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Abstract

Over the recent past, various numerical analysis techniques have been formulated and
used to obtain approximate solutions for numerous engineering problems to aid predict
the behaviour of systems accurately and efficiently. One such approach is the Wavelet
Finite Element Method (WFEM) which involves combining the classical Finite Element
Method (FEM) with wavelet analysis. The key desirable properties exhibited by some
wavelet families, such as compact support, multiresolution analysis (MRA), smooth-
ness, vanishing moments and the ‘two-scale’ relations, make the use of wavelets in
WFEM advantageous, particularly in the analysis of problems with strong nonlinear-
ities, singularities and material property variations present. The wavelet based finite
elements (WFEs) of a rod and beam are formulated using the Daubechies and B-spline
wavelet on the interval (BSWI) wavelet scaling functions as interpolating functions due
to their desirable properties, thus making it possible to alter the local scale of the WFE
without changing the initial model mesh. Specific benchmark cases are presented to
exhibit and compare the performance of the WFEM with FEM in static, dynamic,
eigenvalue and moving load transient response analysis for homogenous systems and
functionally graded materials, where the material properties continuously vary spatially
with respect to the constituent materials.

Keywords: multiresolution, wavelets, wavelet finite element (WFE), eigenvalue
analysis, moving load problem, functionally graded material (FGM)

1. Introduction

In the analysis of complex structural problems, it is often challenging to formulate and apply

exact closed-form solutions, as the realistic nature of such engineering systems exhibits vary-

ing complexities, high gradients and strong irregularities, e.g., suddenly varying loading

conditions, contrasting material composition or geometric variations. Based on the existing
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mathematical tools available, such systems may require certain assumptions and generalisa-

tions to be implemented in order to simplify the model, which may lead to inability to correctly

describe the properties and behaviour of the system under described conditions. However, the

preferred approach is to find an approximate numerical solution, whilst retaining these com-

plexities as accurately as possible, to better describe and predict the behaviour of such systems.

This has given rise to numerical methods such as the classical Finite Element Method which

employs polynomial interpolating functions to obtain approximate solutions for various engi-

neering problems. Although this numerical analysis technique has grown in popularity, its use

to tackle problems with regions of the solution domain where the gradient of the field vari-

ables are expected to vary suddenly or fast, bring on difficulties in the analysis of a complex

system [1]. In order to improve on the accuracy and better represent the system’s behaviour,

higher order polynomial interpolating functions or finer meshes may be employed and this in

turn significantly increases the computational costs; which is undesirable. Moreover, the reso-

lution of the elements can only be analysed to a specific scale once the orders of the governing

polynomial functions have been selected. Subsequently, overcoming these challenges has been

the driving force in the formulation of other numerical approximation techniques such as the

Wavelet Finite Element Method [1–6].

The initial development of wavelet analysis came from separate efforts that led to the founda-

tion of modern wavelet theory. Grossman and Morlet [7] used wavelet analysis as a tool for

signal analysis of seismic data and are credited with the introduction of the term and method-

ology of wavelets as it is known today. Ingrid Daubechies is recognised for her major break-

through and contribution by constructing a family of orthonormal wavelet with compact

support known as the Daubechies wavelets [8]. Wavelet analysis was used mainly by mathe-

maticians as a decomposition tool for data functions and operators and its application has

vastly grown in various disciplines at an exponential rate e.g., medicine [9], finance [10] and

astronomy [11]. Likewise, the range of wavelet families and bases available for selection has

also increased and this is credited to the properties of wavelets that allow it to be tailored to

suite numerous avenues for design manipulation to meet the necessary and specific require-

ments for its application. The properties of different wavelet families vary, and therefore the

decision on which family is the ‘most adequate’, is paramount to its application. Nevertheless,

the more general aspects of wavelets formulations make it an important and convenient tool

for mathematical manipulation allowing for the decomposition of a function into a set of

coefficients that are dependent on scale and location. The ‘two-scale’ relation gives rise to one

of the most key features of wavelet theory, multiresolution analysis (MRA), which allows for

the convenient transformation of wavelet basis functions between different resolution scales

[8]. Furthermore, the compact support property of wavelets ensures that the wavelet basis

functions are finitely bound (non-zero over a finite range). The vanishing moments of wavelets

allow the basic functions of wavelets to represent polynomials and other complex functions.

These desirable properties of wavelets have led to the use of wavelet basis functions as

interpolating functions, in contrast to conventional polynomial functions as used in classical

FEM, in the formulation of the wavelet based finite element method. For example, MRA

permits for specific WFEs to be selected and analysed locally at finer scales without altering

the initial systemmodel, thus improving the accuracy of the solution, particularly in areas with

high gradients or singularities present. Furthermore, rapid convergence of the method and
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compact support lead to a reduction in computational costs since fewer elements are required

to achieve acceptable levels of accuracy [4, 5]. Due to the adaptability of wavelets, different

wavelet families are being developed and customised for specific problems. However, it must

be noted that when selecting a particular wavelet basis function for WFEM, key requirements,

such as compatibility, completeness and convergence, must be satisfied and should allow for

the easy implementation and treatment of boundary conditions.

The Daubechies wavelet based finite element was first introduced to solve a 1D and 2D second

order Neumann problem via the formulation of a tensor product finite element [2]. The

Daubechies wavelet Galerkin finite element was then used to analyse the bending of plates

and beams [12] giving rise to the formulation of a wavelet based beam finite element [6] and

two dimensional Daubechies wavelet plate finite element [13] for static analysis. The

Daubechies wavelet base finite element stiffness matrices and load vectors were presented by

Chen et al. at multiresolution scale j = 0 [14] and different multiresolution scales [4]. The

Daubechies plate finite element was developed by Diaz et al. for the static analysis of plates

based on Mindlin-Reissner plate theory [15], where shear deformation is taken into consider-

ation through the thickness of the plate, and compared it with Kirchhoff plate theory formula-

tions [16]. This wavelet family has also been used in the analysis of many other structural

problems, including formulation of the Rayleigh-Euler and Rayleigh-Timoshenko beam ele-

ments [17], the wavelet based spectral finite element to study elastic wave propagation in 1-D

connected waveguides [18] and also to investigate the thermal stress distribution along the

vertical direction of the tank wall [19]. Overall, the wavelet family performed decently in

providing accurate solutions for the various structural analysis problems tackled. However,

the Daubechies wavelet lacks an explicit expression for the wavelet and scaling functions and

possesses unusual smoothness characteristics, particularly for lower orders, making it chal-

lenging to evaluate the numerical integrals necessary for the formulation of the element

matrices and load vectors. The evaluation of the connection coefficients is therefore necessary

for the formulation of these element matrices and vectors.

In a bid to overcome the limitations presented by the Daubechies wavelet, further research has

been carried out to identify other potential wavelet families that can be implemented in

WFEM. Basic spline functions were initially used as interpolating functions for the free vibra-

tion analysis of frame structures [3]. Chui and Quak [20] constructed the semi-orthogonal B-

spline Wavelet on the Interval, which has the desirable properties of multiresolution, compact

support, explicit expressions, smoothness and symmetry. The BSWI was employed to con-

struct the wavelet based C0 type plane elastomechanics element and Mindlin plate element

[21] as well as truncated conical shell wavelet finite elements [22]. Xiang et al. [5] significantly

contributed to the use of BSWI in WFEM by constructing the axial rod, beam (Timoshenko and

Euler Bernoulli) and spatial bar WFEs with a multiresolution lifting scheme. Furthermore, this

research was extended to the static and dynamic analysis of plates based on Kirchhoff plate

theory using BSWI based wavelet finite elements [23, 24]. Xiang et al. [25] were able to

illustrate that the shear-locking phenomenon of a rotating Rayleigh-Timoshenko shaft was

significantly eliminated when the BSWI based WFEs were employed. Majority of the problems

examined by this point were of static analysis and this led Musuva and Mares [26] to develop

and implement the Daubechies and BSWI homogenous beam WFEs for the analysis of

dynamic response and moving load problems. The vibration and dynamic response analysis
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was carried out for frame structures using the two wavelet families [27] and the WFEM was

compared with an analytical wavelet approach using coiflets for the analysis of vehicle-bridge

interaction for fast moving loads [28]. Furthermore, the Daubechies and BSWI wavelets were

used to construct a functionally graded beam wavelet finite element under various moving

load conditions [29, 30].

