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Abstract

The Lame system describing the dynamics of an isotropic elastic medium affected by a
steady transport load moving at subsonic, transonic, and supersonic speed is considered.
Its fundamental and generalized solutions in a moving frame of reference tied to the
transport load are analyzed. Shock waves arising in the medium at supersonic speeds are
studied. Conditions on the jump in the stress, displacement rate, and energy across the
shock front are obtained using distribution theory. Transport boundary value problem for
an elastic medium bounded by a cylindrical surface of arbitrary cross section and
subjected to transport loads is considered in the subsonic and supersonic case with regard
to shock waves. To solve problems, the generalized functions method is developed. In the
space of generalized functions, generalized solutions are constructed and their regular
integral presentations are obtained. Singular boundary equations solving the boundary
value problems are presented.

Keywords: elastic medium, transport load, subsonic, transonic, supersonic speed, shock
waves, boundary value problem, generalized functions method, generalized solutions,
singular boundary equations

1. Introduction

A widespread source of wave generation in continuous media is transport loading, i.e., mov-

ing loads whose form does not change over time. The velocity of a transport load has a large

effect on the type of differential equations describing the dynamics of the medium. The

equations depend parametrically on the Mach numbers, i.e., on the ratio of the speed of motion

to the propagation speeds of perturbations in the medium (sound speeds). It is well known [1]

that, in an isotropic elastic medium, there are two sound speeds (c1,c2), which determine the
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velocities of dilatational and shear waves propagation. This has a large effect on the type of

equations and leads to systems of elliptic, hyperbolic, or mixed equations. For transport

problems, typical factors are shock effects generated by supersonic loading. At shock fronts,

the stresses, displacement rates, and energy density are discontinuous. A convenient research

method for such problems is provided by the theory of generalized functions (distributions),

which makes it possible to significantly expand the class of processes amenable to study by

using singular generalized functions in the simulation of observed phenomena. In this chapter,

methods of this theory are used to solve boundary value problems using motion equations of

the theory of elasticity in cylindrical domains under the action of transport loads, moving at

supersonic and supersonic speeds.

2. Motion equation of elastic medium

We consider an isotropic elastic medium with Lame’s parameters λ,μ, and a density r. Let us

denote x = xjej, ej as the unit vectors of Cartesian coordinate system in the space R3; displace-

ments vector u(x,t) = ujej; stress tensors σij deformation tensor εij. These tensors are connected

by Hook’s law [1]:

εij ¼ 0, 5 ui , j þ uj , i
� �

, i, j, k ¼ 1, 2, 3: (1)

ð2Þ

The elastic constant tensor has the symmetry properties.

In the case of an isotropic medium, it is equal to

and Hook’s law has the form

σij ¼ λdivuδij þ µ ui , j þ uj , i
� �

Here δij ¼ δ
j
i is the Kronecker symbol. Everywhere, there are tensor convolutions over of the

same name indexes from 1 to 3, ui , j ≜
∂ui
∂xj
.

Motion equations for material continuum

ð3Þ

for elastic medium by using Eqs. (1) and (2) have the form:
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ð4Þ

Here L is the matrix Lame’s operator:

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λþ 2µ
� �

=r,
q

c2 ¼
ffiffiffiffiffiffiffiffi

µ=r
p

are the velocities of dilatational and shear waves (c1 > c2), G(x,t)

is the mass force, ∆ is the Laplace operator.

The system shown in Eq. (4) was fairly well studied by Petrashen [2]. Since the elastic potential

of the medium is positive definite, this system is strictly hyperbolic. Such systems can have

solutions with discontinuous derivatives. The discontinuity surface F in R4 = R3 � t(�∞ < t < ∞)

coincides with a characteristic surface of the system. It corresponds to a wave front Ft moving

in R3 at the velocity V:

ð5Þ

We note that ν(x,t) = (ν1,ν2,ν3,νt) is a normal vector to F in R4, satisfying the characteristic

equation

ð6Þ

This equation has the roots:

νt ¼ �cj∥ν∥3, j ¼ 1, 2: (7)

From Eqs. (5) and (7), we get that Ft moves in R3 at the sound velocity V = c1 or V = c2.

We introduce a wave vector m = (m1, m2, m3). It is a unit normal vector to Ft in R3 for fixed t in

the direction of wave propagation. By virtue of Eq. (7),

ð8Þ

Let νt = ν4. The requirement that the displacements be continuous across the wave front, i.e.,

u x; tð Þ½ �Ft ¼ 0 (9)

which is associated with the preservation of the continuity of the medium, leads to kinematic

consistency conditions for solutions at the wave front:

ð10Þ
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(the continuity of the tangent derivatives on Ft). Additionally, Eq. (4) implies dynamical

consistency conditions for solutions at the wave front, which are equivalent to the momentum

conservation law in its neighborhood:

ð11Þ

Definition. A wave is called a shock wave if the jump in the stresses across the wave front is

finite: eimj[σij]Ft = 0̸. If mj[σij]Ft = 0, then this is a weak shock wave. If mj[σij]Ft = ∞, then this is a

strong shock wave.

Velocity suffers a jump discontinuity across a shock front. At fronts of weak shock waves, the

velocities are continuous, but the second derivatives of solutions are not. Strong shock waves

(in the sense of the aforementioned definition) do not occur in actual media, since, at large

stress jumps, the medium is destroyed and ceases to be elastic. However, strong shock waves

in elastic media play an important theoretical role in the construction of solutions, specifically,

fundamental solutions of Eq. (4).

3. Lame transport equations and Mach numbers

Suppose that the force affecting the medium moves at a constant velocity c along the X3

axis (for convenience, in its negative direction) and, in a moving coordinate system

x0 ¼ x1; x2; z ¼ x3 þ ctð Þ it does not depend on t:

G x; zð Þ ¼ Gj x1; x2; x3 þ ctð Þ ej (12)

Transport solutions are solutions of Eq. (4) with the same structure:

u ¼ u x1; x2; x3 þ ctð Þ ¼ u x; zð Þ (13)

The speed of transport loads is called subsonic if c < c2,transonic if c2 < c < c1, and supersonic if

c > c1. A speed is called the first or second sound speed if c = cj, j = 1, 2, respectively.

