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Abstract

Nonlinear equations are of great importance to our contemporary world. Nonlinear phe-
nomena have important applications in applied mathematics, physics, and issues related
to engineering. Despite the importance of obtaining the exact solution of nonlinear partial
differential equations in physics and applied mathematics, there is still the daunting
problem of finding new methods to discover new exact or approximate solutions. The
purpose of this chapter is to impart a safe strategy for solving some linear and nonlinear
partial differential equations in applied science and physics fields, by combining Laplace
transform and the modified variational iteration method (VIM). This method is founded
on the variational iteration method, Laplace transforms and convolution integral, such
that, we put in an alternative Laplace correction functional and express the integral as a
convolution. Some examples in physical engineering are provided to illustrate the sim-
plicity and reliability of this method. The solutions of these examples are contingent only
on the initial conditions.

Keywords: nonlinear partial differential equations, Laplace transform, modified
variational iteration method

1. Introduction

In the recent years, many authors have devoted their attention to study solutions of nonlinear

partial differential equations using various methods. Among these attempts are the Adomian

decomposition method, homotopy perturbation method, variational iteration method (VIM)

[1–5], Laplace variational iteration method [6–8], differential transform method and projected

differential transform method.
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Many analytical and numerical methods have been proposed to obtain solutions for nonlinear

PDEs with fractional derivatives such as local fractional variational iteration method [9], local

fractional Fourier method, Yang-Fourier transform and Yang-Laplace transform and other

methods. Two Laplace variational iteration methods are currently suggested by Wu in

[10–13]. In this chapter, we use the new method termed He’s variational iteration method,

and it is employed in a straightforward manner.

Also, the main aim of this chapter is to introduce an alternative Laplace correction functional

and express the integral as a convolution. This approach can tackle functions with discontinu-

ities as well as impulse functions effectively. The estimation of the VIM is to build an iteration

method based on a correction functional that includes a generalized Lagrange multiplier. The

value of the multiplier is chosen using variational theory so that each iteration improves the

accuracy of the result.

In this chapter, we have applied the modified variational iteration method (VIM) and Laplace

transform to solve convolution differential equations.

2. Combine Laplace transform and variational iteration method to solve

convolution differential equations

In this section, we combine Laplace transform and modified variational iteration method to

figure out a new case of differential equation called convolution differential equations; it is

possible to obtain the exact solutions or better approximate solutions of these equivalences. This

method is utilized for solving a convolution differential equation with given initial conditions.

The results obtained by this method show the accuracy and efficiency of the method.

Definition (2.1)

Let f xð Þ, g xð Þ be integrable functions, then the convolution of f xð Þ, g xð Þ is defined as:

f xð Þ∗g xð Þ ¼

ð

x

0

f x� tð Þg tð Þdt

and the Laplace transform is defined as:

ℓ f xð Þ½ � ¼ F sð Þ ¼

ð

∞

0

e�sxf xð Þdx

where Re s > 0, where s is complex valued and ℓ is the Laplace operator.

Further, the Laplace transform of first and second derivatives are given by:

ið Þℓ f0 xð Þ
� �

¼ sℓ f xð Þ½ � � f 0ð Þ

iið Þℓ f00 xð Þ
� �

¼ s2ℓ f xð Þ½ � � sf 0ð Þ � f0 0ð Þ
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More generally:

ℓ f nð Þ xð Þ
h i

¼ snℓ f xð Þ½ � � sn�1f 0ð Þ � sn�2f0 0ð Þ �…� sf n�2ð Þ 0ð Þ � f n�1ð Þ 0ð Þ

and the one-sided inverse Laplace transform is defined by:

ℓ
�1 F sð Þ½ � ¼ f xð Þ ¼

1

2πi

ð

αþi∞

α�i∞

F sð Þesxds

where the integration is within the regions of convergence. The region of convergence is half-

plane α < Re sf g.