Other different wavelet families have been selected and employed in the formulation of the

WFEM to solve a wide variety of structural analysis problems and research in this field is still

ongoing. The trigonometric Hermite wavelet, which can be explicitly expressed, was used to

construct beam [31] and thin plate WFEs [32] for static and free vibration analysis. The Hermite

Cubic Spline Wavelet on the Interval (HCSWI), polynomial wavelets [33] and the second

generation wavelets [34] are other wavelet based approaches that have been introduced and

researched on. A more comprehensive synthesis and summary of wavelet based numerical

methods for various engineering problems is presented in [35].

A generalised Wavelet based Finite Element Method framework is presented based on the

BSWI and Daubechies wavelet families to derive rod and beam WFEs for homogenous and

functionally graded materials for static and dynamic structural problems. A brief introduction

of wavelet analysis is described in Section 2, with emphasis given to the Daubechies wavelets,

BSWI, multiresolution and connection coefficients formulations. In Section 3, the wavelet

based finite elements for a rod, Euler Bernoulli homogeneous beam and transversely varying

functionally graded beam are presented. The evaluation of the element matrices and various

load vectors, including the WFEM moving load formulation, are presented. A comparison on

the performance of the Daubechies and BSWI WFEMs are highlighted via numerical examples

for a variety of static and dynamic structural problems in Section 4 followed by conclusions.

2. Wavelet and multiresolution analysis

Wavelets are a class of basic functions that represent functions locally, both in space and time,

and allow for the analysis of functions to be carried out at different resolutions (scales) [36]. The

wavelet basis emanates from a set of wavelet coefficients associated with a particular location in

time and different multiresolution scales. The scaling and wavelet functions stem from

multiresolution analysis (MRA), which is a key and desirable property of wavelets, and refers to

the simultaneous appearance of multiple scales in function decompositions in the Hilbert space

L2 Rð Þ using a sequence of closed subspaces Vj,which is represented mathematically as [36]:

⋯V�2 ⊂V�1 ⊂V0 ⊂V1 ⊂V2 ⊂… (1)

Therefore in principle, in order for multiresolution to occur, the closed subspaces V j satisfy the

following properties:

⋃
j∈Z

V j ¼ L2 Rð Þ (2)

⋂
j∈Z

V j ¼ 0f g (3)
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f 2 xð Þ ¼ f 2xð Þ∀x
f ∈V j ⇔ f 2 ∈V jþ1 j∈Z

(4)

f n xð Þ ¼ f x� nð Þ
f ∈V0 ⇔ f n ∈V0 n∈Z

(5)

The orthogonal complement subspace W j of V j contains the additional ‘detail’ for subspace

V jþ1 i.e., V jþ1 ¼ V0 ⊕W0 ⊕W1 ⊕W2⋯⊕W j. The union of the subspaces V j leads to the space

L2 Rð Þ from the condition in Eq. (2) [36]. The scaling f xð Þ∈L2 Rð Þ and wavelet ψ xð Þ∈ L2 Rð Þ
functions correspond to the subspaces V j and W j respectively. The difference between current

subspace Vj and subsequent subspace V jþ1 is represented by the wavelet space W j which

becomes automatically orthogonal to all other W j for k < j due to the inclusion in and orthog-

onality to V j. For the fundamental space V0, the scaling function f xð Þ and its translates

f x� kð Þ produce an orthonormal basis for V0. The orthonormal basis for the next space V1 is

the rescaled function
ffiffiffi

2
p
f 2x� kð Þ. Thus, the orthonormal basis of V j is defined as:

f
j
k xð Þ ¼ 2

j
2f 2jx� k
� �

k∈Z (6)

Provided Eq. (6) and the above mentioned properties are satisfied, the wavelet orthonormal

basis for subspace W j at scale j is

ψ
j
k xð Þ ¼ 2

j
2ψ 2jx� k
� �

k∈Z (7)

The orthogonal subspaces W j result from the decomposition of L2 Rð Þ and subsequently the

functions within these subspaces inherit the scale and shift invariance properties from the

scaling function subspaces V j and are orthonormal [8]. The projections of a function f ∈ L2 Rð Þ
at scale j in the subspaces V j and W j, defined as Pjf and Qjf respectively, are expressed as:

Pjf ¼
X

k

a
j
kf

j
k xð Þ

Qjf ¼
X

k

b
j
kψ

j
k xð Þ

(8)

where a
j
k and b

j
k are coefficients in the subspaces V j and W j respectively. Thus, if all the

conditions described above are met, then the scaling and wavelet functions satisfy [8]

ð

∞

�∞
f xð Þdx 6¼ 0

ð

∞

�∞
ψ xð Þdx ¼ 0

(9)

2.1. Daubechies wavelet

Daubechies wavelets are compact supported orthonormal wavelets developed by Ingrid

Daubechies and for order L, the scaling and wavelet functions are described by the ‘two-scale’

relation [8]:
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fL xð Þ ¼
X

L�1

k¼0

pL kð ÞfL 2x� kð Þ (10)

ψL xð Þ ¼
X

L�1

k¼0

qL kð ÞfL 2x� kð Þ (11)

The scaling and wavelet functions have the supports 0; L� 1½ � and 1� L
2 ;

L
2

� �

respectively. The

normalised wavelet function filter coefficients qL kð Þ and scaling function filter coefficients pL kð Þ

have the relation qL kð Þ ¼ �1ð ÞkpL 1� kð Þ. The multiresolution scaling and wavelet basis func-

tions corresponding to the subspaces Vj and Wj are defined as:

f
j
L,k xð Þ ¼ 2

j
2fL 2jx� k

� �

(12)

ψ
j
L,k xð Þ ¼ 2

j
2ψL 2jx� k

� �

(13)

The scaling and wavelet functions defined in Eqs. (10)–(13) satisfy the following properties [8]:

ð

∞

�∞

fL xð Þdx ¼ 1 (14)

ð

∞

�∞

f
j
L,k xð Þf

j
L, l xð Þdx ¼ δk, l (15)

ð

∞

�∞

ψ
j
L,k xð Þψ

j
L,k xð Þdx ¼ δk, l (16)

ð

∞

�∞

f
j
L,k xð Þψ

j
L, l xð Þdx ¼ 0 (17)

ð

∞

�∞

xmψL xð Þdx ¼ 0 m ¼ 0, 1,…,
L

2
� 1 (18)

Certain wavelet families have no explicit formulation, as is the case with the Daubechies

wavelets. Therefore, Eq. (10) gives rise to a system of equations that require a normalising

equation obtained from Eq. (14) to evaluate the scaling functions. The Daubechies wavelet of

order L has L
2 � 1 vanishing moments from property (18) and consequently the scaling func-

tions at scale j can represent a polynomial of order xm where 0 ≤m ≤
L
2 � 1, i.e., [37]

xm ¼
X

k

M
j,m
k f

j
L,k xð Þ (19)

The coefficients M
j,m
k denote the moments of the scaling function and it translates at Vj. The

derivatives of the Daubechies wavelet scaling functions are evaluated by differentiating the

refinement Eq. (10) m times, and are obtained as [12]:
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f
mð Þ
L xð Þ ¼ 2m

X

L�1

k¼0

p kð Þf
mð Þ
L 2x� kð Þ (20)

A normalising condition is required to evaluate Eq. (20) which is obtained from the moments

of the scaling functions.