In the new variables, the equations of motion are brought to the form

ð14Þ

Here gj ¼ rc2
� ��1

Gj; Mj ¼ c=cj are Mach numbers: (M1 < M2).

As Mj < 1(j = 1, 2) the load is subsonic and the system of equations is elliptic. If the load is

supersonic, i.e., Mj > l, j = 1, 2, then the system becomes hyperbolic. In the case of transonic

speeds, i.e., M1 < 1 and M2 > 1, the equations are hyperbolic-elliptic. In the case of sound

speeds, the equations are parabolic-elliptic if M2 = 1 and parabolic-hyperbolic if M1 = 1. We

will show this later when considering fundamental solutions of Eq. (14).
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Since the original system is hyperbolic, Eq. (14) can also have discontinuous solutions. Let F be

a discontinuity surface in the space of variables x
0

such that it is stationary in this space and

moves at one of the sound velocities V = c1,c2 in the space of (x1,x2,x3). It follows from Eq. (7)

that V = cn3, where n = (n1,n2,n3) is the unit normal to F in R3. Therefore, since c = cj/n3 and

|n3| ≤ 1, such surfaces can arise only at supersonic speeds: c ≥ cj.

It follows from Eqs. (9) to (11) and Eq. (13) that the kinematic and dynamical consistency

conditions for solutions at discontinuities in the mobile coordinate system have the form:

u x; zð Þ½ �F ¼ 0 ) nzui , j � njui, z
� �

F
¼ 0; (15)

σij

� �
nj ¼ �rckc ui, z½ �F; nz ¼ �ck=c, for c ≥ ck; (16)

n ¼ n1; n2; nz ¼ n3f g is a wave vector, k = 1 for shock dilatational waves, k = 2 for shock shear

waves. Here and hereafter, the derivative with respect to xj is denoted by the index j after a

comma in the function notation or by the variable itself.

Definition. If c > c2, the solution of the system in Eq. (14) is called classical if it is continuous and

twice differentiable everywhere, except for, possibly, wave fronts. The number of fronts is

finite at any fixed t and the conditions on the gaps, Eqs. (15) and (16), are satisfied on the wave

fronts.

At first, we construct the solutions of the transport Lame equation using methods of general-

ized functions theory.

4. Shock waves as generalized solutions of transport Lame equations:

conditions on wave front

Consider Eq. (14) and its solutions on the space of generalized vector functions D’3 (R
3) with

components being generalized functions from D
0

(R3) (see [3]). Obviously, if u is a solution of

Eq. (14) that is twice differentiable, then it is also a generalized solution of Eq. (14). If a vector

function u satisfies Eq. (14) in the classical sense almost everywhere, except for some surfaces,

on which its derivatives are discontinuous, then, generally speaking, u is not a generalized

solution of Eq. (14).

Let u(x,z) be a shock wave (x = (x1,x2)), i.e., a classical solution of the Lame transport equations,

Eq. (14), that satisfies conditions Eqs. (15) and (16) at the front F. Let bu x; zð Þ denote the

corresponding regular generalized function.

Theorem 4.1. The shock wave bu x; zð Þ is a generalized solution of the Lame equation in D’3 (R
3).

Proof. Using the rules for differentiating generalized functions with derivatives having jump

discontinuities across some surfaces (see [3]), for the equations of motion in D’3 (R
3), we obtain
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∂bσij
∂x0

j
� rc2

∂
2bui

∂x2z
þ Gi ¼ σijhj � r c2 hz

∂ui
∂z

� �

F

δFþ

þ
∂

∂x0j
λ ukhkδij þ μðuihj þ ujhi
� �

F
δF

	 

�

∂

∂z
ui½ �FhzδF

	 

,

(17)

Here, the right-hand side involves singular generalized functions, namely, single layers δF (x,z)

and double layers on F. By virtue of conditions Eqs. (15) and (16), the densities of these layers

are equal to zero, so the right-hand side of Eq. (17) vanishes; i.e., the shock wave satisfies the

same equations, Eq. (14), but in the generalized sense.

As a result, we obtain a simple formal method for deriving conditions at jumps in solutions

and their derivatives across the shock fronts in hyperbolic equations. Namely, these equations

are written in the space of generalized functions and the densities of the singular functions

corresponding to single, double, etc., layers are set to zero.

Define as follows the kinetic energy density

K ¼ 0:5r u, tk k2 ¼ 0:5rc2 u, zk k2 (18)

and elastic potential

W ¼ 0:5σijui, j ¼ 0:5σijεij (19)

Consider the following functions: the energy density E = K + W of elastic deformations and the

Lagrangian Λ = K � W.

Theorem 4.2. If G is continuous, then the Lagrangian Λ is continuous at the shock waves fronts.

( Λ½ �F ¼ 0) and the jump in the energy density satisfies the relation

hz E½ �F ¼ σijhj
� �

ui , z
� �

F
, (20)

First formula is equivalent to the equality:

E½ �Fck
¼ �

ck
c
hkj σijui, z
� �

Fck
, k ¼ 1, 2

where ck is the sound velocity corresponding to front F, hkj is the components of the wave

vector to F.

The last formula may be easy to get if we write the equation for E in D0
3 R3
� �

in the form

bE , z ¼ E, z þ E½ �FhzδF ¼ σijui , z
� �

, j þ r G; u, zð Þ þ σijui , z
� �

F
δFhj þ r G; u½ �F

� �
hzδF )

E½ �Fhz ¼ σijui , z
� �

F
hj
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as u½ �F ¼ 0: For the gaps of these functions, the theorem has been proved on the basis of classic

methods (see [4, 5]). For full proof of this theorem, see [6].