Theorem (2.2) (Convolution Theorem)

If

ℓ f xð Þ½ � ¼ F sð Þ, ℓ g xð Þ½ � ¼ G sð Þ,

then:

ℓ f xð Þ∗g xð Þ½ � ¼ ℓ f xð Þg xð Þ½ � ¼ f sð Þg sð Þ

or equivalently,

ℓ
�1 F sð ÞG sð Þ½ � ¼ f xð Þ∗g xð Þ

Consider the differential equation,

L y xð Þ
� �

þ R y xð Þ
� �

þN y xð Þ
� �

þN∗ y xð Þ
� �

¼ 0 (1)

With the initial conditions

y 0ð Þ ¼ h xð Þ, y0 0ð Þ ¼ k xð Þ (2)

where L is a linear second-order operator, R is a linear first-order operator, N is the nonlinear

operator and N∗ y xð Þ½ � is the nonlinear convolution term which is defined by:

N∗ y xð Þ
� �

¼ f y; y0; y00; ::…; y nð Þ
� �

∗g y; y0; y00; :…; y nð Þ
� �

According to the variational iteration method, we can construct a correction functional as

follows:

ynþ1 xð Þ ¼ yn xð Þ þ

ð

x

0

λ ξð Þ Lyn ξð Þ þ R~yn ξð Þ þN~yn ξð Þ þN∗
~yn ξð Þ

� �

dξ (3)

Ryn ξð Þ,N~yn ξð Þ and N∗
~yn ξð Þ are considered as restricted variations, that is,
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δR~yn ¼ 0, δN~yn ¼ 0 and δN∗
~yn ¼ 0, λ ¼ �1

Then, the variational iteration formula can be obtained as:

ynþ1 xð Þ ¼ yn xð Þ �

ð

x

0

Lyn ξð Þ þ Ryn ξð Þ þNyn ξð Þ þN∗
~yn ξð Þ

� �

dξ (4)

Eq. (4) can be solved iteratively using y0 xð Þ as the initial approximation.

Then, the solution is y xð Þ ¼ lim
n!∞

yn xð Þ.

Now, we assume that L ¼ d2

dx2
in Eq. (1).

Take Laplace transform (ℓ) of both sides of Eq. (1) to find:

ℓ Ly xð Þ
� �

þ ℓ Ry xð Þ
� �

þ ℓ Ny xð Þ
� �

þ ℓ N∗y xð Þ
� �

¼ 0 (5)

s2ℓy� sy 0ð Þ � y0 0ð Þ ¼ �ℓ Ry xð Þ þNy xð Þ þN∗y xð Þ
� �

¼ 0 (6)

By using the initial conditions and taking the inverse Laplace transform, we have:

y xð Þ ¼ p xð Þ � ℓ
�1 1

s2
Ry xð Þ þNy xð Þ þN∗y xð Þ

� 	

¼ 0 (7)

where p xð Þ represents the terms arising from the source term and the prescribed initial conditions.

Now, the first derivative of Eq. (7) is given by:

dy xð Þ

dx
¼

dp xð Þ

dx
�

d

dx
ℓ
�1 1

s2
ℓ Ry xð Þ þNy xð Þ þN∗y xð Þ
� �

� 	

¼ 0 (8)

By the correction functional of the irrational method, we have:

ynþ1 xð Þ ¼ yn xð Þ �

ð

x

0

yn ξð Þ

 �

ξ
�

d

dξ
p ξð Þ �

d

dξ
ℓ
�1 1

s2
ℓ Ry ξð Þ þNy ξð Þ þN∗y ξð Þ
� �

� 	� 

dξ

Then, the new correction functional (new modified VIM) is given by:

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s2
ℓ Ryn xð Þ þNyn xð Þ þN∗yn xð Þ

	

, n ≥ 0

��

(9)

Finally, we find the answer in the strain; if inverse Laplace transforms exist, Laplace transforms

exist.

