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Abstract

Lipopolysaccharide (LPS) is the primary component of the outer membrane of Gram‐negative 
bacteria. LPS aids in protecting bacterial cells, and also defines the unique serogroups 
used to classify bacteria. Additionally, LPS is an endotoxin and the primary stimulator 
of innate immune cells in mammals, making it an ideal candidate for early detection of 
pathogens. However, the majority of methods for detection of LPS focus on detection 
of the endotoxic component of the molecule, lipid A. Since lipid A is largely conserved 
among bacterial species and serogroups, these detection approaches are highly nonspe‐
cific. Thus, the importance of identifying the O‐polysaccharide antigenic portion of LPS, 
which confers serogroup specificity, has received a great deal of attention in recent years. 
However, methods that are highly selective to the O‐antigens are typically less sensitive 
than those that target the endotoxin. Here we present a history and comparison of the 
sensitivity of these methods and their value for detecting bacteria in a variety of different 
sample types.
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1. Introduction

The increasing occurrence of infectious disease is a global issue. Emerging pathogens with 
increasing levels of drug resistance are a continuing danger to both public health and agricul‐

ture. Accurate and rapid detection of pathogens is critical to implement preventative measures 

to mitigate this problem. Despite this urgent need, conventional methods for bacterial detection 

require cell culture and serology, which can take several weeks. As new pathogens emerge, it 
is even more important that our detection technologies evolve to keep pace with the need to 
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discriminate pathogen from host flora. This requires an understanding of pathogen biology, the 
types of samples they occur in, and their mechanism of immune interaction within the hosts [1].

The innate immune system is able to discriminate pathogens from nonpathogens, and rap‐

idly sense pathogen biomarkers in the complex milieu of the host. Exploiting this recognition 
via measurement of pathogen signatures, can provide an optimal strategy for discriminatory 

biodetection. A primary category of such biomarkers is virulence signatures termed pathogen‐

associated molecular patterns (PAMPs) [2]. PAMPs are evolutionarily conserved molecules 
that bind pattern‐recognition receptors in the host, and activate the innate immune response 
[2, 3], providing a means for both early and specific pathogen detection. Biochemically, PAMPs 
are a diverse array of proteins, lipopeptides, lipoglycans, peptidoglycans, teichoic acids, and 

nucleic acids [4]. However, many detection methods have largely focused on proteins and 

nucleic acids [1, 5], ignoring other categories of PAMPs [2, 6–8]. Also, their small size, biochem‐

istry, and low concentration in hosts make them difficult to target in detection assays [8, 9].

Classified as a lipogylcan, lipopolysaccharides (LPS) are small amphiphilic molecules that are 
associated with Gram‐negative bacteria [7, 10]. LPS is an indicator of active infection, is sero‐

group‐specific [11–13], more stable than its protein counterparts, and is released early in infec‐

tion, making it an ideal candidate for detection and diagnostics. LPS serves as a biomarker that 

aids in serological discrimination of Gram‐negative bacteria; this allows for identification and 
characterization of pathotypes that are essential for timely mitigation and treatment of infec‐

tions. Since LPS is a pathogen‐specific biomarker, it is an indicator of acute infection, which is 
an advantage over serological assays. In addition to medical diagnostics, LPS detection pro‐

vides a method for detecting Escherichia coli in the food‐industry, which is often associated with 

food‐borne illnesses. Finally, LPS is also a virulence factor whose structure and function deter‐

mines E. coli serogroup, a factor which has ramifications on vaccine design and therapeutic 
interventions. While many methods for LPS detection exist, most of them are not optimized for 

amphiphilic detection in physiological samples. An ideal measurement for LPS should be sen‐

sitive enough to detect low concentrations of the amphiphile in aqueous physiological milieu 
(e.g., blood), and use antibodies or ligands that provide serogroup selectivity [14]. Coupling 

sensitive detection platforms with surfaces designed to maximize the binding of amphiphilic 

PAMPs is a potential solution to achieve such an ideal.

2. Sources of lipopolysaccharides

Bacteria are classified into Gram‐negative and Gram‐positive [15], which release amphiphi‐

lic virulence factors such as LPS, lipoarabinomannan (LAM), and lipoteichoic acid (LTA) in 
the host. Species of pathogenic Gram‐negative bacteria of concern to human health, include 

Acinetobacter [16], Burkholderia [17], Bordetella [18], Campylobacter [19–21], Chlamydia [22, 23], 

E. coli [20, 24], Helicobacter [25, 26], Hemophilius [27], Klebsiella [28], Legionella [20, 29], Moraxella 

[30], Neisseria [31], Pseudomonas [32], Proteus [33], Salmonella [20, 34], Shigella [35], Yersinia [36], 

and others, grouped into the Enterobacteriaceae family. These pathogens are contaminants 
in food, water, and soil, used as agents of bioterrorism, and can cause nosocomial infections 

[5]. Detection of these organisms, particularly E. coli, is an important aspect for epidemiology, 

disease control, and treatment.