5. Fundamental Green’s tensors and generalized solutions of transport

Lame equations

The matrix of fundamental solutions bU x; zð Þ satisfies Eq. (14) with a delta function in the mass

force:

ð21Þ

This matrix is called Green’s tensor for the transport Lame equations if it satisfies the decay

conditions at infinity

ð22Þ

For a fixed k, its components describe the displacements of the elastic medium under a

concentrated force moving at the velocity c along the axis Z = X3 and acting in the Xk direction.

Green’s tensor can be obtained by taking the Fourier transform of Eq. (17) and solving the

corresponding system of linear algebraic equations for the Fourier transforms U(ξ1,ξ2,ξ3). It is

reduced to the form (see [4]).

ð23Þ

It can be seen that bU x; zð Þ has no classical inverse Fourier transform since it has non-integrable

singularities in its denominators. This is associated with the fact that the matrix of fundamen-

tal solutions is defined, generally speaking, up to solutions of the homogeneous system of

equations. The functions

are of crucial importance in the construction of the original Green’s tensor. It is easy to see that

f¯0m is the Fourier transform of the fundamental solution to the equation

ð24Þ

This equation is similar to the elliptic Laplace equation at subsonic speeds if Mk < 1 and to the

wave equation at supersonic speeds if Mk > 1. At the sound speed (Mk ¼ 1), the variable z
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disappears from the equation and the equation becomes parabolic, since the space dimension

is higher by one, which determines the type of Eq. (14), as noted earlier, since the solutions

contain waves of two types. Green’s tensor for the Lame transport equation was constructed

by Alekseyeva [4] by applying fundamental solutions of the Laplace and wave equations and

regularization functions f¯km, which depends on the speed of transport load. Green’s tensor has

the regular form:

U
j
i x; zð Þ ¼ c�2

2 δ
j
if 02 xk k; zð Þ þ c�2 f 21 , ij xk k; zð Þ � f 22 , ij xk k; zð Þ

� �
, (25)

where the type of basic function depends on velocity c.

In subsonic case (Mk < 1):

4πf oj r; zð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þm2
j r

2
q , 4πf 1j ¼ sgn zj j ln

zj j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

j r
2

q

mjr

0

@

1

A,

4πf 2j ¼ zj j ln
zj j þ V j

mjr

� �
� V j þmj xk k,

In sonic case (Mk = 1):

f ok xj j; zð Þ ¼ �0:5 δ zð Þ xj j, f 1k ¼ 0:5 θ zð Þ xj j, f 2k ¼ 0:5 zθ zð Þ xj j:

In supersonic case (Mk > 1):

f oj r; zð Þ ¼
θ z�mjr
� �

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �m2

j r
2

q , f 1j ¼
θ z�mjr
� �

2π
ln

zþ V�
j

mjr

� �
, f 2j ¼

θ z�mjr
� �

2π
z ln

zþ V�
j

mjr

� �
� V�

j

� �
,

Here and hereafter, we use the following notation: θ zð Þ is the Heaviside step function,

mk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

k

q
, Vk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

kr
2

q
, V�

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �m2

kr
2

q
, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
¼ xk k,

The dilatational and shear components of bU x; zð Þ are easy to write out

U
j
i x; zð Þ ¼ U

j
i1 x; zð Þ þU

j
i2 x; zð Þ

U
j
i1 ¼ c�2f 21, ij xk k; zð Þ, U

j
i2 x; zð Þ ¼ c�2

2 δ
j
if 02 xk k; zð Þ � f 22, ij xk k; zð Þ

(26)

In the supersonic case, the support of the functions is the cone z > mk∥x∥. This determines a

radiation condition as physical considerations imply that there are no displacements of the

elastic medium outside this cone since the perturbations have a finite propagation velocity,

which cannot be higher than the corresponding sound velocity for a particular type of defor-

mation. At the fronts of shock waves (z = mk∥x∥), Green’s tensor grows to infinity.
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If the following convolution exists,

bui ¼ bU
j

i∗Gj x; zð Þ=rc2 (27)

it is easy to prove that it is the generalized solution of the transport Lame equations, Eq. (14).

If mass forces are regular, then Eq. (28) has an integral presentation:

ui x; zð Þ ¼

ð

D�

U
j
i x� y; z� τð Þgj y; τð Þdy1dy2dτ ¼ ui x; zð Þ (28)

If mass forces are concentrated on surface D and described by singular generalized functions

of the type of single layers g ¼ gj y; τð ÞejδD y; τð Þ, then

bui x; zð Þ ¼

ð

D

U
j
i x� y; z� τð Þgj y; τð ÞdD y; τð Þ ¼ ui x; zð Þ


(29)

Moreover, by the Du Bois-Reymond lemma [3], these solutions are classical. For other types of

singular mass forces, to calculate Eq. (28), we use the definition of convolution of a generalized

function [3].

It is easy to see from Eqs. (23) to (25) that the solution is represented as a composition of

fundamental solutions distributed over the support of the function f(x,z); their intensities are

determined by its value.

In Alexeyeva and Kayshibayeva’s paper [5], there are some numerical examples of calculation

of the dynamic of elastic medium at subsonic, transonic, and supersonic speed of transport

loads moving along the strip in an elastic medium.

6. Subsonic Green’s tensor, fundamental stress tensors, and their

properties

In the subsonic case from Eq. (25), we obtain the components of Green’s tensor in the form:
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They are regular functions. Since by x
0 ! 0 [6]:

ð30Þ

these components are bounded for x; zð Þ 6¼ 0; 0; 0ð Þ. At the point x; zð Þ ¼ 0; 0; 0ð Þ, they have a

weak singularity of order R�1, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2

p
. It has a similar asymptotic at infinity. Accord-

ingly, R�2 is the order of the tensor derivatives asymptotic and the behavior of at ∞.

