
S P R I N G E R B R I E F S I N A P P L I E D S C I E N C E S A N D

T E C H N O LO G Y  P O L I M I S P R I N G E R B R I E F S

Elisabetta Di Nitto
Peter Matthews
Dana Petcu
Arnor Solberg Editors

Model-Driven
Development and
Operation of Multi-Cloud
Applications
 The MODAClouds Approach

SpringerBriefs in Applied Sciences

and Technology

PoliMI SpringerBriefs

Editorial Board

Barbara Pernici, Politecnico di Milano, Milano, Italy

Stefano Della Torre, Politecnico di Milano, Milano, Italy

Bianca M. Colosimo, Politecnico di Milano, Milano, Italy

Tiziano Faravelli, Politecnico di Milano, Milano, Italy

Roberto Paolucci, Politecnico di Milano, Milano, Italy

Silvia Piardi, Politecnico di Milano, Milano, Italy

More information about this series at http://www.springer.com/series/11159

http://www.polimi.it

http://www.springer.com/series/11159
http://www.polimi.it

Elisabetta Di Nitto • Peter Matthews
Dana Petcu • Arnor Solberg
Editors

Model-Driven Development
and Operation of Multi-Cloud
Applications

The MODAClouds Approach

Editors
Elisabetta Di Nitto
Politecnico di Milano
Milan
Italy

Peter Matthews
CA Technologies
Datchet, Berkshire
UK

Dana Petcu
Institute e-Austria
Western University of Timisoara
Timisoara
Romania

Arnor Solberg
SINTEF
Oslo
Norway

ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs in Applied Sciences and Technology
ISSN 2282-2577 ISSN 2282-2585 (electronic)
PoliMI SpringerBriefs
ISBN 978-3-319-46030-7 ISBN 978-3-319-46031-4 (eBook)
DOI 10.1007/978-3-319-46031-4

Library of Congress Control Number: 2016951966

© The Editor(s) (if applicable) and The Author(s) 2017. This book is published open access.
Open Access This book is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the work’s Creative Commons
license, unless indicated otherwise in the credit line; if such material is not included in the work’s
Creative Commons license and the respective action is not permitted by statutory regulation, users will
need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or

for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

In the last decade Cloud computing gained significant attention from both industrial

and scientific communities. Despite the worldwide efforts to make it a utility service

for anyone, the concept implementation still require specific IT skills. In this

context, the book aims to present the approach undertaken to simplify the Cloud

service usage process by the team of the European project named MODAClouds.

The targeted audience are the developers and operators of the Cloud aware appli-

cations. More precisely, the undertaken approach is supporting the simplification

of the cycle development-operation in multi-Cloud environments with a special

emphasis on ensuring the quality of services.

This book covers a large number of topics related to development and operation

in multi-Clouds and was designed to offer to its readers ideas on how to address the

Development and Operation—DevOps—problems encountered when working with

Cloud services. It is structured as follows:

• Chapter 1 introduces the problems faced by MODAClouds and provides a

general overview of its approach.

• Chapters 2–4 are dedicated to the development (Dev) of multi-Cloud applica-

tions. In particular, Chap. 2 focuses on the approach for selecting a set of Cloud

service offers by taking risks and costs into account, Chap. 3 focuses on the

metamodels and on the tool supporting our model-driven development

approach, and Chap. 4 on the way we support Quality of Service assessment as

well as the management of Service Level Agreements.

• Chapters 5–8 are dedicated to the operation (Ops) of applications in a

multi-Cloud context. More specifically, Chaps. 5 and 6 shortly present our

multi-Cloud monitoring and load balancing mechanisms, respectively. Chapter 7

focuses on the way we support data migration and synchronization between dif-

ferent NoSQL Databases as a Service (DaaS). Finally, Chap. 8 focuses on the

supporting services that enable the proper management of the MODAClouds

runtime platform.

• Chapters 9–11 describe those features that enable integration between devel-

opment and operation into a single DevOps framework. These include the usage

v

of the models@runtime paradigm for continuous design, deployment, operation

and self-adaptation (Chap. 9), the way monitoring data from the operational

environment are used at design time to support optimization of multi-Clouds

applications (Chap. 10), and the best practices and design patterns we have

identified to enable application DevOps in a multi-Cloud context (Chap. 11).

• Chapters 12–15 are dedicated to the presentation of the industrial cases we have

adopted to evaluate and put in practice the MODAClouds approach. These cases

concern different application domains and business needs. The first case is

concerned with the development of collaborative Cloud-based features for a

pre-existing, desktop-based UML case tool (Chap. 12), the second with a

business process supporting system to be cloudified and optimized (Chap. 13),

the third with an application to support care of patients with mental problems

(Chap. 14). Finally, the fourth case describes how, from a research idea

developed in the project, our partner infrastructure software provider has

developed a specific technology that extends the features it offers to its users

(Chap. 15). Three out of the four presented cases are now commercialized by the

respective companies.

• Finally, Chap. 16 draws some conclusions and identify future research trends in

the context of support to multi-Cloud applications development.

Acknowledgments Together with all authors of this book we are indebted to our

advisory board members, Paola Inverardi, Parastoo Mohagheghi and Miguel Vidal,

and to our reviewers for their constructive and useful suggestions. They have

greatly helped us in shaping our project results. Also, we own gratitude to our

project officer Lars Pedersen for his invaluable support through all phases of the

project.

The work reported in this book is partially funded by the European Commission

grant agreement number FP7-ICT-2011-8-318484 (MODAClouds). The

MODAClouds project has been vital to the composition of this book and has been

completed successfully with the end result of “excellent”.

Milan, Italy Elisabetta Di Nitto

Datchet, UK Peter Matthews

Timisoara, Romania Dana Petcu

Oslo, Norway Arnor Solberg

June 2016

vi Preface

Contents

1 Introduction . 1

Elisabetta Di Nitto and Dana Petcu

2 Cloud Service Offer Selection . 13

Smrati Gupta, Peter Matthews, Victor Muntés-Mulero

and Jacek Dominiak

3 The MODAClouds Model-Driven Development 23

Nicolas Ferry, Marcos Almeida and Arnor Solberg

4 QoS Assessment and SLA Management . 35

Danilo Ardagna, Michele Ciavotta, Giovanni Paolo Gibilisco,

Riccardo Benito Desantis, Giuliano Casale, Juan F Pérez,

Francesco D’Andria and Román Sosa González

5 Monitoring in a Multi-cloud Environment . 47

Marco Miglierina and Elisabetta Di Nitto

6 Load Balancing for Multi-cloud . 53

Gabriel Iuhasz, Pooyan Jamshidi, Weikun Wang and Giuliano Casale

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds

Approach . 59

Elisabetta Di Nitto and Marco Scavuzzo

8 Deployment of Cloud Supporting Services . 69

Gabriel Iuhasz, Silviu Panica, Ciprian Crăciun and Dana Petcu

9 Models@Runtime for Continuous Design and Deployment 81

Nicolas Ferry and Arnor Solberg

10 Closing the Loop Between Ops and Dev . 95

Weikun Wang, Giuliano Casale and Gabriel Iuhasz

11 Cloud Patterns. 107

Teodor-Florin Fortiş and Nicolas Ferry

vii

12 Modelio Project Management Server Constellation 113

Antonin Abhervé and Marcos Almeida

13 BPM in the Cloud: The BOC Case . 123

Alexander Gunka, Harald Kuehn and Stepan Seycek

14 Healthcare Application . 133

Francesco D’andria and Roi Sucasas Font

15 Operation Control Interfaces . 141

Craig Sheridan and Darren Whigham

16 Conclusion and Future Research . 147

Arnor Solberg and Peter Matthews

viii Contents

Chapter 1

Introduction

Elisabetta Di Nitto and Dana Petcu

1.1 Context

Cloud computing is a major trend in the ICT industry. The wide spectrum of avail-

able Clouds, such as those offered by Microsoft, Google, Amazon, HP, AT&T, and

IBM, just to mention big players, provides a vibrant technical environment, where

even small and medium enterprises (SMEs) use cheap and flexible services creating

innovative solutions and evolving their existing service offer. Despite this richness

of environments, Cloud business models and technologies are characterized by crit-

ical issues, such as the heterogeneity between vendor technologies and the resulting

lack of interoperability between Clouds. In this setting a number of challenges for

systems developers and operators can be identified, especially for SMEs that have

limited resources and do not have the strength to influence the market. In particular:

• Vendor Lock-in [1, 2]. Cloud providers offer proprietary solutions that force

Cloud customers to decide, at the early stages of software development the design

and deployment models to adopt (e.g., public vs. hybrid Clouds) as well as the

technology stack (e.g., Amazon Simple DB vs. Google Bigtable).

• Risk Management. There are several concerns when selecting a Cloud technology

such as payment models, security, legal and contractual, quality and integration

with the enterprise architecture and culture.

E. Di Nitto (B)

Politecnico di Milano - DEIB, Piazza L. da Vinci, 32, 20133 Milan, Italy

e-mail: elisabetta.dinitto@polimi.it

D. Petcu (B)

Institute e-Austria TimiŞoara and West University of TimiŞoara,

B-dul Vasile Pârvan 4, 300223 TimiŞoara, Romania

e-mail: petcu@info.uvt.ro

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_1

1

2 E. Di Nitto and D. Petcu

• Quality Assurance. Cloud performance can vary at any point in time. Elastic-

ity may not ramp at desired speeds. Unavailability problems exist even when

99.9 % up-time is advertised (e.g., Amazon EC2 and Microsoft Office 365 outages

in 2011).

The above issues can be addressed by enabling companies to develop their appli-

cations for multiple Cloud targets, by offering them proper tools to analyze the risks,

performance and cost of various solutions and identify the ones that best suit the

needs of the specific case, and by supporting a multi-Cloud deployment of appli-

cations to ensure a level of availability that is greater than the one offered by each

specific Cloud. In this context, within the MODAClouds project, we focused on the

following objectives:

• Deliver an advanced software engineering model-driven approach and an Inte-

grated Development Environment (IDE) to support systems developers in building

and deploying applications, together with related data, to multi-Clouds spanning

across the full Cloud stack (Infrastructure as a Service, shortly IaaS, Platform as

a Service, shortly PaaS, and Software as a Service, shortly SaaS).

• Define quality measures, monitoring mechanisms, prediction models, and adaptive

policies to provide quality assurance in Clouds and multi-Clouds.

• Provide support to costs and risks analysis to increase trust in Clouds.

• Develop an integration framework between design tools and run-time.

• Create relevant and complex case studies for the entire risks assessment and soft-

ware engineering methodologies.

• Analyze and validate project outcomes through case studies.

• Ensure distribution of project results via dissemination activities on relevant pub-

lication channels, training, and standardization.

• Provide community-based open source solutions supporting the full applications

life-cycle.

In this chapter we provide a motivation for the adoption of a multi-Cloud approach

and of a model-driven, quality aware development and operation paradigm (Sect. 1.2),

offer a brief overview of related work (Sect. 1.3), introduce the MODAClouds

approach and toolset (Sects. 1.4 and 1.5), and, finally, define the goals of this book

(Sect. 1.6).

1.2 Motivation

The main drivers for exploiting a multiple Cloud approach can be of various nature,

from the need to avoid dependence from a single provider to the need to follow local

constraints and laws, to the opportunity to replicate software in order to enhance

availability. The main factors we have identified are summarized in Fig. 1.1. In the

figure we distinguish between those drives that imply the simultaneous usage of

services from multiple Clouds and those that are more concerned with the possibility

1 Introduction 3

Fig. 1.1 Drivers for multi-Cloud adoption

of preparing a software system to be run on multiple Clouds but still using a single

Cloud at a time during operation.

To exemplify concrete needs in an industrial context, we refer to the case of a

small company that we call MODAFIN, specialised in IT applications for financial

services. Its main product line is a proprietary solution for stock market operations,

cash administration, and lending management.

MODAFIN most profitable activities are software customization and life-cycle

management for this product line.

Customisation involves development of custom modules to accommodate new

functional requirements. Moreover, it includes application integration with existing

databases and legacy business systems at the customer’ site.

Life-cycle management needs to assure high-availability for real-time computa-

tions during market hours, scalability and low operational costs for batch analytic

workloads running after-hours. MODAFIN fulfills these quality requirements with

a capacity management consultancy team following the application life-cycle.

The consultancy team has been working for a long time at the customers’ site,

where the system is deployed in the operation environment. Thanks to the diffusion

of the Cloud, however, new needs have arisen. At night, some customers want to

run their batch analytic workloads at the cheapest operational costs of Amazon on-

spot instances. During the day, they expect calculation engines to ramp-up computing

power at an unprecedented pace when the stock market gets volatile. Moreover, some

customer applications are collecting and processing stock market data directly on the

Cloud using PaaS datastore services such as Google Bigtable or Amazon SimpleDB.

At the same time, customers are cutting spending in consultancy services for life-

cycle management as they are relying more and more on SaaS services.

To remain competitive, MODAFIN solution must evolve addressing all above

requirements. To do so, the Company needs to apply advanced software engineering

methodologies revising both the software development process and its life-cycle

management services:

4 E. Di Nitto and D. Petcu

• It needs to develop a solution that can be executed on a broad spectrum of customers

IaaS/PaaS, also supporting Cloud bursting, that is, the ability to move part of the

system on a different Cloud to manage pick of traffic when needed.

• It must develop a flexible architecture for the system so that it could be adapted to

new Cloud offers emerging in the next 5–10 years to adapt to changes of context

and requirements.

• It needs libraries and connectors to integrate various data storage tools and services

to address different needs in terms of performance, data locality, scalability and

the like.

• It needs simple to use tools to perform what if analyses and optimizations on the

system configuration in order to allow for the fulfillment of the required QoS.

• It needs a multi-Cloud environment for execution, which supports monitoring,

smart load balancing, scale-in and out on several Clouds to avoid that availability

or performance outages of a single Cloud provider would turn into a disaster for

MODAFIN’s own business.

All above needs result not only in the adoption of a multi-cloud approach, but also

in the exploitation of a proper development and operation set of tools and methods,

which are specifically built to support multi-Cloud.

Within the MODAClouds approach we have experimented with model-driven

development enhanced with the possibility of exploiting models not only as part of

design but also as part of the runtime. In this case the system model becomes a live

object that evolves with the system itself and can be used to send back to the design

time powerful information that enables a continuous improvement of the system. In

new terms, this approach goes into the direction of offering a valid tool to support

DevOps, that is, the ability to support development and operation in a seamless way.

1.3 Related Work

Model-driven engineering (MDE) allows developers to build the system at various

level of abstractions. It is often summarized as “model once, generate anywhere” and,

as such, becomes particularly relevant when it comes to provisioning and deployment

of applications and services across multiple Clouds, as well to migration of source

code and data from one service provider to another.

Services Oriented Architecture (SOA) related technologies are often used to define

Cloud-enabled applications without going into the fine details of deployment. Ser-

vices are often modeled by means of general purpose languages such as UML.

Service-specific languages have also been designed for SOA approach (e.g. SoaML1).

USDL2 goes even further, by allowing designers to specify, beside services and their

1http://www.omg.org/spec/SoaML/1.0/Beta2/.
2http://www.w3.org/2005/Incubator/usdl/.

http://www.omg.org/spec/SoaML/1.0/Beta2/
http://www.w3.org/2005/Incubator/usdl/

1 Introduction 5

interfaces, non-functional aspects of these services (e.g. pricing, legal, certification,

documentation).

Other approaches are related to the specific concept of Web Service: WSDL3

enables the specification of a list of services, interfaces, data types and orchestration

processes at a syntactical level, OWL4 is a semantic Web language which enables

the specification of the semantics of the services, besides their syntax. Both these

approaches do not allow for the description of non-functional requirements and

constraints. However, they can be complemented with the OMG UML profile for

QoS, QFTP,5 which allows a designer to specify QoS requirements and to connect

them to service descriptions.

While the above approaches are Cloud-agnostic, modeling concepts and technolo-

gies for supporting provisioning, deployment and adaptation of applications in the

Cloud have been recently developed. They exploit the uniform interfaces provided by

various libraries for application deployment and control at run-time. We can mention

here the most successful ones: jclouds,6 libcloud,7 δ-cloud8 or fog.9 For example,

the jclouds model includes the description of nodes with metadata (like CPU, RAM,

security policy), parameters (like minCPU, OS type) and a set of commands to be

executed on nodes, as well as on the groups of nodes to be managed together.

Most of the above mentioned libraries are providing a common access to multiple

Clouds, but are dependent on the programming language. Typically, they provide a

code-based model of the infrastructure and do not offer any mechanism for automatic

provisioning and deployment of applications on the Clouds. Moreover, they work at

the IaaS level and do not expect applications and services to be presented in terms

of models. To fill this gap, MODAClouds offers a complete set of model-based tools

from design to deployment and run-time control of the applications.

Recently, several frameworks for managing multi-Cloud services and applications

have been developed. They provide capabilities for the provisioning, deployment,

monitoring, and adaptation of applications without being language-dependent. We

mention here three of them: Cloudify,10 Scalr11 and CloudFoundry.12 For example,

the Cloudify model for deploying applications includes recipes for information like:

(i) required infrastructure and how it should be used, (ii) clusters of service instances

that make up an application tier, (iii) configuration (including provisioning and scal-

ing rules) of an application and the services it is made of, (iv) probes used to monitor

the status of the system. These frameworks are important to optimise performance,

3http://www.w3.org/TR/wsdl.
4http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.
5http://www.omg.org/spec/QFTP/.
6http://jclouds.apache.org.
7http://libcloud.apache.org.
8http://deltacloud.apache.org.
9http://fog.io.
10http://www.cloudify.org.
11http://scalr.com.
12http://www.cloudfoundry.org.

http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.omg.org/spec/QFTP/
http://jclouds.apache.org
http://libcloud.apache.org
http://deltacloud.apache.org
http://fog.io
http://www.cloudify.org
http://scalr.com
http://www.cloudfoundry.org

6 E. Di Nitto and D. Petcu

availability, and cost of multi-Cloud systems. However, they do not come with any

structured guideline/methodology, thus, developers and operators are typically left

hacking at code level rather than engineering multi-Cloud systems following a struc-

tured tool-supported methodology.

The models@runtime paradigm, often used in MDE, proposes to leverage mod-

els during the execution of adaptive software systems to monitor and control the

way they adapt. This approach enables the continuous evolution of the system with

no strict boundaries between design-time and runtime activities. Models@runtime

provides an abstract representation of the running system causally connected to the

underlying state of the system which facilitates reasoning, simulation and enactment

of adaptation actions. A change in the running system is automatically reflected in

a model of the current system. A modification applied to this model can be enacted

on the running system on demand. Thanks to the use of models, well-defined inter-

face are provided to monitor the system and adapt it. The models also provide a

way to measure the impact of changes in the system and analyse them before their

enactment on the running system. In MODAClouds we adopt the models@runtime

concept in order to tame the complexity of adaptation and ease the reasoning process

for self-adaptation.

MODAClouds was developed together with two siblings projects, PaaSage and

ARTIST. The scope of PaaSage13 was to extend application models with annota-

tions concerning platform and user’s goals and preference. The language used for

this is called Cloud Application Modelling and Execution Language (CAMEL).

CAMEL integrates various domain-specific languages using the Eclipse Modelling

Framework. Within this context, PaaSage has extend and adapt MODAClouds’

CloudML to support model-based provisioning and deployment of Cloud-based

systems. CloudML is used also by the ARTIST initiative,14 which offers a set of

methods and tools for an end-to-end assisted migration of legacy software to the

Cloud. ARTIST followed an earlier initiative, REMICS15 which proposed a leap

progress in legacy systems migration to Service Clouds by providing a model driven

methodology and tool following the Architecture Driven Modernization concept

(use knowledge discovery to recover application models and rebuild the applications

following the discovered models).

The MONDO initiative16 focused not on MDE for Clouds, but on Clouds for MDE:

aiming to achieve scalability in MDE, MONDO provided an integrated open-source

and Cloud-based platform for scalable model persistence, indexing and retrieval facil-

ities, support for collaborative modelling, and parallel execution of model queries

and transformations, and an Eclipse-based developer workbench that include tool-

ing for developing queries and transformations, for querying model indexes, and for

constructing large models and domain specific languages. The HEADS initiative.17

13http://www.passage.eu.
14http://www.artist-project.eu.
15http://www.remics.eu.
16http://www.mondo-project.org.
17http://www.heads-project.eu.

http://www.passage.eu
http://www.artist-project.eu
http://www.remics.eu
http://www.mondo-project.org
http://www.heads-project.eu

1 Introduction 7

leveraged MDE to provide an open-source Integrated Development Environment

(IDE) supporting the collaboration between platform experts (platform for mobile

devices, sensors, smart objects, etc.) and Cloud-based service developers and includ-

ing a domain specific modeling language and a methodology for the specification, val-

idation, deployment and evolution of software-intensive services distributed across

the future computing continuum (composed of a wide set of heterogeneous plat-

forms).

1.4 The MODAClouds Approach

Figure 1.2 shows an overview of the MODAClouds development approach. In partic-

ular, it shows how an application is designed and packaged for deployment according

to a Cloud-tailored model-driven approach. Software designers start from defining

the application structure and the corresponding Quality of Service (QoS) require-

ments at the Cloud Independent Model level (CIM). In the example shown in the

figure, the application is composed of three components, two of which are further

decomposed in sub-components. Availability and response time requirements are

defined and associated to two of the application components. At this level there is

no reference to specific Cloud services and resources as the focus is exclusively on

the high level design of the application itself.

From the CIM level description the designer moves then to focus on introducing

Cloud-specific aspects at the Cloud-Provider Independent Model level (CPIM). At

this level, he/she may decide, for instance, to select a certain class of database service

(e.g., key-value NoSQL) and certain kinds of computational and memory resources.

All these are then associated to the application logic elements they contribute to

realize. At this point the developer can start running the MODAClouds QoS analysis

tool that, based on the defined QoS requirements and on the typical characteristics

of the selected kinds of Cloud resources and services, can provide some feedback

about the realizability of the application on specific Clouds and can suggest possible

optimizations.

As soon as the designer is satisfied with the specified solution, he/she can move

to the Cloud-Provider Independent Model level (CPSM) from where he/she can

finalize the selection of specific providers and services/resources for the application,

run more precise QoS analyses and, finally, generate proper deployment, monitoring

and self-adaptation scripts to support the runtime phases.

In all analysis and design phases, the application designers as well as the decision

makers from the company can be supported in the definition of risks and benefits for

the application and in the identification of the candidate Cloud services and resources

based on these.

Finally, at runtime, the models defined at design time are exploited to monitor

and manage the application by enabling smart self-adaptation. Moreover, the val-

ues of specific metrics characteristic for the running applications are collected and

passed to the development team that can exploit them to fine-tune the application.

8 E. Di Nitto and D. Petcu

Fig. 1.2 Model-driven development in MODAClouds

As described in Chap. 10, this enables the adoption of a DevOps approach [3] that

supports development and operation in a coherent manner.

1.5 The MODAClouds Toolbox

The MODAClouds model-driven approach is supported by the MODAClouds Tool-

box (see Fig. 1.3). The toolbox helps lowering existing barriers between Develop-

ment and Operations Teams and helps embracing DevOps practices within IT teams.

http://dx.doi.org/10.1007/978-3-319-46031-4_10

1 Introduction 9

Fig. 1.3 MODAClouds toolbox

Thanks to it, organizations of any size can Build and Run Cloud Applications driven

by business and technical needs and quality requirements. The toolbox is comprised

of the following elements: (1) Creator 4Clouds, an Integrated Development Environ-

ment (IDE) for high-level application design; (2) Venues 4Clouds, a decision support

system that helps decision makers identify and select the best execution venue for

Cloud applications, by considering technical and business requirements; (3) Ener-

gizer 4Clouds, a Multi-Cloud Run-time Environment energized to provide automatic

deployment and execution of applications with guaranteed Quality of Service (QoS)

on compatible Multi-Clouds.18

Creator 4Clouds, in turn, includes plugins focusing on (i) analysing the QoS/cost

trade-offs of various possible application configurations (Space 4CloudsDev), (ii)

mapping high level data models into less expressive but more scalable NoSQL,

(iii) deploying the resulting application on multi-Cloud by exploiting the CloudML

language. Overall, Creator 4Clouds is a unique tool supporting design, development,

deployment and resource provisioning for multi-Cloud applications. It limits lock-

in and provides features to assess the QoS guarantees required by the application.

Moreover, it offers support to the definition of the application SLA.

18All these tools are available as open source, see http://www.modaclouds.eu/software/.

http://www.modaclouds.eu/software/

10 E. Di Nitto and D. Petcu

Energizer 4Clouds includes the frameworks to support monitoring (Tower

4Clouds) and self-adaptation (Space 4CloudsOps), together with utilities that per-

form ancillary tasks in the platform (ADDapters 4Clouds). Energizer 4Clouds is one

of the few approaches that addresses, in a single framework, the needs of opera-

tors willing to run their applications in a multi-Cloud environment. Through Tower

4Clouds, operators are able to perform complex monitoring and data analyses from

multiple sources. Moreover, thanks to Space 4Clouds for Ops, it identifies and actu-

ates proper self-adaptation actions that take into account the current and foreseen

state of the system under control.

We have included in the design of the MODAClouds architecture what we call

Feed-Back Loop technologies that extend capabilities offered by Creator, Venues and

Energizer 4Clouds. Thanks to the Feed-Back Loop approach, Tower 4Clouds con-

nects with Creator 4Clouds and Venues 4Clouds, respectively. The first connector

is responsible for providing developers and the QoS engineers with the perspec-

tive of the application behavior at runtime to improve the development process and

incorporate DevOps techniques and tools into the process. The second connector

allows Venues 4Clouds to adapt its knowledge base according to real live data. This

helps in offering to users an updated vision of services quality for future recommen-

dations. The capability of the runtime to influence the design time is in line with

current research and is a very important feature to empower multi-Cloud application

developers.

1.6 Book Objectives

The objective of this book is to: (i) present the methods and tools composing the

MODAClouds solution as well as the business needs they address, and (ii) to show

their validity and utility through four industrial cases. The presentation will highlight

both development and operation aspects and the way they are integrated to support

a DevOps approach.

References

1. Gartner (2012) 2012 Cloud Computing Planning Guide

2. Forbes (2011) Cloud computing’s vendor lock-in problem: why the industry is taking a step

backward

3. Debois P (2011) DevOps: a software revolution in the making? J Inf Technol Manage

1 Introduction 11

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 2

Cloud Service Offer Selection

Smrati Gupta, Peter Matthews, Victor Muntés-Mulero

and Jacek Dominiak

2.1 Introduction: Selecting Services for Agile Application

Development

In the application economy, digital business initiatives are at the forefront of the
growth strategy of many companies. Cloud based solutions offer a significant com-
petitive advantage for both large companies and SMEs, leading to a rapid increase
in the number of Cloud Service Providers (CSP). An important CSP driver is the
improvement of consumers’ experience through digital platforms that allow users
to access data and services from any location and through multiple channels with
assured performance and availability. This is usually studied from a single provider
perspective, ignoring the growing number of multi-Cloud applications that use differ-
ent Cloud services from different Cloud service providers. Beyond the usual Cloud
services and providers, the interest in the Internet of Things (IoT) and fog computing
is growing very fast as it is seen as an opportunity to launch innovative new services in
the very near future. With the market growth and the increase in the number of com-
ponents and applications in modern systems, the complexity of software systems
implemented in multi-Cloud environments increases exponentially. Making deci-
sions in the new era of multi-Cloud applications becomes one of the next challenges.

S. Gupta · V. Muntés-Mulero · J. Dominiak
CA Technologies Spain, 08940 Cornellà de Llobregat, Barcelona, Spain
e-mail: smrati.gupta@ca.com

V. Muntés-Mulero
e-mail: victor.muntes@ca.com

J. Dominiak
e-mail: jacek.dominiak@ca.com

P. Matthews (B)
CA Technologies UK, Ditton Park, Riding Court Road, Datchet SL3 9LL, UK
e-mail: peter.matthews@ca.com

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_2

13

14 S. Gupta et al.

Software companies need to work through fast innovation cycles to be competitive in
a changing and dynamic market. Following continuous delivery approaches becomes
essential, increasing the need for agile decisions. Analogous to many other IT plat-
forms, multi-Cloud applications (see Part IV) face important challenges related to
security, availability, performance, compliance, integration, purchasing, automation
and insight. Selecting the best Cloud service for a particular application requires
an understanding of application requirements, and the interoperability between this
specific service and other services offered by other CSP used by the application.
This decision may have an important impact not only on the performance and user
experience of the application and through them the business support. As the role
of the CIO becomes that of an orchestrator of these increasingly complex systems,
decisions do not depend anymore on a single dimension or a single person. The best
service selection depends on multiple criteria including at least cost, risk and quality.
Fast iterations in continuous delivery models require involving different stakeholders
in the system, providing complementary perspectives, including for instance busi-
ness decision makers, architects and systems operators. One of the main challenges
is to find an efficient mechanism that allows translating these requirements into mea-
surable metrics that make it possible to evaluate the fitness of a particular set of
Cloud services and providers for a particular application. In this chapter, we dis-
cuss Decision Support Systems (DSS) for Cloud service selection. We discuss the
main challenges related to DSS and present the tools implemented for this purpose.
Afterward, we discuss the evolution of these DSS in the future and discuss next steps.

2.2 Decision Support System for Cloud Service Selection

The development of a recommendation system to assist the Cloud service selection
is an interesting challenge from both conceptual and technical point of view. In
this section, we highlight the major challenges that are required to be addressed
in development of a generic decision support system that assists the Cloud service
selection process from heterogeneous nature of services in Multi-Cloud environment.

Cloud Service Selection for Continuous Delivery

Continuous delivery is a frequently mentioned goal for IT departments. The emer-
gence of apps on a smart phone has driven a move from the traditional waterfall
method of development to the agile development strategy. Agile development has
moved the application deployment bottleneck from development to operations and
DevOps is a process that will remove the bottleneck to continuous delivery. This has
been shown to deliver apps that are constantly refreshed with new features and fixes
at a decreased cost and higher velocity. Delivering new applications requires speed
and flexibility and is facilitated by creating applications from components such as
Cloud services. Composing services into new applications reduces the amount of
new developed code that needs to be written. As such there is little to check into a
configuration and source code management environment beyond the links to services

2 Cloud Service Offer Selection 15

and workflow. The challenge is in selection of services that match the functionality
required without sacrifice of performance and availability.

Risk Analysis for Cloud Service Selection in Multi-Clouds

A decision support system for Cloud service selection requires a systematic mech-
anism to allow the translation of the requirements of the naÏve users into tangible
properties of the Cloud services that need to be assessed while making a selec-
tion. Furthermore, the mechanism needs to ensure provision of quality guarantees as
desired by the end users. Risk Analysis provides a solution for development of such
a mechanism. The existence of relevant risks poses a complex problem in selection
and adoption of appropriate Cloud services. Consequently, identification, definition
and quantification of these risks are important considerations in decision support
system development.

