making	use	of	spectral	training	data	of	representa
tive	vegetation	types.	Acquisition	errors	and	irrelevant	data	(e.g.,	clouds	and	
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cloud	shadows)	must	also	be	removed	in	the	preprocessing	phase.	A robust	
approach	applicable	to	a	large	amount	of	multidate	and	multiscene	Landsat	
imagery	has	been	developed	to	convert	all	images	into	normalized	radio
metric	 values	 (Bodart	 et	 al.	 2011).	 The	 different	 preprocessing	 steps	 were	
(1)	 conversion	 to	 topofatmosphere	 (ToA)	 reflectance,	 (2)	 cloud	and	cloud	
shadow	removals,	(3)	haze	correction,	and	(4)	image	radiometric	normaliza
tion.	 The	 conversion	 to	 ToA	 reflectance	 was	 achieved	 by	 first	 converting	
raw	 digital	 numbers	 (DN)	 into	 atsensor	 spectral	 radiance	 for	 each	 band	
and	 subsequently	 the	 atsensor	 radiance	 was	 converted	 into	 ToA	 reflec
tance.	 The	 remaining	 clouds	 and	 cloud	 shadows	 in	 the	 selected	 images	
were	masked	in	two	steps.	The	first	step	was	to	detect	all	potential	cloud	
and	cloud	shadow	pixels	using	an	automatic	spectral	rulebased	mapping	
approach	followed	by	a	second	step	that	consisted	of	a	sequential	applica
tion	of	a	postprocessing	algorithm	based	on	morphological	and	topological	
methods	designed	to	create	a	refined	mask	for	images	where	clouds	were	
visually	 identified.	 Image	contamination	by	haze	 is	 relatively	 frequent	 in	
tropical	 regions	 (semitransparent	 clouds	 and	 aerosol	 layers	 that	 alter	 the	
spectral	 signatures	 of	 objects,	 especially	 in	 the	 visible	 bands).	 Partially	
contaminated	images	were	corrected	on	the	basis	of	the	method	using	the	
fourth	component	of	the	tasseled	cap	transformation	(TC4)	computed	from	
the	six	reflective	bands	of	Landsat	imagery.	The	applied	image	radiometric	
normalization	 is	 a	 relative	 normalization	 of	 multitemporal	 imagery	 cover
ing	different	areas.	Relative	normalization	adjusts	the	spectral	values	of	all	
images	 to	 the	values	of	one	reference	 image.	Dense	evergreen	forest	pixels	
have	 been	 considered	 as	 pseudoinvariant	 features	 (PIF),	 i.e.,	 stable	 targets 	
between	dates,	assuming	that	reflectance	differences	in	these	stable	targets	
are	due	to	atmospheric	perturbations.	This	normalization	algorithm,	referred	
to	as	“forest	normalization,”	has	been	applied	to	each	sample	image	with	sig
nificant	presence	of	dense	evergreen	forests	(i.e.,	more	than	2,000	pixels	in	the	
image).	The	median	forest	value	parameter	was	extracted	from	a	forest	mask	
based	on	empirically	determined	thresholds	of	NDVI	and	bands	4	and	5	from	
Landsat	imagery	from	years	1990	and	2000	and	intersected	with	a	250	m	for
est	map	derived	from	the	vegetation	continuous	field	(VCF)	product	(Hansen	
et	al.	2003).	For	those	sites	with	a	lower	proportion	of	dense	evergreen	forests	
(i.e.,	less	than	2,000	pixels	in	the	image),	a	relative	normalization	has	been	per
formed	whenever	possible	by	visually	selecting	an	area	that	did	not	change	
between	the	two	dates,	using	the	image	of	year	2000	as	the	reference	image.	

The	haze	correction	algorithm	improved	the	visual	appearance	of	the	image	
and	 significantly	 corrected	 the	 digital	 numbers	 for	 Landsat	 	visible  bands.	
The	normalization	procedures	(forest	normalization	and	relative	normaliza
tion)	improved	the	correlation	between	the	spectral	values	of	the	same	land	
cover	in	multidate	images.	The	image	subsets	from	the	year	2000	were	taken	
as	 the	 reference	 for	geometric	and	radiometric	controls.	The	preprocessed	
multitemporal	data	set	constituted	 the	basis	 for	an	automatic	objectbased	
supervised	classification.	
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7.5	 Segmentation	of	Satellite	Imagery	

After	 preprocessing,	 the	 image	 subsets	 were	 segmented	 so	 as	 to	 iden
tify	homogenous	 land	units	 that	 can	 then	be	classified	 for	each	date	 (Raši	
et	 al.	 2011).	 This	 approach	 comprises	 two	 automated	 steps	 of	 multidate	
image	 segmentation	 and	 objectbased	 land	 cover	 classification	 (based	
on	 a	 supervised	 spectral	 library),	 followed	 by	 an	 intense	 phase	 of	 visual	
control	 and	 expert	 refinement.	 Image	 segmentation	 is	 done	 at	 two	 spatial	
scales,	 introducing	the	concept	of	an	MMU	via	 the	automated	selection	of	
a	 sitespecific	 scale	parameter.	The	automated	 segmentation	of	 land	cover	
polygons	and	the	preclassification	of	land	cover	types	mainly	aim	at	avoid
ing	manual	delineation	and	at	reducing	the	efforts	of	visual	interpretation	of	
land	cover	to	a	reasonable	level,	making	the	analysis	of	13,000	sample	sites	
feasible.	

Several	 segmentation	 algorithms	 were	 tested.	 Based	 on	 technical	
performance	and	visual	assessment	of	the	object	delineation,	the	eCognition	
software	(Trimble)	was	chosen	as	most	suited	for	our	specific	purpose.	In	
particular,	 this	 software	 can	 process	 large	 amounts	 of	 data	 and	 classify	
objects	 in	one	common	processing	chain.	For	 the	purpose	of	 forest	cover	
monitoring,	 a	 multidate	 segmentation	 approach	 has	 been	 preferred	 to	
two	 separate,	 singledate	 image	 segmentations.	 Multidate	 segmentation	
integrates	from	the	very	beginning	of	the	temporal	aspect	into	the	generation	
of	spatially	and	spectrally	consistent	mapping	units.	For	the	tropical	4,000	
sites,	 the	 segmentation	 process	 was	 initially	 implemented	 on	 twodate	
imagery	(1990	and	2000)	in	a	single	operation.	The	Landsat	TM	or	ETM+ 

spectral	bands	3,	4,	and	5	(ToA	reflectance	values)	of	both	reference	years	
(1990	and	2000)	were	therefore	used	as	a	common	input	to	the	segmentation	
procedure,	assigning	equal	weights	for	all	six	bands.	The	weights	of	 two	
other	parameters	in	the	eCognition	software—referred	to	as	“spectral”	and	
“shape”—had	to	be	determined	for	segmentation.	Based	on	a	series	of	tests	
with	varying	settings,	the	main	weight	of	0.9	has	been	empirically	assigned	
to	 the	 “spectral”	 parameter,	 i.e.,	 the	 spectral	 homogeneity	 accounts	 for	
90%	 of	 the	 merging	 decision	 rules.	 The	 resulting	 weight	 for	 the	 “shape”	
parameter	of	0.1	(as	sum	of	the	two	weights	=	1)	proved	to	be	sufficient	for	
avoiding	very	irregular	and	fringed	objects.	

The	 main	 parameter	 controlling	 the	 size	 of	 objects	 is	 referred	 to	 as	 the	
scale	parameter.	The	higher	the	scale	parameter,	the	larger	the	average	size	
of	image	objects,	and	in	particular	the	maximum	object	size.	We	developed	
a	process	that	automatically	determines	a	specific	scale	parameter	for	each	
sample	site	in	order	to	reach	the	desired	MMU.	This	is	achieved	by	increas
ing	the	scale	parameter	through	iterative	segmentations,	until	a	size	thresh
old	 for	 the	 smallest	 polygons	 is	 reached:	 the	 iterative	 process	 is	 stopped	
when	the	largest	object	among	the	5%	smallest	objects	reaches	the	desired	
MMU,	i.e.,	when	at	least	95%	of	the	remaining	objects	in	the	sample	site	are	
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larger	than	the	MMU.	An	initial	MMU	of	1	ha	was	set	for	the	segments.	This	
is	a	compromise	between	not	having	segments	that	are	too	small,	and	avoid
ing	segments	with	mixed	land	covers.	The	segments	of	the	individual	image	
subsets	are	then	classified	using	an	automated	supervised	classification.	In	
a	second	phase,	these	classified	segments	are	aggregated	into	segments	of	5	
ha	by	increasing	the	scale	parameter	through	iterative	segmentations.	In	a	
final	step,	the	number	of	the	remaining	small	polygons	below	5	ha	size	was	
reduced	by	merging	each	object	smaller	than	3	ha	(corresponding	to	ca.	33	
Landsat	TM	pixels)	with	the	object	it	shared	the	longest	common	borderline	
with.	The	image	objects	resulting	from	the	multidate	segmentation	conform	
to	a	standard	MMU	and	exhibit	similar	spectral	characteristics	in	time	and	
in	space.	This	3	ha	MMU	size	enables	a	feasible	visual	assessment	of	the	clas
sification	by	local	experts.	

7.6	 Definition	of	Land	Cover	and	Land	Use	Classes	

Four	main	 land	cover	categories	were	defined	 for	 labeling	 the	1	ha	MMU	
segments:	“tree	cover”	(TC),	“other	wooded	land”	(OWL),	“other	land”	(OL),	
and	“water”	(WA).	TC	comprises	all	tree	cover	where	canopy	density	can	be	
expected	to	be	≥10%	and	tree	heights	to	be	≥5	m.	Included	are	natural	forests	
and	forest	plantations,	but	also	tree	cover	outside		forests,	such	as	in	parks	or	
on	agricultural	lands.	OWL	comprises	all	woody		vegetation	of	lower	height	
(<5	 m),	 mainly	 shrub	 land,	 but	 also	 shrublike	 agricultural	 crops,	 vegeta
tion	 regrowth,	 or	 plantations	 with	 small	 trees.	 OL	 includes	 all	 nonwoody	
land	cover	(e.g.,	herbaceous	cover,	pastures,	nonwoody	crops,	burnt	areas,	
bare	soils,	settlements),	except	for	water.	The	water	class	consists	of	rivers	
and	inland	water	bodies.	The	definition	for	tree	cover	has	been	chosen	to	be	
compatible	with	the	FAO		“forest”	definition	(FAO	2010).	From	the	spectral	
and	textural	information	of	the	moderateresolution	satellite	imagery	used	
in	this	study,	one	can	only	infer	approximate	tree	density	and	broad	height	
categories.	The	class	thresholds	served	therefore	rather	as	guidance	for	inter
pretation	and	for	selection	of	training	areas.	

Land	 cover	 is	 the	 observed	 biophysical	 properties	 of	 the	 land	 surface,	
whereas	land	use	is	defined	by	the	human	activities	and	inputs	on	a	given	
land	area.	Four	main	land	use	categories	have	been	defined:		“forest,”	“other	
wooded	land,”	“other	land	use,”	and	“water.”	Treating	forest	as	a	land	use	
is	 consistent	 with	 the	 forest	 definition	 used	 in	 FAO’s	 Global	 FRA	 country	
reports	and	national	reports	to	the	United	Nations	Framework	Convention	
on	Climate	Change	(UNFCCC).	Forest	land	use	may	include	periods	during	
which	the	land	is	devoid	of tree	cover, for	example,	during	cycles	of	forest	
harvesting	 and	 regeneration.	 In  such  cases,	 a	 land	 use	 is	 considered	 to	
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be	 forest	 land	 use	 when	 management	 or	 natural	 processes	 will,	 within	 a	
reasonable	time,	restore	tree	cover	to	the	point	where	it		constitutes	a	forest.	

7.7		 	Supervised	Classification	of	Segmented	Satellite		

Imagery	for	the	Tropical	Sample	Sites	

Spectral	 signatures	 were	 collected	 from	 the	 preprocessed	 Landsat	 ETM+ 

data	of	the	year	2000	from	one	common	set	of	training	areas	representing	the	
main	land	cover	classes	within	a	region	(Raši	et	al.	2011).	For	the	first	level	
classification	at	1	ha,	a	large	number	of	spectral	classes	were	required	to	cover	
the	variability	of	spectral	reflectance	within	any	particular	land	cover	class,	
e.g.,	 the	TC	class	consists	of	15	 spectral	 classes	 including	dense	evergreen	
forests,	 degraded	 evergreen	 forests,	 dry	 deciduous	 forests	 in	 	different	
phenological	 phases,	 mangrove,	 and	 swamp	 forest.	 Only	 homogeneous	
land	cover	units	were	selected	as	training	areas,	using	additional	references	
like	fine	resolution	satellite	data	(e.g.,	Google	Earth).	The	number	of		pixels	
ultimately	 used	 for	 establishing	 the	 spectral	 signature	 of	 a	 subclass	 was	
generally	higher	than	1,000.	Spectral	signature	statistics	(means	and		standard	
deviations)	were	calculated	at	the	level	of	subclasses.	

A	generic	supervised	classification	of	the	1	ha	level	segmentation	objects	
was	 performed	 uniformly	 for	 all	 sample	 sites.	 The	 classification	 was	
based	 on	 membership	 functions	 established	 from	 the	 spectral	 signature	
of	each	subclass	for	the	Landsat	TM/ETM+	spectral	bands	3,	4,	and	5.	The	
membership 	functions	 of	 each	 subclass	 were	 defined	 as	 an	 approximation 	
of	the	class	probability	distribution,	represented	by	isosceles	triangles	in	the	
feature	space	of	each	spectral	band.	The	top	of	 the	 triangle	corresponds	to	
the	class	mean	(m)	and	represents	 the	spectral	value	of	highest	probability	
for	class	assignment.	The	two	triangle	legs	descend	from	that	position	up	to	
a	spectral	distance	of	m
±	3	sd	(sd	=	standard	deviation),	linearly	decreasing	
the	probability	of	class	assignment	to	a	value	of	“0”	at	the	positions	m
± 3	sd.	

The	classification	process	compares	the	object	spectral	mean	values	to	the	
membership	functions	defined	for	all	subclasses.	An	object	was	assigned	to	
the	class	displaying	the	highest	membership	probability	for	the	object	spec
tral	mean	values.	We	applied	these	membership	functions	to	the	imagery	of	
all	 reference	years,	having	performed	previous	spectral	calibration	to	ToA	
reflectance	values,	haze	correction,	as	well	as	normalization	of	the	satellite	
imagery.	The	subclasses	resulting	from	supervised	classification	served	only	
for	the	mapping	of	the	four	main	land	cover	classes.	

The	1	ha	level	classified	segments	were	automatically	aggregated	to	5 ha	
level	 into	 the	five	broad	 land	cover	classes	based	on	the	proportion	of	 tree	
cover.	The	supervised	classification	result	obtained	for	the	1	ha	objects	served	
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as	direct	input	to	the	thematic	aggregation	done	at	the	secondlevel	segmen
tation	(5	ha	MMU).	The	labeling	of	the	secondlevel	objects	was	performed	
by	 passing	 through	 a	 sequential	 list	 of	 classification	 criteria,	 with	 a	 main	
emphasis	on	tree	cover	proportions	within	secondlevel	objects,	e.g.,	TC	class	
is	defined	as	containing	more	that	70%	tree	cover	within	the	5	ha	segment.	As	
a	consequence	of	merging	objects	from	a	finer	scale	(1	ha	MMU),	a	“tree	cover	
mosaic”	class	has	been	introduced	for	objects	containing	partial	tree	cover	at	
the	second	level	(objects	containing	an	area	portion	of	40%–70%	tree	cover).	

7.8			 	Visual	Verification	and	Refinement		

of the	Land	Cover	Classifications	

The	 resulting	 land	 cover	 multitemporal	 classifications	 are	 then	 interde
pendently	 visually	 controlled	 by	 national	 experts.	 A	 dedicated	 graphical	
user	 interface	 has	 been	 developed	 for	 the	 visual	 verification	 and	 poten
tial	reassignment	of	land	cover	labels	(Simonetti	et	al.	2011).	For	a	selected	
sample	site,	the	tool	displays	simultaneously	the	pair	of	image	subsets	(e.g.,	
of	1990	and	2000)	and	the	corresponding	digitally	classified	land	cover	maps.	
The	 tool	 offers	 an	 optimized	 set	 of	 commands	 including	 image	 enhance
ment,	simultaneous	zoom	of	displayed	data,	single	or	multiobject	selection	
and	relabeling,	specific	class	selection,	and	highlighting.	The	graphical	user	
interface	is	available	in	English,	Spanish,	French,	and	Russian.	

Visual	 control	 and	 refinement	 of	 the	 digital	 classification	 results	 at	 the	
5	ha	MMU	level	were	implemented	using,	whenever	available,	very	high
resolution	satellite	 imagery	 (e.g.,	 through	Google	Earth),	but	also	existing	
vegetation	 maps	 and	 field	 knowledge	 as	 supplementary	 references:	 a	
revision	 of	 the	 mapping	 results	 was	 then	 carried	 out	 by	 forestry	 experts	
from	 the	 tropical	 countries	 who	 contributed	 local	 forest	 knowledge	 to	
improve	the	interpretation.	During	a	final	phase	of	regional	harmonization,	
an	experienced	image	interpreter	performed	a	control	of	the	interpretation	
consistency	across	the	region,	applying	final	corrections	where	necessary.	
Figure  7.2	 shows	 a	 simplified	 example	 of	 the	 main	 steps	 used	 in	 visual	
verification	 and	 refinement	 of	 the	 land	 cover	 and	 land	 cover	 changes	
between	1990	and	2000.	

The	phase	of	visual	control	and	refinement	has	been	designed	as	a	cru
cial	component	for	correcting	classification	errors	and	for	implementing	the	
change	assessment.	The	importance	of	visual	control	and	correction	can	be	
perceived	when	comparing	to	the	initial	automatic	classification	result:	e.g.,	
in	South	East	Asia	about	20%	of	the	polygon	labels	were	changed	through	
expert	 knowledge	 by	 visual	 interpretation	 (Raši	 et	 al.	 2011).	 More	 than	
120 experts	 from	tropical	countries	have	been	 involved	 in	 this	verification	
and	refinement	phase	of	the	survey.	
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FIGURE	7.2	
(See	 color	 insert.)	 Visualization	 tool	 used	 for	 the	 process	 of	 verification	 and	 correction	 of	
	multitemporal	 classifications.	 Left
 column:	 Segmented	 Landsat	 imagery	 displayed	 (top:	 year	
1990,	bottom:	year	2000).	Right
column:	Land	cover	maps	produced	from	satellite	imagery.	

7.9	 Conversion	of	the	Land	Cover	Maps	into	Land	Use	Maps	

Land	 cover	 maps	 were	 first	 converted	 automatically	 into	 land	 use	 maps,	
and	 then	 the	 conversion	 results	 were	 reviewed	 through	 visual	 control	 by	
national	experts.	The	automatic	conversion	of	land	cover	maps	into	land	use	
maps	uses	the	following	systematic	rules:	

r� Classes	TC	and	tree	cover	mosaic	are	converted	to	forest	

r� Class	OWL	remains	as	OWL	

r� Class	OL	is	renamed	other	land	use	

r� Class	WA	remains	as	WA	

Because	a	direct	translation	possible	from	land	cover	to	land	use	is	not	always	
possible,	a	visual	interpretation	and	refinement	of	the	land	use	classifications	
must	be	carried	out	by	national	experts.	For	example,	when	a	forest	has	been	
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FIGURE	7.3	
(See	color	insert.)	The	20	km	×	20	km	multispectral	Landsat	image	(left)	for	a	sample	site	in	
the	boreal	forest	showing,	for	the	central	10	km	×	10	km	portion	(red	box),	the	classification	of	
land	cover	(center)	and	land	use	(right).	Land	cover	is	classified	as	TC	(green),	tree	cover	mosaic	
(light	 green),	 OWL	 (orange),	 and	 other	 land	 cover	 (yellow).	 Land	 use	 is	 classified	 as	 forest	
(green),	OWL	(orange),	and	other	land	use	(yellow).	

clearcut	and	is	temporally	unstocked,	the	land	cover	derived	from	any	kind	
of	automatic	classification	or	visual	 interpretation	will	 indicate	something	
other	than	tree	cover.	However,	the	land	use	will	remain	as	forest	for	a	tem
porary	clearing	caused	by	timber	harvest	or	fire,	and	this	information	can	
only	be	inferred	by	local	knowledge	of	the	land	use	context	(Figure	7.3).	

7.10			 Pr	 oduction	of	Transition	Matrices	and	Correction		

to	Reference	Dates	and	for	Missing	Data	

For	 each	 sample	 site,	 land	 area	 transition	 matrices	 are	 produced	 for	 each	
period	 (1990–2000	 and	 2000–2005)	 and	 for	 both	 land	 cover	 and	 land	 use	
transitions	(Table	7.1).	

It	was	not	possible	to	acquire	all	images	at	the	exact	reference	date,	with	
acquisitions	ranging	from	1984	to	1992	for	the	first	reference	year	(1990),	1997	
to	2003	for	the	second	reference	year	(2000),	and	2004	to	2009	for	the	third	
reference	year	(2005)	(Beuchle	et	al.	2011).	Each	sample	site’s	transition	matrix	
was	then	adjusted	to	the	baseline	dates	of	June	30,	1990,	2000,	and	2005;	this	
was	done	by	assuming	 that	 the	 land	cover	change	rates	are	constant	dur
ing	the	given	period.	We,	therefore,	linearly	adjusted	the	land	cover	change	
matrices	to	the	three	reference	dates.	

Cloudy	areas	were	considered	as	an	unbiased	loss	of	data	and	assumed	
to	have	the	same	proportions	of	land	cover	as	noncloudy	areas	within	the	
same	site.	This	is	achieved	by	converting	the	transition	matrices	1990–2000	
and	2000–2005	to	area	proportions	relative	to	the	total	cloudfree	land	area	
of	 the	 sample	 site.	 For	 the	 missing	 sample	 sites	 in	 tropical	 regions,	 we	
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TABLE	7.1	

Example	of	Land	Cover	Transition	Matrix	for	Site	[North	2°;	West	074°]	
(areas in km2)	

Tree	 Tree	Cover	 Other	 Other	Land	

Cover	 Mosaic	 Wooded	 Cover	 Total	Year	

Year	2000/Year	1990	 (TC)	 (TCM)	 Land	(OWL)	 (OLC)	 WA	 1990	

TC	 44.9	 4.4	 2.8	 9.8	 0	 61.9	

TCM	 0	 3.4	 1.7	 5.4	 0	 10.5	
OWL	 0	 0.6	 4.1	 3.4	 0	 8.1	
OLC	 0	 0.3	 1.6	 17.9	 0	 19.8	
WA	 0	 0	 0	 0	 0	 0	
Total	year	2000	 44.9	 8.7	 10.2	 26.5	 0	 100.2	

used	a	local	average	from	surrounding	sample	sites	as		surrogate	results.	
The	following	weights	(δjj′)	were	applied	for	the	local	average	of	missing	
sites:	

where	 the	differences	 in	 latitude	and	 longitude	between	 two	sample	 sites	
(j and	j′)	is	used	with	a	power	of	4.	

Small	differences	may	appear	between	land	cover	proportions	of	year	2000	
obtained	from	the	successive	transition	matrices	[1900–2000]	and	[2000–2005]	
due	 to	 the	 linear	 temporal	 extrapolation	 to	 the	 reference	 dates.	 To	 correct	
for	potential	inconsistencies	for	the	common	year	2000,	the	land	cover	pro
portions	 of	 year	 2000	 from	 the	 change	 matrices	 for	 period	 2000–2005	 are	
“calibrated”	to	the	land	cover	proportions	of	year	2000	from	the	[1990–2000]	
transition	matrix	through	a	linear	adjustment	for	each	sample	site.	

7.11		 Production	of	Statistical	Estimates	

For	the	statistical	estimation	phase,	the	sample	sites	are	weighted	in	relation	
to	their	probability	of	selection	(Eva	et	al.	2012).	Indeed	the	sampling	frame,	
although	 systematic,	 does	 not	 give	 equal	 probability	 because	 the	 distance	
between	sites	along	a	parallel	is	not	the	same	as	the	distance	along	a	meridian.	
All	sample	units	were	given	a	weight,	equal	to	the	cosine	of	the	latitude,	to	
account	for	this	unequal	probability.	The	impact	of	these	weights	is	moderate	
in	tropical	areas.	The	sample	sites	that	contain	a	proportion	of	sea	compensate	
for	unselected	sample	sites	that	contain	a	proportion	of	land	(when	the	center	
of	the	site	is	located	in	the	sea)	because	they	were	considered	as	full	sites.	
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The	area	change	proportions	of	all	sample	sites	are	then	extrapolated	to	
the	study	area	using	the	Horvitz–Thompson	direct	expansion	estimator.	The	
estimator	for	each	area	class	transition	is	the	mean	proportion	of	that	change	
per	sample	site,	given	by	Equation	7.2:	

where	yic	is	the	proportion	of	area	change	for	a	particular	class	transition	in	the	
ith	sample	site.	The	weight	of	the	sample	unit	is	wi	and	m	is	the	sum	of	the	sam
ple	weights.	The	total	area	of	change	for	this	class	transition	Zc	is	obtained	from:	

Zc =D ⋅ yc 	 (7.3)	

where	D	is	the	total	area	of	the	study	region.	
The	 usual	 variance	 estimation	 of	 the	 mean	 is	 known	 to	 have	 a	 positive	

bias.	Alternative	estimators	based	on	a	local	estimation	of	the	variance	have	
been	shown	to	reduce	the	bias.	We	use	an	estimator	of	 the	standard	error	
based	on	local	variance	estimation:	

where	
f	is	the	sampling	rate	
weight	wjj′	is	an	average	of	the	weights	wj	and	wj′ 

δjj′	is	a	decreasing	function	(7.1)	of	the	distance	between	j	and	j′.	

The	standard	error	is	then	calculated	from	this	local	variance	using	the	total	
number	 of	 available	 sample	 sites,	 i.e.,	 not	 accounting	 for	 the	 missing	 sites	
even	if	they	are	replaced	by	a	local	average.	

The	observations	(source	data	sets)	that	are	used	to	produce	these	results	
are	derived	from	satellite	interpretations.	These	surrogates	to	ground	obser
vations	may	be	subject	to	uncertainty	(bias).	The	use	of	such	surrogate	data	
for	assessing	area	change	is	inevitable	in	many	areas	of	the	tropics	where	no	
ground	observations	exist	and	where	large	areas	of	inaccessible	forests	can	
only	be	monitored	at	affordable	costs	by	using	satellite	data.	

7.12	 Perspectives	

An	 operational	 system	 for	 processing	 and	 analysis	 of	 a	 global	 sample	 of	
moderateresolution	satellite	imagery	has	been	developed	to	produce	maps	
and	estimates	of	forest	area	changes	in	the	periods	1990–2000	and	2000–2005	
at	tropical	to	global	scale	(Figure	7.4).	
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The	preliminary	findings	of	an	indepth	analysis	of	forest	landuse	change	
globally	(FAO	and	JRC	2011)	can	be	summarized	as	follows:	

r� The	area	 in	 forest	 land	use	declined	between	1990	and	2005,	with	
global	mean	rates	of	loss	between	1990	and	2000	of	2.7	(±0.9)	million	
ha/year,	 rising	to	a	mean	annual	 loss	of	6.3	 (±1.4)	million	ha/year	
between	2000	and	2005.	

r� Just	over	half	the	world’s	forests	are	in	tropical	or	subtropical		climatic	
domains.	

r� There	were	 important	regional	differences	 in	 forest	 loss	and	gain.	
In	 particular,	 forest	 loss	 was	 highest	 in	 the	 tropics	 going	 from	
–5.7	(±0.8)	million	ha/year	in	the	1990s	to	–9.1	(±1.2)	million	ha/year	
between	2000	and	2005.	

The	 methods	 developed	 through	 the	 survey	 will	 be	 used	 to	 improve	 the	
measurement	 and	 reporting	 of	 forest	 area	 and	 change	 in	 forest	 area	 over	
time	as	part	of	the	continual	improvement	of	the	FAO	FRA	process.	

These	 results	 can	 be	 an	 important	 input	 to	 national	 and	 international	
reporting	 processes	 where	 forest	 area	 and	 change	 statistics	 are	 needed,	
such	 as	 the	 Convention	 for	 Biological	 Diversity	 and	 the	 emerging	 initia
tive	for	Reducing	Emissions	from	Deforestation	and	Forest	Degradation	in	
Developing	countries	(REDD+)	under	the	UNFCCC.	
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8.1	 Introduction	

Information	on	the	extent	and	change	of	forest	cover	at	the	national	to	global		
scale	is	important	for	many	reasons.	At	the	national	level,	it	provides	a	basis	
for	terrestrial	carbon	accounting,	land	use	management,	monitoring	of	forest		
resources,	and	conservation	planning.	Many	international	processes	use	 it		
too.	It	helps	improve	the	forest	cover	change	reporting	of	the	United	Nations	
Food	 and	 Agriculture	 Organization	 (FAO),	 which	 serves	 as	 the	 baseline	
reference	 for	globalscale	environmental	accounting	and	modeling.	 It	pro
vides	keystone	variables	for	international	initiatives	to	reduce	deforestation,		
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such	as	the	process	of	reducing	emissions	from	deforestation	and	degrada
tion	 in	 developing	 countries	 (REDD+)	 of	 the	 United	 Nations	 Framework	
Convention	 on	 Climate	 Change	 (UNFCCC),	 which	 requires	 developing	
countries	to	have	robust	and	transparent	national	forest	monitoring	systems.	
It	 is	 important	 to	 assess	 the	 status	 and	 threats	 for	 biological	 diversity	 as	
required	by	the	Programme	of	Work	on	Forest	Biological	Diversity	within	
the	 United	 Nations	 Convention	 on	 Biological	 Diversity.	 Environmental	
nongovernmental	 organizations	 such	 as	 World	 Wide	 Fund,	 Conservation	
International,	and	Greenpeace	depend	on	forest	degradation	data	to	design	
forest	conservation	campaigns	and	combat	illegal	logging.	

Ideally,	such	information	should	be	comprehensive	and	consistent	across	
the	relevant	space	and	time.	Currently,	the	primary	source	of	global	forest	
cover	 extent	 and	 change	 is	 data	 from	 national	 forest	 inventories	 (NFIs),	
which	are	aggregated	by	FAO	to	 form	a	 series	of	Global	Forest	Resources	
Assessments	(FRA).	The	usefulness	of	these	assessments	is	reduced,	however,	
by	a	number	of	factors	that	are	inherent	in	the	aggregation	approach:	(1)	NFI	
data	from	different	countries	differ	in	terms	of	quality	and	age	(update	rates),	
and	data	from	developing	countries	are	often	incomplete	and	inconsistent;	
(2)	despite	the	efforts	of	FAO,	countries	de	facto	apply	different	definitions	of	
forest	cover	and	use,	different	forest	accounting	and	change	detection	meth
ods,	thus	making	it	difficult	to	synthesize	results;	(3)	forest	cover	and	change	
information	are	only	provided	 in	a	 tabular	numerical	 format	without	any	
spatial	disaggregation.	The	FRA	process	has	started	to	incorporate	remotely	
sensed	data	through	the	remote	sensing	survey,	a	samplebased	assessment	
of	global	and	biomelevel	forest	extent	dynamics	(FAO	2009).	However,	for	
many	applications,	a	spatially	exhaustive	map	product	is	required.	

Satellite	remote	sensing	provides	a	viable	data	source	to	supplement	NFIs	
and	 global	 forest	 monitoring	 initiatives.	 Forest	 cover	 extent	 and	 timely	
change	estimates	can	be	successfully	retrieved	from	medium	spatial	resolu
tion	 optical	 satellite	 data	 (Williams	 et	 al.	 2006).	 These	 data	 are	 invaluable	
for	 the	quantification	of	 forest	 cover	within	 the	vast	 extent	of	 remote	and	
inaccessible	forest	landscapes,	as	well	as	for	developing	countries	where	lack	
of	transportation	infrastructure	coupled	with	political	instability	often	limit	
data	collection	and	forest	mapping	on	the	ground.	

During	the	last	decade,	a	number	of	forest	monitoring	projects	have	been	
developed	and	implemented	at	the	national	level	using	satellite	data.	Major	
timberproducing	countries,	such	as	Finland	(Tomppo	1993),	Sweden	(Willén	
et	al.	2005),	and	Canada	(Wulder	et	al.	2008),	use	optical	satellite	imagery	as	a	
standard	source	of	information	to	supplement	and	extrapolate	field	plot	mea
surements	and	to	monitor	forest	management.	Among	developing	countries,	
the	Brazilian	system	on	mapping	annual	deforestation	(PRODES)	is	the	largest	
and	most	robust	operating	forest	monitoring	system	(INPE	2002).	However,	to	
expand	these	efforts	to	the	biome	and	global	scales,	three	major	problems	need	
to	be	solved:	 (1)	methodological	consistency	must	be	 improved	(so	that	 the	
results	obtained	at	the	national	scale	are	directly	comparable);	(2)	costeffective	
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monitoring	methods	must	be	developed	(so	that	the	cost	of	source	data	and	
data	analysis	will	be	low	enough	to	allow	national	to	globalscale	implemen
tation);	and	(3)	open	data	access	must	be	ensured	(so	that	various	international	
and	nongovernmental	organizations	and	experts	are	able	to	analyze,	review,	
and	validate	the	monitoring	results).	

There	 are	 two	 main	 strategies	 for	 satellitebased	 forest	 monitoring	 at	
a	 large	 scale:	 sampling	 and	 walltowall	 mapping.	 Several	 samplebased	
approaches	have	been	successfully	 implemented	during	 the	 last	decade	at	
biome	(Achard	et	al.	2002)	and	global	levels	(FAO	2009;	Hansen	et	al.	2010).	
Different	sampling	designs	were	used	to	select	classified	imagery	subsets,	
including	regular	sampling	(FAO	2009)	and	stratified	sampling	(Achard	et	al.	
2002;	Hansen	et	al.	2010).	Both	approaches,	however,	are	challenged	by	low	
estimate	 precision	 due	 to	 the	 uneven	 distribution	 of	 change	 within	 forest	
landscapes	(Tucker	and	Townshend	2000),	and	neither	produces	a	spatially	
explicit	result.	This	limits	their	usefulness	for	many	applications.	

Walltowall	 coverage	 of	 satellite	 data	 with	 sufficient	 spatial	 resolution	
differs	from	samplebased	approaches	in	that	it	allows	for	direct	mapping	
of	 forest	 cover	 and	 change	 and	 for	 a	 spatially	 complete	 quantification	 of	
forest	 dynamics	 at	 the	 national	 scale.	 Low	 spatial	 resolution	 data	 of	 the	
kind	 	produced	by	 the	MODIS	or	MERIS	sensors	are	 inadequate	 for	direct	
estimation	of	forest	change,	as	much	of	it	occurs	at	subpixel	scales	(Jin	and	
Sader	2005).	Medium	spatial	resolution	data,	such	as	that	produced	by	the	
Landsat	sensor,	do	allow	for	accurate	forest	cover	and	change	area	measure
ment	(Williams	et	al.	2006).	The	use	of	medium	spatial	resolution	data	for	
nationalscale	forest	monitoring	has	been	limited	until	recently	by	the	high	
data	 costs,	 the	 difficulty	 of	 handling	 large	 data	 volumes,	 and	 data	 analy
sis	problems	 in	regions	with	persistent	clouds,	 such	as	 the	humid	 tropics.	
Recently,	however,	changes	in	data	distribution	policies	and	dataprocessing	
algorithms	 have	 enabled	 fast	 and	 costeffective	 nationalscale	 forest	 cover	
and	change	assessment.	

Undoubtedly,	 the	 most	 important	 enabling	 factor	 for	 largescale	
satellitebased	 forest	 monitoring	 is	 freeofcharge	 data	 availability.	 While	
low	 	spatial	 resolution	 data	 (AVHRR,	 MODIS)	 were	 freely	 available	 for	
decades,	mediumresolution	data	have	been	costly	until	recently.	In	January	
2008,	the	U.S.	Geological	Survey	(USGS)	implemented	a	new	Landsat	data	
distribution	policy	 that	provides	Landsat	data	 free	of	 charge.	The	 freeof
charge	 data	 allows	 financially	 constrained	 developing	 countries	 to	 use	 it	
for	 walltowall	 forest	 mapping.	 For	 example,	 purchasing	 the	 2000–2010	
Landsat	data	for	a	country	like	the	Democratic	Republic	of	the	Congo	(DRC)	
would	have	cost	more	than	6	million	U.S.	dollars	at	the	pre2008	price.	These	
resources	 can	 now	 be	 spent	 on	 data	 processing,	 analysis,	 and	 validation	
of	 results.	 Mediumresolution	 Landsat	 imagery	 provides	 the	 best	 balance	
between	 acquisition	 cost	 and	 spatial	 resolution,	 despite	 the	 fact	 that	 it	 is	
inadequate	for	the	detection	of	smallscale	forest	change	(e.g.,	lowintensity	
selective		logging).	Even	when	a	complete	national	coverage	of	higher	spatial	
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resolution	 imagery	 is	 available,	 the	 high	 data	 cost	 will	 restrict	 its	 use	 by	
developing	countries	for	national	monitoring	purposes.	

Another	 important	 factor	 increasing	 the	 feasibility	 of	 using	 national	
walltowall	mediumresolution	imagery	for	forest	monitoring	is	the	prog
ress	 in	 computing	capacity	and	dataprocessing	algorithms.	Modern	com
puting	hardware	allows	for	rapid	processing	of	Landsat	data	at	the	national	
scale	(from	several	weeks	to	a	month).	Recent	progress	in	automated	Landsat	
data	processing	and	mosaicing	has	made	it	possible	 to	produce	cloudfree	
annual	or	epochal	composite	images	for	persistently	cloudy	areas	(Hansen	
et al.	2008;	Potapov	et	al.	2011).	Nonparametric	classifiers	(e.g.,	knearest	neigh
bor,	decision	tree,	support	vector	machines,	and	neural	networks)	allow	for	
fast	and	precise	mapping	and	change	detection	of	heterogeneous	land	cover	
types	such	as	forest	cover	(Hansen	et	al.	1996).	

The	rapid	development	in	the	quality	and	access	to	satellite	imagery	has	
widened	 the	 circle	 of	 actors	 that	 can	 monitor	 forests	 beyond	 national	 for
est	administrations,	 thereby	enhancing	transparency.	Civil	society,	private	
industry,	and	researchers	can	now	monitor	forests	in	support	of	conservation,	
business,	 science,	 and	 other	 forest	 resource	 assessment	 and	 management	
applications.	 NFI	 and	 monitoring	 data	 provided	 by	 national	 governments	
can	be	validated	by	incountry	and	international	nongovernmental	organi
zations	and	expert	groups,	highlighting	any	data	quality	issues.	This	creates	
a	competitive	environment	that	stimulates	the	improvement	of	governmen
tal	 policies	 and	 NFI	 methods.	 Forest	 monitoring	 transparency,	 however,	
requires	that	the	source	satellite	data	remain	in	the	public	domain	and	can	
be	freely	redistributed.	Currently,	only	a	few	image	data	providers,	including	
USGS	and	INPE,	deliver	satellite	imagery	under	liberal	licensing	conditions	
that	allow	for	sharing	and	redistribution	of	the	data	and	derived	monitoring	
products.	

Our	 approach	 to	 nationalscale	 forest	 cover	 loss	 monitoring	 is	 an	 evo
lution	 of	 an	 algorithm	 developed	 by	 Hansen	 et	 al.	 (2008).	 Data	 from	 the	
MODIS	sensor	were	used	to	preprocess	Landsat	timeseries	images	that	in	
turn	were	used	to	characterize	forest	cover	extent	and	loss.	Our	approach	
is	 based	 on	 a	 fully	 automated	 Landsat	 data	 processing,	 including	 scene	
selection,	 perpixel	 quality	 assessment	 (QA),	 and	 normalization.	 The	
Landsat	data	archive	was	exhaustively	mined,	 and	all	data	 that	 satisfied	
our		selection	criteria	were	used	for	the	analysis.	Individual	Landsat	images	
were	normalized	using	MODISderived	surface	reflectance	target	and	used	
to	 derive	 multitemporal	 metrics	 and	 timesequential	 composites.	 These	
metrics,	along	with	the	MODIS	data	time	series,	were	used	as	independent	
variables	to	build	supervised	decision	tree	models	for	mapping	forest	cover	
and	 change.	 Mapping	 and	 monitoring	 forest	 degradation,	 which	 include	
assessment	 of	 lowintensity	 disturbance	 and	 fragmentation,	 required	 an	
alternative	 method	 based	 on	 manual	 interpretation	 of	 timesequential	
Landsat	 image	 composites	 following	 an	 approach	 developed	 by	 Potapov	
et al.	(2008).	



	

	

	

	
	
	
	

	

	

	
	

133	Monitoring
Forest
Loss
and
Degradation
at
National
to
Global
Scales


The	objective	of	the	forest	assessment	and	monitoring	method	presented	
in	this	chapter	is	to	provide	regular	national	forest	cover	updates	at	5	and	
10year	intervals.	The	same	algorithm	can	be	used	to	produce	results	at	finer	
temporal	 steps	 (e.g.,	 annually),	 assuming	 that	 enough	 cloudfree	 observa
tions	 are	 available;	 however,	 providing	 annual	 forest	 cover	 updates	 was	
beyond	the	objectives	of	this	study.	Further	evaluation	and	evolution	of	the	
system	will	allow	for	more	rapid	updating	of	continental	and	global	forest	
cover	in	the	near	future.	

The	 forest	 cover	 loss	and	degradation	assessment	algorithms	have	been	
applied	 to	 different	 forest	 biomes,	 testing	 and	 illustrating	 their	 	capability	
to	 be	 implemented	 at	 the	 global	 scale.	 Mapping	 and	 monitoring	 results	
have	been	published	online	along	with	Landsat	 image	composites	 for	use	
by	national	governmental	and	civil	society	organizations	(European	Russia	
data:	http://	globalmonitoring.sdstate.edu/projects/boreal/;	the	DRC	data:	
http://congo.iluci.org/carpemapper/;	Intact	Forest	Landscapes	data:	http://	
intacforests.org).	

8.2	 Landsat	Data	Processing	

The	Landsat	 remote	 sensing	 satellite	program	operated	by	 the	USGS	pro
vides	freeofcharge	data	with	a	medium	spatial	resolution	(30	m/pixel	for	
reflective	 bands)	 suitable	 for	 the	 full	 spectra	 of	 forest	 monitoring	 studies	
from	a	local	to	the	global	scale	(Williams	et	al.	2006).	The	Landsat	program	
is	unique	due	to	 its	global	 image	acquisition	strategy,	allowing	land	cover	
monitoring	 over	 the	 last	 three	 decades.	 Landsat	 ETM+	 reflective	 spectral	
bands,	which	include	visible	(band	1,	450–515	nm;	band	2,	525–605	nm;	band	3,	
630–690	nm),	near	infrared	(band	4,	760–900	nm),	and	short	infrared	(band	5,	
1,550–1,750	nm;	band	7,	2,080–2,350	nm),	provide	a	sufficient	spectral	profile	for	
vegetationtype	mapping	and	land	cover	change	detection.	The	thermal	infra
red	data	(band	6,	10,400–12,500	nm)	enable	automatic	cloud	cover		detection.	
One	of	the	main	advantages	of	the	Landsat	spectral	bands	is	its	radiometric	
consistency	and	continuity	between	Landsat	sensors	(TM,	ETM+,	and	future	
LDCM)	 and	 with	 the	 MODIS	 sensor,	 allowing	 intercalibration	 of	 Landsat	
and	MODIS	datasets.	

The	complete	global	Landsat	data	archive	is	available	through	the	USGS	
National	Center	for	Earth	Resources	Observation	and	Science	(EROS)	from	
their	 Web	 portals:	 GLOVIS	 (http://glovis.usgs.gov)	 and	 Earth	 Explorer	
(http://earthexplorer.usgs.gov).	The	Earth	Explorer	data	portal	allows	users	
to	perform	advanced	archive	inventory	search	as	well	as	bulk	Landsat	data	
order	and	download.	Image	metadata	browsing	and	selection	is	guided	by	
the	Worldwide	Reference	System2	 (WRS2)	of	path	 (ground	 track	parallel)	
and	row	(latitude	parallel)	coordinates	defining	scene	footprints.	

http://www.globalmonitoring.sdstate.edu
http://www.congo.iluci.org
http://www.intacforests.org
http://www.intacforests.org
http://www.glovis.usgs.gov
http://www.earthexplorer.usgs.gov
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In	our	study,	 to	reduce	computational	 time	for	Landsat	data	processing,	
only	 images	 having	 less	 than	 50%	 cloud	 cover	 for	 any	 scene	 quarter,	 as	
estimated	by	the	automatic	cloud	cover	assessment	(ACCA),	were	selected.	
However,	 the	cloud	cover	 threshold	has	been	expanded	to	 include	 images	
with	 70%–80%	 cloud	 cover	 for	 scene	 footprints	 with	 low	 numbers	 of	 50% 

cloudfree	 images.	 For	 boreal	 regions,	 only	 growing	 season	 images	 were	
selected.	 The	 annual	 growing	 season	 start/end	 dates	 were	 established	 for	
each	Landsat	WRS2	 footprint	using	annual	 time	series	of	MODISderived	
NDVI	over	a	MODISderived	 forest	cover	mask.	 Image	metadata	analysis,	
scene	selection,	and	bulk	data	ordering	were	performed	using	an	automated	
metadata	search	tool.	

The	 Landsat	 images	 are	 normally	 processed	 as	 Level	 1	 terrain	 (L1T)	
corrected	data	by	the	USGS	EROS.	The	L1T	corrected	data	product	provides	
systematic	geometric	accuracy	by	incorporating	ground	control	points	and	a	
digital	elevation	model	(DEM)	for	topographic	accuracy.	However,	 if	 insuf
ficient	ground	control	points	or	elevation	data	necessary	for	terrain	correc
tion	were	available,	images	can	be	delivered	as	Level	1	systematic	correction	
(L1G).	Because	L1G	data	often	 feature	 low	geometric	accuracy	and	require	
further	geocorrection,	only	images	processed	as	L1T,	ensuring	a	high	geoloca
tion	precision,	were	used	for	the	subsequent	data	processing	save	for	the	few	
coastal	scene	footprints	where	L1T	corrected	data	were	not	available	at	all.	

Our	 fully	 automated	 Landsat	 data	 process	 included	 two	 main	 steps:	
(1)	perimage	processing	 including	 image	resampling,	applying	atsensor	
calibration,	 perpixel	 observation	 QA,	 and	 radiometric	 normalization	
and	 (2)	 perpixel	 observation	 coverage	 analysis,	 production	 of	 image	
composites,	and	derivation	of	multitemporal	metrics	for	forest	extent	and	
change	mapping	(Figure	8.1).	

To	facilitate	image	processing	and	enable	perpixel	compositing,	all	image	
data	for	the	nation	(region)	were	resampled	to	a	predefined	pixel	grid.	The	
pixel	 grid	 was	 specified	 separately	 for	 each	 continent	 in	 equalarea	 map	
projections	chosen	to	reduce	geometric	distortion.	The	following	examples	
of	nationalscale	forest	monitoring	were	prototyped	using	pixel	grids	with	
60	m	spatial	resolution	to	reduce	data	volumes	and	computation	time.	The	
30	 m	 spatial	 resolution	 pixel	 grid	 will	 be	 used	 for	 future	 continental to	
globalscale	processing.	

Atsensor	calibration	was	applied	 to	convert	raw	image	digital	numbers	
to	topofatmosphere	(TOA)	reflectance	(for	reflective	bands)	and	brightness	
temperature	(for	thermal	infrared	band)	in	order	to	minimize	differences	in	
sensor	calibration,	between	sensors	 (TM,	ETM+,	and	MODIS),	 in	 the	sun–	
earth	distance,	and	in	the	elevation	of	the	sun.	To	calculate	TOA	reflectance	
and	 brightness	 temperature,	 we	 used	 the	 approach	 described	 in	 Chander	
et al.	(2009),	with	coefficients	taken	from	image	metadata.	

The	 purpose	 of	 perpixel	 observation	 QA	 was	 to	 select	 cloudfree	 and	
cloud	 shadowfree	 land	 and	 water	 observations	 for	 subsequent	 image	
compositing.	To	automatically	map	clouds	and	cloud	shadows,	we	used	a	set	
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FIGURE	8.1	
Landsat	dataprocessing	workflow.	

of	cloud,	haze,	shadow,	and	water	detection	models.	The	models	correspond	
to	a	set	of	classification	tree	models	(Breiman	et	al.	1984)	derived	from	train
ing	data	 that	were	collected	 from	a	 large	sample	of	Landsat	 imagery.	The	
Landsat	training	data	and	derived	QA	models	are	biome	specific	(separate	
models	are	used	for	tropical,	temperate,	and	boreal	forests).	Training	images	
were	manually	classified	into	land,	water,	cloud,	haze,	and	shadow	classes.	
From	these	images,	10%	samples	were	randomly	selected,	aggregated	for	all	
images,	and	used	to	create	generalized	classification	tree	models.	Each	model	
was	applied	per	Landsat	image,	yielding	class	probability	values.	Based	on	
these	values,	a	QA	code	was	assigned	to	each	pixel	reflecting	the	probability	
of	the	pixel	to	be	a	land	or	water	cloudfree	observation,	using	the	method	
described	in	Potapov	et	al.	(2011).	

Relative	 radiometric	 normalization	 of	 Landsat	 imagery	 was	 used	 to	
reduce	 reflectance	 variations	 between	 image	 dates	 due	 to	 atmospheric	
conditions	and	surface	anisotropy.	Only	 reflective	bands	used	 for	 image	
compositing	(bands	3,	4,	5,	and	7)	were	normalized.	The	shortwave		visible	
bands	 (bands	 1	 and	 2)	 were	 not	 used	 due	 to	 their	 sensitivity	 to	 atmo
spheric	 haze	 and	 water	 vapor,	 precluding	 correct	 normalization.	 The	
thermal	infrared	band	6	was	used	for	the	cloud	screening	model	but	was	
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not	included	in	the	final	image	composite.	The	atmospheric	correction	of	
Landsatderived	 TOA	 reflectance	 using	 timesynchronous	 atmospheric	
data	 and	 6S	 radiative	 transfer	 code	 is	 a	 stateofthe	 art	 method	 (Masek	
et	 al.	 2006)	 that	 should	 be	 implemented	 for	 obtaining	 consistent	 surface	
reflectance.	 However,	 simple	 techniques	 for	 relative	 image	 normaliza
tion	 using	 radiometrically	 consistent	 sets	 of	 moderate	 spatial	 resolution	
data	could	be	successfully	employed	to	facilitate	image	compositing	over	
large	regions	(Olthof	et	al.	2005;	Hansen	et	al.	2008).	Our	approach	relied	
on	 the	 correlation	 between	 Landsat	 TOA	 and	 MODIS	 atmospherically	
corrected	 topofcanopy	 (TOC)	 reflectance.	 MODIS	 normalization	 target	
reflectance	data	were	 collected	 from	2000	 to	2009	 (10year)	global	Terra/	
MODIS	250	m	data	16day	composites	(MOD44C,	collection	5),	provided	by	
the	University	of	Maryland.	The	MODIS	spectral	bands	1,	2,	6,	and	7	were	
chosen	to	correspond	with	Landsat	bands	3,	4,	5,	and	7.	To	reduce	the	pres
ence	of	clouds	and	shadows,	the	mean	surface	reflectance	corresponding	
to	the	three	highest	NDVI	values	from	observations	with	the	lowest	cloud	
probability	over	the	2000–2009	interval	were	used	as	the	normalization	tar
get.	 We	 calculated	 a	 mean	 bias	 between	 MODIS	 TOC	 and	 Landsat	 TOA	
reflectance	for	each	spectral	band	over	the	land	area	and	used	it	to	adjust	
Landsat	reflectance	values.	A	simple	empirically	derived	reflectance	differ
ence	threshold	was	used	to	avoid	areas	of	rapid	land	cover	or	phenological	
change.	For	tropical	areas	where	the	surface	anisotropy	effect	significantly	
hindered	image	 interpretation	(Hansen	et	al.	2008),	an	additional	correc
tion	for	 	surface	anisotropy	was	 implemented.	A	simple	 linear	regression	
between	 the	 MODIS/Landsat	 reflectance	 bias	 (dependent	 variable)	 and	
distance	 from	orbit	ground	 track	 (independent	variable)	was	derived	 for	
each	 reflective	 band	 and	 then	 applied	 to	 correct	 band	 reflectance	 values	
within	 the	 entire	 Landsat	 image.	 Image	 normalization	 was	 performed	
independently	for	each	spectral	band	and	Landsat	image.	This	fully	auto
mated	 image	 	processing	 approach	 allowed	 us	 to	 use	 parallel	 computing	
methods,	reducing	the	average	image	processing	time	to	12	s/image.	

Our	approach	for	image	timeseries	analysis	integrates	the	classic,	multidate	
image	compositing	method	(Holben	1986),	with	the	novel	approach	of	using	
multitemporal	metrics	 to	 characterize	 reflectance	variation	within	a	given	
time	interval	(Hansen	et	al.	2003).	Image	time	series	were	analyzed	at	perpixel	
level	using	all	processed	Landsat	observations	for the entire time	interval.	
For	decadal	forest	monitoring,	two	sets	of	metrics	were	created	for	two	5year	
time	intervals:	2001–2005	and	2006–2010.	To	facilitate	data	management	and	
to	 allow	 parallel	 computing,	 compositing	 was	 performed	 independently	
for	a	set	of	rectangular	tiles	dividing	the	entire	area	of	analysis.	To	create	an	
observation	“data	pool”	 from	which	 timesequential	 composites	and	 spec
tral	metrics	 could	be	derived,	we	preferentially	 selected	observations	with	
the	least	cloud/shadow	contamination	within	the	growing	season.	Growing	
season	images	are	more	appropriate	for	forest	cover	mapping than imagery	
captured	during	senescence	or	dormant	periods.	Preferential	growing	season	
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boundaries	can	be	defined	either	on	a	perscene	basis	(Potapov	et	al.	2011)	or	
on	a	perpixel	basis	using	MODISderived	annual	NDVI	profiles.	To	create	a	
“data	pool,”	we	analyzed	QA	flags	for	all	available	observations	for	the	pixel.	
A	set	of	criteria	were	designed	to	identify	observations	with	the	least	cloud/	
shadow	contamination	to	be	included	in	the	“data	pool.”	Because	the	cloud	
shadow	classification	model	was	not	tuned	to	water	bodies,	pixels	with	high	
water	 probability	 were	 selected	 separately.	 For	 land	 pixels,	 the	 number	 of	
growing	season	cloud/shadowfree	observations	for	each	5year	interval	(for	
decadal	analysis)	was	calculated.	 If	no	cloudfree	observations	were	found	
for	any	5year	 time	 interval,	 search	boundaries	were	extended	first	 to	out
of	season	observations,	 then	to	observations	with	moderate	cloud/shadow	
probabilities.	After	the	“data	pool”	pixels	were	selected,	all	other	data	(flagged	
as	having	higher	cloud/shadow	probability	or	out	of	season)	were	excluded	
from	further	processing.	