Tensor bU generates next fundamental stress tensors if we use Hook’s law (Eq. (2)):

Σ
i
jk x; zð Þ ¼ λUi

l , l δjk þ μ Ui
j , k þUi

k, j

 �
, Γ

i
j x; z; nð Þ ¼ Σ

i
jk x; zð Þnk

bT i
j x; z; nð Þ ¼ � rc2

� ��1
Γ
j
i x; z; nð Þ

(31)

Then the elastic constant tensor is presented in the form

bT j
i x; z; nð Þ ¼ ~C

jl
km

bUk
i ,mnl,

~C
jl
km ¼ C

jl
km= rc2

� �
(32)

Tensor Γi
j x; z; nð Þ describes the stresses at the plate with normal n in a point x

0
= (x,z). Tensor bT

have some remarkable properties.

Theorem 6.1. Fundamental stress tensor bT is the generalized solution of the transport Lame equation

with singular mass forces of the multipole type:

rc2L
j
i ∂x0ð ÞbT k

j þ Ki
k ∂x0 ; nð Þδ x

0
 �

¼ 0 (33)

where

Kl
i ∂x0 ; nð Þ ¼ λni∂l þ μтj δli∂j þ δlj∂i

 �
:

For any closed Lyapunov’s surface D, bounding a domain D�
⊂R3

δ
j
iH

�
D x; zð Þ ¼ V:P:

ð

D

T
j
i x� y; τ� z; n y; τð Þð Þ þU

j
i, z x� y; τ� zð Þnz y; τð Þ

 �
dS y; τð Þ (34)

where H�
D x; zð Þ is the characteristic function of D�, which is equal to 0.5 at D; n y; τð Þ is a unit normal

vector to D. The integrals are regular for x; zð Þ∉D and are taken in value principle sense for x; zð Þ∈D.

These formulas have been proved by Alexeyeva [6]. The formula in Eq. (35) can be referred to

as a dynamic analog of the well-known Gauss formula for a double-layer potential of the

fundamental solution of Laplace’s equation ([3]: 403). It plays a fundamental role in the

solution of transport boundary value problems (BVP).
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7. Statement of subsonic transport boundary value problems. Uniqueness

of solution

Let D� be an elastic medium bounded by a cylindrical surface D with generator parallel to the

axis X3; let S
� be the cross-section of the cylindrical domain; let S be its boundary, and let n be

the unit outward normal ofD. Obviously, n = n(x) and n3 = 0. We assume that G is an integrable

vector function and ∃ε > 0 such that

∥G x; zð Þ∥ ≤O ∥x0∥� 3þεð Þ
 �

for∥x0∥ ! ∞, x0 ∈D� þD: (35)

There is the subsonic transport load P(x,z) moving along the boundary D (c < c2):

σij x; zð Þnj xð Þ ¼ P x; zð Þ ¼ rc2pi x; zð Þ, x; zð Þ∈D (36)

We assume that ∃εi > 0:

ð37Þ

∥p x; zð Þ∥ ≤O zj j�1�ε2
 �

for ∣z∣ ! ∞, x∈S: (38)

A vector function u(x,z) satisfying the aforementioned conditions is referred to as a classical

solution of the BVP. Let Cab
� = {(x,z): x ∈D�, a < z < b}. The two useful energetic equalities have

been proved by Alexeyeva [6].

Theorem 7.1. Classic solution of transport BVP satisfying to the equalities:

ð

Dab

P; uð ÞdD x; zð Þ �

ð

D�
ab

W � 0:5rc2 u, zk k2 � G; uð Þ
 �

dx1dx2dzþ

þ

ð

S�

rc2ui , z � σi3

� �

x;að Þui x; að Þ � rc2ui, z � σi3 x; bð Þ
� �

x;bð Þui x; bð Þ
�

�




dx1dx2dz ¼ 0
�

�

	

ð

S�

W þ 0; 5rc2 u, zk k2 � σi3ui, z

 �

�∞

z dx1dx2 ¼

ð

Dz,�∞

P; ui , zð Þdx1dx2dzþ

ð

D�
z,�∞

G; u, zð Þdx1dx2dz

�

�

�

�

�

�

�

ð

D

P x; zð Þ; u x; zð Þð ÞdD x; zð Þ ¼

ð

D�

0:5rc2∥u, z∥
2 �W � G; uð Þ

� �

dx1dx2dz

ð

S�

W þ 0; 5rc2∥u, z∥
2

� �

dV xð Þ ¼

ð

D

P; u, zð ÞdD x; zð Þ þ

ð

D�

G; u, zð ÞdV x; zð Þ (39)

Dab ¼ x; zð Þ : x∈D; a ≤ z ≤ bf g, D�
ab ¼ x; zð Þ : x∈D�

; a < z < bf g:
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The following assertion is its corollary.

Theorem 7.2. The solution of the subsonic transport boundary value problem is unique.

Proof. Since the problem is linear, it suffices to prove the uniqueness of the zero solution. Let u

(x,z) satisfy the zero boundary conditions P(x,z) = 0 onD and be a solution of the homogeneous

Lame equations ((Eq. (14)) by G(x,z) = 0.

Then for ∀z

ð

S�

W þ rc2∥u, z∥
2

� �
dV xð Þ ¼ 0 (40)

It follows from the formula (Eq. (40)) of Theorem 7.1. The integrand is a positive quadratic

form in ui,j, since the elastic potential satisfies the relationW ≥ 0 ([1]: 589, 591); moreover,W = 0

only for displacements of the medium treated as an absolutely rigid body. Therefore, Eq. (40) is

true only if ui,j = 0 for all i, j. This, together with the decay of solutions at infinity and the

arbitrary choice of z, implies that u = 0.

The proof of the theorem is complete. It is valid both for the internal and external boundary

value problem. The asymptotic requirements on G and the boundary functions may be

weakened.

8. General functions method: statement of subsonic transport BVP in

D
0

3
R

3
� �

Our aim is to construct the solution of BVP by using boundary integral equations (BIE) for

u(x,z). The construction of an analog of Green’s formula for solutions of elliptic equations ([3]:

366), which permits one to determine the values of the desired function inside the domain on

the basis of the boundary values of the function and its normal derivative, is the key point in

the construction of BIE of boundary value problems. An analog of this formula for equations of

the static theory of elasticity is referred to as the Somigliana formula [1]. It determines the

function u(x,z) in the domain D�, if the boundary values of displacements uD(x,z) and stresses

p(x,z) are given. We construct a dynamic analog of that formula in the case of transport

solutions. To this end, we use the method of generalized functions (GFM).