Escherichia coli - Recent Advances on Physiology, Pathogenesis and Biotechnological Applications142



Herein, we present a comprehensive description of the structural and biochemical properties 

of LPS, current methods for its detection, and potential approaches to overcome the current 

limitations for direct detection of the molecule in physiological matrices.

3. Lipopolysaccharide structures and conformations

Lipopolysaccharides have been the subject of intense study for over half a century [37–39]. 

LPS is the prototypical lipoglycan with an overall net negative charge [40–42], and is the 

primary component of the outer membrane of nearly all Gram‐negative bacteria [11]. The 
bacterial membrane of each E. coli cell is composed of approximately 106 lipid A moieties and 

107 glycerophospholipid molecules, comprising approximately three‐quarters of the outer 
membrane [43–45]. Thus, there are approximately 62 pg of LPS per cell (for E. coli in log 

phase growth) [46]. LPS has an amphipathic tripartite structure (Figure 1). Lipid A is the most 

conserved portion of the LPS molecule, and consists of six, sometimes seven, fatty acid tails 

(E. coli and Salmonella, respectively), which gives the molecule its hydrophobic properties [10, 

43, 45]. Lipid A is also called endotoxin [43], and is responsible for the biological effects of LPS 

Figure 1. Representative structure of the molecular components of smooth LPS. The hypervariable O‐polysaccharide 
antigen, core polysaccharide, and the hydrophobic lipid A group. Reprinted with permission from Ref. [74].
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caused by its binding to the mammalian innate immune receptor, toll‐like receptor 4 (TLR4) 
[11, 44, 47, 48]. Structurally, lipid A is covalently bound to the core polysaccharide, which is 

further divided into the inner and outer core polysaccharides, with the outer core being less 

conserved in both sugar moieties and location of glycosidic linkages [45, 49, 50].

There are two main forms of LPS—smooth (S‐form) and rough (R‐form) [42, 45, 46]. The distal 
end of LPS extends to a long chain O‐polysaccharide antigen (O‐ag(s)) in organisms possess‐

ing S‐form, which is an indicator of virulence [51, 52]. R‐form LPS is devoid of the O‐ag [45], 

but can still induce an immunogenic response [53]. The O‐ag is hyper‐variable, and made up 
of repeating subunits, each composed of 1–7 glycosyl residues [45, 54]. As many as 40 size 

variations in subunit repeats of the O‐ag have been reported just for E. coli O111:B4 [55], and 

180 O‐ag have been identified overall for E. coli species [47, 54]. The sugars (colitose, paratose, 
tyvelose, and abequose) that make the O‐ag unique are seldom found elsewhere [54]. Other 
variations to the polysaccharide are implemented through addition of noncarbohydrate enti‐

ties, such as acetyl or methyl groups [54]. These variations make discriminative detection of 
enteric bacteria feasible [56], but complicate antigen characterization. Therefore, LPS serves as 
an ideal target for early detection and identification of Gram‐negative pathogens.

In aqueous solutions, amphiphiles like LPS can present in a micellar conformation [48, 55, 

57–59]. This occurs at a concentration specific to the amphiphile [55], and is known as the criti‐

cal micelle concentration (CMC). At or above the CMC, there is an equilibrium state between 
monomers, micelles or supramolecular aggregates, depending on environmental conditions 

[48, 55–57, 60–63]. This amphiphilic biochemistry and structural variability complicates 
determination of the exact molecular weight of S‐form LPS. As such, LPS concentrations are 

reported in weight per volume, or in endotoxin units (EU), a measure of activity. As degree of 
endotoxicity can vary according to bacterial origin, a rough estimate of 100 pg = 1 EU is used 
in many cases to facilitate unit conversion [64, 65].

The large oligosaccharide region on S‐form LPS makes the molecule amphipathic [54], which 

influences the shape of micelles in solution. Lipid A is largely responsible for shaping the 
LPS micelle [10, 45, 46, 56, 66–68], although other factors can also contribute. Lipid A is con‐

served within species in the number of fatty acid chains and the degree of saturation [44, 66] 

within those chains [22, 47, 69]. Shapes for LPS micelles include cubic, lamellar, and hexago‐

nal inverted structures [56, 67, 70, 71]. Whether aggregate or monomeric forms (or both) of 

LPS is required for innate immune activation is debatable [56, 72, 73]. Since this process occurs 

in aqueous blood, it is unlikely that the molecule is presented as a monomer, unless associated 
with serum binding proteins.