The	timesequential	image	composites	derived	from	the	“data	pool”	obser
vations	represent	start/end	points	for	forest	cover	monitoring	analysis	and	
have	been	used	for	ca.	year	2000	forest	mapping,	for	change	detection	(for	
boreal	regions),	and	for	visual	 image	interpretation	and	mapping	of	 forest	
degradation.	 Several	 approaches	 for	 image	 compositing	 have	 been	 tested,	
including	singledate	 compositing	and	multidate	 compositing	using	mean	
(or	 median)	 value	 or	 NDVI	 (or	 selected	 band	 reflectance)	 value	 ranking	
(Hansen	et	al.	2008;	Potapov	et	al.	2011).	We	found	that	different	approaches	
are	appropriate	for	different	applications.	For	change	detection,	the	first/last	
singledate	observation	compositing	was	found	to	be	the	most	suitable	as	it	
represents	the	land	cover	status	for	the	first	and	last	cloudfree	image	date	
in	 the	“data	pool.”	For	visual	 interpretation,	on	 the	other	hand,	 	multidate	
composites	 were	 found	 to	 be	 more	 suitable	 due	 to	 low	 noise	 levels	 and	
consistent	reflectance	values	within	the	area	of	analysis	(Potapov	et	al.	2011).	
Our	current	automatic	image	compositing	method	produces	a	set	of	differ
ent	timesequential	composites	for	use	as	classification	metrics	and	for	visual	
analysis.	

While	the	timesequential	image	composites	are	invaluable	for	visual	image	
interpretation	 and	 for	 creating	 classification	 training	 sets,	 they	 are	 inade
quate	for	forest	cover	change	monitoring	in	tropical	forests.	This	is	because	
the	rapid	establishment	of	regrowth	obscures	the	change		signal	over	decadal	
and	middecadal	time	intervals.	To	highlight	reflectance		variation	within	the	
analyzed	time	interval,	a	set	of	spectral	metrics	were	created	from	the	“data	
pool”	observations.	These	metrics	were	designed	to		capture	a	generic		feature	
space	 that	 facilitates	 regionalscale	 mapping	 and	 have	 been	 used	 exten
sively	with	MODIS	and	Landsat	data	(Hansen	et	al.	2003,	2008,	2010).	Three	
groups	of	perband	metrics	were	created:	(1) reflectance	values		representing	
6year	maximum,	minimum,	and	selected	percentile		values (10%,	25%, 50%,	
75%,	 and	 90%	 percentiles);	 (2)  mean	 reflectance	 	values  for	 observations	
between	selected	percentiles	(for	the		min10%, 10%–25%,	25%–50%,	50%–75%,	
75%–90%,	 90%–max,	 min–max,	 10%–90%,	 and	 25%–75% intervals);	 and	
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(3)  the	value	of	the	slope	of a	 	linear regression	of band	reflectance	versus	
image	date.	Multitemporal	metrics	were	used	for	forest	cover	and	change	
classification,	and	selected	metrics	were	employed	for	visual	image	analysis	
and	creation	of	training data.	

8.3	 National-Scale	Forest	Cover	Extent	and	Loss	Mapping	

Forest	cover	mapping	and	change	detection	was	carried	out	on	the	basis	
of	 walltowall	 image	 composites	 using	 a	 single	 nationalscale	 super
vised	 classification	 model.	 The	 classification	 model	 was	 built	 using	 an	
extensive	set	of	training	data	collected	within	the	entire	area	of	analysis.	
This	 approach	 helped	 to	 avoid	 the	 problems	 that	 arise	 when	 a	 classifi
cation	model	based	on	local	training	data	is	extrapolated	to	neighboring	
images	(Wulder	et	al.	2008).	The	classification	and	regression	tree	(CART)	
algorithm	was	used	as	the	main	tool	for	image	classification	and	change	
detection.	 CART	 is	 a	 nonparametric	 supervised	 classification	 model	
constructed	to	predict	 the	class	membership	by	recursively	splitting	the	
feature	space	into	a	set	of	nonoverlapping	subsets	and	then	reporting	the	
class		probability	within	each	subset.	The	CART	algorithm	has	been	shown	
to	have	a	high	precision	for	land	cover	mapping	(Hansen	et	al.	1996).	To	
improve	the	CART	model	stability	and	accuracy,	a	bootstrap	aggregation	
(bagging)	algorithm	was	used	 that	 corresponds	 to	a	 set	of	 trees	 created	
using	 random	 training	 data	 subsamples	 and	 taking	 the	 median	 class	
likelihood	as	the	final	result.	Bagged	classification	tree	models	for		forest	
cover	and	change	mapping	were	generated	using	the	training	data	as	the	
dependent	variable	and	multitemporal	metrics	plus	timesequential	image	
composites	as	independent	variables.	

For	 the	 purpose	 of	 the	 regionalscale	 monitoring	 examples	 described	
below,	 forest	was	defined	as	having	30%	or	greater	canopy	cover	 for	 trees	
of	5	m	or	more	in	height.	Forest	cover	and	forest	types	were	mapped	for	the	
year	2000,	the	first	year	of	monitoring.	All	events	resulting	in	stand	replace
ment	 at	 the	 60	 m	 pixel	 scale	 within	 the	 analyzed	 time	 interval,	 including	
clearings	(even	if	 followed	by	forest	regrowth	within	the	same	time	inter
val),	logging,	fire,	flooding,	and	storm	damage,	were	mapped	together	as	a	
gross	forest	cover	loss	class.	Forest	cover	loss	was	mapped	within	the	year	
2000	forest	mask.	For	the	decadal	monitoring,	forest	cover	loss	was	mapped	
independently	for	each	5year	interval.	To	build	the	classification	tree	mod
els	for	forest	cover	extent	and	forest	cover	loss	mapping,	a	training	set	was	
manually	created	by	visual	interpretation	of	the	regionwide	timesequential	
image	composites.	A	number	of	additional	datasets,	including	freely	avail
able	 QuickBird	 images	 from	 GoogleEarthTM	 and	 expert	 information,	 were	
used	as	reference	materials	to	aid	interpretation.	
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Two	examples	of	regionwide	Landsat	forest	cover	mapping	and	change	
detection	 projects	 are	 briefly	 described	 below:	 one	 within	 the	 boreal	 and	
temperate	 forests	 of	 European	 Russia,	 another	 within	 the	 humid	 tropical	
forests	and	dry	tropical	woodlands	of	the	DRC.	

8.3.1	 European	Russia	Forest	Cover	and	Change	Mapping	

The	forest	cover	change	analysis	from	2000	to	2005	was	performed	within	the	
northern	and	central	administrative	regions	of	European	Russia.	The	area	of	
analysis	spans	from	the	northern	forest–tundra	ecotone	to	the	forest–steppe	
boundary	in	the	south	and	includes	a	variety	of	boreal	and	temperate	forest	
types.	A	total	of	7,227	Landsat	ETM+	images	from	1999	to	2007	were	selected	
based	 on	 cloud	 cover	 and	 growing	 season	 date	 	criteria.	 Landsat	 image	
normalization	was	performed	using	a	MODISderived	panboreal	coniferous	
forest	mask	as	 the	normalization	 target.	Normalized	Landsat	 images	were	
used	to	create	timesequential	image	composites	for	2000	and	2005	and	a	set	
of	 spectral	 metrics	 describing	 reflectance	 variability	 within	 ±1	 year	 of	 the	
target	composite	date.	For	places	with	persistent	cloud	cover	and/or	a	limited	
number	of	observations,	images	that	were	acquired	more	than	1	year	before	
or	after	the	target	year	were	used	for	compositing	and	metrics.	To	create	the	
image	composite,	all	selected	cloudfree	observation	dates	for	each	pixel	were	
ranked	based	on	band	4	values.	The	image	date	corresponding	to	the	band	
4	median	was	 chosen	as	 the	 composite	date,	 and	all	 reflective	bands	 from	
this	date	were	used	to	create	a	final	ca.	2000	or	ca.	2005	image	composite.	In	
addition	to	the	band	4	median	value	composites,	a	set	of	spectral	metrics	was	
created	on	the	basis	of	a	band	5	ranking	meant	to	capture	reflectance	varia
tion	within	the	growing	season.	Owing	to	the	timepreferential	compositing	
rule,	more	than	95%	of	the	composite	areas	for	the	ca.	2000	and	2005	could	
be	created	from	images	acquired	within	±1	year	of	the	target	year.	Less	than	
0.5%	of	the	total	composite	area	had	to	be	excluded	from	analysis	due	to	lack	
of	cloudfree	observations.	Due	to	the	relatively	slow	reforestation	within	the	
boreal	and	temperate	forests,	we	concluded	that	using	the	composite	differ
ence	would	be	sufficient	for	5year	forest	cover	loss	mapping	(Figure	8.2).	

Forest	 cover	 for	 the	 year	 2000	 was	 mapped	 using	 Landsat	 composites	
and	metrics	for	ca.	year	2000	supplemented	with	pixel	latitude	and	MODIS	
annual	metrics.	The	MODIS	annual	metrics	included	mean	red	reflectance	
and	NDVI	value	 for	 the	growing	season	and	annual	highest	red	and	NIR	
reflectance	representing	the	extent	of	snow	cover	during	the	winter.	Forest	
cover	within	European	Russia	is	generally	easily	defined	and	mapped	as	most	
of	 the	 natural	 or	 managed	 forests	 have	 high	 canopy	 densities.	 Additional	
MODIS	 metrics	 helped	 improve	 the	 forest/nonforest	 classification	 within	
wetland	 forests,	 the	 forest–tundra,	 and	 the	 forest–steppe	 interface.	 Gross	
forest	cover	 loss	 from	2000	 to	2005	was	mapped	within	 the	resulting	year	
2000	 forest	 mask.	 All	 standreplacing	 events,	 whether	 caused	 by	 logging,	
road/pipeline	 construction,	 wind	 throws,	 standreplacement	 forest	 fires,	
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FIGURE	8.2	
(See	color	insert.)	Forest	cover	loss	monitoring	in	European	Russia.	(a) The	ca.	2000	regionwide	
Landsat	ETM+	image	composite.	(b–d)	Zoomin	example	of	forest	cover	and	change	mapping	
in	the	Republic	of	Karelia:	b—the	ca.	year	2000	image	composite;	c—the	ca.	year	2005	image	
composite;	d—classification	result.	

or	 severe	 insect	outbreaks,	were	mapped	 together	without	any	attempt	 to	
discriminate	among	them.	Within	lowintensity	selective	logging	sites,	only	
areas	with	significant	forest	impact	(roads	and	clearings)	were	mapped.	

The	total	forest	area	within	analyzed	regions	of	European	Russia	was	esti
mated	to	be	150,228	thousand	ha	at	the	time	around	year	2000.	The	area	of	
forest	cover	 loss	 from	2000	to	2005	 is	2,210	thousand	ha,	which	represents	
a	1.5%	of	the	year	2000	forest	cover.	Our	forest	extent	estimate	is	within	1% 

difference	with	the	latest	available	official	forest	cover	area	assessment	for	year	
2003	(ROSLESINFORG	2003).	At	the	regional	level,	our	forest	area		estimates	
are	 well	 correlated	 (R2	 of	 1.00)	 with	 official	 statistics.	 A	 perpixel	 valida
tion	with	independently	derived	forest	cover	mapping	results	for	23 blocks	
20 km × 20	km	in	size	within	the	boreal	and	temperate		forests	showed	good	
agreement,	with	an	overall	forest	cover	accuracy	of	89%	(kappa	of	0.78)	and	
overall	change	detection	accuracy	of	98%	(kappa	of	0.71).	A comparison	at	
the	individual	sample	block	level,	however,	indicated		relatively	high		forest	
cover	 classification	 uncertainty	 along	 the	 boreal	 forest’s	 northern	 limit	
(overall	accuracy	of	87%)	and	low	forest	cover	loss	producer’s	accuracy	(58%)	
within	southern	temperate	forests	featuring	smallscale	logging.	
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Forest	 cover	 loss	 was	 distributed	 unevenly	 within	 the	 administrative	
regions,	reflecting	several	forest	management	issues.	More	than	60%	of	the	
total	forest	cover	loss	was	found	within	the	largest	northern	forest	regions	
including	Arkhangelsk,	 Kirov,	 Leningrad,	 and	 Vologda	 Oblast,	 Komi,	 and	
Karelia	Republics.	While	regional	forest	cover	loss	is	linearly	related	to	forest	
area	(R2	of	0.84),	the	Leningrad	region	had	the	largest	residual	value,	indicat
ing	a	much	higher	rate	of	forest	cover	loss	than	the	general	trend	within	the	
area	of	study.	Onethird	of	the	analyzed	regions	have	a	percent	forest	cover	
loss	above	the	average	and	represent	areas	of	intensive	forest	harvesting	and	
frequent	wildfires.	These	regions	are	located	in	the	western	and	central	parts	
of	European	Russia,	close	 to	 large	 industrial	cities	and	the	Finnish	border.	
Regions	of	eastern	European	Russia,	the	Urals,	and	northern	forest–tundra	
transition	have	the	lowest	proportional	gross	forest	loss.	The	three	regions	
with	the	highest	proportional	forest	cover	loss	are	Vladimir,	Leningrad,	and	
Moscow	Oblast	 (forest	 loss	3.7%,	 3.5%,	 and	3.1%	of	year	2000	 forest	 cover,	
respectively)	(Figure	8.3).	

The	high	forest	cover	loss	within	Leningrad	region	is	thought	to	be	a	con
sequence	of	intensive	forest	harvesting.	This	is	confirmed	by	official	Russian	
forest	use	statistics	for	annual	timber	harvesting.	The	Leningrad	region	had	

St.	Petersburg	

Moscow	

Low	(<1%)	

Medium	(1–2%)	

High	(>2%)	

FIGURE	8.3	
Forest	cover	loss	intensity	in	European	Russia	(percent	forest	loss	2000–2005	of	forest	cover	for	
year	2000	per	administrative	region).	
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the	 highest	 rate	 of	 timber	 removal	 of	 all	 analyzed	 administrative	 regions	
in	 the	 period	 from	 2000	 to	 2005	 (ROSSTAT	 2008).	 The	 intensive	 felling	 in	
the	 Leningrad	 region	 and	 the	 neighboring	 Karelia	 Republic	 (gross	 forest	
cover	loss	1.9%	of	year	2000	forest	cover)	is	stimulated	by	the	demand	from	
the	 Nordic	 countries,	 particularly	 Finland,	 for	 timber	 from	 these	 	border	
regions.	The	extensive	gross	forest	cover	loss	due	to	industrial	logging	near	
the	 Russian–Finnish	 border	 could	 result	 in	 forest	 resource	 depletion	 and	
consequent	environmental	and	social	problems	if	not	compensated	by	forest	
restoration.	

While	the	gross	forest	cover	loss	in	the	Leningrad	region	was	connected	
mainly	 with	 industrial	 timber	 harvesting,	 the	 forest	 loss	 in	 the	 Moscow	
and	 Vladimir	 regions	 is	 a	 consequence	 of	 several	 factors,	 including	 log
ging	 (partly	 illegal),	 insect	 outbreaks,	 humancaused	 fires,	 and	 expansion	
of	settlements.	The	single	largest	forest	cover	loss	event	within	these	regions	
was	due	to	the	forest	fires	of	year	2002.	While	in	general	wildfires	play	a	com
paratively	small	role	in	the	forest	dynamics	within	European	Russia,	severe	
drought	 conditions	 and	 humaninduced	 fires	 led	 to	 extensive	 forest	 loss	
within	the	central	regions	of	European	Russia	during	the	extreme	fire	season	
of	2002.	According	to	official	data,	the	area	of	burned	forest	in	the	Moscow	
region	in	2002	was	roughly	10	times	higher	than	the	mean	annual	burned	
area	from	1992	to	2005	(ROSSTAT	2008).	Another	cause	of	forest	cover	loss	
around	 large	 cities	 is	 urban	 sprawl.	 For	 example,	 the	 expansion	 of	 settle
ments	and	industrial	facilities	around	the	city	of	Moscow	led	to	the	conver
sion	of	about	58	 thousand	ha	of	 former	 forest	 and	agriculture	 lands	 from	
1998	to	2008	(Karpachevskiy	et	al.	2009).	The	forests	that	remain	around	large	
industrial	cities	provide	ecological	services	(e.g.,	water	and	air	purification,	
natural	species	refugee,	recreation)	that	are	important	to	urban	populations.	
Our	results	raise	concerns	about	the	fate	of	the	remaining	forests	in	the	most	
populated	regions	of	European	Russia.	

8.3.2	 Forest	Cover	Monitoring	in	the	DRC	

Information	on	forest	cover	extent	and	change	 is	sparse	or	 lacking	for	 the	
DRC	due	to	the	vast	extent	of	intact	forest	landscapes	(IFLs),	the	lack	of	trans
portation	infrastructure,	and	the	continued	political	instability,	all	of	which	
limit	the	possibilities	to	collect	data	on	the	ground.	Satellite	images	are	cur
rently	the	only	viable	data	source	for	national	level	mapping.	We	employed	
walltowall	Landsat	imagery	to	map	forest	cover	for	the	year	2000	and	the	
gross	forest	cover	loss	between	2000	and	2010.	The	analysis	was	performed	
in	 partnership	 with	 Observatoire	 satellital	 des	 forêts	 d’Afrique	 central	
(OSFAC),	 a	 local	 nongovernmental	 organization	 supported	 by	 the	 Central	
Africa	Regional	Program	for	the	Environment	(CARPE)	project	of	the	United	
States	Agency	for	International	Development	(USAID).	

A	 total	 of	 8,881	 Landsat	 ETM+	 images	 were	 selected,	 downloaded,	 and	
processed	to	create	complete	nationalscale	image	composites	and	metrics.	
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About	 99.6%	 of	 the	 country	 was	 covered	 by	 cloudfree	 Landsat	 observa
tions.	 Gaps	 due	 to	 persistent	 cloud	 cover	 were	 located	 primarily	 in	 the	
coastal	areas	of	 the	 lower	Congo	River.	The	data	gaps	were	mostly	due	to	
an	insufficient	number	of	cloudfree	observations.	Even	though	most	of	the	
available	Landsat	7	observations	 (82%)	were	 captured	during	 the	11	years	
of	observation	in	coastal	areas,	few	of	them	were	more	than	50%	cloud	free	
for	more	than	a	quarter	of	a	scene.	This	shows	that	data	from	a	single	sen
sor	is	often	insufficient	for	monitoring	forests	in	persistently	cloudy	tropical	
regions.	A constellation	of	sensors	with	similar	spectral	and	spatial	resolu
tion	but	varying	overpass	time	and	orbital	cycle	would	be	needed	to	provide	
sufficient	observational	coverage.	

Forest	cover	and	forest	types	were	mapped	for	ca.	year	2000.	Forest	cover	
classes	included	humid	tropical	forests	(defined	as	having	greater	than	60% 

canopy	cover)	and	woodlands	(canopy	cover	between	30%	and	60%).	Humid	
tropical	forests	were	additionally	stratified	into	primary	(mature)	forests	and	
secondary	forests	(regrowing	after	standreplacement	disturbance).	A	generic	
forest	cover	class	category	was	mapped,	and	within	this	layer	primary	and	
secondary	 humid	 tropical	 forest	 classes	 were	 subsequently	 characterized.	
After	mapping	humid	tropical	forest	classes,	the	remaining	forest	cover	was	
assigned	 to	 the	 woodland	 class.	 Gross	 forest	 cover	 loss	 from	 2000	 to	 2005 	
was	mapped	within	the	generic	year	2000	forest	mask,	and	forest	cover	loss	
2005–2010	was	mapped	within	the	remaining	forest	area	of	2005	(Figure	8.4).	

The	 total	 forest	 cover	 extent	 in	 the	 DRC	 was	 estimated	 to	 be	 159,529	
thousand	ha,	which	is	within	1.5%	of	the	FAO	FRA	estimate	for	year	2000.	
Primary	and	secondary	humid	 tropical	 forests	predominate	 (66%	 and	11% 

of	 total	 forest	 cover	 extent,	 respectively),	 with	 woodlands	 occupying	 the	
remaining	 23%.	 The	 gross	 forest	 cover	 loss	 from	 2000	 to	 2010	 was	 3,712	
thousand	ha	or	2.3%	of	year	2000	forest	area.	About	57%	of	this	loss	occurred	
in	secondary	humid	forests,	29%	in	primary	humid	forests,	and	14%	in	wood
lands.	Secondary	humid	tropical	forests	experienced	the	most	intensive	loss	
(11.6% over	10 years),	while	the	rate	of	loss	in	primary	humid	tropical	forests	
and	 woodlands	 was	 considerably	 lower	 (1.0%	 and	 1.4%,	 respectively).	 The	
gross	forest	cover	increased	by	14%	between	the	2000–2005	and	the		2005–2010	
periods.	The	increase	was	most	prominent	in	primary	humid	tropical	forests	
and	woodlands	(by	91%	and	63%,	respectively).	

Visual	examination	of	Landsat	composite	data	suggests	 that	almost	all	
forest	clearing	was	associated	with	 the	expansion	of	subsistence	agricul
ture,	local	charcoal	production,	or	mining.	We	found	no	evidence	of	major	
forest	fires	or	windthrow	events	during	the	study	period,	with	the	excep
tion	of	 forest	fires	caused	by	 the	 repeated	eruptions	of	 the	Nyamuragira 	
volcano.	Clearings	are	common	in	secondary	humid	tropical	forests	due	to	
the	practice	of	rotational	slashandburn	agriculture.	On	the	one	hand,	the	
fallow	period	between	clearings	(not	quantified	in	this	study)	would	be	a	
useful	 indicator	of	 land	degradation.	Clearing	of	primary	 forests,	on	 the 	
other	hand,	represents	the	expansion	of	agriculture	into	heretofore	intact	
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FIGURE	8.4	
(See	color	insert.)	Forest	cover	loss	monitoring	in	the	DRC.	(a)	Nationwide	forest	cover	and	
change	mapping	result.	(b–c)	Zoomin	example	of	forest	cover	and	change	mapping	around	
Buta:	b—ca.	year	2010	image	composite;	c—classification	result.	

forests,	triggering	changes	in	ecosystem	dynamics	and	loss	of	floristic	and	
faunal	 biodiversity.	 Clearing	 generally	 occurs	 in	 belts	 around	 secondary	
forests	 and	 roads	 due	 to	 the	 nearly	 continuous	 distribution	 of	 popula
tion	along	transportation	infrastructure	(Figure	8.4).	Since	forest	clearing	
is	 mainly	 a	 consequence	 of	 smallscale	 subsistence	 farming,	 the	 change	
patches	are	small	and	have	a	mean	area	of	1.4	ha.	

Most	of	the	clearing	occurred	in	areas	with	high	population	density	and	
growth	 rates,	 such	 as	 Kinshasa,	 KasaiOccidental,	 SudKivu,	 and	 Kasai
Oriental	 provinces.	 Large	 industrial	 (Tshikapa,	 MbujiMayi,	 Kolwezi,	
Lubumbashi)	and	artisanal	mining	areas	(Kisangani,	Beni,	Buta)	also	exhib
ited	 intensive	forest	 loss.	The	 intensive	forest	 loss	along	the	boundaries	of	
Virunga	National	Park	(NP)	in	the	North	Kivu	province	is	related	to	ongoing	
political	unrest.	The	Virunga	NP	has	the	highest	loss	of	primary	forest	of	all	
national	parks	in	the	country	(0.9%,	compared	to	the	mean	of	0.4%),	making	
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it	one	of	the	most	threatened	natural	protection	areas.	The	loss	of	primary	
forest	 in	 protected	 areas	 increased	 by	 64%	 from	 2000–2005	 to	 2005–2010,	
highlighting	 the	 pressures	 and	 the	 need	 to	 improve	 the	 protection	 and	
management	of	nature	reserves	across	the	country.	

8.4	 Global-	and	National-Scale	Forest	Degradation	Monitoring	

It	is	well	known	that	forest	degradation,	including	fragmentation	of	natural	
landscapes,	has	a	negative	effect	on	global	climate	change	and	biodiversity	
(Harris	1984).	However,	forest	degradation	is	a	complex	concept	that	is	dif
ficult	 to	define	and	even	more	difficult	 to	map.	Unlike	 forest	 cover	extent	
that	can	be	quantified	using	straightforward	biophysical	parameters,	assess
ing	and	monitoring	forest	degradation	is	a	complicated	task	due	to	the	great	
variability	 in	 the	 forms,	 factors,	and	degrees	of	human	 impact.	 In	 the	 late	
1990s,	 a	 group	 of	 nongovernmental	 organizations	 including	 Greenpeace	
and	the	World	Resources	Institute	developed	a	simple	yet	straightforward	
approach	 for	 assessment	 and	 monitoring	 of	 forest	 degradation	 called	 the	
IFL	method	(Potapov	et	al.	2008).	An	IFL	is	an	unbroken	expanse	of	natural	
ecosystems	 that	shows	no	signs	of	significant	human	activity	and	 is	 large	
enough	to	maintain	all	native	biodiversity,	including	viable	populations	of	
wideranging	species.	The	essence	of	the	IFL	method	is	to	use	medium	spa
tial	resolution	satellite	imagery	to	locate	IFLs,	establish	their	boundaries,	and	
use	 them	as	a	baseline	 for	monitoring.	The	IFL	method	provides	a	simple	
and	feasible	way	to	cope	with	the	complexity	of	the	forest	degradation	con
cept	by	using	changes	in	forest	intactness	as	a	proxy	for	forest	degradation	
(Potapov	et	al.	2009).	In	this	context,	forest	degradation	is	defined	as	a	reduc
tion	in	the	ecological	integrity	of	a	forest	landscape	below	a	certain	threshold	
due	to	human	influence	(e.g.,	conversion,	alteration,	and	fragmentation),	and	
forest	landscapes	are	treated	as	being	either	intact	(undegraded)	or	nonintact	
(altered	or	degraded).	

An	IFL	boundary	is	defined	using	a	sequence	of	two	sets	of	criteria	spe
cifically	 developed	 for	 visual	 interpretation	 of	 medium	 spatial	 resolution	
satellite	 imagery.	 These	 criteria	 are	 globally	 applicable	 and	 easily	 replica
ble,	allowing	for	repeated	assessments	over	time	as	well	as	verification	by	
independent	assessments.	The	first	set	of	criteria	is	used	to	eliminate	lands	
with	evidence	of	significant	humancaused	alteration	from	IFL	status.	Such	
alteration	 includes	 (1)	 settlements	and	 industrial	objects;	 (2)	 infrastructure	
used	for	transportation	between	settlements	or	for	industrial	development	
of	 natural	 resources;	 (3)	 agriculture	 and	 forest	 plantations;	 (4)	 industrial	
activities	 (including	 logging,	 mining,	 oil	 and	 gas	 exploration	 or	 extrac
tion)	during	 the	 last	 30–70	years;	 and	 (5)	 standreplacing	wildfires	during	
the	last	30–70	years	if	located	in	the	vicinity	of	infrastructure	or	developed	
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areas.	Some alterations,	notably	 lowintensity	human	 impacts	 that	 tend	 to	
occur	 in	 the	 vicinity	 of	 settlements	 and	 roads	 (e.g.,	 selective	 logging	 and	
overhunting),	 are	 not	 	visible	 in	 medium	 spatial	 resolution	 imagery.	 We,	
therefore,	removed	such	areas	by	applying	a	buffer	zone	around	settlements	
and	transportation	infrastructure,	adapting	the	buffer	width	to	the	expected	
extent	of	human	influence.	For	the	global	IFL	method,	a	1	km	wide	buffer	
was	used.	The	second	set	of	criteria	is	used	to	eliminate	fragmented	lands	
from	IFL	status	by	identifying	patches	of	otherwise	IFLs	that	are	smaller	or	
narrower	 than	 a	 selected	 threshold	 value.	 For	 the	 global	 analysis,	 a	 patch	
needed	to	meet	the	following	criteria	to	qualify	as	an	IFL:	(1)	minimal	area	of	
500	km2,	(2)	minimal	width	of	at	least	10	km	(measured	as	the	diameter	of	the	
largest		circle	that	can	be	fitted	inside	the	patch),	and	(3)	at	least	2	km	wide	in	
corridors	or	appendages	to	areas	that	meet	the	above	criteria.	

The	 IFL	method	was	used	 to	assess	 the	ecological	 integrity	of	 the	world’s	
forest	landscapes.	First,	the	current	global	extent	of	the	forest	zone	was	deter
mined,	defined	as	lands	with	at	least	20%	tree	canopy	cover	(Hansen	et	al.	2003)	
and	including	treeless	areas	that	occur	naturally	within	forest	ecosystems,	such	
as	wetlands.	The	area	under	consideration	was	then	reduced	by	identifying	and	
eliminating	developed	areas	and	infrastructure	through	visual	interpretation	
of	Landsat	imagery.	The	global	IFL	mapping	was	done	before	the	Landsat	data	
archive	was	opened,	and	the	GeoCover	Landsat	orthorectified	image	collection	
was	 therefore	used.	A	global	coverage	of	Landsat	TM	data	 (representing	an	
average	date	of	1990)	and	ETM+	data	(representing	an	average	date	of	2000)	
was	used	to	systematically	assess	candidate	IFL	areas	for	humancaused	altera
tion	and	fragmentation	and	to	delineate	IFLs.	Finescale	geospatial	datasets	on	
roads	and	settlements	were	used	where	available	 to	 facilitate	 interpretation.	
Infrastructure	buffering	was	performed	simultaneously	with	the	visual	image	
analysis.	 Altered	 and	 fragmented	 patches	 were	 eliminated	 from	 the	 area	 of	
study	and	remaining	areas,	if	meeting	the	criteria,	were	classified	as	IFLs.	

The	current	extent	of	the	world’s	forest	zone	is	5,588	million	ha.	IFLs	make	
up	23.5%	of	the	forest	zone	(1,313	million	ha).	The	remainder	of	the	forest	zone	
is	affected	by	development	or	fragmentation	and	thus	is	either		managed	or	
degraded.	The	vast	majority	of	the	world’s	remaining	IFLs	are	found	within	
humid	 tropical	 and	 boreal	 forests	 (45.3%	 and	 43.8%	 of	 the	 total	 IFL	 area,	
respectively).	The	distribution	of	IFL	within	these	biomes	is	heterogeneous,	
reflecting	differences	in	the	history	and	intensity	of	economic	development.	
Tropical	IFLs	are	found	mainly	in	the	large	forest	massifs	of	the	Amazon	and	
Congo	basins,	and	in	insular	Southeast	Asia.	More	than	half	of	the	IFL	area	
in	the	humid	tropics	is	in	the	Amazon	basin,	while	IFLs	are	largely	absent	
in	the	lowlands	of	continental	Asia.	In	the	boreal	region,	the	highest	propor
tion	of	IFL	is	in	the	North.	IFLs	occupy	more	than	half	of	the	forest	zone	in	
Canada	but	have	nearly	disappeared	 in	Europe	due	 to	 the	 long	history	of	
intensive	agriculture	and	forest	management.	

A	particular	strength	of	the	IFL	method	is	that	it	can	easily	be	applied	
to	different	points	 in	 time,	making	 it	suitable	 for	regular	reassessments,	
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i.e., monitoring.	The	work	is	conducted	through	expertbased	visual	inter
pretation	using	the	same	criteria	and	the	same	type	of	data	as	in	the	base
line	assessment	(medium	spatial	resolution	satellite	imagery)	but	is	much	
less	 time	 consuming	 as	 only	 remaining	 IFLs	 need	 to	 be	 monitored.	 We 	
used	 the	 IFL	 method	 to	 assess	 change	 in	 IFLs	 from	 2000	 to	 2010	 (using	
two	5year	steps)	for	the	three	largest	tropical	forest	countries:	Brazil,	the	
DRC,	 and	 Indonesia	 (Figure	 8.5).	 For	 the	 DRC	 and	 Indonesia,	 national	
reassessments	were	performed	using	Landsat	timesequential	image	com
posites	(see	Section	8.2),	individual	Landsat	scenes,	and	ASTER	imagery.	
For	 Brazil,	 the	 forest	 cover	 loss	 monitoring	 results	 from	 PRODES	 (INPE	
2002)	were	used	to	update	the	IFL	map.	

Our	results	show	that	a	significant	extent	of	intact	areas	has	been	lost	within	
all	three	countries	after	year	2000.	The	total	proportion	of	IFLs	lost	was	5.2%,	
1.9%,	and	10.0%	in	Brazil,	the	DRC,	and	Indonesia,	respectively.	The	IFL	loss	
in Brazil	 is	mostly	a	 consequence	of	agroindustrial	development	along	 the	
forest/agriculture	boundary	of	“arc	of	deforestation.”	 In	 the	DRC,	 the	 loss	
of	 IFLs	 is	 unevenly	 distributed	 and	 located	 mostly	 within	 active	 timber	
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concessions	 (where	 selective	 logging	 is	 taking	 place)	 and	 in	 the	 vicinity	 of	
growing	 settlements	 (where	 subsistence	 agriculture,	 artisanal	 logging,	 and	
charcoal	production	are	expanding).	Conversion	of	IFLs	to	oil	palm	and	tim
ber	plantations	is	common	within	the	Indonesian	lowlands	of	Sumatra	and	
Kalimantan	islands,	while	IFL	loss	in	mountain	areas	is	generally	caused	by	
selective	logging.	

While	 all	 analyzed	 countries	 experienced	 reductions	 of	 IFL	 area,	 the	
change	trends	are	different,	as	approximated	by	IFL	loss	between	2000	and	
2005	and	2006	and	2010.	Brazil	features	a	dramatic	reduction	in	overall	IFL	
loss	from	4.1%	during	the	first	5	years	to	1.1%	during	the	second	half	of	the	
decade.	In	the	DRC,	the	IFL	loss	rate	was	relatively	stable	(1.0%	during	2000–	
2005	and	0.9%	during	2006–2010).	In	contrast,	the	IFL	loss	rate	in	Indonesia	
increased	from	4.2%	to	5.8%.	While	no	special	analysis	is	available	to	explain	
these	trends,	we	can	speculate	on	their	origins	based	on	the	global	economy	
and	the	distribution	of	IFL	loss.	Undoubtedly,	the	global	financial	crisis	that	
began	in	2007	and	followed	by	the	recession	during	the	end	of	the	decade	is	
a	single	most	important	factor	behind	the	reduction	of	agroindustrial	clear
ings	 and	 timber	 production	 worldwide.	 This	 crisis	 was	 more	 pronounced	
in	 Western	 countries	 but	 had	 consequences	 also	 for	 their	 main	 suppliers.	
Brazil  was	 hit	 hardest	 of	 the	 three	 analyzed	 countries	 and	 experienced	 a	
negative	GDP	growth	rate	 in	2009	 (CIA	2011).	The	efforts	by	 the	Brazilian	
government	to	reduce	forest	clearing	in	the	framework	of	the	UN	REDD+ 

program	and	the	establishment	of	an	effective	deforestation	monitoring	sys
tem	have	likely	also	played	a	role.	The	situation	was	different	in	Asian	coun
tries,	including	Indonesia,	where	GDP	either	continued	to	grow	or	fell	only	
slightly.	 Indonesia	 accelerated	 the	 conversion	 of	 remaining	 lowland	 forest	
areas	to	plantations	and	expanded	selective	logging	in	remote	mountain	for
ests,	especially	in	the	Papua	island	group.	The	IFL	change	dynamic	is	com
plicated	in	the	DRC	due	to	the	combination	of	global	economic	drivers	and	
local	political	instability.	While	economic	stagnation	and	years	of	civil	war	
have	resulted	in	a	low	level	of	forest	clearing	in	the	country,	an	analysis	of	
nature	resources	management	(Endamana	et	al.	2010)	highlighted	that	there	
was	little	change	in	conservation	indicators	in	the	Congo	basin	over	the	last	
decade.	 We	 may	 conclude	 that	 more	 favorable	 economic	 conditions	 may	
accelerate	the	loss	of	IFLs	in	the	DRC,	unless	improved	conservation	policies	
are	established.	

8.5	 Conclusion	

Independent,	 satellitebased	 monitoring	 is	 an	 important	 tool	 for	 provid
ing	 transparent	 information	 on	 forest	 change.	 Government	 officials,	 land	
managers,	 researchers,	 conservationists,	 and	 civil	 society	 groups	 can	 use	
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such	information	to	make	betterinformed	decisions	regarding	the	manage
ment	of	forest	ecosystems.	We	have	presented	a	novel,	automated	Landsat	
image	 processing	 approach	 that	 could	 be	 used	 for	 timely	 monitoring	 of	
forest	cover	change	at	national	scales.	This	approach	is	a	practical	solution	
for	examining	trends	 in	 forest	cover	change	at	regional	 to	national	scales	
and	 could	 be	 implemented	 at	 a	 fraction	 of	 the	 cost	 of	 individual	 scene	
processing	in	terms	of	workload	and	processing	time.	Regional	monitoring	
has	the	advantage	of	providing	internally	consistent,	directly	comparable	
results	for	assessing	variation	in	the	spatiotemporal	trends	of	forest	cover	
dynamics.	

Landsatbased	mapping	of	forest	cover	extent	and	change	using	super
vised	 expertdriven	 classification	 is	 a	 wellestablished	 and	 accepted	
methodology,	 and	 reported	 accuracies	 for	 Landsat	 forest	 cover	 change	
detection	 range	 between	 75%	 and	 91%	 (Coppin	 and	 Bauer	 1994).	 Our	
Landsatbased	mapping	algorithm	has	been	tested	for	large	forest	regions,	
and	our	regionalscale	Landsat	forest	cover	change	results	are		comparable	
with	 NFI	 data	 and	 individual	 scene	 supervised	 characterizations.	 The	
spatial	 accuracies	 of	 forest	 cover	 and	 change	 detection	 have	 not	 been	
rigorously	 validated,	 however,	 due	 to	 the	 lack	 of	 high	 spatial	 resolution	
imagery	and	field	data.	In	the	future,	our	approach	can	be	validated	using	a	
series	of	high	spatial	resolution	data	sets.	Our	results	can	be	used	to	target	
sampling	with	high	spatial	resolution	imagery	as	part	of	a		nationalscale
	validation	protocol.	

The	application	of	our	forest	monitoring	approach	in	different	biomes	at	
the	national/regional	scales	illustrate	the	possibility	that	it	can	be	used	also	
at	 the	 biome/global	 scales.	 Remaining	 challenges	 include	 possible	 gaps	
in	 future	 image	 availability,	 insufficient	 observation	 frequency	 for	 some	
areas,	and	the	lack	of	a	rigorous	validation	that	uses	high	spatial	resolution	
imagery	along	with	field	data.	These	concerns	must	be	addressed	before	
the	proposed	algorithm	 is	 implemented	 further.	Yet	having	 the	 technical	
ability	to	conduct	satellitebased	monitoring	is	not	sufficient	to	detect	and	
solve	all	 environmental	problems	caused	by	 inefficient	and	 irresponsible	
forest	management.	First,	only	some	components	of	ecosystem	health	can	
be	monitored	from	space.	Other	components	such	as	reductions	in	biodi
versity	 due	 to	 overhunting	 and	 poaching,	 effects	 of	 chemical	 pollution,	
and	global	impact	caused	by	humaninduced	climate	change	require	a	set	
of	 in
 situ	 measurements.	 Second,	 the	 forest	 management	 problems	 that	
are	highlighted	by	monitoring	data	are	sometimes	a	result	of	 inadequate	
governmental	control	of	natural	resources	exploitation	and/or	political	and	
economic	instability.	Weak	and/or	corrupt	governance	precludes	the	main
tenance	of	forest	ecosystem	services	and	protection	of	nature	conservation	
areas.	 Integrating	 the	 drivers	 of	 forest	 cover	 change	 with	 satellitebased	
forest	 monitoring	 methods	 into	 national	 natural	 resource	 management	
systems	 and	 international	 conservational	 initiatives	 are	 important	 future	
steps	for	nationalscale	monitoring	activities.	
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9.1	 Introduction	

The	Amazonia	region	comprises	the	greatest	rain	forest	of	our	planet	where	
the	 largest	 continuous	 remaining	 tropical	 forest	 can	 be	 found.	 In	 Brazil,	
an	 accelerated	 anthropization	 process	 began	 at	 the	 end	 of	 the	 1960s	 in	
response	to	governmental	policies	to	integrate	the	vast	Amazonian	region	
with	the	rest	of	the	country.	This	was	to	be	achieved	mainly	through	road	
construction	 and	 incentivized	 transmigration	 policies	 that	 consequently	
expanded	the	Brazilian	agriculture	frontier.	The	anthropization	process	has	
been	 most	 intense	 in	 the	 socalled	 arc
 of
 deforestation	 where	 the	 Amazon	
ecosystem	 meets	 with	 the	 savanna	 (cerrado)	 ecosystem.	 Since	 1973,	 Brazil	
has	had	access	 to	remote	sensing	 imagery	 from	the	series	of	Landsat	sat
ellites,	 enabling	 the	 quantification	 of	 natural	 resource	 extent	 and	 modifi
cation	over	the	Amazon	region.	Based	on	the	availability	of	these	images,	
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the Brazilian	government	began	monitoring	of	the	Amazon	forest	to	quan
tify	deforestation	at	multiyear	intervals.	Quantitative	data	on	deforestation	
could	then	be	used	to	assess	the	human	impacts	of	the	development	poli
cies,	with	the	objective	of	minimizing	the	negative	effects	of	the	man–biome	
interaction	on	renewable	and		nonrenewable	resources.	

Since	1988,	 the	Brazilian	government	has	performed	annual	monitoring	
of	 the	 Amazon	 forest	 using	 Landsattype	 imagery	 through	 the	 PRODES	
(monitoring	of	Amazon	forest)	project	carried	out	by	the	Brazilian	Institute	
for	 Space	 Research	 (INPE).	 PRODES	 has	 quantified	 approximately	
750,000 km2	of	deforestation	in	the	Brazilian	Amazon	through	the	year	2010,	
a	 total	 that	 accounts	 for	 approximately	 17%	 of	 the	 original	 forest	 extent.	
PRODES	data	have	revealed	the	annual	deforestation	rates	to	vary	signifi
cantly	in	response	to	domestic	political,	economic,	and	financial	policies	as	
well	as	foreign	market	demands.	

PRODES	 information	 is	 based	 primarily	 on	 Landsat	 imagery.	 Medium	
spatial	resolution	(30	m)	data	such	as	Landsat	have	a	relatively	low	tempo
ral	resolution	of	16day	repeat	coverage,	allowing	for	annual	monitoring	of	
deforestation.	More	rapid	updating	of	forest	disturbance	is	not	possible	with	
Landsat	as	the	infrequent	repeat	coverage	coupled	with	the	persistent	cloud	
cover	of	the	humid	tropical	Amazon	basin	limits	the	number	of	viable	land	
surface	observations.	This	 fact	prevents	 the	government	and	environment	
control	agencies	from	making	fast	and	adequate	interventions	to	stop	illegal	
deforestation	activities.	

Nearrealtime	deforestation	monitoring	is	possible	using	the	almost	daily	
images	 of	 the	 MODIS	 (MODerate	 resolution	 Imaging	 Spectroradiometer)	
sensor	on	board	the	Terra	and	Aqua	satellite	platforms.	Thus,	a	new	method
ology	based	on	MODIS	images	was	developed	for	rapid	detection	of	defor
estation	 in	 the	Amazon	region	 through	the	DETER	(realtime	detection	of	
deforestation)	project	 (Shimabukuro	et	al.	2006).	While	MODIS	 is	a	coarse	
spatial	resolution	sensor,	and	not	viable	for	area	estimation	of	deforestation,	
MODIS	data	can	be	valuable	as	a	change	indicator,	or	alarm	product	in	the	
service	of	land	management	policies	and	enforcement.	

This	chapter	presents	an	overview	of	the	PRODES	and	DETER	projects	for	
annual	and	monthly	monitoring	of	deforestation	 in	the	Brazilian	Amazon,	
respectively.	Initially,	the	Brazilian	Amazon	region	is	characterized	in	terms	
of	its	soil,	biodiversity,	climate,	and	vegetation	followed	by	the	deforestation	
history	and	the	description	of	the	methodology	developed	at	INPE	for	the	
deforestation	monitoring	activities	based	on	remote		sensing	image	processing	
and	geographic	information	system	(GIS)	techniques.	Results	from	more	than	
three	 decades	 of	 monitoring	 are	 presented	 and	 discussed,	 illustrating	 the	
rapid	deforestation	that	occurred	during	this	period	in	the	Amazon	region.	
The	results	have	quantified	the	magnitude	and	trends	of	deforestation	in	the	
Brazilian	Amazon.	Results	provide	an	invaluable	input	to	decision	makers	in	
establishing	public	policies	and	enforcing	environmental	governance	in	the	
critical	ecosystems	of	the	Brazilian	Amazon.	
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9.2	 Brazilian	Amazon	

The	Amazon	rainforest	 is	 located	in	South	America	and	covers	an	area	of	
6.4	million	km2.	Most	of	the	Amazon	rainforest	(63%)	is	found	in	the	Brazilian	
Legal	 Amazon	 (BLA)	 (Figure	 9.1),	 with	 the	 remaining	 part	 being	 distrib
uted	 among	 the	 countries	 of	 Peru,	 Colombia,	 Bolivia,	 Venezuela,	 Guiana,	
Suriname,	Ecuador,	and	French	Guiana.	Much	attention	has	been	given	to	
this	 region	due	 to	 its	 relevance	 in	 terms	of	biodiversity	as	well	 its	unique	
environmental	services	at	the	global	scale.	

The	 BLA	 is	 a	 geopolitical	 unit,	 established	 in	 1966	 by	 the	 Brazilian	
government.	 The	 BLA	 is	 located	 between	 5°	 N,	 20°	 S	 and	 44°	 W,	 75°	 W	
and	 covers	 an	 area	 of	 approximately	 5	 million	 km2.	 It	 encompasses	 the	
whole	 states	 of	 Acre,	 Amapá,	 Amazonas,	 Mato	 Grosso,	 Pará,	 Rondônia,	
Roraima,	Tocantins,	and	the	western	part	(44°	W)	of	the	state	of	Maranhão	
(IBGE	2000).	The	BLA	is	included	in	the	Amazon	river	basin	except	for	the	
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FIGURE	9.1	
(See	color	insert.)	The	BLA	(red)	located	in	the	South	American	continent.	
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southern	part	of	Mato	Grosso	state	(Paraguay	river	basin)	and	for	part	of	
Maranhão	state	(Parnaíba	river	basin).	

Soils:	The	Amazon	region	 includes	varied	soil	 classes	 formed	under	great	
geological	diversity,	exhibiting	significant	variation	in	relief	and	under	the	
influence	 of	 high	 temperatures	 and	 precipitation	 typical	 for	 warm	 super	
humid	or	humid	equatorial	climates.	The	natural	soil	 fertility	 is	 relatively	
low;	 however,	 the	 Amazon	 rainforest	 is	 a	 selfsustainable	 ecosystem	 due	
to	 its	 own	 nutrient	 cycles,	 making	 it	 vulnerable	 to	 anthropic	 interference	
(IBAMA	2009).	

Biodiversity:	 The	 Amazon	 region	 comprises	 a	 large	 variety	 of	 ecosystems	
including	 upland	 forests	 (terra
 firme),	 swamp	 forests	 (seasonally	 flooded
	forest—varzeas
 and	 permanently	 flooded	 forest	 igapós),	 grasslands,	 and	
savannas	 (cerrado).	 An	 extremely	 rich	 biodiversity	 is	 found	 within	 the	
regions,	including	1.5	million	plant	species;	3,000	fish	species;	950	types	of	
birds;	and	an	enormous	amount	of	insect,	reptile,	amphibian,	and	mammal	
species	(IBAMA	2009).	

Climate:	 The	 Amazon	 region	 is	 characterized	 by	 its	 enormous	 ability	 for	
water	recycling.	About	63%–73%	of	the	water	is	lost	through	evapotranspi
ration,	 and	 approximately	 50%	 of	 it	 is	 recycled	 within	 the	 region	 through 	
precipitation	(Salati	1985).	

The	average	temperature	varies	from	25.8°C	during	the	rainy	season	(May–	
September)	to	27.9°C	during	the	dry	season	(October–April).	The	duration	of	
these	seasons	may	vary	due	to	the	large	extent	of	the	Amazon	region.	The	aver
age	annual	precipitation	is	2,250	mm,	varying	from	1,500	mm	in	the	northern	
and	southern	regions	to	3,000	mm	in	the	northwestern	region	of	the	Amazon.	

Vegetation:	 The	 Amazon	 region	 is	 covered	 by	 evergreen	 tropical	 rainforest	
comprised	of	three	major	classes	of	vegetation:	(1)	the	evergreen	tropical	forest	
stricto
sensu;	(2)	the	semievergreen	tropical	forest;	and	(3)	the	semi	deciduous	
tropical	forest	(IBGE	1988).	Evergreen	tropical	forests	stricto
sensu	are	mostly	
found	in	very	moist	regions	where	the	annual	precipitation	is	around	3,000	
mm.	They	are	composed	of	multilayered	broadleaf	evergreen	trees	that	may	
reach	50	m	in	height,	with	a	sparse	substratum	consisting	mainly	of	herba
ceous	plants.	Semievergreen	tropical	forests	are	spread	along	less	humid	areas,	
with	annual	precipitation	varying	from	2,000	to	3,000	mm.	These	forests	are	
composed	of	threelayered	formations	of	perennial	and	deciduous	broadleaf	
trees,	with	the	latter	type	being	sparsely	present	and	forming	the	top	layer	of	
the	canopy.	Semideciduous	tropical	forests	differ	from		semievergreen	ones	by	
having	a	larger	proportion	of	deciduous	species.	

The	 cerrado	 is	 a	 savannatype	 ecosystem	 appearing	 mainly	 in	 the	 south
ern	and	eastern	portions	of	the	Amazon	region.	It	is	composed	of	broadleaf,	
semideciduous,	 or	 evergreen	 short	 trees	 typically	 growing	 in	 welldrained	
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soils	 that	 are	 poor	 in	 nutrients,	 in	 a	 region	 where	 the	 average	 annual	
temperature	ranges	from	20°C	to	26°C	and	annual	precipitation	ranges	from	
1,250	 to	2,000	mm	with	marked	 influence	of	 the	austral	winter	dry	 season	
(May	through	September).	 In	general	 terms,	five	structural	 types	of	cerrado

are	acknowledged	to	exist	(OliveiraFilho	and	Ratter	2002):	cerradão—domi
nated	by	arboreous	vegetation	(8–12	m	tall)	whose	canopy	covers	50%–90%	of	
the	area;	cerrado	(stricto
sensu)—dominated	by	trees	and	shrubs	(3–8	m	tall),	
with	a	more	sparse	canopy	cover	(above	30%);	campo
cerrado—formed	by	dis
persed	trees	and	shrubs,	with	a	high	density	of	herbaceous	vegetation;	campo

sujo—dominated	by	herbaceous	vegetation,	with	shrubs	and	small	dispersed	
trees;	and	campo
limpo—which	is	different	from	the	campo
sujo	because	it	has	
no	shrubs	nor	trees.	Cerrado	may	also	be	associated	with	seasonally	flooded	
areas.	In	total,	the	Amazon	region	has	approximately	10%–15%	of	worldwide	
biomass	(Houghton	et	al.	2001).	

Deforestation
in
the
BLA:	Deforestation	in	the	BLA	has	been	a	concern	of		several	
governmental	and	nongovernmental	agencies,	especially	over	the	last	three	
decades	 (Moran	 1981;	 Skole	 and	 Tucker	 1993).	 Although	 there	 is	 a	 	longer	
history	of	human	occupation	in	the	BLA,	nearly	90%	of	the	deforestation	for	
pasture	 and	 agriculture	 occurred	 between	 1970	 and	 1988,	 as	 indicated	 by	
estimates	based	on	satellite	images	(Skole	et	al.	1994).	

Historically,	 the	 Brazilian	 territory	 was	 occupied	 along	 the	 coastline,	
with	 most	 of	 its	 population	 concentrated	 in	 this	 region.	 In	 an	 attempt 	
to	 change	 this	 occupation	 pattern	 by	 increasing	 inland	 settlement,	 the	
federal	capital	was	moved	from	the	coast	 (Rio	de	Janeiro)	 to	 the	Central	
region	of	Brazil	(Brasília)	in	the	mid1950s	(Mahar	1988).	This	occupation	
policy	 required	 major	 infrastructure	 investments	 to	 connect	 Brasília	 to	
the	 other	 regions	 of	 Brazil.	 The	 construction	 of	 the	 BelémBrasília	 road	
(BR010)	 in	 1958	 was	 the	 main	 factor	 that	 triggered	 major	 deforestation	
activities	in	the	BLA	(Moran	et	al.	1994;	Nepstad	et	al.	1997).	Subsequent	
events	 such	 as	 the	 construction	 of	 the	 BR364	 across	 the	 states	 of	 Mato 	
Grosso,	Rondônia,	and	Acre	and	the	PA150	in	the	state	of	Pará		encouraged	
even	 more	 deforestation	 activities,	 converting	 forest	 into	 pasture	 and	
agriculture	land	(Moran	1993).	

To	 introduce	 governance	 in	 the	 BLA,	 the	 SUDAM	 (Superintendência	
do	 Desenvolvimento	 da	 Amazônia)	 and	 the	 BASA	 (Banco	 da	 Amazônia)	
were	established	in	1966.	Small	producers	were	granted	with	incentives	to	
invest	in	agriculture	projects	(Moran	et	al.	1994).	Large	producers	were	also	
granted	 tax	 incentives	 in	 exchange	 for	 converting	 forest	 to	 pasture	 land	
(Moran	 1993).	 The	 incentives	 granted	 to	 large	 producers	 were	 the	 major	
drivers	of	deforestation;	small	producers	had	a	lesser	impact	on	deforesta
tion	due	to	the	comparatively	smaller	scale	practices	of	subsistence	agricul
ture	(Fearnside	1993).	

Other	activities	with	high	economic	value	such	as	mining	and	selective	
logging	also	contributed	to	deforestation	in	the	BLA	(Cochrane et al.	1999).	
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Major	 deforestation	 in	 the	 BLA	 has	 been	 concentrated	 in	 the
	socalled	arc of deforestation,	located	in	the	Southern	and	Eastern	parts	of	
the	BLA	from	Acre	to	Maranhão	states	(Cochrane	et	al.	1999;	Achard	et	al.	
2002).	