Another advantage of adopting risk based analysis in decision support design for
Cloud service selection is the integration of multiple stakeholders into the decision-
making process. Risk analysis provides a concrete method of translating the require-
ments from multiple stakeholders involved in the decision making process into the
properties of Cloud services in the desired domains.

Risk based analysis provides a mechanism to systematically analyze the quality
of Cloud services by assessing the risks they impose on the critical domains and the
Cloud service properties that can mitigate those risks, underpinning the satisfaction
of quality requirements.

The first step in risk based analysis involves identification of risks in Cloud service
selection. A common method of identifying risks is to allow the users to present their
requirements in terms of the assets they intend to protect. Assets can be described
as business oriented or technical, tangible or intangible, etc. The risks that the user
entails by “cloudifying” its assets can be then be systematically determined. Some
typical risks in multiple Cloud domains are:

• Unauthorized Access from IaaS Provider
• Insufficient Isolation
• Insufficient Physical Security
• Data Exposure to Government Authorities
• Increase of infrastructure prices
• Expensive support services
• Change of Price models
• Storage System Corruption

Risks can be mitigated by using Cloud services that have properties that ensure
mitigation of those risks. For example, mitigating properties can be the existence
of sufficient support services, data location in desirable geographical boundaries,
sufficient certifications from the Cloud service providers, financial stability condi-
tions, etc. In general, these properties are treatments for risks such that they ensure
mitigation. The risk based analysis provides a mapping of user requirements defined
as assets into desirable Cloud properties described as treatments within a decision
support system.

16 S. Gupta et al.

There are additional risks associated with multi-Cloud environment service selec-
tion. Such risks can include vendor lock-in, complex data migration, interoperability,
security breaches, cost unpredictability etc. These risks require some additional prop-
erties to be satisfied in order to mitigate them. These properties are not essentially
associated with the Cloud service, but with the interaction between the services. For
example, as a user may select services from different providers, he faces the risk of
the interoperability between the services due to compatibility issues, SLA issues, or
simple change in price models of a certain service leveraging affect on other services.
Such risks are mitigated by imposing constraints on the selection of a set of services
rather than a single service.

Risk based analysis provides a means of communicating user requirements in
a decision support system development. It also provides a mechanism for quality
assessment and identification of comparative domains among the different services
in single Cloud and multi-Cloud environment.

2.3 Cloud Service Description Standardization

The standardisation activity relating to service description has been very patchy and
incomplete. A form of service description using common data types and structures is
a precursor to service matchmaking decisions. There have been a variety of service
descriptions and standardisation efforts over the years but few, it any have had any
lasting impact.

One of these efforts that had initial promise was the Service Measurement Index
(SMI) [1]. SMI was an initiative started by CA Technologies and later adopted by
Carnegie Mellon University who managed the Cloud Services Measurement Index
Consortium (CSMIC).1 SMI was based on a theory of “relative goodness” which was
used to circumvent the more accurate but complex semantic solutions for compari-
son. SMI was finally abandoned when filling even a small portion of the database for
describing services proved problematical. The approach taken by MODAClouds has
been to use data that provides constraints or functional and non-functional require-
ments and pragmatically evaluating that data for gathering based on the method of
gathering and the availability of the data. The MODAClouds project felt that there
was little point in mandating a metric that could not be gathered or relied on the good
will and compliance of a wide number of CSPs. Data acquisition is an on-going
limitation to the description and comparison of Cloud services.

2.4 Data Gathering in Multi-Cloud Environments

The quality of recommendations made by the DSS is heavily dependent on the quality
of data used for comparison of Cloud services. Quality data enhances the possibility
of meeting requirements of the users more closely, but also provides the users more

1https://slate.adobe.com/a/PN39b/.

https://slate.adobe.com/a/PN39b/

2 Cloud Service Offer Selection 17

dimensions to compare the Cloud services in. Data gathering for comparison has a
number of obstacles:

• Lack of interest or business value: CSPs are the primary source of data about the
Cloud services. Small CSPs may enter data into a DSS database as a potential
dissemination strategy. Larger CSPs such as Amazon have no incentive to provide
comparison data and indeed expressly exclude the possibility in their terms and
conditions.

• Legal issues and accuracy from third party portals: There are multiple analytic
portals (e.g. CloudHarmony, Cloudymetrics etc.) that provide a comparative analy-
sis of different Cloud services. Data from these websites can be accessed through
APIs or simple parsing etc. However, this incurs a risk of data accuracy being
dependant on a the third party. Legal constraints such as copyright and terms and
conditions may also prevent the use of third party data.

• Crowdsourced data quality: Another mechanism to gather data regarding Cloud
services is via crowdsourcing. Data provision by individuals is subject to the same
accuracy and subjective opinions as travel recommendation and review sites.

• Procurement Complexity: Common complexity of the data gathering process from
the technical perspective is that parsed data may not follow any commonly known
structure. The most valuable data for comparison purposes is often described in
free hand fashion such as reviews or articles.

• Lack of standards: Another example of the problem within the data gathering
process is lack of clear JSON based standard or lack of validating structure, which
is the base of XML.

Data gathering is an integral component to decision support and the module must
provide a mechanism to automatically gather and update data ensuring its accuracy
and currency.

2.5 Coping with Complexity in SaaS

An important consideration in the development of a DSS is the clear identification of
the paradigms of comparison among the different Cloud services. Risk based analysis
provides a systematic procedure for defining the requirements for Cloud services,
but still creates a challenge to build a clear paradigm of comparison for Software
as a Service (SaaS). IaaS and PaaS domains are more simple due to the objective
nature of paradigms (comparison based on technical specifications, based on nature
of platforms etc.). SaaS domains implies a higher user interaction thereby providing
a more abstract quantification of paradigms to compare them with. In addition, the
types of SaaS is highly varied and lacks any bench-marking and standardization.
Therefore, for a DSS development, it is highly complex to provide recommendation
for SaaS domain. It is crucial to take into account this complexity for the design of
a multi-Cloud DSS.

18 S. Gupta et al.

2.6 Decision Support Tools for Cloud Service Selection

In order to address the challenges outlined in the previous section, the MODAClouds
DSS was developed as a generic recommendation system that provides assistance
in Cloud service selection taking into account the multi-Cloud environment and
heterogeneous domains of the services. The DSS prototype is based on a risk analysis
based requirement generation allowing multiple stakeholder participation along with
inherent data gathering mechanisms and provides recommendations by solving the
multi-criteria decision making problem. In this section, we outline the conceptual
backbone forming the DSS.

The basic building blocks of DSS are comprised of three main processes: first, data
gathering and evaluation from the end user; second, data gathering and evaluation
from the Cloud service providers, and third, service matchmaking (see Fig. 2.1). The
primary step is to assimilate data from end users and process it in order to identify
end user requirements. In addition, there is a requirement to gather the data about the
Cloud services and their providers (directly or using third party services e.g., web-
sites which provide comparative analysis of Cloud service provider), and evaluate
it. Finally, there is a need for service matchmaking, where the processed data from
Cloud service providers is fine-tuned or operated upon by the end-user requirements
to generate appropriate solutions. A major challenge identified in the decision mak-
ing process is the specification of the requirements from the end user. To overcome
this challenge, the proposed DSS assists users in specifying their requirements by
enabling them to define the assets-risk-treatments. The end user can be the business
decision maker, technical system architect, risk analyst and requirements engineer
in an enterprise. End users are required to specify assets that they intend to protect.
These assets can be intangible or tangible. Intangible assets are further subdivided
as business oriented or technical oriented assets. Typical examples of business ori-
ented intangible assets (BSOIA) include customer loyalty, product innovation, sales
rate, etc. Similarly, typical examples of technical oriented intangible assets (TOIA)
include data integrity, service availability, end user performance, etc. Furthermore,

Fig. 2.1 Basic Building Blocks of DSS

2 Cloud Service Offer Selection 19

the system architect is also allowed to specify the tangible assets which require to
be protected in order to protect the business and technical oriented intangible assets.
The tangible assets describe the architectural elements that are intended to be exter-
nalized using the Cloud services. Typical examples of such assets includes server
(IaaS), database (PaaS), Middleware (SaaS), etc. Along with this specification, the
end-user is expected to supply the ‘importance’ of an asset on a risk acceptability
scale which identifies how much risk can a tangible asset endure.

Each of the assets supplied by the end user, is susceptible to certain risks. There-
fore, the DSS allows the users to map the possible risks from which the asset needs
to be protected. The identification of these risks per asset is a progressive learning
process. The risks associated with different assets are identified with each use of
the DSS, and are stored in the database. As the number of DSS users increases, the
association of assets to risks becomes richer and more concrete.

Identifying the risks per asset, the user also identifies the likelihood and conse-
quence of each risk, communicating the impact that is associated with each risk on
the asset to the DSS. The scales of expressing these quantities are:

• Likelihood: rare (1), unlikely (2), possible (3), likely (4), certain (5)
• Consequence: insignificant (1), minor (2), moderate (3), major (4),

catastrophic (5)

A joint function quantifies the risk from the inputs above. This function is highly
flexible in nature: it may be discrete or continuous, variable or constant value. An
example of this function is the use of composite risk index, which is defined as
a product of likelihood and consequence value. For each asset, a risk acceptance
function specifies how much risk likelihood and consequence is acceptable for that
asset. Furthermore, when the user specifies the associated risks along with the like-
lihood and consequence of each of the risk, the acceptability of risk is based on the
pre-defined acceptable risk levels for each asset. Should the risk be acceptable the
treatment is not required. However, if the risk is unacceptable, treatment is required to
mitigate the risk. Hence, for all the risks to be mitigated, the treatments are required.
These treatments serve as requirements for the Cloud services which the user desires.
Typical examples of treatments are data location guaranteed in certain geographical
region, availability of customer support, guarantees of provider’s financial stability
etc.

Based on the treatments, the required properties of the Cloud services are iden-
tified. The data gathering module in DSS evaluates the Cloud services on the basis
of the user identified treatments. The DSS then performs service matchmaking. This
process involves providing an aggregate score on the basis of all the treatments chosen
by the user and a grading the Cloud services. The closest match to the user require-
ments forms the most eligible recommendation. In the next section, we provide the
technical implementation of these concepts for the development of DSS.

20 S. Gupta et al.

2.7 Technical Challenges and Implementation

Overview of Technology Supporting DSS

Implementation of the decision support system design within the scope of the MODA-
Clouds has been developed taking into consideration future data set needs and with
assumption that the data set needs to be easily exportable and adaptable to the ever
changing nature of the domain which it is exploring. Taking that into account, the
core of the data storage is modeled around the graph capable open source database
called ArangoDB.2 ArangoDB is a distributed free and open-source database with
flexible data model for documents, graphs, and key-values. For the DSS, documents
and graph capabilities of the database are most frequently used. The user interface
is developed as a single page web application in JavaScript with technologies like
AngularJS, used for all the user interactions and user feedback mechanisms and
NodeJS which used for xml validation against xsd plus additional end points to auto-
mate the collection of data from other parts of the project. DSS main automatic data
collection modules are designed as a standalone tools written in Scala programming
language. All the modules developed for the data collection can be easily extended
or embedded as libraries in the existing application to be adapted to the specific data
gathering process needs.

User Data Gathering Implementation

A set of coherent UI elements have been used, including standard and enhanced selec-
tions mechanisms. This will gather the requirements in an organized, comprehensible
fashion and accommodate the fact that the selection requirements are incremental
sets specified by the multiple actors.

The primary selection tool is a searchable single selection list box. The list is
populated based on the previous steps or the internally specified connections. The
select menu is presented across all the selection steps. Other techniques such as a
slider represent the data type with predefined ranges, at times with legend. The slider
allows the user to see all the ranges at once and gives direct visual feedback on scale
construction.

The process by itself is constructed as a six step wizard that allows the user to see
the current context across the full selection.

Cloud Services Data Gathering Implementation

The automatic data gathering process of the decision support tool is composed of
two main modules; data import and data save. Those modules are design to work as
a part of the application as well as the standalone modules. The data import module
is responsible for the data extraction and data transformation from the structured
data sources. The module is able to consume the structured data from the flat file
local data sauces in JSON, XML and XLSX formats and respective over the network
representations of such structures, like REST, ODATA and WSDL http end points.
The output of this module is JSON, which can be invoke as an input for the data saved

2https://www.arangodb.com//.

https://www.arangodb.com//

2 Cloud Service Offer Selection 21

module. The data save module is designed to consume predefined modeled JSON
input in order to represent and build graph based data structures used by the process
service match making based on the user specified requirements. This module is able
to build up or enrich the data set based on the data specification.

• Sharing Process: In order to enable optimal requirement selection, the DSS allows
multiple actors to participate during the definition of the set of requirements the
service needs to provide. This approach for data gathering ensured the develop-
ment of the selection sharing process. This allows an actor to save the current set
of selected assets, risks and treatments along with the selected values and repre-
sentation selection. The export file allows the user to share the fulfilled selection
with other actors using preferred sharing medium. Multiple sets of predefined
selections can be saved and shared to more closely target parts of the process to
the appropriate actor.

• Visualization: The Decision Support system has been equipped with multiple
data visualizations in order to simplify the overview and understanding of the user
process, the mechanisms of understanding the selection criteria interaction and
data connections.

• Multi-Cloud specific features: The DSS also supports the mitigation of risks
particular to the multi-Cloud environment by assessing the risks related to selection
of a group of services. For example the DSS warns users in the case of a vendor
lock-in in a selection of services by evaluating the providers for all the services in
the selection. The DSS also provides an evaluation of ease of migration out of any
service by assessing the different dimensions that support migration capabilities
in a service. These properties provide a holistic vision of the solution matched to
a Multi-cloud environment.

2.8 Conclusion: Evolution of Cloud Services, Decision

Support and Future Work

This chapter discusses the use of a decision support system to simplify the choice of
services that match functional and non-functional requirements. This DSS uniquely
uses risk management techniques to compliment the requirements used to deliver a
qualified list of services for composition. Some of the decision criteria are subjec-
tive and the use of decision support to simplify choices removes the need for service
choices based on multi-factor optimised expert systems. Cloud services evolving into
a wider architectural movement that includes containers and microservices. Cloud
services used in a multi-cloud environment linked with microservices and container
API are leading to a multi-service style of architecture, building applications based
on component oriented development. This is more suitable to agile and DevOps
development mapping services to agile user stories and components. The number
of internal and external services available for developers is already increasing and
there will be a need to identify, classify and describe services in a common way

22 S. Gupta et al.

to remove redundancy and improve development times. This evolution is increas-
ingly demanding service description, discovery and matchmaking capabilities that
can benefit from decision support of the type described in this chapter. Data gather-
ing remains a legally and technically difficult area, potentially preventing all but the
most simplistic of services choices being made. This is an area of future investiga-
tion, possibly in collaboration with some of the cloud standardisation initiatives and
organisations such as the Cloud Security Alliance and Cloud Industry Forum.

Reference

1. Siegel J, Perdue J (2012) Cloud services measures for global use: the service measurement
index (SMI). In: 2012 Annual SRRI global conference. Carnegie Mellon University, Silicon
Valley, Mountain View, CA, USA

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such
material is not included in the work’s Creative Commons license and the respective
action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 3

The MODAClouds Model-Driven

Development

Nicolas Ferry, Marcos Almeida and Arnor Solberg

3.1 Introduction

The Cloud computing market encompasses an ever-growing number of providers

offering a multitude of infrastructure-as-a-service (IaaS) and platform-as-a-service

(PaaS) solutions. In order to exploit the peculiarities of each Cloud solution as well

as to optimize performances, availability, and cost, an emergent need is to run and

manage multi-Cloud applications [1] (i.e., applications that can execute on multiple

Cloud infrastructures and platforms). However, current stacks, libraries and frame-

works lack in software engineering methodologies and tools to design, deploy and

maintain multi-Cloud systems as stated in the CORDIS reports on Cloud comput-

ing [2, 3], “whilst a distributed data environment (IaaS) cannot be easily moved

to any platform provider (PaaS) […], it is also almost impossible to move a ser-

vice/image/environment between providers on the same level.”

Model-Driven Development (MDD) [4] techniques are particularly useful to

address these challenges. They allow shifting the paradigm from code-centric to

model-centric. Models are thus the main artefacts of the development process and

enable developers to work at a high level of abstraction, focusing on Cloud concerns

rather than implementation details. Model transformations help automating the work

of going from abstract concepts to implementation. This approach, which is com-

monly summarized as “model once, generate anywhere”, is thus particularly relevant

when it comes to design and management of applications across multiple Clouds,

N. Ferry · A. Solberg (B)

Stiftelsen SINTEF, Postbox 4760 Sluppen, 7465 Trondheim, Norway

e-mail: arnor.solberg@sintef.no

N. Ferry

e-mail: nicolas.ferry@sintef.no

M. Almeida

Softeam Cadextan, 21 Avenue Victor Hugo, 75016 Paris, France

e-mail: marcos.almeida@softeam.fr

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_3

23

24 N. Ferry et al.

as well as migrating them from one Cloud to another. Moreover, models can also

be used to reason about the application Quality of Service (QoS), and to support

design-time exploration methods that identify the Cloud deployment configuration

of minimum cost, while satisfying QoS constraints.

In this chapter we present the MODAClouds Model-Driven Development approach

to support the design of multi-Cloud applications with guaranteed QoS. The pro-

posed approach relies on a set of tool-supported domain-specific languages (DSLs)

collectively called MODACloudML. MODACloudML enables managing multi-

Cloud applications in a Cloud provider-independent way while still exploiting the

peculiarities of each IaaS and PaaS solution. By supporting both IaaS and PaaS,

MODACloudML enables several levels of control of multi-Cloud applications by the

Models@runtime engine (see Chap. 9): (i) in case of executing on IaaS or white box

PaaS solutions; full control with automatic provisioning and deployment of the entire

Cloud stack from the infrastructure to the application, or (ii) in case of executing on

black box PaaS solutions; partial control of the application (note that if parts of

the multi-Cloud application executes on IaaS or white box PaaS, MODACloudML

provides full control of those parts).

The remainder of this chapter is organized as follows. Section 3.2 overviews the

typical design process using the MODAClouds design-time tools and

MODACloudML. Section 3.3 presents the overall architecture of MODACloudML.

Section 3.4 details the list of models that compose MODACloudML before provid-

ing examples of some of them. Finally Sect. 3.5 presents some related works and

Sect. 3.6 draws some conclusions.

3.2 The Design-Time Development Process

MODACloudML targets different profiles of users, from application developers and

providers, who are concerned about the actual deployment artifacts and scripts, to

QoS engineers, concerned with application performance and architectural costs. In

order to support such diverse profiles, the MODAClouds Integrated Development

Environment provides automation tools that facilitate the transition between different

models by means of model-to-model transformations. It also provides model-to-text

transformations that allow the developer to export/import models from/to specialized

tools such as the QoS modelling and analysis tools from MODAClouds.

Designing a Cloud application through the design-time environment is typically a

multi-stage process as depicted in Fig. 3.1. First, users specify, through the IDE, the

application architecture and all its functional aspects as well as QoS requirements. In

the next stage, designers may decide to refine these models, for instance, by selecting

a certain class of database services and certain kinds of computational resources. In

MODAClouds, this process is achieved by QoS engineers supported by the Line and

SPACE 4Clouds tools (see Chap. 4). Line can be used to estimate the performance of

the identified solution (e.g., response time and throughput), whilst SPACE 4Clouds

can be used to find the minimum-cost multi-Cloud deployment configuration. At this

http://dx.doi.org/10.1007/978-3-319-46031-4_9
http://dx.doi.org/10.1007/978-3-319-46031-4_4

3 The MODAClouds Model-Driven Development 25

Fig. 3.1 MODAClouds design-time approach workflow

stage, an iterative process may be started to tune the models of the application until a

suitable solution is identified. The output of this process is a CloudML deployment

model that can then be used by the application provider to automatically deploy the

multi-Cloud application.

All these tools rely and can be used to produce the models that compose MODA-

CloudML. In the next sections we present the overall architecture of MODAClouds

as well as the list of models it is made of.

3.3 Overall Language Architecture

The MODACloudML architecture is inspired by the OMG Model-Driven Architec-

ture (MDA) [5], which is a model-based approach for the development of software

systems. The MDA relies on three types of models for three layers of abstractions.

The closer to the system a layer is, the more technical the description. These three

MDA layers, from the more abstract to the more detailed, are:

• The Computational Independent Model (CIM), which describes what the system

is expected to do but hides all the technical details related to the implementation

of the system.

• The Platform Independent Model (PIM), which describes views of the systems in

a platform independent manner so that it can be mapped to several platforms at

the PSM levels.

• The Platform Specific Model (PSM), which refines the PIM with technical details

required for specifying how the system can use a specific platform.

Some of the main benefits of the MDA are to facilitate the portability, interoperability

and reusability of parts of the system which can be easily moved from one platform

to another, as well as the maintenance of the system through human readable and

reusable specifications at various levels of abstraction.

26 N. Ferry et al.

From the Cloud perspective, the introduction of new layers of abstraction improves

the portability and reusability of Cloud related concerns amongst several Clouds.

Indeed, even if the system is designed for a specific platform including framework,

middleware, or Cloud services, these entities often rely on similar concepts, which can

be abstracted from the specificities of each Cloud provider. Typically, the topology

of the system in the Cloud as well as the minimum hardware resources required to

run it (e.g., CPU, RAM) can be defined in a Cloud-agnostic way. Thanks to this

new abstraction layer, one can map a platform specific model to one or more Cloud

providers.

The MODACloudML architecture refines the PSM abstraction layer by dividing

it into two sub-levels: the Cloud Provider-Independent Models (CPIM) level and

the Cloud Provider-Specific Models (CPSM) level, whilst the CIM and PIM can be

grouped into a so called Cloud-enabled Computational Independent Model (CCIM)

level. MODACloudML thus relies on the following three layers of abstraction: (i) the

Cloud-enabled Computation Independent Model to describe an application and its

data, (ii) the Cloud-Provider Independent Model to describe Cloud concerns related to

the application in a Cloud-agnostic way, and (iii) the Cloud-Provider Specific Model

to describe the Cloud concerns needed to deploy and provision the application on a

specific Cloud.

3.4 MODACloudML Sub Models

The models that compose MODACLoudML are presented and organised according

to the modelling level they belong in Fig. 3.2.

CIM

CPIM

CPSM

Usage

Model

Service

Defini on

Model

Service

Orchestra on

Model

Requirements

Model

Data

Model

Data

Model

Design

alterna ves and

deployment

Model

Data

Model

Design

alterna ves and

deployment

Model

Resources

models

Resources

models

Monitoring

Rules

Monitoring

Rules

QoS

Model

QoS

Model

Monitoring

Rules

QoS

Model

Fig. 3.2 The MODACloudML models

3 The MODAClouds Model-Driven Development 27

3.4.1 CCIM Models

The CCIM models, which define what the system is expected to do but hide the

Cloud-related concerns, are the following:

Service Definition Model: describes the software to be developed as a set of com-

ponents or services. It includes the typical constructs needed for describing the

structure of a software system.

Usage Model: specifies the way users are expected to exploit the functionality of

the software to be. It consider a 24 h time-horizon. Each single point in time of

the usage model can be exploited by QoS tools regarding the search for optimal

solutions.

Service Orchestration: describes the behaviour of the glue between components

and services. It can be annotated with stochastic information used to express

the probability for some behavioural path to be followed which can in turn be

exploited by QoS analysis and optimisation tools.

Requirements Model: completes and formalizes the service functional description.

Business and QoS requirements can be associated to a Service or to a specific

service operation.

Data Model: describes the main data structures associated with the software to

be. It can be expressed in terms of typical Entity Relational (ER) diagrams and

enriched by a metamodel that specifies functional and non-functional data prop-

erties.

QoS Model: includes information concerning expected QoS characteristics (e.g.,

response time) at the application level. QoS contraints can be attached to specific

application component/services.

In the following we exemplify the usage of the Service Orchestration models to

specify the overall architecture of the SensApp case study.

3.4.2 Example

At the CCIM level, an application is described as a set of high level services following

a Service Oriented Architecture (SOA) [6]. The application is specified as a set of

business-aligned reusable services that can be combined into high-level business

processes and solutions within the context of an enterprise.

Figure 3.3 depicts a simple functional architecture of the SensApp case study

specified with the MODAClouds IDE as a Service Orchestration model. SensApp [7]

is a typical Cloud-based application that acts as a buffer between sensor networks

and Cloud-based systems. On the one hand, it facilitates sensors to continuously

push data while, on the other hand, it provides higher level services with notification

and query facilities.

28 N. Ferry et al.

Fig. 3.3 SensApp CCIM architecture

The overall architecture of SensApp consists of a core service called SensApp

to manage the sensors and their data coupled with a MongoDB1 database to store

sensor descriptions and meta-data as well as the measurements. The SensApp admin

uses the public REST API of SensApp and provides capabilities to manage sensors

and visualise data using a graphical user interface. For the sake of simplicity, other

concerns such as the detailed description of interfaces, or the behaviour of services

and users are not presented in this figure.

The models at the CCIM level are used to semi-automatically generate part of the

CPIM models. In particular, the Service Definition Models and the Service Orches-

trations Model, which can partially be generated through reverse engineering tech-

niques, are used to initiate the Design Alternatives and deployment models whilst

the CCIM data models are used to initiate the CPIM data models.

3.4.3 CPIM and CPSM Models

CPIM and CPSM levels are composed of the same set of models. CPIM models are

derived from CCIM models and are in turn refined into CPSM models. The set of

models that compose these two levels are the following:

Design Alternative and Deployment Model: at the CPIM level, it describes the

assignment of application components to underlying resources. This includes ser-

vices, platforms and infrastructural resources. At the CPSM level, it characterizes

Cloud resources of a specific Cloud provider.

Data Model: at the CPIM level, this model refines the CCIM data model to describe

data model in terms of logical models as flat model, hierarchical model and rela-

tional model. Finally, at the CPSM level, it describes the data model based on the

specific data structures implemented by the Cloud providers.

Monitoring Rules: this model describes the monitoring rules aiming at control-

ling the execution of specific application components/data/connectors assigned

to specific resources. They are used to indicate to the run-time platform what

components/services to monitor.

1https://www.mongodb.org.

https://www.mongodb.org

3 The MODAClouds Model-Driven Development 29

QoS Model: this model includes information concerning QoS characteristics of

Cloud resources in both a provider-independent (CPIM level) and provider-

specific (CPSM level) way. It includes cost information, thus, offering the possi-

bility to estimate an upper-bound for application costs.

Resources Model: this model represents different Cloud environment and offer-

ings and can be used as a catalogue of available resources. This catalogue is

particularly useful as a basis for the specification of CPIM and CPSM models. It

is also used in order to evaluate performance and cost of applications, as proposed

by the decision making and analysis tools, as well as during the selection of the

resource to be used by a multi-Cloud application.

In the following we exemplify the usage of the deployment model to specify the com-

ponent deployment and orchestration in the Cloud. Deployment models are specified

using CloudML.

CloudML [8, 9] consists of: (i) a domain-specific language (DSL) for specifying

the provisioning and deployment of multi-Cloud applications; and (ii) a models@run-

time environment for enacting the provisioning, deployment, and adaptation of these

applications. While the CloudML language is part of MODACloudML, the mod-

els@runtime environment is integrated as part of the MODAClouds IDE. This way,

developers can take advantage of the CCIM models and of the optimization tools

in order to specify deployment models. CloudML allows developers to model the

provisioning and deployment of a multi-Cloud application at both the CPIM and

CPSM levels of abstractions. This two-level approach is agnostic to any develop-

ment paradigm and technology, meaning that the application developers can design

and implement their applications based on their preferred paradigms and technolo-

gies.

CloudML is inspired by component-based approaches [10] that facilitate separa-

tion of concerns and reusability. In this respect, deployment models can be regarded

as assemblies of components exposing ports (or interfaces), and bindings between

these ports. In a nutshell, CloudML enables to express the following concepts (we

refer the reader to [9] for details):

• Cloud: Represents a collection of VMs offered by a particular Cloud provider.

• External component: Represents a reusable type of VM or PaaS solution.

• Internal component: Represents a reusable type of application component to be

deployed on an external component.

• Port: Represents a required or provided interface to a feature of a component.

• Relationship: Represents a communication between ports of two application com-

ponents, they express dependencies between components.

• Hosting: Represents the fact that a component uses another as execution platform.

In addition, CloudML implements the type-instance pattern [11], which also

facilitates reusability. This pattern exploits two flavors of typing, namely ontological

and linguistic [12]. Figure 3.4 illustrates these two flavors of typing. SL (for Small

Linux) represents a reusable type of VM. It is linguistically typed by the class VM

(for Virtual Machine). SL1 represents an instance of the VM SL. It is ontologically

typed by SL and linguistically typed by VMInstance.

30 N. Ferry et al.

Fig. 3.4 Linguistic and

ontological typing

The transformation from CPIM to CPSM consists in: (i) adding the actual data

resulting from the resolution of the constraints defined in the external component

types (e.g., actual number of cores, RAM size, storage size), and (ii) adding data

required for the deployment and management of the application that are Cloud

provider-specific. Thanks to this enrichment, it is possible to retrieve data about

the actual resources provisioned including how they can be accessed and how they

can be configured. Such data is particularly useful during the process of configuration

of the components and their bindings.

3.4.4 Example

Figure 3.5 depicts the deployment model of SensApp at the CPIM level specified

with the MODAClouds IDE. The overall system will be deployed using two different

virtual machines (VMs), the first VM will host SensApp and the second the SensApp

Admin. Both VMs (CloudNodeInstance and ML) have differents characteristics and

are thus specified as instances of different types (SL and ML). Both SensApp and

its admin, in order to be executed properly, have to be hosted in a Servlet container.

In this case they are both hosted on the same type of Jetty container called JettySC.

This type of relationship is depicted in the figure by arrows between blue ports. In

addition, SensApp has to communicate with the database in order to store and retrieve

sensors data. This type of relationship is depicted by arrows between purple ports.

3.5 Related Work

In the literature several efforts aimed to offer support for designing, optimizing

and managing multi-Cloud applications. In particular, several EU projects provide

methodologies and tools to support the design and management of Cloud-based

applications. However, to the best of our knowledge, none of them propose an inte-

grated approach offering models that can be used for performance and cost analysis

and optimisation, as well as deployment and runtime management of multi-Cloud

applications.

3 The MODAClouds Model-Driven Development 31

Fig. 3.5 Deployment model of SensApp at the CPIM level

The Cloud Application Modeling Language (CAML) [13] is being developed

within the ARTIST EU FP7 project2 and supports the provider-independent specifi-

cation of deployment topologies and their refinement into provider-specific deploy-

ment. The main focus of the ARTIST project being the migration of legacy application

to the Cloud as well as the feasibility study of such migration, the language has been

defined as an UML internal modeling language based on a model library and profiles.

This way, it can be directly applied on UML models, which is especially beneficial

for migration scenarios where reverse-engineered UML models are tailored towards

a selected Cloud environment. These CAML profiles also capture Cloud offerings

from a functional and non-functional perspectives including cost aspects.