Variation in LPS micelles [55] modifies presentation of O‐ag‐specific epitopes to antibodies, 
making detection challenging [74, 75]. This is specifically true when the heterogeneous pre‐

sentation of linear [76] and conformational epitopes [49, 77] present on LPS molecules are con‐

sidered. The primary structure of LPS varies in the core polysaccharide, within and between 
species [47, 55]. Core polysaccharides are primarily made up of common sugars such as heptose 

and 2‐deoxy‐d‐mannooctulosonic acid (a.k.a. KDO), which can be functionalized with phos‐

phate or ethanolamine groups [45, 50, 78]. This feature contributes to varying charge distribu‐

tions and differential size ratio of the hydrophobic to hydrophilic regions which influences 
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micelle assembly [10, 59, 79, 80]. Other factors that contribute to micelle shape [10, 79] are pH 

[61], ion concentration [81–86], and temperature [62]. These biochemical properties drive host‐
pathogen interactions and should be considered in the design of detection strategies.

4. Detection methods for lipopolysaccharides and similar amphiphiles

There have been many efforts to establish rapid and reliable detection methods for LPS in 
clinical samples [10, 46] and for testing pharmacological products such as infusion fluids, 
sterile injectables, medical device implants, and others [87]. These methods can be broadly 
divided into six overlapping categories: in vivo and in vitro tests, immunoassays and their 

derivatives; biological, chemical, and cell‐based sensors. These methods span a broad range 
of sensitivity, but many lack the ability to differentiate between LPS serogroups.

4.1. Limulus amoebocyte lysate assay and the rabbit pyrogen test

The first method approved by the US Food and Drug Administration for LPS detection was 
called the rabbit pyrogen test [88–90], which simply measures the ability of an endotoxin to 

induce fever in an animal. Any febrile response was attributed to the presence of endotoxin 
[89–91]. The test, clearly, is activity‐based, and nonspecific. In the case of Hepatitis B vaccine 
manufacturing, the rabbit pyrogen test is still the standard method for determining endotoxin 

contamination [91], but the test is cost prohibitive and is minimally utilized today, except in 

some parenteral devices [10].

In 1956, Bang discovered that amoebocytes from Limulus polyphemus (a.k.a. horseshoe crab) 

agglutinate upon addition of endotoxin [46], as a result of a protease cascade [10]. Bang and 
Levin [46, 92] subsequently used this concept to devise a method for endotoxin detection. 
Since the lysates of amoebocytes were required, it was called the limulus amoebocyte lysate 
(LAL) assay, and is the gold standard for the detection of lipid A. The LAL assay is prone to 
variability and can be inhibited through several mechanisms. The United States Pharmacopeia 
and the Code of Federal Regulations have consequently published guidances for the manu‐

facturing and testing of assays for use on human products [93, 94]. Despite some challenges, 

the LAL assay is more rapid, cost effective, and reportedly 300 times more sensitive [46] than 

the rabbit pyrogen test [46].

Variants of the LAL assay use turbidimetric [95], chromogenic [46], or viscosity [10] measure‐

ments to determine results [10, 46]. A turbidimetric gel clot has more coagulen, and measures 

the change in turbidity over time, but does not form a solid clot [46, 95]. The viscosity assay, 
however, measures the degree of clotting via the change in viscosity. The chromogenic assay 
can be endpoint or kinetic, and utilizes a p‐nitroaniline substrate, which is cleaved by an LAL 

proenzyme, providing a colorimetric readout [46]. The sensitivity of LAL assays is depen‐

dent on the sample type, processing method and time, as well as the dilution factor [46]. 

Additionally, the source of the LAL reagent plays a factor, as it is apparent when comparing 

the different limits of detection (LoD) reported for endotoxin standards. A survey of the rela‐

tive sensitivities of the LAL assay is shown in Table 1.
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Description Sample Detection method Species Sensitivity 

(ng/mL)*

Specific Source

Rabbit pyrogen Purified endotoxin Febrile response – – No [89]

LAL Plasma Gelation Multiple 
species

0.5–5.0 No [96]

LAL Blood, plasma Gelation E. coli 0.5–5.0 No [92]

LAL Serum plasma Optical density E. coli 0.025–0.5 No [100]

LAL Urine Gelation E. coli 0.5 No [204]

LAL Urine Optical density Multiple 
species

2.0 No [98]

LAL Spinal fluid/ 
plasma

Optical density E. coli, 

Haemophilus 

influenzae B

0.1 No [101]

LAL Ascites Gelation E. coli 0.5 No [104]

LAL Cerebral/synovial – E. coli 1.0 No [103]

LAL Seawater Optical density E. coli 2.3 No [41]

LAL Purified endotoxin Gelation E. coli 1.0 No [95]

LAL Purified endotoxin Gelation Salmonella 

minnesota

10−11 No [111]

LAL Ground beef Gelation Enterobacter 

aerogenes

– No [205]

LAL Ground beef Gelation Multiple 
species

51.0 ng/g No [108]

LAL Milk Chromogenic Pseudomonas 

putida

0.01 No [107]

LAL Purified endotoxin Gelation E. coli O114 100 No [206]

LAL‐magnetoelastic 

sensor

Purified LPS resonant frequency E. coli O111:B4 0.0105 EU/
mL

No [207]

ENDOLisa® (LAL) Purified endotoxin Fluorescence E. coli spp., 

Salmonella 

spp.