9.3	 Deforestation	Monitoring	in	the	BLA	

Since	 the	 late	1970s,	 INPE	has	performed	deforestation	assessments	 in	 the	
BLA	 using	 remotely	 sensed	 imagery.	 These	 assessments	 were	 carried	 out	
together	 with	 the	 former	 IBDF	 (Instituto	 Brasileiro	 de	 Desenvolvimento 	
Florestal)	 that	was	 later	 incorporated	with	 IBAMA	(Instituto	Brasileiro	do	
Meio	Ambiente	e	dos	Recursos	Naturais	Renováveis).	The	first	assessments	
were	carried	out	with	the	use	of	images	acquired	by	the	MSS	sensor	(four	
spectral	bands	with	spatial	resolution	of	80	m)	on	board	the	Landsat1,	 2, 	
and	3	satellites,	during	the	periods	of	1973–1975	and	1975–1978	using	visual	
interpretation	techniques	(Tardin	et	al.	1980).	

From	 1988	 onward,	 annual	 deforestation	 assessments	 were	 provided 	
for the	entire	BLA	using	images	from	the	TM	sensor	(six	spectral	bands	
with	 spatial	 resolution	 of	 30	 m)	 on	 board	 the	 Landsat5	 satellite,	 with	
improved	mapping	quality	due	to	its	improved	spatial	and	spectral	reso
lutions	as	compared	to	the	MSS	data.	The	methodology	applied	to	map	the	
deforested	 areas	 was	 based	 on	 visual	 interpretation	 of	 color	 composites	
(5R4G3B)	 of	 TM	 images	 in	 hard	 copy	 format	 at	 the	 scale	 of	 1:250,000. 	
The	visually	interpreted	polygons	of	the	deforested	areas	were	summed	
up	 to	 compute	 the	 total	deforested	 land	 for	 each	 state	and	presented	 in	
tabular	format.	This	method,	known	as	analog	PRODES,	was	performed	
until	2001.	

By	 the	 end	 of	 the	 1990s,	 an	 automated	 methodology	 began	 to	 be	 devel
oped	and	was	named	digital	PRODES	(Shimabukuro	et	al.	1998).	However,	
the	 deforestation	 information	 provided	 by	 PRODES	 was	 not	 sufficient	 for	
the	 more	 frequent	 monitoring	 surveillance	 needs	 of	 various	 Brazilian	 gov
ernment	agencies.	Therefore,	the	DETER	project	was	developed	based	on	the	
high	temporal	resolution	images	of	the	MODIS	sensor	to	provide		geospatial	
information	 on	 deforestation	 activities	 in	 near	 real	 time	 and	 has	 been	 in	
operation	since	2004.	

9.3.1	 Digital	PRODES	Methodology	

Digital	PRODES	is	the	world’s	largest	remote	sensing	project	for	monitoring	
deforestation	activities	in	tropical	rain	forests.	It	has	the	objective	to	survey	
all	deforested	areas	within	the	5	million	km2	of	the	BLA,	an	area	covered	by	
229	Landsat	scenes	(Figure	9.2).	
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FIGURE	9.2	
The	BLA	covered	by	229	TM	or	ETM+/Landsat	images	for	the	annual	survey	of	deforestation.	
(From	 INPE,	 Monitoramento
 da
 cobertura
 �orestal
 da
 Amazônia
 por
 satélites:
 Sistemas
 PRODES,

DETER,
DEGRAD
E
QUEIMADAS
2007–2008,	Instituto	Nacional	de	Pesquisas	Espaciais,	São	
José	dos	Campos,	SP,	Brazil,	2008;	Mahar,	D.,	Government
Policies
and
Deforestation
 in
Brazil’s

Amazon
Region,	World	Bank,	Washington,	DC,	1988.)	

PRODES	depicts	deforestation	within	the	BLA.	A	mask	of	nominally	intact		
forest	is	annually	updated	by	identifying	new	deforestation	events	to	the	
exclusion	of	nonforest	vegetation	type	and	other	change	dynamics	such	as		
the	clearing	of	secondary	regrowth.	Input	Landsat	TM	images	are	selected		
from	July,	August,	and	September	acquisitions.	This	period	is	 within	the		
arc
 of
 deforestation’s	 local	dry	 season	and	represents	an	 	atmospheric	win
dow	 where	 cloudfree	 images	 are	 typically	 available.	 These	  images	 are		
rectified	using	nearest	neighbor	sampling	to	a	UTM	projection,	resulting		
in	 a	 cartographic	 product	 with	 50	 m	 internal	 error.	 For	 PRODES,	 TM	 3		
(red),	 TM	  4	 (NIR),	 and	 TM	 5	 (MIR)	 bands	 are	 used	 to	 generate	 the	 frac
tion	images.	The	legend	for	the	maps	contains	the	following	classes:	forest,		
nonforest		
cerrado
arbustivo,
campo
limpo
de
cerrado,
campinarana,	etc.),	accu
mulated	deforestation	from	previous	years,	deforestation	from	the	current		
year,	hydrography,	and	cloud.	

Digital	 PRODES	 consists	 of	 the	 following	 methodological	 steps:		
(1) 	generation	of	per	pixel	vegetation,	soil,	and	shadefractional	images;		
(2) segmentation	based	on	growing	regions’	algorithm;	(3) classification		
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based	 on	 nonsupervised	 classifier;	 (4)	 mapping	 the	 classes	 based	 on	
the	 following	 legend:	 forest,	 nonforest	 (vegetation	 that	 is	 not	 charac
terized	 by	 a	 forest	 structure),	 deforestation	 (accumulated	 deforesta
tion	up	 to	 the previous	year),	hydrography,	and	clouds;	and	(5)	editing	
of	 classified	 map	 based	 on	 visual	 interpretation	 to	 minimize	 omission	
and  commission  errors	 from	 the	 automatic	 classification	 to	 produce	
the  final	 deforestation	 map	 in	 digital	 format.	 PRODES	 products	 are	
available	 at	 the	 official	 PRODES	 website	 (http://www.obt.inpe.br/	
prodes/index.html).	

A	 linear	 spectral	 mixture	 model	 (LSMM)	 is	 used	 to	 produce	 fraction	
images	 of	 vegetation,	 soil,	 and	 shade	 applied	 to	 the	 TM	 spectral	 bands	
(Shimabukuro	and	Smith	1991).	This	method	 reduces	data	dimensionality	
and	 enhances	 the	 specific	 targets	 of	 interest.	 A	 vegetationfraction	 image	
enhances	the	green	vegetation,	a	soilfraction	image	enhances	bare	soil,	and	
a	shadefraction	image	enhances	water	bodies	and	burned	land.	The	shade
fraction	image	was	used	to	characterize	the	total	previously	deforested	land	
in	 the	 BLA	 (Shimabukuro	 et	 al.	 1998)	 up	 to	 2001.	 The	 soilfraction	 image	
is	 used	 to	 classify	 the	 annual	 deforested	 increment	 based	 on	 the	 contrast	
between	forested	and	deforested	land.	

The	LSMM	can	be	written	as:	

where	
ri	is	the	response	for	the	pixel	in	band	i	of	TM	image	
a,	b,	and	c	are	the	proportion	of	vegetation,	soil,	and	shade	in	each	pixel	
vegei,	 soili,	 and	 shadei	 correspond	 to	 the	 spectral	 responses	 of	 each	

component	
ei	is	the	error	term	for	each	band	i


Landsat	TM	bands	3,	4,	and	5	are	used	to	 form	a	 linear	equation	system	
that	can	be	solved	by	any	developed	algorithm	(e.g.,	weighted	least	square).	
The	 resulting	 fraction	 images	 are	 resampled	 to	 a	 60	 m	 spatial	 resolu
tion in	order	to	minimize	computer	processing	time	and	disk	space,	with
out	 losing	 information	 compatible	 with	 the	 1:250,000	 final	 product	 map	
scale.	

Image	 segmentation	 is	 a	 technique	 to	 group	 the	 data	 into	 contigu
ous	 regions	 having	 similar	 spectral	 characteristics.	 Two	 thresholds	 are	
required	 to	 perform	 image	 segmentation:	 (a)	 similarity,	 that	 is	 the	 mini
mum	value	defined	by	the	user	to	be	considered	as	similar	to	form	a	region	
and	(b) area,	that	is	the	minimum	size	given	in	number	of	pixels	in	order	
to	 be	 individualized.	 The	 unsupervised	 classification	 (ISOSEG)	 method	
is	 used	 to	 classify	 the	 segmented	 fraction	 images.	 It	 uses	 the	 statistical	

http://www.obt.inpe.br
http://www.obt.inpe.br
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attributes	(mean	and	covariance	matrix)	derived	from	the	polygons	of	the	
image	segmentation.	

After	the	unsupervised	classification,	it	is	necessary	to	check	the	resulting	
maps.	This	task	is	performed	by	interpreters	using	interactive	image	editing	
tools.	Color	composites	of	Landsat	bands	5,	4,	and	3	are	displayed	 in	red–	
green–blue	 videos.	 Expertidentified	 omission	 and	 commission	 errors	 are	
manually	 corrected	 in	 order	 to	 improve	 the	 classification	 result.	 Then	 the	
individually	classified	images	are	mosaicked	to	generate	the	final	maps	per	
state	and	for	the	entire	BLA.	For	the	state	mosaics,	 the	spatial	resolution	is	
kept	at 60	m	and	 the	 scale	 for	presentation	 is	1:500,000,	while	 for	 the	BLA	
the	spatial	resolution	is	degraded	to	120	m	and	the	scale	for	presentation	is	
1:2,500,000.	

9.3.2	 DETER		Methodology	

Starting	 in	 2004,	 the	 DETER	 project	 was	 implemented	 to	 provide	 a	 near
realtime	 monitoring	 and	 detection	 of	 deforestation	 activities	 to	 support	
the	 Federal	 Government	 Action	 Plan	 for	 the	 Prevention	 and	 Control	 of	
Deforestation	in	the	BLA.	The	procedure	mimics	the	PRODES	method	but	
is	meant	to	detect	deforestation	activities	in	near	real	time	by	exploiting	the	
high	temporal	resolution	of	the	MODIS	sensor.	

The	 first	 step	 in	 the	 method	 of	 the	 DETER	 project	 is	 to	 mask	 the	 intact	
forest	 based	 on	 the	 PRODES	 evaluation	 of	 the	 previous	 year.	 The	 map	 of	
intact	forest	is	used	as	a	reference	for	identifying	new	deforestation	events	
in	near	real	time	throughout	the	current	year.	The	monitoring	activity	with	
MODIS	imagery	begins	in	January,	but	becomes	more	active	after	March	due	
to	less	cloud	cover	in	the	BLA.	This	does	not	significantly	impact	results	as	
there	is	comparatively	little	deforestation	occurring	during	the	rainy	season	
(November	through	March).	

Daily	MODIS	images	(surface	reflectance—MOD09)	used	to	identify	defor
estation	spots	are	selected	based	on	two	criteria:	(a)	amount	of	cloud cover	
and	 (b)	 swath	 within	 sensor	 view	 zenith	 angle	 less	 than	 35°	 (~1,400	 km).	
The	amount	of	cloud	cover	is	evaluated	based	on	quicklook	images	and,	if	
deemed	viable,	a	followon	full	spatial	resolution	assessment.	The	entire	BLA	
is	covered	by	12	MODIS	tiles	from	V09	to	V11	and	H10	to	H13.	

The	 images	 from	the	MOD09	product	are	delivered	as	HDF	(hierarchi
cal	data	format)	files	projected	in	a	sinusoidal	projection	(WGS84	datum).	
All	 data	 are	 converted	 to	 a	 GeoTIFF	 format	 and	 reprojected	 to	 the	 geo
graphic	coordinate	system	for	use	in	the	SPRING	software	imageprocess
ing	package.	

From	 the	 set	 of	 seven	 reflective	 bands	 of	 the	 MOD09	 product,	 bands	
1 (red),	2	(NIR),	and	6	(MIR)	are	used	to	generate	the	vegetation,	soil,	and	
shadefraction	images,	respectively,	using	the	linear	spectral	mixing	model	
as	 previously	 described	 in	 the	 digital	 PRODES	 method.	 The	 soilfraction	



	

	
	
	
	

	
	

	
	
	
	
	
	
	
	

	

	
	

	

162	 Global
Forest
Monitoring
from
Earth
Observation


images	 are	 then	 segmented,	 classified,	 mapped,	 and	 eventually	 edited	 by	
interpreters	following	the	digital	PRODES	protocol.	

The	 above	 procedure	 is	 carried	 out	 for	 every	 daily	 MODIS	 image	
acquired	over	the	BLA.	The	results	of	the	deforestation	activities	detected	
by	 DETER	 can	 be	 accumulated	 for	 different	 intervals	 such	 as	 weekly,	
biweekly,	or	monthly	and	are	available	 in	a	digital	format	at	the	DETER	
website	(http://www.obt.inpe.br/deter/index.html).	

9.4	 Results	

9.4.1	 Analog	and	Digital	PRODES	

Tardin	 et	 al.	 (1980)	 reported	 that	 deforestation	 in	 the	 BLA	 had	 reached	 a	
figure	of	152,200	km2	in	1978,	which	included	the	deforested	land	prior	to	
1960.	Since	that	period,	the	average	rate	of	deforestation	has	undergone	sig
nificant	changes.	For	example,	from	1978	to	1988,	the	average	deforestation	
rate	was	21,130	km2	year–1	while	it	gradually	decreased	to	11,130	km2	in 1991.	
After	1991,	it	began	to	increase	again,	reaching	a	rate	of	27,423	km2	in	2004.	
However,	an	abnormally	high	rate	of	29,059	km2	was	also	observed in	1995.	
From	2004	on,	a	 significant	decrease	 in	deforestation	rates	was	observed,	
with	a	minimum	rate	of	7,000	km2	in	2010	(Tables	9.1	and	9.2).	This	period	
is	 coincident	 with	 the	 implementation	 of	 the	 DETER	 project	 as	 part	 of	
the	 Federal	 Government	 Action	 Plan	 for	 the	 Prevention	 and	 Control	 of	
Deforestation	in	BLA.	

Since	the	implementation	of	the	digital	PRODES	method	in	2002,	the	defor
estation	results	are	immediately	provided	to	government	agencies	to	imple
ment	policies	that	enforce	the	reduction	of	illegal	deforestation.	The PRODES	
results	 are	 available	 to	 the	 public	 at	 the	 Web	 site,	 and	 the	 main	 data	 on	
deforestation	over	the	last	8	years	are	shown	in	Table	9.2.	

Figure	9.3	illustrates	the	annual	deforestation	rates	from	1988	to	2010	for	
the	BLA.	

Figure	9.4	presents	the	thematic	map	of	the	PRODES	classes,	showing	the	
spatial	distribution	of	the	deforested	areas	up	to	2010;	note	the	concentration	
of	forest	loss	in	the	arc
of
deforestation.	

The	remote	sensing	images	acquired	since	the	early	1970s	proved	to	be	an	
important	tool	for	monitoring	the	deforestation	in	the	entire	BLA	and	largely	
coincide	with	enactment	of	policies	by	the	Brazilian	government	to	promote	
the	occupation	of	the	region.	Spatiotemporal	data	on	deforestation	rates	have	
significantly	contributed	not	only	to	government	policies	in	reducing	illegal	
deforestation	activities,	but	also	to	the	scientific	community	and	the	study	
of	human	impacts	on	biodiversity,	greenhouse	gases	emission,	and	regional	
and	global	climate	change.	

http://www.obt.inpe.br
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TABLE	9.2	

Deforestation	Estimates	(km2)	from	the	Digital	PRODES	from	2002	to	2009	

States/Year	 2002	 2003	 2004	 2005	 2006	 2007	 2008	 2009	

Acre	 883	 1,078	 728	 592	 398	 184	 254	 211	
Amazonas	 885	 1,558	 1,232	 775	 788	 610	 604	 406	
Amapá	 –	 25	 46	 33	 30	 39	 100	 –	
Maranhão	 1,014	 993	 755	 922	 651	 613	 1,272	 980	
Mato	Grosso	 7,892	 10,405	 11,814	 7,145	 4,333	 2,678	 3,258	 1,047	
Pará	 7,324	 6,996	 8,521	 5,731	 5,505	 5,425	 5,606	 3,687	
Rondônia	 3,099	 3,597	 3,858	 3,244	 2,049	 1,611	 1,136	 505	
Roraima	 84	 439	 311	 133	 231	 309	 574	 116	
Tocantins	 212	 156	 158	 271	 124	 63	 107	 56	
Brazilian	Amazon	 21,394	 25,247	 27,423	 18,846	 14,109	 11,532	 12,911	 7,008	

FIGURE	9.3	
Variation	of	deforested	areas	during	1988–2010	time	period	for	the	Brazilian	Amazonia	region.	

9.4.2	 DETER	Project	

Figure	9.5	presents	an	example	of	the	DETER	monitoring	results,	showing	
the	spatial	distribution	of	the	deforestation	activities	detected	on	a	monthly	
basis	for	2004.	

The	 DETER	 system	 provides	 a	 nearrealtime	 monitoring	 procedure	 to	
support	the	Federal	Government	Action	Plan	for	the	Prevention	and	Control	
of	Deforestation	in	BLA	since	2004,	when	a	significant	reduction	in	the	defor
estation	 rate	 started	 to	 be	 observed	 (Figure	 9.3).	 DETER	 products	 are	 not	
used	 to	 estimate	 areas	 of	 deforestation	 but	 as	 an	 alarm	 to	 inform	 govern
ment	agencies	on	potential	illegal	forestclearing	activities	in	the	BLA.	The	
availability	of	the	high	temporal	resolution	images	from	the	MODIS	sensor	
enables	monthly	reporting	of	forest	loss	alarms	and	has	contributed	to	slow
ing	illegal	deforestation	activities	in	the	BLA.	
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FIGURE	9.5	
(See	color	insert.)	Illustration	of	the	example	of	DETER	project	results,	showing	the	deforested	
areas	detected	during	the	year	2004.	

9.5	 Discussion	and	Conclusion	

The	initial	monitoring	of	deforestation	activities	in	BLA	was	performed	by	the	
analog	PRODES	product	that	was	based	on	visual	interpretation	of	hard	copies	
of	Landsat	scenes	at	the	scale	of	1:250,000.	This	was	an	expensive	and	tedious	
procedure	carried	out	by	numerous	interpreters	on	a	yearly	basis.	However,	it	
produced	valuable	information	on	deforestations	rates	until	the 2001.	

In	2002,	the	analog	PRODES	was	replaced	by	the	digital	PRODES		product	
that	employs	a	semiautomatic	method	based	on	digital	imageprocessing	
techniques	 and	 minor	 visual	 interpretation	 to	 correct	 for	 	classification	
errors.	The	great	advantage	of	digital	PRODES	is	the	provision	of	defores
tation	information	in	a	compatible	format	for	use	in	GIS	for	ecosystem	and	
land	use	and	cover	change	modeling.	However,	 the	annual	frequency of	
deforestation	 estimates	 was	 insufficient	 to	 support	 other	 government	
needs,	specifically	that	of	reducing	illegal	deforestation	activities.	

As	a	consequence,	 the	DETER	project	was	 implemented	 in	2004	 to	 rein
force	public	policies	that	have	helped	to	reduce	the	deforestation	rates	from	
27,423	km2	in	2004	to	7,000	km2	in	2010.	It	is	important	to	mention	that	the	
DETER	does	not	replace	but	complements	the	digital	PRODES	monitoring	
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procedure.	 The	 DETER	 detects	 deforestation	 activities	 in	 its	 initial	 stage	
without	providing	an	area	estimate,	while	the	digital	PRODES	evaluates	the	
total	annual	deforested	area	(INPE	2008).	

The	longterm	history	of	the	images	acquired	by	the	sensors	on	board	the	
Landsat	satellites	proved	to	be	an	essential	 tool	 for	monitoring	the	annual	
deforestation	 of	 the	 BLA.	 The	 Landsat	 record	 covers	 the	 majority	 of	 the	
period	since	the	Brazilian	government	initially	incentivized	settlement	of	the	
BLA.	The	high	temporal	resolution	of	the	MODIS	sensor	on	board	the	Terra	
and	Aqua	platforms	was	also	highly	relevant	to	support	government	policies	
in	 stopping	 illegal	 deforestation.	 The	 result	 has	 been	 a	 consequent	 reduc
tion	of	deforestation	rates	aided	by	the	combined	information	from	both	the	
DETER	and	PRODES	projects.	
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10.1		 Introduction	

Forest	 degradation	 is	 an	 anthropogenic	 process	 that	 can	 lead	 to	 signifi
cant	 carbon	 loss	 from	 forests	 to	 the	 atmosphere.	 Measuring	 and	 mapping	
of	 forest	 degradation	 have	 become	 important	 tasks	 for	 advancing	 carbon	
payment	 negotiations	 through	 the	 reducing	 emissions	 from	 deforestation	
and	 degradation	 (REDD+)	 process	 (Herold	 et  al.	 2011).	 The	 forests	 of	 the	
Brazilian	Amazon	 are	 significantly	 impacted	 by	 forest	 degradation	 due	 to	
three	main	processes:	selective	logging,	forest	fires,	and	forest	fragmentation.	
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These degradation	dynamics	operate	synergistically	and	recurrently,	result
ing	 in	 the	 loss	of	original	carbon	stocks	of	 intact	 forests.	 In	extreme	cases,	
forest	degradation	can	lead	to	a		complete	conversion	of	forests	to	other	land	
cover	types	(i.e.,	pasture	or	agriculture	lands).	However,	it	is	more	common	
for	forests	to	remain	nominally	as	forests,	but	with	a	reduced	carbon	stock	
and	altered	biodiversity	and	forest	structure.	

The	annual	area	of	selectively	logged	forest	in	the	Brazilian	Amazon	is	as	
large	as	that	cleared	by	deforestation	(Nepstad	et al.	1999;	Asner	et al.	2005).	
Due	 to	 the	 significance	 of	 this	 disturbance	 dynamic	 to	 forest	 structure	 in	
the	Amazon	basin,	several	remote	sensing	techniques	have	been	tested	and	
developed	to	detect,	measure,	and	map	the	areal	extent	of	forest	degradation	
(Souza	 and	 Barreto	 2000;	 Asner	 et  al.	 2002;	 Souza	 et  al.	 2005a;	 Matricardi	
et al.	2007).	Selective	logging	has	also	been	studied	in	the	Brazilian	Amazon	
in	terms	of	its	ecological	impacts,	including	changes	in	carbon	stocks,	biodi
versity	loss,	soil	compaction,	forest	microclimate,	and	biogeochemical	cycles	
(Verissimo	et al.	1992,	1995;	Johns	et al.	1996;	Pereira	et al.	2002).	

Forest	fires	(Cochrane	et al.	1999;	Alencar	et al.	2004)	and	forest	fragmenta
tion	(Laurance	et al.	2000,	2002)	have	also	received	great	scientific	attention,	
including	studies	of	the	synergism	between	these	two	processes	(Cochrane	
2001;	Cochrane	and	Laurance	2002).	The	synergism	between	selective	logging	
and	forest	fires	is	also	well	understood	(Holdsworth	and	Uhl	1997;	Nepstad	
et al.	1999).	Remote	sensing	techniques	to	map	forest	fragments	(FFs)	have	
been	developed	since	the	early	1990s	(Skole	and	Tucker	1993).	However,	map
ping	burned	area	extent	is	more	challenging	as	ground	fires	result	only	in	
degradation	 of	 forest	 understory.	 Moreover,	 fire	 is	 often	 related	 to	 forests	
that	have	been	previously	logged,	further	complicating	their	quantification	
and	unique	contribution	to	emissions.	

A	host	of	ecological	and	remote	sensing	studies	of	forest	degradation	have	
been	conducted	in	the	Brazilian	Amazon,	making	the	region	a	suitable	area	
for	a	review	and	evaluation	of	optical	remotesensing	techniques	for	REDD+ 

projects.	Presenting	a	review	of	these	remotesensing	techniques	is	the	first	
objective	of	this	chapter.	By	definition,	REDD+	includes	both	forest	conver
sion	 as	 well	 as	 forest	 degradation,	 and	 the	 Brazilian	 Amazon	 is	 the	 only	
tropical	 forest	where	both	deforestation	and	 forest	degradation	have	been	
studied	in	great	detail.	The	second	objective	of	this	chapter	is	to	demonstrate	
how	remote	sensing	techniques	can	be	integrated	with	forest	biomass	field	
measurements	to	construct	reliable	baselines	of	carbon	emissions	associated	
with	forest	degradation.	In	order	to	achieve	these	objectives,	the	chapter	is	
divided	 into	 three	 sections.	The	first	 section	presents	a	 summary	of	 forest	
degradation	processes	and	their	impacts	on	forest	carbon	stocks	and	includes	
an	evaluation	of	those	attributes	of	forest	degradation	that	can	be	quantified	
using	remotely	sensed	data.	In	the	second	section,	the	optical	remote	sens
ing	techniques	available	for	detecting	and	mapping	forest	degradation	are	
presented	in	detail,	including	a	discussion	of	their	strengths	and	limitations	
when	applied	to	mapping	changes	in	forest	carbon	stocks.	The	last	session	
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presents	a	 framework	 for	 integrating	deforestation	and	 forest	degradation	
monitoring	activities	in	developing	baselines	for	REDD+.	

10.2		 Field	Characterization	of	Forest	Degradation	

10.2.1	 Definition	

Forest	degradation	is	a	temporary	or	permanent	change	in	density,	composi
tion,	or	structure	of	natural	forest	attributes	caused	by	anthropogenic	factors.	
Forest	degradation	differs	from	forest	changes	caused	by	natural		phenomena,	
such	as	natural	tree	falls,	windthrows,	and	lightning	strikes,	as	these	changes	
in	forest	attributes	are	not	human	induced	(Lambin	1999).	Several		ecological	
field	studies	conducted	 in	 the	Brazilian	Amazon	have	shown	that	selective	
logging,	forest	fires,	and	forest	fragmentation	are	the	main	processes	respon
sible	 for	 forest	 degradation	 (Verissimo	 et  al.	 1992;	 Barros	 and	 Uhl	 1995;	
Holdsworth	and	Uhl	1997;	Cochrane	et al.	1999;	Cochrane	and	Laurance	2002).	
Forest	degradation	processes	operate	at	different	intensities	and	time	scales,	
creating	 a	 continuum	 from	 intact	 forests	 to	 degraded	 forests	 to	 	complete	
stand	replacement	and	conversion	(Figure	10.1).	Defining	the	types	of	forest	
attributes	affected	by	degradation	processes	is	important,	as	is	assessing	the	
capabilities	of	remote	sensing	in	measuring	changes	to	these	attributes.	

In	 the	 Brazilian	Amazon,	 logging	 creates	 small	 clearings,	 known	 as	 log	
landings	or	logging	decks,	varying	in	size	from	40	to	190	m2.	Log	landings	
are	connected	by	primary	logging	roads	that	can	be	6–15	m	wide	and	account	
for	additional	clearings	of	60–567	m2	per	hectare.	These	roads	give	access	to	
harvesting	areas	through	secondary	roads	and/or	skid	trails.	Tree	fall	gaps	
are	commonly	found	in	forest	areas	where	commercial	tree	species	are	har
vested,	given	that	vine	cutting	 is	not	a	widespread	practice	 in	 this	region.	
High	tree	diameters	(i.e.,	diameter	at	breast	height	[DBH]	>	45	cm)	are	usu
ally	taken	in	the	first	harvesting	cycle,	but	recurrent	logging	cycles	can	occur	
as	smaller	trees	are	successively	harvested	(i.e.,	15	<	DBH	<	45	cm)	(Figure	
10.1).	The	harvesting	intensity	varies	from	1	to	9	trees	per	hectare	(Verissimo	
et al.	1992,	1995;	Barros	and	Uhl	1995;	Johns	et al.	1996;	Pereira	et al.	2002).	

It	 is	well	established	that	logging	leads	to	favorable	conditions	for	burn
ing	 forests.	 Logging	 creates	 canopy	 gaps	 that	 allow	 penetration	 of	 more	
incoming	 solar	 radiation	 into	 the	 understory	 environment.	 As	 result,	
understory	 humidity	 is	 reduced,	 drying	 out	 remaining	 logging	 debris	 or	
slash.	Agriculture	fires	can	unintentionally	escape	to	adjacent	logged	forests	
(Holdsworth	and	Uhl	1997).	Similar	to	logging,	forest	fires	can	also	reoccur	
in	the	same	forest,	creating	a	positive	feedback	in	increasing	forest	degrada
tion	(Cochrane	et al.	1999;	Cochrane	and	Schulze	1999)	(Figure	10.1).	

Several	logging	cycles	and	fire	events	can	drastically	deplete	forest	carbon	
stocks	to	carbon	density	levels	similar	to	those	of	a	deforested	area.	However,	
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FIGURE	10.1	
(See	 color	 insert.)	 Forest	 degradation	 processes	 and	 interactions	 commonly	 found	 in	 the	
Brazilian	Amazon.	Pristine	forests	can	be	subject	to	selective	logging,	creating	favorable	condi
tions	for	burning	when	fires	from	adjacent	agriculture	fields	unintentionally	escape.	Logging	
and	fires	can	be	recurrent,	creating	highly	degraded	forests.	Eventually,	degraded	forests	can	be	
converted	by	deforestation,	increasing	forest	edges	and	landscape	fragmentation.	If	degraded	
forests	are	not	cleared,	vegetation	regeneration	processes	can	prevail	given	the	high	resiliency	
of	forests.	

before	this	occurs,	it	is	more	common	for	degraded	forests	to	be	cleared.	The	
fate	of	degraded	forests	 in	 the	Brazilian	Amazon	varies	across	 the	region.	
In	areas	close	to	deforestation	frontiers,	degraded	forests	are	more	likely	to	
be	cleared	within	5–10	years,	a	process	that	increases	forest	edges	and	land
scape	 fragmentation	 (Asner	et al.	2005)	 (Figure	10.1).	The	degraded	forests	
that	are	not	converted	by	deforestation	may	regenerate,	 returning	 to	 their	
original	carbon	stocks	after	several	decades.	However,	the	original	species	
composition	may	not	be	restored	due	to	local	extinctions	(Figure	10.1).	

10.2.2	 Types	of	Degraded	Forests	

As	discussed	above,	forest	degradation	creates	a	continuum	from	intact	for
est	to	clearings.	But,	for	mapping	purposes	a	typology	of	classes	is	required.	
Here,	 degraded	 forests	 are	 classified	 in	 terms	 of	 the	 processes	 and	 intensi
ties	associated	with	degradation	(Souza	et al.	2009).	The	first	type	of	degraded	
forests	in	the	Brazilian	Amazon	is	logged	forests.	Three	types	of	selectively	
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logged	 forests	 have	 been	 identified	 in	 this	 region:	 nonmechanized	 logging	
(NML),	managed	logging	(ML),	and	conventional	logging	(CL).	Agricultural	
fires	are	more	likely	to	burn	forests	that	experienced	CL.	CL	forests	have	favor
able	 conditions	 for	burning	due	 to	a	greater	amount	of	 slash	and	collateral	
canopy	damage.	Fires	in	logged	forests	lead	to	a	new	class	of	forest	degrada
tion	named	burned	forest	(BF).	Finally,	forest	patches	of	different	sizes	can	be	
isolated	due	to	landscape	fragmentation.	The	resulting	FF	class	has	often	been	
subject	to	logging	and/or	fire.	Thus,	a	suitable	classification	scheme	to	char
acterize	forest	degradation	in	the	Brazilian	Amazon	based	on	field	ecological	
studies,	associated	with	different	processes	and	their	interactions	(Figure	10.1),	
and	covering	a	spectrum	of	intensity,	can	be	proposed	as	follows:	

r� Undisturbed	 forest	 (UF):	 Oldgrowth	 intact	 forest	 dominated	 by	
shadetolerant	tree	species	and	original	carbon	stocks.	

r� NML:	 Logged	 forest	 without	 the	 use	 of	 heavy	 vehicles	 such	 as	
skidders	 and	 trucks,	 also	 known	 as	 traditional	 logging.	 Logging	
infrastructure	(log	landings,	roads,	and	skid	trails)	are	not	built.	

r� ML:	Planned	selective	logging	where	a	tree	inventory	is	conducted,	
followed	 by	 road	 and	 log	 landing	 planning	 to	 reduce	 harvesting	
impacts.	

r� CL:	Conventional	unplanned	selective	 logging	using	skidders	and	
trucks.	Log	landings,	roads,	and	skid	trails	are	built	causing	exten
sive	canopy	damage.	Lowintensity	understory	burning	may	occur,	
but	forest	canopy	is	not	burned.	

r� BF:	Either	NML	or	logged	forests	(ML	and	CL)	where	forest	canopy	
has	been	intensively	burned.	

r� FF:	 Isolated	 forest	 patches	 created	 by	 deforestation	 with	 abrupt	
changes	on	edges	to	pasture	and	agriculture	lands,	or	with	partial	
transitional	edges	to	secondary	forests.	Fragments	in	the	study	area	
are	usually	subject	to	recurrent	NML	and	fires.	

10.2.3		 Attributes	of	Degraded	Forests	Detectable	Using	Remote	Sensing	

At	the	field	scale,	logged	forests	are	composed	of	three	main	environments:	
(1)	forest	islands	that	were	not	disturbed	due	to	poor	access	imposed	by	dif
ficult	topography	and	rivers,	or	a	lack	of	commercial	timber	species;	(2) areas	
where	 the	 forest	has	been	cleared	 to	create	 roads	 for	machine	movements	
(skidders	 and	 trucks)	 and	 log	 landings	 to	 store	 the	 harvested	 timber;	 and	
(3)	canopydamaged	forests	(i.e.,	harvested	areas	and	areas	damaged	by	tree	
falls	and	machine	movements)	 (Souza	and	Roberts	2005)	 (Figure	10.2).	All	
of	these	environments	can	be	found	in	the	ML	and	CL	classes,	but	the	dif
ference	 is	 that	 in	 ML,	 reduced	 impact	 logging	 practices	 are	 conducted	 to	
reduce	direct	and	collateral	damages	(Johns	et al.	1996;	Pereira	et al.	2002).	
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FIGURE	10.2	
(See	 color	 insert.)	Very	high	 spatial	 resolution	 falsecolor	 infrared	 IKONOS	 image	 showing	
the	different	environments	commonly	found	in	logged	and	burned	(LB)	forests	in	the	eastern	
Brazilian	Amazon.	At	1	m	spatial	resolution,	log	landings,	logging	roads,	tree	fall	canopy	gaps,	
and	forest	edges	can	be	identified	as	well	as	“islands”	of	UFs	and	signs	of	regeneration.	Signs	
of	forest	erosion	along	the	edges	between	the	LB	forest	and	the	recently	slashedandburned	
forest	can	also	be	observed.	(From	Souza,	C.M.	and	Roberts,	D.,	Int.
J.
Remote
Sens.,	26,	425,	2005.)	

For	these	two	classes,	logging	harvesting	intensity	varies	from	30	to	40	m3	of	
logs	per	hectare	(Verissimo	et al.	1992;	Johns	et al.	1996).	The	NML	class	does	
not	feature	the	various	logging	environments	described	above	as	no	heavy	
machinery	is	used	to	harvest	trees	and	a	low	harvest	intensity	is	practiced	
(i.e.,	5–10	m3	of	logs	per	hectare).	When	fires	penetrate	logged	forests,	unde
tected	damage	under	the	canopy	is	expected.	Prolonged	and	more	 intense	
fires	 can	 damage	 the	 tree	 canopy,	 exposing	 tree	 branches	 and	 trunks	 and	
making	remote		sensing	detectability	possible	(Souza	and	Roberts	2005).	

Tree	 inventories	 and	 forest	 impact	 measurements	 have	 been	 conducted	 to	
characterize	forest	degradation	caused	by	selective	logging	(Verissimo	et al.	1992;	
Johns	et al.	1996;	Pereira	et al.	2002).	Gerwing’s	(2002)	was	the	first	study	in	the	
Brazilian	Amazon	that	proposed	an	allencompassing	approach	to	characterize	
the	biophysical	properties	of	a	range	of	degraded	forests.	Slightly	different	forest	
degradation	classes	were	proposed	for	this	study.	For	example,	repeated	logging	
and	burning	were	placed	in	separate	classes.	Our	research	group	has	adjusted	
Gerwing’s	method	to	characterize	classes	of	forest	degradation	that	can	be	easily	
integrated	with	remotely	sensed	measurements	(Souza	et al.	2005a,	2009).	

The	 forest	 survey	 proposed	 by	 Gerwing	 (2002)	 consisted	 of	 measuring	
all	 trees	 with	 DBH	 >10	 cm	 along	 transects	 of	 10	 m	 ×	 500	 m	 (i.e.,	 0.5	 ha).	
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Moreover,	subparcels	(10	m	×	10	m;	0.1	ha)	were	established	at	every	50 m	
along	 transects,	 and	 all	 trees	 <10	 cm	 DBH	 were	 surveyed.	 Logging	 and/	
or	 burning	 impacts	 were	 measured	 in	 the	 subparcels,	 including	 ground	
cover,	and	canopy	gaps	were	estimated	using	a	hemispherical	lens	and	den
sitometer.	 Aboveground	 live	 and	 dead	 biomass	 pools	 were	 estimated	 for	
trees	>10 cm	DBH	for	each	transect	using	tree	inventory	data	and		available	
allometric	 equations.	 Ancillary	 information	 about	 land	 use	 and	 distur
bance	history	(i.e.,	time	since	last	disturbance,	number	of	times	the	area	was	
disturbed)	was	collected	during	the	field	surveys.	The	forest	transects	were	
randomly	defined	in	the	field,	and	more	than	three	must	be	conducted	per	
class	of	degraded	forest.	

10.2.4	 Ecological		Impacts	

Field	 ecological	 studies	 have	 provided	 the	 foundation	 for	 understanding	
the	structural	and	compositional	changes	caused	by	forest	degradation	pro
cesses	on	pristine	UFs.	For	remote	sensing	detection	of	 forest	degradation	
impacts,	 the	 following	attributes	are	 relevant:	 (1)	ground	cover	 comprised	
of	 intact	 vegetation,	 wood	 debris,	 and	 disturbed	 soils;	 (2)	 canopy	 cover;	
and  (3)  aboveground	 live	 biomass	 (AGLB).	 Our	 research	 group	 has	 con
ducted	more	than	100	transects	in	the	Brazilian	Amazon	using	an	adaptation	
of	Gerwing’s	methodology	to	link	field	measurements	with	remotely	sensed	
data	(Souza	et al.	2005b,	2009).	We	have	observed	that	for	a	single	degradation	
event,	intact	vegetation	and	canopy	cover	decrease	with	an	increase	in	for
est	degradation	intensity	by	20%	and	60%,	respectively.	Conversely,	soil	dis
turbance	and	wood	debris	increase	by	10%	and	40%,	respectively.	However,	
when	repeated	degradation	events	are	considered,	these	impacts	tend	to	be	
more	drastic.	For	example,	repeated	logging	in	the	eastern	Amazon	region	
can	disturb	up	to	70%	of	the	original	vegetation	and	deplete	up	to	40%	of	the	
original	canopy	cover	(Gerwing	2002).	

The	forest	structure	changes	caused	by	the	forest	degradation	processes	
described	above	affect	species	composition	and	carbon	stocks	of	UFs.	The	
mean	AGLB	of	UF	obtained	for	our	transect	measurements	was	377	Mg	per	
hectare,	with	minimum	biomass	for	the	JiParaná	site	(273	Mg	per	hectare)	
and	maximum	for	Santarém	(497	Mg	per	hectare).	This	result	is	compatible	
with	field	AGLB	estimates	using	very	large	forest	plots	(Keller	et al.	2001)	and	
within	the	range	of	average	values	reported	for	the	Brazilian	Amazon	region	
(Malhi	et al.	2006;	Saatchi	et al.	2007).	Using	the	mean	AGLB	obtained	with	
our	transects	and	assuming	that	carbon	makes	up	50%	of	the	forest	biomass,	
we	can	then	demonstrate	how	carbon	stocks	vary	with	degradation	inten
sity	(Figure	10.3).	A	trend	of	reduced	carbon	stocks	in	pristine	UF	undergo
ing	 forest	 degradation	 processes	 has	 been	 observed.	 The	 more	 significant	
change	is	when	UF	is	fragmented	or	burned,	leading	to	respective	28%	and	
30%	 reductions	 in	carbon	stocks	 relative	 to	original	UF	stocks.	NML,	ML, 	
and	CL	degradation	classes	each	experienced	a	<10%	carbon	loss.	The	carbon	
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FIGURE	10.3	
Change	 in	aboveground	 live	biomass	as	a	 function	of	degradation	 intensity.	Bars	 represent	
standard	error	of	the	mean	value	and	lines	represent	the	percent	change	of	C	mean	relative	
to	 intact	 forest.	 (From	Souza,	C.	 et	al.,	 Integrating	 forest	 transects	and	 remote	 sensing	data	
to	quantify	carbon	loss	due	to	forest	degradation	in	the	Brazilian	Amazon.	In	Case
Studies
on

Measuring
and
Assessing
Forest
Degradation.	Forest	Resources	Assessment	Working	Paper	161,	
FAO,	Rome,	20	p.,	2009.)	

stock	changes	presented	in	Figure	10.3	are	for	one	event	of	forest	degradation	
only.	When	considering	recurrent	forest	degradation	events,	carbon	stocks	
can	be	reduced	by	up	to	50%	(Gerwing	2002).	

10.3		 Remote	Sensing	of	Forest	Degradation	

Detecting	and	mapping	forest	degradation	with	optical	remotely	sensed	data	
is	more	complicated	than	mapping	forest	clearings	by	deforestation	because	
degraded	 forest	 “pixels”	 are	 complex	 environments	 with	 mixtures	 of	 dif
ferent	land	cover	materials	(i.e.,	vegetation,	dead	trees,	bark,	tree	branches,	
soil,	shade;	Figure	10.1	[Souza	and	Roberts	2005]).	Furthermore,	signs	of	for
est	degradation	disappear	within	1–2	years	due	to	rapid	canopy	closure	and	
understory	revegetation,	making	spectral	characteristics	of	degraded	forests	
similar	to	that	of	UFs	(Stone	and	Lefebvre	1998;	Asner	et al.	2004a,b;	Souza	
et al.	2005a,	2009).	

The	 first	 attempts	 to	 map	 degraded	 forests	 in	 the	 Brazilian	 Amazon	
focused	on	detecting	the	processes	responsible	for	degradation.	Mapping	
selective	 logging	 received	 considerable	 attention,	 given	 its	 large	 extent	
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and	negative	ecological	impacts.	The	annual	logged	area	in	this	region	has	
been	considered	as	large	as	the	annually	deforested	area,	with	first	esti
mates	coming	from	socioeconomic	field	surveys	(Nepstad	et al.	1999)	and	
the	following	ones	based	on	satellite	imagery	(Asner	et	al.	2005;	Matricardi	
et al.	2007).	Techniques	to	map	forest	fire	scars	have	also	been	developed,	
and	forest	fragmentation	can	be	mapped	with	traditional	techniques	used	
to	 map	 deforestation.	 More	 recently,	 an	 allencompassing	 approach	 for	
mapping	 forest	 canopy	 damage	 caused	 by	 these	 degradation	 processes	
has	been	proposed.	Techniques	for	doing	so	are	discussed	in	the	follow
ing	sections.	

10.3.1		 Remote	Sensing	Approaches	to	Mapping	Selective	Logging	

Several	 remote	 sensing	 techniques	 were	 tested	 and	 applied	 to	 local	 and	
regional	scale	studies	in	the	Amazon	region	to	map	selectively	logged	forests	
(Table	10.1).	These	techniques	can	be	grouped	in	terms	of	mapping	goals	and	
methods	utilized.	In	terms	of	mapping	goals,	some	techniques	were	devel
oped	to	map	the	total	forest	area	affected	by	logging,	which	includes	forest	
canopy	damage	and	forest	clearings	created	by	log	landings	and	roads,	and	to	
map	intact	forest	islands	surrounded	by	logging	infrastructure	and	canopy
damaged	areas.	The	second	mapping	goal	focused	on	the	mapping	of	areas	
with	forest	canopy	damage	only	(i.e.,	intact	forest	islands	were	not	included).	
In	 terms	of	methods	 for	mapping	 logging,	visual	 interpretation,	 semiauto
mated,	and	automated	techniques	have	been	tested	(Table	10.1),	and	most	of	
them	can	be	applied	to	different	spatial	and	spectral	resolution	sensors.	

At	 high	 spatial	 resolutions	 (i.e.,	 <5  m	 pixel	 size),	 images	 acquired	 by	
either	 spaceborne	or	aerial	platforms	are	viable	 for	 smallarea	analyses.	
Most	of	the	features	found	in	logging	environments	(i.e.,	roads,	log	land
ings,	 tree	 fall	 gaps,	 and	 UF	 islands)	 can	 be	 easily	 identified	 at	 this	 scale	
(Figure	10.1).	Fusion	techniques	of	panchromatic	and	multispectral	images	
are	commonly	applied	to	enhance	the	imagery	(Read	et al.	2003;	Souza	and	
Roberts	2005),	and	visual	interpretation	is	the	most	common	mapping	tech
nique	used.	However,	given	the	cost	for	image	acquisition	and	interpreta
tion,	 their	 use	 in	 mapping	 and	 monitoring	 logging	 is	 limited.	 For	 these	
reasons,	 the	 methods	 presented	 in	 the	 following	 sections	 focus	 only	 on	
medium	spatial	resolution	imagery	(i.e.,	10–60	m	pixel	size).	These	data	are	
freely	available	and	are	regularly	acquired,	unlike	higher	spatial	resolution	
commercial	data	sets.	

10.3.1.1	 Visual	Interpretation	

Watrin	and	Rocha	(1992)	pioneered	the	use	of	satellite	images	to	map	selec
tive	 logging	 in	 the	 Amazon	 region.	 Their	 work	 focused	 on	 Paragominas	
municipality,	which	was	the	most	important	logging	center	of	the	Brazilian	
Amazon	from	1985	to	1995	(Verissimo	et al.	1992).	This	study	used	printouts	
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of	Landsat	TM5	bands	4	and	5	acquired	in	1988	to	first	visually	identify	and	
trace	on	overlay	paper	the	boundaries	of	selectively	logged	areas.	Next,	the	
resulting	 polygons	 were	 hand	 digitized	 using	 a	 geographic	 information	
system	 (GIS)	at	 1:100,000	 scale.	The	authors	used	 the	boundaries	of	 forest	
scars	 created	 by	 roads,	 log	 landings,	 and	 canopydamaged	 areas	 as	 the	
criteria	for	defining	logged	areas.	Stone	and	Lefebvre	(1998)	also	used	visual	
interpretation	of	Landsat	TM5	data	 to	map	 logged	 forests	 in	Paragominas	
for	1986,	1988,	1991,	and	1995.	In	2001,	a	largescale	study	was	conducted	to	
map	selective	 logging	of	 the	Brazilian	Amazon	using	visual	 interpretation	
of	Landsat	TM5	digital	 imagery.	In	this	study,	Santos	et al.	 (2001)	mapped	
logged	forests	at	a	1:250,000	scale	and	estimated	an	average	of	1,580	km2	per	
year	for	the	period	1988–1998.	

There	 are	 drawbacks	 to	 the	 use	 of	 visual	 interpretation	 for	 mapping	
selective	 logging.	 First,	 defining	 the	 boundary	 of	 logged	 and	 UFs	 is	 not	
always	 straightforward,	 even	 when	 using	 more	 detailed	 imagery	 such	 as 	
IKONOS	(Read	et al.	2003;	Souza	and	Roberts	2005).	Second,	there	is	some	
level	of	subjectivity	 in	defining	forest	degradation	created	by	 logging	and	
forest	 fires;	 none	 of	 the	 studies	 that	 used	 visual	 interpretation	 methods	
define	rigorous	criteria	for	separating	these	two	causes	of	forest	degradation.	
Third,	visual	interpretation	is	labor	intensive	and	may	be	cost	prohibitive	for	
operational	forest	monitoring	projects	(Table	10.1).	

10.3.1.2	 Combining	Remote	Sensing	and	GIS	

The	 need	 for	 a	 faster,	 cheaper,	 and	 replicable	 method	 to	 detect	 and	 map	
selective	logging	has	driven	the	development	of	automated	techniques.	The	
first	attempt	combined	automated	detection	of	 log	 landings	 from	soil	 frac
tion	derived	from	a	spectral	mixture	analysis	(SMA;	covered	in	detail	later)	
applied	 to	 Landsat	 images	 followed	 by	 the	 application	 of	 buffer	 regions	
(Souza	 and	 Barreto	 2000).	 This	 technique	 requires	 field	 measurements	 to	
estimate	harvesting	 radius	 from	 log	 landings	 in	order	 to	define	 the	buffer	
radius.	For	tropical	dense	forest	of	the	eastern	Amazon	and	open	forests	of	
the		central–southern	region,	buffer	sizes	were	180	m	(Souza	and	Barreto	2000)	
and	350	m	(Monteiro	et al.	2003),	respectively;	both	are	considered	local	stud
ies.	Matricardi	 et  al.	 (2001)	used	 this	buffer	approach	 (with	fixed	 radius	of 	
180 m)	to	estimate	selective	logging	impact	over	the	Brazilian	Amazon,	dif
fering	with	the	use	of	texture	measures	applied	to	Landstat	TM5	bands	3–5	to	
detect	log	landings.	This	largescale	study	estimated	an	annual	average	area	
affected	by	logging	of	4,690	km2	per	year	for	the	period	1992–1999.	This	result	
is	almost	three	times	the	one	obtained	by	visual	interpretation	(Santos	et al.	
2001),	though	the	product	is	at	a	more	detailed	scale	(1:50,000)	(Table	10.1).	

The	buffer	technique	for	estimating	logging	areas	also	has	limitations.	Logging	
buffers	are	not	fixed,	and	neither	circular	(Souza	and	Barreto	2000)	nor	squared	
buffers	(Monteiro	et al.	2003)	adequately	capture	logged	areas.	The	area	affected	
by	 logging	 in	 most	 cases	 did	 not	 follow	 the	 contours	 of	 the	 buffer	 regions,	
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resulting	 in	 commission	and	omission	classification	errors.	To	overcome	 this	
problem,	a	technique	that	uses	region	growth	algorithms	from	log	landings	was	
proposed	(Graça	et al.	2005)	to	map	canopydamaged	areas	(Table	10.1).	

10.3.1.3	 SMA	

Studies	in	the	Brazilian	Amazon	have	shown	that	Landsat	reflectance	data	
have	limited	the	capacity	for	detecting	logged	forests,	with	bands	3	and	5 pro
viding	 the	 best	 spectral	 contrast	 between	 logged	 and	 intact	 forests	 (Stone	
and	Lefebvre	1998;	Asner	et al.	2002;	Souza	et al.	2005a).	Vegetation	indices	
and	texture	filters	also	showed	some	potential	for	detection	of	canopy	dam
age	created	by	logging	(Asner	et al.	2002;	Souza	et al.	2005a),	but	are	more	
useful	for	enhancing	logging	infrastructure	using	Landsat	band	5	(i.e.,	roads	
and	log	landings;	Matricardi	et al.	2007)	(Table	10.1).	

Alternatively,	SMA	has	been	proposed	to	overcome	the	challenge	of	using	
wholepixel	information	to	detect	and	classify	logged	forests.	Landsat	pix
els	 typically	 contain	 a	 mixture	 of	 land	 cover	 components	 (Adams	 et  al.	
1995).	In	logged	forests	(and	also	in	BF	and	forest	edges),	mixed	pixels	pre
dominate	and	are	expected	to	have	a	combination	of	green	vegetation	(GV),	
soil,	 nonphotosynthetic	 vegetation	 (NPV),	 and	 shadecovered	 materials.	
Therefore,	fractional	images	derived	from	SMA	analyses	have	the	potential	
to	enhance	the	detectability	of	 logging	infrastructure	and	canopy	damage	
within	 degraded	 forests.	 For	 example,	 soil	 fractions	 enhance	 log	 landings	
and	logging	roads	(Souza	and	Barreto	2000),	while	NPV	fractions	enhance	
forestdamaged	areas	(Cochrane	and	Souza	1998;	Souza	et al.	2003),	and	GV	
highlights	forest	canopy	gaps	(Asner	et al.	2004a).	

In	SMA,	the	Landsat	TM/ETM+	reflectance	data	of	each	pixel	can	be	bro
ken	down	into	GV,	NPV,	soil,	and	shade	fractions,	which	are	the	expected	
materials	found	in	pixels	within	areas	of	forest	degradation.	The	SMA	model	
assumes	that	the	image	spectra	are	formed	by	a	linear	combination	of	n	pure	
spectra,	referred	to	as	endmembers	(Adams	et al.	1995),	such	that:	

where	
Rb	is	the	reflectance	in	band	b

Ri,b	is	the	reflectance	for	endmember	i,	in	band	b

Fi
the	fraction	of	endmember	i

εb	is	the	residual	error	for	each	band	
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The	SMA	model	error	is	estimated	for	each	image	pixel	by	computing	the	
root	mean	square	(RMS)	error,	given	by:	

The	identification	of	 the	nature	and	number	of	pure	spectra	(i.e.,	endmem
bers)	 in	 the	 image	 scene	 is	 an	 important	 step	 in	 obtaining	 correct	 SMA	
models.	Two	approaches	have	been	proposed	 to	define	endmembers.	First,	
reflectance	spectra	can	be	acquired	at	the	field	level	with	a	handheld	spec
trometer	(Roberts	et al.	2002).	The	pure	spectra	measured	on	the	ground	are	
named	reference	endmembers	and	need	to	be	well	calibrated	to	 the	 image	
data.	The	second	approach	uses	image	endmembers	obtained	directly	from	
the	images	(Small	2004).	This	approach	does	not	require	spatial	and	radiomet
ric	calibration	between	endmembers	and	image	data	since	their	acquisition	
is	from	the	same	sensor	and	scale.	SMA	automation	is	also	required	to	make	
this	 technique	useful	 for	monitoring	large	areas.	A	Monte	Carlo	unmixing	
technique	using	reference	endmember	bundles	was	proposed	for	that	pur
pose	(Bateson	et al.	2000)	and	applied	to	map	selective	logging	with	Landsat	
images	over	the	Brazilian	Amazon	(Asner	et al.	2004a,	2005).	An	alternative	
approach	using	generic	 image	endmembers	 (Small	2004)	was	 implemented	
for	the	same	application	(Souza	et al.	2005b),	avoiding	the	need	for	collecting	
reference	field	spectra.	