X

k¼∞

k¼�∞

kmf mð Þ x� kð Þ ¼ m! (21)

2.2. Daubechies connection coefficients

As earlier mentioned, the Daubechies functions cannot be computed analytically and their

derivatives are highly oscillatory, particularly at low wavelet orders and/or high order deriva-

tives. Therefore, the integral of the products of the scaling functions and/or derivatives are

computed as what is commonly known as connection coefficients [37]. There are two forms of

connection coefficients that are of relevance to this study; the multiscale two-term connection

coefficient a;bΓ
j,d1 ,d2
k, l and multiscale connection coefficient Υ

j,m
k . We define the two-term connec-

tion coefficient [30]

a;bΓ
j,d1,d2
k, l ¼ 2j

ð

∞

�∞

X 0,1½ � ξð Þf d1ð Þ
a 2jξ� k

� �

f
d2ð Þ
b 2jξ� l

� �

dξ (22)

where a and b are the orders of the scaling function at multiresolution j, while the values d1 and

d2 denote the order of the derivative of the scaling functions. X 0,1½ � xð Þ ¼
1 0 ≤ x ≤ 1

0 otherwise

�

is the

characteristic function. The formulation presented is a modified algorithm of that described in

[4] and allows for the evaluation of the connection coefficients for different values of a and b at

different multiresolution scales j. From the ‘two-scale’ relation presented in Eq. (10),

fL 2jξ� k
� �

¼
X

r

p rð ÞfL 2jþ1ξ� 2k� r
� �

(23)

Differentiating Eq. (23) m times

2jmf
mð Þ
L 2jξ� k

� �

¼ 2 jþ1ð Þm
X

r

p rð Þf
mð Þ
L 2jþ1ξ� 2k� r

� �

(24)

Substituting Eq. (24) into Eq. (22) and applying the ‘two-scale’ relation of the characteristic

function, the two-term connection coefficient can be expressed as:

a;bΓ
j,d1,d2
k, l ¼ 2d1þd2�1

X

r, s
pa r� 2kð Þpb s� 2lð Þ þ pa r� 2kþ 2j

� �

pb s� 2lþ 2j
� �� �

Γ
j,d1,d2
r, s (25)

where 2� a ≤ k, r ≤ 2j � 1 and 2� b ≤ l, s ≤ 2j � 1. Eq. (25) can be expressed in matrix form as:
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aþ 2j� 2ð Þ bþ 2j� 2ð Þ� 1ð Þ a; bΓ
j

n o

¼

2d1þd2�1
aþ 2j� 2ð Þ bþ 2j� 2ð Þ� aþ 2j� 2ð Þ bþ 2j� 2ð Þð Þ a;bP

h i

aþ 2j� 2ð Þ bþ 2j� 2ð Þ� 1ð Þ a; bΓ
j

n o

(26)

where the square matrix a;bP

h i

contains the filter coefficients as expressed in Eq. (25) and

a;bΓ
j

n o

contains the connection coefficients. To uniquely determine the connection coefficients,

normalising conditions are required to generate a sufficient number of inhomogeneous equa-

tions via the multiscale moment condition from Eq. (19)

ξ
m ¼ 2

j
2

X

k
LM

j,m
k fL 2jξ� k

� �

(27)

Defining the second form of the connection coefficient

Υ
j,m
k ¼ 2

j
2

ð1

0

xmfL 2jξ� k
� �

dξ ¼ 2
j
2

ð

∞

�∞

X 0;1½ � ξð ÞξmfL 2jξ� k
� �

dξ (28)

Substituting Eq. (27) into (28)

Υ
j,m
k ¼ 2j

X

l

M
j,m
l

ð

∞

�∞

X 0;1½ � xð ÞfL 2jx� l
� �

fL 2jx� k
� �

dx (29)

However,

L;LΓ
j,0,0
k, l ¼ 2j

ð

∞

�∞

X 0;1½ � xð ÞfL 2jx� l
� �

fL 2jx� k
� �

dx (30)

Thus

Υ
j,m
k ¼

X

l

M
j,m
l L;LΓ

j,0,0
k, l (31)

where L;LΓ
j,0,0
k, l are the two-term connection coefficients with a ¼ b ¼ L and d1 ¼ d1 ¼ 0 and

M
j,m
l are the moments earlier described.

2.3. B-spline wavelets on the interval [0,1] (BSWI)

The BSWI are a family of wavelets that emanate from Basis splines functions (B-Splines) and

the basic functions in subspace V j of order m and scale j > 0 are expressed as [20]

B
j
m,k xð Þ ¼ t

j
kþm � t

j
k

� 	

t
j
k;…; t

j
kþm

h i

f
t� xð Þm�1

þ (32)

with the knot sequence

t
j
k

n o2jþm�1

k¼�mþ1

t
j
k ≤ t

j
kþ1

(33)
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t
j
k; t

j
kþ1;…; t

j
kþm

h i

t
, is the mth divided difference of the truncated power function t� xð Þm�1

þ with

respect to variable t. The general B-splines take the form

B
j
m,k xð Þ ¼

x� t
j
k

t
j
kþm�1 � t

j
k

B
j
m�1,k xð Þ þ

t
j
kþm � x

t
j
kþm � t

j
kþ1

B
j
m�1,kþ1 xð Þ

B
j
1,k xð Þ ¼

1 k ≤ x ≤ kþ 1

0 otherwise

(

(34)

and have support suppB
j
m,k xð Þ ¼ t

j
k; t

j
kþm

h i

. The B-spline basis function has simple knots inside

the unit interval and m-tuple knots at 0 and 1, as expressed in Eq. (33). The knots at 0 ad 1

coalesce and form multiple knots for BSWI while the internal knots are simple hence smooth-

ness is unaffected. For the knot sequence on [0,1], t
j
k is given as [38]:

t
j
k ¼

0 �mþ 1 ≤ k < 1

2�jk 1 ≤ k < 2j

1 2j ≤ k ≤ 2j þm� 1

8

>

>

<

>

>

:

(35)

The number of inner scaling functions present in the formulation of BSWI is determined by the

scale j. There must be at least one inner scaling function on the interval [0,1] and this gives rise

to the minimum value of j necessary to ensure this condition is met and is defined as j0:

2j0 ≥ 2m� 1 (36)

The basis B
j
m,k xð Þ from the inner knots corresponds to the mth cardinal B-splines, Nm xð Þ, at

multiresolution j [38]:

Nm xð Þ ¼ m 0; 1;…;m½ � t� xð Þm�1
þ (37)

f
j
m,k xð Þ ¼ B

j
m,k xð Þ ¼ Nm 2jx� k

� �

0 ≤ k < 2j �mþ 1 (38)

where f
j
m,k xð Þ is the BSWI scaling function which can be differentiated m times. The

corresponding B-wavelet with support suppψ
j
m,k xð Þ ¼ k

2j
; kþ2m�1

2j

h i

is expressed as:

ψ
j
m,k xð Þ ¼

1

2m�1

X

2m�2

l¼0

�1ð ÞlN2m lþ 1ð ÞB
jþ1, mð Þ
2m,2iþl xð Þ (39)

B
jþ1, mð Þ
2m,k xð Þ is the mth derivative for the B-spline of order 2m and scale jþ 1 and can be evaluated

explicitly from Eq. (34). Given that the requirement j > j0 ensures at least one inner B-wavelet

is present, the scaling and wavelet function of the BSWI are obtained as [39]:
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f
j
m,k xð Þ ¼

B
j0
m,k 2j�j0x

� �

B
j0
m,0 2j�j0x� 2�j0k

� �

B
j0
m,2j�k�m

1� 2j�j0x
� �

�mþ 1 ≤ k ≤ � 1

0 ≤ i ≤ 2j �m

2j ≤ i ≤ 2j þm� 1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(40)

ψ
j
m,k xð Þ ¼

ψ
j0
m,k 2j�j0x

� �

ψ
j0
m,0 2j�j0x� 2�j0k

� �

ψ
j0
m,2j�k�2mþ1

1� 2j�j0x
� �

�mþ 1 ≤ k ≤ � 1

0 ≤ i ≤ 2j �m

2j ≤ i ≤ 2j þm� 1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(41)

and the scaling function derivatives can be evaluated directly by differentiating Eq. (40).