0.05–500 EU/
mL

No [129]

ELISA Milk Abs at 405 nm E. coli 100–200 [165]

LPS pull down‐

sandwich ELISA
Pure cultures Abs at 450 nm E. coli O157 – [125]

LPS pull down‐

sandwich ELISA
Purified LPS Abs at 450 nm Salmonella 

spp. (31 total)

1.0 Yes [126]

Premier EIA E. coli 

O157
Stool extract Spectro‐

photometric

E. coli O157 – Yes [122]

LPS pull down Purified endotoxin RIA E. coli O114 300 No [206]

LPS pull down‐ion 

(NTA‐Cu)
Purified LPS EIS E. coli O55:B5 0.0001–0.1 No [161]

Diaphorase 

functionalized surface

Purified LPS Chemical E. coli O127:B8 50 Maybe [87]
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Description Sample Detection method Species Sensitivity 

(ng/mL)*

Specific Source

LPS pull down‐

SAMs with synthetic 
peptide

Purified LPS Electro‐chemistry E. coli ATCC 
35218

21.8 pg/mL No [189]

LPS pull down‐

SAMs with aptamer
Purified LPS EIS E. coli O55:B5 0.1–1.0 Maybe [159]

LPS pull down‐gold 

electrode w/ aptamer
Purified LPS EIS and cyclic 

voltammetry

E. coli O55:B5 0.001–1.0 No [160]

LPS aptamer 

sandwich

Purified LPS Electro‐chemistry – 10 fg/mL Maybe [188]

LPS pull down‐gold 

electrodes w/ PmB
Purified LPS EIS E. coli O111:B4 0.2 No [162]

Polydiacetylene 

liposomes

Purified LPS (5 
groups)

Change in Abs E. coli spp, 

Salmonella spp

2.22 mg/mL Yes [191]

Impedance 

enthothelial 

biosensor

Purified LPS in 
culture medium+

Resistivity of cell 

monolayer

– 500 No [169]

Macrophage 
microarrays on gold 

electrodes

Purified LPS in 
culture medium

FTIR E. coli O111:B4 0.1 µg/mL No [200]

Primary culture 

HDME cells
Purified LPS Fluorescence E. coli O111:B4 1.0 µg/mL No [171]

Engineered cells 
secrete alkaline 

phosphatase

Purified LPS in 
culture medium+

Electro‐chemistry – 0.1 No [170]

LPS pull down‐PmB Purified LPS Evanescent sensing E. coli 

O128:B12
25 No [75]

LPS pull down‐

TLR4/MD2 on gold 
electrodes

Purified LPS Electro‐chemistry E. coli O55:B5 0.0005 EU/
mL

No [180]

LPS pull down‐

membrane insertion

Purified LPS (3 
groups)

Evanescent sensing E. coli 420 Yes [74]

LPS pull 

down‐antibody

Pure cultures in 

ground beef

Evanescent sensing E. coli O157 – Yes [166]

LPS pull down‐

proanthocyanidin

FITC‐labeled LPS Fluorescence E. coli O55:B5 – No [192]

Copolythiophene 

interacts with LPS

Purified LPS Fluorescence E. coli O55:B5 2.5E−5–2.0 µM No [164]

Polydiacetylene 

liposomes

– Fluorescence – 0.1 µM No [190]

Peptide‐based 

fluorescence
Purified LPS FRET‐increase E. coli O111:B4 0.15–2.0 µM No [194]