A	novel	 spectral	 index	applicable	combines	SMA	fractions	 to	derive	 the	
normalized	difference	fraction	index	(NDFI)	(Souza	et al.	2005b).	The	NDFI	
was	developed	to	more	accurately	map	selective	logging.	The	NDFI	is	com
puted	as:	

NDFI	values	range	from	–1	to	+1.	For	intact	forests,	NDFI	values	are	expected	
to	 be	 high	 (i.e.,	 about	 1)	 due	 to	 the	 combination	 of	 high	 GVshade	 (i.e.,	 high	
GV	 and	 canopy	 shade)	 and	 low	 NPV	 and	 soil	 values.	 As	 forest	 becomes	
degraded,	 the	 NPV	 and	 soil	 fractions	 are	 expected	 to	 increase,	 lowering	
NDFI	values	relative	to	intact	forest.	Cleared	forests	are	expected	to	exhibit	
low	GV	and	shade,	and	high	NPV	and	soil,	making	it	possible	to	distinguish	
them	from	degraded	forests	as	well	(Figure	10.4).	

Fraction	images	obtained	with	the	subpixel	estimation	of	forest	endmem
bers	through	SMA	enhanced	the	detection	of	forest	degradation	caused	by	
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FIGURE	10.4	
(See	color	insert.)	Subset	of	a	Landsat	TM	image	showing	fractions	obtained	from	SMA	and	
NDFI.	(a)	High	soil	fraction	shows	logging	infrastructure	(log	landings	and	roads);	(b)	NPV	
shows	higher	 fraction	values	 for	canopydamaged	areas	along	 infrastructure	relative	 to	 the	
surrounding	intact	forest;	(c)	canopy	damage	is	also	identified	with	lower	GV	fraction	values	
(dark	colors);	 and	 (d)	all	 the	 fraction	 information	are	combined	 to	enhance	 the	detection	of	
logged	forest.	

logging.	As	a	result,	spatial	and	contextual	classifiers	were	developed	and	
applied	to	fraction	images	improving	detection	and	mapping	of	selectively	
logged	 forests.	 The	 techniques	 varied	 from	 simple	 GV	 change	 detection 	
(Souza	 et	 al.	 2002)	 and	 contextual–spectral	 classifiers	 (Souza	 et	 al.	 2005b)	
to	more	 sophisticated	and	computerintensive	 spectral	and	spatial	pattern	
recognition	techniques	(Asner	et al.	2005)	(Table	10.1).	As	a	result,	selective	
logging,	initially	considered	cryptic	to	Landsatlike	images	(Nepstad	et al.	
1999),	became	visible	and	measurable	over	large	forest	areas	of	the	Brazilian	
Amazon.	 Subsequent	 analyses	 proved	 that	 this	 type	 of	 degradation	 was	
affecting	 areas	 as	 large	 as	 those	 cleared	 by	 deforestation,	 as	 indicated	 by	
field	survey	estimates	(Nepstad	et al.	1999).	

10.3.2		 Classification	of	Forest	Degradation	

The	remote	sensing	techniques	described	in	Section	10.3.1	represent	a	con
siderable	 contribution	 toward	 mapping	 selective	 logging,	 which	 is	 one	 of	
the	processes	responsible	for	forest	degradation.	However,	the	application	of	
these	techniques	has	also	revealed	challenges	in	separating	logging		damage	
from	 that	 created	 by	 forest	 fires.	 For	 example,	 SMA	 fractions	 have	 been	
used	to	map	fire	scars	of	previously	 logged	forests	of	 the	eastern	Amazon	
(Cochrane	 and	 Souza	 1998;	 Cochrane	 et  al.	 1999);	 the	 largearea	 mapping	
studies	 of	 selective	 logging	 did	 not	 take	 into	 account	 the	 associated	 fire	
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impacts	on	forests	(Asner	et al.	2005;	Matricardi	et al.	2007),	assuming	that	
the	 forest	 damage	 was	 	created	 only	 by	 logging.	 Therefore,	 new	 classifica
tion	algorithms	were	needed	to	account	for	the	different	change	dynamics	
created	by	logging	and	fires.	

Morton	et al.	(2011a)	proposed	a	technique,	also	applied	to	SMA	fractions,	
to	detect	the	spatial	and	temporal	pattern	of	forest	burn	damage	and	recov
ery	(BDR)	in	order	to	distinguish	forest	degradation	from	logging	and	forest	
fires.	The	BDR	technique	was	applied	to	Landsat	and	MODIS	data,	with	the	
latter	more	suitable	for	mapping	large	burn	scars	(i.e.,	>50	ha).	This	technique	
requires	robust	time	series	including	a	postdisturbance	recovery		signal,	mean
ing	that	the	result	is	always	1	year	outofdate.	An	alternative	to	this	method	
is	to	use	spatial–contextual	classifiers	to	separate	logged	forest	from	BFs	based	
on	the	size	and	shape	of	the	forest	damage	(Souza	et al.	2005b)	or	the	burn	scar	
index	(BSI)	(Alencar	et al.	2011),	which	is	an	SMA	fractionbased	approach	to	
map	BFs.	However,	these	methods	do	not	eliminate	all	spatial	and		temporal	
overlaps	 between	 the	 different	 degradation	 processes.	 Therefore,	 it	 is	 more	
appropriate	 to	 map	 canopy	 damage	 without	 regard	 to	 the	 cause	 of	 forest	
degradation	(either	logging	or	forest	fire),	and	then	use	contextual	information	
to	distinguish	the	process	responsible	for	the	impact.	

For	example,	Figure	10.5	shows	the	result	of	a	timeseries	(1984–2010)	anal
ysis	of	deforestation	and	forest	degradation	for	a	Landsat	TM	scene	(226/68)	
covering	Sinop	municipality,	in	Mato	Grosso	state,	southern	Amazon	region.	
A	decision	tree	classifier	was	built	and	applied	to	fractions	(GV,	NPV,	soil,	and	
shade)	and	NDFI	derived	from	SMA	to	map	forest	canopy	damage	caused	
by	selective	logging	and	forest	fires	every	year.	Then,	forest	degradation	age	
and	frequency	were	obtained	from	these	annual	maps.	Moreover,	a	carbon	
emission	simulator	(CES)	(Morton	et al.	2011a)	model	was	used	to	estimate	
carbon	emissions	associated	with	deforestation	and	forest	degradation	and	
associated	uncertainty.	Forest	degradation	frequency	enables	the	CES	model	
to	keep	track	of	carbon	stock	reduction;	forest	degradation	age	is	important	
to	track	carbon	sequestration	due	to	forest	regeneration.	

Because	CES	is	based	on	a	Monte	Carlo	simulation	approach,	emission	fac
tors	 from	 deforestation	 and	 forest	 degradation	 and	 model	 parameters	 are	
defined	as	ranges	of	possible	values.	For	example,	forest	carbon	stock	changes	
due	to	forest	degradation	in	this	region	range	from	10%	to	30%	(Figure	10.3).	
CES	runs	several	times	(i.e.,	at	least	100	times),	and	in	each	simulation	car
bon	stock	changes	associated	with	forest	degradation	can	have	any	possible	
value	between	 this	 range.	Here,	we	assumed	a	uniform	distribution	since	
we	do	not	have	sufficient	data	to	define	the	actual	statistical	distribution	of	
carbon	stock	changes	in	degraded	forests.	Then,	uncertainty	of	carbon	emis
sions	associated	with	deforestation	and	forest	degradation	can	be	estimated	
with	CES.	

The	CES	results	showed	that	the	carbon	emissions	for	the	226/62	Landsat	
scene	 covering	 the	 Sinop	 region	 in	 Mato	 Grosso	 totaled	 46.7–82	 MgC	
(i.e.,  tons  of	 C)	 from	 1984	 to	 2010	 (Figure	 10.5).	 The	 average	 total	 carbon 	
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FIGURE	10.5	
(See	color	insert.)	In	this	example,	a	long	time	series	(i.e.,	>25	years)	of	Landsat	TM/ETM+	data	
from	Sinop,	Mato	Grosso	state,	was	used	to	track	deforestation	and	forest	degradation.	Forest	
degradation	age	and	 frequency	maps	are	obtained	 from	 the	annual	maps	and	used	 together	
with	the	forest	degradation	and	deforestation	maps	in	a	CES	model	to	estimate	carbon	emissions	
associated	with	these	processes.	More	reliable	and	consistent	baseline	scenarios	for	REDD+	can	
be	obtained	with	this	type	of	model	because	information	about	forest	degradation	is	included	
and	associated	uncertainty	estimated.	
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emissions	 were	 66.5	 MgC	 (with	 95%	 CI).	 Forest	 degradation	 contributed	
19%	 (i.e.,	8.7–16.3	MgC;	average	of	8.7	MgC)	of	 the	carbon	emissions	over	
this	 26year	 period.	 However,	 in	 2000,	 2007,	 and	 2008,	 carbon	 emissions	
from	 forest	 degradation	 were	 higher	 than	 emissions	 from	 direct	 forest	
conversion.	These	results	reinforce	the	need	to	measure	carbon	emissions	
associated	with	forest	degradation	(Figure	10.5).	

10.4	 Forest	Monitoring	for	REDD+ 

In	a	recent	study	conducted	in	the	forests	of	Mato	Grosso	state,	the	sources	
of	uncertainties	for	carbon	emission	estimates	from	deforestation,	forest	deg
radation,	and	forest	carbon	stocks	were	identified	for	the	period	1990–2008	
(Morton	et al.	2011b).	The	sources	of	deforestation	data	showed	good	agree
ment	 for	 multiyear	 periods	 (i.e.,	 5year	 interval),	 but	 annual	 deforestation	
rates	differed	by	>20%.	Data	sources	of	forest	carbon	stocks	ranged	more	sig
nificantly,	between	99	and	192	MgC	per	hectare.	Even	though	there	were	sev
eral	ecological	studies	of	the	impacts	of	forest	degradation	in	this	region	and	
remote	sensing	 techniques	 for	mapping	forest	degradation	were	 	available,	
existing	maps	of	forest	degradation	were	scarce.	Additionally,	the	available	
forest	biomass	maps	did	not	account	for	changes	in	forest	carbon	stocks	due	
to	forest	degradation.	As	a	result,	full	carbon	accounting	for	REDD+	is	com
promised.	The	remote	sensing	techniques	described	in	this	chapter	can	be	
used	to	reduce	this	uncertainty	by	quantifying	annual	transitions	involving	
degraded	 forest	and	 their	 relation	 to	deforestation	and	reduction	of	 forest	
carbon	stocks	(Figures	10.1	and	10.6).	

Selective	 logging,	 forest	 fires,	 and	 forest	 fragmentation	 are	 the	 major	
sources	of	depletion	of	forest	carbon	stocks	in	the	Amazon	region	through	
forest	degradation,	even	 though	 less	carbonimpacting	 forest	degradation	
processes	 have	 been	 recognized	 (Peres	 et  al.	 2006).	 Therefore,	 the	 lessons	
from	 the	Amazon	 region	 regarding	characterization	of	 forest	degradation	
through	 ecological	 and	 remote	 sensing	 measurements	 can	 be	 useful	 for	
establishing	 a	 framework	 for	 the	 spatially	 explicit	 estimation	 of	 carbon	
emissions	 and	 their	 sources	 of	 uncertainty	 for	 REDD+	 (Figure	 10.6).	 The	
proposed	framework	is	that	of	the	United	Nations	Framework	Convention	
on	Climate	Change	 (UNFCCC)	Approach	3	and	Tier	3	 forest	area	change	
and	carbon	stocks	estimates	(Herold	et al.	2011).	

First,	the	baseline	period	for	the	project	must	be	defined.	In	our	study	in	
Mato	Grosso,	we	concluded	that	a	long	(>15	years)	historic	assessment	could	
help	reduce	uncertainty	in	remote	sensing	data	sources.	In	the	example	pro
vided	in	Figure	10.5,	1984	was	defined	as	the	baseline	year	for	mapping	for
est	 changes.	For	mapping	deforestation,	 there	are	 several	wellestablished	
remote	sensing	techniques	and	operational	monitoring	systems	in	place	in	
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FIGURE	10.6	
(See	color	insert.)	Integrating	deforestation	and	forest	degradation	information	to	estimate	
forest	carbon	stock	changes	for	REDD+	projects.	

the	Amazon	region.	For	forest	degradation,	Table	10.1	offers	several	options	
to	 map	 forest	 canopydamaged	 areas.	 The	 reported	 map	 accuracy	 for	 the	
methods	 used	 to	 map	 logging	 and	 forest	 fires	 ranged	 from	 89%	 to	 93%.	
However,	 it	 is	 important	 to	 previously	 characterize	 the	 processes	 respon
sible	for	degradation	in	order	to	support	the	selection	of	the	remote	sensing	
method.	

Deforestation	 maps	 over	 the	 REDD+	 baseline	 period	 allow	 estimation	
of	 annual	 deforestation	 rates.	 Additionally,	 deforestation	 maps	 can	 also	
inform	 the	 length	of	 forest	edges	and	 the	extent	of	 forest	 fragmentation.	
For	example,	in	1999	and	2002,	more	than	32,000	km	and	38,000	km	of	new	
forest	 edges	 were	 created,	 respectively,	 as	 a	 result	 of	 deforestation	 and	
selective	logging	(Broadbent	et	al.	2008).	Information	on	forest	fragmenta
tion	and	edge	effects	has	not	been	taken	into	account	in	REDD+ projects,	
but	can	be	a	major	source	of	carbon	emissions	(Numata	et al.	2010,	2011).	
Forest	 degradation	 maps	 are	 important	 for	 providing	 information	 on	
annual	rates	of	degradation	and	on	forest	degradation	age	and	recurrence	
(i.e.,	 frequency).	 Age	 and	 recurrence	 histories	 of	 forest	 degradation	 are	
necessary	for	updating	forest	carbon	stock	maps.	Moreover,	this	informa
tion	can	aid	in	designing	forest	inventory	sampling	stratification	schemes	
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to	estimate	 carbon	stocks	of	degraded	 forests	at	field	 level.	For	example,	
forest	inventories	can	be	conducted	in	areas	that	have	undergone	several	
cycles	of	carbon	depletion	by	degradation	processes.	

Annual	maps	of	 forest	degradation	derived	from	remote	sensing	offer	a	
reliable	spatiotemporal	data	set	to	account	for	forest	carbon	stock	changes	in	
preparing	a	REDD+	baseline.	Once	forest	inventories	are	conducted,	spatial	
interpolation	methods	can	be	used	to	derive	forest	biomass	information	over	
large	areas.	Kriging	interpolation	is	an	approach	that	has	been	successfully	
tested	in	the	Brazilian	Amazon	to	estimate	spatially	explicit	unbiased	aver
ages	 of	 forest	 biomass	 and	 their	 associated	 uncertainty	 (Sales	 et  al.	 2007). 	
Integration	of	krigged	forest	biomass	maps	with	maps	of	deforestation	and	
forest	degradation	has	already	been	conducted	and	proven	to	be	useful	in	
reporting	carbon	emissions	associated	with	 these	processes	 (Morton	et al.	
2011a;	Numata	et al.	2011).	

These	 results	 are	 promising	 and	 support	 the	 proposed	 framework	
(Figure	10.6)	for	monitoring	REDD+	projects.	The	challenges	to	applying	
this	framework	to	other	tropical	forest	regions	include	the	lack	of	technical	
capacity	for	both	remote	sensing	and	forest	inventory	activities.	However,	
options	 for	 monitoring	 forest	 degradation	 and	 deforestation	 going	 from	
a	 less	 to	 more	 rigorous	 approach/tier	 are	 available	 (Herold	 et  al.	 2011).	
Nonetheless,	 there	 is	 no	 technical	 reason	 to	 exclude	 carbon	 emissions	
estimates	by	forest	degradation	from	REDD+	MRV	activities.	

10.5	 Conclusions	

Selective	 logging,	 forest	 fires,	 and	 forest	 fragmentation	 are	 the	 main	 pro
cesses	 responsible	 for	 forest	 degradation	 in	 the	 Brazilian	 Amazon.	 These	
processes	can	lead	to	significant	reduction	of	forest	carbon	stocks,	especially	
when	recurrent	forest	degradation	occurs.	Additionally,	significant	change	in	
forest	structure	also	happens,	allowing	detection	and	mapping	of	forest	deg
radation	scars	with	optical	remotely	sensed	data.	A	range	of	1–30	m	of	spatial	
resolution	imagery	has	been	tested	in	the	Amazon	region	for	mapping	forest	
degradation,	using	different	techniques.	But	high	spatial	resolution	imagery	
such	as	Landsat	has	been	the	most	 important	source	of	data	 to	map	forest	
degradation	in	this	region.	Landsat	 imagery	is	 important	because	 it	covers	
very	large	areas	and	allows	to	construct	very	long	(i.e.,	>15	years)	historical	
deforestation	and	forest	degradation	credible	baseline	for	REDD+.	In	terms	
of	techniques,	subpixel	information	derived	from	SMA	offers	a	better	way	to	
enhance	forest	degradation	scars	relative	to	wholepixel	classifiers	or	textural	
metrics	(which	is	based	on	pixel	neighborhood	information).	Moreover,	forest	
change	detection	algorithms	must	be	designed	to	track	history	and	recurrent	
events	of	 forest	degradation	to	better	estimate	carbon	emissions	associated	
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with	these	processes.	Therefore,	because	of	the	large	area	affected	and	high	
impact	on	forest	carbon	stocks,	baseline	for	REDD+	projects	in	the	Amazon	
region	must	include	annual	forest	area	change	and	associated	carbon	emis
sions	due	to	forest	degradation,	as	demonstrated	in	this	chapter.	
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11.1	 Introduction	

Forest	 resources	are	very	relevant	 in	 the	political	agenda	of	 the	European	
Union,	as	forestry	influences	many	sectorial	policies	dealing	with	environ
mental	protection,	 renewable	energy,	and	biodiversity,	 to	name	some.	The	
design,	implementation,	monitoring	and	evaluation,	and	impact	assessment	
of	environmental	policies	at	the	European	level	require	reliable,	consistent,	
and	updated	information	of	forest	resources.	

Although	several	countries	in	Europe	collect	a	considerable	amount	of	
forestrelated	 information,	 this	 is	often	not	spatially	continuous	and	fre
quently	 not	 accessible,	 nonharmonized,	 scattered	 in	 remote	 databases,	
and	 encapsulated	 in	 diverse	 data	 formats.	 One	 critical	 aspect	 regarding	
forest	 information	 in	 Europe	 is	 the	 different	 forest	 definitions	 used	 by	
countries,	which	hampers	the	comparability	of	nationally	collected	forest	
information.	

Remote	sensing–based	products	are	thus	the	most	suitable	source	of	con
sistent	and	uptodate	forest	 information	over	 large	areas.	Remote	sensing	
techniques	have	been	widely	used	for	mapping	forest	resources	at	local	and	
national	 levels.	Working	over	 large	areas	poses	additional	 logistic,	 techni
cal,	 and	 managerial	 challenges	 that	 have	 limited	 the	 number	 of	 existing	
panEuropean	products.	Largearea	projects	usually	require	a	considerable	
data	management	capacity.	They	also	require	carefully	planned	processing	
chains,	including	consistent	preprocessing	of	satellite	and	ancillary	informa
tion	and	mapping	methodologies	 to	produce	 largearea	products.	 In	addi
tion,	 these	 methodologies	 must	 be	 robust,	 reliable,	 and	 flexible	 to	 handle	
suboptimal	data	sets	of	images	from	several	sensors.	

Several	 remote	 sensing–based	 products	 exist	 that	 include	 forest	 infor
mation	 and	 have	 panEuropean	 coverage.	 However,	 these	 products	 were	
derived	 from	 coarseresolution	 satellite	 images	 (Bartholomé	 and	 Belward	
2005;	DeFries	et al.	2000;	Friedl	et al.	2002;	Häme	2001;	Hansen	et al.	2000;	
Schuck	2003)	or	are	labor	intensive	(Corine	Land	Cover	[CLC]).	Furthermore,	
the	lack	of	comprehensive	validation	schemes	of	these	products	limits	their	
utility	in	a	number	of	applications.	

The	recent	availability	of	a	wider	selection	of	remote	sensing	data	allows	
an	 improvement	 in	 spatial	 resolution	 over	 the	 existing	 products.	 It	 also	
allows	exploiting	the	temporal	domain	of	remote	sensing	data.	This	scenario	
enables	the	development	of	products	with	higher	spatial	detail	and	increased	
thematic	information	content.	

In	this	context,	the	Joint	Research	Centre	(JRC)	of	the	European	Commission	
has	 been	 working	 on	 the	 production	 of	 enhanced	 remote 	sensing–based 	
forest	products.	Two	panEuropean	 forest	maps	with	a	ground	sampling	
distance	 (GSD)	 of	 25  m	 have	 been	 produced	 based	 on	 Landsat	 ETM+ 

imagery	(Pekkarinen	et al.	2009)	and	IRS	LISSIII,	SPOT	45,	and	Moderate	
Resolution	 Imaging	 Spectro	radiometer	 (MODIS)	 remote	 sensing	 data	
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(Kempeneers	et al.	2011).	Besides	 these	highresolution	 	products,	 the	 JRC	
is	 carrying	 out	 research	 to	 improve	 forest 	monitoring	 capabilities	 at	 250 	
and	500	m	GSD	based	on	timeseries		analysis	of	remote	sensing	data.	This	
chapter	presents	the	methodologies	used	in	the		production	of	these	maps	
and	their	accuracies	and	discusses	future		potential	developments	in	forest	
monitoring	at	the	panEuropean	level.	

11.2		 Materials	and	Methods	

This	 section	 describes	 the	 materials	 used	 in	 the	 production	 of	 the	 forest	
maps	for	the	years	2000	and	2006	(Figures	11.1	and	11.2).	
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FIGURE	11.1	
(See	color	insert.)	JRC	forest	map	2000.	
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FIGURE	11.2	
(See	color	insert.)	JRC	forest	map	2006.	

11.2.1	 Materials	

The	forest/nonforest	map	for	the	year	2000	(FMAP2000)	was	derived	from	
Landsat7	ETM+	imagery.	Scenes	belonged	to	two	different	image	datasets:	
the	NASA	Orthorectified	Landsat	Dataset	(Tucker	et al.	2004)	available	from	
the	Global	Land	Cover	Facility	(GLCF)	and	the	IMAGE2000	data	set	(JRC	
2005).	The	two	data	sources	were	mixed	in	order	to	optimize	cloud freeness	
and	acquisition	date.	The	target	year	for	the	scenes	was	2000,	but	the	acqui
sition	window	covered	years	from	1999	to	2002.	The	full	data	set	included	
415 scenes	available	as	top	of	atmosphere	(TOA)	radiance:	285	of	them	from	
the	 GLCF	 and	 130	 from	 the	 IMAGE2000	 data	 set.	All	 images	 in	 the	 full	
data	set	were	reprojected	to	the	European	Terrestrial	Reference	system	1989	
and	 the	 Lambert	 Azimuthal	 Equal	 Area	 (ETRS89LAEA)	 projection	 and	
resampled	to	25	m	rasters.	In	order	to	ensure	consistent		geometrical	quality	
between	scenes	coming	from	the	two	different	data	sets,	IMAGE2000	scenes	
were	orthorectified	taking	GLCF	scenes	as	a	reference.	

The	 forest/nonforest	 map	 for	 the	 year	 2006	 (FMAP2006)	 and	 the	 	forest	
type	map	(FTYP2006)	were	derived	from	the	IMAGE2006	data	set.	This data	
set	 includes	 TOA	 radiance	 IRSLISS3	 scenes	 and	 additional	 SPOT	 4	 and	
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5 scenes	for	those	regions	in	which	cloudfree	IRSLISS3	were	not	available.	
The	scenes	were	orthorectified	and	geometrically	corrected.	As	in	the	year	
2000,	all	 images	were	reprojected	to	ETRS89LAEA	projection	and	resam
pled	to	25	m	rasters.	

In	 addition	 to	 the	 IMAGE2006	 data	 set,	 the	 production	 of	 FTYP2006	
required	 12	 (one	 per	 month)	 MODIS	 16day	 composites	 at	 250	 m	 spatial	
resolution.	 These	 composites	 were	 reprojected	 and	 resampled	 to	 25	 m	 to	
match	the	IMAGE	2006	data	set.	

11.2.2	 Ancillary	Data	

11.2.2.1	 Training	Data	

The	CLC	data	set	was	used	as	training	data.	CLC	includes	44	land	cover	(LC)	
and land	use	classes	from	which	three	correspond	to	forest	classes		(broad	leaved,	
coniferous,	and	mixed	forests).	The	CLC	covers	all	EIONET	countries,	which	
includes	 the	 EU27	 Member	 States	 and	 neighboring	 countries.	 The	 CLC	 is	
available	for	the	reference	years	1990,	2000,	and	2006.	The	corresponding		data	
set	was	used	for	the	production	of	each	pan	European	forest map.	

11.2.2.2	 Reference	Data	

The	validation	of	the	FMAP2000	was	performed	using	two	data	sets.	The	first	
included	field	plot	data	from	the	land	use/cover	area	frame	statistical	survey	
that	 was	 carried	 out	 in	 2001	 (LUCAS2001).	 LUCAS2001	 is	 based	 on	 94,984	
sampling	units,	which	consist	of	a	circle	with	a	20	m	radius.	It	is	based	on	a	
seven	 LC	 classification	 nomenclature,	 with	 the	 forest	 class	 subdivided	 into	
broadleaved,	coniferous,	and	mixed,	but	it	also	includes	a	land	use	component.	
The	second	data	set	was	derived	from	the	visual	interpretation	of	sample	points	
overlaid	on	very	highresolution	satellite	imagery	from	Google Earth.	In	total,	
5,193	forest	and	nonforest	points	were	collected	from	the	interpretation	of	this	
data	set	and	classified	into	forest	and	nonforest	classes.	

The	 FMAP2006	 was	 validated	 using	 ground	 reference	 data	 that	 were	
derived	from	European	National	Forest	Inventories	(NFIs).	NFI	data	are	fre
quently	 collected	 by	 national	 authorities	 for	 the	 production	 and	 planning	
of	forest	resources	at	national	and	regional	levels,	but	they	are	also	needed	
to	meet	international	reporting	requirements	to	the	FAO’s	Forest	Resource	
Assessment	(FAO	2010)	and	other	requirements.	

The	 NFI	 data	 used	 in	 this	 validation	 were	 managed	 in	 the	 socalled	
eForest	platform.	The	eForest	platform,	established	for	the	provision	of	data	
and	services	to	the	European	Forest	Data	Center	(EFDAC)	of	the	European	
Commission,	is	the	first	step	to	produce	a	harmonized	database	of	all	European	
NFIs.	 It	 emerged	 from	the	work	carried	out	by	 the	COST	Action	E43	 that	
sought	to	develop	methods,	concepts,	and	definitions	that	would	harmonize	
NFIs	between	countries	(Tomppo	et al.	2010).	Of	particular	importance	within	
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FIGURE	11.3	
Pixel	extraction	tool.	

this	process	was	the	harmonization	of	the	definition	of	forest,	which	varies	
between	NFIs.	

The	platform	consisted	of	1,080,829	NFI	plots,	distributed	across	21	coun
tries.	However,	the	exact	plot	locations	were	not	disclosed	by	the	NFIs.	For	the	
validation,	it	was	necessary	to	build	a	pixel	extraction	tool	that	was	used	by	
the	data	owners	to	extract	the	forest	map	data	within	a	5	×	5	window	around	
the	 NFI	 plot	 coordinates	 (Figure	 11.3).	 These	 data	 were	 used	 to	 	compute	
the	overall,	producer,	and	user	accuracies	for	the	FMAP2006	at	country	and	
regional	scales.	Plots	that	were	labeled	as	young	stands	or	unstocked	were	
removed	 from	 the	 eForest	 validation	 data	 set	 so	 that	 the	 accuracy	 assess
ment	of	the	FMAP2006	focused	on	forest	cover	and	nonforest	use.	It should	
be	noted	that	unstocked	forest	areas	are	considered	forests	from	a land	use	
perspective,	 although	 they	 are	 not	 forests	 from	 an	 LC	 (remote	 	sensing)	
perspective.	

Additionally,	 the	LUCAS2001	data	were	used	 to	validate	 the	FMAP2006	
data	set.	The	results	of	this	validation	process	are	described	hereafter.	

11.3	 Methods	

11.3.1	 Data	Preprocessing	

The	 high	 spatial	 resolution	 scenes	 from	 IRS	 LISS3	 and	 SPOT4/5	 were	
preprocessed	 by	 the	 German	 Aerospace	 Center	 (DLR).	 The	 scenes	 were	
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orthorectified	 using	 rational	 polynomial	 functions	 (Lehner	 et  al.	 2005)	
and	 geometrically	 corrected	 using	 ground	 control	 points	 (GCPs)	 and	 a	
digital	elevation	model	(DEM).	The	orthoimages	were	resampled	to	25	m	
in	the	standard	projection	for	Europe,	using	the	ETRS89/LAEA	projection	
(Annoni	et al.	2003).	The	reported	root	mean	square	errors	in	both	horizon
tal	directions	were	less	than	a	pixel.	The	images	were	only	available	as	TOA	
radiances	(not atmospherically	corrected).	

In	the	case	of	the	MODIS,	daily	images	were	also	preprocessed	by	DLR	in	
the	standard	European	projection.	However,	a	geometric	and	atmospheric	
correction	 was	 performed	 to	 obtain	 ground	 reflectances	 for	 bands	 1–7	 at	
250 and	500	m	GSD.	

A	 16day	 MODIS	 composite	 was	 created	 from	 the	 daily	 images.	 By	 not	
using	the	MOD13Q1	product	(Huete	2002),	a	reprojection	from	sinusoidal	to	
the	standard	European	projection	was	not	needed,	avoiding	an	extra	inter
polation	step.	Unlike	the	MOD13Q1	product,	our	16day	composite	was	not	
corrected	for	BRDF	effects.	Nevertheless,	by	selecting	the	median	pixel	value	
in	 the	NIR	band	of	all	 cloudfree	observations	within	 the	16day	window,	
some	of	the	effects	due	to	undetected	clouds	and	extreme	observation	angles	
were	alleviated.	

11.3.2		 Forest	Mapping	Approaches	

A	nonparametric	supervised	classification	algorithm	was	used	to	obtain	the	
forest	maps	FMAP2000	and	FTYP2006.	Supervised	classification	methods	are	
preferable	in	cases	where	a
priori	information	is	available	for	the	desired	out
put	classes	and	their	spatial	distribution	(Cihlar	2000).	With	the	CLC	map,	
training	data	for	forests	(types)	and	nonforests	were	available	in	a	consistent	
way	for	the	entire	area	of	interest	(Europe).	

Given	the	large	geographic	extent	of	the	panEuropean	map,	the	interclass	
variance	was	expected	to	be	high.	For	example,	broadleaved	forests	in	northern	
Europe	have	different	spectral	characteristics	than	those	in	southern	Europe.	
Moreover,	the	digital	numbers	stored	in	the	multispectral	image	bands	rep
resented	TOA	radiance	and	thus	were	not	corrected	for	atmospheric	effects.	
Consequently,	image	data	were	processed	on	a		scenebyscene	basis,	allowing	
the	classifier	to	be	trained	for	the	specific	conditions	within	each scene.	The	
final	output,	the	panEuropean	forest	map,	was	then	obtained	by	mosaicing	
the	different	scenes,	using	a	composite	rule	where	pixels	did overlap.	In	the	
case	of	the	FMAP2000,	the	composite	rule	was	based	on	uncertainty	informa
tion	derived	during	 the	classification	process.	The	number	of	overlapping	
scenes	 in	 the	case	of	 the	FMAP2006	was	 larger	 (every	pixel	was	observed	
at	 least	 twice	but	often	three	 to	 four	 times).	This	allowed	for	a	 (weighted)	
maximum	voting	of	the	classified	scenes.	Weights	were	introduced	based	on	
seasonality.	Summer	scenes	were	weighted	 in	 favor	of	early	spring	or	 late	
autumn	scenes.	
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The	main	requirements	for	the	classification	method	were:	

1.	Consistency:	The	walltowall	panEuropean	 forest	map	had	 to	be	
produced	in	a	homogeneous	way.	

2.	Performance:	Algorithms	had	to	be	fully	automatic.	

3.	Robustness		 for	 deficiencies	 in	 the	 training	 and	 input	 data:	 The	
methods	 for	 the	 FMAP2000	 and	 FTYP2006	 showed	 some	 impor
tant	differences	in	how	this	was	achieved.	This	is	explained	in	the	
	following	overview.	

The	 FMAP2000	 was	 mapped	 using	 a	 knearestneighbor	 (kNN)	 classifier	
(Tomppo	 et  al.	 2008).	 Instead	 of	 extracting	 spectral	 information	 for	 each	
Corine	Land	Use	Land	Cover	patch,	two	key	improvements	in	the	classifica
tion	approach	were	 implemented	 to	 improve	 the	performance	 (Pekkarinen	
et al.	2009):	first,	a	segmentation	prior	to	the	classification	step	and	second,	
an	adaptive	spectral	representivity	analysis	(ASRA)	(Pekkarinen	et al.	2009).	
ASRA	was	developed	to	improve	the	training	process	and	to	minimize	errors	
resulting	 from	 the	 relatively	 large	 minimum	 mapping	 unit	 of	 Corine.	 The	
segmentation	was	merely	used	to	speed	up	the	kNN	classification,	which	is	
known	to	be	inefficient	for	processing	large	data	sets.	The	ASRA	was	intro
duced	after	clustering	the	segments	into	spectral	classes.	It	seeks	to	identify	
representative	 combinations	 of	 spectral	 and	 informational	 classes	 using	 a	
contingency	table,	derived	from	the	cluster	labels	and	CLC	classes.	For	more	
details	of	the	algorithm,	the	reader	is	referred	to	Pekkarinen	et al.	(2009).	

The	classification	method	for	the	FTYP2006	was	based	on	an	artificial	neu
ral	network	(ANN)	(Rumelhart	and	McClelland	1986)	that	has	been	shown	
to	 combine	 two	 excellent	 classification	 properties:	 high	 accuracy	 (Chini	
et al.	2008;	Licciardi	et al.	2009)	and	robustness	to	training	site	heterogeneity	
(Paola	and	Schowengerdt	1995).	Also	important	for	the	selection	of	the	clas
sifier	was	that	the	ANN,	once	trained,	is	very	fast.	Unlike	for	the	production	
of	the	FMAP2000	method,	a	segmentation	step	was	therefore	not	needed.	

Another	difference	with	the	FMAP2000	is	that	forest	types	were	introduced	
in	 the	 FTYP2006.	 To	 increase	 the	 potential	 of	 the	 classifier,	 multitemporal	
information	was	added	to	the	multispectral	information	(data	fusion).	The	
multitemporal	data	were	obtained	from	the	MODIS	sensor,	using	a 16day	
composite	for	each	month	in	2006	at	250	m	spatial	resolution.	The temporal	
aspect	of	the	spectral	reflectance	can	describe	phenology,	which	is	a	poten
tial	indicator	for	LC	types	(DeFries	et al.	1994;	Hansen	et al.	2005).	The	data	
fusion	with	this	additional	information	source	also	increased	the	robustness	
of	the	classification	process	(Kempeneers	et al.	2011).	

However,	fusing	data	from	sensors	at	different	spatial	resolutions	posed	
a	challenge	to	retain	the	fine	spatial	resolution	in	the	final	LC	map.	A	new	
data	fusion	method	was	therefore	proposed,	based	on	a	twostep	approach	
(Kempeneers	 et  al.	 2011).	 In	 step	 one,	 the	 classifier	 created	 a	 forest	 map,	
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classifying	forests	and	nonforests	only.	In	step	two,	a	new	classifier	refined	
forest	 into	 forest	 types,	excluding	 the	nonforested	pixels	 from	the	classifi
cation	process.	The	multitemporal	data	at	medium	spatial	 resolution	were	
introduced	only	in	step	two.	

The	idea	is	that,	as	the	classes	are	refined,	the	complexity	of	the	classifica
tion	increases.	At	this	point,	the	classifier	can	benefit	most	from	the	added	
information	 obtained	 from	 data	 fusion.	 The	 forest/nonforest	 map	 was	
mapped	using	only	 the	spectral	 information	at	fine	spatial	 resolution	and	
therefore	retained	the	finest	spatial	resolution	possible.	

11.4	 Results	

The	accuracy	assessment	of	the	forest	cover	maps	was	performed	using three	
reference	data	sets	that	were	previously	described	in	Section 11.2.2.	The	over
all	accuracy	(OA)	of	the	FMAP2000	was	88.6%	and	90.8%	respectively	for	the	
VISVAL	and	LUCAS	data	sets,	while	the	OA	for	the	FMAP2006	was	88.0% 

and	84.0%	based	on	the	eForest	and	the	LUCAS2001	data	sets.	The	results	for	
eForest	and	LUCAS2001	cannot	really	be	compared	due	to	a	different	cover
age	in	both	space	and	time	(where	LUCAS2001	can	be	regarded	as	outdated).	

The	calculation	of	the	producer	and	user	accuracies	provided	information	
on	 the	 performance	 of	 both	 maps	 for	 the	 forest	 and	 nonforest	 classes	
(Table	11.1).	The	producer’s	 accuracy	of	 the	 forest	 class	was	 lowest	 for	 the	
FMAP2006	(75%)	with	respect	to	the	eForest	database,	while	it	was	slightly	
higher	than	FMAP2000	at	85.5%	and	83.9%	when	compared	to	the	VISVAL	
and	LUCAS	data	sets.	When	compared	to	official	statistics,	the	results	dem
onstrated	 an	 overall	 underestimation	 of	 forest	 area	 in	 both	 forest	 maps,	
which	was	particularly	emphasized	in	Ireland,	Spain,	Portugal,	and	Greece.	
This	underestimation	can	be	explained	by	the	high	rate	of	recent	afforesta
tion	 in	Ireland,	while	 in	 the	Mediterranean	countries,	 the	forests	 typically	
have	a	very	low	percentage	forest	cover	(e.g.,	5%	in	Spain).	

TABLE	11.1	

FMAP2000	and	FMAP2006	Accuracies	with	Respect	to	Validation	Data	Sets	

FMAP2000	 FMAP2006	

Accuracies	 VISVAL	 LUCAS	 eForest	 LUCAS2001	

OA% 88.6	 90.8	 88.0	 84	
Forest	PA% 85.5	 83.9	 75	 66	
Forest	UA% 77.66	 85.8	 87	 85	
Nonforest	PA% 89.58	 NA	 94	 94	
Nonforest	UA% 93.59	 NA	 88	 84	
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The	 individual	 accuracies	 for	 the	 forest	 and	 nonforest	 classes	 were	
computed	for	the	3	×	3	window,	and	it	was	found	that	the	producer	accura
cies	improved	by	1%	for	the	eForest	database	(from	75%	to	76%)	and	by	3%	for	
the	LUCAS	data	set	(from	66%	to	69%).	

11.5	 Applications	

Harmonized	 spatial	 information	 on	 forest	 area	 is	 an	 important	 basis	 for	
environmental	modeling	and	policy	making	at	both	national	and	 interna
tional	levels.	Even	if	a	majority	of	these	data	have	been	supplied	by	NFI	statis
tics,	detailed	spatial	distribution	needed	for	modeling	or	further		applications	
can	mainly	be	provided	by	remote	sensing–based	products.	Yet,	reliability,	
consistency,	 and	 a	 high	 level	 of	 harmonization	 are	 important	 aspects	 to	
ensure	comparability	and	enable	the	development	of	forest	scenarios	at	an	
international	 level.	 The	 panEuropean	 forest	 cover	 maps	 (FMAP2000	 and	
FMAP2006)	 have	 the	 advantage	 to	 be	 produced	 under	 these	 prerequisites	
due	to	their	harmonized	approaches	and,	therefore,	guarantee	spatial	con
sistency	for	further	applications.	Besides	that,	the	medium	resolution	of	the	
maps	 offers	 higher	 spatial	 details	 as	 previous	 panEuropean	 LC	 products 	
such	as	the	CLC	maps.	

Most	 of	 the	 applications	 of	 the	 forest	 cover	 maps	 (FMAP2000	 and	
FMAP2006)	 are	 related	 to	 the	 need	 for	 accurate	 and	 uptodate	 estimates	
on	 the	 spatial	distribution	of	 forests	 as	 inputs	 into	various	models.	Baritz	
et al.	(2010)	investigated	the	carbon	concentrations	and	stocks	in	forest	soils	
of	Europe	and	located	forested	areas	with	the	help	of	FMAP2000.	Similarly,	
information	 on	 forest	 distribution	 was	 needed	 for	 a	 vulnerability	 study	
in	 the	 Alps	 and	 the	 Carpathian	 mountains	 (Casalegno	 et  al.	 2011).	 As	 the	
forest	definition	of	the	forest	cover	maps	includes	also	urban	parks	in	con
trast	to	CLC,	FMAP2000	could	have	been	applied	in	a	panEuropean	urban	
greening	study,	where	growth	of	urban	forest	was	investigated.	In	some	of	
aforementioned	studies,	the	initial	medium	resolution	(25	m)	was	degraded	
down	 to	1	km	resolution	 to	 speed	up	 the	process	of	 the	models,	yet	 even	
with	the	degraded		resolution	of	1	km,	FMAP2000	was	found	to	be	preserv
ing	 the	 detailed	 forest	 spatial	 pattern	 of	 the	 original	 map	 (Seebach	 et  al.	
2011a).	Besides	applications	at	the	panEuropean	level,	the	forest	cover	maps	
have	 been	 used	 in	 local	 or	 regional	 studies	 as	 the	 high	 resolution	 allows 	
for	detailed	studies	at	that	level.	The	large	extent	of	Europe	further	enables	
potential	reproducibility	of	regional	studies	using	these	maps	as	proposed	by	
Lasserre	et al.	(2011)	or	Casalegno	(2011).	Another	example	of	the	same	kind	
is	the	study	of	Chirici	et al.	(2011)	that	used	FMAP2000	for	a	regional	study	
in	central	Italy	(Molise)	as	an	initial	forest	mask	for	subsequent	delineation	
of	clearcuts	based	on	very	highresolution	imagery.	
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Another	application	of	these	maps	apart	from	their	indirect	use	as	forest	
masks	is,	for	example,	the	estimation	of	forest	area	at	different	units.	Seebach	
et al.	(2011b)	investigated	the	applicability	of	FMAP2000	for	reporting	har
monized	 forest	 estimates	 for	 European	 countries.	 The	 comparison	 with	
official	 statistics	 derived	 from	 NFIs	 indicated	 an	 overall	 good	 agreement	
if	uncertainties	of	both	sources	were	taken	into	account;	yet,	discrepancies	
were	found	in	areas	with	very	low	and	fragmented	forests	or	in	mountain
ous	regions.	Another	major	driver	of	the	remaining	disagreements	between	
official	 	statistics	 and	 mapderived	 estimates	 originates	 from	 the	 common	
issue	 of	 land	 use	 versus	 LC.	 While	 official	 statistics	 reports	 are	 based	 on	
forest	 use	 definitions,	 estimates	 based	 on	 remote	 sensing	 products	 like	
FMAP2000/2006	will	report	 land	coverage	with	forestlike	vegetation.	The	
latter	might	become	forest	use	maps	only	if	extensive	auxiliary	data	are	avail
able	for	their	manipulation.	A	further	direct	application	of	the	forest	cover	
maps	are	their	use	for	assessing	change	using	postclassification	comparison	
as	both	maps	have	been	produced	by	a	comparable	and	consistent	approach.	
This	was	done	for	the	European	part	of	the	FAO	FRA	2010	Remote	Sensing	
Survey	(RSS),	where	both	forest	maps	were	used	to	detect	reliable	forest	cover	
changes	based	on	an	enhanced	postclassification	approach.	This	approach	
accounts	for	potential	misregistration	errors	and	reduces	the	uncertainty	of	
erroneous	change	detection	due	to	classification	errors	(Seebach	et al.	2010).	

All	 in	 all,	 FMAP2000	 has	 proved	 its	 ability	 to	 serve	 as	 a	 multipurpose	
product	from	direct	use	to	downstream	services.	FMAP2006	and	the	associ
ated	FTYPE2006	have	been	recently	released	and	are	foreseen	to	be	used	in	
upcoming	studies,	where	the	differentiation	of	forest	types	is	of	high	impor
tance,	for	example,	panEuropean	forest	biomass	estimation.	Yet,	care	must	
be	exercised	for	any	application	of	these	maps	as	every	map	inherits	uncer
tainties,	which	need	to	be	addressed	depending	on	the	intended	use.	

11.6		 Conclusions	and	Future	Aspects	

The	panEuropean	forest	maps	have	been	produced	for	the	reference	years	
2000	 and	 2006	 using	 optical	 satellite	 imagery	 and	 standardized	 method
ologies	 with	 respect	 to	 preprocessing	 and	 classification.	 These	 maps	 have	
provided	a	baseline	assessment	of	the	spatial	distribution	and	composition	
of	forest	resources	in	Europe	and	demonstrated	improvements	in	terms	of	
quality	and	production	with	respect	to	the	CLC	Project.	In	the	frame	of	the	
Global	Monitoring	for	Environment	and	Security	(GMES)	Initial	Operations,	
the	 production	 of	 a	 new	 set	 of	 socalled	 highresolution	 layers	 (HRLs)	 is	
foreseen,	which	will	be	coordinated	by	the	European	Environment	Agency.	
Among	these,	HRLs	will	be	a	forest	layer	designed	to	closely	resemble	the	
JRC	FMAP2000	and	FMAP2006,	but	with	a	target	reference	year	of	2012.	
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The	mapping	methods	presented	within	this	chapter	were	based	on		at	sensor	
radiances	of	the	remote	sensing	sensors.	Despite	the	fact	that	the	applied	meth
ods	are	scientifically	sound	and	practical,	future	mapping	applications	should	
be	based	on	wellcalibrated	image	data,	from	which	the	effects	of	the	atmo
sphere	have	been	removed.	That	would	allow	for	 the	development	of	well
defined	algorithms	that	could	be	applied	to	a	range	of	different	optical	sensors,	
since	 these	 algorithms	 would	 be	 based	 on	 registered	 spectral	 responses	 of	
realworld	 objects.	 Recent	 advances	 in	 preprocessing	 algorithms	 and	 new	
European	optical	 imaging	 sensors,	 such	as	RapidEye	and	ESA’s	Sentinel	 II,	
will	hopefully	facilitate	future	development	of	such	mapping	approaches.	

It	 is	 evident	 that	 the	 demand	 for	 European	 level	 information	 on	 forest	
resources	 will	 increase	 in	 the	 future.	 We	 need	 to	 better	 understand	 the 	
integrated	role	of	forests	in	the	protection	of	the	environment,	biodiversity,	
well	 being	 and	 recreation,	 timber	 and	 bioenergy	 production,	 as	 well	 as	
mitigation	 of	 climate	 change	 and	 monitoring	 compliance	 to	 international	
climate	change	agreements.	In	the	future,	other	sources	of	Earth		observation	
data	should	be	further	studied	and	used	in	largescale	mapping	projects.	For	
instance,		interferometric	SAR	and	spaceborne	LiDAR	could	be	used	to	map	
land	use	and	LC	as	well	as	being	used	to	estimate	other	forest	parameters,	
particularly	 by	 their	 combined	 use	 with	 field	 measurements	 and/or	
highdensity	airborne	LiDAR	data.	
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FIGURE	4.1	
Active	Landsat	ground	stations.	(More	details	are	available	at	http://landsat.usgs.gov/about_	
ground_stations.php.)	
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FIGURE	6.2	
400	km	×	 400	km	subset	 centered	on	12°	 4’	S,	55°	 59’	W	 in	Mato	Grosso,	Brazil.	Falsecolor	
composite	 of	 MODIS	 band	 7	 growing	 season	 metrics—blue:	 2000	 mean	 band	 7	 shortwave	
infrared	reflectance	from	the	three	greenest	16day	composite	periods,	green:	difference	in	the	
2000	 and	 2005	 mean	 band	 7	 shortwave	 infrared	 reflectance	 from	 the	 three	 greenest	 16day	
composite	periods,	and	red:	difference	in	the	2005	and	2010	mean	band	7	shortwave	infrared	
reflectance	from	the	three	greenest	16day	composite	periods.	

FIGURE	6.3	
400	 km	 ×	 400	 km	 subset	 centered	 on	 51°	 45’	 N,	 72°	 8’	 W	 in	 Quebec,	 Canada.	 Falsecolor	
composite	 of	 MODIS	 band	 7	 growing	 season	 metrics—blue:	 2000	 mean	 band	 7	 shortwave	
infrared	reflectance	from	the	three	greenest	16day	composite	periods,	green:	difference	in	the	
2000	 and	 2005	 mean	 band	 7	 shortwave	 infrared	 reflectance	 from	 the	 three	 greenest	 16day	
composite	periods,	and	red:	difference	in	the	2005	and	2010	mean	band	7	shortwave	infrared	
reflectance	from	the	three	greenest	16day	composite	periods.	
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FIGURE	7.1	
Example	of	time	series	(for	years	1990,	2000,	and	2005)	of	Landsat	satellite	imagery	over	one	
sample	site	in	the	Amazon	Basin	(20	km	×	20	km	size).	Forests	appear	in	dark	green,	deforested	
areas	(agriculture	and	pastures)	appear	in	light	green	or	pink.	



	 	
	

FIGURE	7.2	
Visualization	 tool	 used	 for	 the	 process	 of	 verification	 and	 correction	 of	 	multitemporal	
	classifications.	Left
column:	Segmented	Landsat	imagery	displayed	(top:	year	1990,	bottom:	year	
2000).	Right
column:	Land	cover	maps	produced	from	satellite	imagery.	

FIGURE	7.3	
The	20	km	×	20	km	multispectral	Landsat	image	(left)	for	a	sample	site	in	the	boreal	forest	
showing,	for	the	central	10	km		×	10	km	portion	(red	box),	the	classification	of	land	cover		(center)	
and	 land	use	 (right).	Land	cover	 is	 classified	as	TC	 (green),	 tree	 cover	mosaic	 (light	green),	
OWL	 (orange),	 and	 other	 land	 cover	 (yellow).	 Land	 use	 is	 classified	 as	 forest	 (green),	 OWL	
(orange),	and	other	land	use	(yellow).	
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b a	

c	

d	

Forest	2000	
300	kmNonforest		

2	km		 Forest	loss	2000–2005	

FIGURE	8.2	
Forest	 cover	 loss	 monitoring	 in	 European	 Russia.	 (a)  The	 ca.	 2000	 regionwide	 Landsat	
ETM+	 image	 composite.	 (b–d)	 Zoomin	 example	 of	 forest	 cover	 and	 change	 mapping	 in	
the	 Republic  of	 Karelia:	 b—the	 ca.	 year	 2000	 image	 composite;	 c—the	 ca.	 year	 2005	 image	
	composite;	d—	classification	result.	

b a	

c	

5	km	

Primary	humid	tropical	forests		

Secondary	humid	tropical	forests		

Woodlands	and	savannas		

Forest	cover	loss	2000–2010		

Within	primary	forests		

Within	secondary	forests		

Nonforest	areas	
100	km	

FIGURE	8.4	
Forest	cover	 loss	monitoring	 in	 the	DRC.	 (a)	Nationwide	 forest	cover	and	change	mapping	
result.	(b–c)	Zoomin	example	of	forest	cover	and	change	mapping	around	Buta:	b—ca.	year	
2010	image	composite;	c—classification	result.	
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FIGURE	9.1	
The	BLA	(red)	located	in	the	South	American	continent.	
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FIGURE	9.5	
Illustration	of	 the	example	of	DETER	project	results,	showing	the	deforested	areas	detected	
during	the	year	2004.	

FIGURE	10.1	
Forest	 degradation	 processes	 and	 interactions	 commonly	 found	 in	 the	 Brazilian	 Amazon.	
Pristine	 forests	can	be	subject	 to	selective	 logging,	creating	favorable	conditions	 for	burning	
when	fires	 from	adjacent	agriculture	fields	unintentionally	escape.	Logging	and	fires	can	be	
recurrent,	creating	highly	degraded	forests.	Eventually,	degraded	forests	can	be	converted	by	
deforestation,	increasing	forest	edges	and	landscape	fragmentation.	If	degraded	forests	are	not	
cleared,	vegetation	regeneration	processes	can		prevail	given	the	high	resiliency	of	forests.	
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FIGURE	10.2	
Very	 high	 spatial	 resolution	 falsecolor	 infrared	 IKONOS	 image	 showing	 the	 different	
environments	 commonly	 found	 in	 logged	 and	 burned	 (LB)	 forests	 in	 the	 eastern	 Brazilian	
Amazon.	At	1	m	spatial	resolution,	log	landings,	logging	roads,	tree	fall	canopy	gaps,	and		forest	
edges	can	be	identified	as	well	as	“islands”	of	UFs	and	signs	of	regeneration.	Signs	of	forest	
erosion	along	the	edges	between	the	LB	forest	and	the	recently	slashedandburned	forest	can	
also	be	observed.	(From	Souza,	C.M.	and	Roberts,	D.,	Int.
J.
Remote
Sens.,	26,	425,	2005.)	

FIGURE	10.4	
Subset	of	a	Landsat	TM	image	showing	fractions	obtained	from	SMA	and	NDFI.	(a)	High	soil	
fraction	shows	logging	infrastructure	(log	landings	and	roads);	(b)	NPV	shows	higher	fraction	
values	for	canopydamaged	areas	along	infrastructure	relative	to	the	surrounding	intact	forest;	
(c)	canopy	damage	is	also	identified	with	lower	GV	fraction	values	(dark	colors);	and	(d)	all	the	
fraction	information	are	combined	to	enhance	the	detection	of	logged	forest.	
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FIGURE	10.5	
In	this	example,	a	long	time	series	(i.e.,	>25	years)	of	Landsat	TM/ETM+	data	from	Sinop,	Mato	
Grosso	state,	was	used	to	track	deforestation	and	forest	degradation.	Forest	degradation	age	and	
frequency	maps	are	obtained	from	the	annual	maps	and	used	together	with	the	forest	degradation	
and	deforestation	maps	in	a	CES	model	to	estimate	carbon	emissions	associated	with	these	processes.	
More	reliable	and	consistent	baseline	scenarios	for	REDD+	can	be	obtained	with	this	type	of	model	
because	information	about	forest	degradation	is	included	and	associated	uncertainty	estimated.	
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FIGURE	10.6	
Integrating	deforestation	and	forest	degradation	information	to	estimate	forest	carbon	stock	
changes	for	REDD+	projects.	
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FIGURE	11.1	
JRC	forest	map	2000.	
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FIGURE	11.2	
JRC	forest	map	2006.	