In order to cover the necessary aspects of the specification and execution of multi-

Cloud applications, the PaaSage project3 adopts the Cloud Application Modelling

and Execution Language (CAMEL). CAMEL integrates and extends existing DSLs,

including Cloud Modelling Language (CloudML) [8, 9], Saloon [14, 15], and the

Organisation part of CERIF [16], for specifying multiple aspects of multi-Cloud

applications, such as provisioning, deployment, providers, organisations, users, and

roles. Moreover, CAMEL adds DSLs for specifying aspects such as metrics, require-

ments, goals, scalability rules [17, 18], security controls, execution contexts, execu-

tion histories, etc. CAMEL is designed and implemented with the Eclipse Modelling

Framework (EMF)4 on top of the Connected Data Objects (CDO)5 persistence solu-

tion. MODAClouds and PaaSage are collaborating on the research and development

of CloudML. However, PaaSage does not offer a specific approach for the design-

time optimization of multi-Cloud applications.

The Topology and Orchestration Specification for Cloud Applications (TOSCA)

[19, 20] is a specification developed by the OASIS consortium, which provides a

2http://www.artist-project.eu/.
3https://www.paasage.eu.
4https://www.eclipse.org/modeling/emf/.
5https://www.eclipse.org/cdo/.

http://www.artist-project.eu/
https://www.paasage.eu
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/cdo/

32 N. Ferry et al.

language for specifying the components comprising the topology of Cloud-based

applications along with the processes for their orchestration. TOSCA is comparable

to CloudML, however the language has been conceived for design-time modelling

only.

3.6 Conclusion

The MODAClouds Model-Driven Development approach relies on the so called

MODACloudML which integrates a set of domain-specific languages. These lan-

guages cover the specifications of both functional and non functional aspects of

multi-Cloud applications. Thanks to the three levels architecture, multi-Cloud appli-

cations can be designed in a Cloud provider-independent way thus reducing ven-

dor lock-in before being refined with provider-specific information thus allowing to

exploit the peculiarities of each provider.

References

1. Petcu D (2014) Consuming resources and services from multiple clouds. J Grid Comput 1–25

2. SSAI Expert Group (2010) The future of cloud computing. Technical report

3. SSAI Expert Group (2012) A roadmap for advanced cloud technologies under H2020. Technical

report

4. Schmidt DC (2006) Guest editor’s introduction: model-driven engineering. IEEE Comput

39(2):25–31

5. OMG: OMG model-driven architecture. http://www.omg.org/mda/

6. MacKenzie M, Laskey K, McCabe F, Brown P, Metz R (2006) Reference model for service

oriented architecture 1.0. Technical report, OASIS

7. Mosser S, Fleurey F, Morin B, Chauvel F, Solberg A, Goutier I (2012) SENSAPP as a reference

platform to support cloud experiments: from the internet of things to the internet of services.

In: SYNASC 2012: 14th international symposium on symbolic and numeric algorithms for

scientific computing. IEEE Computer Society, pp 400–406

8. Ferry N, Rossini A, Chauvel F, Morin B, Solberg A (2013) Towards model-driven provisioning,

deployment, monitoring, and adaptation of multi-cloud systems. In: O’Conner L (ed) Proceed-

ings of CLOUD 2013: 6th IEEE international conference on cloud computing. IEEE Computer

Society, pp 887–894

9. Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: applying MDE to

tame the complexity of managing multi-cloud applications. In: Proceedings of UCC 2014:

7th IEEE/ACM international conference on utility and cloud computing

10. Szyperski C (2011) Component software: beyond object-oriented programming, 2nd edn.

Addison-Wesley Professional

11. Atkinson C, Kühne T (2002) Rearchitecting the UML infrastructure. ACM Trans Model Com-

put Simul 12(4):290–321

12. Kühne T (2006) Matters of (meta-)modeling. Softw Syst Model 5(4):369–385

13. Bergmayr A, Troya J, Neubauer P, Wimmer M, Kappel G (2014) UML-based cloud application

modeling with libraries, profiles and templates. In: Proceedings of workshop on CloudMDE,

pp 56–65

http://www.omg.org/mda/

3 The MODAClouds Model-Driven Development 33

14. Quinton C, Rouvoy R, Duchien L (2012) Leveraging feature models to configure virtual appli-

ances. In: CloudCP 2012: 2nd international workshop on cloud computing platforms. ACM,

pp 2:1–2:6
15. Quinton C, Haderer N, Rouvoy R, Duchien L (2013) Towards multi-cloud configurations using

feature models and ontologies. In: MultiCloud 2013: international workshop on multi-cloud

applications and federated clouds. ACM, pp 21–26
16. Jeffery K, Houssos N, Jörg B, Asserson A (2014) Research information management: the

CERIF approach. IJMSO 9(1):5–14
17. Kritikos K, Domaschka J, Rossini A ((2014 (To Appear))) SRL: a scalability rule language

for multi-cloud environments. In: Proceedings of CloudCom 2014: 6th IEEE international

conference on cloud computing technology and science
18. Domaschka J, Kritikos K, Rossini A ((2014 (To Appear))) Towards a generic language for

scalability rules. In: Proceedings of CSB 2014: 2nd international workshop on cloud service

brokerage
19. Palma D, Spatzier T (2013) Topology and orchestration specification for cloud applications

(TOSCA). Technical report, Organization for the Advancement of Structured Information Stan-

dards (OASIS) (June)
20. Kopp O, Binz T, Breitenbücher U, Leymann F (2013) Winery–a modeling tool for tosca-based

cloud applications. In: Service-oriented computing. Springer, pp 700–704

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 4

QoS Assessment and SLA Management

Danilo Ardagna, Michele Ciavotta, Giovanni Paolo Gibilisco,

Riccardo Benito Desantis, Giuliano Casale, Juan F Pérez,

Francesco D’Andria and Román Sosa González

4.1 Introduction

Verifying that a software system shows certain non-functional properties is a pri-

mary concern for Cloud applications.1 Given the heterogeneous technology offer

and the related pricing models currently available in the Cloud market it is extremely

complex to find the deployment that fits the application requirements, and pro-

vides the best Quality of Service (QoS) and cost trade-offs. This task can be very

1In this chapter non-functional properties, QoS and non-functional requirements will be used
interchangeably.

D. Ardagna (B) · M. Ciavotta · G.P. Gibilisco · R.B. Desantis
DEIB, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
e-mail: danilo.ardagna@polimi.it

M. Ciavotta
e-mail: michele.ciavotta@polimi.it

G.P. Gibilisco
e-mail: giovannipaolo.gibilisco@polimi.it

R.B. Desantis
e-mail: riccardobenito.desantis@polimi.it

G. Casale · J.F. Pérez
Department of Computing, Imperial College, 180 Queens Gate, London SW7 2AZ, UK
e-mail: g.casale@imperial.ac.uk

J.F. Pérez
e-mail: j.perez-bernal@imperial.ac.uk

F. D’Andria · R. Sosa González
ATOS Spain SA, Subida al Mayorazgo 24B Planta 1, 38110 Santa Cruz de Tenerife, Spain
e-mail: francesco.dandria@atos.net

R. Sosa González
e-mail: roman.sosa@atos.net

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_4

35

36 D. Ardagna et al.

challenging, even infeasible if performed manually, since the number of solutions

may become extremely large depending on the number of possible providers and

available technology stacks. Furthermore, Cloud systems are inherently multi-tenant

and their performance can vary with the time of day, depending on the congestion

level, policies implemented by the Cloud provider, and the competition among run-

ning applications.

MODAClouds envisions design abstractions that help the QoS Engineer to spec-

ify non-functional requirements and tools to evaluate and compare multiple Cloud

architectures, evaluating cost and performance considering the distinctive traits of

the Cloud.

To better understand the scope of the MODAClouds QoS and SLA tools, referred

to as SPACE 4Clouds for Dev—QoS Modelling and Analysis tool, Fig. 4.1 pro-

vides a high-level overview of the architecture and main actors involved. Each of

these tools is the topic of the upcoming sections. In Figure we depict how the Feasibil-

ity Study engineer, the Application Developer and the QoS engineer provide inputs

to this MODAClouds module. The Feasibility Study engineer provides a set of can-

didate providers for the application under development. The application developer

instead creates a consistent application model and a set of architectural constraints

using MODACloudML meta-models (see Chap. 3). Ultimately, the QoS engineer is

in charge to define suitable QoS constraints. Simply put, the tool receives in input a

set of models describing an application both in terms of functionalities and resource

demands. At this point two possible scenarios are possible, in the first one the QoS

engineer uses the tool in assessment mode, namely she evaluates the performance

and cost based on a specific application deployment (which includes type and num-

ber of VMs and PaaS services). In the second scenario the QoS engineer provides

Fig. 4.1 SPACE 4Clouds for Dev—high-level architecture

http://dx.doi.org/10.1007/978-3-319-46031-4_3

4 QoS Assessment and SLA Management 37

only a partial configuration and lets the tool face the task of analysing the possible

alternatives to return a cost optimised solution that meets the constraints.

In this latter scenario, the module returns a complete deployment description (set

of providers, type of VM per tier, number of VMs per hour, type of other services),

and also reports useful information about the overall cost and performance. The

QoS engineer at that point may choose to accept the solution as it is, to modify the

constraints or to change the deployment and evaluate/force different configurations.

This MODAClouds module is composed of three main components:

• SPACE 4Clouds has a twofold function. First, it keeps track of candidate solutions

and manages their creation, modification, evaluation, comparison and feasibility

check. Second, SPACE 4Clouds deals with the design-space exploration and opti-

misation process by means of a metaheuristic local-search-based approach.

• LINE is the component in charge of the evaluation of the performance models

(Layered Queuing Networks—LQN) enriched with information about the effi-

ciency and the dynamic behaviour that can affect the Cloud platform.

• SLA tool is the component responsible for generating a formal document describ-

ing a Service Level Agreement (SLA) among the involved parties in MODA-

Clouds: customers, application providers and cloud providers.

The rest of this chapter is organised as follows: in Sect. 4.2 the MiC case study

is presented, SPACE 4Clouds and LINE are described in Sect. 4.3 whereas the SLA

tool is detailed in Sect. 4.4.

4.2 Case Study: Meeting in the Cloud (MiC)

In this section, we introduce a web application called Meeting in the Cloud (MiC)

that will be used throughout this chapter as a case study. MiC is a web application

for social networking that lets the user to profile her topics of interest and to share

them with similar users. Moreover, MiC identifies the most similar users in the

network according to the registered users’ preferences. More specifically, during

the registration process, the new user selects her topics of interest from a set of

alternatives, providing a preference for each of them in the range 1–5. At the end of

the registration, MiC calculates the Pearson coefficient [1] based on the preferences

expressed, identifies the users in the system with the most similar interests, and

creates a list of contacts for the newcomer. After the registration process, the user

can log in into the MiC portal and interact with her Best Contacts by writing and

reading posts on the selected topics. Users can also change their interests refining

their profiles; in this case the system reacts re-evaluating the similarity and updating

the list of recommended contacts.

The application, whose main elements are depicted in Fig. 4.2, comprises a Fron-

tend to process the incoming http requests and a Backend developed using JSP and

Servlet technologies. A task queue [2, 3] is used to decouple Frontend and Backend

38 D. Ardagna et al.

Fig. 4.2 MiC registration steps

in order to make the system capable to evaluate the similarity value in an asyn-

chronous, non-blocking way. The overall application results in this way reactive and

responsive all the time. An SQL database stores users’ profiles, messages, and best

contacts lists. A Blob Service is used to store pictures, while a NoSQL database

stores users’ interests and preferences. Both are accessed directly by the Frontend.

Finally, a Memcache system is used to temporarily store the last retrieved profiles

and best contacts messages with the aim of improving the response time of the whole

application.

MiC is especially designed to exploit multi Cloud capabilities using a particular

Java library, called CPIM, which basically provides an abstraction from the PaaS

services provided by the main Cloud Providers, for more details please refer to [4].

4.3 QoS Assessment and Optimisation

SPACE 4Clouds (System PerformAnce and Cost Evaluation on Cloud) is a multi-

platform open source tool for the specification, assessment and optimisation of

QoS characteristics for Cloud applications. It allows users to describe a software

architecture by means of MODACloudML meta-models that express Cloud-specific

attributes. Among other things, such models include a user-defined workload in order

to assess both performance and cost of the application under different runtime con-

ditions. Users can specify the models defining the Cloud application using Creator

4Clouds graphical interface, while information about the performance of the con-

sidered Cloud resources is kept in a SQL database to decouple its evolution from

4 QoS Assessment and SLA Management 39

Fig. 4.3 SPACE 4Clouds—architecture

the one of the tool. SPACE 4Clouds can be used either to assess the cost of a com-

plete described solution (i.e. application and Cloud configuration) according to the

cost model defined in [5] or (providing only the application model) to find a suitable

(even multi-Cloud) configuration that minimises the running cost while meeting QoS

requirements.

Figure 4.3 shows the internal structure of SPACE 4Clouds and the main compo-

nents are:

• GUI: consists of a main configuration window that allows loading the application

models to be analysed and configuration parameters for the analysis/optimisation

process. The GUI also provides some frames used to visualise the results of the

assessment and the progress of the optimisation;

• Solution: represents the set of classes that form the internal representation of the

application. Since a 24 h horizon is considered, the solution stores 24 records with

information about configuration, performance, cost and constraint violations.

• LQN Handler: maps the internal representation of a solution on the LQN models

used by the solver LINE (see Sect. 4.3.3) for the evaluation; the transformation

process supports both IaaS and PaaS services and for multi-Cloud deployments.

This component is also responsible for the serialisation of the solution in this

format before the evaluation and the parsing of the output of LINE.

• Evaluation Server: the role of this component is to decouple the evolution of

the different phases of the evaluation between the 24 h model instances for each

considered provider contained in each solution. This decoupling allows the solution

evaluation to happen in parallel.

• Data Handler: is the interface between the SQL database and other components

of the tool.

• Cost Assessment: is the component responsible for the cost evaluation of the solu-

tion.

• Constraint Handler: is the component responsible to assess the feasibility of the

solution with respect to Architectural and QoS constraints. Constraints are defined

via a Domain-Specific Language (DSL) for flexibility and extensibility reasons.

40 D. Ardagna et al.

• Optimisation Engine: It interacts with other components to evaluate the solutions

built with respect to cost, feasibility and performance, and it is responsible for

finding the optimal deployment configuration. Its core implements a metaheuristic

strategy based on a two-level local search with multiple neighbourhoods.

In the following the describe separately the assessment and optimisation scenarios

with the help the MiC use case.

4.3.1 Assessment

In this section we consider the assessment scenario, the one in which the QoS engineer

uses SPACE 4Clouds to evaluate the cost and performance of the application under

development:

1. Through the GUI the QoS engineer loads the models exported by Creator 4Clouds

including also a full deployment configuration (list of providers, type and number

of VMs and workload share for each hour), and a description of the incoming

workload and QoS constraints.

2. The models are translated into 24 LQN instances. Each instance is tailored to

model the application deployment in a particular hour of the day. These instances

are then used by the Optimisation and Assessment engine to initialise the structure

of a SPACE 4Clouds solution.

3. The set of LQN files is fed into the performance engine, usually LINE, which is

in charge of executing the performance analysis.

4. The output of the analysis performed by LINE, stored in an XML file, is read by

the LQN Handler and written back in the solution.

5. The solution can then be evaluated in terms of feasibility against user defined

constraints by the Constraint Handler component.

We consider the MiC use case presented in Sect. 4.2. For the sake of simplicity

only Frontend, Backend and a SQL database are considered, packed together and

deployed on a single VM. Let us suppose that all the modelling work has been

already done and the QoS engineer has to decide the type and the number of VMs

for each hour of the day to be allocated to satisfy a set of constraints. Two candidate

Cloud providers have been selected, namely Amazon and Microsoft, based upon

the pricing models available on the Internet and on the user’s experience. The QoS

engineer considers that the daily workload for the application under development will

likely follow a bimodal distribution, which he can roughly estimate. She also has

to consider the non-functional requirements associated with the ongoing project. In

our example the CPU utilisation is imposed to be lower than 80 % and the response

time of the register functionality to be less than 4 s. Using such information, she

devises a preliminary Multi-Cloud configuration (5 medium instances allocated on

each provider per hour and 50–50 % workload splitting) and loads it along with the

application functional model and the constraint set in SPACE 4Clouds; she chooses

4 QoS Assessment and SLA Management 41

Fig. 4.4 Average response time for MiC register functionality

the assessment feature and the solution is evaluated and returned. As the reader can

see from Fig. 4.4, the response time constraint is violated in the central hours of the

day, while the expected daily cost is $34.8.

The solution is clearly infeasible and the QoS engineer has to pull her sleeves

up and fine-tune the configuration, perhaps acting on the number of VMs and the

workload splitting between the selected Clouds per hour. This is a non-trivial task

since, for instance, varying the workload share directed to a certain provider affects

the response time and implies an adjustment of the number of VMs running at that

particular hour. A similar reasoning applies to the VM types involved. After long

fine tuning, the user identifies a feasible solution with the following cost: $39.4.

The solution in point has the same types of VMs of the original one and the same

workload percentage for each of two providers but uses a larger number of VMs in

the hours between 10 a.m. and 19 p.m.

At this point the user can be satisfied with her work but we will see in the next

section that there is still room for improvement without sacrificing feasibility, exploit-

ing the optimisation feature of SPACE 4Clouds.

4.3.2 Optimisation

The aim of this section is to provide a brief description of the optimisation strategy

implemented within SPACE 4Cloud. A two-step approach has been developed; in

the first step an initial valid configuration of the system is derived automatically

starting from a partially specified application description given by the QoS engineer.

In order to do so, a Mixed Integer Linear Problem (MILP) is built and efficiently

solved [6]. This solution is based on approximated performance models, in fact, the

QoS associated to a deployment solution is calculated by means of an M/G/1 queuing

model with processor sharing policy. Such performance model allows calculating the

average response time of a request in closed form. Our goal is to determine quickly

42 D. Ardagna et al.

an approximated initial solution (list of Cloud providers, types of VMs, number of

VMs and hourly load balancing) that is then further improved.

In the second step a local-search-based optimisation algorithm iteratively improves

the starting Cloud deployment exploring several configurations. A more expressive

performance model (LQN) is employed to derive more accurate estimates of the QoS

by means of the LINE solver. More specifically, the algorithm implemented exploits

the assessment feature to evaluate several, hopefully distinct Cloud configurations. It

has been designed to explore the solution space using a bi-level approach that divides

the problem into two levels delegating the assignment of the VM type to the first

(upper) level, and the load balancing and the definition of the number of replicas to

the second (lower) level. The first level implements a stochastic local search with

tabu memory; at each iteration the VM type used for a particular tier is changed

randomly from all the available VM types, according to the architectural constraints.

The tabu memory is used to store recent moves and avoid cycling of the candidate

solutions around the same configurations. Once the VM size is fixed the solution

is refined by gradually reducing the number of VMs until the optimal allocation is

found. Finally the workload is balanced among the Cloud providers by solving a

specific MILP model. This whole process is repeated for a pre-defined number of

iterations, updating the final solution each time a feasible and cheaper one is found.

Returning to the example begun in the previous section, let us imagine that the

QoS engineer has at her disposal only the functional and non-functional description

of the application and an indication on the possible shape and average value of the

workload. The user in point can leave to SPACE 4Clouds the task of choosing the

most suitable set of providers (limited to two providers for a fair comparison with the

scenario in the previous section), the type and number of VMs for each provider and

hour, and the hourly workload share for each provider. In this second case a feasible

and optimised solution is returned in around 20 min and the related cost is $19.33

that is 50 % lower than the solution devised by trial and error in the previous section.

At this point one may wonder, how is the solution from SPACE 4Clouds different

from the one obtained by the QoS engineer? Fig. 4.5 depicts the number of VMs per

hour for the selected Cloud providers. We can see that Microsoft has been replaced

Fig. 4.5 VMs allocated per hour on Amazon and Flexiscale cloud providers

4 QoS Assessment and SLA Management 43

Fig. 4.6 CPU utilization per hour on Amazon and Flexiscale cloud providers

by Flexiscale and that the number of VMs allocated varies hourly from 1 through

20 differently for each provider. Moreover, distinct (more powerful) VM types have

been selected and the workload has been split in 80–20 %, where the larger part has

been assigned to Flexiscale. Finally, Fig. 4.6 reports the average CPU utilization per

Cloud provider, that is clearly below the threshold of 80 % imposed by the user.

4.3.3 LINE

LINE [7] is a tool for the performance analysis of cloud applications. LINE has

been designed to automatically build and solve performance models from high-level

descriptions of the application. This description can be in the form of a Layered

Queueing Network (LQN) model. From this description, LINE is able to provide

accurate estimates of relevant performance measures such as application response

time or server utilisation. LINE can also provide response times for specific compo-

nents of the application, enabling the pinpointing of components causing a degrada-

tion in the QoS. LINE can therefore be used at design time to diagnose whether the

deployment characteristics are adequate to attain the desired QoS levels.

Although other tools are available for performance modelling (such as Simu-

Com [8] and LQNS [9]), LINE stands apart for a number of reasons.

• In addition to provide average performance measures, LINE can compute response

time distributions, which can be directly used to assess percentile Service Level

Agreements (SLAs), e.g., that 95 % of the requests for the register functionality

are processed in less than 6 s.

• LINE features a reliability model, namely random environments [10], to capture a

number of conditions that may affect the application, including servers breakdowns

and repairs, slow start-up times, resource heterogeneity and contention in multi-

tenancy, a key property of cloud deployments.

44 D. Ardagna et al.

• LINE is able to model general request processing times, which can be used to

represent the resource demands posed by the very broad range of cloud applica-

tions.

• LINE offers a parallel execution mode for the efficient solution of a large number

of performance models.

4.4 SLA Management

As far as SLA management is concerned, in the MODAClouds context we consider

three possible actors, Cloud Service Providers (CSPs), which are responsible for

the efficient utilization of the physical resources and guarantees their availability

for the customers; Application Providers (APs) that are responsible for the efficient

utilization of their allocated resources in order to satisfy the SLA established with

their customers (end users) and achieve their business goals and customers, which

represent the legitimate users for the services offered by the application providers.

Usually, CSPs charge APs for renting Cloud resources to host their applications. APs,

in turn, may charge their Customers for the use of their services and need to guarantee

their customers’ SLA. SLA violations, indeed, have an impact on APs reputation

and revenue loss incurred in the case of Cloud-hosted business applications. In both

circumstances penalty-based policies have to be enforced.

MODAClouds therefore devises a two-level SLA system; the first level (Customer-

AP) describes the service offered by the Application Provider to its users. The guar-

antee terms in this SLA should only watch observable metrics by the end user. At

the other level, AP-CP SLA describes the QoS expected from the Cloud provider. In

this SLA level, there is one agreement per Virtual Machine or PaaS service.

The lifecycle of an SLA can be split up in several different phases:

1. preparation of the service offer as a template,

2. location and mediation of the agreement,

3. assessment of the agreement during execution and

4. termination and decommission of the agreement.

Within MODAClouds we designed and implemented a policy-driven SLA frame-

work that focus on the phase 1–3 of the described lifecycle. It comprises a REST

server (the SLA core) and a set of additional helper tools: the SLA Mediator and

the SLA Dashboard. The Mediator tool acts as a layer atop the core, to implement

some MODAClouds specific behaviour. The SLA Dashboard shows the violations

and penalties of agreements in a more user-friendly way.

Figure 4.7 shows how the SLA Components are organised and how they are related

to other MODAClouds components, in particular:

• SLA Repository: manages the persistence of SLA Templates, SLA Contracts and

the relation between Services/Contracts/Templates.

4 QoS Assessment and SLA Management 45

Fig. 4.7 SLA tool: architecture

• SLA Mediator: maps the QoS constraints defined by the QoS Engineer in SLA

Agreements of both SLA levels.

• Assessment: computes the possible business violations, notifying any observer

(like an external Accounting component) of raised penalties.

Finally, we want to remark that the tool has been implemented following to be fully

compliant (concepts, agreements and templates) with the WS-Agreement2 specifica-

tion. This choice made it a tool more flexible and potentially applicable to contexts

other than MODAClouds.

References

1. Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc
Lond 58:240–242

2. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co. Inc

3. Schmidt D, Stal M, Rohnert H, Buschmann F (2001) Pattern-oriented software architecture
patterns for concurrent and networked objects. Wiley

4. Giove F, Longoni D, Yancheshmeh SM, Ardagna D, Di Nitto E (2013) An approach for the
development of portable applications on PaaS clouds. Closer 2013 Proc Aachen Ger 30:591–
601

5. Franceschelli D. and Ardagna D. and Ciavotta M. and Di Nitto E.: SPACE4CLOUD: a tool for
system performance and costevaluation of cloud systems. Proceedings of the 2013 international
workshop on multi-cloud applications and federated clouds, 2013, pp 27–34

6. Ardagna D, Gibilisco GP, Ciavotta M, Lavrentev A (2014) A multi-model optimization frame-
work for the model driven design of cloud applications. Search-Based Softw Eng 8636:61–76.
Springer

7. Pérez JF, Casale G,(2013) Assessing SLA compliance from Palladio component models. In:
Proceedings of the 2nd workshop on management of resources and services in cloud and sky
computing (MICAS). IEEE Press

2Web Services Agreement Specification (WS-Agreement) http://www.ogf.org/documents/GFD.
192.pdf.

http://www.ogf.org/documents/GFD.192.pdf
http://www.ogf.org/documents/GFD.192.pdf

46 D. Ardagna et al.

8. Becker S, Koziolek H, Reussner R (2009) The Palladio component model for model-driven
performance prediction. J Syst Softw 82(1):3–22

9. Franks G, Maly P, Woodside M, Petriu DC, Hubbard A (2009) Layered queueing network solver
and simulator user manual. Real-Time and Distributed Systems Lab Carleton Univ Canada

10. Casale G, Tribastone M (2011) Fluid analysis of queueing in two-stage random environments.
In: Eighth international conference on quantitative evaluation of systems (QEST). IEEE, pp
21–30

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 5

Monitoring in a Multi-cloud Environment

Marco Miglierina and Elisabetta Di Nitto

5.1 Introduction

The Cloud brings velocity to the development and release process of applications,

however software systems become complex, distributed on multiple clouds, dynamic

and heterogenous, leveraging both PaaS and IaaS resources. In this context, gathering

feedback on the health and usage of services becomes really hard with traditional

monitoring tools, since they were built for on-premise solutions offering uniform

monitoring APIs and under the assumption that the application configuration evolves

slowly over time. Still, visibility via monitoring is essential to understand how the

application is behaving and to enable automatic remediation features such as the

ones offered by MODAClouds.

Tower 4Clouds is a monitoring platform built with multi-cloud applications in

mind. It offers a model-based approach that helps the user to focus on abstract

concepts when configuring the monitoring activity of complex and heterogeneous

applications running on multiple clouds. Configuration is done via a powerful rule

language, which allows the user to instruct the platform once, predicating on the

model of the application. Within a single rule the user will be able to configure what

and how data should be collected, what aggregations should be performed, what

condition should be verified and what actions should be executed. Tower 4Clouds

is also highly composable. Custom metrics and third party monitoring tools can be

easily integrated.

M. Miglierina · E. Di Nitto (B)

Politecnico di Milano - DEIB, Piazza L. da Vinci 32, 20133 Milano, Italy

e-mail: elisabetta.dinitto@polimi.it

M. Miglierina

e-mail: marco.miglierina@polimi.it

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_5

47

48 M. Miglierina and E. Di Nitto

5.2 Tower 4Clouds Architecture

In order to address the multi-cloud requirement, we could not rely on the moni-

toring infrastructure provided by a specific cloud provider. We therefore developed

Tower 4Clouds as an open source modular platform. Figure 5.1 depicts the general

architecture of the platform.

The core elements of the architecture are Data Analyzers which acquire data

described as RDF tuples and perform filtering, aggregation, and statistical analyses

on them. They receive data from multiple Data Collectors that can wrap preexisting

monitoring tools. Examples of preexisting tools we managed to integrate with our

platform are Sigar and Collectd.

Data Analyzers produce output metrics for Observers that subscribe for such

data. Observers can be other Data Analyzers or external tools that may support,

for instance, visualization of monitoring data or the execution of some application-

specific actions in response of the occurrence of some events.

The typical configuration we have experimented with includes a Deterministic

Data Analyzer (DDA), in charge of performing filtering and aggregation of data,

connected to Observers such as a Statistical Data Analyzer (SDA), which executes

prediction algorithms on data, Graphite or InfluxDB for storing time series data to be

then used by graphing tools such as Grafana. The DDA core is the C-SPARQL engine,

a general purpose RDF stream reasoner based on the C-SPARQL language [2], which

we exploited to monitor applications [3].

As we anticipated, we are not monitoring static and slowly changing systems.

Cloud applications are dynamic therefore we had to provide the platform with the

elasticity required to reconfigure and update its internal model according to applica-

tion changes. Such elasticity is obtained by giving data collectors the responsibility

Fig. 5.1 Tower 4Clouds architecture

5 Monitoring in a Multi-cloud Environment 49

of registering to the central server (i.e., the Manager in Fig. 5.1) and notifying about

resources they are monitoring, avoiding any central discovery mechanism. Collec-

tors are supposed to be available as long as they periodically contact the server. After

a predefined period of inactivity, the corresponding monitored resource is removed

from the server internal model and considered unavailable.

Finally, we implemented a mono-directional communication protocol used by

data collectors to register and to send monitoring data. Since the connection is always

from data collectors to the server, there is no need to implement routing strategies

and listen to ports at the client side. This allows to have fewer requirements on the

XaaS services in charge of hosting the monitored application services.

5.3 Application Configuration Model

Metrics per se are dumb numbers, in order to actually understand where data is

coming from and improve visibility, a model of the application is required to give

semantic meaning to all its components and relationships among them. Different

cloud providers, for example, are explicitly modeled so that per-cloud aggregations

of data can be computed. The model, which is stored by the Manager component in

Fig. 5.1, is maintained in sync in a distributed fashion by data collectors which are

running on monitored hosts.

Figure 5.2 shows an example of model of a simple e-commerce webapp deployed

on two different clouds (Flexiant and Amazon), providing 3 different methods (reg-

ister, login and checkout).

Fig. 5.2 Model example

50 M. Miglierina and E. Di Nitto

5.4 Monitoring Rules

The configuration of the monitoring system is obtained via monitoring rules, which

consist in recipes written by the QoS engineer describing the monitoring activity in

a cloud-independent way. Monitoring rules can be automatically derived from QoS

constraints specified during the design time and then customized according to users

needs. A rule is composed of 5 building blocks:

• monitoredTargets, where a list of monitored resources is identified by either class,

type or id;

• collectedMetric, where the metric to be collected is specified together with any

data collector-specific parameter;

• metricAggregation, where the aggregation among average, percentile, sum, count,

max, min of collected data is selected as well as whether the aggregation should

be over all data or grouped by a specific class of resources (e.g., by cloud provider,

or by vm);

• condition, where a condition to be verified can be expressed predicating on the

aggregated value;

• actions, the action to be executed given the condition is satisfied (if any).

