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Abstract

In this chapter, an intelligent algorithmic tuning technique suitable for real-time
system tuning based on hill climbing optimization algorithm and model reference
adaptive control (MRAC) system technique is proposed. Although many adaptive
control tuning methodologies depend partially or completely on online plant system
identification, the proposed method uses only the model that is used to design the
original controller, leading to simplified calculations that do not require neither
high processing power nor long processing time, as opposed to identification tech-
nique calculations. Additionally, a modified hill climbing algorithm that is devel-
oped in this research is specifically designed, configured and tailored for the
automatic tuning of control systems. The modified hill climbing algorithm uses a
systematic movement when searching for new solution candidates. The algorithm
measures the quality of the solution candidate based on error function. The error
function is generated by comparing the system response with a desired reference
response. The algorithm tests new solution candidates using step signals iteratively.
The results showed the algorithm effectiveness to drive the system response. The
simulation results illustrate that the method schemes proposed in this study show a
viable and versatile solution to deal with controller tuning for systems with model
inaccuracies as well as controller real-time calibration problem.

Keywords: real-time controller, auto-tuning algorithm, optimization, modified hill
climbing approach, model reference adaptive control system (MRAC)

1. Introduction

The increasing complexity of industrial processes is always pushing for advance-
ments and innovations in technologies involved in industrial processing, including
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control systems engineering. The invention of computers paved the way for new and
intelligent possibilities in control system technologies [1]. The last four decades
witnessed a rapidmovement towards the field of intelligent control [2–5]. This move-
ment was being coupled with what were already growing newways and paradigms of
applying automatic control for evenmore decades prior to computer inception [6].
Control systems advanced from having a sensor-actuator relationship moulded
together in feedback paradigm to complexmultilayer interrelated sets of systems [2].

In designing control systems, system modelling can be considered the backbone
of the design process. Many modelling techniques were introduced by researchers
through time. The introduction of computers pushed towards better models [7].
However, no matter how good modelling techniques are getting, whether being
based on analytical analysis or identification methods, no model would be a perfect
match to the system it is depicting. There would always be an accuracy factor
affecting the model quality.

The controller design is dependent upon the system model. As a result, the end-
product controller quality is hugely dependent upon the model quality, and, to a
degree, the model mimics the behaviour of the system it represents [8]. However,
due to the vast and deep complexity of most systems humans encounter in the
world, whether physical, economical or any other types of systems, humans tend to
build mathematical models for control purposes as simplified as possible in order to
simplify the controller design process. That simplification comes with a major flaw,
which is a decreased accuracy of system presentation by the model. The effects of
this flaw, however, are often not important or of insignificant consideration for the
control system. However, sometimes it is effective to a degree of generating a
degraded control quality over the system. That is especially present when models
encounter even more degradation in quality due to system parameter fluctuation
over time due to various operational effects.

However, sometimes control strategy should be built to deal with a high or
variable model inaccuracy. Complex systems would often be represented with
simplified models to reduce calculation time and efforts [9], which result in less
accurate models [8], while in many cases, the model accuracy degrades over time
due to either sudden system variable change due to undisclosed reasons or gradual
variable change from normal wear and tear of system components [10].

Due to control system design procedures being highly dependent on the mathe-
matical model of the controlled plant [9], a high model quality and accuracy is
critically needed. However, in some dynamic systems, it is very difficult (or even
impossible) to have models with good accuracy that are sufficient to predict the plant
behaviour in a way that an acceptably controlled performance can be produced.

On the other hand, sometimes even if mathematical models are sufficiently
accurate in a way that a good controlled performance can be obtained, long-term
operation (or even short term in some cases) gradually increases the difference
between the plant and its dynamical model, which, in turn, would lead to a
degraded performance.

It is a common task in industrial applications to recalibrate the control system
periodically, as the plant parameters suffer various fluctuations from their original
values that were used in designing the control system. The calibration procedure
usually requires professional attendance, which adds up to more maintenance costs.
Also, the experimental nature of the manual calibration often requires at least part
of the plant operations to be halted [2, 11].

Instead of relying on manual calibration, this research proposes an automatic
tuning scheme and algorithm specifically designed for control systems to deal with
model inaccuracies and parameter fluctuations during real-time operation without
the need to halt plant operation.
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2. Model reference adaptive control (MRAC)

Adaptive control systems were among the first techniques in automatic control
to tackle the problem of parameter fluctuation [12]. The various techniques
required a continuous system observation or identification to improve the model
quality while adapting the controller parameters according to the new model
[13, 14]. However, the general approach of adaptive control is different to that of
real-time optimization. Real-time optimization techniques attempt to tune or opti-
mize the control system generally by changing the operating conditions in order to
get the desired response. There is no online modelling involved. It was introduced
mainly in chemical processes and plants to deal with the autonomous calibration
problem [15]. However, it is possible to generalize its framework to deal with other
types of control systems [16].

