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Abstract

The aims of this chapter are devoted to investigate a system of fractional-order differential
equations (FDEs) with multipoint boundary conditions. Necessary and sufficient condi-
tions are investigated for at most one solution to the proposed problem. Also, results for
the existence of at least one or two positive solutions are developed by using a fixed-point
theorem of concave-type operator for the considered problem. Further, we extend the
conditions for more than two solutions and established some adequate conditions for
multiplicity results to the proposed problem. Also, a result devoted to Hyers-Ulam stabil-
ity is discussed. Suitable examples are provided to verify the established results.
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1. Introduction

Arbitrary-order differential equations are the excellent tools in the description of many

phenomena and process in different fields of science, technology, and engineering (see [1,

2]). Therefore, considerable attention has been paid to the subject of differential equations of

arbitrary order (see [3–5] and the references therein). The area devoted to the existence of

positive solutions to fractional differential equations and their system especially coupled

systems was greatly studied by many authors (for details see [6–9]). In all these articles, the

concerned results were obtained by using classical fixed point theorems like Banach contrac-

tion principle, Leray-Schauder fixed point theorem, and fixed point theorems of cone type.

The aforesaid area has been very well explored for both ordinary- and arbitrary-order

differential equations. Existence and uniqueness results for nonlinear and linear, classical,
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as well as arbitrary-order differential equations have been investigated in many papers (see

few of them as [10–13]).

Another warm area of research in the theory of fractional-order differential equations (FDEs) is

devoted to the multiplicity of solutions. Plenty of research articles are available on this topic in

literature. In [14], the author studied the given boundary value problem (BVP) for existence of

multiple solutions:

D
θ1p tð Þ þH t; p tð Þð Þ ¼ 0, t∈ I, θ1 ∈ 1; 2ð �,

p tð Þ t¼0 ¼ p tð Þj jt¼1 ¼ 0:

(

where D is the Riemann-Liouville derivative of non-integer order and I ¼ 0; 1½ �. In same line,

Kaufmann and Mboumi [15] studied the given boundary value problem of fractional differen-

tial equations for multiplicity of positive solutions:

D
θ1p tð Þ þ ϕ tð ÞH t; p tð Þð Þ ¼ 0, t∈ I, θ1 ∈ 1; 2ð �,

p tð Þ t¼0 ¼ p
0
tð Þ

�

�

�

�

t¼1
¼ 0,

(

where D is the Riemann-Liouville derivative and ϕ∈C I;Rð Þ, H∈C I� R;Rð Þ:

In the last few decades, the theory devoted to the multiplicity of solutions is very well

extended to coupled systems of nonlinear FDEs, and we refer to few papers in [16–18]. Wang

et al. [19] established some conditions under which the given system of three point BVP

D
θ1p tð Þ ¼ H1 t; q tð Þð Þ; t∈ I,

D
θ2q tð Þ ¼ H2 t; p tð Þð Þ; t∈ I,

p tð Þt¼0 ¼ 0; p tð Þt¼1 ¼ μp tð Þ
�

�

t¼ξ
; q tð Þ t¼0 ¼ 0; q tð Þt¼1 ¼ νq tð Þ

�

�

�

�

t¼ξ
,
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:

has a solution, where θ1, θ2 ∈ 1; 2ð � and μ, ν∈ I, ξ∈ 0; 1ð Þ, Hi : 0; 1½ � � R ! R for i ¼ 1, 2 are

nonlinear functions.

In the last few decades, another important aspect devoted to stability analysis of FDEs with

initial/boundary conditions has been given much attention. This is because stability is very

important from the numerical and optimization point of view. Various forms of stabilities were

studied for the aforesaid FDEs including exponential, Mittag-Leffler, and Lyapunov stability.

Recently, Hyers-Ulam stability has given more attention. This concept was initially introduced

by Ulam and then by Hyers (for details see [20–22]). Now, many articles have been written on

this concept (see [23–27]). So far, the aforementioned stability has not yet well studied for

multipoint BVPs of FDEs. Motivated by the aforesaid discussion, we propose the following

coupled system of four-point BVP provided as

D
θ1p tð Þ ¼ H1 t; p tð Þ; q tð Þð Þ; t∈ I; θ1 ∈ m� 1;mð �,

D
θ2q tð Þ ¼ H2 t; p tð Þ; q tð Þð Þ; t∈ I; θ2 ∈ m� 1;mð �,

p jð Þ tð Þt¼0 ¼ q jð Þ tð Þ
�

�

t¼0
¼ 0, p tð Þ t¼1 ¼ p tð Þj jt¼η, q tð Þ t¼1 ¼ q tð Þj jt¼ξ:

8

>

>

>

<

>

>

>

:

(1)
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where j ¼ 0; 1; 2,⋯m� 2, m ≥ 3, I ¼ 0; 1½ �, η, ξ∈ 0; 1ð Þ, H1,H2 : 0; 1½ � � 0f g∪Rþ � 0f g∪Rþ !

0f g∪Rþ are continuous functions, andD
θ1 , D

θ2 stand for Riemann-Liouville fractional derivative

of order θ1,θ2 in sequel. We obtain necessary and sufficient conditions for the existence of solution

to system (1) by using another type of fixed point result based on a concave-type operator with

increasing or decreasing property. The idea then extends to form some conditions which ensure

multiplicity of solutions to the considered problem. Also, we discuss some results about the Hyers-

Ulam stability for the considered problem. Further by providing examples, we illustrate the

established results.

2. Preliminaries

In the current section, we review few fundamental lemmas and results found in [2, 4, 6, 28, 29].