In particular, consider the nonlinear ordinary differential equations with convolution terms,
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1� y00 xð Þ-2þ 2y0∗y00-y0∗ y00

 �2

¼ 0, y 0ð Þ ¼ y0 0ð Þ ¼ 0 (10)

Take Laplace transform of Eq. (10), and making use of initial conditions, we have:

s
2
ℓy xð Þ �

2

s
¼ ℓ y0∗ y00


 �2
� 2y0∗y00

h i

The inverse Laplace transform of the above equation gives that:

y xð Þ ¼ x
2 þ ℓ

�1 1

s2
ℓ y0∗ y00


 �2
� 2y0∗y00

h i

� 

By using the new modified (Eq. (9)), we have the new correction functional,

y
nþ1 xð Þ ¼ y

n
xð Þ þ ℓ

�1 1

s2
ℓ y0∗ y00


 �2
� 2y0∗y00

h i

� 

or

y
nþ1 xð Þ ¼ y

n
xð Þ þ ℓ

�1 1

s2
ℓ y0

 �

∗

ℓ y00

 �2

� 2ℓ y0

 �

∗

ℓ y00

 �

h i

� 

(11)

Then, we have:

y0 xð Þ ¼ x2

y1 xð Þ ¼ x2 þ ℓ
�1 1

s2
ℓ 4ð Þℓ 2xð Þ � 2ℓ 2xð Þℓ 2ð Þ

#)

¼ x
2

"(

y2 xð Þ ¼ x2, y3 xð Þ ¼ x2, :………,y
n
xð Þ ¼ x2

This means that:

y0 xð Þ ¼ y1 xð Þ ¼ y2 xð Þ ¼ :…… ¼ y
n
xð Þ ¼ x2

Then, the exact solution of Eq. (10) is y xð Þ ¼ x2.

2� y0 � y0

 �2

� 2xþ y0∗ y00

 �2

¼ 0,y 0ð Þ ¼ 1 (12)

Take Laplace transform of Eq. (12), and using the initial condition, we obtain:

sℓy� 1�
2

s2
¼ ℓ y0


 �2
� y0∗ y00


 �2
h i

Take the inverse Laplace transform to obtain
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y xð Þ ¼ 1þ x2 þ ℓ
�1 1

s
ℓ y0

 �2

� y0∗ y00

 �2

h i

� 

Using Eq. (9) to find the new correction functional in the form

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s
ℓ y0

 �2

� y0n
∗ y00n

 �2

h i

� 

or

ynþ1 xð Þ ¼ yn xð Þ þ ℓ
�1 1

s
ℓ y0

 �2
h i

� ℓ y0n
� �

ℓ y00n

 �2
h ih i

� 

(13)

Then, we have:

y0 xð Þ ¼ 1þ x2

y1 xð Þ ¼ 1þ x2 þ ℓ
�1 1

s
ℓ 4x2

 �

� ℓ 2xð Þℓ 4ð Þ
� �

¼ 1þ x2 þ ℓ
�1 1

s

8

s3
�

2

s2

� �

4

s

� �� 

¼ 1þ x2

y0 xð Þ ¼ y1 xð Þ ¼ y2 xð Þ ¼ :…… ¼ yn xð Þ ¼ 1þ x2

Then, the exact solution of Eq. (12) is:

y xð Þ ¼ 1þ x2

3. Solution of nonlinear partial differential equations by the combined

Laplace transform and the new modified variational iteration method

In this section, we present a reliable combined Laplace transform and the new modified varia-

tional iteration method to solve some nonlinear partial differential equations. The analytical

results of these equations have been obtained in terms of convergent series with easily comput-

able components. The nonlinear terms in these equations can be handled by using the new

modified variational iteration method. This method is more efficient and easy to handle such

nonlinear partial differential equations.

In this section, we combined Laplace transform and variational iteration method to solve the

nonlinear partial differential equations.