Pyrenyl‐derived 

long‐chain 

quaternary 
ammonium probe

Purified LPS Fluorescence E. coli O55:B5 100 nM No [193]
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In 1970, Levin discovered that samples tested in whole blood would not render a positive 

result [92], but if plasma was extracted in chloroform and diluted 1–10%, then endotoxin 

activity could be detected in the 0.5–5 ng/mL range [92, 96]. Levin correctly assumed that 

components of whole blood were bound to endotoxin, thereby inhibiting the reaction with 

the LAL reagent [46, 92, 97], or changing the reaction kinetics [46]. This is evident when the 
amphiphilic nature of LPS and the aqueous nature of blood are considered. In addition to 
blood and plasma [46, 92, 96], the LAL assay has been used in urine [46, 98], cerebral spi‐

nal fluid, synovial fluid, ascites fluid, vaginal and cervical fluids, broncho‐alveolar lavage 
samples, seawater [46], bovine milk [99], and beef tissue [100, 101]. Virtually all of these have 

reported ng/mL LoDs, for endotoxin, but none are serogroup‐specific. Researchers have used 
heat [46, 102], chemical treatment with chloroform [103], acids [104, 105], alkali [106, 107], or 

ether [108] to improve sensitivity with some success when using heat or chemical extraction 

of the endotoxin [46, 109]. However, the results show poor reproducibility between research‐

ers (Table 1). Yin and Galanos [106] reported a sensitivity of 10−11 ng/mL for Salmonella spp., 

while Cooper et al. [89] reported 1.0 ng/mL for E. coli endotoxin. This disparity leaves a lot of 
questions and draws attention to the fact that small changes in preparation, heat or chemical 
treatments, usage of plastics instead of silanized glass, or addition of surfactants can result in 

altered assay sensitivity. This variation can also be explained by the variable biosynthesis of 
lipid A, as shown with Salmonella [47, 110]. Additionally, LAL can yield false positives upon 

reacting with other polysaccharides or β‐(1,3)‐glucans [10, 46] and depends on the source of 

Description Sample Detection method Species Sensitivity 

(ng/mL)*

Specific Source

LPS pull down‐

peptide on Graphene 

Oxide

Purified LPS (4 
groups)

Fluorescence Several 

species

130 pM No [195]

LPS pull down‐PmB 
capture

Purified LPS 
spiked in blood

Acoustic sensing E. coli O55:B5 1.0 No [196]

LPS pull down‐CD14 

capture

Biotin‐LPS Luminescence – 10.0 No [176]

LPS pull down 

Polyaniline + ConA 

lectin

Purified LPS and 
LTA

EIS E. coli,

S. aureus

50.0 No [208]

Aptamer sandwich 

on beads

Purified LPS Fluorescence E. coli O55:B5 0.01 Maybe [163]

LPS pull down 

endotoxin 

neutralizing protein

Purified LPS Capacitance E. coli 10−13 M No [181]

LPS pull down 

CramoLL lectin

Purified LPS (4 
types)

EIS E. coli 

Salmonella 

Klebsiella 

Serratia

25.0 µg/mL No [185]

*Unless otherwise indicated.

Table 1. Overview of sensitivities and specificities for LPS detection methods.
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bacteria, as LPS/endotoxin can vary in toxicity [10, 56, 79, 68], in regards to immune stimulation  

[41, 46, 111].

Thus, the LAL assay and rabbit pyrogen test, both based on the native immune responses 
of the horseshoe crab or rabbit, exhibit significant variability in outcomes. Despite these, the 
LAL is still very useful for quickly detecting contamination. For example, in 1981, Jay [101] 

used the LAL test to determine both microbial counts and endotoxin load in 153 samples of 

store bought ground beef with a mean sensitivity of 7.9 µg/mL (endotoxin/beef sample) in 1 h.  
In 1985, Nachum and Shanbrom [46] used a chromogenic LAL system to detect between 2 and 

175 ng/mL of endotoxin in 324 patient urine samples, with the assay taking between 2 and 4 h. 
Timely detection is valuable to both patient care and product viability. Despite being an ideal 
test for the presence of endotoxin, determining identity of pathogens still requires culture or 
enrichment.

4.2. Immunoassays for LPS detection and antibody selection

Developed in 1971 [112, 113], the enzyme‐linked immunosorbent assays (ELISAs) are based 
on the immune reaction between antigen and antibody, with each assay being tailored for the 

unique antigen being tested. ELISAs were evaluated for Salmonella O‐ags very early in devel‐
opment [114]. However, ELISAs for lipoglycans such as LPS suffer from low sensitivity and 
reproducibility [115–117]. One of the primary reasons for sensitivity issues is the amphipathic 
biochemistry of these molecules, leading to inconsistent binding on ELISA plates [118], and 

variable conformations of epitope binding sites [12, 119].