Definition 2.1. Arbitrary-order integral of function ψ : 0;∞ð Þ ! R is recalled as

I
θ1ψ tð Þ ¼

1

Γ θ1ð Þ

ðt

0

t� sð Þθ1�1ψ sð Þds,

where θ1 > 0 is a real number and also the integral is pointwise defined on R
þ

Definition 2.2. Arbitrary-order derivative in Riemann-Liouville sense for a function ψ∈ 0;∞ð Þ;Rð Þ

is given by

D
θ1ψ tð Þ ¼

d

dt

� �m ðt

0

t� sð Þm�θ1�1

Γ m� θ1ð Þ
ψ sð Þds,θ1 > 0,where m ¼ θ1½ � þ 1:

Lemma 2.3. [16] Let θ1 > 0, then for arbitrary Cj ∈R, j ¼ 1, 2,…, m, m ¼ θ1½ � þ 1, and the

solution of

D
θ1ψ tð Þ ¼ f tð Þ

is provided by

ψ tð Þ ¼ I
θ1 f tð Þ þ C1t

θ1�1 þ C2t
θ1�2 þ…þ Cmt

θ1�m
:

Definition 2.4. [17, 28] Consider a Banach space E with a closed set C⊂E. Then, C is said to be

partially ordered if p⪯q such that q� p∈C: Further, C is said to be a cone if it holds the given

conditions:

1. p∈C and for a real constant κ ≥ 0 the relation κp∈C holds.

2. p and �p∈C yield that 0∈C, where 0 is zero element of Banach space E
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Definition 2.5. [17, 28] A closed and convex set C of E is said to be a normal cone if it obeys the given

properties:

1. For 0⪯p⪯q∈E, there exists β > 0, such that pk k
E
≤ β qk k

E
;

2. p � q, for all p, q∈E yields that there exist constants a, b > 0 such that ap⪯q⪯bq:

Remark 2.6. As � is an equivalence relation, therefore defines a set Cf ¼ p∈E : p � ff g for f ∈C.

Obviously, one can derive that Cf ⊂C for f ≻ 0:

Definition 2.7. The operator S : C ! C is said to be λ concave for every θ,λ∈ 0; 1ð Þ, p∈C, if and

only if S λpð Þ⪰θλ
Sp:

Definition 2.8. The operator S : C ! C is said to be to be increasing if p, q∈C, p⪯q gives that

Sp⪯Sq:

Lemma 2.9. [17, 28] Assume that S : C ! C is increasing λ�concave operator for a normal cone C

produced by Banach space E, such that there exists p≻ 0 with Sf ∈Cf . Then, S has a unique fixed point

p∈Cf

Theorem 2.10. [30] Let E be a Banach space with C⊆B, which is closed and convex. Let E be a

relatively open subset of C with 0∈ E and S : E ! C be a continuous and compact operator. Then.

1. The operator S has a fixed point in E,

2. There exist w∈ ∂ℰ and λ∈ 0; 1ð Þ with w ¼ λSw:

Lemma 2.11. [30] For a Banach space E together with a cone C, there exist two relatively open subsets

A1 and A2 of E such that 0∈A1 ⊂A1 ⊂A2. Moreover, for a completely continuous operator

S : C ∩ A2\A1

� �

! C, one of the given conditions holds:

1. ∥Sp∥ ≤ ∥p∥ for all p∈C ∩ ∂A1; ∥Sp∥ ≥ ∥p∥, for all p∈C ∩ ∂A2;

2. ∥Sp∥ ≥ ∥p∥ for all p∈C ∩ ∂A1; ∥Sp∥ ≤ ∥p∥, for all p∈C ∩ ∂A2

Then, S has at least one fixed point in C ∩ A2\A1

� �

:

3. Main results

Theorem 3.1. Let φ∈C 0; 1½ �;Rð Þ, η∈ 0; 1ð Þ and λ1 ¼ 1� ηθ1�1 < 1, and then the unique solution

to BVP of linear FDE

D
θ1p tð Þ ¼ φ tð Þ, t∈ I, θ1 ∈ m� 1;mð �,

p jð Þ tð Þt¼0 ¼ 0, p tð Þ t¼1 ¼ p tð Þj jt¼η, j ¼ 0; 1; 2,⋯m� 2, m ≥ 3,

(

(2)

is given by

p tð Þ ¼

ð1

0

G t; sð Þφ sð Þds, (3)
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where G t; sð Þ is the Green’s function defined by

G t; sð Þ ¼
1

Γ θ1ð Þ

1

λ1
� t 1� sð Þ½ �θ1�1 þ t η� sð Þ½ �θ1�1
h i

þ t� sð Þθ1�1, 0 ≤ s ≤ t ≤ η ≤ 1,

1

λ1
� t 1� sð Þ½ �θ1�1 þ t η� sð Þ½ �θ1�1
h i

, 0 ≤ t ≤ s ≤ η ≤ 1,

�
1

λ1
t 1� sð Þ½ �θ1�1 þ t� sð Þθ1�1, 0 ≤ η ≤ s ≤ t ≤ 1,

�
1

λ1
t 1� sð Þ½ �θ1�1, 0 ≤ η ≤ t ≤ s ≤ 1:

8
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>
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<

>

>
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:

(4)

Proof. In view of Lemma 2.3, we may write Eq. (2) as

p tð Þ ¼ I
θ1φ tð Þ þ C1t

θ1�1 þ C2t
θ1�2 þ…þ Cmt

θ1�m
: (5)

In view of conditions p jð Þ tð Þt¼0 ¼ 0, j ¼ 0, 1,…m� 2, m ≥ 3, , Eq. (5) suffers from singularity;

therefore, we have C2 ¼ C3 ¼ … ¼ Cn ¼ 0: Hence, Eq. (5) becomes

p tð Þ ¼ I
θ1φ tð Þ þ C1t

θ1�1
: (6)

Applying boundary condition p tð Þ t¼1 ¼ p tð Þj jt¼η and d ¼ 1� ηθ1 in Eq. (6), one has

p tð Þ ¼ I
θ1φ tð Þ þ

tθ1�1

λ1
I
θ1φ ηð Þ � I

θ1φ 1ð Þ
� �

p tð Þ ¼
Ð 1
0 G t; sð Þφ sð Þds:

(7)

where G t; sð Þ is Green’s function given in Eq. (4).

