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1. Introduction 

Warfarin, a coumarin vitamin K antagonist, is the most widely prescribed anticoagulant 
agent for the control and prevention of atrial fibrillation-related thrombus formation, stroke, 
and arterial and venous thrombembolism (Hirsh J et al., 1998). The recommend warfarin 
therapy consists of the lowest dose required to maintain the target international normalized 
ratio (INR) because of the drug’s narrow therapeutic window. However, there can be a 20-
fold difference in the dose required by patients to achieve this target INR. It is well known 
that cytochrome P450 (CYP), predominantly CYP2C9, activity is an important source of 
variability (Kaminsky LS and Zhang ZY, 1997) . Additionally, Rieder et al. (2005) have 
reported that an effect of the vitamin K epooxide reductase complex subunit 1 gene 
(VKORC1) has an important role on dose requirement. However, Takahashi et al. (2006) 
shows that Caucasians and African-Americans have high frequencies of VKORC1 and 
CYP2C9 genotypes, which lead to either reduced metabolic activity or attenuated sensitivity 
to warfarin, whereas only about 20% of the Japanese population possesses these genotypes. 
Therefore, further study of sources of variability in warfarin dose requirements among 
Japanese patients is warranted.  

Warfarin is administered clinically as a racemic mixture of the S- and R-enantiomer (Fig. 1), 
however S-warfarin is 3–5 times more potent than R-enantiomer. Both enantiomers are 
extensively metabolized in the liver (Chan E et al., 1994; Takahashi H and Echizen H, 2001). 
The more potent S-enantiomer is metabolized mainly to S-7-hydroxywarfarin by CYP2C9, 
whereas R-enantiomer is metabolized to R-6, R-7, R-8 and R-10-hydroxywarfarin by several 
CYPs involving CYP1A2, CYP3A4 and CYP2C19 (Kaminsky LS and Zhang ZY, 1997). 
Among these CYPs, it has been shown that both CYP2C9 and CYP2C19 are subject to single 
nucleotide polymorphisms (SNPs). In Japanese, because the heterozygous frequency of the 
CYP2C9 Leu359 allele is 3.5% (Takahashi H et al., 1998) and the frequency of the defective 
CYP2C19 alleles is 18.8% (Kubota T et al., 1996), the latter may be more closely associated 
with the clinical effect of warfarin. In this chapter, we therefore focus on the effect of 
CYP2C19 genotypes on the pharmacokinetics and pharmacodynamics of warfarin 
enantiomers. In addition, we characterize the impact of omeprazole, a CYP2C19 inhibitor, 
on the stereoselective pharmacokinetics and pharmacodynamics of warfarin between 
CYP2C19 genotypes. 
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Fig. 1. Metabolic pathways of R-warfarin and S-warfarin. 

2. Analytical methods  

2.1 Genotypic identification  

17 healthy Japanese volunteers (12 males and 5 females) were enrolled in this study after 

giving written informed consent. All subjects were enrolled in this study after giving written 

informed consent. Each Subject underwent a CYP2C19 genotyping test by use of a 

polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method 

with allele–specific primer for identifying the CYP2C19 wild-type (*1) gene and the 2 

mutated alleles, CYP2C19*2 (*2) in exon 5 and CYP2C19*3 (*3) in exon 4 (De Morais SM et 

al., 1994), and they were classified into 2 genotype groups as follows: homozygous extensive 

metabolizers (hmEMs, *1/*1, 10 subjects), poor metabolizers (PMs, *2/*2 or *2/*3, 7 

subjects). Similarly, CYP2C9 genotyping test by use of a PCR-RFLP method with allele–

specific primer was performed for identifying the CYP2C9 wild-type (*1) gene and the 2 

mutated alleles, CYP2C9*2 (Arg144Cys) and CYP2C9*3 (Ile359Leu) (Yasar U et al., 1999). 

Alleles in which neither CYP2C9*2 nor CYP2C9*3 variants were identified were regarded as 

wild type in all subjects. 