There exist two primary types of LPS‐ELISAs, which detect either the LPS antigen, or LPS 
antibody titers. With the former, the plate surface is typically coated with a primary capture 

antibody specific to LPS, or with the sample to be tested [118]. After antigen capture, an epitope‐ 

specific antibody is used to detect LPS. The detection antibody can be directly labeled with an 
enzyme [113] or secondary antibody for colorimetric detection [120, 121]. In 1998, Mackenzie 
et al. [122] reported on the effectiveness of a commercial assay to screen stool samples for 

E. coli O157 antigens, and found that re‐testing samples provided inconsistent results. It was 
speculated that this was due to inefficient washing of the microwells, yet the amphiphilic 
antigen preparation and its presentation to antibodies could have contributed to assay incon‐

sistencies. It was also not considered that LPS is notorious for nonspecific and inconsistent 
binding on microplates [10, 116, 118]. In clinical samples, the association of LPS with host 

carrier molecules may affect its ability to adhere to capture surfaces [123, 124], as proteins 

will preferentially bind to the plate. Some groups have also reported cross reactivity or false 

positives with LPS sandwich ELISAs [125, 126]. Choi et al. [126] developed a sensitive cap‐

ture ELISA with 24 species of Salmonella, but cross reactivity was observed. To mitigate cross 
reactivity, attempts have been made to substitute antibodies with other ligands. Grallert et al. 
[127, 128] coated microplates with proteins isolated from bacteriophages, which are specific 
to core polysaccharides in order to capture LPS, followed by detection with Factor C (a com‐

ponent of the LAL assay). This sandwich ENDOLisa®, a microplate assay for direct detection 

of endotoxin, reports sensitivity between 0.05 and 500 EU/mL. This technology is sold as 
the Endotoxin Sample Preparation (ESP™) kit, and is one of the few kits available for direct 
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detection of endotoxin in blood or serum [129]. However, the assay is unable to differentiate 
between serogroups.

The second type of ELISA measures LPS antibody titers to screen for Gram‐negative bacterial 
infections. Here, the surface of the plate is functionalized with the antigen to pull down anti‐

bodies (Immunglobulins A, G, and M (IgG, IgA, IgM)) from serum. Since this method is based 
on adaptive immunity, there is a lag between initial exposure to the pathogen, and increased 

antibody titers [130], making early detection difficult. This assay is not specific for active infec‐

tion, but has been used to monitor population health and track epidemiology of infections. 

Screening has been used to detect exposure of military personnel to Shigella [131], obstetric 

patients with Chlamydia spp. [132], patients with Salmonella [133], and other pathogens [114, 

134–137]. Suthienkul et al. [136] used an indirect ELISA to passively adsorb LPS onto polysty‐

rene plates, and measure associated IgG/IgM titers in cholera patients. The results indicated dis‐

crepancies between the titers of IgG and IgM in young versus older patients, which could either 
be due to the inconsistency of LPS coating or associated with cross reactivity [138]. Suthienkul 

also acknowledged that antibody levels in infants screened could be inherited from the mother 

[136, 139].

Functionalizing ELISA plates with amphiphilic LPS is a technical challenge [12], since the sur‐

faces are optimized for protein binding. In the late 1970s, it was discovered that polymyxin B 
(an antibiotic, PmB) interacted with LPS monomers in a 1:1 ratio [86, 140], and can be used to 

functionalize surfaces for Gram‐negative detection [119]. However, PmB recognizes the con‐

served lipid A group of LPS, and does not allow for discriminative detection. Takahashi et al.  
[118] showed that precoating the plate with high molecular weight poly‐l‐lysine increases sur‐

face adsorption and allows for detection of 1 µg/mL LPS, with no cross reactivity. Others have 
studied the effects of ions such as calcium and magnesium [141], trichloroacetic acid [142], mix‐

ing the antigen in chloroform/ethanol, and drying on the plate surface [135], or complexing LPS 

with a protein such as bovine serum albumin [143] to improve performance and reproducibility. 

Functionalization of ELISA plates with proteins known to bind LPS, such as high‐ or low‐density 
lipoproteins (HDL, LDL), chylomicrons, and LPS‐binding protein (LBP) have also been evalu‐

ated [123, 124] and offers promise for the reliable detection of LPS antigen in complex samples.

Other limitations for LPS detection include the fact that many LPS antigens have not been iso‐

lated [144] and thus are not available for the development of screening assays, limiting acces‐

sibility of specific antibodies as well [145–150]. However, there is also a need to refine methods 
for selection of tailored antibodies. While there are variations [10], ELISA plates are typically 
functionalized with whole dead bacteria to screen monoclonal antibody cultures [145, 146, 

148], giving rise to potentially cross reactive clones [10, 144] that are then screened against a 

multitude of bacterial strains [146, 149, 150]. It is noted that it is impossible to screen clones 

against all epitopes of LPS, even amongst the many E. coli serotypes. In 2000, Jauho et al. [12]  

addressed this issue by covalently linking purified LPS O‐ags to polystyrene ELISA plates 
using anthraquinone and UV irradiation. This technique could prove useful in developing sero‐

group‐specific antibodies against LPS, as conserved antigens like lipid A and core polysaccha‐

ride are absent. Alternative methods for antibody screening have utilized immunoblotting [144, 

149, 151–153] and flow cytometry [154–156]. In addition, ELISAs can suffer from high back‐

ground due to nonspecific interactions limiting their sensitivity [10, 122, 135, 157]. Particularly, 
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endogenous endotoxin present in reagents, on glassware, or plastics [158], may contribute to 

false positive results. Factors identified above have to be carefully considered in the develop‐

ment of ELISAs targeting LPS.