To obtain the Laplace transform of partial derivative, we use integration by parts, and then, we

have:

ℓ
∂f x; tð Þ

∂t

� �

¼ sF x; sð Þ � f x; 0ð Þ, (14)

ℓ
∂
2f x; tð Þ

∂t2

� �

¼ s2F x; sð Þ � sf x; 0ð Þ �
∂f x; 0ð Þ

∂t
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ℓ
∂f x; tð Þ

∂t

� �

¼
d

dx
F x; sð Þ½ �,

ℓ
∂
2f x; tð Þ

∂t2

� �

¼
d2

dx2
F x; sð Þ½ �:

where f x; sð Þ is the Laplace transform of x; tð Þ.

We can easily extend this result to the nth partial derivative by using mathematical induction.

To illustrate the basic concept ofHe’sVIM,we consider the followinggeneral differential equations,

ℓ Lu x; tð Þ½ � þ ℓ Nu x; tð Þ½ � ¼ ℓ g x; tð Þ½ � (15)

with the initial condition

u x; 0ð Þ ¼ h xð Þ (16)

where L is a linear operator of the first-order, N is a nonlinear operator and g x; tð Þ is inhomo-

geneous term. According to variational iteration method, we can construct a correction func-

tional as follows:

unþ1 ¼ un þ

ð

t

0

λ Lun x; sð Þ þN~un x; sð Þ � g x; sð Þ½ �ds (17)

where λ is a Lagrange multiplier λ ¼ �1ð Þ, the subscripts n denotes the nth approximation, ~un

is considered as a restricted variation, that is, δ~un ¼ 0.

Eq. (17) is called a correction functional.

The successive approximation unþ1 of the solution u will be readily obtained by using the

determined Lagrange multiplier and any selective function u0; consequently, the solution is

given by:

u ¼ lim
u!∞

un

In this section, we assume that L is an operator of the first-order ∂

∂t in Eq. (15).

Taking Laplace transform on both sides of Eq. (15), we get:

ℓ Lu x; tð Þ½ � þ ℓ Nu x; tð Þ½ � ¼ ℓ g x; tð Þ½ � (18)

Using the differentiation property of Laplace transform and initial condition (16), we have:

sℓ u x; tð Þ½ � � h xð Þ ¼ ℓ g x; tð Þ½ � � ℓ Nu x; tð Þ½ � (19)

Applying the inverse Laplace transform on both sides of Eq. (19), we find:
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u x; tð Þ ¼ G x; tð Þ � ℓ
�1 1

s
Nu x; t½ �

� 

, (20)

where G x; tð Þ represents the terms arising from the source term and the prescribed initial

condition.

Take the first partial derivative with respect to t of Eq. (20) to obtain:

∂

∂t
u x; tð Þ �

∂

∂t
G x; tð Þ þ

∂

∂t
ℓ
�1 1

s
ℓ Nu x; tð Þ½ �

� 

(21)

By the correction functional of the variational iteration method

unþ1 ¼ un �

ð

t

0

unð Þξ x; ξð Þ �
∂

∂ξ
G x; ξð Þ þ

∂

∂ξ
ℓ
�1 1

ξ
ℓ Nu ξ; tð Þ½ �

� � 

dξ

or

unþ1 ¼ G x; tð Þ � ℓ
�1 1

s
ℓ Nun x; tð Þ½ �

� 

(22)

Eq. (22) is the new modified correction functional of Laplace transform and the variational

iteration method, and the solution u is given by:

u x; tð Þ ¼ lim
u!∞

un x; tð Þ

In this section, we solve some nonlinear partial differential equations by using the new mod-

ified variational iteration Laplace transform method; therefore, we have:

Example (3.1)

Consider the following nonlinear partial differential equation:

ut þ uux ¼ 0 , u x; 0ð Þ ¼ �x (23)