2.2 Assay 

Plasma concentrations of warfarin enantiomers and S-7-hydoxywarfarin were determined 
using high performance liquid chromatography (HPLC) method developed in our 
laboratory (Uno T et al., 2007). In brief, warfarin enantiomers, S-7-hydroxywarfarin and an 
internal standard, diclofenac sodium, were extracted from 1 ml of plasma sample using 
diethyl ether-chloroform (80:20, v/v). The extract was injected onto column I (TSK 
precolumn BSA-C8, 5 μm, 10 mm x 4.6 mm i.d.) for clean-up and column II (Chiralcel OD-
RH analytical column, 150 mm x 4.6 mm i.d.) coupled with a guard column (Chiralcel OD-
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RH guard column, 10 mm x 4.6 mm i.d.) for separation. The mobile phase consisted of 
phosphate buffer-acetonitrile (84:16 v/v, pH 2.0) for clean-up and phosphate buffer-
acetonitrile (45:55 v/v, pH 2.0) for separation. The peaks were monitored with an ultraviolet 
detector set at a wavelength of 312 nm, and total time for chromatographic separation was 
about 25 minutes. The retention times of S-7-hydoxywarfarin, R-warfarin, I.S. and S-warfarin 
were 17.6 min, 19.1 min, 20.0 min and 21.2 min, respectively. The validated concentration 
ranges of this method were 3-1000 ng/ml for R- and S-warfarin, and 3-200 ng/ml for R- and S-
7-hydroxywarfarin, respectively. Intra- and inter-day coefficients of variation were less than 
4.4 and 4.9% for R-warfarin and 4.8 and 4.0% for S-warfarin, and 5.1 and 4.2% for R-7-
hydroxywarfarin and 5.8 and 5.0% for S-7-hydroxywarfarin at the different concentrations. 
The limit of quantification was 3 ng/ml for both warfarin and 7-hydroxywarfarin enantiomers. 
Plasma samples for the pharmacokinetic study were stored at -20 ˚C and analyzed within 3 
months after sampling, and then were stable at -70 ˚C for 12 months. 

Plasma concentrations of omeprazole and 5-hydroxyomeprazole were quantitated using 
HPLC method developed in our laboratory (Shimizu M et al., 2006). In brief, after 
alkalization with 0.1 mL of 0.5 M disodium hydrogen phosphate, 1 mL plasma was 
extracted with 4 mL of diethyl ether-dichloromethane (55:45, v/v). The organic phase was 
evaporated at 60 ˚C to dryness. The residue was dissolved with 30 μL of methanol and 100 
μL of 50 mM disodium hydrogen phosphate buffer (pH 9.3), and then a 30-μL aliquot was 
injected to an HPLC system (SHIMADZU CLASS-VP, SHIMADZU Corporation, Kyoto, 
Japan), with a Inertsil ODS-80A column as an analytical column (particle size 5 μm; GL 
Science Inc, Tokyo, Japan). The mobile phase consisted of phosphate buffer-acetonitrile-
methanol (65:30:5 v/v/v, pH6.5). Flow rate was 0.8 mL/min and wavelength was set at 302 
nm. Limit of quantification was 3 ng/mL for omeprazole and 5-hydroxyomeprazole. Intra- 
and inter-day coefficient variations were less than 5.1 and 6.6% for omeprazole 
concentrations ranging from 4 to 1600 ng/mL and 4.6 and 5.0% for 5-hydroxyomeprazole 
concentration ranging from 4 to 400 ng/mL, respectively.  

3. Pharmacokinetics of warfarin enantiomers  

We examined the pharmacokinetics of warfarin enantiomers by administering 10 mg of 

racemic warfarin to 17 healthy volunteers (Uno T et al., 2008). Blood samples were obtained 

before and over the course of 120 hours after dosing for the determination plasma warfarin 

enantiomer concentrations and prothrombin time-INR (PT-INR). Fig. 2 shows the mean 

plasma concentration-time curves for R- and S-warfarin between the CYP2C19 genotypes. 

The mean pharmacokinetic parameters of these compounds are summarized in Table 1. 

In this study, the area under the plasma concentration-time curve (AUC0-∞) and the 
elimination half-life (t1/2) of R-warfarin were about 2-fold greater than those of S-warfarin in 
17 subjects (Table 1). These values of R- and S-warfarin were in line with a previous report 
in which the same dose of racemic warfarin was administered (Lilja JJ et al., 1984). 
Additionally, AUC0-∞ and t1/2 of R-warfarin in PMs were significantly greater than those in 
hmEMs (P < 0.001 and P = 0.010, respectively). Similarly, there is a significant difference (P = 
0.007) in the apparent oral clearance (CL) in hmEMs compared with that in PMs. The S/R 
ratios of AUC0-∞ of warfarin enantiomers were 0.51 in hmEMs and 0.37 in PMs (P = 0.005). 
Whereas, no difference was found in all pharmacokinetic parameters of S-warfarin and S-7-
hydroxywarfarin in hmEMs compared with PMs of CYP2C19. 
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Fig. 2. Plasma concentrations-time curves (mean + S.D.) of R-warfarin or S-warfarin in 
hmEMs (R-; open circles, S-; open square) and PMs (R-; closed circles, S-; closed square) 
after a single dose of 10 mg warfarin. 