3. The wavelet finite element method

3.1. Axial rod wavelet finite element

Assume each WFE is divided into equal segments, ns, connected by r ¼ ns þ 1 elemental

nodes, as shown in Figure 1, with axial deformation ui. The total number of degrees of

freedom (DOFs) within each WFE is denoted by n ¼ r for n, r∈N. Vector uef g ¼ u1u2f

⋯ur�1urg
T contains all the axial DOFs in physical space, as illustrated in Figure 2(a), where

ui ¼ u xið Þ represents the elemental node axial deformation DOF at node i corresponding to

coordinate position xi. The nodal natural coordinates is ξi ¼
xi�x1
Le

(0 ≤ ξi ≤ 1, 1 ≤ i ≤ r). The

Daubechies and BSWI scaling functions f
j
z,k xð Þ are used as the interpolating functions and for

a family of order z at multiresolution scale j, the axial deformation

u ξð Þ ¼
X

2j�1

k¼h

a
j
z,kf

j
z,k ξð Þ (42)

Figure 1. Wavelet finite element layout.
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contains the unknown wavelet coefficients a
j
z,k. This gives rise to the vector uef g containing the

axial deformations at all elemental nodes in physical space.

n�1ð Þ uef g¼ n�nð Þ Rw
r

� �

n�1ð Þ aef g (43)

The matrix Rw
r

� �

¼ Φ
j
z ξ1ð Þ


 �

Φ
j
z ξ2ð Þ


 �

⋯ Φ
j
z ξr�1ð Þ


 �

Φ
j
z ξrð Þ


 �

h iT
contains the scal-

ing function vectors Φ
j
z ξið Þ


 �

approximating the axial deformation at the corresponding

elemental nodes and aef g ¼ a
j
z,h a

j
z,hþ1 ⋯ a

j

z,2j�2
a
j

z,2j�1

h iT
. The axial deformation at

any point along the rod element can be generalised as:

u ξð Þ ¼ 1�nð Þ Φ
j
z ξð Þ


 �

n�nð Þ Tw
r

� �

n�1ð Þ uef g (44)

The matrix Tw
r

� �

¼ Rw
r

� ��1
is the axial rod wavelet transformation matrix with the scripts r and

w denoting rod and wavelet respectively. The wavelet based axial rod shape functions can be

evaluated as Nr,e ξð Þf g ¼ Φ
j
z ξð Þ


 �

Tw
r

� �

within each element.

Suppose the axial rod is subjected to nodal point loads f xi and distributed loading f d xð Þ, then

the potential energy within the axial rod Πa can be generally expressed as [40]:

Πa ¼

ðl

0

EA

2

du xð Þ

dx

� 2

dx�
X

i

u xið Þf xi �

ðl

0

f d xð Þu xð Þ dx (45)

where E is the Young’s modulus, A is the cross-sectional area and l is the length of the rod.

Therefore, given the relation highlighted in Eq. (44), the axial stain energy Ua
e within each WFE

of length Le is expressed in natural coordinates as:

Ua
e ¼

1

2

EA

Le
uef gT

ð1

0

Tw
r

� �T dΦj
z ξð Þ

dξ

� �T
dΦj

z ξð Þ

dξ

� �

Tw
r

� �

dξ uef g (46)

The stiffness matrix of the rod element in wavelet space, kwr,e

h i

is computed using the first

derivative of the scaling functions and is symmetric.

Figure 2. (a) Axial rod and (b) Euler Bernoulli beam wavelet finite element layout.
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n� nð Þ kwr,e

h i

¼

ð1

0

Φ
0j
z ξð Þ


 �T
Φ

0j
z ξð Þ


 �

dξ (47)

In order for one to obtain the stiffness matrix in physical space, the element properties and

transformation matrix Tw
r

� �

are applied to the wavelet space stiffness matrix in Eq. (47).

n� nð Þ kpr,e

h i

¼
EA

Le
n�nð Þ Tw

r

� �

T
n� nð Þ kwr,e

h i

n�nð Þ Tw
r

� �

(48)

The load vector containing the axial point loads of the WFE in physical space is obtained as:

n� 1ð Þ f n,pr,e

n o

¼
X

i

Tw
r

� �T
Φ

j
z ξið Þ


 �T
f xi (49)

and the equivalent nodal load vector for the distributed load f d xð Þ in physical space is

n� 1ð Þ f d,pr,e

n o

¼ Le

ð1

0

f d ξð Þ Tw
r

� �T
Φ

j
z ξð Þ


 �T
dξ (50)

When applying the Daubechies wavelet family, the WFE has a total of n ¼ 2j þ L� 2 DOFs.

The wavelet space stiffness matrix is evaluated from the multiscale two-term connection

coefficients a;bΓ
j,d1,d2
k, l a ¼ b ¼ L and d1 ¼ d1 ¼ 1 and is given as:

D
2jþ L� 2ð Þx 2jþ L� 2ð Þð Þ kwr,e

h i

¼ 22j Γj,1,1
� �

(51)

where 22j
� �

is the normalising factor and the matrix Γ
j,1,1

� �

has the entries L;LΓ
j,1,1
k, l for the limits

2� L ≤ k, l ≤ 2j � 1. Similarly, the distributed forces acting on the element require the form Υ
j,m
k

for limits 2� L ≤ k, l ≤ 2j � 1 of connection coefficients and the value of m depends on the order

of the function f d xð Þ of the forces. In the case of the BSWI formulations, the total DOFs is

n ¼ 2j þm� 1 and the condition j ≥ j0 must be satisfied. Therefore, the wavelet space stiffness

matrices of the BSWI axial rod are computed as:

BS
2jþm� 1ð Þ� 2jþm� 1ð Þð Þ

kwr,e

h i

¼

ð1

0

Φ
0j
m ξð Þ


 �T
Φ

0j
m ξð Þ


 �

dξ (52)

3.2. Euler Bernoulli beam wavelet finite element

According to Euler Bernoulli beam theory, it is assumed that the shear deformation effects are

neglected because before and after bending occurs, the plane cross-sections remain plane and

perpendicular to the axial centroidal axis of the beam. The beamWFE of length Le, is divided into

ns equally spaced elemental segments connected by r elemental nodes at coordinate values

xi ∈ x1; xr½ � and i∈N as illustrated in Figure 1. The WFE has the transverse displacement v and

rotation θ taken into account, with corresponding transverse forces f y and moments �m respec-

tively. The transverse displacement and rotation DOFs must be present at each elemental end

node to ensure inter-element compatibility [4–6]. However, the DOFs at the internal elemental
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nodes can be tailored according to the desired requirements and this in turn will affect the total

number of elemental segments and nodes present in each element. In this case the internal WFE

nodes only have the transverse displacement present and the total number of DOFs within each

beam element is n as illustrated in Figure 2(b). Therefore, there are n� 2 displacement DOFs and

2 rotation DOFs in total for eachWFE and consequently r ¼ n� 2 elemental nodes and ns ¼ n� 3

elemental segments. Let the vector {veg ¼ v1 θ1 v2 v3 ⋯f vr�2 vr�1 vrθrg
T denote all the

physical DOFs within the beam element. The displacement and rotation DOFs corresponding to

coordinate position xi ∈ x1; xr½ � i∈N and 1 ≤ i ≤ rð Þ in local coordinates are denoted as vi ¼ v xið Þ

and θi ¼ θ xið Þ. The nodal natural coordinate ξi ¼
xi�x1
Le

(0 ≤ ξi ≤ 1, 1 ≤ i ≤ r). The deflection and

rotation at any point of the wavelet based beam finite element can be approximated by applying

the wavelet scaling functions f
j
z,k xð Þ of order z at multiresolution scale j as interpolating functions.

v ξð Þ ¼
X

2j�1

k¼h

b
j
z,kf

j
z,k ξð Þ

θ ξð Þ ¼
∂v ξð Þ

∂x
¼

1

Le

X

2j�1

k¼h

b
j
z,k

∂f
j
z,k ξð Þ

∂ξ

(53)

Therefore, the DOFs present within the entire beam element can be represented as

n�1ð Þ vef g¼ n�nð Þ Rw
b

� �

n�1ð Þ bef g (54)

Rw
b

� �

¼ Φ
j
z ξ1ð Þ


 �

1
Le

Φ
0j
z ξ1ð Þ


 �

Φ
j
z ξ2ð Þ


 �

⋯ Φ
j
z ξr�1ð Þ


 �

Φ
j
z ξrð Þ


 �

1
Le

Φ
0j
z ξrð Þ


 �

h iT
and

vector bef g contains the unknown wavelet coefficients b
j
z,k representing the beam wavelet

space DOFs.