We introduce the regular generalized solution of BVP

bu x; zð Þ ¼ u x; zð ÞH�
D xð Þ ¼ u x; zð ÞH�

S xð Þ1 zð Þ, (41)

which defines it as a regular vector function on all space R3. Here H�
D x; zð Þ is the characteristic

function of the set D: 1(z) � 1, H�
S xð Þ is the characteristic function of S�, which is equal to 0.5 at

S: ∂jHS
� xð Þ ¼ �nj xð ÞδS xð Þ, where nj(x)δS(x) is a simple layer at S.
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By using the properties of the differentiation of regular generalized functions with jumps on D,

we obtain the equation for bu x; zð Þ:

rc2L
j
i ∂x; ∂z;ð Þbuj x; zð Þ ¼ bGiþ

ð42Þ

bG ¼ GH�
D x; zð Þ, δD x; zð Þ ¼ δS xð Þ1 zð Þ, 1 zð Þ � 1, is a simple layer on D. Since n3 = 0 on D, it

follows from the properties of the Green tensor that an analog of the Somigliana formula holds

in the space of generalized functions:

rc2bui ¼ bU
j

i∗PjδD þ λuknkδ
j
l þ μ njul þ nluj

� � �
δD

∗ bU
l

i

� �
, j þ bU

j

i∗GjH
�
D,

which we write in a form more suitable for transformation as:

bui ¼ bU
j

i∗pjδD x; zð Þ þ bU j
i,m

∗ ~Ckl
jmuknlδD x; zð Þ (43)

If we write out this convolution in integral form with regard to the notation introduced here

and Eqs. (1) and (2), then we obtain a formula, whose form coincides with the Somigliana

formula for problems of elastostatics ([1]: 605):

uiH
�
D x; zð Þ ¼

ð

D

U
j
i x; y; z; τð Þ pjðy; τÞ � T

j
iðx; y; z; τ; nðy; τÞÞujðy; τÞ

 �
dD y; τð Þ,

i, j ¼ 1, 2, 3

(44)

where we introduce the shift tensors:

U
j
i x; y; z; τð Þ ¼ U

j
i x� y; z� τð Þ, T

j
i x; y; z; τ; nð Þ ¼ T

j
i x� y; z� τ; nð Þ:

This formula permits one to determine displacements in the medium on the basis of known

boundary values of displacements and stresses. But the integrals are regular only for x; zð Þ∉D

and do not exist for x; zð Þ∈D.

9. Singular boundary integral equations of subsonic transport BVP

The following assertion provides a solution for the aforementioned boundary value problems.

Theorem 9.1. If the solution u(x;z) of subsonic transport BVP satisfies the Holder condition on D;

namely,

kujðx, zÞ � ujðy, tÞk ≤Ckðx,zÞ � ðy, tÞkβ, x∈S, y∈S,
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then u(x;z) satisfies the singular boundary integral equation

0, 5ui x; zð Þ ¼ bgj
∗ bU

j

i
x; zð Þ þ

ð

D

U
j
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:

ð

D

T
j
i x; y; z; τ; n y; τð Þð Þuj y; τð ÞdD y; τð Þ � i, j ¼ 1, 2, 3

(45)

Proof. Let consider Eq. (45) for x; zð Þ∈D�. Let (x∗,z∗) ∈ D, x
0

! (x∗,z∗). Then, using Theorem

6.1, we have

lim
x;zð Þ! x∗;;z∗ð Þ

ui x; zð Þ ¼ ui x
∗
; z∗ð Þ ¼ bgj

∗ bU
j

i

x∗; z∗ð Þ þ lim
x;zð Þ! x∗;z∗ð Þ

ð

D

U
j
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

� lim
x;zð Þ! x∗;z∗ð Þ

ð

D

T
j
i x; y; z; τ; n y; τð Þð Þ uj y; τð Þ � ujðx

∗
; z∗Þ

� �
dD y; τð Þþ

þuj x
∗
; z∗ð Þ lim

x;zð Þ! x∗;z∗ð Þ

ð

D

T
j
i x; y; z; τ; n y; τð Þð ÞdD y; τð Þ ¼

¼ bgj
∗ bU

j

i
x∗; z∗ð Þ þ

ð

D

U
j
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:

ð

D

T
j
i x; y; z; τ; n y; τð Þð Þ uj y; τð Þ � ujðx

∗
; z∗Þ

� �
dD y; τð Þþ

þuj x
∗
; z∗ð Þ lim

x;zð Þ! x∗;z∗ð Þ
δ
j
i �

ð

D

U
j
i , z x; y; z; τð ÞÞnz yð ÞdDðy; τÞ

0

@

1

A ¼

¼ bgj
∗ bU

j

i
x∗; z∗ð Þ þ

ð

D

U
j
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:

ð

D

T
j
i x; y; z; τ; n y; τð Þð Þ uj y; τð Þ � ujðx

∗
; z∗Þ

� �
dD y; τð Þþ

þuj x
∗
; z∗ð Þδ

j
i ¼ bgj

∗ bU
j

i
x∗; z∗ð Þ þ

ð

D

U
j
i x; y; z; τð Þ pj y; τð ÞdD y; τð Þ�

�V:P:

ð

D

T
j
i x; y; z; τ; n y; τð Þð Þuj y; τð ÞdD y; τð Þ � 0, 5ui x

∗
; z∗ð Þ þ ui x

∗
; z∗ð Þ:

In the last relation, we have used the obvious properties: integrals withU
j
i exist by virtue of the

Holder property of u on D and weak singularity U
j
i at D. Then if the surface integral exists, its

value coincides with the principal value; the principal value of the integral containing the

difference of integrated functions is equal to the difference of the principal values of integrals

corresponding to each of these functions if they exist.
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By transposing the last two terms to the left-hand side of the relation, we obtain the formula of

the theorem for the boundary points. The proof of the theorem is complete.