4.3. Biological and chemical‐based LPS sensing

Many advanced methods such as electrochemical impedance spectroscopy (EIS) [159–161], anti‐

microbials [75, 162], aptamers [163], synthetic polymers [164], optical immunoassays [122, 125, 

165], waveguide technology [75, 166, 167], lipid bilayers [9, 74, 168], and in vitro [169–171] assays 

have been applied for LPS detection. These technologies involve functionalizing biosensors 
with proteins or molecules to pull down LPS from a sample.

LBP [10], a relatively small protein (~60 kDa) that transports LPS in blood, shuttles the antigen 
to the cluster of differentiation 14 (CD14) protein in the extracellular matrix, or to the membrane 
of immune cells, such as macrophages [10]. After LPS binds CD14, it is passed to the hydropho‐

bic binding pocket of myeloid differentiation factor 2 (MD‐2) [7, 10], a necessary cofactor for 

the activation of TLR4. Also, the serum carrier lipoproteins (HDL and LDL), are carriers for LPS 
in blood. In addition to these, LPS has been demonstrated to bind aptamers [159, 160], various 

peptides [87, 109, 162, 172], and metal/cation complexes [84, 86, 161, 173–175]. Such carrier moi‐

eties are exploited in the development of novel detection methods for LPS, as outlined below.

For electrochemical (EC) sensing of LPS, a recognition ligand (similar to ELISA) and a trans‐

ducer are required to measure the variation in signal [161]. For fluorescence‐based sensing, 
a receptor captures LPS, while another molecule emits a fluorescent signal when bound to 
the antigen. Burkhardt et al. [176] used solubilized LBP to transfer LPS to a CD14 functional‐
ized surface, with a LoD of 10 ng/mL using an electro‐chemiluminescent assay. This method 
enforces the role of LBP as a lipid transfer protein, as demonstrated by Wurfel et al. [177, 178] 

and shows that CD14 can bind monomeric LPS in the absence of TLR4 [179]. Highly sensitive 

(LoD = 0.0005 EU) EC sensors have also been developed using a recombinant TLR4 + MD‐2 
complex for recognition of LPS [180]. Yet, these assays are unable to discriminate between LPS 

serogroups. Priano et al. [10] developed a competitive EC assay using recombinant endotoxin‐
neutralizing protein (ENP) on a dextran matrix, with a detection range of 1–100 ng/mL. ENP 
has also been used in a capacitive biosensor with an extremely low LoD (1.0 × 10−13 M) [181]. 

The sensitivity differences may be due to variations in surface functionalization. Priano et al. 
[10] used the dextran matrix, and Limbut et al. [181] used self‐assembled monolayers, which 

provide low background interference [182–184]. Inoue and Takano [10] used a recombinant 

factor C in an EC hybrid LAL biosensor, with a sensitivity range of 5 × 10−4–1.0 EU/mL [10]. 

Kato [87] and Iijima [10] labeled PmB with ferrocene‐bound LPS in solution, and captured it 
on a nanocarbon‐film electrode with a detection range of 2–50 ng/mL in 5 minutes [10]. Ding 

et al. [162] functionalized an electrode with PmB and performed EIS with a detection range of 
0.2–0.8 ng/mL which is more sensitive, but has a smaller range. A broader detection range was 
demonstrated by Rahman et al. [172] who functionalized interdigitated electrodes with PmB 
and tested 0.1–1000 µg/mL of LPS O111:B4 in food samples, using impedance spectroscopy. 
Sugar binding proteins, such as lectins and polyaniline coated electrodes, have been used 

for detecting LPS [10], as with an EIS sensor functionalized with the lectin, cramoLL, with a 
detection range of 25–200 µg/mL [185].
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Several assays have been developed using aptamers as the detection ligand. Su et al. [160, 186, 

187] used aptamers attached to gold nanoparticles to detect LPS using EIS, with an impressive 
detection limit of 0.1 pg/mL [10]. Aptamers have also been used in a magnetic aptasensor to 

detect LPS in medias containing BSA, sucrose, glucose, or RNA [163], and provide a detection 

range of 0.01–1.0 × 106 ng/mL (LPS O55:B5) by flow cytometry within 1 minute. Bai et al. [188] 

developed an EC sensor where aptamers that bind LPS were hybridized with capture probes, 
which were hybridized to complementary DNA sequences on gold nanoparticles with a very 
sensitive range (10 fg/mL up to 50 ng/mL). However, multiple aptamer libraries against O‐ag 
would be essential before this method could be implemented for serogroup discrimination. 