From Eq. (54), the transverse displacement and rotation at any point of the beam element can

be expressed as:

v ξð Þ ¼ 1�nð Þ Φ
j
z ξð Þ


 �

n�nð Þ Tw
b

� �

n�1ð Þ vef g

θ ξð Þ ¼
1

Le
1�nð Þ Φ

0j
z ξð Þ


 �

n�nð Þ Tw
b

� �

n�1ð Þ vef g (55)

where Tw
b

� �

¼ Rw
b

� ��1
is the beam wavelet transformation matrix which is used to obtain the

wavelet based shape functions for the beam Nb,e ξð Þ

 �

¼ Φ
j
z ξð Þ


 �

Tw
b

� �

. The potential energy

Πb within a Euler Bernoulli beam subjected to concentrated forces f yi, distributed force f d xð Þ

and bending moments �mi can be generally expressed as [40]:

Πb ¼

ðl

0

EI

2

d2v

dx2

� 2

dx�
X

i

f yiv xið Þ �

ðl

0

f d xð Þvdx�
X

k

�mk
dv xkð Þ

dx
(56)

where E is the Young’s modulus, I is the moment of inertia and l is the length of the beam. The

strain energy Ub
e within each beam element of length Le can expressed in terms of the approx-

imation of the transverse displacement via scaling functions as highlighted in Eq. (55).
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Ub
e ¼

1

2

E I

Le
3

vef gT
ð1

0

Tw
b

� �T d2Φj
z ξð Þ

dξ2

� �T
d2Φj

z ξð Þ

dξ2

� �

Tw
b

� �

dξ vef g (57)

This gives rise to the beam WFE stiffness matrix in wavelet space

n� nð Þ kwb,e

h i

¼

ð1

0

Φ
00j
z ξð Þ


 �T
Φ

00j
z ξð Þ


 �

dξ (58)

The vector Φ
0 0 j

z ξð Þ
n o

¼ f
00j
z,h ξð Þ f

00j
z,hþ1 ξð Þ ⋯ f

00j

z,2j�2
ξð Þ f

00j

z,2j�1
ξð Þ

n o

contains the second

derivative of the scaling functions. Taking into account the material properties of the beam, the

wavelet space stiffness matrix is transformed into physical space via the transformation matrix

Tw
b

� �

.

n� nð Þ k
p
b,e

h i

¼
E I

Le
3 n�nð Þ Tw

b

� �

T
n� nð Þ kwb,e

h i

n�nð Þ Tw
b

� �

(59)

The transverse kinetic energy of the beam element is expressed as

Λb
e ¼

1

2
rALe

ð1

0

_v ξð ÞT _v ξð Þdξ (60)

where _v ξð Þ ¼ ∂v ξð Þ
∂t , r is the density and A is the cross-sectional area of the beam. Applying

the scaling functions to approximate the displacements within the beam, the kinetic energy

becomes

Λb
e ¼ _vef gT

1

2
rALe

ð1

0

Tw
b

� �T
Φ

j
z ξð Þ


 �T
Φ

j
z ξð Þ


 �

Tw
b

� �

dξ _vef g (61)

The mass matrix in physical space of the Euler Bernoulli beam element, m
p
b,e

h i

, can be evalu-

ated as:

m
p
b,e

h i

¼ rALe Tw
b

� �T
ð1

0

Φ
j
z ξð Þ


 �T
Φ

j
z ξð Þ


 �

dξ Tw
b

� �

(62)

The vectors containing the element concentrated point loads, bending moments and equiva-

lent distributed loads in physical space respectively are subsequently evaluated as:

n� 1ð Þ f
n,p
b,e

n o

¼
X

r

i¼1
n�nð Þ Tw

b

� �T
n�1ð Þ Φ

j
z ξið Þ


 �T
f yi

n� 1ð Þ f
m,p
b,e

n o

¼
X

k
n�nð Þ Tw

b

� �T
n�1ð Þ Φ

0j
z ξkð Þ


 �T
�mk

n� 1ð Þ f
d,p
b,e

n o

¼ Le

ð1

0

f d ξð Þ n�nð Þ Tw
b

� �T
Φ

j
z ξð Þ


 �T
dξ (63)
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In various engineering problems, the loading conditions analysed vary in location and/or

magnitude with respect to time, e.g., a train travelling over a track, and this is generally

referred to as moving load problems. Assume a moving load of magnitude P travels across a

beam element, as illustrated in Figure 3, from the left at a constant speed of c m�s�1 and is

represented by the function x; tð Þ ¼ Pδ x� x0ð Þ [41]. δ xð Þ is the Dirac Delta function and x0 is

the distance travelled by the moving load at time t. The potential work of the load at this

instant at position ξ0 ¼
x0
Le
in natural coordinates is [1, 30]:

Ω
b
e ξ0ð Þ ¼

ð1

0

Pδ ξ� ξ0ð Þv ξð Þdξ ¼ P vef gT Tw
b

� �T
Φ

j
z ξ0ð Þ


 �T
(64)

Therefore, the element load vector in physical space is evaluated as

f
p,p
b,e tð Þ

n o

¼ P Tw
b

� �T t
Φ

j
z ξ0ð Þ


 �T
(65)

Assuming the moving load transverses to a new position ξ0 within the same WFE, the

numerical values of the shape functions, and consequently load vector, will change accord-

ingly. All other WFEs representing the system with no loading present have zero entries within

the load vectors at that particular time t. When the moving load is acting on a new WFE, the

scaling functions corresponding to the WFE subjected to the moving load are used to obtain

the load vector for that particular element.

When applying the Daubechies wavelet family of order L at multiresolution j, the total DOFs

within a single element is n ¼ 2j þ L� 2 and for this specific layout, the total number of

elemental nodes is r ¼ 2j þ L� 4 and corresponding elemental segments ns ¼ 2j þ L� 5. The

Daubechies wavelet space stiffness and mass matrices of the Euler Bernoulli beam WFE are

obtained from the connection coefficients and are expressed as:

D
2jþ L� 2ð Þ� 2jþ L� 2ð Þð Þ kwb,e

h i

¼ 24j Γj,2,2
� �

(66)

D
2jþ L� 2ð Þ� 2jþ L� 2ð Þð Þ mw

b,e

h i

¼ Γ
j,0,0

� �

(67)

Correspondingly, the connection coefficients of the form Υ
j,m
k for 2� L ≤ k ≤ 2j � 1 are used to

evaluated the distributed loads and the value of m is based on the load function f d xð Þ. For the

Figure 3. Layout of a beam WFE subjected to a moving point load.
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BSWI family of order m and at scale j, there are n ¼ 2j þm� 1 total DOFs, r ¼ 2j þm� 3

elemental nodes and ns ¼ 2j þm� 4 elemental segments within the each WFE for this layout.