Model reference adaptive control (MRAC) is one of the most important adaptive
techniques in control engineering [12, 13], as it provides a good viewpoint to
thoroughly analyse adaptive systems [12].

The MRAC system structure is generally considered to have two feedback loops
[12, 17], an inner feedback loop that is the ordinary feedback that is compared with
the set point and fed to the controller and an outer feedback loop that modifies
controller parameters based on the adaptation mechanism. In this technique, a
reference response is to be followed by the system. The reference response is
generated by using a prebuilt reference model [12]. The controller parameters are
adjusted based on the difference error between the reference model response and
the controlled process response as shown in Figure 1.

The adaptation algorithm adjusts the controller parameters so that the error is
reduced to zero [12]. Parameter estimation or process measurements help in
forming the adaptation rule that the controller would be adjusted according to.

MRAC uses one of three mechanics to adjust controller parameters by finding an
adaptation law. The Massachusetts Institute of Technology (MIT) rule is a gradient
method that was the first used mechanic [12]. However, the MIT rule could some-
times lead to unstable system response [13]. Later, the Lyapunov stability theory
and the passivity theory were also used to generate the adaptation law that was
proved to be robust and stable [12, 13].

It should be noted that there is a large correlation between MRAC and self-
tuning regulator (STR). Actually, some STRs can be considered as MRAC and vice
versa [12, 17].

Figure 1.
Model reference adaptive control schematic diagram [12–13, 17].
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3. Overview of hill climbing algorithm

It was proved that although process models are often inaccurate, they are suffi-
cient to provide general knowledge for real-time optimization problem [18], while
real-time optimization problem can be solved iteratively [16, 19]. The tuning oper-
ation includes searching for new actuator settings (e.g. gains) to achieve the desired
performance [16]. Many optimization algorithms are available, but most of these
algorithms are not suitable for real-time tuning due to several reasons such as time-
consuming calculation or the algorithm’s inability to provide a transitional solution
until a satisfactory solution is found [20]. Obviously, the latter is essential for real-
time operation.

In this research, a real-time controller tuning algorithm based on the principles
of hill climbing optimization algorithm is proposed. The algorithm is suitable for
controller automatic tuning in real-time. Hill climbing is one of the oldest tradi-
tional optimization algorithms. The procedure begins by selecting an arbitrary
solution in the searching space and then testing the surrounding solutions, one at a
time. If the algorithm finds a better solution than the currently selected solution, the
better solution is selected, and the procedure is done again until the algorithm
cannot find a solution that is better than the currently selected one, and at that
point, the optimization stops, and the best found solution is considered the best
solution [21].

In Figure 2, searching for a maximum height point is assumed. Let’s suppose that
the arbitrary starting point was point a. When the optimization starts, hill climbing
would check the sides of point a and decide to move in the shown direction, since
the left side gives a larger (height) value than the value of point a. On the other
hand, the algorithm would not select to move to the right, since the value is less than
that of point a. This movement would continue until the selection reaches the
maximum point denoted as ‘maximum height (global)’ at which the optimization is
considered finished and the selected point is the optimum, since no more movement
is possible because points on both sides hold less value than the selected one.

However, starting arbitrarily at point b of Figure 2 would result in the optimi-
zation to stop when reaching the point denoted as ‘maximum (local)’. When the
optimization starts from point b, the selection would take the direction shown in the
figure. But that movement would stop upon reaching the local optimum point
because the algorithm would be trapped at a point that is better than all its neigh-
bours, although that point is not the overall best point of the search space.

The above example demonstrates a major flaw of the hill climbing algorithm,
which is that the choice of the first solution at beginning of optimization can lead to
a huge impact on the final result in case the function being optimized has multiple

Figure 2.
An illustration of how hill climbing works.
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optimum points [22, 23]. Therefore, hill climbing can easily be trapped in local
optimum if applied to functions with non-uni-model landscapes [21]. In the same
way, it can be trapped in plateaux or ridges also [21–23].

Even with its shortcomings, hill climbing is considered one of the best local
searching algorithms [21] because it tends to move towards the local optimum
quite fast [21, 23]. Therefore, many modifications to simple hill climbing were
proposed by researchers to overcome its negatives and making it usable for a
wider scope [21].

Stochastic hill climbing uses a random choice on the next uphill movement,
which can give better results in some cases. Another variant is first-choice hill
climbing, which is a modified form of stochastic hill climbing. In this algorithm,
random steps are generated, and the movement occurs when a solution better than
the current solution is found [21]. One of the other modifications is random-restart
hill climbing. In this algorithm, simple hill climbing is used but with restarting from
a new arbitrary point after each local search finds the optima. Hence, the probabil-
ity of finding the global optimum is increased after several repetitions [21, 23].