FIGURE	12.2	
Examples	of	NAFD	disturbance	mapping	 from	southern	Oregon	(Landsat	path	46,	 row	30). 	
Top	row:	RGB	imagery	(bands	7,	5,	3)	and	VCT	disturbance	maps	for	an	area	of	active	harvest;	
bottom	row:	RGB	imagery	and	disturbance	map	for	the	northern	edge	of	the	2002	Biscuit	Fire.	
The	VCT	maps	shows	permanent	forest	(green),	permanent	nonforest	(gray),	and	the	year	of	
mapped	disturbance	from	1985	to	2009	(other	colors).	
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FIGURE	12.3	
Comparison	of	disturbance	rates	among	satellitebased	and	inventorybased	studies.	LEDAPS	
(Masek	et	al.	2008)	and	NAFD	(Kennedy	et	al.	 in	preparation)	are	based	on	Landsat	change	
detection.	NAFD	(adj)	reflects	compensation	for	net	omission	errors	based	on	visual	validation.	
MODIS	GFCL	is	based	on	MODIS	gross	forest	cover	loss	(GFCL)	(Hansen	et	al.	2010).	The	FIA	
(age	<	20)	is	based	on	equating	the	area	of	young	forestland	from	the	FIA	with	an	annualized	
turnover	rate.	The	percent	forest	cover	values	are	based	on	the	area	of	forest	land	in	the	“lower	
48”	conterminous	United	States	(~250	Mha).	

a	 b	 c	

d e	 f	

FIGURE	13.1	
Image	calibration	(top)	and	normalization	(bottom).	Calibration:	Landsat	mosaic	of	Australia	
showing	(a)	uncalibrated,	(b)	TOA	correction,	and	(c)	TOA	+	BRDF	correction.	Normalization	
(From	Wu	et.	al.,	2004.):	(d)	uncorrected,	(e)	terrain	illumination	correction,	and	(f)	estimated	
occlusion	 mask	 overlaid	 and	 shown	 in	 gray.	 (From	 Wu,	 X.,	 et	 al.,	 An	 approach	 for	 terrain	
illumination	 correction.	 Australasian	 Remote	 Sensing	 and	 Photogrammetry	 Conference,	
Fremantle,	Western	Australia,	2004.)	



		

	

		 	
	

FIGURE	13.3	
(Left)	Graphical	depiction	of	the	location	of	highresolution	IKONOS	data	used	in	the	deriva
tion	of	classifier	training	information.	(Right)	Typically,	samples	are	required	by	intersection	
of	 zone	 and	 image,	 though	 wellcalibrated	 data	 can	 reduce	 this	 requirement	 by	 allowing	
extrapolation	across	scene	boundaries	in	many	cases.	

FIGURE	13.5	
Map	of	Australia	showing	NCAS	forest	extent	(green)	and	sparse	extent	(red).	

FIGURE	14.8	
Example	of	burned	area	polygons	derived	from	the	three	methods:	red		polygon,	AFBA	product;	
black	polygon,	SRBA	product;	yellow	polygon,	HRBA	product.	The	 results	are	displayed	 in	
the	Webservice	user	 interface	with	 the	LandsatTM	scene	used	 for	 the	HRBA	product	as	a	
	background	image.	
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PALSAR	10	m	global	mosaic	2009	 ALOS	

©JAXA,	METI	Analyzed	by	JAXA	

R:HH	G:HV	B:HH/HV	

FIGURE	15.1	
Global	ALOS	PALSAR	color	composite	mosaic	at	10	m	pixel	spacing	(R:	HH,	G:	HV,	B:	HH/	
HV).	95%	of	the	data—a	total	of	approximately	70,000	scenes—were	acquired	within	the	time	
period	June–October	2009.	(Courtesy	of	JAXA	EORC,	Tsukuba,	Japan.)	

FIGURE	15.2	
(d)	A	composite	of HH	data	from	two	dates	(September	12	and	15,	2011)	and	coherence	(in	RGB	
respectively;	blue	areas	indicate	deforested	areas).	
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FIGURE	15.4	
Satellite	image	mosaics	produced	for	the	Xingu	River	headwaters	region.	(a)	ALOS	PALSAR	
mosaic	consisting	of	116	individual	Level	1.1	(singlelook	complex)	fine	beam,		dualpolarimetric	
scenes	 (R/G/B	=	 polarizations	 HH/HV/HHHV	 difference).	 (b)	 Map	 of	 	forest	 (green)	 and	
nonforest	(beige)	generated	with	an	overall	classification	accuracy	of	92.4% ±	1.8%.	(c)	Landsat	
5	mosaic	consisting	of	12	individual	Level	1G	(Geocover)	scenes	(R/G/B	=	bands	5/4/3).	



	
	

	

FIGURE	15.5	
Multitemporal	 ALOS	 PALSAR	 Lband	 HV	 image	 generated	 from	 data	 acquired	 in	 2007	
(red),	2008	(green),	and	2009	(blue)	for	a	part	of	the	Xingu	watershed.	Closed	forest	(white)	is	
interspersed	with	fire	scars	(red	tones)	along	the	main	stem	of	the	Xingu	River	and	tributaries	
(black).	



	

a	 b	

c	

FIGURE	15.6	
Forest	 degradation	 in	 Sarawak	 through	 selective	 logging	 observed	 through	 comparison	 of	
forest	maps	generated	using	ALOS	PALSAR	data	for	the	years	(a–c)	2007	through	to	2009.	
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12.1			 Introduction:	U.S.	Forest	Dynamics	in	the	Global	Context	

Forest	dynamics	in	the	United	States	differ	substantially	from	those	in	the	
developing	world	and	thus	present	unique	monitoring	requirements.	While	
deforestation	 and	 conversion	 to	 semipermanent	 agriculture	 dominate	
tropical	 forest	 dynamics,	 the	 area	 of	 forest	 land	 in	 the	 United	 States	 has 	
remained	fairly	constant	for	the	last	50–60	years	(Birdsey	and	Lewis	2003).	
Although	 the	 United	 States	 experienced	 rapid	 deforestation	 during	 the	
eighteenth	and	nineteenth	centuries,	much	of	the	eastern	clearing	regrew	
during	the	twentieth	century	as	marginal	agricultural	land	was	abandoned.	
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Recent	inventory	reports	indicate	very	small	rates	of	net	forest	cover	change	
in	recent	decades,	with	the	area	of	U.S.	forests	increasing	by	slightly	more	
than	onetenth	of	1% per	year	since	1987	(Smith	et al.	2009).	

Rather	 than	 land	 use	 conversion,	 forest	 dynamics	 in	 the	 United	
States	 are	 dominated	 by	 harvest,	 fire,	 and	 other	 temporary	 disturbance	
processes.	These	processes	do	not	change	the	net	area	of	forest	 land	use,	
but	dramatically	affect	the	forest	age	structure,	landscape	ecology,	carbon	
balance,	and	habitat	suitability.	It	is	thought	that	about	1.4%	of	forest	land	
area	 is	 affected	 by	 harvest	 each	 year	 in	 the	 United	 States,	 and	 another	
0.4%	 is	affected	by	fire	 (Smith	et al.	2009;	U.S.	EPA	2011).	However,	 these	
disturbance	rates	are	not	static.	Changes	in	forest	management	as	well	as	
recent	 climate	 change	 may	 be	 affecting	 contemporary	 disturbance	 rates	
relative	to	historic	norms	(e.g.,	van	Mantgem	et al.	2009).	

The	United	States	 relies	on	 its	national	 forest	 inventory	 for	domestic	and	
international	reporting	of	forest	change.	The	U.S.	Forest	Inventory	and	Analysis	
(FIA)	program	collects	data	on	a	set	of	over	300,000	plots	across	the	United	
States,	with	one	plot	per	every	~2,430	ha.	A	range	of	attributes	are	collected	
in	addition	 to	stand	volume,	 including	stand	age,	 species	composition,	and	
management	practice.	The	key	aspect	of	this	designbased	inventory	is	that	the	
sampling	error	associated	with	any	variable	is	well	constrained,	and	thus	robust	
estimates	across	broad	areas	can	be	made	with	known	sampling	uncertainty.	
Plots	are	 remeasured	on	a	5	 to	10year	 cycle,	depending	on	 the	 state.	Like	
other	nations,	the	United	States	reports	national	forest	carbon	dynamics	as	part	
of	the	United	Nations	Framework	Convention	on	Climate	Change	(UNFCCC).	
In	this	case,	inventory	data	from	the	FIA	and	other	agencies	are	collated	and	
reported	by	the	U.S.	Environmental	Protection	Agency	(EPA).	

While	the	FIA	is	well	suited	for	estimating	national	forest	statistics,	 it	 is	
not	designed	to	accurately	capture	local	dynamics	due	to	disturbance	and	
other	rare	events.	For	example,	while	a	difference	between	a	1%	per	year	and	
2% per	year	disturbance	rate	is	truly	significant	from	an	ecological	point	of	
view,	a	very	large	number	of	random	samples	is	needed	to	distinguish	those	
two	rates	with	any	level	of	precision.	Given	the	FIA	plot	spacing,	this	implies	
that	disturbance	rates	cannot	be	accurately	characterized	below	the	scale	of	
100s	of	kilometers.	

The	 desire	 for	 consistent,	 geospatial	 information	 on	 forest	 disturbance	
and	 conversion	 has	 invigorated	 the	 application	 of	 Landsattype	 remote	
sensing	 technology	 for	 forest	 monitoring	 in	 the	 United	 States.	 This	 work	
builds	on	a	significant	legacy	that	dates	back	to	the	launch	of	Landsat1	in	
1972	(Cohen	and	Goward	2004).	Early	efforts	at	basic	 land	cover	mapping	
identified	forests	as	a	unique	spectral	region	(the	socalled	badge	of	trees	
in	rednearIR	space)	that	enabled	reliable	singleimage	mapping	of	forest	
cover.	 Studies	 during	 the	 1980s	 and	 1990s	 established	 the	 opportunity	 to	
use	multidate	Landsat	 imagery	 to	characterize	 forest	 conversion,	harvest,	
burned	area,	and	insect	damage.	Recent	increases	in	computing	power,	cou
pled	with	the	gradual	opening	of	the	Landsat	archive	for	free	distribution,	
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have	resulted	in	researchers	undertaking	increasingly	ambitious	programs	
in	largearea	forest	dynamics	monitoring.	Here	we	describe	several	of	these	
efforts,	focusing	on	nationalscale	work	in	the	United	States.	

12.2		 Overall	Forest	Disturbance:	LEDAPS	and	NAFD	Projects	

The	 North	 American	 Carbon	 Program	 (NACP)	 is	 an	 ongoing	 interagency	
effort	 within	 the	 United	 States	 to	 constrain	 the	 North	 American	 carbon	
budget,	improve	process	understanding,	and	forecast	future	scenarios.	The	
NACP	Science	Strategy	recognized	at	the	outset	that	ecosystem	disturbance	
was	a	critical	but	poorly	known	parameter	required	for	more	accurate	assess
ments	 of	 ecosystem	 carbon	 flux.	 Accordingly,	 two	 Landsatbased	 projects	
were	organized	during	2004–2005	in	order	to	meet	NACP	modeling	needs	
(Goward	et al.	2008).	

The	 LEDAPS	 (Landsat	 Ecosystem	 Disturbance	 Adaptive	 Processing	
System)	 project	 was	 based	 on	 traditional	 twodate	 change	 detection,	 but	
across	very	broad	spatial	scales	(Masek	et al.	2008).	The	main	objective	was	to	
map	standclearing	disturbance	(primarily	fire	and	clearcut	harvest)	across	
all	forested	land	in	the	conterminous	United	States	and	Canada.	At	the	start	
of	the	project,	the	Landsat	archive	was	not	yet	free.	Instead,	the		project	chose	
to	use	the	Global	Land	Survey	(GLS)	preprocessed	Landsat	data	sets	(Tucker	
et  al.	 2004).	 The	 GLS	 data	 sets	 consist	 of	 cloudfree	 imagery	 for	 epochs	
centered	on	1975,	1990,	2000,	2005,	and	2010.	For	 the	LEDAPS	project,	 the	
focus	was	on	estimating	forest	disturbance	between	1990	and	2000.	

The	 LEDAPS	 processing	 approach	 focused	 on	 establishing	 accurate	
surface	 reflectance	 values	 from	 each	 image,	 and	 then	 using	 those	 data	 to	
perform	twodate	change	detection	using	a	tasseled	cap	disturbance	index.	
Considerable	 work	 went	 into	 establishing	 a	 sensor	 calibration	 and	 atmo
spheric	correction	approach	suitable	for	use	with	the	GLS	data	sets,	includ
ing	revising	the	Landsat5	calibration	lookup	table	based	on	invariant	desert	
targets	and	adjusting	the	calibration	of	the	older	GLS	data	sets	to	reflect	the	
new	table.	The	development	of	a	standalone	atmospheric	correction	code	for	
Landsat	was	a	significant	side	benefit	of	the	project.	

Beyond	 sensor	 calibration,	 a	 number	 of	 other	 challenges	 were 	
encountered	during	the	disturbance	mapping.	First,	the	10year	(1990–2000)	
changedetection	span	caused	stands	disturbed	during	the	early	part	of	the	
epoch	to	exhibit	significant	regrowth,	resulting	in	high	omission	errors	of	
40%–50%.	This	issue	has	previously	been	documented	(Jin	and	Sader	2005)	
and		suggests	that	change	detection	on	closer	to	annual	timesteps	is	more	
appropriate	for	most	forest	monitoring	applications.	Statistical	summaries	
reported	in	Masek	et al.	(2008)	compensated	for	this	issue	by	adjusting	rates	
by	the	difference	between	omission	and	commission	errors.	Second,	many	
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of	the	GLS	images	from	the	1990	and	2000	data	sets	were	acquired		during	
senescent	 parts	 of	 the	 growing	 season,	 confusing	 the	 changedetection	
approach.	These	images	were	replaced	with	new	imagery	purchased	from	
U.S.	Geological	Survey	(USGS).	

The	results	of	the	continental	mapping	indicated	that	2.3	Mha/year	of	U.S.	
forest	 land	 was	 affected	 by	 standclearing	 disturbance	 during	 the	 1990s,	
representing	a	fractional	disturbance	rate	of	0.9%	per	year,	or	an	equivalent	
“turnover”	 period	 of	 110	 years.	 The	 highest	 disturbance	 rates	 were	 found	
in	areas	with	significant	harvest	activity,	including	the	southeastern	United	
States,	Maine/Quebec,	and	the	Pacific	Northwest.	Rates	in	the	midAtlantic	
and	New	England	were	lower,	reflecting	both	less	overall	harvest	activity	and	
greater	prevalence	of	partial	harvest,	which	could	not	be	reliably	detected	
using	the	LEDAPS	measurement	period.	

While	 LEDAPS	 focused	 on	 walltowall	 assessment	 of	 disturbance	 at	 a 	
coarse	 temporal	 timestep,	 the	 North	 American	 Forest	 Dynamics	 (NAFD)	
project	took	an	alternate	path:	characterizing	disturbance	using	a	sparse	geo
graphic	sample	of	Landsat	imagery	at	annual	temporal	resolution	(Goward	
et al.	2008).	The	NAFD	originally	began	with	a	sample	of	23	Landsat	frames	
across	the	United	States	and	later	expanded	to	a	set	of	50	frames.	For	each	
frame,	a	set	of	biennial	(later	annual)	Landsat	imagery	was	assembled,	and	
timeseries	analysis	was	used	to	map	forest	disturbance.	

The	 NAFD	 geographic	 sample	 was	 designed	 to	 support	 robust	
characterization	of	national	disturbance	rates	(eastern	and	western	United	
States	 as	 separate	 estimates)	 based	 on	 an	 unequal	 probability	 sampling	
design.	This	sampling	design	was	based	on	selecting	across	strata	for	U.S.	
forest	types	(Ruefenacht	et al.	2008)	while	also	accommodating	the	inclusion	
of	fixed	sites	from	earlier	phases	of	the	work.	The	decision	to	increase	the	
number	of	samples	from	23	to	50	reflected	the	desire	to	reduce	the	national	
sampling	error	to	less	than	10%	(Figure	12.1).	

Aligned	with	several	other	recent	studies	(Kennedy	et al.	2007),	the	NAFD	
disturbancemapping	 effort	 relied	 on	 detecting	 anomalies	 in	 perpixel	
spectral	time	series.	The	specific	algorithm,	the	vegetation	change	tracker	
(VCT;	Huang	et al.	2010),	used	a	Zscore	procedure	to	normalize	each	image	
in	 the	 time	 series	 by	 dividing	 by	 the	 standard	 deviation	 of 	reflectance 	
values	for	a	set	of	undisturbed	forest	pixels.	Anomalies	were	then	mapped	
based	on	significant,	longlasting	excursions	from	the	time	series	(Huang	
et al.	2010).	Both	the	year	of	disturbance	and	the	spectral	magnitude	were	
included	 in	 the	 final	 products	 (Figure	 12.2).	 It	 should	 be	 noted	 that	 the	
annual	 timestep	used	 in	 the	algorithm	allows	partial	disturbances	 (such	
as	thinning,	partial	harvest,	and	mortality	from	storms	and	insects)	to	be	
tracked.	

Overall,	the	sampling	results	indicate	about	1.1%	of	forest	area	disturbed	
each	 year	 in	 the	 United	 States	 during	 the	 1985–2005	 period.	 Although	
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FIGURE	12.1	
Relative	error	of	U.S.	national	disturbance	rate	estimates	as	a	function	of	the	number	of	Landsat	
frames	(path/row	locations)	used	in	the	geographic	sample,	estimated	from	initial	drafts	of	
samplelevel	disturbance	rate	for	all	years	from	1985	to	2005.	Relative	error	is	the	proportional	
difference	between	the	estimated	value	from	the	sample	and	the	unknown	true	value,	subject	
to	a	90%	confidence	interval.	(Analysis	courtesy	of	Robert	Kennedy,	Oregon	State	University,	
Corvallis,	OR.)	

disturbance	rates	 in	 the	western	United	States	are	dominated	by	fire	and	
insect	 damage,	 while	 rates	 in	 the	 east	 are	 dominated	 by	 harvest,	 overall	
disturbance	 rates	 were	 not	 significantly	 different	 between	 the	 west	 and	
east.	However,	there	were	significant	yeartoyear	differences.	For	example,	
disturbance	 rates	 in	 the	western	United	States	 increased	 to	1.5%	per	year	
during	the	early	2000s	as	a	result	of	extremely	active	fire	years.	There	were	
also	significant	geographic	differences	in	disturbance	rate	within	individ
ual	forest	type	strata.	

The	 fact	 that	 disturbance	 rates	 vary	 significantly	 in	 both	 space	 and 	
time	 raises	 doubts	 that	 sampling	 approaches	 can	 adequately	 character
ize	the	disturbance	regime	at	continental	scales.	The	assumption	behind	
the	NAFD	sampling	approach	was	that	disturbance	rate	was	fundamen
tally	a	 function	of	 forest	 type	 (or	at	 least	 that	 forest	 type	 could	act	 as	a	
proxy	for	the	controlling	factors).	This	assumption	has	not	been	borne	out	
by	 the	 scenebyscene	 results.	As	a	 result,	 the	 latest	phase	of	 the	NAFD	
project	has	abandoned	the	geographic	sampling	scheme	and	switched	to	
an	 ambitious	 “walltowall”	 characterization	 of	 annual	 disturbance	 rate	
for	 the	 entire	 conterminous	 United	 States.	 This	 effort	 will	 require	 pro
cessing	 in	 excess	 of	 20,000	 Landsat	 images	 and	 is	 taking	 advantage	 of	
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1999	 2003	

6	km	

VCT	disturbance	year	

FIGURE	12.2	
(See	color	insert.)	Examples	of	NAFD	disturbance	mapping	from	southern	Oregon	(Landsat	
path	46,	row	30).	Top	row:	RGB	imagery	(bands	7,	5,	3)	and	VCT	disturbance	maps	for	an	area	
of	active	harvest;	bottom	row:	RGB	imagery	and	disturbance	map	for	the	northern	edge	of	the	
2002	Biscuit	Fire.	The	VCT	maps	shows	permanent	forest	(green),	permanent	nonforest	(gray),	
and	the	year	of	mapped	disturbance	from	1985	to	2009	(other	colors).	

the	NASA	Earth	Exchange	(NEX)	parallel	computing	environment	at	the	
NASA	Ames	Research	Center.	

12.3		 Operational	Fire	Monitoring:	MTBS	and	LANDFIRE	

Although	wildfire	is	a	primary	disturbance	agent	within	the	United	States,	
the	area	affected	by	forest	fire	has	not	been	well	characterized.	The	National	
Interagency	Fire	Center	(NIFC)	maintains	a	database	of	major	wildfires,	but	
does	not	consistently	discriminate	between	 forest	fires	and	other	wildfires	
(e.g.,	brushfire	or	grassfire).	Furthermore,	the	area	recorded	is	based	on	an	
external	 perimeter	 of	 each	 large	 fire,	 rather	 than	 the	 actual	 area	 affected	
by	burning.	Two	operational	projects,	Monitoring	Trends	 in	Burn	Severity	
(MTBS)	 and	 LANDFIRE,	 are	 using	 Landsat	 remote	 sensing	 to	 improve	
burned	area	and	fire	risk	monitoring.	

A	collaboration	between	the	USGS	and	the	U.S.	Forest	Service	(USFS),	the	
MTBS	project	 is	 seeking	 to	supplement	 the	NIFC	database	with	accurate	
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information	 on	 U.S.	 fire	 area	 and	 burn	 severity	 (Eidenshink	 et  al.	 2007).	
The	primary	goal	of	MTBS	is	to	provide	sufficient	information	to	quantify	
interannual	variability	in	U.S.	burned	area	and	to	understand	the	extent	to	
which	 forest	management	and	environmental	 factors	may	be	 influencing	
longer	term	trends	in	fire.	

MTBS	has	acquired	preburn	and	postburn	(1	year	after	fire)	Landsat	imag
ery	for	all	major	wildfires	within	the	United	States	since	1984,	as	identified	
from	government	databases	(Eidenshink	et al.	2007).	Fires	larger	than	1,000	
acres	 in	 the	 western	 United	 States	 and	 larger	 than	 500	 acres	 in	 the	 east
ern	United	States	are	considered	in	the	project.	The	normalized	burn	ratio	
(NBR)	 spectral	 index	 is	 calculated	 for	 the	 image	 pair	 bracketing	 a	 major	
fire,	 and	 a	 difference	 (dNBR)	 image	 is	 generated	 by	 subtracting	 the	 pre
and	postfire	NBR	values.	The	NBR	metric	takes	advantage	of	the	fact	that	
recent	fires	leave	considerable	char,	ash,	and	mineral	soil,	which	tend	to	be	
relatively	bright	in	the	shortwave	infrared	compared	to	the	nearinfrared.	
While	the	NBR	metric	has	been	questioned	as	a	suitable	proxy	for	overall	
fire	severity	in	Boreal	ecosystems	(Hoy	et al.	2008),	it	has	also	been	shown	to	
be	highly	correlated	with	canopy	damage	(Hoy	et al.	2008)	and	overall	fire	
impact	in	temperate	ecosystems	(Cocke	et al.	2005).	MTBS	data	are	available	
online	(http://www.mtbs.gov)	in	a	variety	of	formats,	including	geospatial	
products	and	statistical	 summaries	of	 annual	burned	area	by	 region	and	
ecosystem.	

LANDFIRE	is	a	multipartner	project	producing	30	m	Landsatbased	maps	
of	 vegetation,	 fuel,	 fire	 regimes,	 and	 ecological	 departure	 from	 historical	
conditions	across	the	United	States	(Rollins	2009).	Leadership	is	shared	by	
the	wildland	fire	management	programs	of	the	USDA	Forest	Service	and	the	
U.S.	Department	of	the	Interior.	LANDFIRE’s	maps	are	widely	used	for	both	
fire	management	and	ecological	modeling.	Circa2000	imagery	was	used	to	
produce	 LANDFIRE’s	 original	 maps,	 and	 a	 combination	 of	 approaches	 is	
used	to	track	subsequent	disturbances	so	that	maps	may	be	kept	up	to	date	
(Vogelmann	et al.	2011).	

The	 initial	 updating	 mechanism	 involved	 intersecting	 LANDFIRE	 maps	
with	 the	 fire	 events	 mapped	 by	 the	 MTBS	 project	 (described	 above).	 This	
approach	 has	 recently	 been	 augmented	 with	 management	 activities	 (con
ducted	mostly	on	federal	lands),	which	have	been	recorded	in	a	spatial	data
base.	Because	a	more	automated	process	was	needed	for	incorporating	the	
effects	of	disturbance	events,	LANDFIRE	has	recently	done	extensive	work	
with	the	VCT	algorithm	described	earlier	under	the	activities	of	the	NAFD	
project.	An	estimated	30,000	Landsat	images	will	ultimately	be	used	to	map	
disturbance	 extent	 and	 magnitude	 across	 the	 conterminous	 United	 States	
(Vogelmann	et al.	2011).	

Because	the	cause,	or	type,	of	a	disturbance	plays	an	important	role	in	its	
effect	upon	fuel	conditions,	cause	attribution	is	underway	for	LANDFIRE’s	
VCT	maps.	This	process	makes	use	of	 the	MTBS	data	 to	 some	extent,	but	
it	 also	 currently	 involves	 a	 good	 deal	 of	 manual	 classification.	 Current	

http://www.mtbs.gov
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LANDFIRE	disturbancemapping	efforts	focus	on	the	Landsat	TM	era,	but	
extension	into	the	MSS	era	is	a	longer	term	goal,	as	is	continued	mapping	
into	the	future.	

12.4	 Forest	Cover	Conversion:	Trends,	NLCD,	and	C-CAP	

While	 the	emphasis	of	 the	preceding	projects	has	been	on	characterizing	
forest	disturbance	rates,	permanent	conversion	of	forest	cover	remains	an	
ongoing	 process	 within	 the	 United	 States.	 The	 trend	 during	 most	 of	 the	
twentieth	century	was	toward	increased	forest	cover	via	agricultural	aban
donment.	However,	increased	urban	and	suburban	growth	during	the	last	
50	years	has	altered	this	pattern	in	some	areas.	The	projects	discussed	here	
have	viewed	forest	change	 from	the	perspective	of	 land	cover	conversion	
and	 have	 used	 Landsatbased	 change	 detection	 to	 separate	 gross	 forest	
change	(including	harvest	and	other	disturbances)	from	the	lower	rates	of	
longterm	land	cover	and	land	use	conversion.	

The	USGS	Trends	project	began	in	the	late1990s	using	a	random	sample	
of	Landsat	subsets,	stratified	by	EPA	ecoregion,	to	characterize	both	regional	
and	national	trends	in	land	cover	(Loveland	et al.	2002).	Each	Landsat	subset	
was	either	10,000	or	40,000	ha	(e.g.,	10	km	×	10	km	or	20	km	×	20	km).	For	
each	subset,	images	were	collected	for	the	years	1973,	1980,	1986,	1992,	and	
2000	and	manually	classified	into	a	series	of	land	use	classes,	as	well	as	two	
classes	representing	recent	mechanical	disturbance	(harvest)	and	fire.	As	in	
the	NAFD	project,	 the	sampling	framework	allowed	sampling	uncertainty	
to	be	quantified.	The	overall	goals	were	to	provide	estimates	of	gross	change	
with	an	uncertainty	of	<1%	at	an	85%	confidence	interval	(Drummond	and	
Loveland	2010).	

The	Trends	data	set	has	been	used	widely	for	studies	of	land	use	conver
sion	 (Drummond	 and	 Loveland	 2010),	 ecosystem	 carbon	 (Liu	 et	 al.	 2006),	
biodiversity,	 and	 surface	 energy	 balance	 (Barnes	 and	 Roy	 2008).	 For	 the	
eastern	United	States,	Drummond	and	Loveland	(2010)	assessed	both	gross	
and	net	forest	cover	change	using	the	Trends	data	and	concluded	that	east
ern	forests	experienced	142,000	ha/year	of	net	forest	conversion	during	the	
1973–2000	period	due	mostly	to	urbanization,	surface	mining,	and	reservoir	
construction.	Gross	 forest	 change	rates	were	2.5	 times	higher	and	mostly	
reflected	harvest	activities.	

The	 National	 Land	 Cover	 Database	 (NLCD)	 project,	 coordinated	 by	 the	
USGS	EROS	Data	Center,	has	produced	walltowall	U.S.	maps	of	land	cover	
for	1992,	2001,	and	2006.	While	NLCD	image	selection	criteria,	classification	
methods,	 and	 target	 classes	 have	 evolved	 over	 the	 course	 of	 the	 project,	
significant	efforts	have	been	made	to	ensure	interpretable	maps	of	change	
among	different	land	covers	(Xian	et al.	2009;	Fry	et al.	2011).	Changes	between	
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the	1991	and	2001	products	were	identified	through	a	“retrofitting”	process,	
which	 involved	 standardization	 of	 classification	 schemes,	 and	 a	 sequence	
of	decision	tree–based	operations	that	first	identified	and	then	labeled	land	
cover	transitions.	Differences	in	Landsat	ratiobased	indices	were	primary	
predictors	for	this	process.	

Likewise,	(different)	Landsatbased	indices	were	used	in	the	2001–2006	
change	identification	process,	which	used	complex	heuristicbased	thresh
old	 rules	 to	 identify	 changed	 pixels	 and	 to	 indicate	 whether	 changed	
pixels	 were	 losing	 or	 gaining	 biomass.	 This	 changedetection	 process,	
multiindex	integrated	change	analysis	(MIICA;	Fry	et al.	2011),	produced	
change	maps	that	were	intersected	with	the	land	cover	product	from	2001	
(considered	 to	 be	 the	 base	 year)	 in	 nondeveloped	 areas	 to	 generate	 the	
2006	cover	product.	

Mapping	projects	such	as	the	NLCD’s	are	an	important	complement	to	
inventory	estimates	of	forest	change.	In	the	United	States,	the	FIA	provides	
groundacquired	estimates	of	land	use	not	available	from	automated	satel
lite	processes,	 and	 it	provides	a	designbased	error	 structure	 for	 its	 esti
mates	 of	 net	 change	 of	 forest	 area.	 However,	 the	 FIA	 does	 not	 measure	
gross	transitions	to	and	from	other	cover	types.	NLCD	can	specify	that	its	
estimate	of	a	net	loss	of	16,720	km2	of	evergreen	forest	cover,	for	example,	is	
the	result	of	a	36,000	km2	gross	loss	and	a	19,000	km2	gross	gain	(Fry	et al.	
2011).	As	discussed	earlier,	maps	also	provide	a	picture	of	change	at	much	
more	localized	scales	than	is	achievable	with	a	simple	random	sample.	

The	 NOAA’s	 Coastal	 Change	 Analysis	 Program	 (CCAP)	 maintains	 a	
nationally	 standardized	 database	 of	 landcover	 and	 landcover	 change	 in	
coastal	regions	of	the	country	(Dobson	et al.	1995).	Thematic	classes,	includ
ing	those	for	forests,	are	consistent	with	those	used	in	the	NLCD	(described	
earlier),	and	CCAP	is	actually	the	source	of	the	NLCD	data	in	coastal	zones.	
Landsat	has	been	the	basis	for	classification	and	change	detection	for	CCAP	
national	maps	using	imagery	from	1996,	2001,	2006,	and	2011	(in	progress),	
as	well	as	highpriority	local	analyses	going	back	to	the	mid1980s.	

The	2001	cover	map,	produced	from	three	dates	of	 imagery	collected	by	
the	MRLC	 (multiresolution	 land	characteristics	 consortium),	 is	 considered	
the	baseline	product,	and	only	those	areas	determined	to	have	changed	are	
reclassified	 in	 subsequent	 products	 (J.	 McCombs,	 NOAA,	 personal	 com
munication).	 For	 changes	 between	 2001	 and	 2006,	 CCA	 (crosscorrelation	
analysis)	 was	 used	 to	 detect	 change	 using	 imagery	 from	 the	 two	 dates.	
Landcover	 transitions	 were	 estimated	 with	 classification	 and	 regression	
trees	(CARTs).	Change	detection	between	2006	and	2011	will	be	consistent	
with	the	multithreshold	change	vector	analysis	used	by	NLCD	(Xian	et al.	
2009).	 Spatial	 data	 and	 customized	 summaries	 of	 CCAP	 maps	 are	 freely	
available	from	the	CCAP	Web	site.*	

*	http://www.csc.noaa.gov/digitalcoast/data/ccapregional/index.html	

http://www.csc.noaa.gov
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1.	 USDA	Forest	Service	(2010)	for	USA—includes	areas	of	mortality	only,	excluding	defoliation	without	mortality.	

2.	 U.S.	EPA	(2010)—includes	Alaska	fires.	

3.	 Smith	et	al.	(2009).	
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12.5		 Synthesis	of	U.S.	Forest	Dynamics	

Given	 that	 several	 studies	 have	 used	 satellite	 data	 to	 quantify	 forest	
disturbance	 rates	 in	 the	 United	 States,	 how	 do	 these	 estimates	 compare	
with	each	other,	 and	with	 inventorybased	 rates?	Satellitebased	estimates	
of	disturbance	rates	are	available	in	Masek	et al.	(2008),	and	via	the	MTBS	
data	products	(available	online).	In	addition,	Hansen	et al.	(2010)	presented	
MODISbased	measures	of	gross	forest	loss	that	includes	both	disturbance	
and	deforestation.	Figure	12.3	shows	a	comparison	among	these	estimates.	
We	also	show	inventorybased	estimates	of	harvest,	fire,	and	insect	damage	
from	Smith	et al.	 (2009)	and	U.S.	EPA	(2011)	annualized	 for	 the	2000–2008	
period.	 Finally,	 we	 also	 derived	 an	 annualized	 rate	 of	 “standclearing” 	
disturbance	from	the	FIA	by	taking	the	area	of	U.S.	forests	less	than	20	years	
of	age,	and	dividing	by	20,	under	the	assumption	that	a	standclearing	event	
should	reset	the		measured	stand	age	on	the	FIA	plot.	

The	range	of	estimates	shows	an	expected	trend,	with	shorter		re	measurement	
periods	(e.g.,	the	annual	NAFD)	and	finer	resolution	(e.g.,	Landsat	vs.	MODIS),	

FIGURE	12.3	
(See	 color	 insert.)	 Comparison	 of	 disturbance	 rates	 among	 satellitebased	 and	 inventory
based	studies.	LEDAPS	(Masek	et	al.	2008)	and	NAFD	(Kennedy	et	al.	in	preparation)	are	based	
on	Landsat	change	detection.	NAFD	(adj)	reflects	compensation	for	net	omission	errors	based	
on	visual	validation.	MODIS	GFCL	is	based	on	MODIS	gross	forest	cover	loss	(GFCL)	(Hansen	
et al.	2010).	The	FIA	(age	<	20)	is	based	on	equating	the	area	of	young	forestland	from	the	FIA	
with	an	annualized	turnover	rate.	The	percent	forest	cover	values	are	based	on	the	area	of	for
est	land	in	the	“lower	48”	conterminous	United	States	(~250	Mha).	
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leading	to	more	disturbances	mapped	and	higher	overall	rates	(Figure	12.3).	
The	LEDAPS	result	of	0.9%	per	year	corresponds	closely	to	the	FIAderived	
standclearing	rate	(0.9%	per	year)	and	the	gross	loss	derived	from	MODIS	
(1.0%	per	year).	The	ability	of	the	NAFD	annual	data	to	capture	some	thinning	
and	partial	harvest	likely	explains	the	somewhat	higher	rates	(1.1%	per	year).	
Further	adjusting	the	NAFD	rates	for	the	net	omission	error	of	the	products	
would	increase	these	rates	further,	to	about	1.5%	per	year.	

All	of	these	rates	are	significantly	lower	than	what	can	be	derived	from	
inventory	estimates	alone	(Smith	et al.	2009;	U.S.	EPA	2010).	This	may	reflect	
the	 difficulty	 in	 measuring	 minor	 disturbances	 using	 remote	 sensing,	
including	 selective	 harvest	 that	 does	 not	 significantly	 alter	 the	 forest	
canopy.	Field	and	satellitebased	disturbance	estimates	may	also	differ	in	
what	they	label	“disturbance.”	The	FIA’s	definition	of	disturbance	includes	
“mortality	and/or	damage	to	25	percent	of	all	trees	in	a	stand	or	50	percent	
of	 an	 individual	 species’	 count”	 (FIA	 2011).	 In	 addition	 to	 the	 canopy 	
mortality	targeted	through	remote	sensing,	this	characterization	certainly	
includes	large	areas	affected	by	insects	or	storms,	where	sublethal	damage	
may	affect	only	a	small	fraction	of	the	trees.	Thus,	discrepancies	in	Figure	
12.3	 may	 be	 due	 to	 both	 varying	 sensitivity	 and	 inconsistent	 definitions	
among	data	sources.	

12.6	 Looking		Forward	

The	opening	of	the	Landsat	archive	and	advances	in	computing	technology	
have	paved	the	way	for	broader	and	more	innovative	applications	of	Landsat	
data	 for	 forest	 monitoring.	 These	 innovations	 include	 mapping	 at	 wider	
geographic	scales	 (e.g.,	walltowall	national	monitoring),	 the	use	of	dense	
time	 series	 to	 better	 characterize	 intra	 and	 interannual	 variability,	 and	 a	
greater	 sophistication	 in	 leveraging	 multiple	 data	 sources	 to	 attribute	 the	
origin	of	 forest	change	as	well	as	ecosystem	consequences.	Given	 that	 the 	
Landsat	archive	is	most	complete	within	the	United	States,	it	is	natural	that	
many	of	these	techniques	are	being	pioneered	for	U.S.	applications.	However,	
given	the	increased	global	data	collections	implemented	for	Landsat7	and	
the	upcoming	LDCM	(Landsat	Data	Continuity	Mission),	these	approaches	
could	be	applied	to	global	monitoring	as	well.	

12.6.1		 Operational	Monitoring	of	Forest	Dynamics:	LCMS	

The	Landscape	Change	Monitoring	System	(LCMS)	is	under	development	by	
a	consortium	of	scientists,	agencies,	and	projects	engaged	in	remotely	sensed	
change	detection	in	the	United	States.	Coordinated	by	the	Forest	Service	and	
Department	of	Interior/USGS,	LCMS	is	intended	to	be	a	hub	around	which	
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existing	national	change	products	such	as	those	from	MTBS	and	NLCD	may	
be	integrated	and	extended.	The	ideal	change	monitoring	system	would	pro
vide	uptodate	and	consistent	 information	about	 the	 location,	magnitude,	
and	nature	of	vegetation	changes	on	all	land	cover	types	across	the	country.	
The	research	and	agencybased	monitoring	efforts	described	in	this	chapter	
address	different	aspects	of	 this	 ideal	 system,	and	several	 steps	are	being	
taken	 under	 LCMS	 to	 promote	 both	 integration	 of	 existing	 products	 and	
cooperation	on	the	development	of	new	products.	

First,	LCMS	is	conducting	an	independent	needs	assessment	of	the	land	
management	community.	Acquired	information	about	the	type,	precision,	
and	frequency	of	needed	land	change	information	will	guide	development	
of	 new	 monitoring	 strategies.	 Many	 of	 the	 needed	 answers	 are	 likely	 to	
come	from	the	combination	of	current	resources.	For	instance,	LANDFIRE	
is	anticipating	a	more	meaningful	update	of	their	fuel	maps	as	fire	records	
from	 the	 MTBS	 are	 augmented	 with	 more	 general	 alldisturbance	 map
ping	 achieved	 through	 the	 VCT	 (Vogelmann	 et  al.	 2011).	 Similar	 benefits	
of	product	integration	likely	extend	into	processes	such	as	carbon	account
ing,	where	disturbance	emissions	are	strongly	influenced	by	event	type	and	
magnitude.	

Any	new	products	developed	by	the	LCMS	to	meet	identified	needs	will	
likely	depend	heavily	upon	the	Landsat	archive	and	will	draw	upon	the	
experience	 of	 participating	 partners.	 Like	 the	 MTBS	 project,	 the	 LCMS	
will	 follow	a	collaborative	multiagency	business	model,	with	an	empha
sis	upon	meeting	operational	monitoring	needs	by	producing	consistently	
updated	 and	 validated	 products.	 The	 LCMS	 is	 expected	 to	 be	 deployed	
during	2013.	

12.6.2		 Hypertemporal	and	Near-Real-Time	Change	Detection	

The	use	of	dense	image	time	series	has	pushed	the	“epoch	length”	(i.e.,	the	
time	 between	 images	 used	 for	 monitoring	 change)	 to	 shorter	 and	 shorter	
periods.	Not	surprisingly,	the	range	of	forest	dynamics	that	can	be	assessed	
has	expanded	as	well.	While	semidecadal	time	series	are	useful	for	moni
toring	net	land	cover	change	and	standclearing	disturbance	(Jin	and	Sader	
2002;	Drummond	and	Loveland	2010;	Masek	et al.	2008),	more	subtle	distur
bances	require	annual	image	acquisition.	Thus	the	algorithms	proposed	by	
Kennedy	et al.	(2007)	and	Huang	et al.	(2010)	are	capable	of	detecting	signifi
cant	thinning,	partial	harvest,	and	selective	mortality	from	insects	and	dis
ease.	However,	even	these	algorithms	may	not	record	subtle	and	shortlived	
degradation	 of	 the	 forest	 canopy	 due	 to	 insect	 defoliation,	 storm	 damage,	
and	selective	cutting.	

A	 variety	 of	 approaches	 are	 being	 prototyped	 to	 obtain	 seasonal	 or	
even	 submonthly	 information	 from	 Landsat.	 The	 WELD	 (WebEnabled	
Landsat	Dataset)	project	at	the	University	of	South	Dakota	is	using	MODIS
style	 compositing	 to	 generate	 monthly	 and	 seasonal	 gridded	 composites	
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of Landsat7 data.	Zhu	and	Woodcock	(in	press)	have	proposed	an	approach	
to	mapping	forest	disturbance	by	fitting	perpixel	phenological	curves	using	
every	available	Landsat	observation.	These	methods	not	only	obtain	greater	
sensitivity	 to	 shortterm	 canopy	 changes,	 but	 by	 explicitly	 considering	
changes	 relative	 to	 observed	 phenology	 they	 minimize	 errors	 due	 to	 mis
matches	between	annual	image	dates.	

12.6.3		 	Integration	of	Landsat	with	Active	RS	for	Biomass	Change	

Landsat	data	have	proven	robust	for	estimating	the	area	affected	by	forest	
change	 processes.	 However,	 Landsat	 data	 have	 not	 proven	 as	 useful	 for 	
forest	 volume	 or	 biomass	 estimation,	 except	 in	 conditions	 of	 sparse	 tree 	
cover	where	volume	can	be	directly	related	to	canopy	cover	(Powell	et al.	
2010).	 There	 are,	 however,	 a	 variety	 of	 ways	 in	 which	 change	 area	 from	
Landsat	 can	 be	 	combined	 with	 active	 remote	 sensing	 in	 order	 to	 better	
quantify	 “threedimensional”	 changes	 in	 forest	 structure	 and	 	biomass.	
Direct	fusion	between	Light	Detection	and	Ranging	(LIDAR)	and	Landsat	
has	been	proposed	 to	 improve	retrieval	of	biomass.	Landsat	 imagery	has	
also	 been	 proposed	 as	 a	 way	 to	 spatially	 interpolate	 LIDAR	 	“samples”	
across	 the	 landscape	 using	 krigging	 techniques	 as	 well	 as	 a	 way	 to	
group	LIDAR	 	measurements	based	upon	patterns	of	 forest	 structure	and	
disturbance.	More	recently,	disturbance	and	age	information	derived	from	
Landsat	have	been	combined	with	LIDAR	data	to	estimate	postdisturbance	
carbon	 	accumulation	 rates	 and	 to	 improve	 spatial	 interpolation	 of	 height	
(Li et al.	2011).	In	principle,	similar	work	could	be	carried	out	using	onetime	
biomass	 retrievals	 from	 radar	 (including	 interferometric	 SAR)	 combined	
with	historical	disturbance	data	from	Landsat.	

12.6.4	 Ecological	Impacts	of	Climate	Change	and	Recovery	Trajectories	

The	projects	discussed	here	have	focused	mostly	on	quantifying	the	fraction	
of	 U.S.	 forest	 land	 disturbed	 and	 the	 fraction	 that	 reverts	 back	 to	 forest 	
after	disturbance.	The	spectral	information	of	Landsat	timeseries	data	also	
offers	important	information	on	the	rate	at	which	ecosystems	recover	from	
disturbance.	 In	 one	 example,	 Schroeder	 et  al.	 (2007)	 related	 postharvest	
Landsat	spectral	trajectories	in	the	Pacific	Northwest	to	increases	in	canopy	
cover	deduced	from	air	photos.	The	current	phase	of	 the	NAFD	project	 is	
extending	 this	 work	 by	 assessing	 rates	 of	 forest	 recovery	 for	 all	 recently	
disturbed	patches	in	the	United	States.	

One	 application	 for	 such	 approaches	 is	 to	 understand	 how	 ecosystem	
recovery	 may	 be	 responding	 to	 climate	 warming.	 A	 number	 of	 studies	
have	suggested	increased	rates	of	forest	decline	in	the	southwestern	United	
States	due	to	prolonged	drought	(Williams	et al.	2010),	and	van	Mantgem	
et	al.	(2009)	found	evidence	for	increased	rates	of	tree	mortality	throughout	
the	western	United	States.	Disturbance	events	(fire,	insect	outbreaks,	and	



	
	
	

	
	
	
	

	

	
	
	

	
	

	
	

224	 Global
Forest
Monitoring
from
Earth
Observation


disease)  may	 be	 accelerated	 in	 climatestressed	 forests,	 and	 successional	
pathways	may	be	altered	or	slowed.	Ultimately	the	40+	year	Landsat	record	
will	prove		valuable	for	understanding	the	longterm	shifts	in	forest	composition	
and	mortality	associated	with	climate	warming	in	the	United	States.	

12.7	 Conclusions	

The	 application	 of	 Landsat	 remote	 sensing	 to	 the	 monitoring	 of	 U.S.	
forests	has	accelerated	during	the	last	decade.	This	trend	reflects	both	the	
development	of	new	algorithmic	and	computational	approaches	for	dealing	
with	large	volumes	of	data	and	the	opening	of	the	Landsat	archive	for	free	
distribution	 by	 the	 USGS.	 The	 projects	 discussed	 here	 represent	 large
scale	mapping	efforts	that	have	sought	to	characterize	U.S.	forest	dynamics	
during	the	Landsat	era,	including	disturbance,	recovery,	and	conversion.	

Although	 the	 U.S.	 forest	 inventory	 will	 continue	 to	 provide	 our	 most	
robust	national	estimates	of	forest	attributes,	remote	sensing	is	increasingly	
being	called	on	to	perform	operational	monitoring	of	forest	and	land	cover	
change.	The	appropriate	integration	of	geospatial	information	from	remote	
sensing	 with	 forest	 attribute	 available	 from	 the	 FIA	 remains	 one	 of	 the	
significant	 challenges	 for	 the	 future.	 The	 knearest	 neighbor	 approach	 of	
assigning	suites	of	FIA	attribute	data	based	on	spectral	properties	has	found	
acceptance	within	the	USFS	as	it	allows	the	statistical	variance	of	the	FIA
reported	attributes	to	be	“imported”	to	the	geospatial	products	(McRoberts	
et  al.	 2002).	 Alternative	 approaches	 have	 sought	 instead	 to	 use	 statistical 	
models	 to	 predict	 attributes	 from	 Landsat	 spectral	 data	 using	 the	 FIA	
attributes	as	training	data	(e.g.,	Powell	et al.	2010)	or	to	use	Landsatderived	
harvest	 maps	 to	 spatially	 distribute	 the	 FIArecorded	 harvest	 volumes	
(Healey	 et  al.	 2009).	 Ultimately	 the	 extent	 to	 which	 remote	 sensing	 can	
support	operational	needs	depends	on	the	tradeoff	between	measurement	
error	and	sampling	error.	Landsat	remote	sensing	can	record	walltowall	
dynamics,	 and	 thus	 has	 no	 sampling	 error,	 but	 may	 exhibit	 significant	
errors	of	omission	and	commission	(measurement	errors)	depending	on	the	
attribute	of	interest.	

The	launch	of	LDCM	in	early	2013	will	continue	the	Landsat	legacy	while	
providing	a	greater	density	of	global	acquisitions	compared	to	Landsat7.	In	
addition,	 the	 ESA	 Sentinel2	 satellites	 will	 be	 launched	 during	 2013–2014.	
Like	 Landsat,	 the	 Sentinel	 program	 has	 committed	 to	 open	 access	 for	 its	
archive.	 Taken	 together,	 the	 LDCM	 and	 Sentinel	 missions	 will	 provide	 an	
extremely	rich	source	of	global	observations	for	the	next	decade.	It	is	antici
pated	that	many	of	the	advances	in	the	use	of	Landsat	data	described	here,	
including	timeseries	methods,	will	soon	find	global	use.	
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13.1	 Background	

The	need	to	monitor	greenhouse	gas	(GHG)	emissions	accurately	has	become	
a	task	of	major	importance	over	the	last	decade.	Emissions	and	removals	of	
GHG	in	the	land	sector	represent	a	large	proportion	of	Australia’s	total	GHG	
emissions.	 Following	 the	 signing	 of	 the	 Kyoto	 Protocol	 in	 1997,	 Australia	
began	developing	a	new	system	to	account	for	emissions	and	removals	from	
the	land	sector.	The	result,	the	National	Carbon	Accounting	System	(NCAS),	
is	 a	 fully	 integrated	 modeling	 system	 that	 utilizes	 data	 from	 a	 variety	 of	
sources	to	estimate	emissions	and	removals	for	the	purpose	of	reporting	to	
the	United	Nations	Framework	Convention	on	Climate	Change	(UNFCCC	
2001)	and	accounting	under	the	Kyoto	Protocol.	

Under	 the	Kyoto	protocol,	Australia	was	required	 to	estimate	emissions	
from	land	use	and	land	use	change	in	1990	and	from	2008	to	2012	(the	first	
Kyoto	Commitment	period)	while	ensuring	timeseries	consistency,	limiting	
potential	errors	of	omission	and	commission,	allowing	for	annual	updating	
at	fine	(subhectare)	spatial	resolution,	and	focusing	on	areas	of	change	rather	
than	total	extent.	The	size	of	Australia	(769	Mha)	and	the	extent	of	its	forests	
(110	Mha)	required	that	robust	and	costeffective	methods	that	could	be	reli
ably	operated	into	the	foreseeable	future	be	developed	to	estimate	emissions	
and	removals	from	the	land	sector.	A	key	component	of	this	system	would	
be	to	track	areas	of	 land	use	change.	As	no	such	data	existed	in	Australia	
that	could	meet	all	of	these	criteria,	the	NCAS	needed	to	consider	alternative	
options	to	traditional	forest	inventory	and	mapping.	

The	 NCAS	 Land	 Cover	 Change	 Program	 (NCASLCCP)	 was	 developed	
by	 the	 Australian	 government	 in	 collaboration	 with	 the	 Commonwealth	
Scientific	and	Industrial	Research	Organisation	(CSIRO)	and	other	partners	
to	meet	the	exacting	requirements	of	the	Kyoto	Protocol.	The	NCASLCCP	
delivers	the	framework	for	finescale	continental	mapping	and	monitoring	of	
the	extent	and	change	in	perennial	vegetation	using	Landsat	satellite	imag
ery,	 allowing	 for	 an	 effective	 estimation	 of	 the	 GHG	 emissions	 from	 land	
use	and	land	use	change	(Brack	et	al.	2006;	Caccetta	et	al.	2010).	The	program	
has	been	successively	developed	(see,	for	example,	Furby	2002;	Caccetta	et al.	
2003,	2007;	Furby	et	al.	2008)	over	a	number	of	years	and		currently	uses	over	
7,000	Landsat	MSS,	TM,	and	ETM+	images	at	a	resolution	of	25	m	for	18	time	
periods	 from	 1972	 to	 the	 present	 time	 (2011)	 and	 continues	 on	 an	 annual	
update	 cycle,	 making	 it	 one	 of	 the	 largest	 and	 most	 intensive	 land	 cover	
monitoring	programs	of	its	kind	in	the	world.	
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While	 the	 remote	 sensing	 program	 was	 designed	 specifically	 for	 the	
purposes	 of	 GHG	 accounting,	 it	 has	 many	 additional	 benefits	 for	 bodies	
interested	in	monitoring	land	use	change	generally.	The	resultant	products	
represent	one	of	the	few	nationally	consistent	timeseries	data	for	the	land	
sector.	

Moving	remote	sensing	from	the	realm	of	a	 technical	research	program	
to	fully	operational	systems	with	ongoing	update	cycles	was	a	considerable	
undertaking.	Issues	of	scientific	expertise,	technical	capacity,	ongoing	data	
supply	and	analysis,	and	accessing	and	processing	large	archives	of	data	all	
needed	 to	 be	 considered.	 While	 many	 of	 these	 issues,	 in	 particular,	 those	
related	to	storage	and	compute	capacity,	have	largely	been	removed	through	
technological	 advancements,	 the	 operation	 of	 such	 a	 system	 still	 requires	
ongoing	planning	and	management.	The	operational	procedures	adhere	to	a	
strict	processing	guideline:	the	output	from	each	processing	stage	is	checked	
against	specific	accuracy	and	consistency	standards	through	a	rigorous	qual
ity	 assurance	 process.	 Given	 the	 above	 operating	 environment,	 accuracy,	
interpretability	(for	outsourcing	and	QA),	computational	efficiency,	the	abil
ity	to	incorporate	“better”	algorithms,	and	reliability	when	applied	through	
space	and	time	are	important	aspects	for	consideration	during	methodology	
development.	

13.2		 Materials	and	Methods	

13.2.1	 Method		Selection	

Although	 no	 nationalscale	 remote	 sensing	 program	 for	 land	 use	 change	
existed	 at	 the	 start	 of	 the	 NCAS	 program,	 several	 operational	 broadscale	
monitoring	programs	[for	example,	Land	Monitor	(Caccetta	et	al.	2000;	Land	
Monitor	2008)	and	SLATS	(Goulevitch	et	al.	1999)]	did	exist	at	the	subnational	
scale.	These	had	been	implemented	to	serve	the	natural	resource	management	
needs	of	subnational	agencies	rather	than	for	the	specific	purposes	of	track
ing	 land	use	change	 for	carbon	accounting.	To	assess	 the	suitability	of	 the	
differing	methods,	a	series	of	workshops	and	pilot	projects	were	conducted	
from	which	the	national	Landsatbased	forest	monitoring	program	was	estab
lished.	The	end	product	was	not	the	wholescale	adoption	of	a	single	method	
but	rather	a	selection	of	the	best	aspects	of	several	different	systems.	