In view of Theorem 3.1 and using λ1 ¼ 1� ηθ1�1, λ2 ¼ 1� ξθ2�1, the corresponding coupled

system of integral equations to the proposed system (1) is given as

p tð Þ ¼
Ð 1
0 G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds,

q tð Þ ¼
Ð 1
0 G2 t; sð ÞH2 s; p sð Þ; q sð Þð Þds,

8

<

:

(8)

whereG1 t; sð Þ,G2 t; sð Þ are Green’s functions, which can be similarly computed like in Theorem

3.1. Further, they are continuous on I� I and satisfy the following properties:

i. maxt∈ I∣G1 t; sð Þ∣ ≤ λ1þ1ð Þ 1�sð Þθ1�1

λ1
¼ G1 1; sð Þ, for all s∈ I,

maxt∈ I∣G1 t; sð Þ∣ ≤ λ2þ1ð Þ 1�sð Þθ2�1

λ2
¼ G2 1; sð Þ, for all s∈ I;

ii. mint∈ θ;1�θ½ �G1 t; sð Þ ≥
γ1 sð Þ
2 G 1; sð Þ for every θ s∈ 0; 1ð Þ;

mint∈ θ;1�θ½ �G2 t; sð Þ ≥
γ2 sð Þ
2 G 1; sð Þ for every θ s∈ 0; 1ð Þ;

Further, taking that γ ¼ inf γ1 ¼ θθ1�1
;γ2 ¼ θθ2�1

	 


:
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Let us define a Banach space by E ¼ p tð Þjp∈C Ið Þf g endowed with a norm pk k
E
¼ maxt∈ I∣p tð Þ∣.

Further, in the norm for the product space, we define it as p; qð Þk k
E�E

¼ pk k
E
þ qk k

E
. Clearly,

E� E; �k k
E�E

� �

is a Banach space. Onward, we define the cone C⊂E� E by

C ¼ p; qð Þ∈E� E : min
t∈ I

p tð Þ þ q tð Þ½ � ≥γ p; qð Þk k
E�E

� �

:

Consider an operator S : E� E ! E� E defined by

S p; qð Þ tð Þ ¼

ð

1

0

G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds;

ð

1

0

G2ðt; sÞH2ðs; p sð Þ; q sð ÞÞds

0

@

1

A

:

¼ S1p tð Þ;S2q tð Þð Þ:

(9)

It is to be noted that the fixed points of the operator S correspond with the solution of the

system (1) under consideration.

Theorem 3.2. Under the continuity of H1,H2 : I� R
þ
∪ 0f g � R

þ
∪ 0f g ! R

þ 0f g, the operator S

satisfies that S Cð Þ⊂C and S : C ! C is completely continuous.

Proof. To derive S Cð Þ⊂C, let p; qð Þ∈C, and then we have

S1 p tð Þ; q tð Þð Þ ¼

ð

1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≥γ1

ð

1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (10)

Also, we get

S1 p tð Þ; q tð Þð Þ ¼

ð

1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ≤

ð

1

0

G1 1; sð ÞH1 s; p sð Þð Þ, q sð Þds: (11)

Thus, from Eqs. (10) and (11), we have

S1 p tð Þ; q tð Þð Þ ≥γ∥S1 p; qð Þ∥E, for every t∈ I:

Similarly, we can obtain

S2 p tð Þ; q tð Þð Þ ≥γ∥S2 p; qð Þ∥E, for every t∈ I:

Thus S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ ≥γ∥ p; qð Þ∥E�E, forall t∈ I,

min
t∈ I

S1 p tð Þ; q tð Þð Þ þ S2 p tð Þ; q tð Þð Þ½ � ≥γ∥ p; qð Þ∥E�E:

Hence, we have S p; qð Þ∈C ) S Cð Þ⊂C:
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Let us consider

max
t∈ I

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤M1, max
t∈ I

∣H2 t; p tð Þ; q tð Þð Þ∣ ≤M2:

Then, we consider t1 < t2 ∈ I, such that

∣S1 p; qð Þ t2ð Þ � S1 p; qð Þ t1ð Þ∣ ¼

ð1

0

Gðt2; sÞ �G1 t1; sð Þð ÞH1ðs; p sð Þ; q sð ÞÞds

�

�

�

�

�

�

�

�

≤
M1

Γ θ1ð Þ

tθ1�1
2 � tθ1�1

1

 �

λ1

ðη

0

η� sð Þθ1�1ds�

ð1

0

1� sð Þθ1�1ds

� �

2

4

3

5

þ
M1

Γ θ1ð Þ

ðt2

0

t2 � sð Þθ1�1ds�

ðt1

0

t1 � sð Þθ1�1ds

� �

≤
M1

λ1Γ θ1 þ 1ð Þ
tθ1�1
2 � tθ1�1

1

 �

ηθ1 � λ1

� �

þ λ1 tθ1

2 � tθ1

1

 �h i

:

(12)

By the same fashion, we obtain for S2 as

∣S2 p; qð Þ t2ð Þ � S2 p; qð Þ t1ð Þ∣ ≤
M2

λ2Γ θ2 þ 1ð Þ
tθ2�1
2 � tθ2�1

1

 �

ξθ2 � λ2

� �

þ λ2 tθ2

2 � tθ2

1

 �h i

: (13)

The right hand sides of Eqs. (12) and (13) are approaching to zero at t1 ! t2: Thus, the operator

S is equi-continuous. Therefore, thanks to the Arzelá-Ascoli theorem, we receive that

S ¼ S1;S2ð Þ : C ! C is completely continuous.