The stiffness and mass matrices in wavelet space can be evaluated directly and are obtained as:

BS
2jþm� 1ð Þ� 2jþm� 1ð Þð Þ

kwb,e

h i

¼

ð1

0

Φ
00j
m ξð Þ


 �T
Φ

00j
m ξð Þ


 �

dξ (68)

BS
2jþm� 1ð Þ� 2jþm� 1ð Þð Þ

mw
b,e

h i

¼

ð1

0

Φ
j
m ξð Þ


 �T
Φ

j
m ξð Þ


 �

dξ (69)

3.3. Transversely varying functionally graded Euler Bernoulli beam wavelet

finite element

Functionally graded materials are a recent evolution of composite materials where the material

constituents, hence properties, vary continuously in the desired spatial directions. The need for

such revolutionary materials arose to overcome limitations of conventional composite mate-

rials, for instance, desirable properties would diminished when applied to highly intense

thermal environments or material debonding due to increased stress concentration at material

interfaces [42]. In the formulation of the wavelet based functionally grade beam as presented in

Figure 4(a), of height h, length l and width b, the material distribution is modelled based on the

power law of transverse gradation [43]

P yð Þ ¼ Plo Pratio � 1½ �
y

h
þ
1

2

� n

þ 1

� 

(70)

As illustrated in Figure 4(b), the transverse variation of the effective material properties P(y)

(Young’s modulus) can be infinitely altered via the non-negative volume fraction power law

Figure 4. (a) Cross-section of transversely varying functionally graded beam. (b) Effective Young’s modulus variation of

steel-alumina functionally graded beam for different n. (c) Functionally graded beam layout.
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exponent, n. Pratio is the ratio of the upper and lower surface material properties Pu and Plo

respectively.

The beam WFE has axial deformation ui and transverse deflection vi DOFs at all elemental

nodes and rotation θi DOFs only present at elemental end nodes with corresponding axial

forces f xi, transverse forces f yi and bending moments θi as illustrated in Figure 4(c). The

wavelet scaling functions are implemented as interpolating functions and the axial deforma-

tion, deflection and rotation at any point of the beam element are described by Eqs. (42) and

(53) respectively. However, in order to ensure that the defined DOFs are positioned correctly,

the layout of the element determines the order of scaling functions selected. In this case, the

order of the scaling functions selected to approximate the axial displacement is z� 2 if

the scaling function order approximating the bending DOFs is z. The vector containing

the total number of DOFs, s, present in the functionally graded beam element is hef g ¼

u1 v1 θ1 u2 v2 u3 v3 ⋯ ur�1 vr�1 ur vr θrf gT and subsequently

u ξð Þ ¼ a
1�sð Þ Φ

j
z�2 ξð Þ

n o

s�1ð Þ cef g

v ξð Þ ¼ t
1�sð Þ Φ

j
z ξð Þ


 �

s�1ð Þ cef g

θ ξð Þ ¼
∂v ξð Þ

∂x
¼

1

Le

∂v ξð Þ

∂ξ
¼

1

Le

t
1�sð Þ Φ

0j
z ξð Þ


 �

s�1ð Þ cef g (71)

where the vector cef g contains the unknown wavelet space element DOFs and

a
1�s Φ

j
z�2 ξð Þ

n o

¼ f
j
z�2,h ξð Þ 0 0 f

j
z�2,hþ1 ξð Þ 0 ⋯ 0 f

j

z�2,2j�1
ξð Þ 0 0

n o

t
1�s Φ

j
z ξð Þ


 �

¼ 0 f
j
z, i ξð Þ f

j
z, iþ1 ξð Þ 0 ⋯ 0 f

j

z,2j�2
ξð Þ f

j

z,2j�1
ξð Þ

n o

t
1�s Φ

0j
z ξð Þ


 �

¼ 0 f
0j
z, i ξð Þ f

0j
z, iþ1 ξð Þ 0 ⋯ 0 f

0j

z,2j�2
ξð Þ f

0j

z,2j�1
ξð Þ

n o

(72)

Therefore, the DOFs present within the entire beam element can be represented as

s�1 hef g¼ s�s Rw
p

h i

s�1 cef g (73)

and consequently

u ξð Þ ¼ a
1�sð Þ Φ

j
z ξð Þ


 �

s�sð Þ Tw
p

h i

s�1ð Þ hef g

v ξð Þ ¼ t
1�sð Þ Φ

j
z ξð Þ


 �

s�sð Þ Tw
p

h i

s�1ð Þ hef g

θ ξð Þ ¼
1

Le

t
1�sð Þ Φ

0j
z ξð Þ


 �

s�sð Þ Tw
p

h i

s�1ð Þ hef g (74)

The wavelet transformation matrix Tw
p

h i

¼ Rw
p

h i�1
. The strain energy of the functionally

graded beam element, Ue, is defined as
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Ue ¼
b

2

ðh
2

�h
2

ð1

0

E yð Þ
1

Le

∂u ξð Þ

∂ξ

� T
∂u ξð Þ

∂ξ

� 

�
y

Le
2

∂
2v ξð Þ

∂ξ2

� T
∂u ξð Þ

∂ξ

� 

"

�
y

Le
2

∂u ξð Þ

∂ξ

� T
∂
2v ξð Þ

∂ξ
2

� 

þ
y2

Le
3

∂
2v ξð Þ

∂ξ
2

� T
∂
2v ξð Þ

∂ξ
2

� 

#

dξ dy

(75)

where Le is the length of the element and E yð Þ the effective Young’s modulus obtained from

Eq. (70). Let

A Ee ¼

ð

h

2

�
h

2

E yð Þdy ¼

ð

h

2

�
h

2

Eu � El½ �
y

h
þ
1

2

� n

þ Eldy

BEe ¼

ð

h

2

�
h

2

y E yð Þdy ¼

ð

h

2

�
h

2

y Eu � El½ �
y

h
þ
1

2

� n

þ El

� 

dy

CEe ¼

ð

h

2

�
h

2

y2E yð Þdy ¼

ð

h

2

�
h

2

y2 Eu � El½ �
y

h
þ
1

2

� n

þ El

� 

dy

(76)

AEe ,
BEe and CEe denote axial, axial-bending coupling and bending stiffness of the WFE

respectively. The wavelet based physical space elemental stiffness matrix of the beam, kwe
� �

, is

A
s�sð Þ kwe

� �

¼

ð1

0

bAEe

Le
Tw
p

h iT
a ∂Φ

j
z�2 ξð Þ

∂ξ

( )T

a ∂Φ
j
z�2 ξð Þ

∂ξ

( )

Tw
p

h i

dξ

B
s�sð Þ kwe

� �

¼

ð1

0

bBEe

Le
2

Tw
p

h iT
t ∂

2
Φ

j
z ξð Þ

∂ξ
2

� �T

a ∂Φ
j
z�2 ξð Þ

∂ξ

( )

Tw
p

h i

dξ

C
s�sð Þ kwe

� �

¼

ð1

0

bBEe

Le
2

Tw
p

h iT
a ∂Φ

j
z�2 ξð Þ

∂ξ

( )T

t ∂
2
Φ

j
z ξð Þ

∂ξ
2

� �

Tw
p

h i

dξ

D
s�sð Þ kwe

� �

¼

ð1

0

bCEe

Le
3

Tw
p

h iT
t ∂

2
Φ

j
z ξð Þ

∂ξ
2

� �T

t ∂
2
Φ

j
z ξð Þ

∂ξ
2

� �

Tw
p

h i

dξ

s�sð Þ kpe
� �

¼ A kpe
� �

� B kpe
� �

� C kpe
� �

þ D kpe
� �

(77)