Taking Laplace transform of Eq. (23), subject to the initial condition, we have:

ℓ u x; tð Þ½ � ¼ �
x

s
�
1

s
ℓ uux½ �

The inverse Laplace transform implies that:

u x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ uux½ �

� 

By the new correction functional, we find:
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unþ1 x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ un unð Þ

x

� �

� 

Now, we apply the new modified variational iteration Laplace transform method:

u0 x; tð Þ ¼ �x

u1 x; tð Þ ¼ �x� ℓ
�1 1

s
ℓ x½ �

� 

¼ �x� ℓ
�1 x

s2

h i

¼ �x� xt

u2 x; tð Þ ¼ �x� ℓ
�1

x
1

s2
þ

2

s3
þ

2

s4

� �� 	

¼ �x� xt� xt
2 �

1

3
xt

3

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

Therefore, we deduce the series solution to be:

u x; tð Þ ¼ �x 1þ tþ t2 þ t3 þ…

 �

¼
x

t� 1
,

which is the exact solution.

Example (3.2)

Consider the following nonlinear partial differential equation:

∂u

∂t
¼

∂u

∂x

� �2

þ u
∂
2
u

∂x2
, u x:0ð Þ ¼ x2 (24)

Taking Laplace transform of Eq. (24), subject to the initial condition, we have:

ℓ u x; tð Þ½ � ¼
x2

s
þ
1

s
ℓ

∂u

∂x

� �2

þ u
∂
2
u

∂x2

" #

Take the inverse Laplace transform to find that:

u x; tð Þ ¼ x2 þ ℓ
�1 1

s
ℓ

∂u

∂x

� �2

þ u
∂
2
u

∂x2

" #( )

The new correction functional is given as

unþ1 x; tð Þ ¼ x2 þ ℓ
�1 1

s
ℓ

∂un

∂x

� �2

þ un
∂
2
un

∂x2

" #( )

This is the new modified variational iteration Laplace transform method.

The solution in series form is given by:
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u0 x; tð Þ ¼ x2

u1 x; tð Þ ¼ x2 þ ℓ
�1 6x2

s2

� 

¼ x
2 þ 6x2t

u2 x; tð Þ ¼ x2 1þ 6tþ 36t2 þ 72t3

 �

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

The series solution is given by:

u x; tð Þ ¼ x2 1þ 6tþ 36t2 þ 72t3 þ…

 �

¼
x2

1� 6t

Example (3.3)

Consider the following nonlinear partial differential equation:

∂u

∂t
¼ 2u

∂u

∂x

� �2

þ u
2 ∂

2
u

∂x2
, u x:0ð Þ ¼

xþ 1

2
(25)

Using the same method in the above examples to find the new correction functional in the form:

unþ1 x; tð Þ ¼
xþ 1

2
þ ℓ

�1 1

s
ℓ 2un

∂un

∂x

� �2

þ u
2
n

∂
2
un

∂x2

" #( )

Then, we have:

u0 x; tð Þ ¼
xþ 1

2

u1 x; tð Þ ¼
xþ 1

2
þ ℓ

�1 xþ 1

4

1

s2

� 

¼
xþ 1

2
1þ

t

2

� 	

u2 x; tð Þ ¼
xþ 1

2
1þ

t

2
þ
3

8
t2 þ

1

8
t3 þ

1

64
t4

� �

˙ ˙ ˙

˙ ˙ ˙

˙ ˙ ˙

The series solution is given by:

u x; tð Þ ¼
xþ 1

2
1þ

t

2
þ

1
2 :

3
2

2!
t2 þ…

� �

¼
xþ 1

2
1� tð Þ�

1
2,

which is the exact solution of Eq. (25).
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Example (3.4)

Consider the following nonlinear partial differential equation:

∂
2
u

∂t2
þ

∂u

∂x

� �2

þ u� u
2 ¼ te�x

, u x:0ð Þ ¼ 0,
∂u

∂t
¼ e

�x (26)