Theorem 3.3. Due to continuity of H1 and H2 on I� R
þ
∪ 0f g � R

þ
∪ 0f g ! R

þ, there exist

φj,ψj, σj j ¼ 1; 2ð Þ : 0; 1ð Þ ! R
þ
∪ 0f g for t∈ 0; 1ð Þ, p, q ≥ 0 such that

∣H1 t; p tð Þ; q tð Þð Þ∣ ≤ φ1 tð Þ þ ψ1 tð Þ∣p tð Þ∣þ σ1 tð Þ∣q tð Þ∣;

∣H2 t; p tð Þ; q tð Þð Þ∣ ≤ φ2 tð Þ þ ψ2 tð Þ∣p tð Þ∣þ σ2 tð Þ∣q tð Þ∣,

along with the following conditions:

i. Δ1 ¼
Ð

1

0

G1 1; sð Þφ1 sð Þds < ∞, Λ1 ¼
Ð

1

0

G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ
� �

ds < 1;

ii. Δ2 ¼
Ð

1

0

G2 1; sð Þφ2 sð Þds < ∞, Λ2 ¼
Ð

1

0

G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ
� �

ds < 1

are satisfied. Then, the system (1) has at least one solution p; qð Þ which lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < min
2Δ1

1� 2Λ1
;

2Δ2

1� 2Λ2

� �� �

:
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Proof. Let E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < rf g with min 2Δ1

1�2Λ1
;

2Δ2

1�2Λ2

 �

< r:

Define the operator S : E ! C as in Eq. (9).

Let p; qð Þ∈ E that is ∥ p; qð Þ∥E�E < r: Then, we have

∣S1 p; qð Þ tð Þ∣ ¼ max
t∈ I

ð1

0

G1 t; sð ÞH1ðs; p sð Þ; q sð ÞÞds

�

�

�

�

�

�

�

�

≤

ð1

0

G1 1; sð Þφ1 sð Þdsþ

ð1

0

G1ð1; sÞψ1 sð Þjp sð Þjdsþ

ð1

0

G1ð1; sÞσ1 sð Þjq sð Þjds

� �

≤

ð1

0

G1 1; sð Þφ1 sð Þdsþ r

ð1

0

G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ
� �

ds

� �

¼ Δ1 þ rΛ1 ≤
r

2
:

(14)

Thus, from Eq. (14), we have

∥S1 p; qð Þ∥E ≤
r

2
: (15)

Similarly, one can derive that

∥S2 p; qð Þ∥E ≤
r

2
: (16)

Thus, from Eqs. (15) and (16), we get

∥S p; qð Þ∥E�E ≤ r: (17)

Therefore, S p; qð Þ⊆E: Hence, by Theorem 3.2 the operator S : E ! E is completely continuous.

Consider the eigenvalue problem:

p; qð Þ ¼ rS p; qð Þ, with r∈ 0; 1ð Þ: (18)

Under the assumption that p; qð Þ is a solution of Eq. (18) for r∈ 0; 1ð Þ, we have

∣p tð Þ∣ ≤ rmax
t∈ I

ð

1

0

G1 t; sð Þ H1ðs; p sð Þ; q sð ÞÞdsj j

≤ r

ð

1

0

G1 1; sð Þφ1 sð Þdsþ

ð

1

0

G1ð1; sÞðψ1 sð Þjp sð Þj þ σ1 sð Þjq sð ÞjÞds

2

4

3

5

≤ r Δ1 þ rΛ1ð Þ

which implies that ∥p∥E <
r

2
:

Similarly, we can obtain that ∥q∥E < r
2 , so ∥ p; qð Þ∥E�E < r, which implies that p; qð Þ does not

belong to ∂E for all r∈ 0; 1ð Þ: Therefore, due to Theorem 2.10, S has a fixed point in E
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Assume that the given hypothesis holds:

(H1) The nonlinear functions H1 and H2 are continuous on I� R
þ
∪ 0f g � R

þ
∪ 0f g ! R

þ
∪ 0f g

(H2) For all t∈ I, we have

H1 t; p; qð Þ ¼6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ

and

H1 t; p; qð Þ 6¼ 1, H2 t; 1; 1ð Þ 6¼ 1; at p; qð Þ ¼ 1; 1ð Þ;

(H3) For all t∈ I such that

0 ≤ p ≤ p1, 0 ≤ q ≤ q1 ) H1 t; p; qð Þ ≤H1 t; p1; q1
� �

, H2 t; p; qð Þ ≤H1 t; p1; q1
� �

;

(H4) For p, q ≥ 0, there exist real numbers 0 < λ,μ < 1, such that for each t∈ I, τ∈ 0; 1ð Þ, we

have

H1 t; τp; τqð Þ ≥ τλH1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τμH2 t; p; qð Þ:

Theorem 3.4. Under the assumptions H1ð Þ � H4ð Þ, the BVP (1) has a unique solution in Cf where

f tð Þ ¼ tθ1�1; tθ2�1
� �

.

Proof. Let max λ;μ
	 


¼ κ and p; qð Þ∈C. For each t∈ I, using H4ð Þ, we have

S1 τp; τqð Þ tð Þ ¼

ð

1

0

G1 t; sð ÞH1 s; τp sð Þ; τq sð Þð Þds

≥ τλ
ð

1

0

G1 t; sð ÞH1 s; p sð Þ; q sð Þð Þds ¼ τλS1 p; qð Þ tð Þ ≥ τκS1 p; qð Þ tð Þ,

Analogously, we also get

S2 τp; τqð Þ tð Þ ≥ τκS2 p; qð Þ tð Þ:

In view of partial order ⪰ on E� E induced by the cone C, we get S τp; τqð Þ⪰τκS p tð Þ; qð

tð ÞÞ, τ∈ 0; 1ð Þ, p; qð Þ∈C: Which yields that S is τ� concave and nondecreasing operator

with respect to the partial order by using hypothesis H4ð Þ. Hence, taking f ∈C for each t∈ I

defined by

f tð Þ ¼ tθ1�1
; tθ2�1

� �

¼ f 1 tð Þ; f 2 tð Þ
� �

:

Suppose that
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w1 ¼ max
1

Γ θ1ð Þ

ð

1

0

H1 s; 1; 1ð Þds;
1

Γ θ2ð Þ

ð

1

0

H2 s; 1; 1ð Þds

8

<

:

9

=

;

and

w2 ¼ max
1

Γ θ1ð Þ

ð

1

0

L sð ÞH1 s; 0; 0ð Þds;
1

Γ θ2ð Þ

ð

1

0

K sð ÞH2 s; 0; 0ð Þds

8

<

:

9

=

;

:

Also, from Green’s functions, we can obtain that

L sð Þ ¼ 1� sð Þθ1�1 1þ λ1

λ1

� �

, K sð Þ ¼ 1� sð Þθ2�1 1þ λ2

λ2

� �

: (19)

Due to nondecreasing property of H1,H2 in view of H3ð Þ, we get μ > 0, ν > 0. Therefore,

applying (19) together with H4ð Þ, one has

S1h tð Þ ¼

ð

1

0

G1 t; sð ÞH1 s; f 1 sð Þ; f 2 sð Þ
� �

ds

¼

ð

1

0

G1 t; sð ÞH1 s; sθ1�1
; sθ2�1

� �

ds ≤

ð

1

0

G1 t; sð ÞH1 s; 1; 1ð Þds

≤
1

Γ θ1ð Þ

ð

1

0

1� sð Þθ1�1
H1 s; 1; 1ð Þds

0

@

1

Atθ1�1
≤μf 1 tð Þ:

Similarly, we can get

S2f tð Þ ≤μf 2 tð Þ:

Then, we obtain

Sf⪯μf : (20)

Like the aforesaid process, applying Eq. (19) together with H4ð Þ, for each t∈ I, one has

S1f tð Þ ¼

ð

1

0

G1 t; sð ÞH1 s; sθ1�1
; sθ2�1

� �

ds ≥

ð

1

0

G1 t; sð ÞH1 s; 0; 0ð Þds

≥
1

Γθ1

ð

1

0

L sð ÞH1 s; 0; 0ð Þds

0

@

1

Atθ1�1
≥ νh1 tð Þ,

With same fashion, we can obtain
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S2f tð Þ ≥ νf 2 tð Þ:

Thus, we have

Sf tð Þ⪰νf : (21)

From Eqs. (20) and (21), we produce

νf⪯Sf⪯μf ,

which implies that Sf ∈Cf . So, thanks to Lemma 2.9, we see that the operator S is concave;

hence, it has at most one fixed point p; qð Þ∈Cf which is the corresponding solution of BVPs (1).

Now, we define the following:

(C1) Hj j ¼ 1; 2ð Þ : I� R
þ
∪ 0f g � R

þ
∪ 0f g ! R

þ
∪ 0f g is uniformly bounded and continuous on I

with respect to t.

(C2) Green’s functions G1 1; sð Þ,G2 1; sð Þ satisfy

0 <

ð

1

0

G1 1; sð Þds < ∞, 0 <

ð

1

0

G2 1; sð Þds < ∞;

(C3) Let these limits hold:

H
ϱ

1 ¼ lim
pþq!ϱ

max
t∈ I

H1 t; p; qð Þ

pþ q
, H

ϱ

2 ¼ lim
pþg!ϱ

max
t∈ I

H2 t; p; qð Þ

pþ q
,

H1,ϱ ¼ lim
pþq!ϱ

inf
t∈ I

H1 t; p; qð Þ

pþ q
, H2,ϱ ¼ lim

pþq!ϱ

inf
t∈ I

H2 t; p; qð Þ

pþ q
, where ϱ∈ 0;∞f g:

δ1 ¼ max
t∈ I

ð

1

0

G1 t; sð Þds, δ2 ¼ max
t∈ I

ð

1

0

G2 t; sð Þds:

Theorem 3.5. Assume that the conditions C1ð Þ � C3ð Þ together with given assumptions are satisfied:

(H5) H1,0 γ2
1

Ð

1�θ

θ

G1 1; sð Þds

 !

> 1,H1,∞ γ2
1

Ð

1�θ

θ

G1 1; sð Þds

 !

> 1 and

H2,0 γ2
2

ð

1�θ

θ

G2 1; sð Þds

0

@

1

A > 1,H2,∞ γ2
2

ð

1�θ

θ

G2 1; sð Þds

0

@

1

A > 1:

Moreover, H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞ also hold:

(H6) There exists constant α > 0 such that
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max
t∈ I, p;qð Þ∈ ∂Cα

H1 t; p; qð Þ <
α

2δ1

and

max
t∈ I, p;qð Þ∈ ∂Cα

H2 t; p; qð Þ <
α

2δ2
:

Then, the system (1) of BVPs has at least two positive solutions p; qð Þ, p; qð Þ which obeying

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E: (22)

Proof. Assume that H5ð Þ holds, and consider e, α, λ such that 0 < e < α < λ. Further we

define a set by

Ωr ¼ u; vð Þ∈E� E : ∥ u; vð Þ∥E�E < rf g, where r∈ e;α;λf g:

Now, if

H1,0 γ2
1

ð

1�θ

θ

G1 1; sð Þds

0

@

1

A > 1 and H2,0 γ2
2

ð

1�θ

θ

G2 1; sð Þds

0

@

1

A > 1:

Then, obviously, we can obtain that

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωε: (23)

Now, if H1,∞ γ2
1

Ð

1�θ

θ

G1 1; sð Þds

 !

> 1 and H2,∞ γ2
2

Ð

1�θ

θ

G2 1; sð Þds

 !