This theorem gives us resolving system of integral equations for defining unknown values of

boundary displacements.

Note also that the subsonic analog of the Somigliana formula was obtained for generalized

functions. But since they are regular, from the Dubois-Reymond lemma ([3]: 97), the solution is

classical. However, if the acting loads are described by singular generalized functions, which

often takes place in physical problems, then one should use a representation of a generalized

solution in the convolution form (Eq. (43)) with the evaluation of convolutions by the defini-

tion (see [3]: 133).

10. Supersonic green’s tensor and its antiderivative with respect to z

From Eq. (25), we get the regular representation of bU j
i in the supersonic case which has the

form

2πU1
1 ¼

θ2

V2
þ

z2x21
r4M2

2

θ1

V1
�

θ2

V2

� �
�

x22
r4M2

2

θ1V1 � θ2V2ð Þ,

2πU2
2 ¼

θ2

V2
þ

z2x22
r4M2

2

θ1

V1
�

θ2

V2

� �
�

x21
r4M2

2

θ1V1 � θ2V2ð Þ,

(46)

2πU2
1 ¼

x1x2
r4

z2
θ1

V1
�

θ2

V2

� �
þ θ1V1 � θ2V2ð Þ

� �
, 2πU3

3 ¼
θ1

V1
þ
θ2m

2
2

V2

� �
,

2πU3
1 ¼ �

x1z

r2
θ1

V1
�

θ2

V2

� �
, 2πU3

2 ¼ �
x2z

r2
θ1

V1
�

θ2

V2

� �

Here θj ¼ θ z�mj∥x∥
� �

, V j
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 �m2

j ∥x∥
2

q
, mj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj

2 � 1:
q

It satisfies the radiation condi-

tions:

supp
z

U x; zð Þ∈ z > 0f g, Uk
i ! 0, Uk

i0j ! 0 by x0 ! ∞: (47)

One can readily see that its components are zero outside the sonic cones:

Kl
þ ¼ x; zð Þ : z > ml∥x∥f g, l ¼ 1, 2:

On the surfaces of the cones, the components U3
1 have singularities of the type (z

2 � m2
jr
2)�1/2.

For solution of supersonic problems, we introduce the tensor cW
i

j x; zð Þ, which is the antideriv-

ative of bU i
j with respect to z:
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cW i
j ¼

X2

k¼1

cW i
jk ¼

bU i
j∗δ x1ð Þδ x2ð Þθ zð Þ ¼ bU i

j ∗z
θ zð Þ, cW i

j , z ¼
bU i

j (48)

They are also fundamental solutions of Eq. (14) for the mass forces of the corresponding

Fj ∗z θ zð Þ. After calculation, we define its components as:

2πW1
1 ¼

z

r4
x21 � x22
� �

θ1V1 � θ2V2ð Þ þ 0, 5m2
1θ1ln

zþ V1

m1r
þ M2

2 � 0; 5m2
2

� �
θ2ln

zþ V2

m2r

2πW2
2 ¼ �

z

r4
x21 � x22
� �

θ1V1 � θ2V2ð Þ þ 0, 5m2
1θ1ln

zþ V1

m1r
þ M2

2 � 0; 5m2
2

� �
θ2ln

zþ V2

m2r

(49)

2πW3
3 ¼ θ1ln

zþ V1

m1r
þm2

2θ2ln
zþ V2

m2r
, 2πW3

2 ¼ �x2r
�2

θ1V1 � θ2V2ð Þ

2πW2
1 ¼ zx1x2r

�4
θ1V1 � θ2V2ð Þ, 2πW3

1 ¼ �x1r
�2

θ1V1 � θ2V2ð Þ

Tensor cW i
j has the same support as bU i

j but as at the cone Kj

ð50Þ

it continues on fronts Kj. W j
i x; zð Þ has weak singularity by x’ = 0 and weak logarithmic

singularity on Z with respect to ∥x∥ by x = 0. To single out these singularities, we decompose

it into the terms:

W i
j x; zð Þ ¼ W is

j x; zð Þ þW id
j x; zð Þ ¼

X2

k¼1

θk z�mkrð Þ W is
jk xð Þ þW id

j x; zð Þ,

2πc2W is
j1 xð Þ ¼ � δi3δj3 þ 0; 5m2

1 1� δi3ð Þδij
� �

lnm1r,

2πc2W is
j2 xð Þ ¼ ðδi3δj3 þ δij 0; 5m2

1 1� δi3ð Þ �M2
2

� �
lnm2r

(51)

The tensors W is
j of diagonal form are independent of z inside the sonic cones Kl(l = 1, 2)

and have a logarithmic singularity with respect to ∥x∥ on the Z-axis. Unlike the generat-

ing tensor W is
j , W

id
j has bounded jumps on the Kl. One can readily see that the tensor

shifts

U
j
i x; y; zð Þ ¼ bU j

i x� y; zð Þ,W
j
i x; y; zð Þ ¼ cW j

i x� y; zð Þ

have the following symmetry properties around the Z-axis:

U
j
i x; y; zð Þ ¼ U

j
i y; x; zð Þ ¼ Ui

j x; y; zð Þ, W
j
i x; y; zð Þ ¼ W

j
i y; x; zð Þ ¼ W i

j x; y; zð Þ, i, j ¼ 1, 2 (52)

But for the components with indices (i,j) = (1,3), (3,1), (2,3), (3,2)
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U
j
i x; y; zð Þ ¼ �U

j
i y; x; zð Þ, W

j
i x; y; zð Þ ¼ �W

j
i y; x; zð Þ (53)

11. Fundamental supersonic antiderivative stress tensor bH and its

properties

We introduce antiderivative stress tensor

~Σ
j

i3 ¼
bΣ
i

j∗θ zð Þδ xð Þ

bH
i

j ¼
bT
i

j∗θ zð Þδ xð Þ ¼ bT i
j ∗z

θ zð Þ, bH i
j , z ¼

bT i
j

(54)