Hill climbing, at its simple form, is very useful for real-time controller tuning,
since the algorithm moves in the search space with small steps by changing one
variable at a time while promoting a transitional solution until a final solution can
be found [6, 10, 20]. On the other hand, all modifications to hill climbing that could
be used to overcome its shortcomings are based on a random selection or movement
in the search space [21]. Therefore, these variants produce the same consequences
of genetic algorithms regarding controller tuning in real time. Unpredictability and
instability of the response are not far from being possible.

4. The modified hill climbing algorithm

A systematic movement modification to hill climbing algorithm is suggested.
Our modification is targeted at real-time tuning of control systems.

The main concept suggested as modification is to keep exploring the
neighbourhood of the current best solution and keep moving candidates further
from the best solution in both directions alternately (moving towards a bigger and a
smaller value for each variable, one variable at a time), even if the surrounding
candidates yield a degraded quality, until a satisfactory solution is found after
searching for best values to all the elements of the controller. This is done by
changing one variable at a time and testing the system by applying a testing step
input iteratively [16].

An offset value must be specified that represents the minimum movement size
from the current best value to the next candidate. This offset will be used as the
discretization interval to find the movement amount for each variable in each
iteration. That is done by simply increasing the movement amount by the value of
the offset. Figure 3 shows the general tuning operation workflow.

Instead of moving in one direction when searching for new candidates in classic
hill climbing (the direction of the best neighbourhood of starting position), and
keeping on moving until no further improvement in the fitness function is met,
searching in the proposed algorithm would keep moving alternately between two
directions and will not stop at maxima points. The searching for new candidates
would stop when fitness (error function result) achieves the designer’s requirements.

To demonstrate the moving mechanics when searching for candidates, it will be
assumed that a function that has a single variable parameter is required to be tuned
in order to achieve certain function fitness. It is also assumed that an arbitrary
starting value of ‘a’ is assigned to the variable parameter, which gives a fitness value
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of ‘1’, as demonstrated in Figure 4. It is also assumed that the performance would
be acceptable if fitness is equal or greater than ‘4’, and therefore, tuning will stop if
a fitness value of ‘4’ or greater is reached, regardless if that value is the best value
possible or not.

Each point in Figure 4 is larger than the point to its left by an amount, called
‘offset’, and smaller than the point to its right by the same amount. The offset is the
smallest movement the tuning algorithm is allowed to move when searching for
candidates. The offset value must be determined by the designer depending on the
system sensitivity to gain changes.

Considering tuning the function of Figure 4 again, if the tuning started from
point ‘a’, where tuning is required due to it having fitness of ‘1’, the algorithm
moves the candidate selection to the right by the amount of offset, so point ‘b’ is
chosen as the new candidate. When testing fitness of point ‘b’, the algorithm finds it
better than that of point ‘a’, and therefore, point ‘b’ will be promoted as the current
best solution. However, fitness is still less than the minimum required value of ‘4’;
hence, tuning continues. The movement amount is increased by the amount of
offset and reversed in direction, which will result in selecting point ‘c’ as the new
candidate. Testing the fitness of point ‘c’ shows that it is equal to the current best
fitness, and as a result, no promoting is required, since no advantage will be
acquired. Next, the movement amount is increased by the amount of offset again
and reversed in direction.

The next candidate will therefore be point ‘d’, which has fitness less than the
current best fitness, so this point will not be promoted. Increasing the movement
amount by offset and reversing direction will select point ‘e’ as the next candidate.

Figure 3.
Tuning algorithm schematic diagram for system with (n) variables.

Figure 4.
Demonstration of movement when searching for new candidates.
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There is still a fitness of point ‘b’ as the best, so point ‘b’ remains promoted as the
best parameter value until now, even though it doesn’t satisfy the design require-
ments. When checking the fitness of the last selected candidate, point ‘e’, the
algorithm finds that this fitness is better than the last best fitness. Therefore, point
‘e’ is promoted as the best current solution, although it also doesn’t satisfy the
design requirements. The performance of point ‘b’ (and all other points other than
the best point) is forgotten and won’t be memorized. The same procedure will
continue until a parameter value with a satisfactory fitness is found (point ‘g’ in this
example) by the algorithm, and then the tuning will stop, and the last best param-
eter selection is fixed to the system. If fitness is degraded for any reason once again,
the tuning procedure will start again until it finds new satisfactory parameters. It is
noticed that the algorithm doesn’t necessarily lead to finding the global best solution
(point ‘i’ in the example), but if a solution exists, then it will be found, since the
algorithm would theoretically pass through every possible candidate unless a solu-
tion is found.