> 1:

Then, like the proof of Eq. (23), we have

∥S p; qð Þ∥E�E ≥ ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωλ: (24)

Also, from H5ð Þ and p; qð Þ∈C ∩ ∂Ωα, we get

∣S1 p; qð Þ tð Þ∣ ¼
Ð 1
0 G1 t; sð ÞHðs; u sð Þ; v sð ÞÞds
�

�

�

�

�

�

≤

Ð 1
0 G1 1; sð Þ∣H1 s; p sð Þ; q sð Þð Þ∣ds:

From which we have

∥S1 p; qð Þ∥E�E <
α

2ϱ1

ð1

0

G1 1; sð Þds ¼
α

2
:

Similarly, we have ∥S1 p; qð Þ∥E�E < α
2 as p; qð Þ∈C ∩ ∂Ωα. Hence, we have
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∥S p; qð Þ∥E�E < ∥ p; qð Þ∥E�E, for p; qð Þ∈C ∩ ∂Ωα: (25)

Now, applying Lemma 2.11 to Eqs. (23) and (25) yields that S has a fixed point

p; qð Þ∈C ∩ Ωα\Cε

� �
and a fixed point in p; qð Þ∈C ∩ Ωλ\Ωα

� �
: Hence, we conclude that the

system of BVPs (1) has at least two positive solutions p; qð Þ, p; qð Þ such that ∥ p; qð Þ∥E�E 6¼ α and

∥ p; qð Þ∥E�E 6¼ α. Thus, relation (22) holds.

Theorem 3.6. Consider that C1ð Þ � C3ð Þ together with the following hypothesis are satisfied:

(H7) δ1H1,0 < 1, δ1H1,∞ < 1; δ2H1,0 < 1, and δ2H2,∞ < 1;

(H8) There exist r > 0 such that

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
1H1 t; p; qð Þ >

α

2

ð1�θ

θ

G1 1; sð Þds

0

@

1

A
�1

,

max
t∈ I, p;qð Þ∈ ∂Cα

γ2
2H2 t; p; qð Þ >

α

2

ð1�θ

θ

G2 1; sð Þds

0

@

1

A
�1

such that

0 < ∥ p; qð Þ∥E�E < α < ∥ p; qð Þ∥E�E:

Then, the proposed coupled system of BVPs (1) has at least two positive solutions.

Proof. Proof is like the proof of Theorem 3.4.

Analogously, we deduce from Theorem 3.5 and 3.6 the following results for multiplicity of

solutions to the system (1) of BVPs.

Theorem 3.7. Under the conditions C1ð Þ � C3ð Þ, there exist 2k positive numbers aj,baj, j ¼ 1, 2…k

with a1 < γ1
ba1 < ba1 < a2 < γ1

ba2 < ba2…ak < γ1
bak < bak and a1 < γ2

ba1 < ba1 < a2 < γ2
ba2 <

ba2…ak < γ2
bak < bak such that.

(H9) H1 t; p tð Þ; q tð Þð Þ γ1

Ð1

0

G1 1; sð Þds

 !

≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �
� γ2aj; aj

� �
, and

H1 t; p tð Þ; q tð Þð Þδ1 ≤bai, for t; p; qð Þ∈ I� γ1
baj;baj

h i
� γ2aj; ai

� �
, j ¼ 1, 2…k;

(H10) H2 t; p tð Þ; q tð Þð Þ γ2

Ð1

0

G2 1; sð Þds

 !

≥ aj, for t; p; qð Þ∈ I� γ1aj; aj

� �
� γ2aj; aj

� �
, and

Existence Theory of Differential Equations of Arbitrary
http://dx.doi.org/10.5772/intechopen.75523

47



H1 t; p tð Þ; q tð Þð Þδ2 ≤baj, for t; p; qð Þ∈ I� γ1aj; aj
� �

� γ2
baj;baj

h i
, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj

 �
, satisfying

aj ≤ ∥ pj; qj

 �
∥E�E ≤baj, j ¼ 1, 2…k:

Further, if assumptions C1ð Þ � C3ð Þ hold such that there exist 2k positive numbers bj, bb j, j ¼ 1, 2…k,

with

b1 <
bb1 < b2 <

bb2… < bk <
bbk,

together with following hypothesis hold:

(H11) H1 t; p; qð Þ and H2 t; p; qð Þ are nondecreasing on 0; bbk

h i
for all t∈ I;

ðH11ÞH1 t; p tð Þ; q tð Þð Þ γ1

ð1�θ

θ

G1 1; sð Þds

0

@

1

A ≥bj,H1 t; p tð Þ; q tð Þð Þδ1 ≤ bb j, j ¼ 1, 2…k, (26)

H2 t; u tð Þ; v tð Þð Þ γ2

ð1�θ

θ

G2 1; sð Þds

0

@

1

A ≥bj,H2 t; p tð Þ; q tð Þð Þδ2 ≤ bb j, j ¼ 1, 2…k:

Then, system (1) of BVPs has at least k solutions pj; qj

 �
, satisfying

bj ≤ ∥ pj; qj

 �
∥E�E ≤

bbj, j ¼ 1, 2…k:

4. Hyers-Ulam stability

Definition 4.1. ([31, Definition 2]) Consider a Banach space E� E such that S1,S2 : E� E ! E� E

be the two operators. Then, the operator system provided by

p tð Þ ¼ S1 p; qð Þ tð Þ,

q tð Þ ¼ S2 p; qð Þ tð Þ

�
(27)

is called Hyers-Ulam stability if we can find C i i ¼ 1; 2; 3; 4ð Þ > 0, such that for each ri i ¼ 1; 2ð Þ > 0

and for each solution p∗; q∗ð Þ∈E� E of the inequalities given by

∥p∗ �H1 p∗; q∗ð Þ∥E�E ≤ r1,

∥q∗ �H2 p∗; q∗ð Þ∥E�E ≤ r2,

�
(28)
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there exist a solution p; qð Þ∈E� E of system (26) which satisfy

∥p∗ � p∥E�E ≤ C1r1 þ C2r2,

∥q∗ � q∥E�E ≤ C3r1 þ C4r2:

�

(29)

Definition 4.2. If λi, for i ¼ 1, 2,⋯, n be the (real or complex) eigenvalues of a matrixM∈ C
n�n, then

the spectral radius r Mð Þ is defined by

r Mð Þ ¼ max jλij; for i ¼ 1; 2;⋯; nf g:

Further, the matrix will converge to zero if r Mð Þ < 1:.