Taking the Laplace transform of the Eq. (26), subject to the initial conditions, we have:

s2ℓ u x; tð Þ½ � � e�x ¼ ℓ te�x þ u2 �
∂u

∂x

� �2

� u

" #

Take the inverse Laplace transform to find that:

u x; tð Þ ¼ te
�x þ ℓ

�1 1

s2
ℓ te

�x þ u
2 �

∂u

∂x

� �2

� u

" #( )

The new correct functional is given as:

unþ1 x; tð Þ ¼ te
�x þ ℓ

�1 1

s2
ℓ te

�x þ un
2 �

∂un

∂x

� �2

� un

" #( )

This is the new modified variational iteration Laplace transform method.

The solution in series form is given by:

u0 x; tð Þ ¼ te�x

u1 x; tð Þ ¼ te�x

u2 x; tð Þ ¼ te�x

(27)

˙

˙

The series solution is given by:

u x; tð Þ ¼ te�x

4. New Laplace Variational iteration method

To illustrate the idea of new Laplace variational iteration method, we consider the following

general differential equations in physics.

ð28Þ

where L is a linear partial differential operator given by ,N is nonlinear operator and

is a known analytical function. According to the variational iteration method, we can construct

a correction functional for Eq. (28) as follows:
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unþ1 x; tð Þ ¼ un x; tð Þ þ

ð

t

0

λ x; ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς,

n ≥ 0,

(29)

where is a general Lagrange multiplier, which can be identified optimally via the variational

theory, the subscript denotes the nth approximation, is considered as a restricted

variation, that is, .

Also, we can find the Lagrange multipliers, by using integration by parts of Eq. (28), but in this

chapter, the Lagrange multipliers are found to be of the form , and in such a

case, the integration is basically the single convolution with respect to t, and hence, Laplace

transform is appropriate to use.

Take Laplace transform of Eq. (29); then the correction functional will be constructed in the form:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ð

t

0

λ x; ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς

2

4

3

5, n ≥ 0,
(30)

Therefore

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ λ x; tð Þ∗ Lun x; tð Þ þN~unðx; tÞ � hðx; tÞ½ �
� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ
� �

ℓ Lun x; tð Þ þN~unðx; tÞ � hðx; tÞ½ �

(31)

where * is a single convolution with respect to t.

To find the optimal value of , we first take the variation with respect to .

Thus:

δ

δun
ℓ unþ1 x; tð Þ½ � ¼

δ

δun
ℓ un x; tð Þ½ �þ

δ

δun
ℓ λ x; tð Þ
� �

ℓ Lun x; tð Þ þN~unðx; tÞ � hðx; tÞ½ �

(32)

Then, Eq. (32) becomes

ð33Þ

In this chapter, we assume that L is a linear partial differential operator given by , then,

Eq. (33) can be written in the form:
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ð34Þ

The extreme condition of requires that . This means that the right

hand side of Eq. (34) should be set to zero; then, we have the following condition:

ð35Þ

Then, we have the following iteration formula

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

�ℓ

ð

t

0

t� ςð Þ Lun x; ςð Þ þN~unðx; ςÞ � hðx; ςÞ½ �dς

2

4

3

5, n ≥ 0,
(36)

5. Applications

In this section, we apply the Laplace variational iteration method to solve some linear and

nonlinear partial differential equations in physics.