Table 5.1 Examples of monitoring rules

5 Monitoring in a Multi-cloud Environment 51

Table 5.1 provides two examples of rules that predicate over the example model

provided in Fig. 5.2. The first rule (i.e., RTConstraint_Rule) instructs the platform

to collect the response time of all three methods, compute the 99th percentile every

60 s, and check if it is lower than 10 s. In case the computed metric is over 10 s,

the platform will produce a new metric named RTConstraint_Violation, which will

be available as input of other rules and for observers, and will enable a second

rule named DetailedRAMRule. This second rule is telling the platform to collect the

average RAM utilization on all Frontend machines and produce a new metric named

AverageRAMUtilization for each VM. DetailedRAMRule is not active in the initial

monitoring configuration (in fact, its enabled attribute is set to false). This means

that the data it needs are not collected. When the execution of RTConstraint_Rule

activates it (that is, when the response time of the methods under monitoring is

slow), data collectors are instructed to start sending the required metrics to the Data

Analyzer that can then execute the rule. Thanks to this mechanism it is possible to

increase or decrease the level of the monitoring, and the consequent overhead on the

execution of the whole system, depending on the status of the system itself.

5.5 Conclusion

Tower 4Clouds is available as open source software.1 It has been used as part of

MODAClouds by all case studies owners that have been able to customize it for

their purpose without a direct intervention of its main developers. Moreover, it is

being used also within the SeaClouds project [1] where it has become one of the

main infrastructural components. Thanks to its modularity, Tower 4Clouds has been

incorporated within SeaClouds as it is, and SeaClouds partners have built around

it the code needed to automatically derive monitoring rules and Data Collectors

configurations from their design time specification of SeaClouds applications.

References

1. Brogi A et al (2015) CLEI Electron J 18(1):1–14

2. Barbieri DF et al (2010) C-SPARQL: a continuous query language for RDF data streams Int J

Semantic Comput 4:3

3. Miglierina M et al (2013) Exploiting stream reasoning to monitor multi-cloud applications. In:

2013 ISWC 2nd international workshop on Ordering and Reasoning (OrdRing), 21–22 Oct 2013

1https://github.com/deib-polimi/tower4clouds.

https://github.com/deib-polimi/tower4clouds

52 M. Miglierina and E. Di Nitto

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 6

Load Balancing for Multi-cloud

Gabriel Iuhasz, Pooyan Jamshidi, Weikun Wang and Giuliano Casale

6.1 Introduction

Load balancing is an integral part of software systems that require to serve requests

with multiple concurrent computing resources such as servers, clusters, network

links, central processing units or disk drives. Load balancing aims to optimize

resource use, maximize throughput, minimize response time, and avoid overload

of any single resource. It can also lead to a higher reliability through redundant

resources. Load balancing typically involves two major components: (i) a controller,

a piece of software or hardware controlling the routing of requests to the backend

resources according to an specific routing policy; (ii) a reasoner that determines the

routing policy. The policy can be set at design-time based on the result of the reasoner

or at runtime based on periodic observation of response time and throughput.

The MODAClouds Load Balancer (Fig. 6.1) is a component for dispatching

requests from end users to application servers following certain load balancing poli-

cies. It consists of a load balancing controller and a reasoner. The controller extends

G. Iuhasz (B)

Institute E-Austria Timisoara and West University of TimiŞoara,

B-dul Vasile Pârvan 4, 300223 TimiŞoara, Romania

e-mail: iuhasz.gabriel@info.uvt.ro

P. Jamshidi · W. Wang · G. Casale

Department of Computing, Imperial College London,

180 Queens Gate, SW7 2AZ London, UK

e-mail: p.jamshidi@imperial.ac.uk

W. Wang

e-mail: weikun.wang11@imperial.ac.uk

G. Casale

e-mail: g.casale@imperial.ac.uk

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_6

53

54 G. Iuhasz et al.

Fig. 6.1 The MODAClouds Load Balancer

well known open source load balancing and proxying for TCP and HTTP-based

applications called HAProxy.1

6.2 Load Balancing Controller

In MODAClouds, we developed pyHrapi,2 a set of REST APIs to interact with the

core HAProxy engine. pyHrapi essentially controls the behavior of HAProxy through

easy to use APIs easing the way self-adapting components of MODAClouds needs to

interact with load balancing component either for configuration update or controlling

its behavior at runtime.

6.3 Load Balancing Reasoner

MODAClouds Load Balancer uses the Weighted Round Robin policy, which dis-

patches requests to each server proportionally based on the assigned weights and in

circular order. At runtime, algorithms proposed in [1] are implemented [2] to change

the weights of the servers in order to optimize the revenue of the system. The revenue

is defined as weighted throughput of different classes of users. The support of multi-

class reasoning is useful in real applications when the users have different privileges,

e.g. golden, silver and bronze, which stand for different levels of services. Such lev-

els of service can be formalised by means of SLAs. In the reasoner component, the

1http://www.haproxy.org/.
2https://github.com/ieat/MODAClouds-loadbalancer-controller.

http://www.haproxy.org/
https://github.com/ieat/MODAClouds-loadbalancer-controller

6 Load Balancing for Multi-cloud 55

calculation of throughput and response time is based on log data analysis of the load

balancing controller. At runtime, the per request logs are accumulated in the load

balancing controller log file based on the requests hitting backend resources.

Data collector In order to observe the change of the system, we have developed a log

file collector for Haproxy. This log file collector continuously extracts information

from the log based on a predefined regular expression. Metrics like response time,

arrival and departure time-stamps, request type and session IDs are particularly useful

for the load balancing analysis to examine the processing requirement of each type

of request on different types of servers. This Haproxy log data collector is integrated

into Tower 4Clouds (see Chap. 5) and sends data to the Deterministic Data Analyzer

(DDA) component.

Demand estimation The logs collected from the Haproxy log data collector are

sent to the Haproxy specific demand estimation SDA from the DDA for analysis.

We have developed two Haproxy specific demand estimation SDAs to obtain the

demands of different classes of users: Complete Information (CI) and Utilization-

based Regression (UBR). The CI method requires both the arrival time-stamps and

departure time-stamps of each requests. The UBR, on the other hand, needs CPU

utilization on the application server as well as the throughput of the requests. The

demands obtained from either SDA will be used by the Load balancing adaptor to

obtain the optimal weights for each backend resources.

In particular, we obtain the demand of different classes of users by evaluating

the requests they send during one session. Here, we assume users have a similar

behaviour for sending the requests. We achieve this by grouping the requests by the

session IDs and examine if there are common requests among different sessions.

6.4 Multi-cloud Load Balancing

Local Load Balancing (LLB), also called cluster-level load balancing or intra-Cloud

load balancing (see previous section), provides load balancing between VMs, which

are inside a Cloud service or a virtual network (VNet) within a regional zone. Howe-

ver, there are several motivations for multi-Cloud (inter-Cloud) load balancing:

• Failover: An organization intends to provide highly reliable services for its cus-

tomers. This can be realized by figuring out backup services in case their primary

service goes down. A common architectural pattern for service failover is to pro-

vide a set of identical interfaces and route service requests to a primary service

endpoint, with a list of one or more replicated ones. If the primary service goes

down for a reason, requesting clients are routed to the other Cloud.

• Gradual enhancement/graceful degradation: Allocate a percentage of traffic to

route to a new interface, and gradually shift the traffic over time.

• Application migration to another Cloud: A profile can be setup with both primary

and secondary interfaces, and a weight can be specified to route the requests to

each interface.

http://dx.doi.org/10.1007/978-3-319-46031-4_5

56 G. Iuhasz et al.

• Cloud bursting: A Cloud service can be expanded into another private or public

Cloud by putting it behind a multi-Cloud load balancer profile. Once there is a

need for extra resources, it can be added (or dynamically removed) and specify

what proportion of requests goes to newly provisioned resources.

• Internet scale services: In order to load balance endpoints that are located in

different Clouds across the world, one can direct incoming traffic to the closest

port in terms of the lowest latency, which typically corresponds to the shortest

geographic distance.

• Fault tolerance. A fault tolerant Cloud application detect failed components and

fail over to another Cloud until a failure is resolved. It not only depends on deploy-

ment strategies but also on application level design strategies, for example, a reli-

able application may degraded and partly route the request to another Cloud at the

same time.

6.4.1 Usage Scenario of Multi-cloud Load Balancing

Once a failure in a Cloud occurs, traffic can be redirected to VMs running in another

Cloud. Multi-Cloud load balancing can facilitate this task. It allows to automatically

manage the failover of traffic to another Cloud in case the primary Cloud fails.

When configuring multi-Cloud load balancing, we need to provide a new global load

balancer in front of the local ones in each Cloud. Global load balancer abstracts

load balancing one level up the local level. The global load balancer maps to all

the deployments it manages. Within global load balancer, the weights for the load

balancing policy determine the priority of the deployments that users will be routed

to a deployment. The global load balancer monitors the endpoints of the deployments

and notes when a deployment in specific Cloud fails. At failure, global load balancer

reasoner will change the weights and route users to other Cloud (Fig. 6.2).

6.5 Load Balancing and Failure Management

A requirement for the runtime platform is to be robust in case of failures of individual

components. In particular, a failure of the load balancer could cause a major loss of

connectivity for an entire cluster of machines. To prevent this situation, it is needed

to replicate the load balancer and initiate an automatic fail-over switch to the backup

load balancer in case the main load-balancer fails.

In MODAClouds, we use Trigger technology to handle load balancer failure.

Triggers are functions that allow an action in Cloud Orchestrator to initiate a second

action. A trigger is written as a block of code that run either before an event occurs (a

pre trigger) or after an event occurs (a post trigger). One advantage is that a pool of

images can be created and automatically started in the event of a fault. This reduces

the requirement for a System Administrator to be involved and as a result reduce

6 Load Balancing for Multi-cloud 57

Fig. 6.2 Overview of multi-Cloud load balancing in MODAClouds

the overhead cost as well as providing a fast automatic response. Also as a snapshot

of a disk is taken, if required a roll back in the event of changes or faults can be

quick using this taken snapshot and the provided tools. We also use triggers to add

the newly started VM into the load balancer, that would work in conjunction with

the previously created triggers. In the experiments we performed we exploited the

trigger implementation presented in Chap. 15.

6.6 Conclusion

The observations with our experimental study can be summarized as follows:

• Flexible load balancing. The approach enabled adaptive changes in the weights

according to the heterogeneity of the resources in each Cloud.

• Reduce application downtime. The approach improved the availability of Cloud-

based applications by automatically directing user access to a new location anytime

there is a congestion in a Cloud.

• Improved performance. The approach made application more responsive by direct-

ing access to an application according to the weights

Further details on implementation, experimental results, and the interconnection with

the other runtime components of MODAClouds can be found in [3].

http://dx.doi.org/10.1007/978-3-319-46031-4_15

58 G. Iuhasz et al.

References

1. Anselmi J, Casale G (2013) Heavy-traffic revenue maximization in parallel multiclass queues.

Perform Eval

2. Wang W, Casale G (2014) Evaluating weighted round robin load balancing for cloud web services

3. Iuhasz G et al (2015) Runtime environment final release. Modaclouds Deliverable D6.5.3

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 7

Fault-Tolerant Off-line Data Migration:

The Hegira4Clouds Approach

Elisabetta Di Nitto and Marco Scavuzzo

7.1 Introduction

The Cloud offers the potential to support high scalability of applications. An increase

in the application workload is typically handled by triggering the replication of its

components so as to increase the application computational capability offered to

users. Moreover, an increase in the amount of data to be handled can be easily

managed by exploiting scalable DBMSs supporting partitioning of data on different

nodes. These are the so called NoSQL databases that have been specifically built to

offer scalability, high availability of data and tolerance to network partitions [9].

Unfortunately, when looking more closely at how NoSQL databases work, one

realizes that they represent a good solution for scalability, but they do not offer

mechanisms to allow migration among data stored in NoSQLs from different vendors.

More specifically, data migration is not a new problem per se. It is a well established

topic in relational databases world; this is mainly due to the standardization occurred

at the data model level (with DDL) and at query level (with DML and DQL). There

exist several tools (see, e.g., [2, 4, 6, 7]) which allow to migrate data across relational

databases and, thanks to SQL, it is possible to preserve queries, compliant to the

standard, even after the migration. On the contrary, in the NoSQL database field

there exist no standard neither for interfaces nor for the data models and, as such, to

the best of our knowledge, there are no tools which allow to perform data migration

across different NoSQLs. Some databases provide tools to extract data from them

(e.g., Google Bulkloader [3]), but in the end, it is up to the programmer to actually

map those data to the target database data model and perform the migration.

E. Di Nitto (B) · M. Scavuzzo

Politecnico di Milano - DEIB, Piazza L. da Vinci 32, 20133 Milano, Italy

e-mail: elisabetta.dinitto@polimi.it

M. Scavuzzo

e-mail: marco.scavuzzo@polimi.it

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_7

59

60 E. Di Nitto and M. Scavuzzo

With our approach, that we call Hegira4Clouds,1 we aim at providing a solution to

the data migration problem in the context of NoSQL databases, trying to preserve, at

the same time, the specific properties characterizing each NoSQL database. For the

moment, we focus on column-family databases as they are among the most interesting

class of NoSQL for their high level of scalability. Hegira4Clouds migration approach

is based on the idea of extracting data from the source database, transforming them

into an intermediate format, and, finally, translate and store them into the target

database. Data transfer is fault tolerant as it enables the correct termination of the

migration even in the presence of a failure within the migration infrastructure.

In the following of this chapter, we briefly present Hegira4Clouds intermediate

format (Sect. 7.2) and its architecture, focusing, in particular, on the fault tolerance

features (Sect. 7.3). Finally, we evaluate the approach (Sect. 7.4) and discuss conclu-

sions and future work (Sect. 7.5).

7.2 Hegira4Clouds Intermediate Meta-Model

The Hegira4Clouds intermediate format is defined by an intermediate meta-model

described in detail in [13]. It takes into account the features of the most widely

used NoSQL and we have shown that it is sufficiently general for dealing with the

features of so-called columnar and key-value NoSQL databases [8, 15]. Thanks to

its definition, the adoption of a new NoSQL system in Hegira4Clouds requires only

the development of the translator from this new NoSQL into the intermediate format

and vice versa. Furthermore, thanks to this intermediate meta-model, Hegira4Clouds

is able to preserve the data types, read consistency policies, and secondary indexes

supported by the source database.

In particular, we preserve data types by keeping track of the type of each migrated

data explicitly, even though that type is not available in the destination database.

This is accomplished by performing the following procedure: data converted into the

intermediate format are always serialized into a property value field and the original

data type is stored as a string into a property type field. When data are converted from

the intermediate format into the target one, if the destination database supports that

particular data type, the value is deserialized. Otherwise, the value is kept serialized

and it is up to the application level to correctly interpret (deserialize) the value

according to the type field.

As extensively detailed in [10, 13], read consistency policies are handled through

the concept of Partition Group (Fig. 7.1). Entities that require strong consistency

on read operations will be assigned, in the intermediate format, to the same Par-

tition Group value. Entities managed according to an eventual consistency policy

will be assigned to different Partition Group values. When entities share the same

Partition Group, if the target database supports strongly consistent read operations,

1Repository: https://github.com/deib-polimi/hegira-components/.

https://github.com/deib-polimi/hegira-components/

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 61

Fig. 7.1 Intermediate meta-model

then Hegira4Clouds adapts data accordingly (depending on the target database data-

model). Otherwise, Hegira4Clouds simply persists the data so as that they will be

read in an eventual consistent way, and creates an auxiliary data structure to preserve

the consistency information.

Finally, secondary indexes are preserved across different database by means of

the property indexable field. More specifically, during the conversion into the inter-

mediate format, if a certain property needs to be indexed, it is marked as indexable.

When converting into the target format, if the target database supports secondary

indexes, the property is mapped consequently according to the specific interfaces

provided by the target database. Otherwise, Hegira4Clouds creates an auxiliary data

structure on the target database which stores the references to the indexed properties,

so that, when migrating again these data to another database supporting secondary

indexes, they can be properly reconstructed.

7.3 Architecture and Fault Tolerance Features

The Hegira4Clouds architecture is shown in Fig. 7.2. To provide scalablity and relia-

bility, each component is decoupled from the other, and the interacting components

communicate by means of a distributed queue. A Source Reading Component (SRC)

extracts data from the source database, one entity at a time or in batch (if the source

database supports batch operations) translates data into the intermediate format, by

means of the respective direct translator, and puts the data in the Metamodel queue.

62 E. Di Nitto and M. Scavuzzo

Fig. 7.2 Hegira4Clouds data migration architecture

This queue temporarily stores the data produced by the SRC so that other compo-

nents can consume them at their own peace, thus allowing the system to cope with the

different throughputs of the source and target databases. In parallel, a Target Writing

Component (TWC) consumes the data from the queue and converts them into the

target database data-model, thanks to an inverse translator (specific for each sup-

ported database). After conversion the data is stored in the target database. Hence the

role of translators is that of mapping data back and forth between the source/target

database and the intermediate format, performing the (de)serializations, checking

for data types support, properly mapping indexes and adapting the data to preserve

different read consistency policies. Two examples of translators (Google Datastore

and Azure Tables) are extensively described in [10, 13]. SRC and TWC are organized

in threads called Source Reading Threads (SRT) and Target Writing Threads (TWT),

respectively to achieve the maximum possible throughput.

Hegira4Clouds fault tolerance focuses on tolerating both databases reading/wri-

ting errors and outages (i.e., external faults) as well as crashes in the components of

the migration system (i.e., internal faults).

Queue faults may be prevented by adopting a distributed, disk-persisted, queuing

mechanism, so by assuming that this queue is able to automatically recover from

faults of its replicas (that is the reason why we a adopt RabbitMQ, widely used in

production environments).

Writing errors on the target database are addressed by the Metamodel queue; in

particular, TWTs synchronously write data on the target database and send acknowl-

edgment messages to the queue if the data were persisted correctly; only at this point,

acknowledged data are removed from the queue. Thus, if an error occurs on the target

database, another TWT (or a new TWC) can take over the specific write operations.

Reacting to reading errors in presence of faults on the source database, instead, is

more difficult because of the heterogeneity of the different NoSQL databases; while

some databases guarantee an absolute pointer to the data even after an error or a

crash, thus enabling the possibility to restart the migration from the exact point in

which it has been interrupted, some others (e.g., Google Datastore) do not.

Our approach to avoid restarting the migration from scratch consists in virtually

partitioning the data in the source database, so that partitions containing a certain

amount of data to be migrated can be retrieved in an ordered and unambiguous way,

independently from the source NoSQL database that is being used. In this way, if

there is an unrecoverable database error (i.e.,m external fault) or if the SRC crashes

(i.e., internal fault), the migration can start from the last retrieved partition. This

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 63

approach has been initially presented in [11] and is presented and evaluated in detail

in the rest of this chapter. Of course, such an approach implies that data are stored

in the databases according to a custom design. For this reason, Hegira4Clouds also

supports a design-agnostic approach (see [14]) that is compatible with any kind of

data design, but it is not able to react to unrecoverable source database faults or SRC

faults (i.e., an internal fault).

7.3.1 Virtual Data Partitioning

Since the source database may not support absolute pointers to the data, in order to

keep track of data that is being migrated, there must be some sort of shared knowledge

between the application and Hegira4Clouds. For this reason, we define the concept

of Virtual Data Partition (VDP), which is a logical grouping of entities contained

in the source database. By making the assumption that the applications, using the

source database, insert entities according to a sequential incremented (primary) key,

it is possible to track the point where a data migration task was interrupted. In

fact, by applying this technique, and storing only the last generated sequential id

(lastSeqNr), it possible to unequivocally create VDPs and associate stored entities

with them; in fact, by using an approach similar to paged virtual memory (virtual

memory management) for operating systems, it is possible to map an ordered set of

entities to a VDP (i.e., Eq. 7.2) and viceversa (i.e., Eq. 7.3).

To determine, at migration-time, the exact number of VDPs based on the last

generated sequence number (lastSeqNr) and the user-defined partition size (PS) we

use Eq. 7.1.

#partitions =

⌈

lastSeqNr/PS
⌉

(7.1)

V DPidk =

⌊

keyx,k/PS
⌋

(7.2)

We use Eq. 7.2 to calculate the id of the VDP containing the given entity (identified

by its key, i.e., keyx,k). Finally, Eq. 7.3 can be used to calculate the first and last entity

keys belonging to a given VDP (i.e., V DPidk). Notice that:

key1,k = V DPidk × PS

...

keyn,k = [(V DPidk + 1) × PS] − 1

(7.3)

• Since entities are inserted into the source database according to a sequential incre-

mented key (generated in order to guarantee the global total order of the id), the

entities contained in each VDP are ordered.

64 E. Di Nitto and M. Scavuzzo

• The number of the VDPs is not fixed a priori, but it grows together with the inserted

entities, and it is a factor of the number of inserted entities (lastSeqNr) and the

maximum number of entities VDPs can contain (i.e., PS).

• The size of the VDPs, in terms of contained entities (and thus the number of VDPs,

Eq. 7.1), can be determined at migration-time (by fixing a value for PS) and it can

change from one migration to another, without affecting stored data.

Hence, for migrating data according to this approach, it suffices to read the last

generated sequential number from a fault-tolerant, distributed storage, i.e., the status

log, and decide the VDPs proper size; once done so, for each VDP, the SRC extracts

the entities, from the source database, and executes the migration task.

If the source database supports range scan queries (e.g., HBase, Cassandra) it is

possible, for each database specific translator, to request all the range of entities

contained in a VDP, for example V DPid2 , with a single query, just by specifying its

first (i.e., key1,2) and last (i.e., keyn,2) entity keys. Otherwise, if the source database

does not support range queries, the specific database translator requests each entity,

contained in the VDP, one by one. In the first case, entities retrieval from the source

database, is much faster than in the second case, because only a request, towards

the database, is issued; while, in the second case, exactly PS requests are sent to the

source database.

The limit of the VDP approach is that VDPs might also contain the ids of pre-

viously erased entities; while on the first hand, in case of range scans, this does

not affect the performance of the migration task, since the source database handles

missing entities in a range; on the other hand, if the source database does not support

range scans, and the SRC has to issue a request per each entity contained in the VDP,

the source database will return an error when trying to retrieve a previously deleted

entity. The SRC skips the deleted entities that generate an error, but issuing queries

also for deleted entities slows down the migration task. In the worst case, i.e., when

all of the entities in a VDP have been erased, there may be a severe drop on the data

migration overall throughput.

In order to keep track of the migration status (i.e., the number of entities correctly

migrated towards the target database) and to allow for data synchronization (discussed

in [12]), Hegira4Clouds exploits the VDPs. In particular, when the SRC is instructed

to begin a migration task, it creates a snapshot of the source database, which is

stored in the status log. A snapshot consists of: (a) a list of all the VDPs at the time

the migration task was started (which depends on the value of PS, selected when

the migration command was issued); (b) the status of each VDP, which can be of

four types: “not migrated”, “under migration”, “migrated” and “synch”; (c) the last

sequence number issued at the time the migration task was started.

When creating the snapshot, every VDP status is set to “not migrated”. Once the

SRC starts to extract the entities relative to a given VDP, it sets the status of that

VDP to “under migration”. When a TWT determines it has processed all entities

relative to a given VDP, it sets that particular VDP status to “migrated”. The “synch”

VDP status is used when a partition is being synchronized, but this is out of the

scope of this chapter. A TWT is able to determine if a VDP has completely been

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 65

processed by counting the effective number of processed entities for that VDP and

comparing it with the number of entities the VDP actually contains (piggybacked

on each metamodel entity and specific to different VDPs). Hence, each time a TWT

processes an entity relative to a given VDP, it increments an associated counter; if the

counter reaches the value piggybacked in those metamodel entities, then the TWT

changes the VDP status to “migrated”. In this way all Hegira4Clouds components

are aware of the migration status at any point in time, and can therefore take the

appropriate decisions in case of faults (and also of data synchronization, as described

in [12]). Additional details about the snapshot management are provided in [14].

7.3.2 Recovering from Faults

Hegira4Clouds recovery approach assumes that there exists an external orchestrator

(e.g., Mesosphere DCOS [5]) that acts as follows:

1. it monitors the statuses of Hegira4Clouds components, i.e., the SRC and the TWC;

2. if it detects a fault on the SRC, it waits until the TWC finishes to process all the

messages in the Metamodel queue and starts a new SRC;

3. if it detects a fault on the TWC, it stops the SRC from reading data from the

source database and restarts both components.

4. Once the components have been restarted, the orchestrator calls Hegira4Clouds

recovery API.

Hegira4Clouds components, upon receiving a recovery command, in order to

avoid inconsistencies during data migration, empty the Metamodel queue. Then,

each components act as follows:

• the SRC

– downloads the migration status from the status log;

– for those VDPs whose status is “under migration”, the SRC changes it to “not

migrate” (this prevents inconsistencies from happening);

– finally, it starts to extract data from the source database starting from the first

VDP whose status is “not migrated”.

• the TWC, just waits for the Metamodel queue to be filled by the SRC.

7.4 Evaluation: Migrating Tweets

This section evaluates Hegira4Clouds using a large data set extracted from Twitter.

In particular, we stored into GAE Datastore 10,693,800 publicly available tweets [1]

and then we ran Hegira4Clouds to migrate them into Azure Tables. The purpose of

the experiment is to check if Hegira4Clouds is able to perform the partitioned data

66 E. Di Nitto and M. Scavuzzo

migration with an acceptable overhead (w.r.t. to the standard data migration [14])

and without introducing errors directly due to the migration process.

Experimental setup As mentioned before, our data set was composed of 10,693,800

tweets. Each tweet, in addition to the 140 characters long message, contains also

details about the user, creation date, geospatial information, etc. Each tweet was

stored in GAE Datastore as a single entity, with an extra sequential identifier (accord-

ing to the specifics reported in Sect. 7.3.1) and a variable number of properties (with

different data types). On average, each tweet on GAE Datastore was 3.05 KB. The

total entities size was 31.1 GB. We tested Hegira4Clouds in two different scenarios:

1. Standalone environent: all of the migration system components, including the

queue (RabbitMQ 3.4.6) and the status log (Apache ZooKeeper 3.5.4), were

deployed inside an Azure VM.

2. Distributed environent: two equally-sized VMs in the same virtual network, one

hosting the SRC, the TWC and the web-server exposing the REST APIs, and

the other equipped with the queue and the status log.

In both scenarios the VMs were configured as follows: Ubuntu Server 12.04, located

in Microsoft WE data center, with 4 CPU cores and 7 GB RAM.

Scenario 1: Standalone environment This test migrated data described above and

used 32 TWTs to write data in parallel on Azure Tables and 8 SRTs to read data

in parallel from Google Datastore. The main measured system metrics were (a) the

total migration time and consequently the migration throughput (measured in entities

per second), (b) the time needed by the SRC to extract the entities from the source

database, convert and put them in the queue, and (c) the overall CPU utilization

relative to all Hegira4Clouds components. We performed three different runs and

computed the average of each metric. Moreover, in order to evaluate how predictable

each run was with this configuration, we also computed the standard deviation for

each metric (Table 7.1).

Scenario 2: Distributed environment In this scenario the environment setup was

composed by two equally-sized VM, one, hegira1, executing an instance of Rab-

bitMQ and ZooKeeper, the other, hegira2, hosting the SRC and TWC components,

as well as the web-server exposing the REST APIs. The migrated data and the con-

figuration parameters were the same of the previous scenario, but, additionally, we

distinguished the CPU usages of the two VMs (Table 7.2).

Table 7.1 Partitioned data migration with standalone environment

Run Mig. time (s) Mig. throughput

(ent/s)

Ext. time (s) Ext. throughput

(ent/s)

%CPU used

1 13470 793.90 13469 793.96 49.4

2 16882 633.44 16880 633.52 49.02

3 17486 611.56 15248 701.32 38.46

Averages 15946 670.63 15199 703.58 45.63

Std. dev. 2165.44 99.56 1706.03 80.54 6.21

7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach 67

Table 7.2 Partitioned data migration with distributed environment

Run Mig. time

(s)

Mig. throughput

(ent/s)

Ext. time

(s)

Ext. throughput

(ent/s)

%CPU

used

hegira 1

%CPU

used

hegira 2

1 12075 885.61 12073 885.76 11.1 26.99

2 12187 877.47 12183 877.76 13.05 25.7

3 13995 764.11 13993 764.22 10.06 25.11

Averages 12752.33 838.58 12749.67 838.75 11.40 25.93

Std. Dev 1077.64 67.92 1078.16 67.98 1.52 0.96

7.5 Discussion and Conclusion

From the analysis of results we can conclude that Hegira4Clouds is suitable to han-

dle and process huge quantities of data with a very high throughput. Deploying

Hegira4Clouds on a distributed environment grants higher throughput; in fact, in

scenario 2, the average migration time was almost 1 hour less and consequently the

migration throughput was almost 170 ent/s faster. Moreover, by looking at the stan-

dard deviations, we can conclude that distributing Hegira4Clouds components has

the benefit of providing more predictable migration performance. In fact, while in

the first scenario we observe an average standard deviation corresponding almost to

the 15 %, in the second scenario the standard deviation is almost halved to the 8 %.

Finally, by comparing the results obtained in Scenario 2 with those of the stan-

dard (i.e., non-partitioned) data migration [14] we can assert that the performance

are almost the same and the adoption of the virtual data partitioning mechanism

(together with the usage of a status log, i.e., ZooKeeper) has no tangible overhead

on Hegira4Clouds.

The work on Hegira4Clouds is now focusing on how to manage synchronization

between database replicas and on how to support data migration while the application

using such data is continuing its normal execution.