Theorem 4.3. ([31, Theorem 4]) Consider a Banach space E� E with S1,S2 : E� E ! E� E be the

two operators such that

∥S1 p; qð Þ � S1 p∗; q∗ð Þ∥E�E ≤ C1∥p� p∗∥E�E þ C2∥q� q∗∥E�E,

∥S2 p; qð Þ � S2 p∗; q∗ð Þ∥E�E ≤ C3∥p� p∗∥E�E þ C4∥q� q∗∥E�E,

for all p; qð Þ, p∗; q∗ð Þ∈E� E,

8

>

<

>

:

(30)

and if the matrix

M ¼
C1 C2

C3 C4

� �

converges to zero ([31, Theorem 1]), then the fixed points corresponding to operatorial system (26) are

Hyers-Ulam stable.

For the stability results, the following should be hold:

(H13) Under the continuity ofHi, i ¼ 1, 2, there exist ai, bi ∈ c 0; 1ð Þ, i ¼ 1, 2 and p; qð Þ, p; qð Þ such

that

∣Hi t; p; qð Þ �Hi t; p; qð Þ∣ ≤ ai tð Þ∣p� p∣þ bi tð Þ∣q� q∣, i ¼ 1, 2:

In this section, we study Hyers-Ulam stability for the solutions of our proposed system.

Thanks to Definition 4.1 and Theorem 4.3, the respective results are received.

Theorem 4.4. Suppose that the assumptions H13ð Þ along with condition that matrix

M ¼

Ð 1
0 G1 1; sð Þa1 sð Þds

Ð 1
0 G1 1; sð Þb1 sð Þds

Ð 1
0 G2 1; sð Þa2 sð Þds

Ð 1
0 G2 1; sð Þb2 sð Þds

" #

is converging to zero. Then, the solutions of (1) are Hyers-Ulam stable.

Proof. In view of Theorem 4.3, we have
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∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G1 1; sð Þb1 sð Þ∥q� q∥E�Eds

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þ∥p� p∥E�Edsþ

Ð 1
0 G2 1; sð Þb2 sð Þ∥q� q∥E�Eds:

From which we get

∥S1 p; qð Þ � S1 p; qð Þ∥E�E ≤
Ð 1
0 G1 1; sð Þa1 sð Þds�

h i

∥p� p∥E�E þ
Ð 1
0 G1 1; sð Þb1 sð Þds

h i

∥q� q∥E�E

∥S2 p; qð Þ � S2 p; qð Þ∥E�E ≤
Ð 1
0 G2 1; sð Þa2 sð Þds

h i

∥p� p∥E�E þ
Ð 1
0 G2 1; sð Þb2 sð Þds

h i

∥q� q∥E�E:

(31)

Hence, we get

∥S p; qð Þ � S p; qð Þ∥E�E ≤M∥ p; qð Þ � p; qð Þ∥E�E, (32)

where M ¼

Ð 1
0 G1 1; sð Þa1 sð Þds

Ð 1
0 G1 1; sð Þb1 sð Þds

Ð 1
0 G2 1; sð Þa2 sð Þds

Ð 1
0 G2 1; sð Þb2 sð Þds

" #

. Hence, we received the required results.

5. Illustrative examples

Example 5.1. Consider the given system of BVPs

D
7
2p tð Þ þ 1� t2

� �

þ p tð Þq tð Þ½ �
1
3 ¼ 0, D

11
3 q tð Þ þ 1þ tþ p tð Þq tð Þ½ �

1
4 ¼ 0, t∈ 0; 1ð Þ,

p tð Þ ¼ p
0
tð Þ ¼ p

00
tð Þ ¼ q tð Þ ¼ q

0
tð Þ ¼ q

00
tð Þ ¼ 0, at t ¼ 0,

p 1ð Þ ¼ p
1

4

� �

, q 1ð Þ ¼ q
1

3

� �

:

8

>

>

>

>

<

>

>

>

>

:

(33)

Clearly, H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at

p; qð Þ ¼ 1; 1ð Þ. Simple computation yields that H1,H2 are nondecreasing for every t∈ 0; 1ð Þ: Also, for

τ, t∈ 0; 1ð Þ, and p, q ≥ 0, one has max 1
4 ;

1
3

	 


¼ 1
3 ,

H1 t; τp; τqð Þ ≥ τ
1
3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ

1
3H2 t; p; qð Þ:

Thus, all the conditions of Theorem 3.4 are fulfilled, so the system (32) of BVPs has unique positive

solution in Bf where f tð Þ ¼ t
5
2
; t

9
2

 �

:

Example 5.2. Consider the following system of BVPs:

D
9
2p tð Þ þ 1þ tð Þ2 þ p tð Þ þ q tð Þ½ �3 ¼ 0, D

9
2q tð Þ þ 1þ tþ p tð Þ þ q tð Þ½ �2 ¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2; 3, at t ¼ 0,

p 1ð Þ ¼ p
1

2

� �

, q 1ð Þ ¼ q
1

2

� �

:

8

>

>

>

<

>

>

>

:

(34)
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It is obvious that H1 t; p; qð Þ 6¼ 0, H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 0; 0ð Þ, and H1 t; p; qð Þ 6¼ 0,

H2 t; p; qð Þ 6¼ 0, at p; qð Þ ¼ 1; 1ð Þ. Also, an easy computation yields that H1,H2 are nondecreasing for

each t∈ 0; 1ð Þ: Moreover, for τ, t∈ 0; 1ð Þ, and p, q ≥ 0, we see that max 3; 2f g ¼ 3,