4. Drug interaction between omeprazole and warfarin enantiomers 

Omeprazole 20 mg/daily was given orally to 17 healthy volunteers for 11 days, and on day 

7, a single dose of racemic warfarin 10 mg was added (Uno T et al., 2008).  

The pharmacokinetic parameters are summarized in Table 1. In hmEMs, the omeprazole 

treatment significantly increased R-warfarin AUC0-∞ (P = 0.004), and prolonged its t1/2 (P = 

0.017) without any effect on R-warfarin Cmax or tmax. However, the omeprazole treatment did 

not alter any pharmacokinetic parameters of S-warfarin in both hmEMs and PMs as well as 

those of R-warfarin in hmEMs. Consequently, the omeprazole treatment decreased the S/R 

enantiomer ratio of warfarin AUC0-∞ from 0.51 to 0.43 in hmEMs (P = 0.010), but not in PMs.  

In addition, significant differences were found in mean Cmax (P < 0.001), t1/2 (P = 0.005), and 

AUC0-24 (P < 0.001) of omeprazole between different CYP2C19 genotypes, though there was 

no difference in mean Cmax or AUC0-24 of 5-hydroxyomeprazole between hmEMs and PMs.  
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AUC, area under plasma concentration-time curve; Cmax, peak concentration; tmax, time to Cmax; t1/2, 
elimination half-life; CL, apparent oral clearance. The S/R ratios of AUC; AUC0-∞ S-warfarin / AUC0-∞ 

R-warfarin. The metabolic ratio; AUC0-∞ of S-7-hydroxywarfarin / AUC0-∞ of S-warfarin. 
*P <0.05,**P <0.01, ***P <0.001, between hmEMs and  PMs., †P <0.05,††P <0.01,  between control and 
omeprazole phase. Data are shown as mean and 95% confidence interval ; tmax  and fold change data are 
shown as a median wich a range. 

Table 1. The summary of pharmacokinetics of warfarin enantiomers  

5. Pharmacodynamics of warfarin 

No significant difference was found between hmEMs and PMs in either the PT-INR AUC0-

120 or the PT-INR max during the placebo phase, and the omeprazole treatment did not 

affect these parameters in both hmEMs and PMs (Uno T et al., 2008).  

6. The effect of CYP2C19 genotypes on the pharmacokinetics  

Previous studies in patients with different CYP2C19 genotypes reported not to affect 
plasma R-warfarin concentrations at the steady state in clinical studies, in which the 
concentrations were evaluated at a one sampling point (Obayashi K et al., 2006; Scordo 
MG et al., 2002; Takahashi et al., 1998). However, two of the reports (Obayashi K et al., 
2006; Scordo MG et al., 2002) observed that the S/R ratio based on steady-state 
concentrations in PMs was smaller than that in hmEMs. The third study (Takahashi et al., 
1998) compared PMs with EMs which included both hmEMs and heterozygous EMs with 
one mutated CYP2C19 allele. Therefore, the present study was designed to evaluate the 
elimination phase of warfarin and examine the effect of the CYP2C19 genotype on the 
pharmacokinetics of warfarin enantiomers. Although the pharmacokinetics was measured 
after a single administration in this study, our results indicated that the plasma 
concentrations and t1/2 of R-warfarin in PMs were markedly higher compared with those 
of the corresponding R-enantiomer in hmEMs. In addition, the AUC0-∞ S/R ratio in PMs 
decreased significantly more than that in hmEMs, thereby showing that the 
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pharmacokinetics of R-warfarin may be significantly affected by CYP2C19 polymorphism. 
In contrast, no difference was found in any pharmacokinetic parameters of S-warfarin 
between the hmEMs and the PMs. Consequently, these findings suggest that CYP2C19 
activity is an important determinant of R-warfarin pharmacokinetics.  