This tensor can be obtained in a different way, by analogy with T, using Hooke’s law, except

that the Green tensor should be replaced with its antiderivativeW. By using the presentation of

the basic functions of Green’s tensor construction (Eq. (25)) in the supersonic case, it can be

presented in the following form:

Obviously, for z < τ, all the introduced shifted tensors are zero. It has the following symmetry

properties around the Z-axis:

H
j
i x; y; z;mð Þ ¼ �H

j
i y; x; z;mð Þ ¼ �H

j
i x; y; z;�mð Þ

except for (i,j) = (1,3), (2,3), (3,1):

H3
i x; y; zð Þ ¼ H3

i y; x; zð Þ, H3
i x; y; zð Þ ¼ H3

i y; x; zð Þ, i ¼ 1, 2:

Components Hi
j x; zð Þ have weak singularities on the fronts of the type z2 �m2

j∥x∥
2

� ��1=2
, but

more stronger singularity of the type of ∥x∥�1 on the axis Z. If we put Eq. (51) in Hook’s law,

then we can again single out two terms in Hi
j x; zð Þ:

Hi
j x; zð Þ ¼ His

j x; zð Þ þHid
j x; zð Þ ¼

X2

k¼1

θk z�mkrð Þ His
jk xð Þ þHid

jk x; zð Þ
 �

(55)
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Since the tensors His
jk xð Þ independent of z inside the sonic cones Kl (l = 1,2), we conventionally

say that they are stationary. Accordingly, the tensors Hid
j x; zð Þ are said to be dynamic, because

they depend essentially on z, although they are regular functions. The aforementioned sym-

metry properties hold for both stationary and dynamic terms in the tensors.

For this type of tensors, the next theorem was proved (see [7]).

Theorem 11.1. The fundamental stress tensor H satisfies the relation

δ
j
iH

�
S xð Þθ zð Þ ¼

ð

z

0

dτ

ð

S

H
j
i y� x; τ; n yð Þð Þ dS yð Þþ

þ

ð

S

rc2
� ��1

~Σ
j

i3
ðx� y; zÞ �U

j
i , zðy� x; zÞ

� �

dy1dy2

For x∉D all integrals are regular; for x ∈ D the first integral is singular, calculated in value principle

sense.

This theorem enables us to obtain solvable singular boundary integral equations for a super-

sonic transport boundary value problem.

12. Statement of supersonic transport BVP: uniqueness of solutions

We suppose here that supersonic transport loads, moving at supersonic velocity c > c1, are

known on the boundary D:

P ¼ σijniej ¼ rc2pj x; zð Þejθ zð Þ, x ¼ x1; x2ð Þ∈S, i, j ¼ 1, 2, 3 (56)

Functions pj(x,z) are integrable on D+. We assume here G = 0 and

u x; zð Þ ¼ 0, ui , z x; zð Þ ¼ 0, z ≤ 0, x∈ S� (57)

For ∥(x,z)∥ ! ∞

uj ! 0, ∃ε > 0 : ∥∂ju∥ < O ∥ x; zð Þ∥1þε
� �

, j ¼ 1, 2, z (58)

The jump conditions, Eqs. (15) and (16) are satisfied on the shock wave fronts.

Theorem 12.1. The solution of the supersonic transport boundary value problem is unique.

Proof. Suppose that there exist two solutions. Since the problem is linear, it follows that their

difference u(x,z) satisfies the zero boundary conditions, i.e., P(x;z) = 0, and is a solution of the

homogeneous equations of motion (G = 0). We note, that Lemma 8.1 is also true in the

supersonic case for shock waves as there is Theorem 3.2 for the gaps of energy on their fronts
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(see full proof). Then together with conditions given in Eq. (59) of decay of the solutions at

infinity and the zero conditions for z = 0,

ð

S�

E x; zð Þdx1dx2 ¼

ð

S�

σi3ui , z x; zð Þdx1dx2 ! 0 by z ! ∞

The energy density E is a positive definite quadratic form of ui,j by construction. Therefore, by

virtue of the decay of the solution at infinity, the relation only holds if ui,j = 0 for all i and j.

Hence, we obtain u = 0; i.e., the solutions coincide. The proof of the theorem is complete.

Theorem 12.1 holds for both exterior and interior boundary value problems.

13. Statement of supersonic BVP in D
0

3 R3
� �

and its generalized solution

To solve the problem, we also use the method of generalized functions. We introduce here the

regular generalized function with support on D�
þ:

buj x; zð Þ ¼ uj x; zð ÞH�
S xð Þθ zð Þ (59)

Also using the properties of differentiation of regular generalized functions with gaps at D,

and taking into account the boundary conditions and the conditions on the fronts, we obtain

the transport Lame equations (Eq. (14)) on the space of distributions with singular mass forces:

bgj ¼ pjδS xð Þθ zð Þ þ λuknkδij þ μ uinj þ ujni
� �� �

δS xð Þθ zð Þ
� �

, i (60)

By using the properties of convolutions with the Green tensor and the boundary conditions,

we obtain the generalized solution of BVP in the form:

rc2buk ¼ bU
j

k∗PjδS xð Þθ zð Þ þ bU j
k, i

∗ λumnmδij þ μ uinj þ ujni
� �� �

δS xð Þθ zð Þ (61)

By analog with the subsonic case, if we use fundamental stress tensor, then the right-hand side

of Eq. (61) may be represented in the form of a surface integral over the boundary of the

domain. In our notation, on the boundary, it acquires the form

uiH
�
S xð Þθ zð Þ ¼

ð

Dþ

U
j
i x; y; z� τð Þ pj y; τð Þ � T

j
i x; y; z� τ; n y; τð Þð Þuj y; τð Þ

 �
dD y; τð Þ (62)