Steps being done when tuning consists of the following:

1.Calculate variable candidate according to the following equation:

newVc ¼ oldVc þ Vmd ∗Vmð Þ (1)

2.Store current variable value as the best.

3.Change the variable value to the candidate value.

4.Check performance.

i. If not improved, restore the best value to the variable, and set flag to
change next variable.

ii. If improved, reset all other variables movements around their best
values.

5.Calculate the next direction of movement.

newVmd ¼ �1 ∗ oldVmd (2)

6.Calculate the next amount of movement.

newVm ¼ oldVm þ offset (3)

7.Check flag to decide on what variable to tune.

Notes
Vc: variable candidate
Vm: variable candidate movement amount
Vmd: variable candidate movement direction

The following Figure 5 below demonstrates operations to be done when tuning
each single variable.

Like most optimization algorithms in general, and hill climbing specifically, the
use of the algorithm does not guarantee the best solution for certain systems under
certain conditions. However, if some solutions do exist, it is guaranteed that this
modified algorithm will find one of them. The solution under the same circum-
stances would always be unique assuming similar starting conditions. However,
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during the experiments at least one solution was assumed to be available within a
certain error margin.

5. Control paradigm

The suggested control paradigm is to compare the actual system response with a
desired reference response and then generate an error function that decides on
whether to tune the system controller or not as demonstrated in Figure 6. This
paradigm is inspired by the adaptive control paradigm, although it is not a complete
replication, since no parameter estimation is involved. The desired reference
response is generated by designing a controller for the system model.

The tuning drives the actual system response to act the same way as that of the
modelled system. This is to be done by tuning the actual system controller [24].

In order to make a decision on whether it is required to tune the process con-
troller or to check whether the latest modification improved the performance, a
comparison between the desired reference response and the process response must
be conducted.

This comparison generates an error signal using the error function block in
Figure 5. If the error signal is smaller than the maximum allowed error, then tuning
is not needed. If the error signal is larger than the maximum allowed error, then
tuning is needed. This is also done after each tuning iteration. If the error signal
becomes smaller than the maximum allowed error after making a tuning pass over
all the tuneable parameters, tuning will stop. Otherwise, tuning will continue.

Figure 5.
Operations when tuning the m-th variable.
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The error function itself is not a mere subtraction equation. In order to get
sufficient clarification about the amount of the difference between the process
response and the desired reference response, the designer needs to consider a period
that covers both transient response to the experimental step input change and a
steady-state response. Consequently, the designer must specify an inspection period
so error measurements can be collected. Next, the error function can be the average
value of the errors measured over a specified period of time, or it can be the
summation of those error values or any other suitable function. The period can be
identified from prior knowledge of the system, since the designer has a model of the
process; though not accurate, it can give a general assessment of the required
period. Meanwhile, error reading should be put in discrete form as pairs of model
and process outputs that were taken simultaneously.

Hence, it can be considered that the error function is a cost function that is to be
minimized below a certain value. That value is the maximum allowed error, which
is also to be specified by the designer, reflecting the closeness required between
process response and the desired reference response.

If tuning is needed (when the error generated by the error function is larger than
the maximum allowed error), then the tuning algorithm will start to change the
controller variables (e.g. Kp, Ki and Kd in a PID controller) one by one and measure
the error after each single variable change. If the error is reduced, the algorithm
would keep the new value for the variable and move on to change the next variable.
Otherwise the algorithm would reset the variable to its best value and move on to
change the next variable.

If a value substitution happened (when finding a better value for one of the
variables), the movement amount for each other variable is reset to the minimum,
which is the offset value. This is to make sure that the algorithm would search the
neighbourhoods of the best values of variables again when any change happens to
one of them in order to find the best possible values for them, since they could be
strongly related to each other dynamically. For example, if we have a PID controller
being optimized and the value of Kp is increased, then the system will be faster but
will generate a higher overshoot. So, Kd should be tuned a little to lower the
overshoot.

This procedure should be repeated until the error becomes less than the maxi-
mum allowed error. Then, the tuning will be stopped until the error fluctuates
outside the allowed margins again. The model controller can be of any type.

Figure 6.
Schematic diagram of the proposed design.

9

Simulated Real-Time Controller for Tuning Algorithm Using Modified Hill Climbing Approach…
DOI: http://dx.doi.org/10.5772/intechopen.88230



5.1 Algorithm properties

To emphasize the advantages and usability of the proposed modified hill
climbing algorithm, this section discusses the properties of the algorithm under
real-time controller tuning considerations.