References

1. ArchiveTeam (2012) Twitter Stream https://ia601605.us.archive.org/10/items/archiveteam-

twitter-stream-2012-12/archiveteam-twitter-2012-12.tar

2. Flyway https://github.com/flyway/flyway

3. Google Bulkloader, https://chromium.googlesource.com/external/googleappengine/python/+/

200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/bulkloader.py

4. LiquiBase, http://www.liquibase.org

5. Mesosphere, https://mesosphere.com/

6. Mysql workbench: Database migration, http://www.mysql.it/products/workbench/migrate/

7. Oracle SQL Developer Migration, http://www.oracle.com/technetwork/database/migration/

index-084442.html

https://ia601605.us.archive.org/10/items/archiveteam-twitter-stream-2012-12/archiveteam-twitter-2012-12.tar
https://ia601605.us.archive.org/10/items/archiveteam-twitter-stream-2012-12/archiveteam-twitter-2012-12.tar
https://github.com/flyway/flyway
https://chromium.googlesource.com/external/googleappengine/python/+/200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/bulkloader.py
https://chromium.googlesource.com/external/googleappengine/python/+/200fcb767bdc358a3acb5cf7cad1376fe69f12c5/google/appengine/tools/bulkloader.py
http://www.liquibase.org
https://mesosphere.com/
http://www.mysql.it/products/workbench/migrate/
http://www.oracle.com/technetwork/database/migration/index-084442.html
http://www.oracle.com/technetwork/database/migration/index-084442.html

68 E. Di Nitto and M. Scavuzzo

8. Popescu A (2010, 02) Nosql at codemash—an interesting nosql categorization. http://nosql.

mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql
9. Sadalage PJ, Fowler M (2012) NoSQL Distilled: a brief guide to the emerging world of polyglot

persistence. Addison-Wesley Professional
10. Scavuzzo M (2013) Interoperable data migration between NoSQL columnar databases. Mas-

ter’s thesis, Politecnico di Milano
11. Scavuzzo M, Di Nitto E, Ardagna D Experiences and challenges in building a data intensive

system for data migration
12. Scavuzzo M, Di Nitto E, Dominiak J (2015) Data synchronisation layer. MODA-

Clouds deliverable D6.7, April 2015. http://www.modaclouds.eu/wp-content/uploads/2012/

09/MODAClouds_D6.7_DataSynchronizationLayer.pdf
13. Scavuzzo M, Nitto ED, Ceri S (2014) Interoperable data migration between nosql columnar

databases. In: Grossmann G, Hallé S, Karastoyanova D, Reichert M, Rinderle-Ma S (eds)

18th IEEE international enterprise distributed object computing conference workshops and

demonstrations, EDOC Workshops 2014, Ulm, Germany, 1–2 Sep 2014. IEEE, pp. 154–162.

http://dx.doi.org/10.1109/EDOCW.2014.32
14. Scavuzzo M, Tamburri DA, Di Nitto E (2016) Providing big data applications with fault-tolerant

data migration across heterogeneous NoSQL databases. In:Proceedings of the 2nd international

workshop on BIG Data Software Engineering (BIGDSE ’16). ACM, New York, NY, USA, pp

26–32
15. Scoffield B (2014) Nosql—death to relational databases(?), January 2010, presentation at the

CodeMash conference in Sandusky (Ohio), 14 Jan 2014. http://www.slideshare.net/bscofield/

nosql-codemash-2010

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://nosql.mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql
http://nosql.mypopescu.com/post/396337069/presentation-nosql-codemash-an-interesting-nosql
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D6.7_DataSynchronizationLayer.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D6.7_DataSynchronizationLayer.pdf
http://dx.doi.org/10.1109/EDOCW.2014.32
http://www.slideshare.net/bscofield/nosql-codemash-2010
http://www.slideshare.net/bscofield/nosql-codemash-2010
http://creativecommons.org/licenses/by/4.0/

Chapter 8

Deployment of Cloud Supporting Services

Gabriel Iuhasz, Silviu Panica, Ciprian Crăciun and Dana Petcu

8.1 Introduction

The main emphasis in this chapter is on the various supporting services needed to

run an application. In the MODAClouds context, all services and resources involved

in running and managing an application on a given Cloud provider comprise the

runtime environment.

We give an overview of the Execution Platform (Energizer 4Clouds) and its main

components and services that have a direct role in deploying the supporting services.

In particular we will detail the mOS operating system and its main subsystems as

well as the supporting services. We briefly talk about how all services are packaged

and deployed after which we give an overview of and rational behind their design

and implementation. These supporting services are: Object Store, Artifact Repo-

sitory, Load-Balancer Controller and finally the Batch Engine. A brief overview

of how the supporting services are used in the MODAClouds project will be covered

at the end of this chapter. We also cover the runtime platform integration and inter-

dependencies of the supporting services and various other platforms that comprise

the runtime platform.

G. Iuhasz (B) · S. Panica · C. Crăciun · D. Petcu

Institute e-Austria Timisoara, West University of Timişoara,

B-dul Vasile Pârvan 4, 300223 Timişoara, Romania

e-mail: iuhasz.gabriel@info.uvt.ro

S. Panica

e-mail: silviu@info.uvt.ro

C. Crăciun

e-mail: ccraciun@info.uvt.ro

D. Petcu

e-mail: petcu@info.uvt.ro

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_8

69

70 G. Iuhasz et al.

8.2 MODAClouds Execution Platform

In this section we focus on the functionalities of the execution platform, and more

precisely on the supporting services which enable the deployment and execution of

various other services that are part of the runtime platform. In particular the runtime

platform is responsible for monitoring and self-adaptation.

Figure 8.1 offers a general overview of the overall dependencies between the

execution platform, the monitoring (Tower 4Clouds), adaptation (SpaceOps 4Clouds)

Fig. 8.1 Energizer 4Clouds—Execution Platform

8 Deployment of Cloud Supporting Services 71

and the MODACloud IDE. The execution platform has three main sub-systems;

infrastructure, coordination, platform. The infrastructures sub-system handles low-

level management of Cloud resources, coordination sub-system enables services to

find one another and exchange messages and finally the platform sub-system handles

the MODAClouds-specific tasks. The supporting services which are the main focus

of this chapter can be found at the bottom of the above figure.

Discovery is an important functionality, required by all services from the execu-

tion platform. Each component consumes or provides various services, which are

accessed in almost all cases over established networks protocols (HTTP, AMQP, raw

TCP etc.). Thus, the developer is provided with API’s that abstracts and expose these

service endpoints and the way to resolve them.

8.2.1 mOS

The mOS operating system is based on existing open-source operating systems and

it is used to host the MODAClouds Platform. Currently there are two versions mOS

v0.x (based on Slitaz) and v1.X (based on OpenSUSE) [4]. It is designed to run

on any compatible Cloud infrastructure. The pre-compiled kernels are available to

support major Cloud providers such as Amazon EC2, Google Compute Engine and

Flexiscale to name but a few.

There are several important services that run inside mOS which are paramount to

its functioning. The mOS bootstrap service is tasked with customizing the execution

platform by starting required services at boot time. These services are in charge of

various actions that create the run-time environment. Other notable services are the

so-called ZeroConf services which are special services hosted by the Cloud providers

to enable the interaction between active VMs and a special service in order to obtain

information about specific resource. The information about the resources include:

user-data specified when the instance is configured at start-up, password-less SSH

public key, username and password pairs, network information.

VM resource registration is handled by the naming service which generates unique

name randomly and registers it with the DNS. There are other services such as user-

data service, package daemon and logging service which are responsible for user

scripts, package installation and event logging. The implementation of mOS v1.X

using openSUSE 13.1 uses the default ramdisk for boot with slight modifications in

order to satisfies some requirements by the MODAClouds platform.

8.2.2 Platform Sub-systems

The run-time bootstrapper coordinates the deployment of the core packages as well

as the supporting service packages. This is achieved by delegating most of the jobs

to other subsystem. It serves as a kind of frontend for the operator and the service

72 G. Iuhasz et al.

deployment. It delegates most task to the resource allocator, node bootstrapper and

controller, service deployer and finally the application deployer.

All of the above mentioned systems are crucial to the runtime. However, the

main focus of this chapter is to detail the importance of supporting service for the

MODAClouds runtime. Keeping this in mind, only some of the components used in

the deployment of the supporting service are highlighted here. For example, the node

bootstrapper is in charge of the initial mOS customization for the MODAClouds

run-time environment. It runs as a local OS service, started at boot time or run time.

It also applies all customization needed to start the runtime environment. The node

controller is responsible with the management of the core services that runs mOS

and supports the MODAClouds platform. It will start/stop and monitor the services to

ensure that every main component of the execution platform is working as expected.

8.3 Supporting Services

The auto-discovery of services, previously mentioned in Sect. 8.2, depends to a large

extent on the correct packaging and deployment of services. In order to run a service

on the platform there are certain requirements that need to be met by the software.

First, the software has to be packaged as an RPM which contains everything the

service needs in order to run. These RPM packages can be made using the JSON based

MODAClouds mOS Packager [5] or using the standard RPMSPEC for OpenSUSE

13 for x86_64. Any non standard dependencies must be provided together with RPM

so that they can be published together in the MODAClouds repository. It is important

to note that although specially designed for MODAClouds each supporting service

is a standalone deployable tool outside the MODAClouds context.

In order to successfully deploy any service or component their runtime dependen-

cies in term of other services must be specified. For example, the DDA (Deterministic

Data Analyzer) tool depends at runtime on C-SPARQL. In addition, all TCP or UDP

sockets on which the services listen must be specified. Finally, wrapper scripts are

configuring through environmental variables the socket addresses on which services

are allowed to listen and the remote service endpoints on which the service depends

on.

The next subsections detail the most important supporting services from MODA-

Clouds. These are integral for the correct functioning of the MODAClouds solution.

8.3.1 Object Store

The classic approach in software configuration is through configuration files which

reside on the local disk, however such an approach is not very well suited for a Cloud

environment, where VM’s are started from identical templates (the VM images), and

in most cases unattended, thus the configuration files must be rewritten at startup.

8 Deployment of Cloud Supporting Services 73

Luckily, for such a scenario, there are existing solutions, such as Puppet1 or Chef.2

However they also require a central database where the actual configuration para-

meters are stored. Moreover some of the deployed services might also want to store

small state data, either for later retrieval, or for weak synchronization within a cluster.

In this case the simplest solution is to use either a kind of database, or a distributed

file system. This is the rational behind the development of the Object Store.

The Object Store provides an alternative to the more traditional locally stored

configuration files. In the Object Store an object is a keyed container which aggregates

various attributes that refer to the same subject. For example one could have an object

to hold the configuration parameters of a given service (or class of services); or

perhaps to hold the end-point (and other protocol parameters) where a given service

can be contacted.

The object’s attributes are: data, indices, links, annotations, and attachments.

A collection serves no other purpose than to group similar objects together, either

based on purpose or type, or based on scope (such as all objects belonging to the

same service). Collections can be used without being created first, and there is no

option to destroy them (except removing one-by-one all the objects that belong to it).

Therefore there are no other implications (in terms of performance or functionality)

of placing an object in a collection or another, except perhaps easing operational

procedures (such as removing all objects belonging to a service).

The most basic usage of an object would be to store some useful information,

and have it available for later access. The stored data can be anything, from JSON

or XML to a binary file, and besides the actual data it is characterized by a content-

type. Later based on this declared content-type one can decide how to interpret the

data. Although there can be a single data item for an object, one could easily use

multipart/mixed to bundle together multiple data items; however it is advisable to

avoid such a scenario and use either links or attachments.

Access to the data is atomic and concurrent updates are permitted without any

locking or conflict resolution mechanisms, the latest update overriding previous ones,

thus no isolation with lost-updates being possible. Although the data can be frequently

accessed or updated without high overhead, it is advisable to cache operations by

using the dedicated HTTP conditional requests. Because the data is stored temporarily

in memory, it is advised to keep the amount of data small, well under a 100 kilo-

bytes. Data that is larger should be handled as an attachment. In addition to its data,

an object can be augmented with indices which enables efficiently selecting objects

on other criteria than just the object key. An object can have multiple indices, each

index being characterized by a label and a value, and it is allowed to have multiple

indices with the same label.

The major difference between indices presented by this solution and other NoSQL

or even SQL databases is that most other solutions build their indices based on the

1http://docs.puppetlabs.com/.
2http://docs.chef.io/.

http://docs.puppetlabs.com/
http://docs.chef.io/

74 G. Iuhasz et al.

actual data. In the case of the object store, the indices are built based on meta-data that

is associated with the actual data (the indices attribute). By separating the indexing

from the actual data we have greater control over how the data is stored and retrieved.

We also optimize for those access patterns where the data changes frequently, but

the values used by the indexer stay the same.

Links are the feature which allows an object to reference another one, building

in essence a graph. For example one could have a service configuration object,

holding specific parameter values, and pointing to a global configuration object,

holding default parameter values. A link is characterized by a label and the referenced

object key, and it is allowed to have multiple links with the same label or the same

referenced object (therefore a many-to-many relation can be created). Unlike indices,

links are scoped under the object, are unidirectional, and are not usable in selection

criteria. Therefore one can not ascertain which objects reference a given target object

(without performing a full scan of the store). The only operation, besides creation

and destruction, that can be applied to a link is link-walking, where by starting

from an object, one can specify a label and gain access to the referenced object’s

attributes; link-walking can be applied recursively. Links can be destroyed or created

as frequently as necessary as they are not indexed.

Data that logically belongs to the object, but which is either too large to be used as

actual data or is static, can be placed within an attachment. Attachments are created

in two steps. First, the attachment is created by uploading its content, and obtaining

its fingerprint, so if the same data is uploaded twice the fingerprint remains the same

thus no extra storage space is consumed. Second, a reference to the attachment (i.e. its

fingerprint) is placed within the object with a given label, together with the content-

type and size which serves only for informative purposes. The same attachment can

be referenced from multiple objects without uploading its data, provided that the

fingerprint is known.

Similarly, accessing the attachment of an object is done in two steps: obtaining the

attachment reference, then accessing the actual attachment based on its fingerprint.

Like with links, attachments are scoped under an object, only their data being glob-

ally stored. In terms of efficiency, creating or updating attachments do not have high

overhead (except the initial data upload). This is because the various information

pertaining to a specific object such as the actual data, meta-data, links, annotations,

attachments are not lumped together. These are partitioned, just like vertically parti-

tioned SQL databases. Also, because attachments are identified based on their global

qualifier, duplicating or moving an attachments from one object to another doesn’t

require the re-upload of the entire attachment.

The annotations are meta-data which can be specified for objects or attachments,

and are characterized by a label (unique within the same object) and any JSON term

as a value. Annotations are those data which if erased do not impact the usage of the

object. In general annotations can be used to store ancillary data about the object,

especially those used by operational tools. For example, one can specify the creator,

tool and possibly the source, ACL’s or digital signatures, etc.

8 Deployment of Cloud Supporting Services 75

The object store has facilities for multi-Cloud deployment via replication. The

replication process has three phases: defining on the target (i.e. the server) a repli-

cation stream, which yields a token used to authenticate the replication; defining on

the initiator (i.e. the client) a matching replication stream; and the actual replication

which happens behind the scenes. It must be noted that the replication is one way,

namely the target (i.e. the server) continuously streams updates towards the initiator

(i.e. the client). If two-way replication is desired, the same process must be followed

on both sides.

Regarding conflicts, and because internally the object store exchanges “patches”

which only highlight the changes, any conflicting patch is currently ignored. It is

therefore highly recommended to confine updates to a certain object only to one

of the two replicas. However if multiple changes happen to the same object, and

multiple patches are sent, and say the first one yields a conflict, but the rest don’t,

only the conflicting patch will be discarded, the others being applied. It is possible

to obtain replication graphs or trees, including cycles, and the object store handles

these properly.

Service Configuration Use Cases

Let us suppose that an operator has several instances of the same service type (i.e.

application server or database) which he would like to configure during execution.

Moreover the user would like to change the configuration and have it dynamically

applied as easily as possible.

Single shared configuration is the most basic scenario. The most simple solution

is to store the configuration parameters in an object created before execution is started,

preferably JSON term or plain text as the data, or alternatively as an attachment. Then

at execution the object’s reference is specified as an initialization argument to each

of the instantiated services, which retrieve the data and use it to properly configure

the service.

If each service continuously polls the object for updates, it can detect when the

operator has changed the configuration parameters, and apply the necessary changes

(possibly by restarting). This might seem to involve fetching the data over and over

again thus incurring large network overhead, such is not necessary true if one uses

HTTP conditional requests which is rather efficient.

In the case of Multiple shared configurations the services require multiple dif-

ferent configuration parameters grouped in multiple “files”, possibly because their

syntax is different, or perhaps for better maintenance by the operator. One solution

to this problem is to create a master object and using links to point to the other

needed configuration objects. As before polling can be applied to detect configu-

ration changes, but because now it involves multiple objects, after an update has

been detected a grace period should be used, after which another check should be

done, if no other updates have been detected the configurations are applied. This

prevents frequently restarting the service while the operator updates sequentially the

configuration objects.

76 G. Iuhasz et al.

8.3.2 Artifact Repository

The artifact repository is designed as archive of artifacts generated in various parts

of the MODAClouds Project. The project aims to be able to store information like

deployment recipes, maven artifacts, software packages or, basically, any other data.

The Artifact repository provides an API for managing the artifacts and for search-

ing the stored data based on their meta-data. The API is REST [1] compliant, and

consumable from all MODAClouds components and development tools.

It has to satisfy a set of fairly simple requirements. It has to enable the upload of

binary files (BLOB). An artifact may be composed of on or more files under 1 GB.

Each artifact has to be versioned as any modification done to an existing artifact has

to be identifiable. Also, each file associated with an artifact has to be downloadable

and it has to support a number of repositories.

The artifact are stored directly on the file system. The file hierarchy is directly

mirrored from the URL structure. This means that the folder structure will include

folders for repositories, artifacts, versions and the files. Thus making interrogation

extremely intuitive. Another bonus of using a simple file system based approach is

the ability to use rsync as the synchronization mechanism between artifact repository

deployments. In some ways it can be considered as a stripped down version of the

object store. It’s main design goal was to create a simple yet powerful mechanism to

store software artifact can handle much larger files than the object store.

8.3.3 Load Balancer Controller

The goal of the load balancer controller, is to provide a RESTful API that is able

to control and configure Haproxy.3 For this we used a micro-framework written in

python called flask.4 It is designed as an extensible framework with little dependen-

cies. The main two dependencies are the web server gateway interface subsystem

represented by Werkzeug and Jinja2 which provides template support. It is impor-

tant to note that flask does not natively support some required functionalities such

as accessing databases, however there are a significant number of extensions to the

framework that resolve these shortcomings [2]. During the project we developed a

python Haproxy RESTful API (modaclouds-loadbalancer-controller or MLC) which

based on the users input generates a configuration file for the load-balancer (Haproxy)

thus controlling its behavior. It exposes both frontend and backend settings as well as

limited support for ACL specifications. At this point it is important to note that MLC

doesn’t check if the ACL triggers are correct when first entered by the operator.

It stores all interactions in a sqlite database, which also serves as the basis of the

configuration file. The jinja2 template engine is used to generate the configuration

3http://www.haproxy.org/.
4http://flask.pocoo.org/docs/0.10/.

http://www.haproxy.org/
http://flask.pocoo.org/docs/0.10/

8 Deployment of Cloud Supporting Services 77

file which is then loaded into Haproxy. Currently each configuration file is saved into

the database and can be accessed by querying the database. The API is designed to:

• add, edit and delete resources—This means that pools, gateways, endpoints and

targets can be defined. These represent direct representations of resources present

in Haproxy. Each interaction is saved and versioned.

• set policy—Load-balancing policies and their associated parameters can be set of

each target. For example in the case of round-robin we can set the weights for each

target.

• start Haproxy service—First a configuration file is generated and used to start the

load-balancing service. Each time a new configuration is generated it is reloaded

into the already running service.

The MLC is designed to hide as much technical details of Haproxy as possible.

This is done in order to make the REST API as agnostic as possible. For example

in MLC we use the term gateway to define a frontend server and pool to define the

backend servers. This enables easy extension of the MLC and the REST resource

structure can be easily mapped onto other load-balancer solutions (such as ngnix)

besides Haproxy.

8.3.4 Batch Engine

The main goal of the Batch Engine (BE) is to support the computationally-intensive

routines that are to be executed as part of the Filling the Gap Analysis. As there are

no tight deadlines, these routines are executed offline, and therefore it is possible

to exploit the large datasets of monitoring information collected at runtime. We

therefore opt for a BE that exploits a pool of parallel resources. In particular, the

BE aims to provide on demand HTC/HPC clusters on top of existing computational

Cloud resources (e.g., Eucalyptus, EC2, Flexiant, PTC, etc.).

From a technical perspective, the BE integrates the services provided by the under-

lying scheduling middleware, particularly the HTCondor workload management

system [3]. The BE provides REST API’s that allow job execution management

(including submission and monitoring).

The API offered by BE is extensible, providing the ability to support new job-

scheduling engines or middleware. As the FG analysis techniques were implemented

in Matlab, we are making use of the Parallel Toolbox and the APIs offered by the

BE to submit and manage the parallel jobs, as well as to retrieve the results. The

execution of the FG analysis relies on the Matlab Compiler Runtime (MCR), a free

runtime platform to execute standalone applications developed in Matlab.

The main features of the BE are include automatic provisioning using specially-

designed Puppet modules, the ability to use existing infrastructure (ex: Amazon EC2,

Flexiant) and an API middleware for job control. There are several important features

in the BE. First, a REST API (based on JSONRPC2) for controlling the deployment.

78 G. Iuhasz et al.

This API allows to dynamically specify the architecture of the provisioned cluster, and

to reuse predefined models. It allows customizing the cluster based on the required

resources (CPU, memory, GPUs, etc.). This API abstracts the cluster deployment

operations, including: machine deployment; software provisioning, configuration,

monitoring. The API resorts to specially-defined Puppet modules that handle the

deployment of all the software components.

It also uses a REST API for job management and monitoring. This REST API

abstracts the job management operations and interacts with the back-end HTCon-

dor service. The API provides common operations offered by HTCondor as REST-

compliant services. These operations include job submission, data staging, job state

notifications, etc.

Lastly a flexible core that allows the addition of various schedulers, each with a

different feature set, as required by applications.

From an architectural point of view the BE is composed of four main subsys-

tems: Batch Engine API: This subsystem is responsible for interacting with the

client applications or users. It handles the requests and delegates them to the other

subsystems.

Batch Engine Cluster Manager API: Based on SCT,it uses the Configuration

Management subsystem (mainly Puppet) and the Cloud interface for deploying nodes

and provisioning the job scheduler (e.g., HTCondor).

Batch Engine Execution Manager: Is responsible with the effective job exe-

cution and corresponding event handling (interaction with external components). It

dispatches job execution requests to the deployed HTCondor workload manager. The

workload manager permits the management of both serial and parallel jobs, feature

that will be exploited by applications that use MPI like technologies.

Scheduler: Represents the effective job-scheduling system, responsible for exe-

cuting the submitted jobs. It also provides the wrapping mechanism needed for

offering integration facilities like the job notification API.

Finally, the FG Analyzer calls the Batch Engine periodically and executes several

jobs on multiple nodes performing different analyses. For instance, the FG Analyzer

can execute several demand estimation procedures in parallel using the Batch Engine

to compare the accuracy of them during design time. It also executes the analysis

corresponding to different datasets in parallel, thus speeding up the analysis phase.

8.4 Conclusions

As we saw in the previous sections, there are a wide array of tools and platforms

that make up the complete MODAClouds solution. The MODAClouds platform core

components are comprised of more than 70 RPM packages. Some of these packages

are custom repackages of components such as the Java Virtual Machine, Go runtime,

python interpreter, Haproxy etc. These are packages on which MODAClouds plat-

form services depend upon. For the sake of completeness we will list the components

that comprise each MODAClouds platform:

8 Deployment of Cloud Supporting Services 79

• Creator 4Clouds—Filling the Gap (FG) Analyzier, Functional Modelling Tool,

Space 4Cloud, LINE, CloudML, DATA Mapping

• Venues 4Clouds—Decision Support System

• Tower 4Clouds—Monitoring Manager, DDA, Data Collector, QoS Models, Met-

rics Observer, Metrics Explorer, Knowledge Base, Matlab SDA, Weka SDA

• SpaceOps 4Clouds—Self-Adaptation Stress tester, Load-Balancer reasoner

• Energizer 4Clouds—Load Balancing Controller, Object Store, Artifact Reposi-

tory, Data Migration, mOS image, mOS package builder

Most components from Tower 4Clouds [7], SpaceOps 4Clouds [6] and Energizer4

Clouds [5] are packaged and deployed on top of mOS. Even more significant is the

fact that most tools use the supporting services in order to fulfill their function. For

example the Load Balancer Reasoner uses the Load Balancer controller supporting

service in order to adjust the weights of server backends in Haproxy. Without this

REST interface based controller the reasoner would not be able to function. This

controller is also used by the Models@Runtime component and can be used by any

other application that needs a load balancer. Similarly the object store and artifact

repository are used by the Tower 4Clouds components and Load Balancer reasoner,

while the Batch engine is used by the Filling the Gap tools.

This chapter has provided an overview of the deployment and architecture of the

supporting services and runtime platform. It has highlighted the importance of these

types of services which play an important role in the MODAClouds Runtime platform

(Energizer 4Cloud). We have also covered how services from Tower 4Clouds and

SpaceOps 4Clouds are packaged and later deployed on top of mOS. We have also

described the fact that each supporting service is a self contained software package

meaning that they can be easily reused and modified. The four supporting services,

Object Store, Artifact Repository, Load-Balancer Controller and Batch Engine have

been described and rationale behind their design has been covered. Lastly these

services are put into context of the MODAClouds runtime platform (with details

how each supporting service is integrated into sub-system of the runtime platform).

References

1. Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans

Internet Technol 2(2) ISSN 1533-5399

2. Grinberg M (2014) Flask web development: developing web applications with python. O’Reilly

Media Inc. ISBN 1449372627

3. Thain D, Tannenbaum T, Livny M (2005) Distributed computing in practice: the condor expe-

rience. Concurr Pract Exp 17

4. Petcu D, Macariu G, Panica S, Crăciun (2013) Portable cloud applications—from theory to

practice. Future Gener Comput Syst 29. ISSN 0167-739X

5. Iuhasz G, Panica S, Casale G, Wang W, Jamshidi P, Ardagna D, Ciavotta M, Whigham D, Ferry

N, González R (2015) MODAClouds D6.5.3—runtime environment final release. http://www.

modaclouds.eu

http://www.modaclouds.eu
http://www.modaclouds.eu

80 G. Iuhasz et al.

6. Fortiş F, Iuhasz G, Neagul M, Casale G, Perez J, Wang W (2015) MODAClouds D5.3.2—

techniques for filling the gap between design time and runtime. http://www.modaclouds.eu

7. Casale G, Weikun W, Miglierina M, Munteanu V (2014) MODAClouds D6.3.2—monitoring

platform final release. http://www.modaclouds.eu

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://www.modaclouds.eu
http://www.modaclouds.eu
http://creativecommons.org/licenses/by/4.0/

Chapter 9

Models@Runtime for Continuous Design

and Deployment

Nicolas Ferry and Arnor Solberg

9.1 Introduction

Nowadays, software systems are leveraging upon an aggregation of dedicated

infrastructures and platforms, which leads to the design of large scale, distributed,

and dynamic systems. The need to evolve and update such systems after delivery

is often inevitable, for example, due to changes in the requirements, maintenance,

or needs for advancing the quality of services such as scalability and performances.

The demands to evolve and update the systems typically increase with Cloud-based

systems, since the Cloud enable to dynamically adjust and evolve the platforms and

infrastructures, while previously these were very much rigid and more or less fixed.

This implies on the one hand more opportunities and flexibility to better evolve and

adjust the systems to various needs and requirements, on the other hand the com-

plexity of designing, delivering, managing and maintaining such systems challenges

current software engineering techniques.

As stated in [1], in order to reduce delivery time and fostering continuous evolution

of these systems, there is a need to close the gap between development and operation

activities. However, developers and operators are often working in separate teams

with specific roles, and thus, prefer to use the specific languages they feel comfortable

with. This hinders the knowledge sharing between these teams, thereby, on the one

hand making it difficult for designers to obtain and understand feedback on the

status of the operated system that could be useful to evolve it, and on the other hand

making it difficult for operators to analyse and comment on the impact of proposed

or implemented design changes. As promoted by the DevOps movement [2]. This

issue can be better handled by facilitating collaboration between developers and

N. Ferry · A. Solberg (B)

Stiftelsen SINTEF, Postboks 4760 Sluppen, 7465 Trondheim, Norway

e-mail: Arnor.Solberg@sintef.no

N. Ferry

e-mail: Nicolas.Ferry@sintef.no

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_9

81

82 N. Ferry and A. Solberg

operators for example through aligning concepts and languages used in development

and operation, and supporting them with automated tools that help reducing the gap

and improving the flexibility and efficiency of the delivery life-cycle (e.g., resource

provisioning and deployment).

In particular, continuous integration [3] tools play a key role, for example, through

the significant increase of the frequency of integration it ensures immediate feedback

to developers. Continuous integration also enable frequent releases, more control in

terms of predictability (as opposed to integration surprises in less frequent and more

heavy integration cycles) as well as productivity and communication. Continuous

deployment can be seen as a part of the continuous integration practice and is defined

as: “Continuous deployment is the practice of continuously deploying good software

builds automatically to some environment, but not necessarily to actual users” [3].

In the context of Cloud applications and multi-Cloud applications [4] (i.e., appli-

cations that can be deployed across multiple Cloud infrastructures and platforms),

designers and operators typically seek to exploit the peculiarities of the many existing

Cloud solutions and to optimise performance, availability, and cost. In such context,

there is a pressing need for tools supporting automated and continuous deployment

to reduce time-to-market but also to facilitate testing and validation of the design

choices. However, current approaches are not sufficient to properly manage the com-

plexity of the development and administration of multi-Cloud systems [5].

In this chapter we present the mechanism and tooling within the MODAClouds

approach to reduce the gap between developers and operators by supporting contin-

uous deployment of multi-Cloud applications. In order to reduce the gap between

developers and operators we apply the same concepts and language for deploy-

ment and resource provisioning at development time and at operation time (the

CloudMLpresented in Chap. 3). To automate the continous deployment and resource

provisioning we have developed a deployment and resource provisioning engine

based on the principles of the Models@Runtime approach [6]. This engine is respon-

sible for enacting the continuous deployment of multi-Cloud applications as well as

the dynamic adaptation of their deployment and resource provisioning including

operations such as scaling out and bursting of parts of an application. The engine

“speaks” the language of CloudML, thus, it provides the same concepts and abstrac-

tions for the operators as applied by the developers.

The remainder of the paper is organised as follows. Section 9.2 presents our

model-based approach. Section 9.3 provides an overview of the MODAClouds Mod-

els@Runtime engine. Sections 9.3.1 and 9.3.2 details how the engine can be used to

continuously adapt the deployment of an application in a declarative and imperative

way, respectively. Section 9.3.3 presents the mechanism to monitor the status of the

running system. Section 9.3.4 details the mechanisms enabling remote interaction

with the engine. Finally, Sect. 9.4 presents some related work and Sect. 9.5 draws

some conclusions.

http://dx.doi.org/10.1007/978-3-319-46031-4_3

9 Models@Runtime for Continuous Design and Deployment 83

9.2 The Models@Runtime Approach

Model-Driven Engineering (MDE) techniques have shown to be effective in sup-

porting design activities [7]. MDE is a branch of software engineering which aims at

improving the productivity, quality and cost-effectiveness of software development

by shifting the paradigm from code-centric to model-centric. Models and modelling

languages, as the main artefacts of the development process, enable developers to

work at a higher level of abstraction rather than at the level of implementation details.

However, as stated in [6], applying the classical MDE approach for software evolu-

tion would be impractical. Indeed, this would typically result in generating the new

solution, stopping the running system before replacing it by the new one, this in

contrast with common expectations for Cloud services to have more or less 100 %

up-time. In order to address this issue, the Models@Runtime approach has emerged.

Models@Runtime [6, 8] is an architectural pattern for dynamic adaptive systems

that leverage models as executable artefacts supporting the execution of the system.

This way, Models@Runtime promotes the DevOps method, by providing a unique

model-based representation of the applications for both design- and run-time activ-

ities (i.e., for developers and operators). As depicted in Fig. 9.1, Models@Runtime

provides an abstract representation of the underlying running system, which facil-

itates reasoning, simulation, and enactment of adaptation actions. A change in the

running system is automatically reflected in the model of the current system. Sim-

ilarly, a modification to this model is enacted on the running system on demand.