The kinetic energy of the functionally graded beam element, Λe, is defined as

Λe ¼
1

2

ðb

o

dz

ðh
2

�h
2

ð1

0

r yð Þ Le _u ξ; tð Þ _u ξ; tð Þð Þ � y _u ξ; tð Þ
∂ _v ξ; tð Þ

∂x

� 

� y
∂ _v ξ; tð Þ

∂ξ
_u ξ; tð Þ

� �

þ
y2

Le

∂ _v ξ; tð Þ

∂x

∂ _v ξ; tð Þ

∂x

� 

þ Le _v ξ; tð Þ _v ξ; tð Þð Þ



dξ dy

(78)

r yð Þ is the effective density also obtained from Eq. (70). Let the inertial coefficients be denoted as:
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The wavelet based physical space elemental mass matrix of the beam, m
p
e

� �

, is
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4. Numerical examples

Example 1: A uniform axial cantilever rod (free-fixed) subjected to linear varying load

q xð Þ ¼ �q0 x has a uniform cross sectional area, A ¼ A0, Young’s Modulus, E ¼ E0 and length

l. The exact solution for displacement at a particular point x can be obtained by solving

u xð Þ ¼ 1
EA

Ð

x

o

P xð Þdx ¼ 1
E0A0

Ð

q0
x2

2 dx [40]. One WFE is used to represent the rod using

Daubechies and BSWI WFEM approaches and the results are compared with the exact, h-

FEM and p-FEM formulations. The governing equation of the system for FEM and WFEM is

Kr½ � Urf g ¼ Frf g (81)

where Kr½ � is the system stiffness matrix, Urf g is the system vector containing the DOFs and

Frf g is the loading vector of the system. The axial deformation of the rod is analysed at the

arbitrary point 0.1l and the rate of convergence of the different approaches is compared in

Figure 5. The plot shows the absolute relative error of the axial deformation and

corresponding number of DOFs. The FEM (h-FEM) solution involves increasing the number

of elements, p-FEM involves increasing the order of the polynomials (one element only) and
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both Daubechies and BSWI WFEMs have the order and/or multiresolution scale j increased.

The results show that although the rates of convergence of all the methods are similar, the

WFEM approaches have a slightly improved rate with only one element employed.

Example 2: A simply supported two-stepped beam of length 2l has non-uniform flexural

stiffness represented by the unequal cross sections; the bending stiffness of the right and left

half is given as E1I1 ¼ E0I0 and E2I2 ¼ 4 E0I0 respectively. The entire beam is subjected to a

uniformly distributed load q(x) = 1. The flexural stiffness function is expressed as [44]:

E xð ÞI xð Þ ¼ E0I0 1� γ bH x� x0ð Þ
h i

(82)

where γ ¼ 0:75 is defined as the decrement of discontinuity intensity and satisfies the condi-

tion 0 ≤γ ≤ 1 to ensure positivity of the flexural stiffness. bH x� x0ð Þ is the Heaviside function for

0 ≤ x0 ≤ 2l. The general analytical governing equation is

E0I0 1� γ bH x� x0ð Þ
h i

v
0 0

xð Þ
n o0 0

¼ q xð Þ (83)

The FEM and WFEM governing equation is summarised as:

Kb½ � Vbf g ¼ Fbf g (84)

The vector Vbf g contains the system DOFs within the entire beam, Kb½ � is the beam stiffness

matrix and Fbf g is the equivalent system load vector. The h-FEM (FEM-8; 8 elements), p-FEM

Figure 5. Comparison of the convergence of the axial deformation at point x = 0.1l.
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of order 9 (p-FEM-9; 2 elements), Daubechies WFEM of order L ¼ 10 and scale j ¼ 1 (D101; 2

elements) and the BSWI WFEM of order m ¼ 3 and scale j ¼ 3 (BSWI33; 2 elements) are

selected for comparison with the exact solution governed by Eq. (83). Each approach has a

total of 18 DOFs within the beam. The deflection and rotation across the beam is presented in

Figure 6(a) and (b) respectively. The percentage errors of the deflections are compared for

the different approaches and presented in Figure 6(c). All numerical approaches describe the

deflection and rotation across the beams very accurately. However, given that both the

Daubechies and BSWI WFEM deflection solutions have a maximum error of 1.28% in compar-

ison to 3.82% from the h-FEM and p-FEM approaches, the WFEMs exhibit better convergence

to the exact solution. Furthermore, improved accuracy is attained with fewer elements

implemented than the h-FEM and p-FEM and this results in reduced computational time.

Example 3: A steel-alumina functionally graded beam of length l and uniform cross-sectional

area A ¼ 0:36 m2 (height h ¼ 0:9 m and width b ¼ 0:4 m) is fully alumina at the upper surface

and fully steel at the lower surface with material properties; Eu ¼ 3:9� 1011 Pa, ru ¼ 3:96� 103

kg�m�3 and El ¼ 2:1� 1011 Pa, rl ¼ 7:8� 103 kg�m�3 respectively (Eratio ¼
Eu

El
; rratio ¼

ru

rl
). E and

r denote the Young’s modulus and density respectively. The slenderness ratio for the beam is
l h= ¼ 100. The free vibration of the steel-alumina beam is analysed for the boundary conditions

pinned-pinned (PP), pinned-clamped (PC), clamped-clamped (CC) and clamped-free (CF), for

Figure 6. (a) Deflection and (b) rotation (c) comparison of the deflection percentage error across a simply supported

stepped beam subjected to a uniformly distributed load q(x) = 1.
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different values of n in Eq. (70). The free vibration of the functionally graded beam is governed

by [45]

K½ � � ω
2
M½ �

� �

�U

n o

¼ 0 (85)

The matrices K½ � and M½ � are the stiffness and mass matrices for the functionally graded beam,

ω is the natural frequency and �U

n o

is the vector containing the DOFs within the entire beam.

The ith non-dimensional frequency λi of the FGM beam is evaluated from the relation

λi
2 ¼ ωil

2 12 rl

Elh
2

� 	1
2

. The functionally graded beam is modelled for the different approaches using

2 Daubechies WFEs (L ¼ 12; j ¼ 0; 37 DOFs); one BSWI (m ¼ 5; j ¼ 4; 38 DOFs) WFE and 12

h-FEM elements (39 DOFs). The results of the first 3 non-dimensional natural frequencies of the

beam are presented in Table 1 for different boundary conditions and material distributions. It is

n = 0 n = 0.1 n = 0.5 n = 1 n = 5 n = 10 n = 10
4

λ1 PP BSWI55 4.34462 4.1943 3.84903 3.65795 3.37139 3.29504 3.33251

FEM 4.34463 4.19431 3.84912 3.65811 3.3715 3.2951 3.33258

D120 4.34462 4.1943 3.84903 3.65795 3.37139 3.29504 3.33251

BSWI54 4.34462 4.1943 3.84903 3.65795 3.37139 3.29504 3.33251

PC BSWI55 5.43022 5.24233 4.81079 4.57197 4.21381 4.11838 3.92681

FEM 5.43024 5.24238 4.81112 4.57253 4.21419 4.11856 3.92682

D120 5.43023 5.24234 4.8108 4.57197 4.21382 4.11839 3.92681

BSWI54 5.43022 5.24233 4.81079 4.57197 4.21381 4.11839 3.92681

CC BSWI55 6.54131 6.31498 5.79514 5.50745 5.07601 4.96105 4.73028

FEM 6.54137 6.31509 5.79585 5.50867 5.07685 4.96145 4.73028

D120 6.54132 6.31498 5.79514 5.50745 5.07601 4.96106 4.73028

BSWI54 6.54131 6.31498 5.79514 5.50745 5.07601 4.96105 4.73028

CF BSWI55 2.59318 2.50345 2.29737 2.18333 2.01229 1.96671 1.87523

FEM 2.59318 2.50346 2.2974 2.18337 2.01232 1.96673 1.87523

D120 2.59318 2.50345 2.29737 2.18333 2.01229 1.96671 1.87523

BSWI54 2.59318 2.50345 2.29737 2.18333 2.01229 1.96671 1.87523

λ2 PP BSWI55 8.68871 8.38806 7.69754 7.31541 6.74237 6.58969 6.66461

FEM 8.68894 8.38834 7.69844 7.31684 6.74338 6.59024 6.66537

D120 8.68968 8.389 7.6984 7.31623 6.74313 6.59043 6.66535

BSWI54 8.68871 8.38806 7.69754 7.31541 6.74238 6.58969 6.66461

PC BSWI55 9.77473 9.4365 8.65966 8.22977 7.58512 7.41335 7.06849

FEM 9.77513 9.43702 8.66145 8.23263 7.58713 7.41442 7.06879

D120 9.7765 9.43821 8.66124 8.23127 7.5865 7.4147 7.06977
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observed that all approaches give highly accurate results with respect to the reference (BSWI55),

particularly for the fundamental frequencies. Furthermore, the BSWI WFEM solution exhibits

better levels of accuracy than the Daubechies WFEM and h-FEM solutions for the higher fre-

quencies. Both WFEM solutions achieve high levels of accuracy with the described layout

of having the rotation DOFs present at elemental and nodes and using fewer elements that the

h-FEM approach.