Firstly, the algorithm uses very simple calculations during system monitoring
and controller tuning. All equations involved in the design consist of basic combi-
nations of principal operations such as addition or division only. Therefore, the
algorithm retains high applicability for real-time execution, since the calculation
time of such simple equations can be considered irrelevant in current electronics;
hence, it is very easy to be implemented using embedded computer systems. The
shear simplicity of the calculations is largely attributed to the lack of online param-
eter estimation and to the simplicity of searching for a candidate mechanism which
is partly inherited from hill climbing.

Secondly, due to its hill climbing inheritance, the algorithm is very applicable to
tune multivariable controllers. Dealing with controller variables one at a time is one
of the core principles taken from hill climbing that serves very well to overcome the
tuning task in a systematic and procedural approach, without the need for random-
ness in candidates’ selection which nullifies the ability to tune the controller based
on the dynamic relation between the controller variables.

Thirdly, in principle, the algorithm is not tied to a specific type of controller.
Any type of controllers can be tuned theoretically, using any heuristic tuning
method. Although certain algorithms can be more suitable for certain types of
controllers than to others, some controllers are better not be tuned heuristically.
However, in the case study included in this paper, PID controllers were used. This is
a result of PID controllers themselves being suitable for heuristic controller tuning
in general, and real-time tuning specifically, as PID has few parameters to tune,
reducing tuning time and effort.

Fourthly, an important property of the proposed algorithm, which is also
inherited from classic hill climbing, is the ability to promote transitional solutions
until a satisfactory solution can be found. In fact, this transitional solution is part of
the overall tuning procedure, since the proposed algorithm repeatedly compares last
candidate performance with the last best available solution performance. This
property is essential for real-time tuning, as it keeps the controller running with the
best possible variable selection periodically between new candidate testing
instances, sustaining the best possible output performance for the furthest possible
period and, in turn, reducing the chances of instability or other undesirable
possibilities.

5.2 Important aspects to consider when applying the proposed design

Many design considerations should be taken during the design of any control
system. These considerations are dependent on the performance requirements and
design methodology. Here the concentration is put on the considerations that are
related to the real-time controller tuning paradigm using the modified hill climbing
algorithm.

Quality of the controller (model controller in Figure 6) used to generate desired
reference response is a very sensitive aspect. Great care should be taken as this step
will decide the shape of the response that we are aiming for. The desired reference
response should be physically viable (within an allowed error margins).

The error function must be made so that it can detect the variable changing
effect on the response. That is also directly related to the maximum error value and
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how the error is (difference between model and process outputs) being recorded
(the period being considered after the change and the timing of collecting the
signal). Consequently, the period spent on recording the outputs of the model and
process should start from, or before applying, the experimental step input and end
sometime after reaching a steady state.

The offset value should be chosen in the middle ground between the system
sensitivity to variable or gain changes and the speed at which the candidates will
move in the search space. To clarify this, it should be noted that the larger the offset
value, the faster the algorithm reaches a solution, since the offset value would
affect the new candidate movement amount. However, that would be on the
expense of a reduced fine tuning accuracy, since no smaller steps than the offset is
possible, which could mean missing a better parameter value point close to a
relatively good point.

If necessary, some simple conditions can be applied to avoid well-known
undesired candidates (e.g. negative gains for PID controller).

6. Simulation experiment

In order to demonstrate the design success, it was applied to a twin rotor MIMO
system (TRMS). The results were obtained using simulations on MATLAB and
Simulink software. The TRMS system used in the experiment is provided by
Quanser [25]. This system is a two degree of freedom (2-DOF) mechanical system.
It resembles a helicopter system using two rotors, one as a main rotor and one as a
tail rotor, as seen in Figure 7.

It has two degrees of freedom: one for pitch angle and one for yaw angle.
The device manual includes a linearized state-space model of the system [25],
while the software bundled with the device includes a nonlinear Simulink
model of the system. The linearized model was used to generate the desired
reference signal, which was used for tuning the nonlinear model controller in
Simulink.

Figure 7.
Quanser 2-DOF helicopter [25].
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Each degree of freedom is driven using a DC motor. The front head of the
helicopter moves in the pitch angle and is driven by a 24 volt motor. The tail of the
helicopter moves in the yaw angle and is driven by a 12 volt motor. The process
is a highly nonlinear system with a very strong cross coupling between pitch and
yaw angles.

The model uses the free-body diagram of Figure 8 below.
The following modeling conventions were assumed [25]:

• The helicopter is horizontal when θ ¼ 0.

• The pitch angle increases positively, dθ tð Þ
dt >0 when rotating in the counter-

clockwise direction.

• The yaw angle increases positively, dψ tð Þ
dt >0 when rotating in the clockwise

direction.

• The pitch angle increases when pitch thrust force is positive, Fp >0.

• The yaw angle increases when the yaw thrust force is positive, Fy >0.