This causal connection enables the continuous evolution of the system with no strict

boundaries between design-time and run-time activities.

Developer Operator

Running

System

Test Environment

Running

System

Operation Environment

Model
(of the running system)

Causal

Link

Model
(of the running system)

Causal

Link

Metamodel

conforms

Update,

validate, test

Update,

Maintain,

Manage
Sharing models

Fig. 9.1 Continuous deployment using Models@Runtime

84 N. Ferry and A. Solberg

Exploiting Models@Runtime for the continuous deployment of Cloud-based

applications would thus result in the process depicted in Fig. 9.1. A developer team

can specify a model of the deployment of its application (typically exploiting a

domain-specific language such as CloudML) and thus automatically enact this

deployment into a test environment. The team can therefore benefit from this test

environment to tune its development and redeploy it automatically. Any change made

to the deployment model will be enacted on demand on the running system whilst its

status will be reflected in the model providing useful feedback. Once the new release

is validated, it can be provided together with the associated deployment model to the

operation team. The latter can in turn exploit the model to deploy the new release

in a production environment. The operators can thus tune this model to maintain

and manage the running system. Because the models shared by the developers and

operators conform to the same metamodel, at any time they can share and exchange

information.

9.3 The MODAClouds Models@Runtime Engine

The MODAClouds Models@Runtime environment relies on the Cloud Modelling

Language [9] (CloudML) in order to provide a deployment model causally con-

nected to the running system. As a result, the Models@Runtime maintains deploy-

ment models at two levels of abstraction: Cloud provider-independent models

(CPIM) and Cloud provider-specific models (CPSM) as advocated by MODA-

CloudML. On the one hand, any modification to the CPIM will be reflected in the

CPSM and, in turn, propagated on-demand onto the running system. On the other

hand, any change in the running system will be reflected in the CPSM, which, in

turn, can be assessed with respect to the CPIM. This way, by exploiting the MODA-

CloudML deployment model, the Models@Runtime environment seamlessly bridges

the gap between the runtime and design-time activities. Figure 9.2 shows the CPSM

of the Constellation case study (see Chap. 13) defined using the MODAClouds IDE

and managed by the Models@Runtime engine.

Figure 9.3 depicts the architecture of the MODAClouds Models@Runtime engine.

A reasoning system can read the current CPSM (step 1), which describes the actual

running system, and produces a target CPSM (step 2). Then, the runtime environment

calculates the difference between the current CPSM and the target CPSM (step 3).

Finally, the adaptation engine enacts the adaptation modifying only the parts of the

system necessary to account for the difference, and the target CPSM becomes the

current CPSM (step 4). For each modification of the running system, the synchro-

nization engine propagate notifications describing the change to third party entities.

Once the application is deployed, the Models@Runtime engine interacts with the

Cloud providers API in order to observe the status of the Cloud services used. This

mechanism is based on a pulling approach for which the frequency of the requests

to the providers API can be parameterized.

http://dx.doi.org/10.1007/978-3-319-46031-4_13

9 Models@Runtime for Continuous Design and Deployment 85

Fig. 9.2 CPSM of the Constellation case study

Fig. 9.3 The CloudML Models@Runtime architecture

Using the Models@Runtime engine, the deployment of an application can be

adapted in both imperative and declarative ways. The imperative approach requires

the explicit definition through a set of predefined instructions of how to reach the

desired deployment. In contrast, the declarative approach requires the specification

of the desired deployment and then the plan on how to reach that deployment is

derived automatically. Both approaches result in a target CPSM that is consumed

by a comparison engine, which computes the difference between the target model

and the model of the running system. The result of this process is thus exploited

to manipulate and adapt only the parts of the system necessary to account for the

difference. In the following subsections we detail first the comparison engine and

then the main adaptation commands.

86 N. Ferry and A. Solberg

9.3.1 The Comparison Engine

The inputs to the Comparison engine (also called Diff) are the current and

target deployment models. The output is a list of actions representing the required

changes to transform the current model into the target model. The types of potential

actions are listed in Table 9.1 and result in: (i) modification of the deployment and

resource provisioning topology, (ii) modifications of the components’ properties, or

(iii) modifications of their status on the basis of their life-cycle. In particular, the

status of an external component (i.e., representing a VM or a PaaS solution) can

be: running, stopped or in error, whilst the status of an internal component

(i.e., representing the software to be deployed on an enternal component) can be:

uninstalled, installed, configured, running or in error.

The comparison engine processes the entities composing the deployment models

in the following order: external components, internal components,

execution binding, to relationships, on the basis of the logical depen-

dencies between these concepts. In this way, all the components required by another

component are deployed first. For each of these concepts, the engine compare the two

sets of instances from the current and target models. This comparison is achieved

Table 9.1 Types of output actions generated by the Comparison engine

Action Parameter Effect

addExternalComponent ExternalComponent Provision a new virtual

machine or prepare a PaaS

service

removeExternalComponent ExternalComponent Terminate a virtual machine or

stop a PaaS service

addInternalComponent InternalComponent Deploy the internal component

on the target virtual machine

removeInternalComponent InternalComponent Remove the internal

component instance from its

current host

addCommunication Communication Configure the endpoints of the

communication

removeCommunication Communication Disconnect the endpoints of

the communication

addHosting Hosting Configure the endpoints of the

hosting

removeHosting Hosting Disconnect the endpoints of

the hosting

setStatus Status Change the status of a

component

setProperty Property Change a property of a

component

9 Models@Runtime for Continuous Design and Deployment 87

Fig. 9.4 An example of target CPSM of the Constellation case study

on the matching of both the properties of the instances and their types as well as

on the basis of their dependencies (e.g., if the host of a component has changed

the component might be redeployed). For each unmatched instance from the cur-

rent model a remove action with the instance as argument is created. Similarly, for

each unmatched instance from the target model an add action with the instance as

argument is generated.

As an example, the comparison between the models depicted in Figs. 9.2 and 9.4

results in the following modifications in the deployment of the Constellation server:

a new VM is provisioned on Flexiscale, Agent 1 is migrated from the on-demand

medium instance to the new VM, and finally a new Agent is also installed on the

same VM.

We always give a higher priority to the target model, which for example means that

any virtual machine instance in the target model that does exist in the current model

will be regarded as one that need to be created. Conversely, any virtual machine in

the current model that does not exist in the target model will be removed. Coping

with changes that happens during reasoning could be handled in various ways, for

instance as part of a third step of the adaptation process (model checking). Currently,

the Models@Runtime engine does not handle changes that might occur during the

time of reasoning.

9.3.2 Adaptation Commands

As stated before, the deployment of an application can be dynamically adapted by

exploiting the set of commands exposed by the engine. In particular, within the

MODAClouds runtime environment, the Models@Runtime engine is responsible

for enacting adaptation actions such as the scaling and bursting of an application.

88 N. Ferry and A. Solberg

These actions can be achieved by directly providing a deployment model to the

Models@Runtime engine. For instance, the simplest way to perform a bursting at

the IaaS level consists in updating the model of the running system by either updating

the provider associated to the type of the VM instance or by simply changing the

type of a VM instance with one associated to the desired provider. This approach

allows fine grained tuning of the deployment of an application to the needs of new

contexts or requirements, however, it can be a complex task for a third party to be

responsible for evolving to the new deployment model.

Therefore, the Models@Runtime engine also provides high level commands that

avoid direct manipulation of the models. In particular, the scale command enable

scaling out a VM in the same Cloud and the burst command enable scaling out

a VM in another Cloud. Currently, in both these cases the first task of the engine

consists in modifying the current deployment model as follow:

1. Create a new instance of VM with unique name and port names of the same type

as the VM to be scaled. In case of bursting, the provider associated to the new

instance is the one specified in the bursting command.

2. For each internal component instance running on the VM to be scaled, create an

instance of the same type and add an execution binding between each of them

and the newly created VM. All new instances are created with unique names and

port names.

3. Identify all the relationship instances involving the internal component running

on the VM to be scaled and for each of them, create an instance of the same type

with unique names. The endpoints of these new relationship instances are: the

newly created internal component instance and the same component as the one

involved in the original relationship.

Once the deployment model is updated, the engine acts differently depending of

the type of command. In case of bursting to a new provider, the engine simply exploit

the Models@Runtime comparison mechanism and trigger a classical deployment,

whilst in the case of scaling within the same Cloud it operates as follows:

1. If not existing, create an image of the VM to be scaled.

2. Provision a VM using this image.

3. Reconfigure all components on the basis of the newly created relationship.

4. Restart the new components.

In case a set of VM instances cannot be further scaled (e.g., in case there are no

more resources available on a private Cloud), the Models@Runtime engine acts as

follows: The target model generated by the scale out command is considered as the

current model of the system and the status of the newly created VM is set to error

whilst the status of its hosted internal components is set to unrecognized.

In order to reduce the time needed to scale a VM, another provided feature is

to provision VMs in advance with all the required software component deployed

on it, and thus making them ready to be started or stopped on demand. In order to

support such an approach, the Models@Runtime engine offers commands to start

and stop components. These commands can be applied to both external and internal

9 Models@Runtime for Continuous Design and Deployment 89

components. In the case of external components, this is achieved by exploiting the

various Cloud provider APIs, whilst in the case of internal components it consists in

calling the start and stop commands of the resources associated to the component.

In both cases, the components have to be provisioned and installed upfront.

9.3.3 State Tracking

The Models@Runtime engine allows tracking the status of a deployment or adap-

tation as well as the status of Cloud resources once a multi-Cloud application is

deployed. In order to track the state of Cloud resources, a simple monitoring agent is

started in a parallel thread. Modules (one for each provider) can then be attached to

the agent which are then responsible for interacting with the providers API in order

to monitor the status of the Cloud resources being used. The frequency at which

these status checks are performed can be configured manually or programmatically.

Once performed and in case the status of a Cloud resource has changed, the agent

exploits the Models@Runtime synchronization mechanism in order to reflect this

change into the CPSM of the running system. As a result, all the registered clients

of the Models@Runtime engine are notified of the update. Similarly, the status of

the internal component is changed during the deployment process depending on the

result of each deployment command.

The Models@Runtime engine is also synchronized with the MODAClouds mon-

itoring platform (see Chap. 5) so that it can subscribe to receive some of the metrics

collected by the monitoring platform.

In addition, this synchronization enable the co-evolution of the monitoring plat-

form with the Cloud-application (e.g., when a service bursts from one provider to

another, the monitoring activity has to be adapted accordingly). By synchronizing the

Models@Runtime engine and the monitoring platform, the latter can dynamically

and automatically be adapted to best fit with the actual deployment of the application.

In case the deployment of an application is adapted, the Models@Runtime engine,

can communicate the changes to the monitoring platform and update the deployment

of the data collectors. The monitoring platform can in turn adapt its own configuration

accordingly, exploiting the Monitoring Manager which is the main coordinator of

the monitoring activity. It manages and configures all the monitoring components

including the model used by the Data Collectors (DCs) so that the retrieving of data

can be adapted accordingly.

The deployment or un-deployment of Data Collectors can be done for example, to

free resources, to replace a Data Collector with a new one that may offer slightly some

different features, or when a monitored component is migrated. In addition, when the

deployment of the running system is modified (e.g., bursting or migration from one

provider to another), the monitoring activity will restart on the new machine using

the same settings and rules used on the old one. Since the Models@Runtime engine

can manage multi-Cloud applications and because the DCs are provider-agnostic,

the migration can be performed from one provider to another.

http://dx.doi.org/10.1007/978-3-319-46031-4_5

90 N. Ferry and A. Solberg

Fig. 9.5 Adaptation of the monitoring platform during the bursting process

Figure 9.5 details the interactions between the reasoning engine, the monitoring

platform and the Models@Runtime engine during the migration of an application.

First, the Models@Runtime engine instantiates a new machine and deploys the

application on it. Then it deploys the Data Collectors on the VM and finally removes

the old instantiation of the application. At this stage, the Models@Runtime engine

notifies to the Monitoring Manager the changes in the deployment (e.g., status of

the new machine, address of the Data Collector), and the Monitoring Manager uses

these information to autonomously update the KB from which the Data Collector

retrieve its own configuration.

The communication from the model@runtime engine to the monitoring platform

is performed through the REST APIs offered by the Monitoring Manager which is

the main coordinator of the monitoring activity.

9.3.4 Interaction with the Models@Runtime Engine

The Models@Runtime environment also provides synchronisation mechanisms for

remote third-party entities (e.g., such as the MODAClouds reasoning engines) to

adapt the system. This synchronisation is implemented by the propagation of changes

in both directions, namely notification and command. A notification allows

the Models@Runtime engine to propagate its change to third-parties, whilst a com-

mand enables modifications on the current CPSM. This mechanism is exploited by

various MODAClouds runtime components such as the MODAClouds reasoning

engine to be informed of the changes occurring in the deployment of the running

system and then adapt it accordingly. Because the two models used by two players

can be isolated from each other and might not be aware of the whole model state, only

the sequence of modifications is propagated, without carrying the start state of each

change. Therefore, either notification or command is a sequence of modifications.

9 Models@Runtime for Continuous Design and Deployment 91

Fig. 9.6 Models@Runtime notification mechanism

Figure 9.6 presents a typical usage of the notification mechanism. First a client

use an asynchronous command to register for being notified when a change occur

on a specific VM. Then she exploits another asynchronous command to initiate a

deployment. As a result, the Models@Runtime engine (i) changes the status of the

object in the model that represents this VM to pending and sends a message that

depicts this change to the client, and (ii) initiates the actual provisioning of the VM.

Once terminated, the status of the VM is changed torunning and the corresponding

notification is sent. In addition, the Models@Runtime engine retrieves from the

provider and populate the model with a set of runtime information such as the IP of

the VM. For each of these changes in the model a notification is sent.

Currently, the communication with third-parties is achieved using the WebSocket

protocol1 in order to enable light-weight communications. Events are encoded as

plain text and we provide a domain-specific language to define them, including

the text format, the query and criteria to locate the relevant model element, the

modification or change on the element, and the combination of other events. We

defined the standard MOF (Meta-Object Facility) reflection modifications as the

primitive events, and allow developers to further define higher level events as the

composition of primitive ones. Using this language, one can also define the model

changes on an abstract model as the composition of events on a concrete model, and

1http://www.websocket.org/.

http://www.websocket.org/

92 N. Ferry and A. Solberg

in this way, it can be used as an event-based transformation. After each adaptation, the

engine wraps the modification events into one message and send it to the WebSocket

port.

In order to handle concurrency (i.e., adaptation actions coming from several third-

parties), the Models@Runtime uses a simple transaction-based mechanism. The

WebSocket component creates a single transaction which contains all the modifica-

tions from a third-party, and passes it to a concurrency handler. The handler queues

the transactions, and executes them one after another without overlapping. Since

all the modifications are simply assignments or object instantiation commands on

the model in the form of Java objects, the time to finish a transaction of events is

significantly shorter than the adaptation process.

9.4 Related Work

In the Cloud community, several solutions support the deployment, management and

adaptation of Cloud-based application. However, to the best of our knowledge, none

of them provides the same concepts and abstractions at runtime for the operators as

applied by the developers.

Advanced frameworks such as Cloudify,2 Puppet3 or Chef4 provide capabilities

for the automatic provisioning, deployment, monitoring, and adaptation of Cloud sys-

tems without being language-dependent. Such solutions provide DSL to capture and

enact Cloud-based system management. The Topology and Orchestration Specifica-

tion for Cloud Applications (TOSCA) [10] standard is a specification developed by

the OASIS. TOSCA provides a language for specifying the components comprising

the topology of Cloud applications along with the processes for their orchestration.

In addition, several approaches focus on the management of application based

on PaaS solutions. Sellami et al. [11] propose an model-driven approach for PaaS-

independent provisioning and management of Cloud applications. This approach

includes a way to model the PaaS application to be deployed as well as a REST API

to provision and manage the described application. The Cloud4SOA EU project [12]

provides a framework for facilitating the matchmaking, management, monitoring

and migration of application on PaaS platforms.

By constrast with the Models@Runtime engine, in all these approaches, the result-

ing models are not causally connected to the running system, and may become irrel-

evant as maintenance operations are carried out. The approaches proposed in the

CloudScale [13] and Reservoir [14] projects suffer similar limitations.

2http://www.cloudifysource.org/.
3https://puppetlabs.com/.
4http://www.opscode.com/chef/.

http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/

9 Models@Runtime for Continuous Design and Deployment 93

On the other hand, the work of Shao et al. [15] was a first attempt to build a mod-

els@runtime platform for the cloud, but remains restricted to monitoring, without

providing support for configuration enactment. To the best of our knowledge, the

CloudMLModels@Runtime engine is thus the first attempt to reconcile cloud man-

agement solutions with modelling practices through the use of models@run-time.

9.5 Conclusion

In this chapter we presented how the MODAClouds Models@Runtime approach

leverage upon MDE techniques and methods at runtime to support the continuous

design and deployment of multi-Cloud applications. This includes support for their

dynamic provisioning, deployment and adaptation by third party entities. Thanks to

the proposed approach it is possible to exploit the same concepts and language for

deployment and resource provisioning at both development and operation time. This

facilitates interaction between developer and operation teams and helps reducing the

gap between the two related activities as advocated by the DevOps movement.

References

1. Httermann M (2012) DevOps for developers. Apress

2. Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test,

and deployment automation. Addison-Wesley Professional

3. Fitzgerald B, Stol KJ (2014) Continuous software engineering and beyond: trends and chal-

lenges. In: Proceedings of the 1st international workshop on rapid continuous software engi-

neering. ACM, pp 1–9

4. Petcu D (2014) Consuming resources and services from multiple clouds. J Grid Comput 1–25

5. Ardagna D, Di Nitto E, Casale G, Petcu D, Mohagheghi P, Mosser S, Matthews P, Gericke A,

Balligny C, D’Andria F, Nechifor CS, Sheridan C (2012) MODACLOUDS, a model-driven

approach for the design and execution of applications on multiple clouds. In: ICSE MiSE:

international workshop on modelling in software engineering. IEEE/ACM, pp 50–56

6. Blair G, Bencomo N, France R (2009) Models@run.time. IEEE Comput 42(10):22–27

7. Ruscio DD, Paige RF, Pierantonio A (eds) Special issue on success stories in model driven

engineering 89(Part B) Elsevier (2014)

8. Morin B, Barais O, Jézéquel JM, Fleurey F, Solberg A (2009) Models@Run.time to support

dynamic adaptation. IEEE Comput 42(10):44–51

9. Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: applying MDE to

tame the complexity of managing multi-cloud applications. In: Proceedings of UCC 2014:

7th IEEE/ACM international conference on utility and cloud computing

10. Palma D, Spatzier T (2013) Topology and orchestration specification for cloud applications

(TOSCA). Technical report, Organization for the Advancement of Structured Information Stan-

dards (OASIS)

11. Sellami M, Yangui S, Mohamed M, Tata S (2013) PaaS-independent provisioning and manage-

ment of applications in the cloud. In O’Conner L (ed) CLOUD 2013: 6th IEEE international

conference on cloud computing. IEEE Computer Society, pp 693–700

12. Cloud4SOA EU project. http://www.cloud4soa.com

http://www.cloud4soa.com

94 N. Ferry and A. Solberg

13. Brataas G, Stav E, Lehrig S, Becker S, Kopčak G, Huljenic D (2013) CloudScale: scalability

management for cloud systems. In: ICPE 2013: 4th ACM/SPEC international conference on

performance engineering. ACM, pp 335–338

14. Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero R, Wolfsthal Y,

Elmroth E, Cáceres J, Ben-Yehuda M, Emmerich W, Galán F (2009) The reservoir model and

architecture for open federated cloud computing. IBM J Res Dev 53(4):535–545

15. Shao J, Wei H, Wang Q, Mei H (2010) A runtime model based monitoring approach for cloud.

In: CLOUD 2010: 3rd IEEE international conference on cloud computing. IEEE Computer

Society, pp 313–320

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 10

Closing the Loop Between Ops and Dev

Weikun Wang, Giuliano Casale and Gabriel Iuhasz

10.1 Introduction

DevOps [1] is a recent trend in software engineering that bridges the gap between

software development and operations, putting the developer in greater control of the

operational environment in which the application runs. To support Quality-of-Service

(QoS) analysis, the developer may rely on software performance models. However,

to provide reliable estimates, the input parameters must be continuously updated and

accurately estimated. Accurate estimation is challenging because some parameters

are not explicitly tracked by log files requiring deep monitoring instrumentation that

poses large overheads, unacceptable in production environments.

The MODAClouds Filling-the-Gap (FG) tool is a component for parametrization

of performance models designed in MODAClouds continuously at run time. The

FG tool implements a set of statistical estimation algorithms to parameterize per-

formance models from runtime monitoring data. Multiple algorithms are included,

allowing for alternative ways to obtain estimates for different metrics, but with an

emphasis on resource demand estimation. A distinguishing feature of FG tool is that

it supports advanced algorithms to estimate parameters based on response times and

queue-length data, which makes the tool useful in particular for applications running

W. Wang · G. Casale (B)

Department of Computing, Imperial College London, 180 Queens Gate,

London SW7 2AZ, UK

e-mail: g.casale@imperial.ac.uk

W. Wang

e-mail: weikun.wang11@imperial.ac.uk

G. Iuhasz

Institute E-Austria Timişoara, West University of Timişoara, B-dul Vasile Pârvan 4,

300223 Timişoara, Romania

e-mail: iuhasz.gabriel@info.uvt.ro

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_10

95

96 W. Wang et al.

in virtualized environments where utilization readings are not always available. In

addition, the FG tool offers support for parallel computations, integrates monitoring

data acquisition, and generates performance reports.

10.2 FG Architecture

The FG tool is consisted of four sub-components: the Local DB, the FG Analyzer,

the FG Reporter and the FG Actuator. Figure 10.1 descries the relation between each

component.

We show here a brief introduction of each component:

• The Local DB is a local database, which is built upon the Fuseki1 database. The

Local DB is in charge of periodically obtaining runtime monitoring data that will

be used by the FG Analyzer from the Monitoring History DB. Due to the nature

of Fuseki database, the monitoring data will be stored in RDF format in the local

DB.

• The FG Analyzer is the main component of the FG and will be described in

Sect. 10.2.1. After receiving runtime data stored in the Local DB, the FG Analyzer

provides accurate estimates to parametrise the design-time Quality-of-Service

(QoS) models developed in MODAClouds. These parameters include the resource

demand, the think time and the total number of jobs running in the system.

• The FG Reporter, illustrated in Sect. 10.2.3, periodically generates reports on the

application behavior at run time. The reports shows the performance of the applica-

tion by presenting performance metrics such as the response time and the through-

put of the jobs.

• The FG Actuator (see Sect. 10.2.2) is responsible for updating the IDE models and

the QoS models based on the result from the FG Analyzer.

10.2.1 FG Analyzer

One of the ultimate objectives of the Filling the Gap (FG) component is to provide

accurate estimates to the parameters in the design-time QoS models. These QoS

models are key in the what-if analysis performed at design time, and in the decision

of the optimal resource provisioning for the Cloud application. These models are ini-

tially parameterised using expert-knowledge or data collected in small deployments.

Once the application has been deployed on the Cloud, possibly in a production envi-

ronment, the FG analysis is deployed to obtain estimates based on monitoring data

collected at run time.

1http://jena.apache.org/documentation/serving_data/.

http://jena.apache.org/documentation/serving_data/

10 Closing the Loop Between Ops and Dev 97

Fig. 10.1 FG architecture

FG Analyzer

Monitoring

History DB
ObjectStore

FG Report FG Actuator

Batch EngineLocal DB

The QoS models developed in MODAClouds are based on layered queueing net-

work models, which capture the contention between users for the available hardware

and software resources, and the interaction between them. In particular, we make use

of closed models that are well-suited for software systems, as real applications are

layered, and the interactions between layers are typically due to admission control

or finite threading limits [2]. To parameterise these models, it is essential to estimate

the inter-request times, modeled as think times, as well as the resource consumption

exerted by each request. Inter-request times can be extracted from the information

and the data that is typically tracked by application- or container-level logs. As to the

gathering of the run time configuration, the FG Analyzer obtains the configuration

file from the Object Store which is kept by the QoS engineer.

Resource consumptions, also referred to as demands, are however harder to obtain

as this is not tracked by logs, and the deep monitoring instrumentations typically

required pose unacceptably large overheads, especially at high resolutions. Since

requests typically complete in a few milliseconds, individual monitoring becomes

cost-expensive to perform in a production system. To address this problem, our

approach is to take coarse-grained measurements and apply statistical inference

to estimate mean resource demands. Most of existing mean demand estimation

approaches rely on the regression against utilization data [3–13], however, utilization

measurements are not always available, for instance in Platform-as-a-Service (PaaS)

deployments where the resource layer is hidden to the application and thus protected

from external monitoring.

In the FG Analyzers, two demand estimation algorithms, GQL (Gibbs sampling

method with Queue Length data) and MINPS, have been proposed as an original

contribution within the MODAClouds research [14]. The fact that utilization mea-

surements are not required makes these methods suitable for applications deployed

on both IaaS and PaaS. In addition to these two methods, the FG Analysis compo-

nent implements existing demand estimation methods. In particular, the component

supports the methods implemented for the Statistical Data Analyzers (SDA) in the

Monitoring Platform.

98 W. Wang et al.

Since the methods supported by the FG Analysis are computationally efficient,

large sample set can be utilized for the analysis. The FG component thus supports

the following three demand estimation methods: the utilization-based optimization

(UBO) method from [15], the utilization-based regression (UBR) method from [12],

and the Extended RPS method from [16]. A short description of these methods is

provided in Sect. 10.4.

Finally, the FG Analyzer calls the Batch Engine periodically and executes several

jobs on multiple nodes performing different analyses. For instance, the FG Analyzer

can execute several demand estimation procedures in parallel using the Batch Engine

to compare the accuracy of them during design time. It also executes the analysis

corresponding to different datasets in parallel, thus speeding up the analysis phase.

10.2.2 FG Actuator

In order to improve the accuracy of the design-time QoS models developed in WP5,

the FG tool estimates the parameters of the models with the monitoring information

collected at runtime. Then the task of updating the actual model is fulfilled by FG

Actuator, which updates the resource demand, think time, number of users circulating

in the system in both the QoS models and PCM models given the input from the FG

Analyzer.

Since the QoS models and PCM models may have inconsistent names for the

deployed resources, the FG actuator requires a properties file indicating the mapping

of the resource names between the two models. In addition, the name of the job classes

could be different from the data analyzers and the models. A job class mapping file

should also be provided.

Given the path to the model files, the FG Actuator first updates the resource

demands in the QoS models by matching the resource and job class names. Then it

obtains an id for the particular resource and class of job. This id is identical to the

one defined in the PCM model. Therefore the FG Actuator uses this id to update the

resource demand in the PCM model. Updating the think time and number of jobs in

the system is straightforward by just changing the corresponding fields in the XML

file.

10.2.3 FG Reporter

In order to provide the developer with runtime information of the application behav-

ior at runtime, the FG periodically generates a report. The report is a PDF document

containing tables and figures of performance metrics such as response time, resource

demands and throughput, which helps the developer to identify periods of high and

low load, as well as to understand the application behavior under the different sce-

narios.

10 Closing the Loop Between Ops and Dev 99

The automatically report generation relies on the DynamicReports,2 which is an

open-source library based on JasperReports3 for generating reports based on complex

datasets. The DynamicReports supports a wide range of data formats, including

relational databases, XML, XLS, and CVS files, among others. In particular, we

utilized its ability to integrate JSON (JavaScript Object Notation) format, as this

format is expressive and easily understandable.

The FG Reporter periodically receives JSON files generated from the FG Ana-

lyzer, which contains necessary information regarding the application such as the

think time, response time, resource demands, etc. Based on these information, the

FG Reporter generates a different report for each physical resource.

10.3 Workflow

In the previous sections we have described the essential components of the FG tool,

here we present the workflow for the FG tool. The operation of the FG can be

categorized into three main stages, which are:

1. Configuration: this is a design-time procedure for the QoS engineer to preconfig-

ure the FG Analyzer through the MODAClouds IDE.

2. Analysis: this is a runtime step performed by the FG Analyzer with the Local DB.

3. Reporting/Updating: this is a step where the FG Reporter provides the developer

with a report regarding the behavior of the application at runtime. The FG Actuator

will also update the parameters of the QoS models given the output from FG

Analyzer. This steps is performed after the application has already been running

as it requires the results from the FG Analyzer.

The FG workflow is demonstrated in Fig. 10.2, which contains all the above three

main stages. As mentioned in the previous section, the developer configures with

the FG Analzyer through the MODAClouds IDE according to a configuration file,

which is saved in the Object Store. The configuration file includes parameters such

as the frequency to execute the FG Analyzer or the time period of the monitoring

data to use. This configuration file is retrieved at deployment by the FG Analyzer.

Then the Local DB periodically queries the Monitoring History DB to obtain the

necessary information for the FG Analyzer. This data is passed to the FG Analzyer

for the parameter estimation. With the estimation result, the FG Reporter will produce

reports to the developer while the FG Actuator updates the QoS PCM models.

2http://www.dynamicreports.org/.
3https://community.jaspersoft.com/project/jasperreports-library.

http://www.dynamicreports.org/
https://community.jaspersoft.com/project/jasperreports-library

100 W. Wang et al.

F
ig

.
1
0
.2

F
il

li
n

g
th

e
g
ap

w
o
rk

fl
o
w

10 Closing the Loop Between Ops and Dev 101

10.4 Estimation Techniques for FG Analysis

10.4.1 A Bayesian Approach Based on Queue-Lengths

Closed queueing networks have been used for analyzing web applications [12,

17]. They are popular for example in software system modelling since complex

applications are layered and the interactions between layers typically happen under

admission control or finite threading limits.

The proposed GQL estimation method sets out to estimate the service demand

placed by requests on the resources excluding contention due to other concurrently

running requests. The service demand is normally difficult to obtain directly and

requires inference. To provide these estimates, out method uses observations of the

number of requests in each of the queueing stations, which makes it more applicable

than utilization-based and response-based methods as the latter information may not

be available in certain environments, such as PaaS deployments, or require deep

instrumentation of the system.

Our method uses a Bayesian approach to estimate the mean demands, of which

there has already been some attention in the recent literature [8, 18]. Still, with the

exception of [18], classic Bayesian methods such as Markov-Chain Monte Carlo

(MCMC) have not been applied before to the problem of queueing model parameter

estimation. Even though the method in [18] is promising, it currently only applies

to open queueing networks and single class systems. Our method, instead, is based

on MCMC estimation with Gibbs sampling, and has the advantage of applying to

closed multi-class models.

Figure 10.3 presents the experiment result for the GQL method with different

number of classes of requests and queueing stations. The estimation error is computed

as the mean relative difference between the estimated and the exact (known) value

of the resource demand. From the figure, it can be noticed that the estimation error is

under 10 %, showing the good accuracy of the GQL method. The execution time of

Fig. 10.3 Mean estimation error for GQL

102 W. Wang et al.

the GQL method depends on the input parameters of the developed algorithm. The

running time for the presented case is 15 min, which shows that the algorithm is able

to handle systems with a larger number of processing stations and request classes.