Modifications to improve sensitivity include use of SAMs to functionalize sensors with peptides 
[189], PmB [162], antibodies [10], and aptamers [159]. Despite optimal surface capture methods, 

some of these assays suffer from poor detection limits or range of performance [10, 159].

Investigators have utilized the interaction of LPS with synthetic systems such as copoly‐

thiophene copolymers [164] and polydiacetylene liposomes [190, 191]. Johnson et al. [192] 

demonstrated an endotoxin capture technique by functionalizing a bead matrix with proan‐

thocyanidins and binding with fluorescein isothiocyanate‐labeled LPS [192]. Pyrenyl‐derived 

quaternary ammonium probes, developed by Zeng et al. [193] exhibited fluorescence when 
bound to LPS and detected nanomolar concentrations, while fluorescently labeled CD14 syn‐

thetic peptides demonstrated an increase in Förster resonance energy transfer when bound to 

LPS, but were only able to detect µM concentrations [194]. Lim et al. [195] used a functionalized 

graphene oxide to develop a fluorescence quench‐recovery method for LPS, targeting the lipid 
A component. Thompson et al. [196] designed a tandem system to both detect (LoD = 1.0 ng/mL) 
and filter LPS from blood using piezoelectric quartz discs functionalized with PmB.

Other methods have taken advantage of the amphipathic nature of LPS. Harmon et al. [197] 

demonstrated that disrupting the hydrophobic association of LPS with liposomes increases 

the sensitivity of the LAL assay. Stromberg et al. [74, 198] were able to detect 4.20 µg/mL of 
amphiphilic LPS O157 in beef lysates on a waveguide biosensor using a technique called 
membrane insertion, which has previously been applied to other amphiphiles such as LAM 
and phenolic glycolipids [8, 9, 199]. Membrane insertion uses the natural association of 
amphiphiles with a lipid bilayer to facilitate detection and fluorescent detection of a labeled 
antibody is performed within an evanescent field [168, 199]. Many biosensors report exquisite 
sensitivity, even down to the picogram [164] and femtomolar [9, 168, 199] range, but very few 

are capable of physiological presentation of amphiphiles to facilitate discriminative detection 

of O‐ag groups [74, 167, 198].

4.4. Cell‐based LPS detection systems

Cell systems are ideal for recognizing endotoxin, although interpreting the signal response 

can be challenging. Bouafsoun et al. [169] functionalized the surface of an impedance biosen‐

sor with endothelial cells, and measured the decrease in impedance with LPS binding, with a 

sensitivity of 500 ng/mL. Veiseh et al. [200] patterned macrophage cells onto gold electrodes 
to detect LPS concentrations of 0.1–10 µg/mL. However, cells were concurrently stained with 
necrosis and apoptosis markers in parallel studies, and no staining effect could be seen in cells 
using concentrations less than 10 µg/mL. This is an interesting effect, as in many in vitro studies, 
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cytokine response is induced at much lower concentrations of endotoxin [97, 201, 202]. It can be 

deduced that Veiseh used serum supplemented media in the experiments, and the lipoproteins 

and LBP in serum could have a protective effect on cells [46, 202, 203], and attenuated assay 
sensitivity. The most sensitive cell‐based assay was developed by Inoue et al. [170] with a LoD 

of 0.1–1.0 ng/mL. Here, cells were engineered to secrete alkaline phosphatase in the presence 
of LPS, and patterned on the surface of an amperometric biosensor to measure voltage change 
upon LPS binding. Cell‐based in vitro assays are prone to errors and contamination, so develop‐

ing a robust and fieldable assay based on this technology is not plausible. However, by study‐

ing LPS in cell‐based systems, knowledge about interactions with receptors and cell membranes 

can be gained, which can facilitate better detection methods.

5. Conclusions

Many novel approaches have been used for the detection of amphiphilic LPS, not all of which 
are functional in physiological matrices or have the required sensitivity or ease of use. One 
major reason for this is the failure to incorporate the amphiphilic properties of the antigen 

into assay design. The presentation, conformation, and host‐interactions of the antigens 
should be considered for the development of effective assays. While both LAL and EC assays 
are the most sensitive for testing endotoxicity, identifying O‐ag with a high degree of selec‐

tivity remains elusive, and limited to methods that use specific recognition ligands, such as 
membrane insertion and ELISAs. By far, the greatest limitation has been the lack of sensitive 
and selective ligands for the serogroup‐specific detection of the antigen. Thus, as repositories 
of these necessary recognition molecules expand to include more serogroups, so too will our 

ability to selectively detect LPS.
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