Assume the same beam, with simply supported boundary conditions and length l ¼ 20 m, is

subjected to amoving load of magnitude P ¼ 1� 105 N travelling across at cm�s�1. The behaviour

of the beam is described using Euler Bernoulli beam theory and is assumed to be

n = 0 n = 0.1 n = 0.5 n = 1 n = 5 n = 10 n = 10
4

BSWI54 9.77473 9.4365 8.65967 8.22977 7.58512 7.41335 7.06849

CC BSWI55 10.8597 10.4839 9.62083 9.14322 8.42702 8.23619 7.85305

FEM 10.8604 10.4848 9.62387 9.14808 8.43044 8.238 7.85355

D120 10.8636 10.4877 9.62433 9.14655 8.43009 8.23918 7.8559

BSWI54 10.8597 10.4839 9.62083 9.14322 8.42702 8.23619 7.85305

CF BSWI55 6.49133 6.26671 5.75083 5.46534 5.03722 4.92315 4.69413

FEM 6.49138 6.2668 5.75131 5.46615 5.03778 4.92342 4.69417

D120 6.49134 6.26673 5.75084 5.46535 5.03723 4.92316 4.69415

BSWI54 6.49133 6.26671 5.75083 5.46534 5.03722 4.92315 4.69413

λ3 PP BSWI55 13.0317 12.5808 11.545 10.9719 10.1125 3.29504 3.33251

FEM 13.0334 12.5826 11.5489 10.9774 10.1166 3.2951 3.33258

D120 13.0461 13.5947 11.5578 10.984 10.1237 3.29504 3.33251

BSWI54 13.0317 12.5808 11.545 10.9719 10.1125 3.29504 3.33251

PC BSWI55 14.1176 13.629 12.507 11.8861 10.9551 10.7071 10.209

FEM 14.1201 13.6318 12.5131 11.895 10.9617 10.711 10.2108

D120 14.1444 13.655 12.5308 11.9088 10.9761 10.7275 10.2284

BSWI54 14.1176 13.629 12.507 11.8861 10.9551 10.7071 10.209

CC BSWI55 15.2034 14.6773 13.4689 12.8003 11.7977 11.5306 10.9942

FEM 15.2071 14.6813 13.4779 12.8135 11.8074 11.5364 10.9968

D120 15.2662 14.7379 13.5247 12.8533 11.8466 11.5783 11.0396

BSWI54 15.2034 14.6773 13.469 12.8003 11.7978 11.5306 10.9942

PC BSWI55 10.8611 10.4853 9.62205 9.14437 8.42814 8.2373 7.85409

FEM 10.8618 10.4861 9.62437 9.14797 8.4307 8.23872 7.85458

D120 10.8667 10.4907 9.62702 9.1491 8.43249 8.24155 7.85814

BSWI54 10.8611 10.4853 9.62206 9.14438 8.42815 8.2373 7.8541

Table 1. The non-dimensional frequencies of a steel-alumina FG beam for different transverse varying distributions and

boundary conditions.
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undamped. The governing equation describing the dynamic behaviour of the system is given

by [45]:

M½ � €U tð Þ
n o

þ K½ � U tð Þf g ¼ F tð Þf g (86)

where €U tð Þ
n o

and U tð Þf g represent the system acceleration and displacement vectors at time t.

F tð Þf g is the moving load vector. The deflection of the beam v x; tð Þ, as the moving load travels

across, is normalised as a non-dimensional parameter v x; tð Þ=v0 where v0 ¼
Pl3

48ElI
is the deflec-

tion at the centre of the simply supported functionally graded beam when subjected to a static

load of magnitude P at the centre. The maximum normalised deflection mid-span of the beam

is analysed over a moving load velocity range 0 < c ≤ 300 m�s�1 at increments of 1 m�s�1 to

identify the critical velocity for the different variations of the constituent materials as illus-

trated in Figure 7. The results present are obtained from the BSWI (2 element; m ¼ 4; j ¼ 3; 37

DOFs) WFEM solution. The h-FEM (12 elements; 39 DOFs) and Daubechies (2 elements;

L ¼ 12; j ¼ 0; 37 DOFs) WFEM solution gives similar results. The values of the critical moving

load velocity and corresponding maximum non-dimensional displacement are presented in

Table 2 for the different values of n for all approaches. The results are compared with those

presented in [46]. Both the Daubechies and BSWI WFE M solutions very accurately yield the

correct values.

Figure 7. Variation of the maximum non-dimensional vertical displacement at the centre of a simply supported steel-

alumina beam with respect to moving load velocities, for different n.
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5. Conclusions

A generalised formulation framework for the construction of an axial rod, Euler Bernoulli beam

and functionally graded two-dimensional wavelet based finite elements is presented. The

Daubechies and BSWI families are selected due to their desirable properties, particularly compact

support, ‘two-scale’ relation and multiresolution. It is illustrated via a set of numerical examples

that the WFEMs perform exceptionally well when compared to conventional h-FEM and p-FEM

where high levels of accuracy are achieved with fewer elements required and the approaches

converge more rapidly to the exact solution. Furthermore, the methods are able to accurately

describe the behaviour of static and dynamic systems with singularities, variation in material

properties and loading conditions present. This exhibits the vast potential of the method in the

analysis of more complicated systems and the ability to alter the multiresolution scales without

affecting the original mesh allows effective and efficient avenues solution accuracy improvement.

Author details

Mutinda Musuva and Cristinel Mares*

*Address all correspondence to: cristinel.mares@brunel.ac.uk

Department of Mechanical, Aerospace and Civil Engineering, College of Engineering, Design

and Physical Sciences, Brunel University, London, England, UK

n Critical velocity c m∙s�1

Max
v l

2;tð Þ
v0

� �

Ref. [46] FEM D120 BSWI43 Ref. [46] FEM D120 BSWI43

0 252 252 252 252 0.9328 0.9322 0.9323 0.9322

0.1 – 235 235 235 – 0.9863 0.9864 0.9863

0.2 222 222 222 222 1.0344 1.0340 1.0340 1.0340

0.5 198 198 198 198 1.1444 1.1435 1.1437 1.1436

1 179 178 178 178 1.2503 1.2491 1.2495 1.2493

2 164 164 164 164 1.3376 1.3363 1.3368 1.3365

3 – 157 158 158 – 1.3747 1.3751 1.3748

5 – 151 151 152 – 1.4217 1.422 1.4218

7 – 148 148 148 – 1.4567 1.4570 1.4568

10 – 145 145 145 – 1.4974 1.4976 1.4974

104 132 132 132 132 – 1.7308 1.7309 1.7308

Table 2. The non-dimensional frequencies of a steel-alumina FG beam for different transverse varying distributions and

boundary conditions.
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