A detailed description of this method can be found in [19].

10.4.2 A Maximum-Likelihood Approach Based on

Queue-Lengths and Response Times

Another proposed method, MINPS, is similar to the GQL presented in the previous

section as MINPS also attempts to estimate the mean service demands placed by

requests on the physical resources.

The performance model for MINPS is based on a multi-class queueing network

with a single service station. It also considers the limit in the number of concurrent

request in a station, which enables the analyzing of multi-threaded applications with

limits on the number of threads in execution. A typical example is for applications

running on a multi-threaded server, such as an application server or a servlet con-

tainer with a preconfigured set of worker threads. Arriving requests to the application

will stay in an admission buffer until a worker thread is available. We assume the

admission control policy is first-come first-served and no workers are idle if there is a

request staying in the admission buffer. Therefore the described performance model

is indeed a closed queueing network similar as described in the previous section.

Further, a request is able to change its class randomly after leaving the queueing sta-

tion before entering the think time. This class-switching behavior represents systems

where users may change the type of requests they generate.

The proposed MINPS estimation method is built on top of two new estimation

approaches, RPS and MLPS. RPS is a regression based algorithm, which provides

accurate estimation of mean service demand for multi-threaded application running

on a single processor. For the multi-processor case, the proposed MLPS is able to

solve this problem relying on a maximum likelihood demand estimation algorithm.

MINPS integrates RPS and MLPS to produce accurate estimates at all loads of the

multi-threaded applications.

MINPS differs from existing approaches in that, to the best of our knowledge, it

is the first one to apply probabilistic descriptions in estimation problems for multi-

threaded applications. For example, maximum likelihood estimations have been

attempted only for simpler first-come first-served queues [8].

MINPS requires both queue lengths and response times as input metrics. These

metrics can be obtained in several ways, e.g., the MODAClouds application-level

data collectors, application server logs, internal application logs, etc.

Figure 10.4 demonstrates the mean estimation error of the MINPS method, com-

pared with a baseline method CI with same sample size. As in the previous section,

the estimation error is computed as the mean relative difference between the esti-

mated and the exact (known) value of the resource demand. The CI method is an

estimation method that requires the complete sample path of the requests, i.e. given

10 Closing the Loop Between Ops and Dev 103

Fig. 10.4 Mean estimation error for MINPS

a time window it knows all the points in time when a request is admitted and when

it completes service. This information is difficult to collect, but it is useful to set

a baseline for comparison, as both methods are assumed to make use of the same

number of samples.

From Fig. 10.4, it can be noticed that the error of the MINPS and CI is similar,

which reveals the accurate performance of MINPS. Although MINPS generates a

larger estimation error, it is still under 15 %.

The execution time of MINPS depends on the model and obtained samples size

and varies from 1 to 40 min for small models to large models. In light of this, the

technique can be run periodically as part of the FG analysis.

A detailed description of these methods and additional validation results are pro-

vided in [16].

10.5 Conclusion

In this chapter we presented the MODAClouds Filling-the-Gap tool, which is a

DevOps approach aiming to fulfill the gap development and operations. The FG

tool supports a set of advanced algorithms for estimating the parameters of perfor-

mance models at application runtime. Algorithms differ in the way that they take

into consideration of different input monitoring metrics, which makes the tool useful

particularly for application deployed in Cloud. It also features generating reports

regarding the behavior of the application to give developers timely feedback of the

system.

References

1. Roche J (2013) Adopting DevOps practices in quality assurance. Commun ACM 56:38–43

104 W. Wang et al.

2. Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700

3. Kalbasi A, Krishnamurthy D, Rolia J, Dawson S (2012) Dec: service demand estimation with

confidence. IEEE Trans Softw Eng 38:561–578

4. Kalbasi A, Krishnamurthy D, Rolia J, Richter M (2011) MODE: mix driven on-line resource

demand estimation. In: Proceedings of IEEE CNSM

5. Wang W, Huang X, Qin X, Zhang W, Wei J, Zhong H (2012) Application-level CPU con-

sumption estimation: towards performance isolation of multi-tenancy web applications. In:

Proceedings of the 5th IEEE CLOUD

6. Cremonesi P, Dhyani K, Sansottera A (2010) Service time estimation with a refinement

enhanced hybrid clustering algorithm. In: Analytical and stochastic modeling techniques and

applications, ser. Lecture notes in computer science. Springer, Berlin

7. Cremonesi P, Sansottera A (2012) Indirect estimation of service demands in the presence of

structural changes. In: QEST

8. Kraft S, Pacheco-Sanchez S, Casale G, Dawson S (2009) Estimating service resource con-

sumption from response time measurements. In: Proceedings of the 4th VALUETOOLS

9. Kumar D, Zhang L, Tantawi A (2009) Enhanced inferencing: estimation of a workload depen-

dent performance model. In: Proceeding of the 4th VALUETOOLS

10. Menascé D (2008) Computing missing service demand parameters for performance models.

In: CMG 2008, pp 241–248

11. Pacifici G, Segmuller W, Spreitzer M, Tantawi A (2008) CPU demand for web serving: mea-

surement analysis and dynamic estimation. Perform Eval 65:531–553

12. Zhang Q, Cherkasova L, Smirni E (2007) A regression-based analytic model for dynamic

resource provisioning of multi-tier applications. In: Proceedings of the 4th ICAC. Washington,

DC, USA. IEEE Computer Society, p 27ff

13. Zheng T, Woodside C, Litoiu M (2008) Performance model estimation and tracking using

optimal filters. IEEE Trans Softw Eng 34:391–406

14. Ardagna D, Nitto ED, Casale G, Petcu D, Mohagheghi P, Mosser S, Matthews P, Gericke

A, Ballagny C, D’Andria F (2012) Modaclouds: a model-driven approach for the design and

execution of applications on multiple clouds. In: Proceedings of the 4th international workshop

on modeling in software engineering

15. Liu Z, Wynter L, Xia CH, Zhang F (2006) Parameter inference of queueing models for IT

systems using end-to-end measurements. Perform Eval 63(1):36–60

16. Pérez JF, Pacheco-Sanchez S, Casale G (2013) An offline demand estimation method for multi-

threaded applications. In: MASCOTS, pp 21–30

17. Urgaonkar B, Pacifici G, Shenoy PJ, Spreitzer M, Tantawi AN (2005) An analytical model for

multi-tier internet services and its applications. In: Proceedings of ACM SIGMETRICS. ACM

Press, pp 291–302

18. Sutton C, Jordan MI (2011) Bayesian inference for queueing networks and modeling of internet

services. Ann Appl Stat 5(1):254–282

19. Wang W, Casale G (2013) Bayesian service demand estimation using gibbs sampling. In:

MASCOTS, pp 567–576

10 Closing the Loop Between Ops and Dev 105

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 11

Cloud Patterns

Teodor-Florin Fortiş and Nicolas Ferry

11.1 Introduction

A large number of design and architecture patterns have been identified during the

last years, as the Cloud technologies were finding their path to maturity. In [1] Fehling

et al., the authors expose a basic pattern-oriented view on Cloud computing, together

with relevant patterns, view which is also applicable in the case of multi-Cloud

applications.

Another set of more than forty patterns are included in the AWS Cloud Design

patterns (CDP) [2], offering “a collection of solutions and design ideas for using

AWS Cloud technology to solve common systems design problems”.

In addition to the core set of Cloud design patterns, Erl et al. [3] propose a set of

compound patterns, which, for most of them, are related to the essential characteris-

tics of Cloud computing, such as Cloud bursting, elastic environment, multi-tenancy,

Cloud deployment models, and others.

The IBM RedPaper [4] offers some insights on Pure Application Systems patterns

and virtual application patterns (VAPs) which are “a new Cloud deployment model

that represents an evolution of the traditional topology patterns that are supported

in virtual system patterns”. Finally, the Microsoft point of view on development of

Cloud-hosted applications is covered by Homer et al. [5].

Complementary to the numerous design and architecture patterns that have already

been described in the literature, a set of design heuristics or success factors was fully

T.-F. Fortiş (B)

Institute e-Austria Timişoara and West University of Timişoara,

B-dul Vasile Pârvan 4, 300223 Timişoara, Romania

e-mail: fortis@info.uvt.ro

N. Ferry

Stiftelsen SINTEF, Postboks 4760, Sluppen, 7465 Trondheim, Norway

e-mail: nicolas.ferry@sintef.no

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_11

107

108 T.-F. Fortiş and N. Ferry

described in the context of the MODAClouds approach. This set will help mitigate

various pitfalls when designing multi-Cloud applications.

11.2 Motivational Guidance

Important design heuristics and guidances have been identified as highly relevant for

multi-Cloud applications, and especially in the context of MODAClouds.

Compute Partitioning

Compute partitioning is a design heuristic that helps building systems that can easily

be maintained and deployed on Cloud platforms and infrastructures and advocates

the utilization of patterns such as loose coupling, compute partitioning, distributed

applications or integration provider. It allows application developers to efficiently

exploit resources that can be provisioned with minimal effort. Particularly, as Cloud

applications usually rely on multiple distributed resources, modularity and loose

coupling become central for efficient exploitation of Cloud properties.

Thus, the separation of concern principle is essential in order to achieve the dis-

tribution of resources, as multi-Cloud application usually rely on resources possibly

offered by multiple providers with their own specificities. This principle advocates

decomposing and encapsulating the features of an application into modular and

reusable blocks.

Based on the computing partitioning guidance [5] and using the loose coupling and

distribution application patterns [1], the MODACloudML proposal is to decompose

applications into logical components and help the user in allocating and reusing these

components on Cloud resources.

Multiple Datacentre Deployment

Multiple datacentre deployment is one of the key factors that ensures successful

deployments across multiple Cloud providers. This design heuristic relies on the

loose coupling and multiple datacentre deployment patterns.

In the case of multi-Cloud applications, the providers of these applications will

attempt to identify and exploit particularities of the underlying Cloud solutions in

order to achieve an optimization of various characteristics (e.g., performance, avail-

ability, cost, etc.). Developers of such applications may therefore need novel design

approaches in order to fully benefit from the varying sets of services that are supported

by the different Cloud providers.

The approach considered in the case of MODAClouds consists in a separation

of the design of the application from the technical specification of the underlying

infrastructure as suggested by the MDA architecture. To achieve this separation,

Cloud provider-independent models (CPIM) and Cloud provider-specific models

(CPSM) are considered. The first ones enable the specification of Cloud provider-

independent deployment scenarios in a Cloud agnostic way whilst the second allows

selecting Cloud provider specific resources. CPIM should provide an appropriate

11 Cloud Patterns 109

level of abstraction to allow the generation of CPSM, targeting various providers

and being aware of their specificity at the same time. The identification of the right

level of abstraction, as well as of the concepts that are relevant at the level of each

of these models generates specific challenges in this scenario.

Instrumentation and Telemetry

Instrumentation and telemetry are key success factors in building feedback about the

runtime performance of the system and its underlying platform and infrastructure.

Instrumentation and telemetry, loose coupling, and multiple datacentre deployment

are the most important patterns involved.

While in the case of a simple Cloud-application collecting some metrics related

to the Cloud resources through provider’s platform APIs may provide the right per-

spective on the behaviour of the application, this is not necessarily the case for

multi-Cloud applications. Monitoring interfaces are likely to be incompatible and

provider-specific, and therefore the monitoring activities could be subject to vendor

lock-in. Moreover, it might not be enough to only monitor Cloud resource’s usage in

order to measure application’s resource consumption and to provide efficient resource

management activities.

Consequently, the MODAClouds approach supports this guidance and offer the

means, at the level of the design-time platform and of the monitoring platform, to

(i) allow the definition of monitoring rules at both the infrastructure and application

levels in a provider-independent way, and (ii) enable the design of monitoring rules

describing how incoming stream of data have to be processed, and what output should

be produced when certain conditions have been verified.

11.3 MODAClouds-Specific Patterns

The guidance and design heuristics that were briefly described in Sect. 11.2 relate

to an important number of Cloud design and architecture patterns, of which some

can be adopted without major changes in a multi-Cloud context. However, a subset

was specifically extended and adapted in the MODAClouds context to better support

the design of multi-Cloud applications. We briefly describe these patterns in the

following subsections.

External Configuration Store

The external configuration store pattern propose to outsource configuration and

deployment information for any component or services of the system into separate

services thus improving reusability and flexibility in the deployment and/or config-

uration process of application components. This pattern, as depicted in Fig. 11.1,

extends the configuration store pattern [5] and it partially involves other patterns

and mechanisms, like the resource management system mechanism [3].

In the case of MODAClouds, the configuration of a multi-Cloud application does

not only include properties associated to the functional behavior of the application,

110 T.-F. Fortiş and N. Ferry

Fig. 11.1 The external

configuration store pattern

but also provisioning and deployment information for the underlying infrastructure.

Accordingly, the configuration store pattern was extended to include the overall

information required for the deployment and configuration process of the multi-

Cloud application. Therefore, one can achieve an externalization of the configuration

and deployment information for any particular components or services into a separate

service.

The use of this pattern could be relevant in various situations, like: (i) when the

application contains several instances of the same component (or group of com-

ponents), whose configuration must be synchronized; (ii) the configuration of the

various components will have to be dynamically adjusted to accommodate various

load and/or usage patterns; (iii) when similar reconfigurations need to be triggered

on several parts of the application.

Leader-Followers

The aim of the leaders-followers pattern (or leader election pattern, see also [5]) is

to dynamically delegate the management of subparts of the architecture to a separate

component that has been elected. Such a feature is particularly relevant when Cloud

applications aggregate several subsystems, with an appropriate level of complexity,

such that the total complexity exceeds the capacity of a single management entity.

In a multi-Cloud context, the leader-followers pattern enables the election for each

Cloud of a single component responsible for configuring and managing subparts of

the execution environment. Thus, the leader (a master node) will have the necessary

knowledge of its peers, managing their configurations accordingly.

This pattern is relevant especially (i) when the application contains numerous

instances of the same component (or group of components), whose configuration

and deployment must be synchronized, as in Fig. 11.2; (ii) when massive and simul-

taneous updates are necessary for instances of the same group of components.

Runtime Reconfiguration

The intent behind the runtime reconfiguration pattern is to dynamically reconfigure

application components and frameworks as well as their execution environments

to minimize the downtime in a production setting. This pattern is extended from

the pattern with the same name from [5] to the dynamic adaptation of the applica-

tion deployment using the models@runtime architecture. The use of this pattern

together with the models@runtime architecture enables third-parties to adapt

11 Cloud Patterns 111

only selected parts of the deployment whilst minimizing the downtime for the rest

of the application.

Specific interest exists around this pattern especially when an application or the

deployment of an application needs to be reconfigured dynamically at runtime, such

as adapting logging policies, updating database connections, deploying new services,

and others.

Particularly, in the case of MODAClouds, the models@runtime engine main-

tains a MODACloudML deployment model causally connected to the running sys-

tem, and: (i) any modification to the CPIM will be reflected in the CPSM and prop-

agated on-demand onto the running system; (ii) any change in the running sys-

tem will be reflected in the CPSM, which, in turn, can be assessed with respect

to the CPIM. Furthermore, by using the aforementioned deployment model, the

models@runtime environment enables reducing the gap between the runtime

and design-time activities.

Provider Adapter

In the case of multi-Cloud application it is highly important that the implementation

of various components remain unmodified to the specificities of different Cloud

environments. The provider adapter pattern offers the means for a smooth transition

of applications and components from one Cloud provider to another.

The provider adapter pattern is highly relevant in the context of multi-Cloud

applications, and it has been applied to the MODACloudML supporting tools and

extended to the language itself through the concept of Cloud provider-independent

Fig. 11.2 The

leader-followers pattern

Fig. 11.3 The

provider-adapter pattern

112 T.-F. Fortiş and N. Ferry

models that can be automatically or semi-automatically refined into Cloud provider-

specific models.

This pattern is especially relevant when application components are not written

for a specific single Cloud provider, and may move to or across other providers for

maintenance reasons for instance (see also Fig. 11.3).

11.4 Conclusions

In this chapter we provided an overview of the set of guidances and patterns that

have been defined or extended during the MODAClouds project on the basis of the

experience gained in designing and managing multi-Cloud applications. All of them

have been successfully applied during the project to support the design of both the

MODAClouds tools and case studies. These patterns complement well the large set

of existing pattern already available in the literature.

References

1. Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014) Cloud computing patterns—

fundamentals to design, build, and manage cloud applications. Springer

2. AWS cloud design patterns. http://en.clouddesignpattern.org/index.php

3. Erl T, Cope R, Naserpour A (2015) Cloud computing design patterns. Prentice Hall/Pearson

PTR. http://cloudpatterns.org/

4. Brandle C, Grose V, Hong MY, Imholz J, Kaggali P, Mantegazza M (2014) Cloud computing

patterns of expertise. IBM RedPaper. http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.

pdf

5. Homer A, Sharp J, Brader L, Narumoto M, Swanson T (2014) Cloud design patterns: prescriptive

architecture guidance for cloud applications (Microsoft patterns & practices). MSDN Library.

https://msdn.microsoft.com/en-us/library/dn568099.aspx

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://en.clouddesignpattern.org/index.php
http://cloudpatterns.org/
http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5040.pdf
https://msdn.microsoft.com/en-us/library/dn568099.aspx
http://creativecommons.org/licenses/by/4.0/

Chapter 12

Modelio Project Management Server
Constellation

Antonin Abhervé and Marcos Almeida

12.1 Introduction

SOFTEAM is a French middle-sized company that provides the Modelio modelling

tool. Modelio.1 is an enterprise-level open source modelling solution delivering func-

tionality for business, software and infrastructure architects. It is a comprehensive

MDE workbench tool supporting the UML2.x standard. Modelio provides a csentral

IDE which allows various languages (represented as UML profiles) to be combined

in the same model. Modelio proposes various extension modules, enabling the cus-

tomization of this MDE environment for different purposes and stakeholders.

The Team Work Manager is SOFTEAM’s solution to team collaboration in

Modelio. It allows Modelio users, after a minimal software and hardware invest-

ment, to efficiently share and work together on models stored in a central repository

accessible in a local network or in the Internet. It automates version control and con-

figuration management, making sure every developer has access to the last version

of the shared model and works on a uniform configuration. From the point of view of

the developer, a repository is divided into Projects, which contain: Model elements,

Extension modules used by the user and Configuration information. A repository

needs to be installed, configured and maintained by the users in private machines.

A SVN repository may store different projects and different teams may work in

the same repository. Developers use the Modelio desktop client to access a central

repository on a SVN like workflow: committing modifications to model elements,

1http://www.modelio.org.

A. Abhervé (B) · M. Almeida

Softeam Cadextan, 21 Avenue Victor Hugo, 75016 Paris, France

e-mail: antonin.abherve@softeam.fr

M. Almeida

e-mail: marcos.almeida@softeam.fr

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_12

113

http://www.modelio.org

114 A. Abhervé and M. Almeida

receiving updates from other users and using merges/locks to deal with concurrent

work.

By its participation on the MODAClouds project, SOFTEAM intended to move

its modelling services to the Cloud in order to relieve the burden for our clients

in supporting the necessary infrastructure. During the MODAClouds project, we

developed a new version of this tool called Constellation [1, 2]. This service is

based on a Service-Oriented Architecture under which the TeamWork Manager is

provided as a service on the Cloud. By the beginning of the third year of the project

we started providing commercial services based on Constellation.

We hope that the “potentially infinite” resources available on the Cloud will make

tasks such as scaling the servers of a project up and out and moving between different

Cloud providers very easy to our customers. Additionally, activities such as mon-

itoring and adapting the installation hopefully will be able to be executed without

specialized knowledge in systems administration.

The MODAClouds provided features have an important role in fulfilling these

objectives. As we are going to present in the following sections, the role of MODA-

Clouds in Constellation is two-fold. At design time, MODAClouds should support

design and implementation in a Cloud provider independent way, reducing develop-

ment costs, and increasing its flexibility. At run time, it should support the monitoring

and adaptation of the application to support its desired QoS levels.

This chapter is organised as follows. Section 12.2 presents the proposed architec-

ture of Constellation. Section 12.3 presents how we used MODAClouds components

in building our case study. Finally, Sect. 12.4 presents our conclusions.

12.2 Proposed Architecture

In order to simplify this migration, the architecture of our Cloud solution relies

on the implementation of a component called Administration Server (Fig. 12.1).

The Administration Server allows clients to create and manage user accounts, define

roles, and create modelling projects and associate users and roles to specific projects.

The Administration Server is designed as a JEE application which provides a web

accessible user interface support implemented with Java Server Faces 2 and service

behaviour supported by Entity Java Beans components. This application is linked

with an relational database to ensure persistency of application data.

The Administration Server can provision computing resources in order to maintain

the established level of quality of service. Cloud Services managed by a Adminis-

tration Server are delivered as Cloud-enabled applications. These applications are

deployed on the provisioned Cloud resource. Once deployed in Cloud resources,

services usually need to be configured and accessed by clients. The Administration

Server needs to make sure that the necessary projects, users and permissions have

been created and set up once a Cloud agent has been installed. Standard protocols are

used for both activities. Web Services enable the deployed agents to be configured.

Moreover, TCP/IP protocols will allow Modelio desktop based clients to connect to

an agent, independently from which Cloud it has been deployed.

12 Modelio Project Management Server Constellation 115

Fig. 12.1 The architecture of the administration server

External agents are independent applications that provide specific high resource

consuming services to Prototype of Constellation. Agents can be deployed on demand

on specific Cloud instances (IaaS or PaaS depending on their implementation). The

number of deployed agents may change in real time depending on the application

workload. Each agent implements a variable number of services called Workers,

which are executed when an agent receives a command from the Administration

server.

The only dependency of this design to the specific Cloud provider is the com-

munication between the Administration Server and the Cloud provider in order to

deploy, monitor and eventually migrate services. The actual code to interact with

the Cloud provider is however encapsulated in a Web Service usually installed on

the Administration Server. This Web Service translates actual requests from the user

into specific requests to MODAClouds runtime components.

12.3 Use of MODAClouds Design and Runtime

Components

12.3.1 Modelling with Creator 4Clouds

We used MODAClouds Creator 4Clouds Functional Modelling tool to describe the

architecture of Constellarion’s Administration Server along with its modelling ser-

vices. We have also used this model as input to other design and runtime tools. During

the first MODAClouds phase we considered two kinds of services: SVN and HTTP

116 A. Abhervé and M. Almeida

Fig. 12.2 Case study CCIM modelling on the IDE

fragments. The first one provides a read-write model that is edited collaboratively,

while the second one provides read-only models that are shared among different

teams.

Figure 12.2 depicts the functional architecture of Constellation specified with the

MODAClouds IDE as a Cloud Computation Independent Model.

At the highest level, the CCIM shows the services that compose Constellation: the

Administration Server and the Administration Database connected by an interface

provided by the Administration Database and required by the Administration Server.

Still at the CCIM level, Fig. 12.3 shows the QoS constraints associated with the

most important operations provided by the Constellation modelling services. For

Fig. 12.3 CCIM QoS constraints on MODAClouds IDE

12 Modelio Project Management Server Constellation 117

SVN fragments, 15 s is the target average time for reading model modifications,

and 60 s is the target average time for writes. This considers that users make large

commits (i.e., containing a great number of model changes, and therefore expect to

obtain large change sets when they update). For HTTP models, 5 s is the average

time for reading parts of the model, considering that users make infrequent accesses

to subparts of shared read-only models. Constraints on the 85th percentile are used

to define acceptable upper bounds for response times. These are set to 12 s for HTTP

reads, and to 30 s and 5 min for SVN reads and writes, respectively.

CPIM and CPSM models describe the deployment of the application at different

levels of abstraction, first in a Cloud provider independent way, and then in a Cloud

provider specific way. Figure 12.4 presents excerpts of the Constellation application

model described in MODACloudML at the three levels of abstraction in order to

illustrate the correspondence between the CCIM and the CPIM and CPSM models.

12.3.2 Multi-cloud Deployment with CloudML 4Clouds

The deployment model at CPIM level allows us to model the deployment of our

application by identifying the various components of our application deployment.

Fig. 12.4 Three levels in IDE

118 A. Abhervé and M. Almeida

In this experiment, our efforts focused on better use of Cloud platforms through

the integration of PaaS services and the migration to a multi-Cloud deployment

solution. In a second step, we sought to take advantage of the support of multi-Cloud

environments allowed by the MODAClouds project. We studied the best deployment

configuration for our application and selected three Cloud providers: Amazon EC2,

Flexiant and Amazon RDS.

Figure 12.5 describes the deployment of Constellation in a multi-Cloud context.

It shows an Administration Server and two agents, both of them in IaaS Cloud nodes.

The former in Amazon, the later in Flexiant. The database that stores administration

data is stored on a PaaS database, provided by Amazon RDS.

This development brings the following benefits:

• Allows us to scale the compute and storage resources available to our database to

meet Constellation needs.

• Provides the best reliability to our application with automated backups, DB snap-

shots and automatic host replacement capabilities.

• Provides predictable and consistent performance for I/O intensive transactional

database workloads.

12.3.3 Cost and Performance Analysis with SPACE 4Clouds

As part of MODACloudsML CCIM models, we provided models of how users inter-

act with Constellation, and of the performance of Constellation services when actu-

ally deployed on a virtual machines. We used SPACE4 Clouds to assess the costs and

Fig. 12.5 Constellation deployment in multi-cloud environments

12 Modelio Project Management Server Constellation 119

QoS the current architecture is able to provide on different Clouds, and in particular,

the maximum number of clients we can serve with the modelled architecture.

In addition, we devised a trial architecture for a new modelling service called

Conference Service to be implemented during the last year of the project, and com-

pared its QoS characteristics with the one implemented in the first two years of the

project. Differently from a SVN service, the conference service decouples the reading

and writing load on the system in different VMs that can be load balanced and Cloud

bursted independently. This is a typical example of advanced deployment configu-

rations Constellation needs to support. Our experiments showed that the Conference

Service is more scalable than the current solution.

The Fig. 12.6 presents the usage model of our users, obtained through observa-

tion of typical users. It considers users that connect to modelling through their full

workday. Five percent of the time they interact with Constellation, they connect to an

existing project, which is translated onto the sequence of calls we see on the top of the

figure. Ten percent of the time, they read updates from an SVN model, seventy-five

percent of the time they get data from HTTP fragments and ten percent of the time

they perform SVN commits.

In addition to usage models, we provided models of user workload throughout

the day (see the Fig. 12.7). We represented a typical business office workload, with

most of it concentrated around commercial working hours (8–12 h and 13–17 h).

SPACE 4Clouds allowed us to discover the peak number of users supported by this

architecture. Figure 12.8 shows the result of this analysis. We can see that the SVN

service supports around 250–300 users without breaking QoS constraints, while the

Conference service scales to almost the double number of users without breaking

constraints.

Fig. 12.6 Modelling constellation user’s behavior

120 A. Abhervé and M. Almeida

Fig. 12.7 Modelling constellation user’s workload

Fig. 12.8 Response time bottleneck estimations for SVN and conference services

12.3.4 Multi-cloud Monitoring and Management with

Energizer 4Clouds

Energizer 4Clouds provides valuable services for our case study, such as the man-

agement of the execution, intended as the set of operations to instantiate; run and

stop services on the Cloud; the monitoring of the running application and the self-

adaptation of the application, to ensure the fulfilment of the QoS goals.

When defining the final design of the Constellation case study, we were interested

in the best way to integrate the features provided by the platform into our application.

In the context of the Constellation case study, we are interested in the integration

of three aspects of Energizer 4Clouds: the monitoring platform, the self-adaptation

platform and the execution platform. Figure 12.9 presents the deployment model of

the Constellation case study including runtime platform components.

The Monitoring Platform allows us to monitor specific metrics collected from

business components of our case study deployed on different Cloud platforms. To

achieve this goal, we integrated five components into our architecture: three com-

ponentsfrom the monitoring platform and two components developed using the API

12 Modelio Project Management Server Constellation 121

Fig. 12.9 MODAClouds runtime platform integration

provided by platform components. The role of these is to exploit monitoring data in

our application.

To exploit the monitoring platform, we have integrated two components based on

the API provided by the monitoring platform. These components ensure the interme-

diation between the monitoring platforms and business components of Constellation.

They allowed us to implement a Cloud vendor independent agent monitoring user

interface, and to integrate it to our commercial offering.

• Constellation Data Collector: To collect business metrics from Constellation

agents, we integrated into our architecture this extension of the monitoring plat-

form. Based on MODAClouds Data Collector API, this programme will collect

data about CPU, RAMS and Access Disk of each process managed by agents.

• Constellation Data Analyzer: Based on the REST API of MODAClouds Moni-

toring Manage, Constellation will incorporate a component to analyse, store and

display monitoring data according to a business point of view. This service will

be integrated into the Administration Server.

122 A. Abhervé and M. Almeida

12.4 Conclusion

Constellation can be presented as an advanced repository which stores the models

defined using the Modelio CASE tool and which provides several high-time consum-

ing services on the Cloud. Among its services, we find the creation of collaborative

projects, the hosting of model fragments allowing teamwork, the management of a

Model Library catalogue or monitoring services applied to all these elements.

In this chapter, we presented the final version of the Project Management Server,

renamed, for commercial reasons to Constellation. The development of Constellation

started with the beginning of the MODAClouds project and by the end of it we have

a first version that started to be commercialized. The current commercial version of

Constellation is restricted to deployment on customer premises. We are confident

that, thanks to MODAClouds, its architecture is ready to the Cloud.

The Constellation case study integrated both design time and runtime components

from MODAClouds in its design. At design time, MODAClouds supported the design

of the architecture of the application, and its early QoS analysis, in order to iden-

tify bottlenecks. At runtime, MODAClouds supported the multi-Cloud deployment,

management and monitoring of Constellation.

References

1. Almeida Da Silva MA, Abhervé A, Sadovykh A (2013) From the desktop to the multiclouds: the

case of ModelioSaaS. In: 15th international symposium on symbolic and numeric algorithms

for scientific computing (SYNASC), 23–26 Sep 2013, pp 462–472

2. Desfray P (2015) Model repositories at the enterprises and systems scale the Modelio constella-

tion solution. In: 2015 3rd international conference on model-driven engineering and software

development (MODELSWARD), Feb 2015, pp IS–15

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 13

BPM in the Cloud: The BOC Case

Alexander Gunka, Harald Kuehn and Stepan Seycek

13.1 Introduction

To move an existing application to a Cloud-based operating model is a challenging

task. This chapter presents a real life case in this domain. It is based on a case study

from BOC which uses MODAClouds technology to enact four major use cases for

the Cloud deployment of the BPM tool ADONIS. The first use case describes the

provider selection in a multi-Cloud environment based on the decision support system

Venues 4Clouds. In the second use case CloudML4Clouds is used to implement a

model-based Cloud deployment procedure. The third use case shows the usage of

Tower 4Clouds for real-time monitoring spanning various system levels to enable

DevOps engineers to gather their custom monitoring metrics. The fourth use case

describes the Cloud-to-Cloud migration process including the implemented approach

for data migration aspects.