This formula is similar to the Somigliana formula in the static theory of elasticity ([1]: 146), but

it is impossible to use this formula to determine the solution of the boundary value problem in

the case of supersonic loads, because the second term contains strong non-integrable singular-

ities of the tensor T on the shock wave fronts of fundamental solutions; therefore, the integrals

are divergent. To construct a regular integral representation of the formula, we must regularize

it. For this, we use the tensor H.
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14. Dynamic analog of the Somigliana formula in supersonic case

For regularization of Eq. (61), we put W,z instead of U in the second term and use the property

of differentiation of convolution:

rc2buk ¼
bU

j

k∗PjδS xð Þθ zð Þ þ cW
j

k
, iz

∗ λumnmδij þ μ uinj þ ujni
� �� �

δS xð Þθ zð Þ ¼

¼ bU
j

k∗PjδS xð Þθ zð Þþ W
↼

j

k
, i
∗ λum, znmδij þ μ ui, znj þ uj, zni

� �� �
δS xð Þθ zð Þþ

þcW j
k, i

∗ λumnmδij þ μ uinj þ ujni
� �� �

δS xð Þδ zð Þ ¼

¼ bU j
k∗PjδS xð Þθ zð Þ þ cW j

k ,m
∗Cil

jmui, znl xð ÞδS xð Þθ zð Þ þ Cil
jm
cW j

k,m ∗
x
ui x:0ð Þnl xð ÞδS xð Þ

(63)

From here on, we use Eq. (57) we get the formula which can be written in integral form.

Theorem 14.1. The generalized solution of supersonic transport BVP can be presented in the form:

buk ¼ bU
j

k∗pjδS xð Þθ zð Þ þ ~C il
jm
cW j

k,m
∗ui , znl xð ÞδS xð Þθ zð Þ (64)

which for x∉S has the next integral presentation

uiH
�
S xð Þθ zð Þ ¼

X2

k¼1

ð

S

θ z�mkrð ÞdS yð Þ

ðz�mkr

0

U
j
i x� y; z� τð Þ pjðy; τÞ�

n

�H
jd
i ðx� y; z� τ; n yð ÞÞuj , zðy; τÞ

o
dτ�

ð

S

H
js
i x� y; z; n yð Þð Þuj y; z�mkrð ÞdS yð Þ

(65)

r ¼ x� yk k

Proof. Formula (65) follows from Eq. (64) in virtue of Eqs. (61) and (32). Its integral form is

uiH
�
S xð Þθ zð Þ ¼

ðz

0

U
j
i x; y; z� τð Þ pj y; τð Þ �H

j
i x; y; z� τ; n yð Þð Þuj , z y; τð Þ

o
dτ

n

If we use Eq. (55) for Hi
j x; zð Þ as the support of His

j x; zð Þ, Hid
j x; zð Þ, we get

uiH
�
S xð Þθ zð Þ ¼

X2

k¼1

ð

S

θ z�mkrð ÞdS yð Þ

ðz�mkr

0

U
j
i x� y; z� τð Þ pjðy; τÞ�

n

� ðH
jd
ikðx� y; z� τ; n yð Þ þH

js
ikðx� y; n yð ÞÞÞuj , zðy; τÞ

o
dτ

(66)
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Note that

ð

z�mkr

0

H
js
ik x� y; n yð Þð Þuj , τ y; τð Þdτ ¼ H

js
ik x� y; n yð Þð ÞÞðuj y; z�mkrð Þ � uj y; 0ð Þ ¼

¼ H
js
ik x� y; n yð Þð ÞÞuj y; z�mkrð Þ

In virtue of this equity, we get from Eq. (66) the last formula of the theorem.

All integrals exist; indeed, the integrands are integrable everywhere, including the fronts of

fundamental solutions, because the kernels of the integrands have weak singularities on the

fronts of the form z2 �m2
j∥x∥

2
� ��1=2

in virtue of the properties of kernelsU andH. The proof is

completed.

This formula is a dynamic analog of Somigliana formula for supersonic loads. It defines the

displacement in elastic medium by using boundary values of stresses and velocity of displace-

ments of boundary surface.

This formula also preserves its form for x; zð Þ∈D with regard to the definition of HS
� xð Þθ zð Þ

on D.

15. Singular boundary integral equations of supersonic transport BVP

Тheorem15.1. If the classical solution of BVP satisfies the Holder’s conditions at D+, i.e., ∃ C > 0, β > 0

that

uj x; zð Þ � uj y; zð Þ
�

�

�

� < C x� yk kβ, x, y∈S:
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Proof. The desired assertion follows from Theorem 14.1 and Theorem 11.1 for tensor H by

analogy of the proof of Theorem 12.1 about singular boundary integral equations in the

subsonic case. Full proofs of these theorems can be found in [7].
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This theorem gives us a resolving system of integral equations for definition of unknown

values of boundary displacements in the supersonic case.

Moreover, the Somigliana formula for displacements was obtained for generalized functions.

But since they are regular, from the Dubois-Reymond lemma ([3]: 97), this solution is classical.

However, if the acting loads are described by singular generalized functions, which often

takes place in physical problems, then one should use a representation of a generalized

solution in the convolution form (Eq. (65)) with the evaluation of convolutions by the defini-

tion (see [3]: 133).

16. Conclusion

The constructed singular boundary integral equations in the supersonic case are not classical

equations because the solution inside a domain is determined by the boundary values of

stresses and displacement rates rather than displacements themselves, unlike the Somigliana

formula. In addition, the domain of integration over a boundary surface substantially depends

on z, which is specific for hyperbolic equations. This complicates finding solutions of such

problems by the successive approximation method. However, for the numerical discretization

of singular boundary integral equations, the method of boundary elements makes it possible to

use standard methods of computational mathematics for a computer implementation of the

solution of such problems. The aforementioned boundary value problems model the dynamics

of underground structures like transport tunnels and extended excavations subjected to the

dynamic influence of moving vehicles and seismic loads. They permit one to study the dynam-

ics of a rock mass in a neighborhood of underground structures depending on its physical-

mechanical properties, the velocity of moving transport, specific features of the transport load,

and the geometric properties of structures in technical computations of displacements and the

stress-strain state of the mass away from the tunnel.
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