The model is a state-space representation of the system using the standard
form of

_x ¼ Axþ Bu (4)

_y ¼ CyþDu (5)

where the state vector and output vector are defined by

xT ¼ θ; λ; _θ;
_λ

� �

yT ¼ θ; λ½ �

where A, B, C and D are defined as (all parameters are defined in [25]):

Figure 8.
Free-body diagram of Quanser helicopter [25].
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The system exhibits a high cross coupling between the pitch and yaw angles. The
main feature of the suggested controller is to use two separated PID controllers, one
for each degree of freedom, so that a simple design procedure can be applied.

Each of the fuzzy controllers, a PID controller and an LQR, was used to generate
the desired reference response in order to tune PID controllers that govern the
nonlinear model for both pitch and yaw. In all the cases, an arbitrary PID was used
in the beginning. The values of Kp, Ki and Kd were all set to a gain value of 1. Both
the fuzzy controller and PID controller were designed for the system, while the LQR
is taken from a suggested design in the device manual [25].

7. Results and discussions

In addition to observing how much the process will follow the desired reference
response in the twin rotor system, it will be checked whether the decoupling
strategy is successful enough, since the twin rotor system inherits strong coupling
between pitch and yaw angles.

In all the following cases, the initial parameter values of the process PID con-
troller were set arbitrarily to 1 before the start of the tuning process. Stable
responses were already achieved but with unacceptable performances. The perfor-
mances of the initial PID controllers are shown when compared to the tuned sys-
tems below.

7.1 TRMS process controller tuning using PID controller to generate the
desired reference response

In this case, a huge improvement was achieved in the process response after
tuning. The tuning algorithm steered the process output to follow the desired
reference response closely. Pitch angle controller tuning results are shown in
Figure 9. The tuning results for the pitch were nearly perfect.
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Tuning using the basic hill climbing did not achieve the same level of success in
following the reference response; although the overshoot was reduced, the system
response was slower in comparison.

The above result was achieved because the desired reference response was
physically viable and that, in turn, it helped to relatively reduce the maximum
allowed error margins; therefore, a very close following was achieved. The final
tuned parameters for pitch angle PID were 1.9 for proportional gain, 1.2 for integral
gain and 0.2 for derivative gain.

Figure 10 shows the error signal (difference between desired reference response
and process output) for the pitch angle before and after tuning. The excellent
tuning results are obvious in the error signal graph.

The yaw angle controller tuning also achieved very good results in bringing the
process response closer to the desired reference response than the initial response,
as seen in Figure 11.

Following the reference response was very good, and the overshoot was reduced
dramatically, although not perfectly as in the pitch response. The small overshoot
seen at the fifth second is due to coupling. This brings the researcher to mention
that the yaw angle looks more difficult to be stripped from coupling effects than the
pitch angle. Hence, there is no considerable effect when changing yaw angle on
pitch angle; however, changing the pitch angle still has a small effect on the yaw

Figure 9.
TRMS pitch angle response before and after tuning with desired reference response generated by PID.

Figure 10.
Pitch angle response error signal to step set-point change before and after tuning when using PID to generate the
desired reference response.
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angle. The effect is very minimal, and the system decoupling efforts can be consid-
ered marginally successful. The final tuned parameters for the yaw angle PID were
1.7 for proportional gain, 1.2 for integral gain and 0.4 for derivative gain.

The error signal for the yaw angle before and after tuning is shown in Figure 12,
where improvement in the response can clearly be seen.

7.2 TRMS process controller tuning using fuzzy controller to generate the
desired reference response

The pitch angle response tuning, when using the fuzzy controller, was success-
ful, as expected. Since the researchers had designed the desired reference response
with an emphasis on reducing the overshoot with high speed performance, the
tuned response of the process followed the design guidelines properly. It can be
observed in Figure 13 below how the process response moved from the initial PID
controlled response to the final tuned PID controlled response quite well.

The result shows successful tuning of the process controller using the proposed
algorithm. The effects of coupling were unnoticed, denoting the successful
decoupling strategy that was designed, which was suggested earlier. The final
parameters for the pitch angle process PID after tuning were 2.1 for proportional
gain, 0.4 for integral gain and 0.7 for derivative gain.

Figure 11.
TRMS yaw angle response before and after tuning with desired reference response generated by PID.

Figure 12.
Yaw angle response error signal to step set-point change before and after tuning when using PID to generate the
desired reference response.
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The error signal between the desired reference response and the process
response was reduced largely by the tuning algorithm. Figure 14 shows the error
signal graph of the pitch angle, both before and after tuning.