The	approach	adopted	is	based	on:	

r� Longterm	sequences	of	orthorectified	and	calibrated	Landsat	MSS,	
TM,	ETM+	satellite	data	

r� Discriminant	analysis	techniques	to	(spectrally)	separate	classes	of	
interest	
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r� Supervised	and	automated	approaches	to	specify/estimate	classifier	
parameters	

r� Spatial/temporal	models	to	reduce	errors	

As	the	task	included	the	analysis	and	processing	of	thousands	of	historical	
Landsat	scenes,	as	well	as	the	requirement	that	the	information	be	updated	
annually	during	reporting	periods,	operational	components	of	the	method
ology	were	vital	to	the	success	of	the	system.	To	do	this	required:	

r� Detailed	 specification	 of	 the	 application	 of	 the	 methods	 in	 opera
tions	manuals	(Furby	2002)	

r� Training	and	subsequent	processing	of	the	data	by	third	parties	with	
documented	quality	assurance	checks	

r� Independent	review	of	 the	outputs	by	an	 independent	 third	party	
to	provide	insight	into	the	characteristics	of	errors	(Jones	et	al.	2004)	
for	 use	 in	 method	 refinement	 through	 a	 continuous	 improvement	
exercise	

13.2.2	 Landsat		Data	

The	initial	step	for	the	program	was	to	develop	specifications	for	the	selec
tion	 of	 Landsat	 scenes.	 Landsat	 has	 a	 return	 time	 of	 16	 days,	 resulting	 in	
around	 22	 images	 available	 per	 year	 for	 any	 specific	 area.	 To	 develop	 the	
annual	maps	of	forest	extent	required	by	the	system	required	selection	of	the	
optimal	image.	The	selections	were	based	on	both	preferred	time	sequence	
according	 to	 factors	 including	 reporting	 requirements,	 seasonality,	 green
ness,	 sun	angle,	and	other	artifacts	such	as	cloud,	fire,	and	smoke.	As	 the	
purpose	of	the	program	is	to	determine	changes	in	forest	cover,	images	that	
maximize	 the	 separation	 between	 tree	 and	 other	 cover	 (i.e.,	 usually	 drier	
conditions)	are	generally	selected.	

13.2.3		 Landsat	Data	Geometric	Rectification	

Accurate	 orthorectification	 of	 the	 Landsat	 data	 is	 vital	 to	 ensure	 that	 any	
change	 is	 due	 to	 real	 changes	 on	 the	 ground	 rather	 than	 edge	 effects	 due	
to	image	misalignment.	In	the	NCASLCCP,	this	was	achieved	using	a	rig
orous	earth	orbital	model	 (PCI	OrthoEngine	software;	Toutin	1994;	Cheng	
and	 Toutin	 1995),	 with	 a	 specification	 requiring	 subpixel	 accuracy.	 The	
first	step	was	to	establish	a	common	orthorectified	base	mosaic	of	Landsat	
data.	 Once	 the	 orthorectified	 base	 was	 established,	 ground	 control	 points	
(GCPs)	were	automatically	matched	using	a	crosscorrelation	technique	and	
the	temporal	sequences	of	 images	orthorectified	to	the	common	base.	This	
approach	improves	efficiency	and	accuracy	of	the	results.	For	quality	assur
ance,	visual	inspection	and	numerical	summaries	based	on	crosscorrelation	
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feature	matching	are	used	to	assess	the	accuracy	of	orthorectification	of	the	
	timeseries	images.	

13.2.4	 Image	Calibration/Normalization	

Radiometrically	 calibrated	 images	 allow	 for	 comparisons	 between	 image	
scenes	 and	 the	 possibility	 of	 better	 extrapolation	 of	 a	 chosen	 classifier.	
We convert	raw	digital	counts	to	be	consistent	with	a	chosen	reference	image.	

The	five	main	steps	in	the	calibration	and	normalization	(see	Figure	13.1)	
of	the	Landsat	data	are:	

r� Topofatmosphere	 (TOA)	 reflectance	 calibration	 (as	 described	 by	
Vermote	et	al.	(1997),	which	is	to	correct	the	reflectance	differences	
caused	by	the	solar	distance	and	angle.	

r� Bidirectional	 reflectance	 distribution	 function	 (BRDF)	 calibration,	
described	by	Wu	et	al.	(2001).	

r� Empirical	correction	for	atmospheric	and	other	affine	effects	via	the	
use	of	invariant	targets	(Furby	and	Campbell	2001).	

r� Terrain	illumination	correction	(Wu	et	al.	2004),	which	is	based	on	
the	Ccorrection	(Teillet	et	al.	1982).	This	step	is	required	where	there	
are	 significant	 terrain	 illumination	 effects,	 resulting	 in	 bright	 and	
dark	sides	of	hills	and	mountains.	

FIGURE	13.1	
(See	color	 insert.)	 Image	calibration	 (top)	and	normalization	 (bottom).	Calibration:	Landsat	
mosaic	of	Australia	showing	(a)	uncalibrated,	(b)	TOA	correction,	and	(c)	TOA	+	BRDF	correc
tion.	Normalization	(From	Wu	et.	al.,	2004.):	(d)	uncorrected,	(e)	terrain	illumination	correction,	
and	(f)	estimated	occlusion	mask	overlaid	and	shown	in	gray.	(From	Wu,	X.,	et	al.,	An	approach	
for	 terrain	 illumination	 correction.	 Australasian	 Remote	 Sensing	 and	 Photogrammetry	
Conference,	Fremantle,	Western	Australia,	2004.)	
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r� Occlusion	detection	(Wu	et	al.	2004)	to	identify	terrain	not	observed	
due	to	the	combination	of	 terrain	and	the	viewing	geometry.	This	
step	identifies	true	shadow,	which	is	labeled	as	missing	data.	

A	relatively	highresolution	digital	elevation	model	(typically	better	than	the	
90	m	SRTM)	is	required	to	achieve	adequate	occlusion	detection	and	removal	
of	terrain	illumination	effects.	

13.2.5		 Landsat-Derived	Texture	Measures	

There	are	many	natural	and	seminatural	areas	that	have	significant	extents	
of	heterogeneous	perennial	woody	vegetation	that	do	not	meet	 the	struc
tural	definition	of	forests	or	are	at	the	lower	limit	of	the	definition	of	forests	
that	is	difficult	to	interpret	and	draw	a	line	on	a	map	so	to	speak.	Here	we	
refer	to	perennial	woody	vegetation	having	less	than	20%	canopy	cover	as	
sparse.	

Seasonal	weather	changes	and	management	effects	may	change	the	char
acteristics	of	these	regions,	and	this	in	conjunction	with	the	limited	ability	of	
remote	sensing	technology	to	distinguish	this	20%	canopy	cover	limit		typically	
results	in	seasonal	transitions	between	forests	and	sparse.	

Based	on	observations	 that	 some	sparse	 regions	had	a	 textured	appear
ance,	 measures	 of	 texture	 were	 demonstrated	 to	 have	 useful	 information 	
for	 distinguishing	 between	 forest,	 sparse,	 and	 nonforest	 classes	 and	 have	
been	 trialled	at	subnational	scale	 (Caccetta	and	Furby	2004),	progressively	
being	incorporated	into	the	work	described	here	(Furby	et	al.	2007),	where	
the	Landsat	image	bands	are	augmented	with	texture	measures	in	the	anal
ysis.	 The	 “texture”	 measures	 are	 derived	 using	 an	 overcomplete	 wavelet	
decomposition	 (Unser	 1995),	 with	 Haar	 basis	 functions	 applied	 to	 forest/	
nonforest	linear	discriminant	functions	of	the	original	Landsat	bands.	These	
measures	are	smoothed	using	an	adaptive	filter.	This	results	 in	an	nband	
“texture	image,”	where	each	band	is	a	texture	estimated	at	a	coarser	scale.	
The		textures	range	from	finescale	textures	in	band	1	through	coarsescale	
textures	in	band	n.	In	the	following,	bands	are	indexed	as	h0	…	hn	where	h0	is	
the	finest	scale	texture	and	hn	the	coarsest.	

13.2.6	 Comments	

Some	7,000	Landsat	MSS,	TM,	and	ETM+	images	over	the	past	39	years	(from	
1972	until	 the	present)	have	been	coregistered	to	a	common	orthorectified	
base	mosaic	using	the	above	methods.	The	process	is	ongoing	with	an	annual	
updating	process.	The	program	also	periodically	evaluates	the	potential	for	
data	from	other	sensors	such	as	IRS,	SPOT,	and	CBERS	(Furby	and	Wu	2007,	
2009;	Wu	et	al.	2009)	as	possible	candidates	for	operational	use	should	data	
from	 the	 Landsat	 series	 no	 longer	 be	 available.	 To	 ensure	 access	 to	 those 	
wishing	to	use	data	processed	to	this	national	standard,	the	data	are	then	
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provided	back	to	the	Australian	government	agency	responsible	for	remote	
sensing.	These	data	are	then	made	available	for	the	cost	of	data	transfer.	

13.2.7		 Forest	Extent	and	Change	Analysis	

13.2.7.1	 Geographic	Strati�cation	

Consistent	with	the	experience	of	subnational	programs,	a	stratified	approach	
was	adopted,	allowing	the	local	optimization	of	classifier	parameters	across	
the	many	different	land	cover−soil	associations	(Commonwealth	of	Australia	
2005,	2009)	that	exist	in	such	a	large	area.	The	stratification	was	adaptively	
derived,	 starting	 from	 boundaries	 based	 on	 (Landsat)	 spectral	 and	 other	
(such	as	topographic)	consistency	properties	of	strata	during	analysis.	In	all,	
about	400	strata	were	defined,	as	depicted	in	Figure	13.2.	

13.2.7.2	 Training	and	Validation	Data	

The	process	of	classification	requires	 that	a	quantitative	assessment	of	 the	
information	 in	 the	 available	 data	 is	 performed;	 the	 class	 labels,	 after	 hav
ing	assessed	the	information	in	the	data,	are	defined;	a	choice	of	model	 is	
made;	and	the	accuracy	of	the	results	validated.	Sample	locations	of	known	
land	cover	are	used	to	derive	the	classifier	parameters	or	to	train	the	clas
sifier,	and	we	refer	to	such	data	as	training	data.	Similar	sites	independent	
of	 the	training	data	are	used	to	assess	 the	accuracy	of	 the	results,	and	we	
refer	to	these	data	as	validation	data.	The	primary	sources	of	training	and	
validation	data	that	have	been	used	for	the	project	include:	about	800	histori
cal	aerial	photographs	whose	locations	are	distributed	across	the	continent;	

FIGURE	13.2	
Stratification	zones	with	Landsat	scene	boundaries	overlaid	used	in	analysis	and	subsequent	
processing.	 Within	 each	 zone,	 training	 data	 are	 used	 to	 estimate	 the	 parameters	 of	 the	
	multitemporal	classifier.	
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FIGURE	13.3	
(See	color	insert.)	(Left)	Graphical	depiction	of	the	location	of	highresolution	IKONOS	data	
used	in	the	derivation	of	classifier	training	information.	(Right)	Typically,	samples	are	required	
by	intersection	of	zone	and	image,	though	wellcalibrated	data	can	reduce	this	requirement	by	
allowing	extrapolation	across	scene	boundaries	in	many	cases.	

about	1,000	 IKONOS	 images	distributed	across	 the	continent	 (locations	as	
depicted	in	Figure	13.3);	and	secondary	less	formal	and	generally	available	
information	 such	 as	 regional	 expert	 knowledge,	 plantation	 location,	 and	
type	information	as	provided	by	groundbased	surveys	and	inventory	infor
mation	where	it	exists.	

13.2.7.3	 Multitemporal	Model	Used	for	Classi�cation	

Here	we	follow	the	approach	described	by	Caccetta	(1997)	and	Kiiveri	and	
Caccetta	 (1998)	 for	 combining	 the	 multitemporal	 land	 cover	 information	
provided	by	the	Landsat	observations	to	form	multitemporal	classifications	
of	 land	cover.	The	approach	uses	a	probabilistic	framework	for	combining	
data,	with	the	view	to	classifying	the	data.	Useful	properties	of	the	approach	
include:	

r� Propagation	of	uncertainties	in	inputs	and	calculation	of	uncertain
ties	in	outputs	

r� Production	of	hard	and	soft	maps	

r� Handling	of	missing	data	by	using	all	available	information	to	make	
predictions	

r� Existence	of	welldeveloped	statistical	tools	for	parameter	estimation	

We	note	these	characteristics	are	useful	in	practice	as	operational	monitor
ing	programs	face	issues	such	as	availability	of	cloudfree	imagery,	variable	
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(historic)	 atmospheric	 conditions,	 and	 changing	 sensor	 characteristics	
resulting	in	timeseries	data	that	vary	in	quality,	completeness,	and	spectral	
discrimination.	

13.2.8	 Accuracy		Assessment	

The	 accuracy	 of	 the	 final	 forest	 presence/absence	 classification	 was	 inde
pendently	 validated,	 with	 initial	 results	 recorded	 by	 Lowell	 et	 al.	 (2003)	
and	a	subsequent	update	by	Jones	et	al.	 (2004).	Results	 from	the	 latter	are	
summarized	 below	 (see	 Section	 13.3.3).	 Validation	 involved	 the	 compari
son	 of	 classifications	 against	 “truth”	 obtained	 from	 aerial	 photo	 interpre
tation.	 The	 classes	 “forest,”	 “nonforest,”	 “regrowth,”	 and	 “deforestation”	
were	considered.	As	noted	by	Lowell	et	al.	(2003)	and	Jones	et	al.	(2004),	the	
sampling	 strategy	 was	 constrained	 by	 the	 availability	 of	 (historical)	 aerial	
photography	and	was	further	constrained	by	the	variable	quality	and	scale	
of	 the	 photography.	 Routine	 collection	 of	 aerial	 photography	 resides	 with	
the	states	within	Australia,	with	 the	collection	being	 tailored	by	 the	states	
to	individual	state	needs.	This	results	in	variable	geographic,	temporal,	and	
spatial	resolution	when	considering	a	national	program.	

Due	to	the	variable	availability	and	quality	of	aerial	photography,	Lowell	
et	al.	(2003)	and	Jones	et	al.	(2004)	adopted	an	approach	that	required	the	ana
lyst	to	attach	a	degree	of	confidence	to	the	cover	class	interpretations.	Results	
were	thus	summarized	as	a	“fuzzy”	confusion	matrix.	

13.2.9	 Attribution	

Land	cover	change	does	not	directly	relate	to	land	use	change,	in	particular	
for	deforestation	and	reforestation.	Forest	cover	can	change	for	a	variety	of	
reasons	 including	 clearing	 or	 establishment	 of	 trees,	 fire,	 pest	 attack,	 and	
drought.	 Further,	 there	 is	 a	 degree	 of	 error	 in	 any	 remote	 sensing	 analy
sis	 that	 need	 to	 be	 removed	 wherever	 possible,	 especially	 to	 remove	 false	
change	due	to	the	random	errors	in	forest	extent	between	years.	

Attribution	is	a	largely	manual	process	that	relies	on	expert	judgment	and	
experience.	However,	it	can	be	greatly	assisted	by	other	products	that	allow	
for	rulesbased	methods	to	be	applied.	For	example,	tenure	can	be	used	in	
many	 cases	 to	 separate	 forest	 cover	 loss	 due	 to	 forest	 management	 (such	
as	 clear	 felling)	 from	 that	 due	 to	 clearing	 for	 agriculture	 (deforestation).	
Mapping	of	fire	scars	can	be	used	to	separate	change	in	forest	cover	from	
fire	from	areas	of	deforestation	or	forest	management.	Other	mapping	prod
ucts,	such	as	areas	of	known	plantation	establishment,	allow	for	separation	
of	areas	of	natural	regrowth	from	humaninduced	reforestation.	

The	process	of	attribution	is	directly	related	to	the	policy,	reporting,	and	
accounting	requirements.	While	the	remote	sensing	sets	the	base	for	the	sys
tem,	it	is	the	attribution	that	ensures	that	the	final	outputs	of	the	system	are	
policy	relevant.	
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13.3		 Results	and	Discussion	

The	 key	 outputs	 from	 the	 system	 are	 raw	 and	 policyrelevant	 timeseries	
data	of	forest	cover,	forest	cover	change,	forest	cover	trend,	and	plantations	
identified	 as	 being	 either	 hardwood	 or	 softwood.	 From	 these	 analyses,	 it	
is	possible	to	effectively	age	areas	of	forest	accurately	from	ages	1	to	38,	with	
a	further	class	of	38	years	or	older.	

The	dense	and	extended	timeseries	data	developed	through	the	NCAS
LCCP	allows	for	analysis	that	has	not	previously	been	available.	Such	data	
provide	detailed	insight	into	the	key	processes	in	the	land	sector	that	drive	
emissions	and	removals.	

13.3.1		 Comparison	to	Existing	Manual	Mapping	Products	

A	 variety	 of	 other	 mapping	 products	 exist	 in	 Australia	 that	 were	 devel
oped	for	a	number	of	purposes,	 including	biodiversity,	conservation,	and	
watershed	management	 (Commonwealth	of	Australia	2008,	2009).	For	 the	
purposes	 of	 change	 analysis,	 such	 mapping	 products	 are	 unable	 to	 track	
the	change	in	forest	extent	due	to	humaninduced	activities.	For	example,	
Commonwealth	of	Australia	(2008)	uses	manual	methods	that	are	not	time
series	 consistent.	 Although	 these	 mapping	 products	 are	 constrained	 for	
change	analysis,	 they	still	play	a	vital	 role	 in	 the	estimation	of	emissions	
and	removals	from	forests.	This	is	an	excellent	example	of	using	data	that	
are	fit	for	purpose.	

13.3.2		 Relationship	to	Modeling	and	Natural	Resource	Management	

The	remote	sensing	program	has	produced	a	rich	source	of	spatial	information	
for	use	in	the	emissions	modeling	framework,	allowing	Australia	to	report	
accurately	on	emissions	and	removals	from	the	land	sectors	(Figure	13.4)	as	
well	as	being	used	to	report	on	rates	of	forest	conversion.	As	the		program	
expands,	 new	 information	 is	 being	 derived	 and	 progressively	 incorpo
rated	into	the	framework.	We	briefly	describe	the	progress	of	the	land	cover	
information	derived	to	date.	

The	forest	presence/absence	information	has	been	derived	for	each	of	the	
Landsat	epochs	in	the	time	series.	Based	on	spatial	and	temporal	rules,	areas	
most	 likely	 to	 be	 plantations	 are	 identified	 and	 classified	 as	 being	 either	
hardwood	or	softwood	(Chia	et	al.	2006).	

Spectral	 indices	 providing	 an	 ordination	 from	 forest	 to	 nonforest	 have	
been	 derived	 for	 each	 Landsat	 TM	 epoch	 for	 1989	 onward.	 The	 perennial	
vegetation	cover	trend	information	provides	subtle	information	on	historic	
changes	within	forest	(and	ultimately	sparse)	areas	and	offers	a	surveillance	
tool	for	forest	managers	(Wallace	et	al.	2006).	See	Lehmann	et	al.	(2011)	for	
details.	These	indices	are	used	with	an	“ever	forest”	mask,	which	is	derived	



	

140	

120	

100	

80	

60	

40	

20	

0	

E
m

is
si

o
n

s	
(M

t	
C

O
2

	)	

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

	

Year	

	

239	Long-Term
Monitoring
of
Australian
Land
Cover
Change


FIGURE	13.4	
Emissions	 from	 forest	 land	 converted	 to	 cropland	 and	 grassland	 in	 Australia,	 1990−2008.	
(From	Australia	National	Inventory	Report	2008.)	

FIGURE	13.5	
(See	color	insert.)	Map	of	Australia	showing	NCAS	forest	extent	(green)	and	sparse	extent	(red).	

from	 the	 union	 of	 any	 area	 identified	 as	 forests	 at	 any	 point	 in	 the	 forest	
presence/absence	time	series.	Together	they	provide	temporal	 information	
on	the	trajectory	of	a	pixel.	

Sparse	cover	presence/absence	classification	(see	Figure	13.5),	which	relies	
on	 imagederived	 spatial	 texture	 measures	 for	 discrimination,	 has	 been	
derived	from	the	Landsat	TM	epochs	in	the	time	series	1989	onward	(Furby	
et	al.	2007).	At	the	time	of	writing,	the	sparse	cover	information	was	being	
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prepared	 and	 was	 not	 temporally	 complete.	 Upon	 completion,	 the	 trend	
information	will	also	be	derived	for	this	class	similar	as	for	the	forest	class.	

The	land	cover	change	information	currently	used	for	emissions	modeling	
is	the	forest	change	(derived	from	the	timeseries	presence/absence	classifi
cations)	and	the	plantation	type	classification	(Furby	et	al.	2008).	

13.3.3	 Accuracy		Assessment	

The	overall	forest	presence/absence	accuracy	statement,	as	summarized	by	
Jones	et	al.	(2004),	p.	8	of	the	report,	is:	

r� Nationwide,	the	NCAS	definite	error	rate	was	~3%.		

r� Combined	NCAS	definite	and	probable	error	rate	was	~12%.		

r� Nationwide,	the	forest	definite	error	rate	was	~2%.		

r� Nationwide,	the	nonforest	definite	error	rate	was	~4%.		

r� Nationwide,	 the	 forest	 combined	 definite	 and	 probable	 error	 rate	 	
was	~6%.	

r� Nationwide,	the	nonforest	combined	definite	and	probable	error	rate	
was	~15%.	

r� The	amount	of	forest	is	likely	to	be	underestimated	continent	wide,	
but	the	exact	amount	is	difficult	to	determine	because	the	CIVP	sam
pling	scheme	was	not	a	stratified	or	random	sample.	

r� Regrowth	and	deforestation	have	considerably	higher	levels	of	errors	
associated	with	them,	but	are	much	rarer	classes	(only	occurring	~2% 

and	1%	of	the	time,	respectively).	

For	the	sparse	covers,	plantation,	and	trend	information,	validation	is	yet	to	
be	performed	and	will	be	in	the	scope	of	future	works.	
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14.1	 Introduction	

14.1.1			 Background	of	Burned	Area	Mapping	

Wildfires	 are	 one	 of	 the	 most	 important	 drivers	 of	 land	 cover	 changes	 in	
Russia.	They	affect	annually	millions	of	hectares	of	forests	and	other		terrestrial	
ecosystems,	such	as	tundra,	grasslands,	and	peatlands	(Korovin	1996).	Earth	
observation	 allows	 characterizing	 the	 distribution	 and	 impact	 of	 wildfires	
from	individual	events	up	 to	 the	country	 level.	Burned	area	mapping	 is	a	
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critical	input	for	both	fire	management	actions’	planning	and	postfire	impact	
assessment,	including	economic	and	environmental	aspects.	

There	is	a	wide	range	of	requirements	for	the	delivery	time	and	accuracy	
of	burned	area	estimates	in	relation	to	the	range	of	applications.	Firefighting	
and	suppression	activities	require	information	to	be	updated	as	frequently	as	
possible	and	to	be	delivered	to	users	as	rapidly	as	possible.	The	firefighters	
require	fire	information	to	be	updated	very	frequently,	up	to	several	times	
a	 day.	 However,	 they	 do	 not	 have	 stringent	 requirements	 for	 information	
accuracy.	On	another	hand,	the	applications	related	to	postfire	impact	assess
ment	 are	 highly	 dependent	 on	 the	 accuracy	 of	 burned	 area	 mapping,	 but	
do	not	have	strong	requirements	for	data	delivery	speed	as	postfire	impact	
assessment	data	can	be	delivered	a	few	weeks	or	even	a	few	months	after	the	
fires.	Postfire	assessment	 is	used	 in	particular	 for	 forest	 inventories,	 	forest	
management,	biodiversity	conservation,	and	carbon	emissions	reporting.	

For	 more	 than	 two	 decades,	 earth	 observation	 techniques	 have	 demon
strated	 their	 capacities	 to	 provide	 various	 types	 of	 information	 related	 to	
vegetation	fires,	including	active	fire	detection	and	monitoring,	burned	area	
mapping,	 and	 characterization.	 A	 number	 of	 methods	 have	 been	 devel
oped	for	active	fire	detection	based	on	the	radiation	temperature	character
istics	of	fires.	These	methods	are	based	on	 the	use	of	a	 few	main	satellite	
remote	sensing	instruments:	NOAAAVHRR	(Li	et	al.	2001),	ERSATSR2	and	
EnvisatAATSR	(Arino	et	al.	2005),	as	well	as	TerraMODIS	(Giglio	et	al.	2003).	
In	spite	of	attempts	made	to	assess	the	extent	of	burned	area	directly	from	
the	detection	of	active	fire	pixels,	such	approaches	are	not	considered	very	
robust	and	are	reported	with	large	ranges	of	uncertainties.	Eva	and	Lambin	
(1998)	did	not	find	any	significant	correlation	between	estimates	of	active	fire	
pixels	(derived	from	NOAAAVHRR	sensor)	and	assessment	of	burned	areas	
in	 Central	 Africa.	 By	 contrast,	 Loboda	 and	 Csiszar	 (2004)	 reported	 a	 very	
high	correlation	 (R2	 =  0.99)	between	 the	number	of	active	fire	pixels	 (esti
mated	from	MODIS	sensors)	and	burned	areas	(derived	from	LandsatETM+ 

imagery)	in	Russia,	with	only	about	10%	underestimation.	The	fundamental	
shortcomings	of	such	approaches	are	due	to	the	combination	of	a	few	factors	
(Giglio	et	al.	2006),	mainly:	

r� Masking	of	active	fires	by	clouds	and	smoke	

r� Limited	temporal	frequency	of	satellite	observations	

r� Spatial	and	temporal	heterogeneity	of	fires,	related	in	particular	to	
a  large	 range	 of	 propagation	 speed,	 fuel	 contents,	 meteorological	
conditions,	and	temperature	daily	dynamics	

r� Coarse	spatial	resolution	of	the	satellite	sensors	used	for	active	fire	
detection	

On	the	one	hand,	as	some	of	these	factors	are	stochastic	in	nature,	a	consis
tent	assessment	of	burned	area	is	difficult	from	these	active	fire	detection	
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approaches,	 and	 the	 accuracy	 of	 results	 may	 significantly	 vary	 between	
regions	and	time	periods.	On	the	other	hand,	such	approaches	are	consid
ered	the	most	appropriate	for	firefighting	activities	for	which	data	delivery	
time	is	the	most	critical	factor.	

A	number	of	burned	area	mapping	approaches	are	based	on	the		detection	
of	intra	or	interannual	changes	in	land	cover	spectral	properties	using	time	
series	 of	 coarseresolution	 satellite	 imagery	 (500	 m–1	 km)	 mainly	 from	
NOAAAVHRR	 (Sukhinin	 et	 al.	 2005),	 SPOTVegetation	 (Grégoire	 et	 al.	
2003),	and	Terra/AquaMODIS	(Roy	et	al.	2008)	instruments.	These	methods	
are	usually	based	on	surface	reflectance	measurements	in	the	NIR	or	SWIR	
(near	or	shortwave	infrared,	respectively)	spectral	channels	of	these	instru
ments.	 The	 NIR	 and	 SWIR	 channels	 are	 either	 used	 as	 direct	 inputs	 into	
changedetection	algorithms	or	through	spectral	vegetation	indexes	(such	as	
NDVI,	SWVI,	or	NBI)	with	high	discrimination	power	 to	separate	burned	
areas	 from	 green	 vegetation.	 Other	 research	 studies	 (Fraser	 et	 al.	 2000a,b;	
Bartalev	et	al.	2007)	have	demonstrated	the	efficiency	of	the	combined	use	
of	both	approaches,	i.e.,	the	combination	of	(1)	active	fire	detection	and	(2)	
burned	area	assessment	from	changes	in	land	cover	spectral	properties.	

These	latest	approaches	usually	demonstrate	higher	accuracies	for	burned	
area	 estimates	 compared	 to	 methods	 based	 on	 active	 fire	 pixel	 detection	
only.	 Burned	 area	 products	 can	 also	 be	 produced	 on	 a	 regular	 basis,	 e.g.,	
monthly	(Zhang	et	al.	2003),	decadal	(Bartalev	et	al.	2007),	or	daily	(Tansey	
et al.	2008)	time	frames.	These	products	consist	of	multiannual	time	series	of	
burned	area	data	over	large	territories	that	are	valuable	inputs	for	the	geosci
ences	and	for	environmental	assessments.	However,	they	have	very	limited	
use	for	forest	inventory	and	management	applications	because	finer	spatial	
resolution	and	higher	accuracy	are	required	by	foresters.	Moreover,	so	 far	
such	methods	do	not	allow	for	rapid	data	delivery	in	an	operational	manner.	
The	information	is	usually	made	available	to	users	with	a	substantial	delay.	

There	 is	 also	 an	 extensive	 experience	 for	 burned	 area	 mapping	 from	
moderate	 spatial	 resolution	 (10  m–30  m)	 satellite	 optical	 imagery,	 such	 as	
LandsatTM/ETM+	(Isaev	et	al.	2002).	In	spite	of	the	existence	of	a	number	
of	methods,	these	methods	have	been	mostly	applied	to	episodic	and	local	
level	assessments.	Mapping	of	burned	areas	from	moderateresolution	satel
lite	imagery	over	large	areas	and	at	regular	time	intervals	has	been	restricted	
mainly	by	data	availability	until	recently.	This	restriction	has	been	reduced	
drastically	through	the	recent	open	data	distribution	policy	and	online	access	
to	the	global	multiannual	LandsatTM/ETM+	data	archive	(see	Section	II.2).	

14.1.2		 Forest	Fire	Monitoring	Information	System	(FFMIS)	

Mapping	 of	 burned	 area	 is	 one	 key	 feature	 of	 the	 FFMIS,	 developed	 by	 a	
consortium	of	institutes	belonging	to	the	Russian	Academy	of	Sciences.	The	
FFMIS	constitutes	an	essential	component	of	several	environmental	monitor
ing	services,	such	as	the	VEGA	service	(Loupian	et	al.	2011),	which	is	publicly	
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available,	 and	 the	 forest	 monitoring	 information	 system	 (called	 in	 Russian		
ISDM-Rosleshoz)	 operated	 by	 the	 Russian	 Federal	 Forest	 Agency	 (Loupian		
et al.	2006;	Bartalev	et	al.	2008).	The	FFMIS	covers	the	full	territory	of	Russia		
and	provides	information	to	a	range	of	forestry	services,	from	the	local	forestry		
districts	up	to	the	federal	forest	agency.	The	FFMIS	focuses	on	daily	informa
tion	support	for	activities	related	to	fire	management	and	for	environmental		
and	economic	impact	assessment.	Considering	the	size	of	the	Russian	territory		
and	the	users’	requirements	for	information	delivery	speed	and	frequency,	sat
ellite	 remote	sensing	 technology	has	been	considered	as	 the	main	source	of		
data	in	the	system.	The	FFMIS	uses	as	main	inputs	the	multiannual	and	daily		
updated	archives	of	data	acquired	by	the	TerraMODIS	and	the	LandsatTM/	
ETM+	 instruments	 (since	year	2000).	The	system	considers	 three	sources	of		
input	data	for	burned	area	assessment	over	Russia,	as	follows:	

	 1.		Locations	of	active	fires	detected	using	the	MOD14	standard	algorithm		
(Justice	et	al.	2006)	and	MODIS	Level	1B	data	(Toller	et	al.	2006)	collected		
via	 a	 network	 of	 satellite	 datareceiving	 stations	 distributed	 across		
Russia.	 As	 a	 backup	 data	 source,	 the	 Fire	 Information	 for	 Resource		
Management	System	(FIRMS)	Web	site	is	also	used	for	the	daily	down
load	of	MOD14	products	(http://firefly.geog.umd.edu/firms).	

	 2.	MODIS	surface	reflectance	daily	data	including	information	on	solar	
illumination	and	instrument	viewing	geometry	(MOD09	standard	
products;	http://lpdaac.usgs.gov/main.asp).

	 3.		LandsatTM/ETM+	data	downloaded	from	USGS	GLOVIS	(http://	
glovis.usgs.gov).	By	the	end	of	the	year	2011,	the	FFMIS	archive	of	
LandsatTM/ETM+	 data	 contained	 more	 than	 122,000	 scenes	 over	
the	Russian	territory	including	about	23,000	scenes	acquired	during		
the	year	2011	only.	

A	 new	 approach	 for	 burned	 area	 assessment	 based	 on	 the	 integration	 of		
this	 large	database	has	been	developed	by	 the	Space	Research	Institute	of		
the	Russian	Academy	of	Sciences.	This	new	approach	 is	aimed	at	benefit
ing	 from	the	complementarities	of	 the	different	data	sources	and	 includes	
highly	automatic	satellite	data	processing.	The	system	creates	three	different	
burned	area	products:

	 1.		AFBA
product:	Burned	area	polygons	at	1	km	spatial	resolution.	This		
product	is	based	on	the	spatiotemporal	clustering	of	active	fire	pixels		
derived	from	MODIS	data	with	the	use	of	individual	satellite	passes.

	 2.	SRBA
product:	Burned	area	at	250	m	spatial	 resolution.	This	prod
uct	is	derived	from	MODIS	data	using	land	cover	surface	reflectance	
change	combined	with	active	fire	detection.

	 3.		HRBA
product:	Burned	area	at	30	m	spatial	resolution.	This	product	
is	derived	from	LandsatTM/ETM+	data.	

http://firefly.geog.umd.edu
http://lpdaac.usgs.gov
http://glovis.usgs.gov
http://glovis.usgs.gov
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The	 integrated	 burned	 area	 assessment	 approach	 produces	 continuous	
information	during	the	fire	season.	All	available	satellite	imagery	from	the	
three	potential	data	sources	are	used	for	any	date	and	fire	event.	In	cases	of	
more	 than	one	burned	area	product	being	available	 for	a	given	fire	event,	
the	following	priority	ranking	is	used	to	select	the	potentially	most	accurate	
product:	(1)	HRBA,	(2)	SRBA,	and	(3)	AFBA.	

The	AFBA	product	provides	the	most	rapid	assessment	of	burned	areas.	
This	product	can	then	be	complemented	with	one	of	both	SRBA	and	HRBA	
products	depending	on	their	availability.	The	SRBA	product	is	produced	on	
a	regular	basis	from	daily	MODIS	data	a	few	weeks	after	the	AFBA	product	
and	is	usually	available	before	the	HRBA	product.	However,	when	burned	
areas	are	too	small	to	be	retrieved	from	the	SRBA	product,	only	the	HRBA	
product	is	used.	In	the	following	sections	of	this	chapter,	all	three	mentioned	
burned	area	products	are	described	in	more	detail	 including	the	methods	
used	to	produce	them	and	some	results	for	Russia	(national	burned	area	esti
mates	with	accuracy	assessment)	are	discussed.	

14.2		 Description	of	Three	Burned	Area	Products	

14.2.1			 	AFBA	Product:	Rapid	Burned	Area	Mapping	Based		
on	Active	Fire	Detection	from	MODIS	Sensor	

The	 AFBA
 burned	 area	 product	 is	 generated	 from	 MODIS	 data.	 The	 raw	
MODIS	 data	 are	 acquired	 in	 the	 direct	 broadcast	 mode	 via	 a	 network	 of	
receiving	stations	 located	in	Moscow,	Pushkino	(Moscow	region),	Khanty
Mansiysk,	Novosibirsk,	Krasnoyarsk,	and	Khabarovsk.	The	MODIS	data	are	
first	preprocessed	up	 to	 level	 1B	 standard	 (MOD02	product)	 and	are	 then 	
used	as	inputs	for	the	MOD14	active	fire	detection	algorithm	(Justice	et	al.	
2006)	in	order	to	produce	socalled	hot	spots.	Each	hot	spot	is	characterized	
by	 a	 number	 of	 attributes:	 (1)	 geographical	 coordinates,	 (2)	 ontheground	
pixel	size	(including	both	pixel	widths	along	and	across	the	sensor	scanning	
directions),	and	(3)	brightness	temperature	derived	from	two	MODIS	spec
tral	channels	(with	wavelength	intervals	centered	at	4	μm	and	11	μm).	Then	
the	 hot	 spots	 detected	 from	 the	 acquired	 multitemporal	 MODIS	 	imagery	
are	used	 to	generate	burned	area	polygons	and	 to	monitor	 their	 temporal	
dynamics.	

The	FIRMS	(http://firefly.geog.umd.edu)	serves	as	an	archive	of	hot	spots	
detected	with	the MOD14	algorithm.	All	detected	hot	spots	are	automatically	
recorded	into	the	FFMIS	database	with	their	attributes.	The	main	role	of	the	
hot	 spot	 archive	 is	 to	 fill	 potential	 gaps	 resulting	 from	 accidental	 MODIS	
datareceiving	stations’	failures	or	data	delivery	delays.	

http://www. firefly.geog.umd.edu
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The	rapid	burned	area	assessment	includes	the	analysis	of	hot	spot	time	
series	 for	 the	 monitoring	 of	 fire	 temporal	 dynamics.	 An	 important	 step	
in	this	analysis	includes	the	generation	of	active	fire	polygons	from	spa
tially	scattered	hot	spot	pixels.	This	polygon	generation	process	is	carried	
out for	each	new	satellite	image	using	available	historical	hot	spot	dynam
ics	(i.e.,	hot	spots	detected	on	earlier	imagery).	The	dataprocessing	chain	
has	been	developed	to	provide	both	nearrealtime	burned	area	mapping	
and	postfire	season	burned	area	assessment.	The	main	steps	of	the	near
realtime	burned	area	mapping	method	are	described	hereafter	 in	more	
detail.	

Step
1:
Retrieval
of
hot
spot
timing.
The	hot	spots	detected	from	MODIS	imag
ery	are	first	characterized	with	their	satellite	observation	times.	This	timing	
information	is	incorporated	into	the	FFMIS	database	in	order	to	build	a	con
sistent	data	time	series	for	further	analysis.	The	hot	spot	observation	time	is	
assigned	as	the	MODIS	datareceiving	time	at	the	local	receiving	station	or,	
in	the	case	of	FIRMS	data,	as	the	MODIS	data	granule	time.	

Step
 2:
 Generation
 of
 hot
 spot
 polygons.	 The	 generation	 of	 polygons	 around	
individual	hot	spots	is	an	intermediate	step.	This	step	uses	the	MODIS	pixel	
dimensions	 along	 and	 across	 the	 sensor	 scanning	 directions.	 The	 MODIS	
pixel	dimensions	are	approximated	by	using	geographical	directions	(along	
parallels	and	meridians).	

Step
3:
Generation
of
active
fire
polygons.	In	order	to	generate	active	fire	poly
gons	for	each	satellite	image,	the	corresponding	hot	spot	polygons	have	to	
be	merged	considering	a	spatial	proximity	criteria.	Two	hot	spot	polygons	
are	merged	 into	one	 single	fire	event	 if	 their	areas	are	overlapping	or	 the	
distance	between	them	is	less	than	0.3	km.	For	each	MODIS	image,	an	indi
vidual	fire	event	polygon	corresponds	to	a	burned	area	estimate	for	the	date	
of	the	satellite	observation.	By	considering	a	full	time	series	of	such	fire	poly
gons,	an	exhaustive	burned	area	assessment	can	be	carried	out.	

Step
 4:
 Generation
 of
 burned
 area
 polygons.
 This	 dataprocessing	 step	 is	 the	
most	complex	step.	It	consists	in	monitoring	the	fires	dynamic	and	in	aggre
gating	all	individual	fire	polygons	detected	at	different	dates	into	one	sin
gle	burned	area	polygon	(corresponding	to	a	single	fire	event).	The	FFMIS	
database	includes	full	time	series	of	all	active	fire	polygons	that	have	been	
detected	 from	 the	 beginning	 of	 the	 fire	 season.	 One	 essential	 step	 of	 the	
burned	area	polygon	generation	procedure	is	the	decision	to	take	for	each	
newly	generated	fire	polygon:	either	(i)	to	be	aggregated	to	an	existing	regis
tered	fire	event	or	(ii)	to	create	a	new	fire	event	in	the	database.	The	fire	poly
gon	identification	procedure	aims	to	check	if	derived	from	of	last	satellite	
pass	data	active	fire	polygon	overlapped	with	or	close	(distance	is	less	than	
1 km)	 to	one	of	already	existing	burned	area	polygon.	 In	case	 if	outcome	
from	 such	 test	 was	 positive,	 the	 last	 active	 fire	 polygon	 is	 geometrically	
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merged	to	one	of	existing	burned	area	polygon,	otherwise	it	is	considered	
as	new	event	to	be	recorded	in	the	database.	The	algorithm	for	active	fire	
polygon	identification	includes	also	the	consideration	of	particular	cases	or	
outliers	 which	 can	 significantly	 impact	 the	 burned	 area	 mapping	 results.	
One	main	particular	case	relates	to	new	active	fire	polygons	which	overlap	
with	more	than	one	previously	detected	burned	area	polygon.	In	such	case	
we	assume	that	at	the	date	of	the	new	active	fire	polygon,	these	burned	area	
polygons	get	connected	and	have	to	be	considered	later	on	as	a	joint	single	
event.	

The	hot	spot	pixels	detected	with	1	km	spatial	resolution	MODIS	data	are	
used	as	 input	data	 for	 the	generation	of	burned	area	polygons.	These	hot	
spot	pixels	are	based	on	thresholds	of	radiation	temperature	within	the	sen
sor’s	field	of	view	and	can	obviously	include	unburned	area.	Assuming	that	
the	burned	area	error	 reaches	a	maximum	at	 the	fire	border	and	declines	
toward	the	center	of	the	fire,	we	use	a	heuristic	formula	to	correct	directly	
the	burned	area	estimates:	

where	
SG	is	the	area	of	burned	area	polygons	in	km2;	
SC	is	the	corrected	burned	area	in	km2;	
Δ =	1.1	is	the	nominal	pixel	size	in	km;	
σ =	0.25	is	the	coefficient	of	correction;	
k
=	4	is	a	constant	value.	

Equation	 14.1	 assumes	 that	 a	 higher	 relative	 error	 corresponds	 to	 smaller	
areas	 (and	 vice	 versa)	 due	 to	 a	 larger	 proportion	 of	 boundary	 pixels.	
According	 to	 Equation	 14.1,	 the	 correction	 procedure	 reduces	 the	 burned	
area	estimates	with	a	maximum	factor	of	4	for	fires	smaller	than	k2	pixels.	
As	fire	size	grows	(SG →∞),	the	correction	coefficient	decreases	up	to	a	value	
of	1, and	thus	for	very	large	fires	the	correction	does	not	change	significantly	
the	area	estimates.	

This	burned	area	mapping	method	is	implemented	as	an	automatic	pro
cessing	 chain	 within	 the	 FFMIS.	 Each	 new	 MODIS	 imagery	 is	 processed	
automatically	when	acquired	in	the	system.	The	system	provides	burned	area	
updates	with	a	frequency	of	up	to	six	times	a	day.	The	full	dataprocessing	
cycle	takes	from	20–70	min	depending	on	the	number	and	area	of	active	fires	
and	on	available	computing	resources.	In	case	of	the	FIRMS	being	used	as	
the	source	for	hot	spots,	the	data	delivery	extra	time	is	at	least	50	min	and	is	
usually	about	2–3	hours	after	the	satellite	pass.	
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14.2.2			 	SBRA	Product:	Burned	Area	Mapping	Based	on	Land		
Cover	Change	Detection	from	MODIS	Sensor	

This	product	is	aimed	at	providing	walltowall	assessments	of	burned	areas	
during	the	fire	season	with	higher	accuracy	and	reliability	than	AFBA	prod
uct.	The	method	has	been	designed	using	existing	approaches	that	combine	
two	types	of	information	derived	from	satellite	imagery:	surface	reflectance	
changes	and	thermal	anomalies	(Fraser	et	al.	2000a,b;	Bartalev	et	al.	2007).	
In	such	approaches,	the	thermal	anomalies	are	used	to	separate	firerelated	
land	cover	changes	from	other	types	of	vegetation	changes	(due	to	other	dis
turbance	factors).	The	SBRA	product	 includes	a	step	of	comparison	to	his
torical	 spectral	 dynamics.	 Historical	 multiannual	 satellite	 data	 time	 series	
are	used	to	derive	optimized	land	cover	changedetection	thresholds	for	any	
geographical	location.	

The	SRBA	 burned	 area	 product	 is	 generated	 at	 250	 m	 spatial	 resolution	
based	on	the	use	of	two	MODIS	data	standard	products,	namely:	

r� The	multiannual	daily	surface	reflectance	MOD09	data;		

r� The	active	fire	(hot	spots)	MOD14	data	for	a	single	year.		

The	burned	area	mapping	method	includes	several	dataprocessing	steps	as	
follows:	

r� Detection	 of	 pixels	 contaminated	 by	 clouds	 and	 cloud	 shadows,	
sensor	failures,	and	seasonal	snow	cover	

r� Building	of	multiannual	time	series	of	SWVI	(shortwave	vegetation	
index)	daily	composites	from	uncontaminated	pixels	

r� Generation	 of	 the	 SWVI	 multiannual	 “reference”	 based	 on	 SWVI	
annual	time	series	along	a	reference	period	

r� Land	cover	change	detection	through	detection	of	seasonal	anoma
lies	by	comparison	to	SWVI	reference	

r� Burned	area	mapping	using	a	consistency	criteria	between	detected	
land	cover	changes	and	active	fires	

The	MODIS	data	preprocessing	aims	at	detecting	contaminated	pixels	and	
consists	of	following	steps:	

r� Maskingout	pixels	with	 satellite	observation	and	sun	elimination	
angles	above	certain	thresholds	

r� Detection	of	clouds,	cloud	shadows,	and	snow	cover–related	pixels	

r� Detection	of	residually	contaminated	pixels	through	statistical	filter
ing	of	timeseries	data	
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The	threshold	criteria,	such	as	view	zenith	angle	θ > 400	and	sun	zenith	angle	
δ > 800,	are	applied	to	maskout	pixels	which	are	not	suitable	due	to	extreme	
geometrical	observation	and	illumination	conditions.	

Clouds	 and	 snowcover	 detection	 involves	 surface	 reflectance	 data	 as	
measured	in	the	blue	(459–479	nm)	R3	and	SWIR	(1,628–1,652	nm)	R6 MODIS	
channels,	as	well	as	normalized	difference	snow	index	(NDSI)	 (Hall	et	al.	
1995),	which	is	calculated	using	Formula	14.2:	

Assuming	 that	 any	 pixel	 can	 be	 assigned	 to	 one	 of	 four	 classes	 (clouds,	
semitransparent	clouds,	snow,	and	“clear	surface”),	the	R3	-NDSI	bidimensional	
space	(Figure	14.1)	can	be	subdivided	as	follows:	

r� «Snow»	if	R3	>	0.05	and	NDSI	>	0.1	

r� «Clouds»	if	R3	>	0.05	and	–0.2	<	NDSI	<	0.1	 (14.3)	

r� «Semitransparent	clouds»	if	R3	>	0.05	and	–0.35	<	NDSI	<	–0.2	

r� «Clear	surface»	in	all	other	cases	

Pixels	 that	 are	 located	 in	 surroundings	 of	 «clouds»	 and	 «semitransparent	
clouds»	areas	are	also	classified	as	«clouds»	or	«semitransparent	clouds»	if	
their	R3	value	is	equal	or	higher	than	0.05.	

Assuming	a	maximum	clouds’	height	as	H
=	12	km	and	considering	the	
measured	 sun	 and	 view	 zenith	 angles,	 we	 can	 reconstruct	 the	 potential	

NDSI 

Snow	

0.1	

Clear	surface	 Clouds	
R3	

0.05	

–0.2	

Clear	surface	 Semiclouds	

–0.35	

Clear	surface	

FIGURE	14.1	
Discrimination	of	the	classes	of	clouds,	snow,	and	clear	surface	in	the	R3NDSI	space.	
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FIGURE	14.2	
Geometrical	modeling	of	the	cloudshadow	position	on	the	Earth	surface	(AB	line).	

cloudshadow	areas	 (Figure	14.2).	 If	we	consider	an	orthogonal	coordinate	
system	with	origin	O	in	a	given	cloud	pixel	with	height	H	and	axes	Ox
and	
Oy	directed	to	geographical	North	and	East,	spatial	shift	of	cloud	shadow	on	
the	ground	is	estimated	using	Formula	14.4:	

where	
ψ—view	azimuth	angle	
θ—view	zenith	angle	
β—sun	azimuth	angle	
δ—sun	zenith	angle	

In	general	the	geometrically	modeled	cloudshadow	areas	include	also	“clear	
surface”	 pixels,	 which	 are	 removed	 from	 contaminated	 pixels	 through	 an	
additional	 spatial	 analysis	 step.	 The	 MODIS	 NIR	 channel	 R2  	(841–876  nm) 	
image	profile	is	analyzed	along	the	cloudshadow	line	(Figure 14.3)	to	identify	
the	correct	shadow	segments.	

The	next	analysis	step	is	aimed	at	removing	further	false	shadow	pixels	
due	to	possible	misclassification	as	clouds	or	snowcovered	area	with	rela
tively	low	NDSI.	The	shadow	pixel	is	considered	as	false	detection	if	during	
a	 monthly	 period	 it	 has	 never	 been	 classified	 as	 “clear	 surface”	 and	 the	
following	expression	is	true	for	the	potential	cloudshadow	pixels:	

* * *R ( , )  t M  1( , )  Θ t +σR1 Θ t1 Θ > R ( , ),  (14.5)	

where	
MR1( , )4* t 	is	the	mean	estimate	of	surface	reflectance	data	in	red	(620–679 nm)	

channel	centered	at	day	t	during	a	31day	period	
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FIGURE	14.3	
Example	of	spectral	profile	(MODIS	NIR	channel)	with	indication	of	sections	corresponding	to	
residual	clouds	(a),	cloud	shadows	(b),	and	clear	sky	surface	(c).	

σ R1 Θ
* t 	is	the	standard	deviation	from	mean	( , )

4*R1( , )t 	 is	 the	 red	surface	 reflectance	data	 for	given	pixel with	coordi
nates	4* 

The	additional	statistical	data	filtering	is	aimed	at	reducing	residual	noise	
through	 the	use	of	a	monthly	moving	 time	window.	The	pixel	with	sur
face  reflectance	 R6	 is	 considered	 as	 contaminated	 if	 the	 Expression	 14.6 	
is true:	

R6 ( ,Θ* t )  − MR6 (Θ* , t)  ≥ 2σR6 (Θ*,  t )  (14.6)	
	 	

From	 these	 preprocessing	 steps,	 the	 masks	 of	 different	 types	 of	 contami
nated	pixels	are	generated	at	500	m	spatial	resolution.	

Our	 main	 criteria	 to	 detect	 fires	 which	 are	 causing	 vegetation	 cover	
changes	(i.e.,	which	are	burning	the	vegetation)	is	based	on	daily	time	series	
of	the	normalized	SWVI	(Fraser	et	al.	2000a)	

SWSI	 is	 calculated	 using	 MODIS	 surface	 reflectance	 data	 (R6)	 resampled	
from	500	to	250	m.	The	contaminated	pixels	(detected	during	preprocessing)	
are	reconstructed	based	on	a	moving	timewindow	polynomial	algorithm	to	
retrieve	SWVI.	The	burned	area	mapping	method	uses	the	SWVI	multiannual	
seasonal	reference	which	is	derived	from	MODIS		timeseries	data	acquired	
during	 previous	 years—socalled	 reference	 period.	 An	 experimental	
justification	of	the	optimal	reference	period	duration	is	given	at	the	end	of	
Section	14.2.2.	
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The	 assessment	 against	 the	 SWVI	 reference	 involves	 the	 estimation	 of	
N N * mean	 M 4* t and	 standard	 deviation	σ Θ tSWVI( , ) SWVI( , )	 for	 every	 pixel	 with	

geographical	coordinates	4*	and	image	date	t(DOY):	

where	
y	is	the	year	within	the	reference	period	with	duration	of	Y
years	
Δt	 is	the	moving	timewindow	length	parameter	for	the	SWVI	intrayear	

statistical	assessment	
N
= Y(2Δt
+	1)	is	the	total	number	of	measurements	involved	in	the	SWVI	

assessment	for	given	pixel	and	DOY	

The	detection	of	pixels	likely	affected	by	fire	is	based	on	pixeltopixel	and	
Ndaytoday	differences	between	MSWVI	and	the	SWIR	vegetation	index	time	

series	for	a	given	year	 SWVIC .	The	detection	of	seasonal	dynamic	anomalies	
is	based	on	following	Formula	14.10:	

C * N * N *SWVI Θ t −MSWVI( ,  )t < − σ SWVI Θ t( , )  Θ k ( , ),  (14.10)	

where	k
is	an	experimentally	tuned	constant	that	allows	to	define	the	range	
of	the	SWVI	reference	interannual	dynamics.	A	pixel	is	considered	as	abnor
mal	and	likely	affected	by	a	fire	causing	a	 land	cover	change	if	 its	SWVIC 

value	is	lower	than	reference	SWVI	seasonal	values	as	presented	in	Figure	
N − σN14.4.	Such	approach	uses	automatic	thresholds	MSWVI k SWVI which	are	cal

culated	for	any	pixel	location	and	date.	
At	 this	 stage,	 the	 detected	 pixels	 include	 pixels	 affected	 by	 land	 cover	

changes	caused	by	fire	and	by	other	disturbance	factors	such	as,	for	example,	
flooding,	 insect	 outbreaks,	 and	 extreme	 weather	 conditions.	 They	 include	
also	false	changes	due	to	particular	atmospheric	and	angular	conditions	of	
observations	and	residual	effects	of	interannual	differences	in	phenological	
vegetation	dynamics.	A	contextual	spatial	filtering	is	applied	to	remove	such	

4* W *false	detections.	The	mean	 MW t and	standard	deviation	 σSWVI( ,  )SWVI( ,  ) Θ t
of	SWVIC	are	computed	using	an	increasing	window	size	W
for	each	given	
date	t	from	five	or	more	pixels	surrounding	a	potential	change	pixel,	with	
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FIGURE	14.4	
Example	of	fire	detection	from	anomaly	in	the	SWVI	dynamics	at	pixel	level.	SWVI,	shortwave	
vegetation	index;	DOY,	day	of	the	year.	

geographical	coordinates	4*	excluding	those	pixels	which	have	been	detected	
at	the	previous	stage.	The	pixel	is	considered	as	changed	if	its	SWVIC	value	
is	lower	than	(MW −σW ).SWVI SWVI 

Finally,	 a	 clumping	 procedure	 is	 applied	 to	 group	 pixels	 detected	 as	
changed	 vegetation	 into	 spatially	 connected	 regions	 for	 each	 day.	 The	
resulting	clumped	areas	are	 then	compared	to	MODISderived	active	fire	
data	 to	 separate	burned	areas	 from	areas	 that	were	 subject	 to	 land	cover 	
changes	resulting	from	other	disturbances.	The	clumped	area	is	considered	
as	burned	area	if	more	than	1%	of	its	total	surface	is	spatially	and	tempo
rally	(within	a	20day	time	window)	consistent	with	MODIS	active	fire	data.	
This	 1%	 area	 threshold	 has	 been	 determined	 empirically	 through	 visual	
tests	and	is	aimed	at	elimination	of	false	burned	area	detection	such	as	crop	
harvesting.	