We also demonstrated that the reported interaction of R-warfarin with omeprazole was 

found only in the hmEMs of CYP2C19. In previous pharmacokinetic studies (Sutfin T et al., 

1989; Unge P et al., 1992), omeprazole has been reported to cause a minor but significant 

increase in R-warfarin plasma concentrations [9.5% (Unge P et al., 1992) and 12% (Sutfin T et 

al., 1989)]. In our present study, although the pharmacokinetics of warfarin enantiomers of 

the PMs were not affected by the omeprazole treatment, mean R-warfarin AUC0-∞ and t1/2 of 

the hmEMs increased after the omeprazole treatment to the levels comparable to those of the 

PMs. Mean R-warfarin AUC0-∞ of our hmEMs showed an 18 % increase, and the increase 

was greater than that of the previous studies (Sutfin T et al., 1989; Unge P et al., 1992), 

probably due to recruiting the same genotype in the present study. Omeprazole is known to 

be an inhibitor of some CYP enzymes including CYP2C9 and 2C19 (Ko JW et al., 1997; Li XQ 

et al., 2004). CYP2C9 is known to be responsible for the biotransformation from S-warfarin 

to S-7-hydroxywarfarin (Kaminsky LS and Zhang ZY, 1997), and the ratio of S-7-

hydroxywarfarin AUC to S-warfarin AUC would reflect the in vivo activity of CYP2C9. 

Previous report suggested that the clearance of omeprazole is markedly reduced and plasma 

concentrations of omeprazole in CYP2C19 PMs are much more elevated than those in 

CYP2C19 EMs (Sohn DR et al., 1992).  Increased plasma concentrations of omeprazole in 

CYP2C19 PMs might affect the pharmacokinetics of warfarin S-enantiomer, a substrate of 

CYP2C9 (Kaminsky LS and Zhang ZY, 1997), as well as its R-enantiomer, compared to those 

in CYP2C19 EMs. In this study, the inhibitory effect of omeprazole was noted only in the 

hmEMs of CYP2C19 despite higher omeprazole concentrations in the PMs, and the AUC0-∞ 

ratio of S-7-hydroxywarfarin to S-warfarin was relatively constant between the placebo and 

the omeprazole phases, suggesting that the 7-day administration of omeprazole 20 mg once 

daily would affect the CYP2C19 activity solely.  

7. The effect of CYP2C19 genotypes on the pharmacodynamics 

Interestingly, no significant difference was found in PT-INR between the hmEMs and PMs 
in both the control and the omeprazole phases even though the CYP2C19 genotypes affected 
the R-warfarin pharmacokinetic parameters. However, these findings are not surprising 
because the anticoagulant effect of S-enantiomer is 3-5 times more potent than that of R-
enantiomer (Takahashi H and Echizen H, 2001), and a concentration rises of R-enantiomer 
was seemed to have little influence on the anticoagulant effect of warfarin. These results 
therefore suggest that altered pharmacokinetics of R-warfarin may play a minor role in 
determining the average clinical doses of warfarin. Moreover, these results also imply that 
inhibition of the in vivo CYP2C19 activity by the co-administration of a CYP2C19 inhibitor, 
such as omeprazole, lansoprazole or fluvoxamine (Hemeryck A and Belpaire FM, 2002; Ko 
JW et al., 1997; Li XQ et al., 2004), may scarcely modify the anticoagulant effects of warfarin. 
Recently, Rieder et al. (2005) have shown that there is an effect of the VKORC1 on dose 
requirement. Furthermore, Obayashi et al. (2006) reported that the genotyping of the 
vitamin K epooxide reductase complex subunit 1 gene (VKORC1) may be more predictive of 
the anticoagulant effect than genotyping of CYPs, which reflects the warfarin plasma 
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concentrations. Therefore, these studies suggest that VKORC1 activity may be an important 
determinant of the pharmacodynamics of warfarin in Japanese patients.  

8. Conclusion 

These results indicate that CYP2C19 activity is important in the pharmacokinetics of R-
warfarin because the pharmacokinetics of warfarin enantiomers were different between the 
CYP2C19 genotypes and the omeprazole affected the R-warfarin pharmacokinetics of 
CYP2C19 in only hmEMs. However, these affects are not translated into any significant 
effect in the pharmacodynamics of warfarin.  
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