Example (5.1)

Consider the initial linear partial differential equation

ð37Þ

The Laplace variational iteration correction functional will be constructed in the following

manner:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ð

t

0

λ x; t� ςð Þ unð Þttðx; ςÞ � unð Þxxðx; ςÞ þ unðx; ςÞ
� �

dς

2

4

3

5

(38)

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ λ x; tð Þ∗ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ
� �

ℓ unð Þttðx; tÞ � unð Þxxðx; tÞ þ unðx; tÞ
� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ
� �

s2ℓun x; tð Þ � sun x; 0ð Þ �
∂un

∂t
x; 0ð Þ

�ℓ unð Þxx x; tð Þ þ ℓun x; tð Þ

2

6

4

3

7

5

(39)
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Taking the variation with respect to of Eq. (39), we obtain:

δ

δun
ℓ unþ1 x; tð Þ½ � ¼

δ

δun
ℓ un x; tð Þ½ �

þ
δ

δun
ℓ λ x; tð Þ
� � s2ℓun x; tð Þ � sun x; 0ð Þ �

∂un

∂t
x; 0ð Þ

�ℓ unð Þ
xx

x; tð Þ þ ℓun x; tð Þ

2

6

4

3

7

5

(40)

Then, we have.

The extreme condition of requires that . Hence, we have:

ð41Þ

Substituting Eq. (41) into Eq. (38), we obtain:

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

�ℓ

ð

t

0

sin t� ςð Þ unð Þ
tt
ðx; ςÞ � unð Þ

xx
ðx; ςÞ þ unðx; ςÞ

� �

dς

2

4

3

5

¼ ℓ un x; tð Þ½ � � ℓ sin t½ �ℓ unð Þ
tt
ðx; tÞ � unð Þ

xx
ðx; tÞ þ unðx; tÞ

� �

(42)

Let , then, from Eq. (42), we have:

The inverse Laplace transforms yields:

ð43Þ

Substituting Eq. (43) into Eq. (38), we obtain:

Then, the exact solution of Eq. (37) is:

ð44Þ
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Example (4.2)

Consider the nonlinear partial differential equation:

ð45Þ

The Laplace variational iteration correction functional will be constructed as follows:

ð46Þ

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ∗
unð Þ

tt
x; tð Þ � unð Þ

xx
x; tð Þ

þu
2
n
x; tð Þ � x

2
t
2

" #" #

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ
� �

ℓ unð Þ
tt
ðx; tÞ � unð Þ

xx
ðx; tÞ þ u

2
n
ðx; tÞ � x

2
t
2

� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ
� �

s
2
ℓun x; tð Þ � sun x; 0ð Þ �

∂un

∂t
x; 0ð Þ

�ℓ unð Þ
xx

x; tð Þ þ ℓu
2
n
x; tð Þ � ℓ x

2
t
2


 �

2

6

4

3

7

5

(47)

Taking the variation with respect to of Eq. (47) and making the correction functional

stationary we obtain:

This implies that:

ð48Þ

Substituting Eq. (21) into Eq. (19), we obtain:

ð49Þ

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ �t½ �ℓ
unð Þ

tt
x; tð Þ � unð Þ

xx
x; tð Þ

þu
2
n
x; tð Þ � x

2
t
2

� 	

(50)

Let , then, from Eq. (50), we have:
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Then, the exact solution of Eq. (45) is:

Again, the exact solution is obtained by using only few steps of the iterative scheme.

Example (4.3)

Consider the physics nonlinear boundary value problem,

The Laplace variational iteration correction functional is

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ �

þℓ

ð

t

0

λ x; t� ςð Þ
unð Þ

t
x; ςð Þ � 6un x; ςð Þ unð Þ

x
x; ςð Þ

þ unð Þ
xxx

x; ςð Þ

" #

dς

2

4

3

5

(52)

or

ℓ unþ1 x; tð Þ½ � ¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ∗ unð Þ
t
ðx; tÞ � 6 unð Þðx; tÞ unð Þ

x
ðx; tÞ þ unð Þ

xxx
ðx; tÞ

� �� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ
� �

ℓ unð Þ
t
ðx; tÞ � 6 unð Þðx; tÞ unð Þ

x
ðx; tÞ þ unð Þ

xxx
ðx; tÞ

� �

¼ ℓ un x; tð Þ½ � þ ℓ λ x; tð Þ
� �

sℓun x; tð Þ � unðx; 0Þ � ℓ 6 unð Þðx; tÞ unð Þ
x
ðx; tÞ � unð Þ

xxx
ðx; tÞ

� �� �

Taking the variation with respect to of the last equation and making the correction

functional stationary we obtain:

This implies that:

ð53Þ

Substituting Eq. (53) into Eq. (52), we obtain:

or

ð54Þ

Let then, from Eq. (54), we have:
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Then, the exact solution of Eq. (51) is:

Exercises

Solve the following nonlinear partial differential equations by new Laplace variational itera-

tion method:

1Þut þ uux ¼ 1� e�x tþ e�xð Þ, u x; 0ð Þ ¼ e�x

2Þut þ uux ¼ 2tþ xþ t3 þ xt2, u x; 0ð Þ ¼ 0

3Þut þ uux ¼ 2x2tþ 2xt2 þ 2x3t4, u x; 0ð Þ ¼ 1

4Þut þ uux ¼ 1þ t cos xþ
1

2
sin 2x, u x; 0ð Þ ¼ sin x

5Þut þ uux ¼ 0, u x; 0ð Þ ¼ �x

6Þut þ uux � u ¼ et, u x; 0ð Þ ¼ 1þ x

7Þutt � uxx � uþ u2 ¼ xtþ x2t2, u x; 0ð Þ ¼ 1,ut x; 0ð Þ ¼ x

8Þutt � uxx þ u2 ¼ 1þ 2xtþ x2t2, u x; 0ð Þ ¼ 1,ut x; 0ð Þ ¼ x

9Þutt � uxx þ u2 ¼ 6xt x2 � t2

 �

þ x6t6, u x; 0ð Þ ¼ 0,ut x; 0ð Þ ¼ 0

10Þutt � uxx þ u2 ¼ x2 þ t2

 �2

, u x; 0ð Þ ¼ x2,ut x; 0ð Þ ¼ 0

11Þutt � uxx þ uþ u2 ¼ x2 cos 2t, u x; 0ð Þ ¼ x,ut x; 0ð Þ ¼ 0

12Þut þ uux ¼ 0, u x; 0ð Þ ¼ x

13Þut þ uux ¼ 0, u x; 0ð Þ ¼ �x

14Þut þ uux ¼ 0, u x; 0ð Þ ¼ 2x

15Þut þ uux ¼ uxx, u x; 0ð Þ ¼ �x

16Þut þ uux ¼ uxx, u x; 0ð Þ ¼ 2x

17Þut þ uux ¼ uxx, u x; 0ð Þ ¼ 4 tan 2x

6. Conclusions

The method of combining Laplace transforms and variational iteration method is proposed for

the solution of linear and nonlinear partial differential equations. This method is applied in a

direct way without employing linearization and is successfully implemented by using the

initial conditions and convolution integral. But this method failed to solve the singular differ-

ential equations.
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Answers

1Þu x; tð Þ ¼ tþ e�x, 2Þu x; tð Þ ¼ t2 þ xt, 3Þ u x; tð Þ ¼ 1þ x2t2, 4Þu x; tð Þ ¼ tþ sin x

5Þu x; tð Þ ¼
x

t� 1
, 6Þu x; tð Þ ¼ xþ e

t
, 7Þu x; tð Þ ¼ 1þ xt, 8Þu x; tð Þ ¼ 1þ xt

9Þu x; tð Þ ¼ x3t3, 10Þu x; tð Þ ¼ t2 þ x2 , 11Þu x; tð Þ ¼ xcost, 12Þu x; tð Þ ¼
x

1þ t

13Þu x; tð Þ ¼
x

t� 1
, 14Þu x; tð Þ ¼

2x

1þ 2t
, 15Þu x; tð Þ ¼

x

t� 1
, 16Þu x; tð Þ ¼

2x

1þ 2t
17Þu x; tð Þ ¼ 4 tan 2x
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