This	burned	area	mapping	method	requires	setting	values	for	a	few	main	
parameters.	Two	of	 them	such	as	 the	reference	period	duration	 Y
and	 the	
moving	timewindow	length	parameter	∆t	are	aimed	to	determine	the	most	

N N *appropriate	SWVI	reference	parameters	M 4* t 	and	σSWVI( ,  ).	A	third	SWVI( ,  ) Θ t
one,	namely	the	scaling	constant	k,	is	used	to	define	the	reference	range	of	
SWVI	for	interannual	variations.	The	most	appropriate	parameters’	values	
have	been	estimated	through	a	number	of	tests	performed	with	MODIS	data	
over	the	European	part	of	Russia,	which	experienced	an	extreme	fire	season	
in	2010	due	to	exceptional	heat	wave	and	drought.	

Figure	14.5	shows	burned	area	as	estimated	by	different	combinations	of	
reference	 period	 durations	Y Y , 	 and	 timewindow	 length	 parameter	( 3 6)
values	(∆t
=	3	and	∆t
=	5).	Following	these	experiments,	Y
=	5	and	∆t
=
3	were	
considered	 as	 most	 appropriate	 parameters	 values.	 The	 shorter	 reference	
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FIGURE	14.5	
Burned	area	estimates	for	a	MODIS	tile	(H20V03	granule)	and	for	the	year	2010	using	different	
reference	period	durations	and	timewindow	lengths	(SBRA	product).	
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FIGURE	14.6	
Burned	area	estimates	with	different	scaling	constant	k
values.	

period	(Y
<	5)	led	to	more	false	burned	area	pixels	(controlled	through	visual	
interpretation),	while	an	increase	of	the	reference	period	to	6	years	resulted	
in	a	negligible	increase	of	burned	area.	

A	 number	 of	 burned	 area	 mapping	 tests	 have	 been	 also	 performed 	
using  different	 values	 of	 the	 scaling	 factor	 k.	 Figure	 14.6	 shows	 that	
when	varying	 the	 scaling	 factor	value	between	2	and	3	 it	does	not	 lead	
to	 significant	 changes	 in	 burned	 area	 estimates.	 The	 abrupt	 decline	 at 	
k = 3	leads	to	the	conclusion	that	this	value	can	be	considered	as	the	most	
appropriate.	
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This	 method	 allows	 generating	 daily	 SRBA	 products	 over	 the	 entire	
Russian	Federation	in	a	routine	manner	within	20–30	days	depending	on	the	
availability	of	uncontaminated	satellite	data.	

14.2.3			 	HRBA	Product:	Burned	Area	Mapping		
from	Landsat-TM/ETM+	Sensor	

From	the	three	burned	area	products	of	FFMIS,	the	HRBA	is	the	product	which	
takes	most	time	to	be	delivered	but	which	is	potentially	the	most	accurate	at	the	
level	of	individual	fires.	This	product	is	derived	from	LandsatTM/ETM	images	
at	30	m	spatial	resolution.	The	main	methodological	difference	with	the	two	
other	burned	area	products	stands	is	the	involvement	of	human	visual	exper
tise	for	burned	area	control	and	delineation	from	LandsatTM/ETM	imagery.	
Another	important	characteristic	of	the	HRBA	product	is	that	it	cannot	be	used	
alone	for	an	assessment	at	country	level:	the	HRBA	product	can	only	comple
ment	the	national	estimates	derived	from	AFBR	and	SRBA.	This	is	due	to	the	
potential	gaps	in	suitable	quality	LandsatTM/ETM	imagery	over	the	country	
during	the	fire	season	(missing	data).	The	national	yearly	completeness	of	the	
HRBA	product	may	also	significantly	differ	from	year	to	year	due	to	availabil
ity	of	human	resources	for	assessment	and	interpretation	of	the	imagery.	

The	 HRBA	 approach	 has	 been	 developed	 from	 the	 FFMIS	 webservice	
interface	 which	 provides	 access	 to	 remote	 sensing	 data	 and	 products	
along with	mapping	tools	(Figure	14.7).	The	webservice	interface	is	based on	
the	GEOSMIS	system	which	includes	generic	GIS	and	dedicated	vegetation	
analysis	 tools	(Tolpin	et	al.	2011).	The	information	available	from	the	web	
interface	includes	imagery	from	both	LandsatTM/ETM+	and	MODIS	sen
sors	as	well	as	data	on	land	cover,	fires	and	meteorological	conditions.	

FIGURE	14.7	
Display	of	the	Webservice	map	interface	with	selected	LandsatTM	frames.	
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In	more	details	the	webservice	data	analysis	tools	provide	the	following	
tools:	

r� Joint	 analysis	 of	 LandsatTM/ETM+	 and	 MODIS	 data,	 along	 with	
thematic	maps	and	data	

r� Analysis	of	 longterm	 time	 series	of	 spectral	vegetation	 indices	 to	
assess	 land	 cover	 changes	 and	 driving	 factors.	 The	 webservice	
allows	to	select	an	area	of	interest	and	to	derive	instantaneously	a	
multiannual	temporal	profile	of	spatially	averaged	vegetation	index	

r� Management	 of	 the	 database	 of	 burned	 areas	 (contours	 and	
characteristics)	

r� GIS	analysis	of	satellite	data	and	derived	products	

The	webservice	allows	for	an	easy	and	quick	access	to	all	products	derived	
from	LandsatTM/ETM+	and	MODIS	satellite	data,	which	are	automatically	
and	continuously	downloaded	from	the	USGS	data	archive.	Daily	MODIS	data	
are	automatically	processed.	First,	pixels	contaminated	by	clouds	and	other	
noise	are	eliminated,	and	then	weekly	composite	images	are		generated.	These	
weekly	composite	 images	are	used	 to	produce	normalized	difference	vege
tation	indices	(NDVIs).	Gaps	in	weekly	timeseries	data	are	filled	in	though	
an	 interpolation	 procedure.	 Timeseries	 data	 are	 then	 smoothed	 to	 reduce	
remaining	noise	due	to	cloudcontaminated	pixels.	The	MODISderived	NDVI	
time	 series	 are	 recorded	 into	 the	 database	 and	 used	 to	 create	 multiannual 	
vegetation	index	profiles	for	each	MODIS	pixel.	The	LandsatTM/ETM+	data	
are	first	preprocessed	(radiometric	and	geometric	correction),	and	then	color	
composite	 images	are	made	available	trough	the	web	interface.	The	MODIS	
dataderived	land	cover	map	of	Russia	for	year	2010	at	250	m	spatial	resolution	
(Bartalev	et	al.	2011)	is	also	made	accessible	through	the	web	system.	This	map	
is	the	most	uptodate	countrylevel	map	of	forest	type	distribution.	

The	webservice	allows	mapping	burned	areas	at	30	m	resolution	when	an	
ABFA	polygon	exists	in	the	FFMIS	database	and	a	corresponding	appropri
ate	postfire	and	cloudfree	LandsatTM/ETM+	image	is	available.	The	HRBA	
mapping	procedure	includes	the	following	main	steps:	

r� Selection	of	one	MODISderived	AFBA	polygon	and	search	of	 the	
best	available	LandsatTM	or	ETM+	image	

r� Selection	of	the	option:	automatic	or	visual	burned	area	delineation	

r� Visual	evaluation	of	 the	automatic	burned	area	delineation	results	
and,	 in	 case	 of	 insufficient	 quality,	 replacement	 by	 visual	 burned	
area	delineation	

The	automatic	burned	area	delineation	method	is	based	on	a	multispectral	
image	 segmentation	 algorithm	 (Zlatopolskyy	 1985)	 combined	 with	 auto
matic	segment	labeling	and	merging	steps	(Bartalev	et	al.	2009).	The	labeling	
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FIGURE	14.8	
(See	 color	 insert.)	 Example	 of	 burned	 area	 polygons	 derived	 from	 the	 three	 methods:	 red	
polygon,	AFBA	product;	black	polygon,	SRBA	product;	yellow	polygon,	HRBA	product.	The	
results	are	displayed	in	the	Webservice	user	interface	with	the	LandsatTM	scene	used	for	the	
HRBA	product	as	a	background	image.	

and	merging	steps	are	based	on	distance	criteria	from	corresponding	AFBA	
and	 SRBA	 polygons	 along	 with	 the	 brightness	 histogram	 analysis	 of	
LandsatTM/ETM+	image.	

Figure	14.8	provides	an	example	of	burned	area	polygons	derived	from	the	
three	different	methods	available	from	the	FFMIS	webservice	user	interface.	

14.3		 Integrated	Burned	Area	Assessment	

The	 integrated	 burned	 area	 assessment	 approach	 consists	 in	 the	 combina
tion	of	the	three	burned	area	products,	AFBA,
SRBA	and	HRBA,
which	are	
updated	 continuously	 during	 a	 fire	 season.	 This	 combination	 is	 aimed	 at	
producing	best	estimates	of	burned	areas	from	all	the	products	available	in	
the	FFMIS	database.	The	fire	events	recorded	from	these	three	products	are	
linked	 through	 an	 identification	 process	 which	 initiates	 from	 the	 MODIS	
hot	spots–based	polygons	and	related	fire	events	in	the	AFBA	database.	The	
approach	links	these	AFBA	events	to	the	fire	events	from	the	SRBA	and	HRBA	
databases.	In	case	of	a	fire	event	existing	only	in	the	AFBA	database	(i.e.,	with	
no	related	event	in	the	SRBA	and	HRBA	databases),	the	related	AFBA	burned	
area	 is	 taken	 into	 account	 for	 the	 compilation	 of	 burned	 area	 estimates	 at	
national	and	regional	levels	and	at	daily	frequency	during	the	full	fire	season.	
When	an	event	appears	in	the	SRBA	or	HRBA	databases	the	AFBA	estimate	is	
replaced	by	the	estimate	derived	from	the	SRBA	or	HRBA	event,	with	priority	
to	HRBA	product	as	it	is	considered	to	have	higher	accuracy.	

However	the	practical	implementation	of	this	approach	is	complex	due	to	
the	difficulty	 to	 set	unique	correspondences	between	fire	events	 from	 the	
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three	burned	area	products.	 It	happens	often	 that	 several	AFBA	polygons	
overlap	with	one	unique	HRBA	polygon,	due	 to	a	complex	spatial	pattern	
or	 to	 limitations	 in	 data	 availability.	 The	 relationship	 between	 AFBA	 and	
SRBA	polygons	is	in	general	even	more	complex	as	one	single	fire	event	on	
the	ground	can	correspond	to	several	polygons	with	no	spatial	correspon
dence	between	the	two	set	of	polygons.	The	impact	of	this	lack	of	coherence	
on	burned	area	estimates	is	limited	over	large	territories,	e.g.,	at	national	or	
regional	scale.	However	this	 issue	has	to	be	taken	into	account	for	assess
ment	at	the	level	of	individual	fire	events.	

In	order	to	address	such	issue,	the	integration	procedure	includes	a	step	of	
polygon	clustering.	The	clustering	procedure	is	aimed	at	identifying		polygons	
that	 are	 likely	 to	 be	 related	 to	 the	 same	 fire	 event.	 The	 SRBA	 and	 HRBA	
polygons	are	grouped	within	clusters	which	are	linked	to	the	AFBA	polygons.	
An	analysis	of	interlinkages	between	polygon	pairs	is	carried	out	for	the	AFBA–	
SRBA	and	AFBA–HRBA	combinations.	The	clustering		procedure		subdivides	
the	 total	 set	 of	 polygons	 into	 subsets	 of	 polygons	 which	 are	 	considered	 to	
be	related	to	single	fire	events.	This	clustering	procedure	provides	for	more	
detailed	intercomparison	and	analysis	at	individual	fire	event	level.	

14.4		 B	 urned	Area	Assessment	over	Russian		

Federation	for	Year	2011	

The	three	burned	area	mapping	methods,	AFBA,	SRBA	and	HRBA,	and	the	
integrated	assessment	approach	have	been	applied	over	the	full	territory	of	
the	Russian	Federation	to	estimate	the	extent	and	impact	of	the	fire	season	
of	year	2011.	

From	the	AFBA	product	the	estimate	of	total	burned	areas	for	year	2011	
over	the	entire	country	is	10.27	million	ha,	including	5.06	million	ha	of	burned	
forest	areas.	For	the	same	year	the	SRBA	method	leads	to	an	estimate	of	10.41	
and	4.38	million	ha	of	total	burn	areas	and	burned	forest	areas	respectively.	
When	 looking	 at	 the	 burn	 area	 estimates	 derived	 from	 the	 SRBA	 method	
during	the	last	7	years,	it	appears	that	the	2011	fire	season	was	obviously	of	
not	exceptional	magnitude	in	Russia	(Figure	14.9).	

From	 the	 FFMIS	 database	 of	 available	 LandsatTM/ETM+	 imagery	
acquired	during	year	2011,	the	HRBA	product	has	resulted	in	3,609		polygons	
with	 a	 total	 burned	 area	 of	 5.94	 million	 ha,	 including	 4.00	 million	 ha	 of	
burned	forests.	The	burned	area	sizes	of	individual	fire	events	show	a	wide	
range	as	presented	by	their	distribution	histogram	(Figure	14.10).	Being	not	
comprehensive	enough	to	provide	an	accurate	estimate	at	country	level,	this	
data	set	can	be	used	as	reference	for	and	evaluation	of	the	accuracy	of	burned	
area	products	derived	from	MODIS	data.	This	product	is	also	critical	for	the	
integrated	burned	area	assessment.	
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FIGURE	14.9	
Annual	estimates	of	burned	areas	(derived	from	the	SRBA	product)	over	the	Russian	Federation	
from	2005	to	2011.	
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FIGURE	14.10	
Burned	area	distribution	of	fire	events	 from	 the	HRBA	product	derived	 from	LandsatTM/	
ETM+	imagery.	

The	crosscomparison	of	LandsatTM/ETM+	and	MODIS	hot	spot–derived	
burned	area	products	including	both	initial	and	corrected	estimates	(correction	
using	Formula	14.1)	demonstrates	a	bias	reduction	for	corrected	estimates	 in	
particular	for	small	burned	areas	(<1,000	ha)	burns	(Figure	14.11).	

The	 accuracy	 of	 forest	 burned	 area	 estimates	 derived	 from	 the	 AFBA	
product	 and	 corrected	 with	 Formula	 14.1	 has	 been	 assessed	 from	 the	
comparison	to	the	HRBA	product	with	the	following	results:
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FIGURE	14.11	
Correlation	 between	 burned	 areas	 from	 the	 AFBA	 product	 (MODIS	 hot	 spots)	 and	 burned	
areas	from	the	HRBA	product	(LandsatTM/ETM+):	(a)	before	correction	and	(b)	after	correc
tion	for	bias	using	Equation	14.1.	

A	similar	assessment	has	been	made	for	the	SRBA	product	(Figure	14.12):

	 RMSE	= ±1.52%	and	bias	= –8.7% 

Figure	14.13	shows	a	decrease	of	RMSE	as	a	function	of	the	area	size	for	small		
burns	(<1,000	ha)	considering	either	all	wildfires	together	or	only	forest	fires.		
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FIGURE	14.12	
Correlation	between	burned	areas	from	the	SRBA	product	(MODIS	surface	reflectance	change)	
and	burned	areas	from	the	HRBA	product	(LandsatTM/ETM+)	with	identification	of	spring	
and	summer	fires	(before	or	after	June	1).	

50	

40	

600	 700	 800	 900	 1,000	

R
M

S
E

,	%
	

30	

20	

10	

0	
100	 200	 300	 400	 500		

Area,	ha		

All	burns		 Forest	burns	

FIGURE	14.13	
RMSE	(root	mean	square	error)	of	burned	area	estimates	from	the	SRBA	product	in	relation	to	
burned	area	size	for	total	burned	areas	and	forest	burned	areas.	

The	 combined	 use	 of	 all	 three	 burned	 area	 products	 into	 an	 integrated	
assessment	 leads	 to	 an	 estimate	 of	 14.32	 million	 ha	 of	 total	 burned	 area	
including	5.79	million	ha	in	forest	domain	only.	Table	14.1	shows	the	burned	
area	estimates	from	the	three	burned	area	products	and	from	the	integrated	
assessment	 at	 the	 levels	 of	 entire	 country	 and	 federal	 districts	 of	 Russian	
Federation.	Figure	14.14	shows	spatial	distribution	of	the	burned	areas	of	the	
year	2011	across	the	territory	of	Russia.	
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14.5	 Conclusions	

This	chapter	presents	an	approach	for	the	mapping	of	burned	forest	area	that	
combines	two	remote	sensing	data	sources:	MODIS	and	LandsatTM/ETM+ 

satellite	 imagery.	 This	 approach	 is	 aimed	 to	 answer	 to	 two	 main	 users’	
requirements:	 rapidity	 of	 information	 delivery	 and	 accuracy	 of	 estimates.	
The	approach	includes	three	complementary	burned	area	products	at	1	km,	
250	m,	and	30	m	spatial	resolution,	respectively.	

The	 first	 burned	 area	 product	 (AFBA)	 is	 based	 on	 temperature	 anoma
lies	detected	 from	MODIS	data	at	1	km	resolution.	This	product	 is	gener
ated	 with	 the	 most	 rapid	 but	 least	 accurate	 method.	 It	 allows	 providing	
burned	area	estimates	several	times	a	day	with	an	acceptable	level	of	accu
racy. The second	burned	area	product	(SRBA)	is	based	on	the	use	of	MODIS	
datadetected	surface	reflectance	changes	combined	with	radiation	tempera
ture	anomalies.	This	method	is	less	rapid	(daily	assessments	are	produced	
within	20–30 days	delay)	but	leads	to	more	accurate	results	at	250 m	resolu
tion.	These	two	methods	are	fully	automated	and	allow	producing	regular	
updated	walltowall	burned	assessments	for	the	entire	Russian	Federation	
during	a	fire	season.	

The	most	spatially	accurate	burned	area	product	(HRBA)	is	derived	from	
LandsatTM/ETM+	imagery.	This	product	on	its	own	does	not	allow	provid
ing	a	comprehensive	burned	area	assessment	at	the	country	level	but	is	con
sidered	as	complementary	to	the	MODIS	dataderived	estimates.	However,	
this	approach	was	applied	operationally	over	the	Russian	Federation	for	the	
fire	season	of	year	2011	and	has	resulted	 in	 the	detailed	mapping	of	3,609	
burned	area	events.	The	total	burned	areas	derived	from	LandsatTM/ETM+ 

imagery	correspond	to	about	57%	of	total	burned	areas	and	to	about	91%	of	
total	burned	forest	areas	derived	from	the	250	m	product	for	entire	Russia	
during	the	year	2011.	

The	 MODISderived	 products	 have	 different	 levels	 of	 RMSE	 (14.1%	 and	
8.7%	for	AFBA	and	SRBA,	respectively)	with	an	underestimation	of	burned	
areas.	 Our	 integrated	 burned	 area	 assessment	 approach	 allows	 providing	
more	comprehensive	and	accurate	estimates.	
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15.1	 Introduction	

Remote	 sensing	 data	 acquired	 by	 synthetic	 aperture	 radar	 (SAR)	 provide	
unique	opportunities	for	forest	characterization,	mapping,	and	monitoring,	
largely	because	of	sensitivity	of	the	radar	signal	to	vegetation	physiognomic	
structure	and	the	provision	of	observations	that	are	largely	independent	of	
atmospheric	(e.g.,	cloud	and	smoke	haze)	and	solar	illumination	conditions.	
Spaceborne	SAR	have	been	operating	at	a	near	global	level	since	the	1990s,	
and	the	wide	range	of	frequencies,	polarizations,	and	observation	strategies	
provide	numerous	opportunities	for	retrieving	information	on	the	past	and	
current	state	of	forests	and	surrounding	landscapes	and	changes	associated	
with	 natural	 and	 anthropogenic	 change,	 including	 climatic	 fluctuation.	
The	 development	 of	 systems	 and	 algorithms	 for	 characterizing,	 mapping,	
and	monitoring	forests,	however,	has	been	informed	by	studies	using	data	
acquired	by	SAR	onboard	airborne	and	spaceborne	systems	(e.g.,	the	Shuttle	
Imaging	Radar)	and	through	dedicated	missions.	

This	 chapter	 reviews	 the	 use	 of	 spaceborne	 SAR	 for	 forest	 monitoring	 at	
regional	 to	 global	 scales.	 Particular	 focus	 is	 on	 the	 use	 of	 single	 and	 dual
polarization	 backscatter	 data	 acquired	 at	 X,	 C,	 and	 Lbands,	 as	 these	 are	
the	most	widely	available	to	those	charged	with	forest	monitoring.	However,	
examples	of	how	polarimetric	SAR	(POLSAR)	and	inteferometric	SAR	(InSAR)	
data	can	be	used	to	improve	monitoring	are	considered.	The	chapter	provides	
essential	background	information	on	SAR	and	an	overview	of	how	key	change	
processes	 of	 deforestation,	 degradation,	 and	 regeneration/afforestation	 can	
be	detected	using	these	data.	Case	studies	relating	to	SARbased	monitoring	
of	tropical	rainforests	in	the	Brazilian	Amazon	and	Borneo,	tree–grass	savan
nas	in	Australia,	and	boreal	forests	in	Siberia	are	then	presented.	Advantages	
of	SAR	for	forest	monitoring,	either	singularly	or	in	combination	with	other	
sensors,	are	conveyed.	The	future	of	SAR	for	forest	monitoring	is	discussed,	
particularly	as	this	type	of	data	is	now	increasingly	used	in	support	of	local,	
national,	and	regional	to	global	forest	monitoring	frameworks.	
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15.2		 Suitability	of	SAR	for	Forest	Monitoring	

15.2.1		 Forest	Structural	Diversity	and	Radar	Modes	

A	wide	range	of	forest	types	exist	globally,	with	distinct	formations	occupy
ing	large	areas	including	tropical	rainforests,	boreal	and	temperate	forests,	
and	tree−grass	savannas.	 In	all	biomes,	 forests	can	be	broadly	categorized	
into	evergreen,	semideciduous,	or	deciduous.	Common	leaf	types	include	
broadleaf,	needleleaf,	and	palmlike.	Canopy	cover	ranges	from	sparse	to	
closed	and	primarily	as	a	consequence	of	prevailing	environmental	condi
tions	 (e.g.,	 precipitation,	 evapotranspiration,	 soil	 types).	As	 well	 as	 cover,	
forests	 are	 often	 distinguished	 on	 the	 basis	 of	 height	 and	 the	 number	 of	
canopy	 layers	 which,	 when	 distinct,	 can	 range	 from	 single	 layer	 (with	 no	
understory)	to	multilayer.	The	plants	themselves	also	vary	in	their	moisture	
content,	 canopy	 form	and	orientation,	density,	 and	size	of	 their	 foliar	and	
woody	components.	The	substrate	underlying	forests	may	range	from	dry	to	
wet	and	be	smooth	or	rough,	depending	on	the	soil	and	geology	and	levels	
of	inundation.	Forest	structure	in	all	regions	is	highly	variable	and	depends	
on	 growth	 stage,	 management	 practices,	 and	 natural	 and	 humaninduced	
events	and	processes.	

These	 different	 characteristics	 of	 forests	 are	 primary	 determinants	 of	
the	variability	in	the	SAR	response	at	different	frequencies	and	polariza
tions	and	over	 time.	Hence,	an	understanding	of	microwave	 interactions	
with	different	components	of	the	vegetation	and	the	underlying	surface	is	
essential	if	these	data	are	to	be	used	for	monitoring.	A	recent	overview	of	
imaging	radar	principles	is	provided	in	Kellndorfer	and	McDonald	(2009),	
but	information	specific	to	forest	monitoring	is	conveyed	in	the	following	
sections.	

15.2.2		 SAR	Frequencies	and	Polarisations	

Spaceborne	SAR,	which	provide	capacity	for	monitoring	over	large	areas,	
operate	at	X	(~9.6	GHz,	3.1	cm),	C	(~5.3	GHz,	5.7 cm),	and	Lbands	(~1.275	
GHz,	23.5	cm).	Within	closedcanopy	and	taller	forests,	the	shorter	X	and	
Cband	waves	interact	primarily	with	the	foliage	and	smaller	branches	in	
the	 upper	 layers	 of	 the	 canopy	 and	 allow	 discrimination	 of	 forest	 types	
primarily	as	a	function	of	differences	in	their	leaf	and	small	branch	dimen
sions,	orientations,	and	densities	 (Mayaux	et al.	 2002).	However,	 in	more	
open	 forests	 (e.g.,	 tree–grass	 savannas),	 interactions	 may	 occur	 with	 the	
ground	and	woody	components	of	the	vegetation	(Lucas	et	al.	2004).	In	all	
forests,	microwaves	emitted	at	lower	frequency	(L	and	Pbands)	generally	
penetrate	through	the	smaller	elements	of	the	canopy	and	interact	with	the	
larger	woody	branches	and	trunks	and	ground	surface.	
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At	all	 frequencies,	single	and	doublebounce	scattering	result	 in	a	 large	
amount	 of	 reflected	 energy	 returning	 to	 the	 sensor	 in	 the	 same	 polariza
tion	 as	 that	 transmitted	 (i.e.,	 HH	 or	 VV,	 with	 H	 and	 V	 representing	 the	
horizontal	 and	 vertical	 polarizations,	 respectively).	 The	 strongest	 returns	
are	often	at	HH	polarization,	where	doublebounce	scattering	between	the	
ground	 	surface	 and	 vertical	 structures	 (e.g.,	 plant	 stems)	 occur,	 enhanced	
when	forests	are	inundated	by	water.	Volume	scattering	leads	to	depolariza
tion	 of	 the	 transmitted	 signal	 and	 is	 caused	 by	 multiple	 interactions	 with	
structures	 (e.g.,	branches,	 leaves)	 that	have	multiple	angles	of	orientation.	
Returns	are	comparatively	lower	from	the	crosspolarized	wave	(i.e.,	HV	or	
VH)	and	are		typically	minimal	for	bare	areas,	including	water.	However,	the	
HV	backscatter	generally	increases	asymptotically	with	the	amount	of	plant	
material	 in	 the	canopy	and	has	been	related	 to	 the	above	ground	biomass	
(AGB)	of	forests	at	lower	frequencies.	

15.2.3	 Interferometry	

Spaceborne	X,	C,	and	Lband	interferometric	data	have	been	used	to	map	
forest	 extent,	 the	 distribution	 of	 plant	 components	 in	 the	 forest	 volume,	
and	canopy	height.	With	single
pass
 interferometry,	one	antenna	is	used	to	
emit	and	receive	a	wave	(in	a	single	polarization),	while	a	second	detects	
the	 same	 polarization	 component	 of	 the	 reflected	 wave.	 In	 other	 words,	
both	 antennas	 measure	 the	 backscatter	 in	 the	 same	 polarizations	 but,	 as	
they	 are	 separated	 in	 range	 direction	 over	 a	 certain	 baseline,	 this	 causes	
a	 very	 small	 time	 lapse	 between	 the	 reception	 of	 reflection.	 This	 can	 be	
associated	with	the	angle	of	the	observed	scatterer	while	the	total	elapsed	
time	corresponds	with	the	distance	of	the	scatterer.	Consequently,	the	posi
tion	and	height	of	the	socalled	scattering	phase	center	can	be	determined.	
In	areas	without	vegetation,	 the	height	of	 the	 terrain	can	be	determined,	
while	 in	 areas	 with	 high	 vegetation	 in	 a	 singleresolution	 cell,	 scatterers	
over	a	range	of	heights	are	present.	This	range	of	phases	is	expressed	by	a	
parameter	called	interferometric	phase	difference,	and	the	total	correlation	
(normalized	similarity)	between	the	two	data	 is	commonly	referred	to	as	
coherence.	Most	current	SAR	systems	allow	repeat
pass
interferometry,	which	
is	based	on	 the	use	of	only	one	antenna	where	 the	 second	measurement	
is	undertaken	within	a	short	time	period	(from	hours	to	weeks)	and	from	
a	 slightly	 different	 position	 (thereby	 forming	 the	 baseline).	 Coherence	 is	
high	(approaches	1)	when	the	same	interaction	with	objects	on	the	ground	
occurs	between	 two	 images	and	decreases	as	a	 result	of	 temporal	decor
relation	 (e.g.,	 because	 of	 changes	 in	 environmental	 conditions	 including	
surface	 moisture	 and	 wind)	 and	 volume	 decorrelation	 (because	 of	 vari
able	scattering	within	volumes,	including	forests,	as	a	function	of	observa
tion	parameters).	Interferometric	coherence	is	typically	lower	over	forests,	
although	it	depends	upon	the	season	of	observation.	
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15.3		 Development	of	SAR	for	Forest	Monitoring	

15.3.1	 Sensors	Available	for	Monitoring	

The	benefits	of	using	SAR	for	forest	monitoring	were	recognized	by	a	number	
of	early	studies,	commencing	with	the	1970	Brazilian	RADAMBRASIL	project,	
in	which	airborne	Xband	SAR	data	were	acquired	over	the	entire	Brazilian	
Amazon	Basin,	and	followed	by	those	making	use	of	the	shuttle	imaging	radar	
(SIRA/B,	 SIRC)	 SAR	 missions	 and	 other	 airborne	 datasets	 (e.g.,	 NASA’s	
AIRSAR).	 The	 Japanese	 Earth	 Resources	 Satellite	 (JERS1)	 SAR	 provided	
the	first	Lband	observations	globally	over	 the	years	1992	to	1998	while	 the	
Canadian	RADARSAT	SAR	and	SAR	on	board	the	European	Remote	Sensing	
(ERS1	 and	 2)	 satellites	 provided	 Cband	 observations	 and	 interferometric	
capability.	 From	 the	 mid2000s	 and	 onwards,	 Italy	 and	 Germany	 launched	
Xband	satellite	missions,	the	COSMO	SkyMed	constellation	and	TerraSARX.	
Fully	polarimetric	observations	were	provided	by	the	advanced	land	observing	
satellite	phased	array	Lband	SAR	(ALOS	PALSAR)	(Lband),	RADARSAT2	
(Cband),	 and	 TerraSARX	 (Xband)	 instruments	 at	 a	 near	 global	 level.	 The	
2000	Shuttle	Radar	Topographic	Mission	(SRTM)	and	the	TanDEMX	mission	
from	2010	provided	unique	capability	 for	generating	digital	 surface	models	
(DSMs)	at	global	scales,	allowing	retrieval	of	canopy	height	in	more	densely	
vegetated	areas	and	the	topographic	ground	surface.	

The	practical	use	of	SAR	for	forest	monitoring	has	followed	developments	
in	 the	 technology	 and	 observation	 capability.	 The	 RADAMBRASIL	 project	
was	the	first	to	provide	a	baseline	of	the	extent	of	forest	cover	in	the	Brazilian	
Amazon	without	interference	from	cloud	or	smoke	haze.	Focusing	on	more	
local	areas,	 the	SIRC	missions	 (X,	C,	and	Lbands)	allowed	researchers	 to	
identify	the	benefits	of	using	different	radar	wavelengths	and	polarizations	
for	detecting	forest	extent,	characterizing	areas	cleared	of	forest,	and	retriev
ing	 forest	 biomass	 and	 structural	 attributes	 (Kellndorfer	 et	 al.	 1998).	 The	
capacity	of	interferometric	SAR	for	retrieving	forest	height	across	larger	areas	
was	demonstrated	using	SRTM	(Kellndorfer	et	al.	2004).	The	JERS1	mission	
provided	the	first	consistent	pantropical	and	panboreal	observations,	from	
which	regionalscale	mosaics	of	the	boreal	and	tropical	zones	were	generated	
as	part	of	the	global	rain	forest	mapping	(GRFM)	and	global	boreal	forest	map
ping	 (GBFM)	 projects	 (Rosenqvist	 et	 al.	 2000).	 The	 longwavelength	 Lband	
SAR	 data	 proved	 useful	 for	 the	 classification	 of	 forest/nonforest	 areas	 and	
identification	of	secondary	growth	(Sgrenzaroli	et	al.	2002),	particularly	when	
timeseries	 data	 were	 used.	 The	 Lband	 HH	 data	 also	 facilitated	 temporal	
mapping	of	standing	water	below	closedcanopy	forests,	and	hence	differentia
tion	of	floodplain	and	swamp	forests,	and	better	understanding	of	the	seasonal	
dynamics	 of	 inundation	 across	 large	 river	 catchments	 such	 as	 the	 Amazon 	
and	 Congo	 (Hess	 et	 al.	 1995).	 The	 successor	 of	 the	 JERS1	 SAR,	 the	 ALOS	
PALSAR,	 provided	 the	 first	 global	 systematic	 observations	 at	 a	 global	 level	
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between	2006	and	2011.	The	ALOS	mission	highlighted	the	potential	of	SAR	
for	operational	forest	monitoring,	with	the	HV	data	providing	better	detection	
of	deforestation	across	many	regions	compared	to	HH	data.	As	the	data	accu
mulated	into	a	time	series,	the	benefits	of	using	these	and	also	JERS1	SAR	data	
for	 identifying	 events	 or	 processes	 that	 might	 lead	 ultimately	 to	 expansion	
of	the	area	deforested	or	degraded	or	tracking	histories	of	land	use	became	
apparent.	As	well	as	changes	in	the	backscattering	coefficient,	interferometric	
observations	proved	useful	for	detecting	disturbances	within	the	canopy	and	
suggested	capacity	for		mapping	degraded		forest	or	identifying	specific	events	
(e.g.,	selective		logging).	In	the	boreal	regions	in	particular,	the	advantages	of	
using	coherence	data	derived	from	combinations	of	spaceborne	C	and	Lband	
SAR	for	forest	characterization,	mapping,	and	monitoring	became	apparent.	
The	advantages	of	integrating	data	from	multifrequency	SAR,	optical	sensors,	
and	light		detection	and	ranging	(LiDAR)	were	also	recognized.	

15.3.2		 SAR	Observation	Strategies	

The	use	of	satellite	data	for	forest	monitoring	is	currently	moving	from	local	
studies	on	a	limited	number	of	satellite	scenes,	to	regional	or	national	scales	
where	whole	countries	are	to	be	monitored	on	a	regular	basis.	Many	coun
tries	have	or	are	establishing	operational	national	forest	monitoring		systems	
to	 meet	 their	 national	 reporting	 obligations	 in	 support	 of	 inter	national	
conventions,	 with	 a	 key	 driver	 being	 the	 UN	 Framework	 Convention	 on	
Climate	Change	(UNFCCC)	Reduction	of	Emissions	from	Deforestation	and	
Degradation	 (REDD+).	 However,	 nationalscale	 monitoring	 requires	 the	
availability	of	satellite	sensor	data	that	are	consistent	over	countries,	in	terms	
of	both	coverage	(no	gaps)	and	temporal	frequency	(all	acquisitions	within	a	
limited	time	period).	A	major	strength	of	remote	sensing	technology	is	that	
longterm,	 systematic,	 and	 repetitive	 observations	 can	 be	 provided	 over	
large	areas,	particularly	as	SAR	is	not	limited	by	low	sun	angles	or		persistent	
cloud	cover.	However,	many	moderate	(10–30 m)	spatial	resolution		sensors	
have	 not	 acquired	 data	 uniformly	 and	 regularly	 across	 large	 areas	 but	
have,	 instead,	 focused	on	areas	where	 	specific	requests	have	been	submit
ted.	Consequently,	some	areas	have	received		systematic	coverage	over	long	
periods	of	time	while	neighboring	areas	have	been	totally	neglected.	Many	
satellite	missions	have	also	followed	gapfilling	background	mission	objec
tives	 as	 and	 when	 operational	 resources	 permit.	 However,	 the	 data	 have	
often	been	acquired	without	consideration	given	to	the	impacts	of	temporal	
effects,	and	the	heterogeneous	archives	are	of	limited	use.	

Optical	missions,	and	notably	Landsat,	have	generally	been	more	success
ful	than	their	microwave	counterparts,	particularly	over	countries	that	have	
their	own	ground	receiving	stations.	However,	where	regions	are	associated	
with	frequent	cloud	cover,	obtaining	a	full	national	coverage	on	an	annual	
basis	remains	a	major	challenge.	While	more	or	less	continuous	observations	
are	available	through	coarser	spatial	resolution	MODIS	or	AVHRR	data,	the	
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significantly	higher	data	rates	associated	with	moderate	or	fine	spatial	res
olution	sensors	 require	a	higher	degree	of	planning	 if	 regional	 fragmenta
tion	is	to	be	avoided.	Therefore,	a	systematic	observation	strategy	is	needed	
for	 moderate	 and	 also	 fine	 (<10	 m)	 spatial	 resolution	 datasets	 in	 order	 to	
meet	the	requirements	of	a	remote	sensing–based	national	forest	monitoring	
system.	 In	particular,	 the	 following	should	be	 taken	 into	consideration,	as	
highlighted	by	Rosenqvist	et	al.	(2003):	

r� Spatially	 and	 temporally	 consistent	 observations	 over	 large	 areas	
to	avoid	gaps	 in	acquisitions	and	minimize	backscatter	variations	
caused	by	seasonal	differences	in	surface	conditions	between	passes	

r� Adequate	 repetition	 frequency	 to	 facilitate	 detection	 of	 temporal	
changes	as	a	result	of,	for	example,	flooding	or	land	use	

r� Appropriate	timing	such	that	longterm	repetitive	observations	are	
taken	over	 the	same	 time	 frame	each	year	and	 ideally	 targeted	 to	
seasons	where	backscatter	conditions	are	more	stable	

r� Consistency	 in	 sensor	 observation	 modes	 such	 that	 acquisitions	 are	
limited	to	a	small	number	of	“best	 tradeoff”	sensor	modes,	 thereby	
maximizing	data	homogeneity	and	minimizing	programming	conflicts	

r� Longterm	continuity	such	that	observations	can	be	continued	from	
sensors	that	are	preceding	or	launched	in	the	future	

The	first	radarbased	systematic	observation	strategy	dates	back	to	experiences	
gained	with	the	JERS1	SAR	which,	during	the	last	3	years	of	its	lifetime	(1995–	
1998),	was	used	to	acquire	data	in	a	consistent	manner	over	the	entire	tropical	
and	boreal	zones	of	the	Earth	(Rosenqvist	et	al.	2000).	For	the	first	time,	the	util
ity	and	feasibility	of	acquiring	moderate	spatial	resolution	data	systematically	
and	 repetitively	 at	 continental	 scales	 was	 demonstrated.	 The	 global	 acquisi
tion	strategy	concept	was	implemented,	in	full,	for	the	ALOS	satellite,	with	the	
PALSAR	programmed	to	achieve	at	least	one	gapfree	coverage	of	all	land	areas	
every	6	months	(Rosenqvist	et	al.	2007),	as	illustrated	in	Figure	15.1.	

The	importance	of	systematic	acquisition	strategies	is	becoming	increasingly	
recognized,	and	a	number	of	nearfuture	satellite	missions	are	planning	simi
lar	global	observation	plans.	Of	particular	note	was	the	joint	effort	made	from	
2012	to	establish	a	coordinated	multimission	acquisition	strategy	by	a	number	
of	national	space	agencies	under	the	framework	of	the	global	forest	observa
tion	 initiative	 (GFOI)	of	 the	group	on	Earth	observations	 (GEO),	comprising
	moderatetofine	(<10	m)	spatial	resolution	optical	and	X,	C,	and	Lband	SAR.	

15.3.3		 Synergistic	Use	of	SAR	and	Optical	Data	

The	development	of	a	forest	monitoring	program	that	integrates	both	SAR	
and	 optical	 data	 acquired	 across	 a	 range	 of	 frequencies	 is	 ideal	 and	 the	
benefits	are	being	increasingly	realized,	with	demonstration	in	a	few	cases	
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PALSAR	10	m	global	mosaic	2009	 ALOS	

R:HH	G:HV	B:HH/HV	

©JAXA,	METI	Analyzed	by	JAXA	

FIGURE	15.1	
(See	color	insert.)	Global	ALOS	PALSAR	color	composite	mosaic	at	10 m	pixel	spacing	(R:	HH,	
G:	HV,	B:	HH/HV).	95%	of	the	data—a	total	of	approximately	70,000	scenes—were	acquired	
within	the	time	period	June–October	2009.	(Courtesy	of	JAXA	EORC,	Tsukuba,	Japan.)	

(e.g.,	Queensland,	Australia).	The	benefits	include	the	provision	of	comple
mentary	information	on	the	foliage/canopy	and	woody	components	of	veg
etation,	which	can	assist	mapping	of	forest	types	(e.g.,	regrowth,	mangroves)	
and	retrieval	of	linked	biophysical	properties	(e.g.,	canopy	cover	and	AGB).	
SAR	data	can	also	be	used	to	“in	fill”	gaps	in	time	series	of	optical	remote	
sensing	data	where	cloud	or	haze	cover	prevents	acquisition	of	the	latter	or	
the	revisit	frequency	or	timing	of	acquisition	is	suboptimal.	ScanSAR	data,	
in	particular,	have	proven	to	be	particularly	useful	for	this	purpose.	Where	
the	timing	of	SAR	and	optical	data	acquisitions	is	not	coincident,	more	com
prehensive	 timeseries	 datasets	 detailing	 changes	 in	 forest	 cover	 can	 be	
generated.	SAR	data	may	also	prove	to	be	the	workhorse	of	operational	mon
itoring	programs	in	the	event	of	failure	by	one	or	more	sensors	(e.g.,	Landsat).	

A	multisensor	and	multiscale	approach	to	monitoring	also	allows	better	
detection	 of	 hotspots	 of	 change	 (e.g.,	 through	 observations	 of	 fire	 activity	
from,	 for	 example,	 MODIS)	 or	 areas	 that	 are	 vulnerable	 to	 future	 change.	
For	example,	fire	activity	detected	by	sensing	in	the	middle	or	thermal	infra
red	wavelengths	from	coarse	spatial	resolution	sensors	of	high	temporal	fre
quency	can	be	followed	up	by	SAR	observations	of	the	area	affected	(Siegert	
and	Hoffman	2000).	Adverse	changes	in	the	longterm	trends	in	measures	
of	vegetation	productivity	(e.g.,	the	normalized	difference	vegetation	index	
[NDVI]	or	enhanced	vegetation	index	[EVI]),	as	derived	from	coarse	spatial	
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resolution	 optical  data,	 may	 indicate	 areas	 of	 regrowth	 or	 degradation	
involving	accumulation	or	 loss	of	plant	material,	which	can	potentially	be	
characterized	 through	 timeseries	 comparison	of	SAR	data.	 In	both	 cases,	
fine	 spatial	 resolution	 and	 programmable	 data,	 such	 as	 that	 provided	 by	
the	TandemX	mission	or	very	highresolution	 (VHR)	optical	 sensors	 (e.g.,	
Worldview,	Quickbird),	can	then	be	used	to	associate	observed	changes	with	
an	actual	or	likely	cause	such	that	measures	can	be	put	in	place	to	prevent	
further	 loss	or	degradation	of	 forests.	Longterm	and	 regular	walltowall	
observations	 at	 a	 regional	 level	 are	 critical	 as	 approaches	 that	 sample	 the	
landscape	often	omit	changes	in	forest	cover	because	of	their	restricted	extent	
(e.g.,	along	road	networks	or	the	borders	between	lowlands	and	uplands).	In	
all	cases,	the	combination	of	optical	and	SAR	data	provides	enhanced	ben
efits	for	forest	monitoring	and	also	understanding	the	processes	of	change.	

15.4	 Processes	of	Forest	Change	

Changes	 in	 forest	 cover	 are	 typically	 associated	 with	 specific	 events	
(e.g.,	 clearcutting),	 longterm	 degradation,	 natural	 succession,	 or	 human
induced	regeneration	following	clearance	or	disturbance.	In	each	case,	SAR	
can	play	a	role	in	mapping	and	monitoring	change	and	also	estimating	the	
magnitude	of	changes	in	structure	and	AGB,	as	outlined	in	the	following	
sections.	

15.4.1	 Deforestation	

Deforestation	 is	 defined	 as	 a	 conversion	 of	 forest	 to	 nonforest.	 However,	
establishing	the	boundary	between	forests	and	nonforest	or	the	magnitude	
of	change	that	constitutes	a	deforestation	event	is	often	compromised	by	fac
tors	 including	 the	 nature	 of	 forest	 loss	 in	 terms	 of	 structural	 components 	
removed	and	the	methods	of	clearing.	Using	SAR	data,	such	definitions	are	
compromised	by	prevailing	climatic	(e.g.,	rainfall,	 freeze–thaw	cycles)	and	
background	conditions	(e.g.,	surface	roughness,	soil	waterholding	capacity).	

Deforestation	is	ordinarily	associated	with	complete	removal	of	woody	veg
etation	and	hence	a	change	in	the	dominance	of	volume	and	doublebounce	
scattering	 to	 surface	 scattering.	 However,	 in	 some	 cases,	 cut	 stumps,	 fallen	
woody	 material,	 and	 individual	 trees	 (e.g.,	 palms,	 nonproductive	 timbers)	
are	often	remaining	following	clearance	events.	In	the	tropics	and	at	Lband,	
an	 increase	 in	 the	backscattering	coefficient	at	HH	polarization	 is	 typically 	
observed	 because	 of	 doublebounce	 interactions	 with	 woody	 debris	 (slash;	
AlmeidaFilho	et	al.	2009),	which	can	be	greater	than	that	of	the	original	forest,	
as	 shown	 in	 the	 example	 from	 Riau	 Province	 in	 Indonesia	 (Figure  15.2a).	
However,	this	is	typically	followed	by	a	rapid	decline	because	of	loss	of	woody	
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a	 b	

c	 d	

e	 f	

FIGURE	15.2	
For	 a	 site	 in	 Riau	 Province,	 Indonesia,	 ALOS	 PALSAR	 image	 highlighting	 the	 difference	
between	forest	and	nonforest	at	 (a)	HH	polarization	and	(b)	HV	polarization.	For	a	 tropical	
rainforest	 site	 in	 Guyana,	 open	 gold	 mining	 is	 less	 evident	 within	 CosmoSkyMed	 Xband	
(c)	 HH	 polarization	 data	 compared	 to	 (d)	 (See	 color	 insert.)	 a	 composite	 of  HH	 data	 from	
two	dates	(September	12	and	15,	2011)	and	coherence	(in	RGB	respectively;	blue	areas	indicate	
deforested	areas).	Due	to	doublebounce	scattering	between	tree	stems	and	the	water	surface	
at	Lband,	inundated	forest	in	the	Central	Amazon	Basin	is	clearly		visible	(bright)	at	(e)	HH	
polarization,	while	barely	visible	at	(f)	HV	polarization.	



		 	
	
	
	
	
	
	
	
	
	
	

	 	
	

	
	
	
	
	
	

	

	

	
	
	
	
	

	
	
	

Global
Forest
Monitoring
with
Synthetic Aperture
Radar
(SAR)
Data
 283		

debris	such	that	deforested	areas	often	become	indistinguishable	for	a	short	
period	 because	 of	 similarity	 in	 backscatter	 with	 adjacent	 forest.	 Over	 time, 	
however,	 these	become	more	separable,	 exhibiting	a	 lower	backscatter	 than	
primary	forest	because	of	the	dominance	of	specular	scattering.	In	some	cases,	
woody	material	can	be	piled	into	rows,	which	leads	to	a	high	backscatter	at	
HH	polarization.	Trees	can	also	be	left	standing	and	exhibit	a	high	return	at	
Lband	HH	but	a	lower	return	if	observed	using,	for	example,	Cband	SAR	or	
optical	data	(Lucas	et	al.	2008).	Areas	of	open	ground	may	also	exhibit	a	similar	
backscatter	as	areas	with	dead	standing	trees.	For	detecting	deforested	areas,	
greater	contrast	with	undisturbed	forests	 is	generally	obtained	at	Lband	at	
HV	polarization	(Figure 15.2b).	However,	the	distinction	between	forest	and	
nonforest	is	often	compromised	using	higher	frequency	(Cband/Xband)	SAR	
singlepolarization	data	because	of	similarities	in	backscatter	with	herbaceous	
vegetation	(e.g.,	pastures).	Differences	are	greater	where	interferometric	coher
ence	data	are	used,	as	illustrated	in	the	Xband	example	in	Figure	15.2c	and	d,	
allowing	detection	of	the	deforested	area	(appearing	blue	in	Figure 15.2d).	The	
environmental	conditions	prevailing	at	the	time	of	the	SAR	image	acquisition	
also	have	implications	for	mapping	and	monitoring	the	extent	of	forest	cover.	
For	example,	a	reduction	in	SAR	backscatter	may	occur	as	a	consequence	of	
thawing	or	snowmelt,	reductions	in	precipitation,	or	lowering/raising	of	the	
water	level	beneath	a	forest	canopy.	In	the	latter	case,	the	signature	can	be	sim
ilar	to	recently	cleared	forest,	and	hence	misinterpretations	may	occur	when	
mapping	deforested	areas	(Figure	15.2e	and	f).	

Methods	 for	 defining	 the	 forest/nonforest	 boundary	 have	 ranged	 from	
simple	thresholding	to	more	complex	classifications,	but,	in	each	case,	com
promises	have	been	necessary	or	errors	are	introduced	for	the	reasons	men
tioned	 above.	 However,	 the	 decision	 as	 to	 what	 constitutes	 the	 boundary	
has	 significant	 implications	 for	 countries	 reporting	 on	 the	 extent	 of	 forest	
cover	and	hence	the	detection	of	change.	An	alternative	option	is	to	retrieve	
biophysical	attributes	of	 forests	(e.g.,	area,	height,	and	cover)	 that	are	used	
in	standard	definitions	of	 forest	cover	and	can	be	more	easily	 interpreted, 	
although	this	has	rarely	been	undertaken	to	date.	

15.4.2		 Forest	Degradation	and	Natural	Disturbances	

Forest	degradation	typically	involves	the	removal	of	individuals	or	groups	of	
trees	through	processes	such	as	selective	logging	and	fuel	wood	collection	as	
well	as	dieback	as	a	consequence	of,	for	example,	burning	or	drought.	Typically,	
degradation	results	in	a	loss	of	trees	and	hence	canopy	material,	with	a	corre
sponding	reduction	in	backscattering	coefficient	and	a	change	in	texture	typi
cally	evident	within	the	SAR	image	depending	on	frequency	and	polarization.	

Many	studies	have	highlighted	how	forest	degradation	can	be	observed	
from	 SAR	 data.	 One	 example	 is	 in	 the	 peat	 swamp	 forests	 of	 Indonesia	
where	drainage	of	the	central	dome	contributed	to	underground	peat	fires,	
which eventually	led	to	the	collapse	of	the	forest.	This	sequence	of	events	was	
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captured	in	a	time	series	of	JERS1	SAR	data	acquired	between	1995	and	1998	
(Figure	 15.3).	 Until	 1996,	 the	 dome	 was	 still	 hydrologically	 intact,	 but	 the	
construction	of	a	very	wide	canal	through	the	dome	was	visible	in	the	JERS1	
SAR	image	of	1997.	In	the	third	image	of	the	sequence	(September	1997),	the	
canal	was	filled	with	water	leading	to	specular	scattering	away	from	the	sen
sor	and	hence	its	black	appearance	in	the	image.	A	small	but	bright	area	is	
also	evident,	which	then	grew	in	area,	becoming	brighter	until	the	collapse	
of	 the	 forest,	as	observed	 in	 January	1998.	For	many	peat	swamp	areas	 in	
Borneo	and	Sumatra,	large	series	of	historical	JERS1	images	collected	during	
the	period	1992–1998	(as	many	as	30	scenes)	and	ALOS	PALSAR	data	from	
2007	to	2010	show	evidence	of	degradation	of	the	peat	swamp	forests.	The	
sequence	illustrated	highlights	the	benefits	of	using	time	series	of	SAR	data	
from	Lband,	although	data	from	other	sensors	can	also	indicate	degradation.	

From	singledate	SAR	imagery,	selective	logging	is	often	difficult	to	discern	
because	 of	 the	 relatively	 coarse	 spatial	 resolution,	 although	 multitemporal	
datasets	can	be	used	to	better	identify	such	areas.	SAR	coherence	measure
ments	 can	 also	 indicate	 disturbance.	 As	 examples,	 interferometric	 ERS2	
SAR	data	have	been	used	to	detect	losses	of	canopy	in	Kalimantan	following	
large	wildfires,	while	ALOS	PALSAR	coherence	data	have	proved	useful	for	
detecting	the	impacts	of	severe	fires	in	Victorian	forests	in	Australia	in	2009.	
These	data	also	have	the	potential	for	detecting	natural	disturbances	associ
ated	with,	for	example,	downdrafts	and	lightning	strikes	as	well	as	longterm	
declines	in	the	condition	of	forests	as	a	consequence	of	drought	or	flooding.	

15.4.3		 Secondary	Forests	and	Woody	Thickening	

Secondary	 forests	 often	 establish	 following	 deforestation	 or	 degradation	
while	 in	 some	 intact	 forests,	 thickening	 of	 the	 vegetation	 may	 occur	 as	 a	
consequence	 of	 rainforest	 expansion	 or	 lack	 of	 burning	 over	 long	 time 	
periods.	A	limitation	of	using	SAR	data,	particularly	in	tropical	regions,	is	
that	 the	 rapid	 increase	 in	 woody	 material	 renders	 them	 indistinguishable	
from	primary	forest	within	a	few	years.	Therefore,	most	information	relat
ing	to	different	stages	of	regrowth	is	gathered	in	the	early	years	of	regrowth.	

Where	forests	regenerate	on	land	used	previously	for	agriculture	or	clear	
felled	 of	 trees,	 these	 can	 be	 identified	 through	 timeseries	 comparison	 of	
SAR	data,	although	the	point	at	which	regrowing	woody	vegetation	can	be	
considered	to	be	forest	can	be	contentious.	Temporal	datasets	can,	however,	
be	used	to	track	the	progression	of	regrowth	as	the	SAR	backscatter	typically	
increases	over	time	up	to	the	level	of	saturation.	As	an	example,	the	recovery	
of	mangroves	 in	Perak,	Malaysia,	 that	had	been	cleared	in	rotation	can	be	
readily	detected	using	time	series	of	JERS1	SAR	and	ALOS	PALSAR	data	
through	changes	 in	backscattering	coefficient.	Timeseries	 comparisons	of	
remote	sensing	data	classifications	assume	that	forests	of	the	same	age	are	
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FIGURE	15.3	
The	collapse	of	a	forest	on	top	of	a	peat	dome	in	Central	Kalimantan,	Indonesia,	as	observed	
using	 time	 series	 of	 JERS1	 SAR	 data	 acquired	 on	 (a)	 July	 12,	 1995,	 (b)	 March	 19,	 1997,	
(c)  September	 11,	 1997,	 (d)	 October	 25,	 1997,	 and	 (e)	 January	 21,	 1998.	 The	 image	 width	 is	
~21 km.	
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similar	in	terms	of	their	structure,	species	composition,	and	biomass.	SAR	
data	can,	however,	be	used	to	differentiate	forests	that	are	of	similar	age	but	
may	differ	in	terms	of	their	structure	or	accumulated	AGB.	