H1 t; τp; τqð Þ ≥ τ3H1 t; p; qð Þ, H2 t; τp; τqð Þ ≥ τ3H2 t; p; qð Þ:

Thus, all the assumption of Theorem 3.4 is fulfilled, so the coupled system (33) has a unique positive

solution in Bf where f tð Þ ¼ t
3
4; t

4
3

 �

:

Example 5.3. Consider the following system of BVPs:

D
7
2p tð Þ ¼

t

40
þ

t

20
cos∣p tð Þ∣þ

t2

20
sin∣q tð Þ∣, t∈ 0; 1ð Þ,

D
7
2q tð Þ ¼

t2

50
þ

t2

60
sin∣p tð Þ∣þ

t

60
cos∣q tð Þ∣, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2, at t ¼ 0,

p 1ð Þ ¼ p
1

2

� �

, q 1ð Þ ¼ q
1

2

� �

:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(35)

From system (33), we see that

∣H1 t; p; qð Þ∣ ≤
t

40
þ

t

20
cos∣p tð Þ∣þ

t2

20
sin∣q tð Þ∣

and

∣H2 t; p; qð Þ∣ ≤
t2

50
þ

t2

60
sin∣p tð Þ∣þ

t

60
cos∣q tð Þ∣:

where φ1 tð Þ ¼ t
40
, φ2 tð Þ ¼ t2

50
, ψ1 tð Þ ¼ t

20
, ψ2 tð Þ ¼ t2

60
, σ1 tð Þ ¼ t2

20
, σ2 tð Þ ¼ t

60
. Also,

η ¼ ξ ¼ 1
2
,λ1 ¼ λ2 ¼ 0:17677: Thus, by computation, we have

Gj 1; sð Þ ¼ 6:65710
1� sð Þ

5
2

Γ
7
2

� � , for j ¼ 1, 2:

Upon computation, we get

Δ1 ¼

ð1

0

G1 1; sð Þφ1 sð Þds ¼ 0:003577 < ∞, Δ2 ¼

ð1

0

G2 1; sð Þφ2 sð Þds ¼ 0:000924 < ∞:

Similarly, we can also compute.

Λ1 ¼
Ð 1

0 G1 1; sð Þ ψ1 sð Þ þ σ1 sð Þ
� �

ds ¼ 0:03092853 < 1, Λ2 ¼
Ð 1

0 G2 1; sð Þ ψ2 sð Þ þ σ2 sð Þ
� �

ds ¼ 0:00289 < 1:

Further, we see that max 0:007626; 0:00185f g ¼ 0:007626. So, all the conditions of Theorem 3.3 are

satisfied. So, the BVP (34) has at least one solution and the solution lies in

E ¼ p; qð Þ∈C : ∥ p; qð Þ∥E�E < 0:007626f g:
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Example 5.4. Taking the following system of BVPs

D
11
2 p tð Þ þ p tð Þ þ q tð Þ½ �2 þ 1

15þ t2
� �

δ1
¼ 0, D

11
2 q tð Þ þ p tð Þ þ q tð Þ½ �2 þ t

15þ t2
� �

δ2
¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2; 3; 4, at t ¼ 0,

p 1ð Þ ¼ p
1

4

� �

, q 1ð Þ ¼ q
1

4

� �

:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(36)

It is simple to check that H1,0 ¼ H2,0 ¼ H1,∞ ¼ H2,∞ ¼ ∞: Also, for any t; p; qð Þ∈ I� I� I, we see

that

H1 t; p; qð Þ ≤
1

3δ1

H2 t; p; qð Þ ≤
1

3δ2
:

Thus, all the assumptions of Theorem 3.5 are satisfied with taking α ¼ 1, so the coupled system (35) has

two solutions satisfying 0 < ∥ p; qð Þ∥E�E < 1 < ∥ p; qð Þ∥E�E.

Example 5.5. Consider the following coupled systems of boundary value problems:

D
5
2p tð Þ þ Γ

5

2

� �

tp tð Þ
16

þ t2q tð Þ
32

� �

¼ 0, t∈ 0; 1ð Þ,

D
5
2q tð Þ þ Γ

5

2

� �

9t2∣cos p tð Þð Þ∣
16

ffiffiffiffi

π
p þ 9t∣cos q tð Þð Þ∣

32
ffiffiffiffi

π
p

� �

¼ 0, t∈ 0; 1ð Þ,

p jð Þ tð Þ ¼ q jð Þ tð Þ ¼ 0, j ¼ 0; 1; 2, at t ¼ 0,

p 1ð Þ ¼ p
1

2

� �

, q 1ð Þ ¼ q
1

2

� �

:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(37)

Here, a1 tð Þ ¼ Γ
5
2

� �

t
16 , b1 tð Þ ¼ Γ

5
2

� �

t2

32 , a2 tð Þ ¼ Γ
5
2

� �

9t2

16
ffiffiffi

π
p , b2 tð Þ ¼ Γ

5
2

� �

9t
32

ffiffiffi

π
p . Moreover

M ¼
Ð 1
0 G1 1; sð Þa1 sð Þds

Ð 1
0 G1 1; sð Þb1 sð Þds

Ð 1
0 G2 1; sð Þa2 sð Þds

Ð 1
0 G2 1; sð Þb2 sð Þds

" #

¼
0:0460 0:0007

0:0068 0:0058

� �

:

Here, r Mð Þ ¼ 4:61� 10�2
< 1: Therefore, matrixM converges to zero, and hence the solutions of (36)

are Hyers-Ulam stable by using Theorem 4.4.

6. Conclusion

We have developed a comprehensive theory on existence of solutions and its Hyers-Ulam

stability for system of multipoint BVP of FDEs. The concerned theory has been enriched by

providing suitable examples.
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