The yaw angle controller tuning did steer the process response from the initial
towards the desired reference response, resulting in better performance; however,
the response did not follow the reference perfectly. Namely, the response did have
a considerable overshoot, unlike the desired reference response, as shown in
Figure 15 below. This came as a result of pushing the desired reference response
beyond the physical nature of the actual process. The actual yaw angle system is
inherently highly under-damped. Consequently, obtaining a well-damped response
with decent speed seems unrealistic.

The final parameters for the yaw angle process PID after tuning were 1.7 for
proportional gain, 0.7 for integral gain and 0.9 for derivative gain.

The error signal between the desired reference response and the process
response was reduced by the tuning algorithm. A sizable error can be observed from
the start of second second until the fourth second in Figure 16, showing overshoot
difference as observed above. However, the error function was low enough to grant
the response as acceptable, since the error at other areas is minimal.

Figure 13.
TRMS pitch angle response before and after tuning with desired reference response generated by fuzzy controller.

Figure 14.
Pitch angle response error signal to step set-point change before and after tuning when using fuzzy controller to
generate the desired reference response.
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Both pitch and yaw outputs that were tuned using the basic hill climbing gave an
acceptable response speeds, but the overshoot amounts were high comparatively.

7.3 TRMS process controller tuning using LQR to generate the desired
reference response

The tuning algorithm, as in other cases, succeeded in reshaping the process
response so that it followed the desired reference response closely. This case gives
evidence that the performance of the tuned process controller is highly determined
by the performance of the desired reference response. In Figure 17, it can be seen
that the tuned response exhibits a relatively high overshoot with slow response,
because the desired reference response gave similar results.

The final PID parameters for pitch angle process after tuning were 1.5 for
proportional gain, 0.6 for integral gain and 0.9 for derivative gain.

Although the response was not the best when compared to the other cases, the
approach has again proven to be successful, as the error plot in Figure 18 shows the
improvement in reference following from the initial non-tuned response to the final
tuned response. Tuning will always depend on error to the reference response,
regardless of acquired performance, as shown in this case.

Figure 15.
TRMS yaw angle response before and after tuning with a desired reference response generated by fuzzy controller.

Figure 16.
Yaw angle response error signal to step set-point change before and after tuning when using fuzzy controller to
generate the desired reference response.
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The yaw angle response can be found in Figure 19.
The response is no different from the observations taken from the pitch

response, as the low-quality model controller generated a low-performance desired
reference response that, in turn, shadowed the performance of the tuned process

Figure 17.
TRMS pitch angle response before and after tuning with desired reference response generated by LQR.

Figure 18.
Pitch angle response error signal to step set-point change before and after tuning when using LQR to generate the
desired reference response.

Figure 19.
TRMS yaw angle response with desired reference response generated using LQR.
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PID controller. The final PID parameters for the yaw angle process after tuning
were 1.4 for proportional gain, 0.7 for integral gain and 1.2 for derivative gain.

The error plot of the response before and after tuning is shown in Figure 20.
Although the responses tuned using basic hill climbing were very close to the

desired reference response, they always lagged behind the proposed modified hill
climbing algorithm responses in almost every performance index.

7.4 Comparison among the TRMS cases

In all the cases presented for the TRMS, which is a highly nonlinear, strongly
inherited coupling system, the tuning algorithm proved to be highly successful,
regardless of the desired reference response performance in each case. The tuning
always brought the process response to act in a similar fashion to that of the desired
reference response. Therefore, the process controller performance expectations
should be relevant to the model controller performance on the one hand and to the
applicability of that model controller performance to the process controller on the
other hand. That can be clearly evident when checking the comparative results in
Table 1.

Generally, the performance values have shown improvement on that of the
initial response, except for the LQR case, where some performances were lower due
to the low quality of the desired reference response (settling time for pitch and
rising time for yaw). This, once again, confirms the importance of the desired
reference response preparation to achieve the best possible results.

By examining Table 1, it can be seen that forcing the system to achieve a certain
milestone in one area may lead to degradation in quality in other areas. For exam-
ple, when using a fuzzy controller as a model controller, the desired reference
response was pushed to the extreme to fully eliminate overshoot. Although over-
shoot in the model responses was eliminated, the results were different for the
actual process. For the pitch angle, the overshoot was decreased by 3.2 degrees
when using a fuzzy controller as a model controller, compared to using PID con-
troller as model controller. However, both rising time and settling time were
increased by 0.77 and 1.13 s, respectively. Here, it is up to the system designer to
make a decision on which path to take, according to the operation preferences. For
the yaw angle, however, the outcome is different. As the yaw angle in the actual
process is naturally highly under-damped, trying to force it to achieve non-
overshooting response brought negative effects. All performance indexes were

Figure 20.
Yaw angle response error signal to step set-point change before and after tuning when using LQR to generate the
desired reference response.
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reduced in quality in comparison to using a PID controller as model controller, even
the overshoot itself. Rising time and settling time were increased by 0.92 and 3.88 s,
respectively, while overshoot was increased by 0.4%. This sheds some light on the
priority of not straining the process with unachievable performances.