The	use	of	multifrequency	SAR	and	optical	data	provides	unique	opportu
nities	to	map	the	extent	of	regrowth	and	differentiate	growth	stages	based	on	
structural	development	rather	than	age.	At	Cband,	early	stages	of	regrowth	
are	 often	 indistinguishable	 from	 herbaceous	 vegetation	 while	 at	 Lband	
and	particularly	at	Pband,	 these	may	be	unable	 to	be	distinguished	 from	
nonforested	areas	as	the	stem	size	and	density	may	be	insufficient	to	evoke	
a	response.	Forests	at	more	advanced	stages	of	growth	are,	however,	able	to	
be	detected.	Hence,	the	use	of	X	and/or	Cband	or	optical	data	to	establish	
the	presence	of	plant	material	and	lower	frequency	L	and	Pband	SAR	to	
determine	 whether	 woody	 components	 exist	 and	 their	 relative	 sizes	 are	
useful	for	determining	the	nature	of	regrowth	as	a	function	of	its	structural	
development.	 Applying	 thresholds	 to	 SAR	 data	 to	 discriminate	 regrowth	
forests	from	nonforest	is	often	problematic	because	of	confusion	with	other	
land	and	water	 surfaces	and	hence	 the	application	of	 thresholds	 to	 layers	
representing	retrieved	biophysical	attributes	(e.g.,	AGB	retrieved	from	SAR	
data)	may	be	more	appropriate.	

15.5	 Forest		Monitoring	

15.5.1	 Overview	

Using	 SAR	 data,	 a	 large	 amount	 of	 information	 on	 the	 extent	 and	 nature	
of	deforestation	and	degradation	associated	with	human	activities,	 	natural	
disturbances	 through	 specific	 events	 and	 longterm	 processes,	 and	 the	
patterns	and	dynamics	of	regrowth	can	be	quantified.	Such	knowledge	can	
be	used	to	inform	subsequent	use	of	the	land,	in	planning	for	conservation	
and	 sustainable	 management	 of	 the	 existing	 forest	 area,	 and	 for	 restoring	
forests	on	land	that	had	been	previously	cleared	or	degraded.	In many	cases,	
forested	 landscapes	 have	 been	 classified	 into	 thematic	 categories	 (forest,	
nonforest,	regrowth	stages,	logged	forest),	with	thresholds	or	specific	algo
rithms	 used.	 Forests	 can,	 however,	 be	 described	 on	 the	 basis	 of	 retrieved	
biophysical	attributes	(e.g.,	height	from	interferometric	SAR	or	AGB	obtained	
from	lower	frequency	SAR),	with	continuous	surfaces	produced	which	are	
subsequently	 subdivided	 according	 to	 predefined	 intervals.	 Nevertheless,	
complications	in	the	description,	mapping,	and	monitoring	of	change	have	
arisen	from	variations	in	environmental	conditions	(e.g.,	surface	moisture).	
The	following	sections	provide	several	case	studies	from	boreal	and	tropical	
forests	as	well	as	wooded	savannas	in	which	SAR	data	have	been	used	for	
monitoring	forests	at	local	to	regional	levels	and	demonstrate	how	some	of	
the	issues	presented	above	have	been	addressed.	
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15.5.2		 Xingu	Watershed,	Mato	Grosso,	Brazil	

The	Xingu	watershed	headwaters	in	southeastern	Brazil	is	representative	of	
many	areas	along	the	Amazon’s	“arc	of	deforestation.”	The	native	vegetation	
within	the	387,000	km2	of	the	headwaters	includes	tall	evergreen	(25–45	m)	
and	 transitional	 semideciduous	 (10–30	 m)	 and	 riparian	 forests	 as	 well	 as	
savannas,	with	these	encompassing	cerrado	woodland,	grassland	mosaics,	
thickets,	and	gallery	forest.	In	the	late	2000s,	the	headwaters	contained	more	
area	in	dense	humid	forest	(~221,000	km2)	than	90%	of	the	world’s	tropical	
nations.	However,	annual	deforestation	in	the	forest	biome	from	2000	to	2007	
ranged	between	649	km	and	3,170	km2,	with	an	average	annual	rate	over	the	
7year	period	of	1951	km2.	This	represents	between	5%	and	13%	of	all	defor
estation	in	the	Brazilian	Amazon	(Stickler	et	al.	2008).	

Using	a	mosaic	of	ALOS	PALSAR	data	generated	using	spatially	and	tem
porally	consistent	images	acquired	during	the	period	June	to	August	2007	
(Figure	15.4a),	areas	of	forest	and	nonforest	(Figure	15.4b)	were	differentiated	
by	applying	a	random	forest	algorithm	to	objects	generated	using	eCognition	
and	aggregating	classes	at	several	levels	(Walker	et	al.	2010).	This	resulted	
in	an	accuracy	of	92.4%	when	ancillary	spatial/topographic	predictor	vari
ables	were	included.	A	similar	approach	applied	to	a	Landsat	sensor	mosaic	
(Figure	15.4c),	comprised	of	data	acquired	over	the	same	timeframe,	resulted	
in	an	accuracy	of	94.8%.	The	overall	 agreement	between	 the	PALSAR	and	
Landsatbased	forest	cover	products	varied	from	89.7%	(1	pixel	window)	to	
93.8%	(11	pixel	window),	with	minor	discrepancies	in	some	class	boundar
ies	(e.g.,	in	the	agreement	of	forests/field	edges)	being	the	primary	source	of	
spatial	dissimilarity	between	the	maps.	

The	 observation	 strategy	 developed	 for	 the	 ALOS	 PALSAR	 allowed	 the	
generation	 of	 both	 dual	 and	 single	 polarimetric	 data	 mosaics	 from	 quasi
identical	periods	between	2007	and	2009.	Change	detected	through	compar
isons	 of	 backscatter	 included	 clearcutting,	 logging,	 and	 wildfires.	 For	 the	
detection	of	change,	the	use	of	objects	rather	than	pixels	was	preferred,	as	
management	 activities	 or	 natural	 degradation	 typically	 occurred	 in	 areas	
larger	 than	 single	 pixels.	 Furthermore,	 the	 reduction	 in	 image	 speckle	
associated	 with	 averaging	 pixels	 within	 objects	 increased	 signal	 stability.	
Change	gradients,	based	on	regression	tree	approaches	(e.g.,	random	forest	
or	 support	 vector	 machines),	 were	 preferred	 over	 simple	 comparisons	 of	
forest	cover	maps	at	several	time	steps,	because	of	reductions	in	errors.	

A	composite	of	HV	data	acquired	in	2007,	2008,	and	2009	over	the	Xingu	
watershed	 is	 shown	 in	 Figure	 15.5.	 Forests	 clearcuts	 with	 slash	 removed	
between	the	2007	and	2008	acquisitions	appear	in	bright	red	because	of	sig
nificantly	lower	backscatter	from	clearcut	areas	(darker	green	and	blue	tones	
due	after	logging).	Areas	with	the	same	treatment	imposed	between	the	2008	
and	 2009	 acquisitions	 appear	 in	 bright	 yellow.	 Other	 land	 covers	 include	
lower	biomass	cerrado	with	no	significant	change	(medium	gray),	grassland,	
and	bare	soil	 (dark	gray	to	black).	Agricultural	fields	are	generally	darker,	
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FIGURE	15.4	
(See	color	insert.)	Satellite	image	mosaics	produced	for	the	Xingu	River	headwaters	region.	
(a)	 ALOS	 PALSAR	 mosaic	 consisting	 of	 116	 individual	 Level	 1.1	 (singlelook	 complex)	 fine	
beam,	dualpolarimetric	scenes	(R/G/B	=	polarizations	HH/HV/HHHV	difference).	(b)	Map	
of	 forest	 (green)	 and	 nonforest	 (beige)	 generated	 with	 an	 overall	 classification	 accuracy	 of	
92.4% ±	 1.8%.	 (c)	 Landsat	 5	 mosaic	 consisting	 of	 12	 individual	 Level	 1G	 (Geocover)	 scenes
	(R/G/B	=	bands	5/4/3).	

with	the	variability	in	backscatter	associated	with	changes	in	crop	phenol
ogy	 and	 also	 surface	 (soil	 and	 vegetation)	 moisture.	 While	 algorithms	 for	
change	detection	can	be	based	on	general	principals	of	change,	several	ambi
guities	need	to	be	taken	into	account	when	mapping	change.	In	particular,	
moisture	changes	from	rain	events	can	enhance	the	backscatter	signal	but	are	
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FIGURE	15.5	
(See	 color	 insert.)	 Multitemporal	 ALOS	 PALSAR	 Lband	 HV	 image	 generated	 from	 data	
acquired	in	2007	(red),	2008	(green),	and	2009	(blue)	for	a	part	of	the	Xingu	watershed.	Closed	
forest	(white)	is	interspersed	with	fire	scars	(red	tones)	along	the	main	stem	of	the	Xingu	River	
and	tributaries	(black).	

often	readily	identified	at	a	swath	scale	and	bias	corrections	can	sometimes	
be	applied	 in	mosaic	generation.	 In	general,	backscatter	 levels	of	standing	
(primary)	forest	are	around	–7	to	–9	dB	in	HH	and	–13	to	–15	dB	in	HV,	and	
losses	in	AGB	associated	with	logging,	clearcutting,	or	fire	reduce	the	ALOS	
PALSAR	backscatter	by	5–7	dB.	Smaller	changes	are	mostly	related	to	agri
cultural	activities	and	changes	in	both	phenology	and	surface	moisture.	

15.5.3		 Detecting	Forest	Degradation	in	Borneo	

Borneo	is	the	third	largest	island	in	the	world	and	covers	an	area	of	approxi
mately	750,000	km2.	Almost	three	quarters	of	the	island	is	part	of	Indonesia	
(Kalimantan)	 while	 Sarawak	 and	 Sabah	 are	 territories	 of	 Malaysia,	 and	
the	Sultanate	of	Brunei	Darussalam	occupies	a	small	area.	Until	the	1950s,	
Borneo	 was	 almost	 entirely	 covered	 by	 tropical	 evergreen	 broadleaved	
forest,	 with	 other	 major	 natural	 vegetation	 covers	 including	 peat	 swamp	
forests	along	the	coastal	and	subcoastal	lowlands,	freshwater	swamps	along	
the	 inland	 rivers,	 and	 mangrove	 forests	 on	 the	 coastal	 plains.	 However,	
intensive	 logging	 of	 predominantly	 commercial	 dipterocarp	 species	 and	
conversion	 to	 cropland,	 oil	 palm,	 and	 timber	 plantations	 have	 reduced	
forest	cover	significantly.	

The	establishment	of	baseline	maps	of	forest	cover	and	type	against	which	
to	quantify	and	determine	the	nature	and	impact	of	change	is	essential.	Using	
ALOS	 PALSAR	 fine	 beam	 single	 (FBS)	 and	 dual	 (FBD)	 polarization  (path)	
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image	pairs	acquired	in	2007,	a	map	of	forest	and	land	cover	types	was	gener
ated	(18	classes	in	total).	These	maps	have	been	used	subsequently	to	assist	
government	agencies	in	their	spatial	planning	and	reporting	on	the	status	of	
the	environment,	thereby	allowing	compliance	with	international	environ
mental	 treaties	 (Hoekman	 et	 al.	 2010).	 Furthermore,	 maps	 were	 generated 	
annually	using	data	acquired	in	2008	and	2009,	with	these	highlighting	areas	
of	forest	degradation	through	selective	logging	(Figure	15.6).	

a	 b	

c	

FIGURE	15.6	
(See	color	insert.)	Forest	degradation	in	Sarawak	through	selective		logging	observed	through	
comparison	 of	 forest	 maps	 generated	 using	 ALOS	 PALSAR	 data	 for	 the	 years	 (a–c)	 2007	
through	to	2009.	
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15.5.4	 Rapid	Detection	of	Deforestation	by	ScanSAR	

Using	 optical	 imagery,	 deforestation	 in	 the	 Brazilian	 Amazon	 is	 moni
tored	 and	 reported	 on	 an	 annual	 basis	 by	 the	 Brazilian	 Institute	 of	 Space	
Research	 (INPE).	 The	 majority	 of	 data	 is	 acquired	 during	 the	 dry	 season	
(July	 to	October),	although	smoke	haze	and	cloud	reduce	acquisition	rates	
as	this	season	progresses	and	during	the	wet	season.	While	INPE	provides	
deforestation	alerts	 every	15	days,	 the	Brazilian	 Institute	 for	Environment	
and	Natural	Renewable	Resources	(IBAMA)	is	charged	with	implementing	
measures	that	prevent	deforestation	before	 it	occurs.	For	this	purpose,	 the	
Japan	Aerospace	Exploration	Agency	(JAXA)	operated	the	ScanSAR	routinely	
over	Brazil	every	3	days	and	provided	the	processed	ScanSAR	images	to	the	
IBAMA	within	5	days	from	the	acquisition	date.	Provided	with	information	
on	deforestation	events	from	IBAMA’s	Remote	Sensing	Centre,	environmen
tal	law	enforcement	agents	visit	affected	sites	through	ground	or	helicopter	
transportation.	The	imagery	also	assists	the	agents	to	define	the	logistics	and	
strategies	 for	 subsequent	 field	 actions.	 While	 optical	 imagery	 is	 used,	 the	
wideswath	ScanSAR	mode	of	the	ALOS	PALSAR	has	allowed	detection	of	
early	deforestation.	Each	area	identified	as	indicating	a	change	is	delineated	
within	the	image	and	the	area	is	classified	as	being	in	the	initial	processes	of	
deforestation	or	is	a	consequence	of	ongoing	clearcutting	of	the	forest.	The	
information	is	assembled	into	a	deforestation	indication	document	enabling	
the	law	enforcement	agents	to	respond	rapidly	to	deforestation	events,	with	
particular	focus	on	halting	those	that	are	illegal.	

15.5.5		 Change	Detection	in	Boreal	Forests	

Boreal	 forests	 are	 extensive	 throughout	 the	 northern	 hemisphere	 and	 are	
located	primarily	in	Siberia	and	North	America.	The	SIBERIA	project	aimed	
to	 generate	 baseline	 maps	 of	 boreal	 forest	 cover	 across	 Siberia	 by	 using	 a 	
combination	 of	 ERS1	 and	 ERS2	 SAR	 tandem	 coherence	 data	 and	 JERS1	
SAR	backscatter	data	for	1997	to	1998.	Mapping	of	forest	cover	was	informed	
by	relationships	established	between	growing	stock	volume	and	both	Cband	
coherence	and	Lband	backscatter.	The	classification	was	undertaken	using	
a	maximum	 likelihood	algorithm	based	on	class	 statistics	generated	 from	
training	data.	

Within	 the	 boreal	 zone,	 the	 ability	 to	 detect	 change	 depends	 upon	 the	
timing	 of	 observation.	 During	 the	 winter	 months,	 extensive	 snow	 cover	
and	frozen	conditions	limit	detection	of	forest	cover	using	backscatter	data.	
However,	 using	 interferometric	 pairs	 of	 ALOS	 PALSAR	 data,	 Thiel	 et	 al.	
(2009)	 established	 that	 temporal	 decorrelation	 was	 low	 during	 the	 winter	
months,	and	areas	of	forest	and	nonforest	could	be	separated	using	a	combi
nation	of	wintercoherence	data	and	PALSAR	summer	backscattered	intensi
ties.	Operational	delineation	of	forest	cover	was	suggested,	with	accuracies	
exceeding	90%	when	an	objectbased	classification	was	applied.	
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15.5.6		 Quantifying	Regrowth	Dynamics	in	Amazonia	and	Australia	

Australia	supports	a	diversity	of	vegetation,	with	the	greatest	expanse	asso
ciated	with	sparse	to	open	tree−grass	savannas.	Temperature,	subtropical,	
and	tropical	closed	forests	occur	towards	the	coast	and	often	at	higher	eleva
tions.	Within	Queensland,	Australia,	vegetation	monitoring	 is	undertaken	
through	the	Statewide	Landcover	And	Trees	Study	(SLATS)	(Danaher	et	al.	
2010)	and	primarily	using	time	series	of	Landsat	sensor	data.	The	extent	of	
woody	vegetation	is	mapped	on	an	annual	basis	using	Landsatderived	foli
age	projective	cover	 (FPC).	The	 type	and	ecological	 importance	of	vegeta
tion	 cleared	 is	 determined	 by	 intersecting	 mapped	 areas	 of	 deforestation	
with	 regional	 ecosystem	 (RE)	 mapping	 of	 vegetation	 types.	 Through	 this	
approach,	 changes	 in	 vegetation	 cover	 are	 tracked	 and	 ameliorative	 mea
sures	taken	where	appropriate.	

While	 SAR	 data	 have	 not	 yet	 been	 used	 for	 operational	 monitoring	 in	
Queensland,	potential	exists	for	refining	maps	of	woody	vegetation	and	forest	
growth	stage,	thereby	increasing	the	reliability	of	estimates	of	deforestation	
and	regenerating	forest	areas.	For	example,	confusion	between	herbaceous	
and	woody	vegetation	occurring	within	Landsat	sensor	data	is	largely	over
come	by	integrating	ALOS	PALSAR	data	because	of	the	lack	of	interaction	
with	the	former	although	confusion	with	rough	ground	can	occur,	particu
larly	with	increasing	amounts	of	surface	moisture.	Integration	of	the	ALOS	
PALSAR	with	Landsat	FPC	data	also	allows	the	detection	of	the	early	stages	
of	 woody	 regrowth,	 which	 typically	 exhibit	 an	 FPC	 	equivalent	 to	 	forest	
(i.e.,	 >12%,	equivalent	to	a	canopy	cover	of	20%)	but	an	Lband	backscatter	
more		characteristic	of	nonforest	(Lucas	et	al.	2006).	Using	such	an	approach,	
the	 dynamics	 of	 regrowth	 can	 be	 tracked,	 including	 the	 progression	 of	
regrowth	through	different	stages.	

15.5.7	 Wider	Use	and	Future	Sensors	

The	studies	outlined	above	have	highlighted	the	benefits	of	using	SAR	data	
for	 monitoring	 deforestation,	 degradation,	 regrowth	 dynamics,	 and	 natural	
disturbances.	In	each	case,	the	benefits	for	better	understanding	the	cycling	
of	carbon	through	landscapes,	conserving	biodiversity,	and	contributing	to	a	
range	of	national	policy	and	international	conventions	are	evident.	However,	in	
many	cases,	such	datasets	have	not	been	effectively	exploited	nor	recognized.	

In	the	future,	a	number	of	SARs	are	planned,	which	are	anticipated	to	pro
vide	significant	advances	in	forest	characterization,	mapping,	and	monitor
ing	at	a	global	scale.	These	include	the	European	Space	Agency	(ESA)	Sentinel	
satellites,	which	are	anticipated	to	provide	interferometric	and	polarimetric	
observations	 at	 Cband	 (two	 satellites).	 The	 ALOS2	 and	 the	 Argentinian	
SAOCOM	satellites	are	expected	to	provide	Lband	SAR	observations	while	
the	ESA	BIOMASS	mission	will	be	the	first	to	provide	Pband	observations,	
specifically	for	the	retrieval	of	forest	biomass.	The	NASA	DESDynI	mission	
is	also	intended	to	provide	a	dedicated	Lband	SAR.	The	challenge	will	be	
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the	 full	 integration	 of	 data	 from	 these	 sensors	 into	 forest	 monitoring	 sys
tems	and	the	use	of	data	acquired	in	different	modes	and	following	different	
acquisition	strategies.	

15.6	 Conclusions	

While	 optical	 remote	 sensing	 data	 are	 the	 workhorse	 of	 many	 forest	
monitoring	systems,	SAR	are	able	to	acquire	data	regardless	of	clouds	and	
haze,	and	are	increasingly	providing	opportunities	to	uniquely	detect	defor
estation	activity	as	well	as	degradation	and	regeneration	in	a	consistent	and	
repetitive	manner.	These	data	can	also	inform	on	the	conditions	imposed	
through	clearance	operations	or	during	subsequent	use	of	the	land.	

The	benefits	of	providing	routine	and	consistent	observations	have	been	
demonstrated	 through	 the	 JERS1	SAR	and	ALOS	PALSAR	and	while	 the	
archives	only	span	over	limited	number	of	years,	comparison	of	these	data	
has	allowed	longterm	trends	in	the	amount	and	type	of	woody	vegetation	to	
be	quantified	in	some	cases.	

While	the	relative	benefits	of	SAR	and	optical	data	have	been	debated	in	
the	remote	sensing	community	for	some	time,	the	integration	of	these	data
sets	 provides	 the	 greatest	 potential	 for	 monitoring	 systems.	 In	 particular,	
SAR	data	can	fill	in	gaps	where	cloud	cover	or	smoke	haze	prevents	observa
tions	from	optical	sensor	data	(for	periods	covering	several	years)	or	can	be	
integrated	to	provide	better	mapping	of,	for	example,	regeneration	stages.	

The	increasing	diversity	of	observation	modes	is	expected	to	enhance	the	
use	 of	 SAR	 into	 the	 future.	 The	 continued	 and	 future	 provision	 of	 global	
single,	 dual,	 and	 fully	 polarimetric	 data	 at	 X,	 C,	 and	 Lbands	 and	 inter
ferometric	capability	together	with	a	greater	understanding	of	the	informa
tion	content	of	these	data	is	anticipated	to	lead	to	increased	use	of	SAR	in	
many	forest	monitoring	activities	across	a	range	of	biomes	and	scales.	The	
key	challenge	is	to	optimize	the	development	and	use	of	these	data	such	that	
they	ultimately	contribute	to	not	only	halting	the	relentless	loss	of	forest	but	
also	restoration	through	better	understanding	of	the	dynamics	of	the	forest	
ecosystems	in	response	to	human	activities.	
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16.1	 Introduction	

Satellites	 in	 polar	 orbits,	 like	 Landsat,	 image	 the	 entire	 planet’s	 surface	
every	day	or	every	couple	of	weeks,	depending	on	the	swath	of	the	satellite	
overpass;	images	with	detailed	spatial	measurements	(1–30	m)	are		usually	
only	available	once	or	twice	a	month—for	example	Landsat	5	and	7	(image	
every	16	days	at	30	m	resolution)—while	coarser	resolution	imagery	(e.g.,	
the	 MODIS	 sensor	 on	 Terra	 at	 250	 m	 or	 the	 SPOT	 satellites’	 Vegetation	
sensor	 at	 1  km)	 are	 provided	 nearly	 daily.	 Because	 the	 	information	 is	
captured	 	digitally,	 computers	 can	 be	 used	 to	 process,	 store,	 analyze,	 and	
distribute	the	data	in	a	systematic	manner.	And	because	the	same	sensor	on	
the	same	platform	is	gathering	images	for	all	points	on	the	planet’s	surface,	
these	measurements	are	globally	 consistent	and	 independent—a	 	synoptic	
record	 of	 earth	 observations	 readymade	 for	 monitoring,	 reporting,	 and	
verification	 systems	 linked	 to	 multilateral	 environmental	 agreements	 as	
well	as	individual	government	policies.	

Forty	years	ago,	the	United	States	of	America	was	the	only	source	of	earth	
observation	 imagery—today	 there	 are	 more	 than	 25	 spacefaring	 nations	
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FIGURE	16.1	
Polar	orbiting	satellites	with	imaging	capability	launched	since	1972.	The	horizontal	bars	show	
period	of	operation.	
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flying	 imaging	 systems.	 In	 1972,	 Landsat	 1	 was	 the	 only	 civilian	 satellite	
capable	of	imaging	Earth	at	a	level	of	spatial	detail	appropriate	for	measur
ing	any	sort	of	quantitative	 changes	 in	 forests;	 today	 there	are	more	 than	
60 satellites	flying	that	can	provide	suitable	imagery	(or	at	least	they	could,	if

they	had	a	suitable	data	acquisition,	archiving,	processing,	access,	and	distri
bution	policy).	Figure	16.1	lists	the	polar	orbiting	imaging	satellites,	in	chron
ological	order	according	to	launch	date	and	shows	period	of	operation.	Earth	
observations	from	space	are	becoming	more	widely	employed	and	increas
ingly	sophisticated.	The	latest	systems	launched,	such	as	the	Franco−Italian	
Pleiades	system	(the	first	of	which	was	launched	December	17,	2011),	combine	
very	high	spatial	resolution	(70	cm)	with	a	highly	maneuverable	platform,	
capable	of	providing	an	image	of	any	point	on	the	surface	(cloud	cover	per
mitting)	within	a	24	h	period.	Concurrent	 to	these	technological	advances	
is	an	increasing	appropriation	of	the	land	surface	in	the	production	of	food,	
fiber,	and	fuel	at	the	global	scale.	Forests	in	particular	are	under	increasing	
pressure	from	humankind.	Earth	observations	are	critical	in	assessing	and	
balancing	the	immediate	economic	drivers	of	forest	change	with	the	equally	
important,	but	less	appreciated	ecosystem	services	forests	provide.	

The	previous	chapters	of	this	compilation	show	that	recent	developments	
in	regional	to	global	monitoring	of	forests	from	earth	observations	have	prof
ited	immensely	from	changes	made	to	data	policies	and	access	(Woodcock	
et	al.	2008).	We	now	have	an	unbroken	record	of	global	observations	stretch
ing	back	over	four	decades,	all	freely	available.	This	chapter	provides	some	
perspectives	on	future	earth	observation	technology	for	monitoring	forests	
at	the	global	scale.	

16.2		 Future	Earth	Observation	Technology	

Monitoring	forest	areas	over	anything	greater	than	local	or	regional	scales	
would	be	a	major	challenge	without	the	use	of	satellite	imagery,	in	particular	
for	large	and	remote	regions.	Satellite	remote	sensing	combined	with	a	set	of	
ground	measurements	for	verification	plays	a	key	role	in	determining	rates	
of	forest	cover	loss	and	gain.	Technical	capabilities	and	statistical	tools	have	
advanced	since	the	early	1990s,	and	operational	forest	monitoring	systems	
at	the	national	level	are	now	a	feasible	goal	for	most	countries	of	the	world.	

The	 use	 of	 medium	 spatial	 resolution	 satellite	 imagery	 for	 historical	
assessment	 of	 deforestation	 has	 been	 boosted	 by	 changes	 to	 the	 policy	
determining	access	and	distribution	of	data	from	the	U.S.	Landsat	archive.	
In	December	2008,	the	U.S.	government	released	the	entire	Landsat	archive	
at	no	charge	(Woodcock	et	al.	2008).	This	open	access	data	policy	means	that	
anyone	interested	in	global	forest	monitoring	now	has	access	to	an	archive	of	
data	spanning	four	decades.	Current	plans	for	the	Landsat	Data	Continuity	
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Mission	(LDCM),	with	a	launch	scheduled	for	early	2013,	and	the	European	
Sentinel2	mission	(Martimort	et	al.	2007),	with	a	 launch	date	of	mid2014, 	
will	both	adopt	global	data	acquisition	strategies	and	will	both	(at	least	at	the	
time	of	writing)	provide	free	and	open	access	to	acquired	imagery.	

LDCM,	to	be	christened	Landsat	8	upon	reaching	orbit,	will	have	a	swath	
width	of	185	km	and	feature	a	15	m	spatial	resolution	panchromatic	band,	nine	
30	m	multispectral	bands	(six	of	which	will	correspond	to	heritage	Landsat	
bandwidths),	and	two	120	m	thermal	bands.	The	16day	revisit	rate	will	match	
that	of	past	Landsat	sensors	but	with	an	increased	acquisition	rate	of	at	least	
400	images	per	24	h	period.	The	open	and	free	data	policy	will	continue.	

The	 Sentinel2	 satellite	 will	 have	 a	 swath	 width	 of	 290	 km	 and	 carry	
onboard	a	multispectral	sensor	having	four	bands	with	a	spatial	resolution	of	
10	m,	five	bands	at	20	m,	and	three	bands	at	60	m.	The	Sentinel2	mission	com
prises	two	identical	satellites	(the	second	has	a	tentative	launch	date	for	2015)	
in	 identical	 orbits,	 but	 spaced	 180°	 apart.	 This	 mission	 configuration	 gives	
a	revisit	time	of	10	days	for	one	satellite	and	5	days	when	both	satellites	are	
operational.	The	Sentinel2	mission	will	include	a	systematic		acquisition	plan	
of	satellite	imagery	over	all	terrestrial	land	areas	of	the	world	between	–56°	
and	+83°	latitude.	The	envisaged	data	policy	will	allow	full	and	open	access	
to	Sentinel2	data,	aiming	for	maximum	availability	of	earth	observation	data	
in	support	of	environmental	and	climate	change	policy	implementation.	

In	 the	 near	 future,	 the	 practical	 utility	 of	 radar	 data	 is	 also	 expected	 to	
be	 enhanced	 from	 better	 data	 access,	 processing,	 and	 scientific	 advances.	
In	particular,	 future	space	missions	will	provide	complementary	Synthetic	
Aperture	Radar	(SAR)	imagery	systems	for	the	monitoring	of	forest	area	and	
biomass.	The	Sentinel1	mission	(Attema	et	al.	2007)	is	a	pair	of	two	Cband	
SAR	sensors,	the	first	is	planned	for	launch	in	2013	to	be	followed	by	a	second	
satellite	a	few	years	later.	This	system	is	designed	to	provide	biweekly	global	
coverage	of	radar	data	at	a	fine	spatial	resolution	(10	m	×	10	m)	with	a	revisit	
time	of	6	days	(a	swath	width	of	240	km).	

The	 finer	 spatial	 resolution	 of	 data	 from	 the	 Sentinel	 satellites	 (from	
10 m ×	10	m)	can	be	expected	to	allow	for	more	precise	forest	area	estimates	
and	 canopy	 cover	 assessments,	 and	 therefore	 more	 reliable	 	statistical	
information	 on	 forest	 area	 change,	 in	 particular	 for	 estimating	 forest	
degradation	and	forest	regrowth.	

16.3	 Perspectives	

The	basic	fact	is	that	natural	resources,	such	as	natural	forests,	are	becom
ing	increasingly	scarce.	There	is	considerably	more	pressure	on	our	natural	
resource	base,	and	establishing	a	balanced	use	of	forest	resources	is	required.	
Do	you	use	a	forest	as	a	carbon	sink?	Do	you	use	it	as	a	protected	area	for	
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biodiversity?	Or	do	you	use	it	for	fuel	wood	or	agroindustrial	development?	
To	make	sensible	decisions	on	the	tradeoffs	between	different	uses,	infor
mation	on	where	different	forest	resources	are,	what	condition	they	are	in,	
and	how	they	are	changing	is	required.	In	the	framework	of	the	UNFCCC	
REDD+	activities,	 the	extension	of	 the	analysis	of	 tropical	deforestation	to	
degradation	and	forest	regrowth	will	be	a	crucial	requirement	(Asner	et	al.	
2009).	There	are	also	strong	incentives	to	reduce	uncertainty	in	the	estima
tion	of	carbon	fluxes	arising	from	deforestation	by	using	better	data	on	forest	
aboveground	biomass	or	carbon	stocks	(Saatchi	et al.	2011,	Baccini	et	al.	2012)	
in	 combination	 with	 improved	 satellitederived	 estimates	 of	 deforestation	
(Harris	et	al.	2012).	

Mature	 forest	monitoring	methods	need	to	be	ported	to	operational	set
tings.	 Monitoring	 systems	 such	 as	 Brazil’s	 PRODES	 deforestation	 map
ping	program	need	to	be	replicated	in	other	countries	where	results	can	be	
directly	incorporated	into	policy	and	governance	settings.	Effective	technol
ogy	 transfer	 of	 mature,	 proven	 methods	 to	 developing	 world	 institutions	
needs	to	be	advocated	and	implemented.	This	can	be	envisaged	as	a	leap
frog	technology	where	agencies	with	little	or	no	past	technical	capacity	may	
advance	in	one	step	to	the	state	of	the	art.	

Researchers	 will	 be	 responsible	 for	 developing	 new	 capabilities	 by	 test
ing	new	data	sets,	processing	methods,	and	thematic	outputs.	Future	satel
lite	 image	technology,	 including	radar	and	optical	 imagery	at	finer	spatial	
resolutions	(10	m	finer)	and	higher	temporal	frequencies,	will	require	both	
improved	 scientific	 approaches,	 but	 also	 advanced	 processing	 systems,	
including	 cloudcomputing	 environments	 (Nemani	 2011).	 The	 ongoing	
methodological	advances	will	narrow	the	gap	between	the	demand	for	more	
accurate	estimation	of	the	global	carbon	budget	and	the	limitations	of	cur
rent	monitoring	approaches.	

The	adoption	of	progressive	data	policies,	such	as	those	of	NASA,	USGS,	
ESA,	 and	 INPE,	 should	 be	 promoted.	 International	 coordination	 between	
space	agencies	and	implementing	institutions	(e.g.,	through	the	Committee	on	
Earth	Observation	Satellites—CEOS—or	the	Group	on	Earth	Observations—	
GEO)	 is	 key	 to	 this	 prospect.	 Such	 international	 cooperation	 will	 ensure	
repeated	coverage	of	the	world’s	forests	with	varying	observation	types,	all	
with	easy	access	at	low	or	no	cost	(GEO	2010).	Progress	will	be	measured	by	
how	quickly	the	methods	reported	here	are	made	obsolete.	
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Ecological	monitoring	processes	
atmospheric	chemistry,	7	
climate	change,	6–7	
fire,	7	

Ecosystem	services	
distal,	9	
downstream,	8–9	
proximal,	8	

eForest	platform,	199–200	
Enhanced	vegetation	index	(EVI),	280–281	
Environmental	nongovernmental	

organizations,	130	
EROS,	see	Earth	Resources	Observation	

and	Science	(EROS)	
European	Russia	forest	cover	change	

analysis,	139–142	
Evergreen	tropical	forests,	156	
EVI,	see	Enhanced	vegetation	index	(EVI)	

F	

FAO,	see	Food	and	Agriculture	
Organization	(FAO)	

FFMIS,	see	Forest	Fire	Monitoring	
Information	System	(FFMIS)	

FIA,	see	Forest	Inventory	and	
Analysis (FIA)	

Field	characterization,	forest	
degradation	

Brazilian	Amazon,	173–174	
degraded	forests,	174–177	
ecological	impacts,	177–178	

Fine	spatial	resolution	imagery,	52	
Fire	

ecological	monitoring	processes,	7	
forest,	172	
monitoring	

LANDFIRE,	217–218	
trends	in	burn	severity,	216–217	

Fire	Information	for	Resource	
Management	System	
(FIRMS),	248–249	

FIRMS,	see	Fire	Information	for	
Resource	Management	
System	(FIRMS)	

Food	and	Agriculture	Organization	
(FAO),	129	

Forest(s)	
ecosystem	services	

distal,	9	
downstream,	8–9	
proximal,	8	

fires,	172	
fragmentation,	172	
global	carbon	cycle,	16	
inventories,	19–20	
as	land	use,	118–119	
monitoring	processes	

ecological	processes,	6–7	
land	use	processes,	4–6	
managing	capability,	10	

normalization,	116	
Forest	cover	change,	synthetic	

aperture	radar	
deforestation,	281–283	
natural	disturbances,	283–285	
secondary	forests,	284,	286	

Forest	cover	conversion	
CCAP,	219	
NLCD,	218–219	
Trends	dataset,	218	

Forest	cover	loss	
definition	of,	95–96	
global	assessment	of,	95	
MODISindicated	vs.	gross,	

100–101	
Forest	cover	loss	monitoring	

in	DRC,	142–145	
in	European	Russia,	139–142	

Forest	cover	monitoring,	41–42	
Forest	degradation	

in	Borneo,	289–290	
carbon	emissions	from	land	use	

change,	24	
definition,	145,	171	
field	characterization	

Brazilian	Amazon,	173–174	
degraded	forests,	174–177	
ecological	impacts,	177–178	

globalscale	monitoring,	145–148	
land	use	transition,	5	
nationalscale	monitoring,	

145–148	
and	natural	disturbances,	283–285	
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Forest	degradation	(Continued)	
reducing	emissions	from	

deforestation	and	
degradation,	171–172	

remote	sensing	
classification,	185–188	
mapping	selective	logging,	179–185	

Forest	disturbance	
Landsat	Ecosystem	Disturbance	

Adaptive	Processing	System,	
213–216	

North	American	Forest	Dynamics,	
214–216	

Forest	dynamics	
conversion	of	forest	cover		

CCAP,	219		
NLCD,	218–219		
Trends	dataset,	218		

ecological	impacts	of	climate		
change,	223–224		

fire	monitoring		
LANDFIRE,	217–218		
monitoring	trends	in	burn		

severity,	216–217	
forest	disturbance		

LEDAPS,	213–216		
NAFD,	214–216		

in	global	context,	211–213	
hypertemporal	and	near	realtime	

change	detection,	222–223	
Landsat	with	biomass,	223	
operational	monitoring,	221–222	
synthesis	of,	220–221	

Forest	extent	and	change	analysis	
geographic	stratification,	235	
multitemporal	model,	236–237	
training	and	validation	data,	

235–236	
Forest	Fire	Monitoring	Information	

System	(FFMIS),	51,	247–249	
Forest	Inventory	and	Analysis	(FIA),	

50,	212,	221	
Forest	Resources	Assessment	(FRA),	44,	

67,	75–80,	83–84,	112	
Forest	Survey	of	India	(FSI),	49	
FRA,	see	Forest	Resources	Assessment	

(FRA)	
FrancoItalian	Pleiades	system,	40–41	
FSI,	see	Forest	Survey	of	India	(FSI)	

G	

GeoCover,	43,	57,	146	
Generalized	regression	estimator	

(GRE),	73	
Geographic	stratification,	235	
Global	carbon	cycle	

definition,	17	
in	forests,	16	

Global	forest	cover	loss	mapping,	94–96	
Global	forest	cover	mapping,	94	
Global	Land	Survey	(GLS),	42,	114	
Globalscale	forest	degradation	

monitoring,	145–148	
Global	systematic	sample,	113–114	
Global	Visualization	(GloVis)	Viewer,	61	
GLS,	see	Global	Land	Survey	(GLS)	
GoogleEarth,	138	
GRE,	see	Generalized	regression	

estimator	(GRE)	
Gross	forest	cover	loss	

annual	rate	of,	125	
vs.	MODISindicated	forest	cover	

loss,	100–101	

H	

Horvitz–Thompson	estimator,	
72–73, 124	

Hot	spots	
attributes,	249	
generation	of,	250	
polygon,	250	
retrieval	of,	250	

HRBA	product	
burned	area	distribution,	263	
burned	area	polygons,	261	
correlation,	264–265	
description	of,	248	
Landsat	sensor,	259–261	

I	

IFL,	see	Intact	forest	landscape	(IFL)	
Image	calibration,	233–234	
Image	segmentation,	117	

thresholds,	160	
Image	time	series	analysis,	136–137	
Inclusion	probability,	70	
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Indirect	anthropogenic	effects,	24	
Indirect	effect	of	deforestation,	24	
Inference	

definition	of,	71		
designbased	inference,	71–72		
modelbased	inference,	71–72		

INPE,		see	Brazilian	National	Space	
Agency	(INPE)	

Intact	forest	landscape	(IFL),	145–148	
Integrated	burned	area	assessment,		

261–262	
Interferometry,	276	
Interpretation	accuracy,	52	

J	

Japan	Aerospace	Exploration	Agency		
(JAXA),	291	

JAXA,		see	Japan	Aerospace	Exploration	
Agency	(JAXA)	

K	

knearestneighbor	(kNN)	classifier,	202	
Kyoto	Protocol,	230	

L	

Land	cover	
categories,	118	
definition	of,	118	
mapping	conversion,	121–122	
transition	matrix,	122–123	
visual	control	and	refinement,		

120–121	
Land	cover	change,	21	
LANDFIRE,	217–218,	222	
Landsat	

data	access,	61		
data	description,	58–61		
data	geometric	rectification,			

232–233	
satellite	imagery,	113	

Landsat	1,	40–41	
Landsat	data	processing	

automated,	134	
data	pool	observations,	136–138	
image	processing	and	

resampling, 134	

image	time	series	analysis,	136–137	
MODIS	normalization,	136	
multitemporal	metrics,	137–138	
quality	assessment,	132,	134–135	
timesequential	image	

composites, 137	
topofatmosphere	(TOA)	

reflectance,	134,	136	
Landsatderived	texture	

measures, 234	
Landsat	Ecosystem	Disturbance	

Adaptive	Processing	System	
(LEDAPS),	213–216	

Landsat	Product	Generation	System	
(LPGS),	59	

Landsat	satellite	imagery,	113	
Landscape	Change	Monitoring	System	

(LCMS),	221–222	
Land	use	

categories,	118	
definition,	21,	118	
forest,	118–119	
mapping	conversion,	121–122	
monitoring	processes,	4–6	

Land	use	and	land	cover	change	
(LULCC)	

carbon	density,	22–23	
carbon	emissions	from,	23–24	
definition	of,	21	
sources	and	sinks	of	carbon,	24–26	

Land	use	change	
boreal	zone	forests,	25–26	
temperate	zone	forests,	25–26	
tropical	forests,	25	

LCMS,	see	Landscape	Change	
Monitoring	System	(LCMS)	

LEDAPS,	see	Landsat	Ecosystem	
Disturbance	Adaptive	
Processing	System	(LEDAPS)	

Linear	spectral	mixture	model	
(LSMM),	160	

Local	variance	estimation,	124	
Logged	forests,	175	
LPGS,	see	Landsat	Product	Generation	

System	(LPGS)	
LSMM,	see	Linear	spectral	mixture	

model	(LSMM)	
LULCC,	see	Land	use	and	land	cover	

change	(LULCC)	
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M	

Managing	logging	(ML)	forest,	175	
Manual	mapping	products,	238	
Mapping	selective	logging	

goals,	179		
remote	sensing	and	GIS	with,		

182–183	
spectral	mixture	analysis,	183–185	
visual	interpretation	method,	

179, 182	
Mature	forest	monitoring	methods,	303	
Measurement	bias,	85	
Measurement	error	

bias,	85	
variability,	86	

Measurement	variability,	86	
Metrics	

MODIS,	96		
multitemporal,	137–138		

Modelassisted	estimators,	see

Generalized	regression	
estimator	(GRE)	

Modelbased	inference,	71–72	
Moderate	resolution	imaging	

spectroradiometer	(MODIS)	
vs.	advanced	very	high	resolution	

radiometer,	93	
bagging	procedure,	97	
commission	errors,	105	
data	access,	61	
data	description,	58	
decision	tree	algorithm,	96–97	
global	forest	change,	94,	106	
global	forest	cover	loss	mapping,	

94–96	
global	forest	cover	mapping,	94	
metrics,	96	
nested	approach,	48–49	
walltowall	coverage	analysis,	

49–51	
MODIS,	see	Moderate	resolution	

imaging	spectroradiometer	
(MODIS)	

MODISindicated	forest	cover	loss	
biome	scale,	104	
continental	scale,	104	
global	distribution	of,	101–103	
vs.	gross	forest	cover	loss,	100–101	

MODIS	sensor	
burned	area	mapping	

detection	of	AFBA	product,	249–251	
detection	of	SBRA	product,	252–259	

global	land	mapping	and	
monitoring	capabilities,	93–94	

Monitoring	trends	in	burn	severity		
(MTBS),	216–217	

MTBS,		see	Monitoring	trends	in	burn		
severity	(MTBS)	

Multidate	segmentation,	117	
Multitemporal	classifications,	120–121,		

202	
land	cover	approach,	236–237	

Multitemporal	metrics,	137–138	

N	

NACP,		see	North	American	Carbon	
Program	(NACP)	

NAFD,		see	North	American	Forest	
Dynamics	(NAFD)	

National	Carbon	Accounting	System		
(NCAS),	50,	230	

National	Carbon	Accounting	System
Land	Cover	Change	Program	
(NCASLCCP),	50–51,	230,	232	

National	Forest	Inventories	(NFIs),	130,		
199–200	

National	Interagency	Fire	Center	
(NIFC),	216	

National	Land	Cover	Database		
(NLCD),	218–219	

Nationalscale	forest	cover	loss		
monitoring		

approach,	132		
European	Russia	forest	cover		

change	analysis,	139–142	
examples	of,	134	
forest	cover	monitoring	in	DRC,	

142–145	
Nationalscale	forest	degradation	

monitoring,	145–148	
Natural	disturbance	regimes,	29–30	
Natural	resource	management,	238–240	
NBR,		see	Normalized	burn	ratio	(NBR)	
NCAS,		see	National	Carbon	Accounting	

System	(NCAS)	
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NCASLCCP,	see	National	Carbon	
Accounting	SystemLand	
Cover	Change	Program	
(NCASLCCP)	

NDFI,	see	Normalized	difference	
fraction	index	(NDFI)	

Net	land	use	amplifier	effect,	24	
NFIs,	see	National	Forest	Inventories	

(NFIs)	
NIFC,	see	National	Interagency	Fire	

Center	(NIFC)	
Nitrogen	deposition,	7,	29	
NLCD,	see	National	Land	Cover	

Database	(NLCD)	
Nonmechanized	logging	(NML)	

forest,	175	
Nonparametric	supervised	

classification	algorithm,	201	
Nonstratified	systematic	sampling,	114	
Normalization	algorithm,	see	Forest	

normalization	
Normalized	burn	ratio	(NBR),	217	
Normalized	difference	fraction	index	

(NDFI),	184	
North	American	Carbon	Program	

(NACP),	213	
North	American	Forest	Dynamics	

(NAFD),	214–216	

O	

Onestage	cluster	sampling,	69	

P	

PanEuropean	forest	maps	
applications,	204–205	
data	preprocessing	methods,	200–201	
future	perspectives,	205–206	
mapping	approaches,	201–203	
production	materials	used	for,	

198–199	
reference	data	materials,	199–200	
training	data	materials,	199	

Parameter,	definition	of,	67	
Pixel	extraction	tool,	200	
Population,	67	
Primary	sampling	unit	(PSU),	69	

Probability	sample,	70	
PRODES	methodology,	158–164	
PRODES	project,	50	
Proximal	ecosystem	services,	8	
PSU,		see	Primary	sampling	unit	(PSU)	

R	

Radar	imagery,	forest	monitoring,	51	
Rapid	burned	area	mapping	

burned	area	polygons,	261	
correlation,	264	
description	of,	248	
detection	from	MODIS	sensor,	

249–251	
Rectilinear	sampling	grid	system,	113	
REDD+,		see	Reducing	emissions	from	

deforestation	and	degradation		
(REDD+)	

Reducing	emissions	from	deforestation	
and	degradation	(REDD+)	

for	forest	degradation,	171–172	
forest	monitoring,	188–190	

Remote	sensing	
advantages	of,	65–66	
samplingbased	forest	monitoring	

applications	and	evaluative	
studies,	83–85	

designbased	inference,	71–72	
desirable	criteria	for,	73–74,	84–85	
Horvitz–Thompson	

estimator,	 72–73	
inclusion	probability,	70	
longterm	forest	monitoring,	

83, 86–87	
modelbased	inference,	71–72	
onestage	cluster	sampling,	69	
probability	sample,	70	
sampling	application	studies,		

75–77	
sampling	evaluation	studies,		

78–83	
simple	random	selection,	70	
stratification,	68–69	
stratified	random	sampling,	70	
systematic	selection	protocol,	70	
twophase	sampling,	88	
twostage	cluster	sampling,	69	
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Remote	sensingbased	products,	196		
Remote	sensing	forest	degradation	

classification,	185–188	
mapping	selective	logging	

combining	with	GIS,	182–183		
goals,	179		
spectral	mixture	analysis,		

183–185	
visual	interpretation	method,	

179,	182		
Repeat	pass	interferometry,	276		
Residual	terrestrial	sink		

indirect	and	natural	effects,	29–30		
management	effects,	27–29		
possibility	of	changes,	30		
sources	and	sinks	of	carbon,	30		

Response	design	strategy,	68		
Reverb	tool,	61		
RMSE,	see	Root	mean	square		

error (RMSE)	
Root	mean	square	error	(RMSE),	

263–265	
Russian	Academy	of	Sciences,	247–248	

S	

Sample,	definition	of,	67		
Sample	mapping,	131		
Sample	space,	71		
Samplingbased	forest	monitoring		

applications	and	evaluative	studies,	
83–85		

designbased	inference,	71–72		
desirable	criteria	for,	73–74,	84–85		
Horvitz–Thompson	estimator,	72–73		
inclusion	probability,	70		
longterm	forest	monitoring,		

83, 86–87		
modelbased	inference,	71–72		
onestage	cluster	sampling,	69		
probability	sample,	70		
sampling	application	studies,	75–77		
sampling	evaluation	studies,	78–83		
simple	random	selection,	70		
stratification,	68–69		
stratified	random	sampling,	70		
systematic	selection	protocol,	70		
twophase	sampling,	88		
twostage	cluster	sampling,	69		

Sampling	concepts		
parameter,	67		
sample,	67		
universe,	67		

Sampling	design	strategy,	68		
Sampling	scheme,	114		
Sampling	strategies		

analysis	protocol,	68		
implementation,	113–114		
response	design,	68		
sampling	design,	68		
satellitebased	forest		

monitoring, 131		
SAR,	see	Synthetic	aperture		

radar (SAR)		
Satellitebased	forest	monitoring		

of	forest	clearing,	94		
sampling	strategies	for,	131		

Satellite	imagery		
acquisition	of,	114–115		
Landsat,	113		
preprocessing	of,	115–116		
segmentation,	117–118		

supervised	classification,	119–120	
Savannatype	ecosystem,	156–157	
SBRA	product	

annual	estimates	of	burned	
areas,	263		

burned	area	polygons,	261		
correlation,	265		
description	of,	248		
detection	from	MODIS	sensor,		

252–259	
root	mean	square	error,	265		

Scale	parameter,	117		
Secondary	forests,	284,	286		
Secondary	sampling	unit	(SSU),	69		
Segmented	satellite	imagery,		

117–118	
supervised	classification,	119–120	

Selective	logging	forest	
process	for	forest	degradation,	171–172	
remote	sensing	approach	

combining	with	GIS,	182–183		
goals,	179		
spectral	mixture	analysis,	183–185		
visual	interpretation	method,		

179,	182		
types	of,	174–175		
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Semideciduous	tropical	forests,	156		
Semievergreen	tropical	forests,	156		
Sentinel1	mission,	302		
Sentinel2	mission,	302		
Separate	regression	estimator,	82		
Shortwavevegetationindex	(SWVI),		

255–257		
Siberia,	Boreal	forests,	291–292		
Similarity	threshold,	160		
Simple	random	selection,	70		
Single	pass	interferometry,	276		
SMA,	see	Spectral	mixture	analysis		

(SMA)	
Sparse	cover	presence/absence	

classification,	239–240	
Spectral	mixture	analysis	(SMA),	

183–185	
Spectral	vegetation	index,	see	Short

wavevegetationindex	
(SWVI)	

SSU,	see	Secondary	sampling	
unit (SSU)		

Static	forest	cover	maps,	46		
Statistical	estimation,	123–124		
Stratification		

definition	of,	68		
geographic,	235		
uses	of,	68–69		

Stratified	random	sampling,	70		
Stratified	sampling,	113–114		
Stricto
sensu,
see
Cerrado

Supervised	classification,	201		
SWVI,	see	Shortwavevegetationindex		

(SWVI)		
Synthetic	aperture	radar	(SAR)		

benefits	of,	274		
changes	in	forest	cover		

deforestation,	281–283		
natural	disturbances,	283–285		
secondary	forests,	284,	286		

development		
observation	strategies,		

278–279	
optical	data,	279–281	
sensors	for	monitoring,	

277–278		
synergistic	uses,	279–281		

forest	monitoring		
in	Amazonia,	292–293		

in	Australia,	292–293		
boreal	forests,	291		
degradation	in	Borneo,	289–290		
rapid	detection,	291		
Xingu	watershed,	Brazil,			

287–289	
suitability		

forest	structural	diversity,	274		
interferometry,	276		
radar	modes,	274		
SAR	frequencies,	275–276		

Systematic	acquisition	strategy,	279		
Systematic	forest	inventories,	19		
Systematic	nonstratified			

sampling, 114		
Systematic	observation	strategy,		

278–279		
Systematic	sample	scheme,	114		
Systematic	sampling	design,		

70, 80,	84–85		
Systematic	selection	protocol,	70		

T	

Temperate	zone	forests,	25–26		
Temporal	datasets,	284		
Terrestrial	carbon		

losses	and	gains	of,	33–34	
measured	from	space,	31–33	

Timesequential	image	composites,	
137–138	

Topofatmosphere	(TOA)	reflectance,	
134,	136		

Transition	matrix,	land	cover,	122–123		
Tree	cover	(TC),	118,	120		
Trends	dataset,	218		
Trimble,	117		
Tropical	forests,	land	use	change,	25		
Twophase	sampling,	88		
Twostage	cluster	sampling,	69		

U	

UF,		see	Undisturbed	forest	(UF)		
Undisturbed	forest	(UF),	175		
UNFCCC,		see	United	Nations			

Framework	Convention		
on	Climate	Change		
(UNFCCC)	
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United	Nations	Framework	Convention		
on	Climate	Change		
(UNFCCC),	130,	188,	212,	230		

Universe,	sampling	concept,	67		
Unsupervised	classification,	160–161		
U.S.	Geological	Survey	(USGS),		

42, 56, 131		
USGS,	see	U.S.	Geological	Survey		

(USGS)		
Usual	variance	estimation,	124		

V		

Variability,	measurement,	86		
Vegetation,	156–157		
VIIRS,	see	Visible	infrared	imager		

radiometer	suite	(VIIRS)	

Index


Visible	infrared	imager	radiometer		
suite	(VIIRS),	106		

Visualization	tool,	multitemporal		
classifications,	121		

W	

Walltowall	mapping	strategy,	131		
Watershed	protection,	8		
Webenabled	Landsat	dataset	(WELD),		

222–223	
WELD,	see	Webenabled	Landsat	

dataset	(WELD)	

X		

Xingu	watershed,	Brazil,	287–289	
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