In order to compare the proposed algorithm performance with that of basic hill
climbing, the following Table 2 is created.

Some of the settling time performances are slightly slower than basic hill
climbing (<1 s), but that was a result to reducing the overshoot amount signifi-
cantly. This is because the proposed modified hill climbing algorithm followed the
reference response better than the basic hill climbing.

8. Conclusions

In this chapter, a paradigm for real-time tuning of control systems is proposed.
The proposed paradigm facilitates the application of a tuning algorithm based on
simple error cost function calculations. Additionally, a modified hill climbing algo-
rithm is developed. The control paradigm allows the system controller to be tuned
iteratively to enhance the control performance using the suggested tuning algo-
rithm. The algorithm does not require complex calculations to move in the
searching space looking for suitable candidates. The algorithm always promotes the
best solution to be used until a better one is found, which makes it suitable for real-
time tuning problem. Simulation results clearly showed that the system response is
following the desired reference response after tuning. However, the reference
response should always be physically viable within an acceptable error margins.

Results have shown that the algorithm provides a very useful tool for control
systems’ engineers and specialists. The proposed system, overall, was proved to be
quite successful in driving controlled plant response by using an inaccurate model
of that plant. Therefore, the proposed design is suitable for tuning controllers based
on inaccurate models or for calibrating controllers of systems with parameters
deviation automatically.

This research introduced a very effective methodology to tune or calibrate
control systems in real time, without the need to intervene with the system’s oper-
ation. The proposed methodology is very flexible and can be used to achieve various
performance targets. It was implemented with control systems specifically in mind;
hence, the depth of achievement possibilities is high.

System Model controller type Improvement in

Overshoot (%) Settling time (s)

Pitch PID 9.6 1.34

Fuzzy 10.5 2.15

LQR 5.8 �0.86

Yaw PID 12.3 1.02

Fuzzy 9 �0.05

LQR 5.6 �0.38

Table 2.
Performance improvement when using the proposed design in comparison to the basic hill climbing with TRMS
cases.

21

Simulated Real-Time Controller for Tuning Algorithm Using Modified Hill Climbing Approach…
DOI: http://dx.doi.org/10.5772/intechopen.88230



Acknowledgements

This work is financed by Universiti Putra Malaysia, Grant Putra (GP-IPS/2013/
9399830).

Appendix A

List of parameters that were used in expressing example models with their
values (if available) is presented in this appendix (Table A).

Parameter Brief explanation Value

θ Pitch angle

ψ Yaw angle

Fp Pitch thrust force

Fy Yaw thrust force

Bp Equivalent viscous damping about pitch axis 0.8 N/V

Jeq_p Total moment of inertia about pitch axis 0.0384 kg m2

mheli Total moving mass of the helicopter 1.3872 kg

lcm Centre of mass length along helicopter body from pitch axis 0.186 m

By Equivalent viscous damping about yaw axis 0.318 N/V

Jeq_y Total moment of inertia about yaw axis 0.0432 kg m2

Kpp Thrust force constant of yaw motor/propeller 0.204 N m/V

Kpy Thrust toque constant acting on pitch axis from yaw motor/propeller 0.0068 N m/V

Kyp Thrust toque constant acting on yaw axis from pitch motor/propeller 0.0219 N m/V

Kyy Thrust toque constant acting on yaw axis from yaw motor/propeller 0.072 N m/V

α Angle of attack

q Pitch rate

δ Elevator deflection angle

μ ρSc
4m

ρ Density of air

S Platform area of the wing

c Average cord length

m Mass of the aircraft

Ω 2U
c

U Equilibrium flight speed

CD Coefficient of drag

CL Coefficient of lift

Cw Coefficient of weight

CM Coefficient of pitch moment

γ Flight path angle

σ 1
1þμCL
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Parameter Brief explanation Value

iyy Normalized moment of inertia

η μσCM

V tð Þ Motor input voltage

e tð Þ Back electromotive force

La Motor armature electric inductance 0.15 H

i tð Þ Electric current

Ra Motor armature electric resistance 0.2 Ohm

Tm tð Þ Mechanical torque

Km Motor torque constant 9.14 � 10�5 N m/A

Kb Electromotive force constant 0.055 V/rad/sec

w tð Þ Angular velocity of motor shaft

TL tð Þ Load torque

Jm Moment of inertia of the rotor 1.36 � 10�5 kg m2

Bm Motor shaft viscous friction coefficient 0.5 � 10�5 N m sec

Table A.
List of parameters used in example models.
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