13.2 Context and Motivation

BOC group is a medium-sized software and consultancy company providing prod-

ucts and services for Business Process Management (BPM), Enterprise Architecture

Management (EAM) and Governance, Risk, Compliance (GRC). BOC originated

A. Gunka · H. Kuehn · S. Seycek (B)
BOC Information Technologies Consulting GmbH, Operngasse 20b,
1040 Vienna, Austria
e-mail: stepan.seycek@boc-group.com

A. Gunka
e-mail: alexander.gunka@boc-group.com

H. Kuehn
e-mail: harald.kuehn@boc-group.com

© The Author(s) 2017
E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,
DOI 10.1007/978-3-319-46031-4_13

123

124 A. Gunka et al.

1995 as a spin-off company from the University of Vienna, Department Knowledge

Engineering. Since then, BOC has grown to one of the leading companies within

these domains, established operations in various European countries and maintains

a world-wide customer base. In all their activities, BOC follows a model-driven

approach.

ADOxx is BOC’s meta-modelling platform for implementing the modelling prod-

ucts of the BOC Management Office by defining domain specific meta-models,

by configuring specific behavior and adding functionality to complement a given

methodology. Business users of the products can manage their model and object

repositories in a collaborative way leveraging highly adaptable versioning and release

workflows. They can create analytical views, define custom queries, and generate

various reports interacting via web-based graphical editors and dashboards.

While most enterprise software is still deployed on-premises, Software-as-a-

Service is expected to grow rapidly over the next years. According to IDC the total

Cloud software market will grow to surpass $100 billion by 2018 at a compound

annual growth rate of 21.3 %. In order to be able to benefit from these new oppor-

tunities and from the advantages in terms of resilience, agility and cost efficiency

the Cloud promises, BOC committed to a strategy for providing their applications as

SaaS in addition to their existing sales and operation models. In order to minimize

risks BOC decided to apply an iterative process to achieve this target [1]). Technol-

ogy developed within the MODAClouds project plays an important role in achieving

this step of business model extension.

As one of the first steps implementing this strategy, a prototypical instantiation

of a process modelling language using the ADOxx meta-modelling platform has

been ported to the Cloud with the help of tools and methodologies developed within

MODAClouds. Based on the results of this evaluation, BOC has recently moved the

solution to production environment by launching ADONIS:cloud [2].

13.3 Application Scenario

During the process of defining requirements to be supported by MODAClouds, four

main use cases (depicted in Fig. 13.1) were identified with regard to BOC’s appli-

cation scenario. First, the selection of Cloud providers should be simplified with

the help of decision support tools and methodologies. After this step MODAClouds

should provide assistance to deploy a given application stack to selected Clouds in

an automated, Cloud provider independent way. Advanced monitoring techniques

should then be used to track system health and quality of service. In case of detected

violations another cloud provider would be selected and the application should be

re-deployed to the new provider. In addition, data would be migrated and traffic

would be switched to the new deployment.

13 BPM in the Cloud: The BOC Case 125

Fig. 13.1 BOC’s main use cases to be supported by MODAClouds to offer ADONIS as SaaS

13.3.1 Cloud Provider Selection

Soon after the decision to offer the BPM solution ADONIS as SaaS, BOC was facing

the challenge of selecting an appropriate IaaS provider. They started the decision

making process by collecting various decision criteria taking into account operations,

legal, cost, and sales related aspects. They assigned relative weights to these criteria

and marked some of them as must-have features. As a next step around 20 candidate

providers were considered and rated first only considering the must-have criteria

which helped reducing efforts in data collection by ruling out a large portion of the

initial candidates list. For the remaining candidates the rest of the data was collected

and the three providers with the highest rankings were presented to the decision team

for discussion.

Retrospectively some of the weaknesses of this intuitive approach soon became

obvious [3]:

• The cost of re-evaluating the providers on a regular basis in order to improve

quality of service and cost efficiency would be very high.

• The goal of covering different markets will require addressing strict data location

policies and therefore the ability to deploy to multiple Clouds. These aspects are

hard to address using the initial approach since it would require a much larger

number of providers to be analysed resulting in very high efforts in data gathering

and analysis.

• The criteria chosen intuitively based on BOC’s own experience were not compre-

hensive enough to cover all relevant aspects.

• In particular, the ease of migration from one provider to another, which should

have been considered as one of the most important criteria, was ignored.

BOC contributed these experiences during the requirements elicitation process for

Venues 4Clouds, MODAClouds Decision Making System for Cloud Service Offer

Selection which is described in detail in Chap. 2 [add reference]. In particular, BOC

contributed a number of functional requirements, an initial set of decision criteria,

and general success criteria for a Decision Support System to be developed [4].

Based on the requirements gathered, a risk-driven framework for decision sup-

port [3], a methodology for eliciting risk, cost and quality aspects in multi-Cloud

environments [5, 6], and a prototype of a Decision Support System (DSS) have

http://dx.doi.org/10.1007/978-3-319-46031-4_2

126 A. Gunka et al.

Table 13.1 Stakeholders and assets considered in the DSS

Stakeholders Type of intangible asset Assets considered

Business representatives Business oriented intangible
assets

Customer loyalty, legislation
compliance, internal efficiency
and performance, sales rate,
market awareness, improve
product innovation and quality

Technical (DevOps)
representatives

Technology oriented intangible
assets

Data privacy, data integrity,
maintainability, end user
performance, service
availability, cost stability

been developed. BOC used this methodology and the prototypical DSS to perform

a light weight risk analysis by first defining a set of relevant business-oriented and

technology oriented assets, determining risks related to these assets, and treatments

mitigating these risks [4]). During this assessment process both business and tech-

nical stakeholders were involved. Table 13.1 lists the assets considered by either of

these stakeholders.

In that way, for example customer loyalty, which was identified as an important

asset by business representatives, has been related to the technical oriented assets

data privacy, data integrity, end user performance, and service availability. Data

privacy, in turn, has been related to the risks unauthorized access from IaaS provider,

insufficient isolation, insufficient physical security, and data exposure to government

authorities. As possible mitigations for these risks the availability of certificates

guaranteeing information security and the possibility to select a specific data location

were selected. A complete mapping of all identified assets, risks and mitigations can

be found in the appendix of MODAClouds public deliverable 2.3.2 [7].

The fact that the user is guided through a structured process, starting with high

level assets helped to identify a larger set of risks and, consequently, treatments to be

considered, that would not have been detected using the original intuitive approach.

At the same time the process turned out to be simple enough and well-guided by the

tool to be usable for a small or medium enterprise (SME) such as BOC.

Since the current version of the DSS (Venues 4Clouds) is at prototype stage only,

both the data gathered about Cloud providers and the pool of assets and risks already

predefined in the tool are in no way complete at the time of writing. Provided that

the systems knowledgebase will grow over time and that the data available can be

maintained up to date and accurate, e.g. by employing self-learning mechanisms and

being able to extract data from multiple online sources, it will be able to assist SMEs

such as BOC in continuously keeping track of a large number of potential providers

and in analysing them in a cost efficient way.

13 BPM in the Cloud: The BOC Case 127

13.3.2 Application Deployment to Multiple Clouds

Before the start of the MODAClouds project BOC already had gathered some expe-

rience with deployment automation by employing the configuration management

system Puppet to automate software installation in their application hosting envi-

ronment. However, when it came to deployment to the Cloud and, in particular, to

multiple Clouds, they soon realized some shortcomings of their approach:

• Even though Puppet provides configuration modules for different Cloud stacks

like e.g. OpenStack, provisioning of IaaS instances in a totally Cloud-stack-

independent, transparent way was hard to accomplish.

• Deploying parts of the application (e.g. the database tier) to PaaS would be even

harder since it would require the use of another configuration to deploy the appli-

cation stack to PaaS.

As soon as a first version of MODAClouds design time component CloudML4Clouds

which is responsible for deploying the modelled application was available, BOC

started evaluating the component and found the following potential benefits:

• It would enable them to automatically deploy to any of the Cloud systems previ-

ously selected by Venues 4Clouds including the provisioning of Cloud instances

in a transparent way, resulting in a higher degree of automation and consequently

less manual operation efforts.

• The model-based nature of the approach was expected to enable BOC to document

individual deployments in a traceable and comprehensible way and support them

in explaining deployment decisions to their customers.

However, it also turned out that using CloudML4Clouds to deploy on Windows

Virtual Machines—one of the application components to be deployed in BOCs case

is a Windows application—had some disadvantages compared to the use of Linux

based VMs. In particular, the tool is relying on the Windows Remote Management

protocol to execute remote commands and to deploy to a Windows VM which in

turn requires CloudML4Clouds to be executed on a Windows machine. BOC had

already invested in developing scripts for Puppet deploying parts of their application

to Windows and preferred to capitalize on these investments rather than having to re-

implement these scripts using Windows PowerShell commands. Hence, they decided

together with the partners involved in developing the component to start an initiative

to integrate CloudML4Clouds with Puppet modules.

At the time of writing all required extensions needed for deploying software

components through Puppet on Windows VMs are available and BOC currently

evaluates the usability of the Puppet extension to CloudML [8].

Since Puppet and similar tools like Chef are widely used in the DevOps community

BOC expects the possibility to integrate them with CloudML4Clouds to be beneficial

for a large number of potential users.

128 A. Gunka et al.

13.3.3 Cloud Application Monitoring

Before deciding to push the SaaS business, BOC already had a basic monitoring solu-

tion in place for several hosting projects. It was based on infrastructure performance

indicators like CPU load and RAM consumption as well as the basic availability of

the customer facing frontends and central backend components. When going larger

scale with a full-fledged SaaS platform, the system health and performance need to

be tracked more in detail in order to be able to mitigate issues at an early stage. Such

a monitoring solution needs to collect application specific data and in some cases

combine metrics from various sources in order to provide the comprehensive view

of the whole system required by the operations engineers.

This is where MODAClouds’ monitoring technology Tower 4Clouds (Chap. 5)

has been introduced with great success. Its Resource Description Framework (RDF)

based streaming technology together with a flexible approach to configure data col-

lectors and data analysers provide a solid framework for the challenges of a reliable

and extensible monitoring platform.

Tower 4Clouds can be used as part of the complete MODAClouds toolset including

design time quality constraint modelling, CloudML deployment and runtime self-

adaptation. However, the MODAClouds monitoring components can as well become

building blocks for tailored environments, even if the other parts of Energizer 4Clouds

are not being used. In the case of BOC’s SaaS platform it has been integrated with

the existing solution based on the open source tool Icinga.1 This solution allows the

operations team to continue working with the well-established Icinga frontend and

its service recovery mechanisms while obtaining more details about the state of the

platform. Furthermore, MODAClouds’ concept for data collectors makes it very easy

for the DevOps engineers to extend the number and the types of metrics collected.

The integration of the stream based monitoring framework with the Icinga poll-

based metrics acquisition has been implemented by leveraging the observer interface

for Tower 4Clouds and providing a generic Icinga plugin for retrieving the collected

data from the observer. With such a toolset adding a new metric that can be acquired

with an existing data collector is just a matter of extending the data collector’s

configuration accordingly and defining a corresponding service within Icinga.

An additional benefit from the usage of MODAClouds’ technology for monitoring

is that all streams that represent numeric time-series data can be also directed into

the Metrics Explorer (see Chap. 5), a web based graphing tool. This can be very

useful for the operations engineers when a retrospective view at system performance

indicators is needed and trends are to be interpolated.

The monitoring solution architecture for BOC’s SaaS platform based on Tower

4Clouds, Icinga and the Metrics Explorer is depicted in Fig. 13.2.

1https://www.icinga.org/icinga/icinga-2/distributed-monitoring/.

http://dx.doi.org/10.1007/978-3-319-46031-4_5
http://dx.doi.org/10.1007/978-3-319-46031-4_5
https://www.icinga.org/icinga/icinga-2/distributed-monitoring/

13 BPM in the Cloud: The BOC Case 129

Fig. 13.2 Monitoring solution architecture for BOC’s SaaS platform

13.3.4 Cloud to Cloud Migration

One of the key motivations for choosing IaaS technology over other models such as

housing is the shift from capital expenditure (CAPEX) to operational expenditure

(OPEX). This enables service providers to relocate their services among multiple

infrastructures without losing investments. For BOC’s Cloud services this capability

is an essential asset as it allows for cost optimisation and it also can be the right

approach for dealing with availability or performance issues encountered within a

specific infrastructure. In addition there is another valid use case for Cloud-to-Cloud

migration: customers especially in the public administration sector are confronted

with changing regulatory policies related to location of services and data they use

for their work. Such policies may at some point in time prohibit usage of services

and storage of data outside the respective country.

BOC’s SaaS platform has been designed with the objective to be extensible to sites

located in different countries if customers have the need to have their data stored and

services deployed in specific geographical locations. This is achieved by relying on

basic IaaS for compute, storage and network resources managed through CloudML

which in turn triggers Puppet [9] for deploying and configuring the BOC services.

This Cloud vendor independent toolchain enables BOC to move their services among

IaaS platforms from various providers.

The Cloud-to-Cloud migration approach chosen by BOC is one that relies on data

replication mechanisms of the used database management system (MS SQL Server

or Oracle Database), CloudML for deploying application stacks in multiple sites and

the REST-enabled MODAClouds load balancer for switching the traffic from one

site to the other. The complete procedure that needs to be executed to perform the

switch from site A to site B consists of the following steps.

130 A. Gunka et al.

1. Create a deployment model for site B including a load balancer instance pointing

at site A and B application stacks as well as a DBMS instance. Update the

deployment model for site A adding the application stack of site B to the load

balancer.

2. Enact the deployment one both sites with CloudML, them create a full database

backup on site A and restore it on site B.

3. Update the deployment model of site A to remove the application stack. Enact

the change of site A with CloudML (start of downtime). Create a differential

database backup on site A and restore it on site B.

4. Update the deployment model for site B adding the application stack. Enact the

deployment change on site B with CloudML (end of downtime). Trigger the

DNS switch for the publicly accessible domain so that the user traffic is routed

to the load balancer on site B.

5. Once all traffic is on site B update the deployment model on site A removing the

DBMS and the load balancer as well as all underlying IaaS resources. Release

all resources on site A by enacting the deployment model with CloudML.

The main steps of the relocation are depicted in Fig. 13.3.

As all of the involved steps are scriptable, automation is possible if the frequency

of the migration use case justifies the effort for implementing the automated solution

based on the procedure described above.

Fig. 13.3 Main steps of the Cloud-to-Cloud relocation

13 BPM in the Cloud: The BOC Case 131

13.4 Conclusion and General Recommendations

Even though some of the experiences and observations made are specific to the case

described in this chapter, the authors believe that some general recommendations

can be derived for companies or, more specifically, SMEs that are either planning to

cloudify some of their business critical software or, being a software provider such

as BOC, to extend their business model with an SaaS offering.

As mentioned earlier there are several good reasons to think about Cloud applica-

tion monitoring as well as a strategy to migrate from one Cloud provider to another

from the very beginning of the Cloud migration process. This should encompass the

following aspects:

• When selecting a particular Cloud service, the ease of migration to another equiv-

alent service should be considered. This implies on one hand the existence of such

services and on the other hand the ability to migrate software components and data

to these other services easily.

• In order to increase cost efficiency and quality of service the Cloud service provider

market should be analysed on a regular basis. The selection of Cloud services and

Cloud providers might become a reoccurring task. A common knowledge base and

a tool based approach for decision making as planned for MODAClouds Venues

4Clouds tool will help saving efforts for data acquisition and analysis and making

decisions in a traceable, comprehensible way.

• In order to be able to easily deploy to different providers deployment automation

or even self-adaptation should be considered to save operation efforts. Automated

deployment should ideally work on different Cloud stacks (i.e. on different Cloud

services) with as little adaptations as possible.

• Monitoring should be considered an integral part of the Cloud service as it is

the only reliable way to track SLA adherence. The solution should be easy to

use, maintain, extend and at best it shall be managed together with the business

application by means of the configuration management system. The combination

of an established product such as Icinga with the sophisticated Tower 4Clouds

RDF stream processing toolkit is a good candidate for this challenge.

References

1. Alexander Gunka SS (2013). Moving an application to the cloud—an evolutionary approach.
In: MultiCloud’13. Prague, Czech Republic

2. BOC (2014) BOC Group: ADONIS:cloud Landing page. Retrieved May 2015, from http://www.
boc-group.com/at/adoniscloud (2015). Retrieved May 2015, from https://www.icinga.org/

3. Smrati Gupta VMM (2015, May 5–7). Risk-driven Framework for Decision Support in Cloud
Service Selection. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CC-GRID (2015) Shenzhen. Guangdong, China

4. MODAClouds (2013) Deliverable 2.3.1: decision making toolkit requirements and architecture,
and update on business methodology. Retrieved May 2015, from MODAClouds: http://www.
modaclouds.eu/publications/public-deliverables/

http://www.boc-group.com/at/adoniscloud
http://www.boc-group.com/at/adoniscloud
https://www.icinga.org/
http://www.modaclouds.eu/publications/public-deliverables/
http://www.modaclouds.eu/publications/public-deliverables/

132 A. Gunka et al.

5. Omerovic A, Muntes MV (2013) Towards a method for decision support in multi-cloud envi-
ronments. In: Proceedings Fourth International Conference on Cloud Computing, Grids, and
Virtualization (CLOUD COMPUTING 2013) pp 162–180

6. Muntes Mulero VPM (n.d.) Eliciting risk, quality and cost aspects in multi-cloud environments.
In: Proceedings Fourth International Conference on Cloud Computing, Grids, and Virtualization
(CLOUD COMPUTING 2013) pp 238–243

7. MODAClouds (2014) Deliverable 2.3.2: decision making toolkit requirements and architecture,
and update on business methodology. Appendix A. Retrieved May 2015, from MODA-
Clouds: http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-
DecisionMakingToolkitRequirementsAndArchitectureAndUpdateOnBusinessMethodology.
pdf

8. MODAClouds (2015) D4.3.3 MODACloudML IDE—final version. Retrieved May
2015, from http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds_D4.3.3_
MODACloudMLIDEFinalVersion.pdf

9. Puppet (2015) Puppet. Retrieved May 2015, from https://puppetlabs.com

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-DecisionMakingToolkitRequirementsAnd ArchitectureAndUpdateOnBusinessMethodology.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-DecisionMakingToolkitRequirementsAnd ArchitectureAndUpdateOnBusinessMethodology.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds/_D2.3.2/_-DecisionMakingToolkitRequirementsAnd ArchitectureAndUpdateOnBusinessMethodology.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/ MODAClouds_D4.3.3_MODACloudMLIDEFinalVersion.pdf
http://www.modaclouds.eu/wp-content/uploads/2012/09/ MODAClouds_D4.3.3_MODACloudMLIDEFinalVersion.pdf
https://puppetlabs.com
http://creativecommons.org/licenses/by/4.0/

Chapter 14

Healthcare Application

Francesco D’andria and Roi Sucasas Font

14.1 Introduction

This chapter presents a real life case based on a case study from Atos which uses

the MODAClouds framework to manage the design, deployment and governance of

a telemedicine solution in a hybrid multi-Cloud environment.

The Atos eHealth telemedicine solution is a software application, based on the

state-of-the-art in ICT that aims at developing an innovative and integrated solution

for the general management of patients suffering from dementia. It provides an inte-

grated online clinical, educational, and social network to support dementia sufferers

and also their caregivers. Based on a set of monitoring parameters and measuring

scales, this solution aims to early detect symptoms that predict decline, avoid emer-

gencies and secondary effects and, ultimately, prolong the period that patients can

remain safely cared at home, no matter where it is located. There are various stake-

holders involved in this scenario that would benefit from the system capabilities

offered by the eHealth application:

Patients and their caregivers:

• Access to services, like videos or games, recommended by clinicians or experts.

• Collect and register data and measurements (blood pressure, weight, activity levels,

questionnaires, etc.).

• Management of warnings or requests sent to the clinicians.

R.S. Font (B)

ATOS Spain SA, Subida al Mayorazgo, 24B Planta 1, 38110 Santa Cruz de Tenerife, Spain

e-mail: roi.sucasas@atos.net

F. D’andria

ATOS Spain SA, Av. Diagonal, 200, 08011 Barcelona, Spain

e-mail: francesco.dandria@atos.net

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_14

133

134 F. D’andria and R.S. Font

• Improve awareness on the use of their sensitive data, like the patients monitoring

parameters and the patients medication follow-up and drug adverse events.

Clinicians and Health System (organization of people, institutions and resources

to deliver health care)

• Continuous monitoring and follow-up of the patients

• Management and assignment of tasks and questionnaires

• Services to meet the health needs of target populations

• Improve workload of assistance teams:

• Institutions/specialists dynamically added and removed on demand

• Allocation/De-allocation of Cloud resources depending on the workload.

• Rapid elasticity, i.e., the network can respond rapidly and automatically to changes

in demand from particular doctor/specialist

• Improve access to and participation in the Knowledge and Information Society for

citizens

• help monitoring of risks like: data breaches/inappropriate access, disruption of

service and data)

Originally a monolithic web application, this new telemedicine solution has been

re-designed for a multi-Cloud environment. This software solution that consists of

two main software blocks: a multi-Cloud server-side block and a client-side block.

The server-side block consists of a database and two server applications. All of

them can be deployed in different multi-Cloud scenarios alternatives, like private

Clouds, public Clouds or hybrid scenarios. The client-side block consists of a desktop

application (used by the patients and their caregivers) that connects to one of the

server applications.

14.2 EHealth Cloud Solution: Why to Deploy

It in a Multi-Cloud Environment?

There are many real and potential benefits of a multi-Cloud based telemedicine

solution. This section describes these benefits (also the cons and risks associated to

this approach) from two different points of view: the application (including designers,

developers, and administrators), and the final users (the patients and their caregivers,

and the doctors).

Because of the number of users of this application, the amount of database transac-

tions, and also the load and traffic conditions that can vary significantly, it is not trivial

to accurately estimate the resources required by this solution. To be able to scale the

resources on demand is one of the main advantages of a multi-Cloud approach. The

Cloud providers allow us to administer these challenges in an easy way, also reducing

costs and management times. This reduced technical maintenance (that also applies

to the deployment and the backup and recovery tasks) is also a feature that will be

very useful in this case study. Another important characteristic of the eHealth solution

is the capability of integrating and connecting multiple third party tools or services.

14 Healthcare Application 135

This will allow us to scale the functionalities and features offered at a much lower

cost compared with an own development and a later deployment in a private / public

infrastructure. For example the eHealth GUI component could be deployed in a pub-

lic PaaS or IaaS, making use of third party services offered by these providers, like

email delivery services, monitoring services etc. This approach would safe us money

and time, and would also allow an easier growth of the application’s functionalities

and capabilities in the future. The developers wont need to create new applications

from scratch with the same functionalities offered by these third party services. A

multi-Cloud environment also offers us flexibility, for example it will allow us to

easily move components from one provider to another when needed. Also the final

users of this solution can benefit from it. The deployment of the eHealth solution

in a multi-Cloud environment will make it possible to access it from everywhere.

Patients and caregivers will connect from home with clinicians. This will facilitate

the home health monitoring and follow-up of these users by the clinicians. Patients

and their caregivers will send them different kind of measurements (activity, weight,

blood pressure, etc.) and tests results, so that doctors can make a diagnostic with

all these data. Also the eHealth solution will analyze these data in order to detect

early deterioration symptoms. Patients with dementia wont need to go to hospital

so frequently, and doctors can make a better and individualized follow up of them.

It is expected that this set of tools and features will reduce the workload of these

clinicians, and will also reduce the costs of the health system. And from the point of

view of the patients and caregivers, its also expected that with this direct and frequent

connection (and monitoring) with clinicians, their quality of life will be better.

14.3 Risks and Problems

There are some risks associated with this approach. The most important of these

risks may be the data and privacy protection and the different legislations of each

country associated with the management of this data. The preservation of this medical

information and the confidentiality is a major challenge in all telemedicine systems.

Another very common risk in Cloud computing is the vendor lock-in. PaaS and IaaS

providers are heterogeneous and the provided features are often incompatible. This

can be a serious inconvenience in such a multi-Cloud approach. These providers

present another problem: which ones are the best for our case study? Not only may

the prices of the different providers vary, but also their availability and the offered

services. In order to deploy all the eHealth components in a multi-Cloud environment,

a great knowledge of the available Cloud providers will be needed. Other risks

associated to this kind of telemedicine solutions are the availability and reliability

of their services. In emergency cases, the access to these services can mean the

difference between life and death. In particular, in those emergencies where a fast

medical response time is needed, the availability of these services can be critical. The

database and other components of the eHealth solution shall be accessible without

interruption 24 × 7. This could become a problem because its very important to

continue monitoring not only the health of these business-critical applications but also

136 F. D’andria and R.S. Font

their performance. In order to monitor these properties and also the performance of

each of the components, it will be needed to use some kind of monitoring application

that could react to issues related to them. Moreover, to define a set of rules, constraints

or SLAs for the eHealth application components should be a mandatory requirement.

14.4 EHealth and MODAClouds: The Story

At this point, Juan, the responsible (administrator, designer and developer) of the

eHealth solution, wants to use the MODAClouds platform to be able to design, deploy,

monitor and manage this telemedicine application on a hybrid PaaS environment.

Why MODAClouds? He expects to take advantage of all the Cloud environment ben-

efits described before and at the same time he expects to solve most of the problems

and risks of such approach. MODAClouds offers a set of tools for the design and run

time. On one hand the design-time tools offer the capability of designing a Cloud

agnostic model of the solution, the capability of defining the QoS/SLA rules that will

be used during the run-time, and also the capability of avoiding the vendor lock-in by

providing a list of all available Cloud providers, that match the eHealth technical and

business requirements, where this solution could be deployed. On the other hand the

run-time tools will monitor the different solution components and will react properly

to these monitoring values by scaling the components up or down, or by migrating

the components from one provider to another. This is the theory. Juan will prove it

soon. Juan will use two different PaaS providers accounts: one in Pivotal (a public

PaaS provider based on Cloud Foundry) and another in a private Cloud Foundry

server with few resources available. He thinks that hosting the database and the web

services application in this private PaaS will make it possible to handle some of the

data and privacy protection risks mentioned before. It will allow him to restrict and

control in an efficient way the access to the data that is stored there. Only the web

services application (the application that handles the connections with the database)

will be able to access the content of this database. But because he thinks that this is

not enough, the critical data will also be encrypted by this web service application.

This way the same application that handles the access to the database will be the

responsible of encrypting the data. This application is also responsible of managing

the roles and permissions of the users that want to access the content of the database

by accepting or refusing the requests depending on the users roles. He also thinks that

deploying the other eHealth component (Web GUI application) in the private server

could be the best option for a first moment, where only a limited set of users will

make use of the eHealth solution. Once the application starts to grow in number of

users and starts to have difficulties in handling the incoming traffic, he could migrate

some components from the private Cloud to a public Cloud. But instead of migrating

the components manually, Juan will use MODAClouds to define a set of rules and

SLAs so that the MODAClouds run-time components can do that in an automatic

way. In order to achieve all this, Juan will follow the steps described below.

14 Healthcare Application 137

Cloud agnostic solution design and Cloud provider selection

First, Juan uses Creator4Clouds to do a Cloud agnostic model of the eHealth solu-

tion. This is the model of the components that will be deployed in the Cloud without

specifying where and how they will be deployed. These components are the follow-

ing: the main database, the web services application and the Web GUI application.

For each of these components he defines the provided and required interfaces, which

are needed to define the connections between each component and are also needed

to define the methods or components that will be monitored. After refining all these

models, the next step is to get a list of all available PaaS providers that match the

functional and business requirements. Juan wants to know which the best options

for this solution are. On one hand he needs to host in a private Cloud the database

and the web services application. This way he can preserve the data and privacy

protection. The other component, the web GUI application (called eHealth-gui in

the models), can be deployed either in a private or in a public Cloud. Juan uses the

Venues 4Clouds tool in order to get all the providers that match his business and

functional requirements. As a result of this he gets Pivotal / Cloud Foundry as the

best choice (in terms of costs, services offered, etc.).

Now Juan wants to define how the MODAClouds run-time tools will behave once

the application components are deployed in the selected provider.

Modelling of the QoS and SLAs

In order to do that, Juan continues using the Creator 4Clouds tool to define the Quality

of Service constraints and penalties that will be used by the MODAClouds run-time

tools. He wants to monitor the performance of the application components. To do

that he defines two constraints: Response Time (to check the response time of some

operations) and Throughput (to check requests per second). These two constraints

will be used to monitor the traffic and performance of the deployed web applications.

He uses the interfaces defined before to associate these constraints to the interface

or to some of its methods. He decides that if theres too much traffic (by specifying

a value in the Throughput constraint), the SLA tool should migrate the Web GUI

application to a public PaaS. To define this behavior, he associates this constraint

to a penalty (called Migrate Penalty). This way, once the number of users grows,

both applications will have more resources to be scaled up. Also the SLA tool would

send events (i.e. emails) to Juan if some other SLA violation occurs. This migration

penalty or behavior could also be defined by using other MODAClouds tools. Creator

4Clouds will then transform these constraints and penalties models to generate the

monitoring rules and penalties used by the Tower 4Clouds and the SLA tool during

the run-time.

The data collector library

Juan will need to connect the deployed eHealth components with Tower 4Clouds,

the MODAClouds monitoring tool. First Juan imports the data collector library (a

remote component of the Tower 4Clouds tool) in the application, then he configures

it, and finally he generates the packed files that will be deployed (.war files). But

before deploying them, Juan needs to finish the models.

138 F. D’andria and R.S. Font

Refining the models

Before deploying the eHealth application, Juan needs to do a few more things. On

one hand he associates the model components with the ‘physical’ applications. In

the case of the eHealth cloud components, the ‘physical’ applications are packed in

two .war files: one for each of the java web server applications. And on the other

hand he specifies the cloud providers where these components will be deployed. At

this point the eHealth application components are ready to be deployed.

EHealth deployment

Once Juan has modelled all the components, including all the QoS constraints and

SLAs, its time to deploy them in the private Cloud Foundry server. The Creator

4Clouds tool offers the option of generating different models for different providers.

But for now, Juan only creates one model for deploying the application compo-

nents in the private Cloud Foundry. To do that, Creator 4Clouds connects with

CloudML4Clouds, which is the responsible of deploying the application compo-

nents in the selected providers. Juan selects the deploy option and waits until the

application is deployed and ready. Then it starts the application execution and makes

it available to his customers.

Run-time tools: Check the status of the application components

Juan accesses the private Cloud Foundry to see that the applications are deployed and

running as expected. Then he connects with the Tower 4Clouds and SLA web tools

to see if they are correctly connected with the application components. He does a few

tests with the eHealth component and checks that all of them are working fine. After

Juan checks that the eHealth solution cloud components are deployed and running

in the private Cloud Foundry server, he tells his bosses that the application is ready

to be used.

14.5 Conclusions

As we could see in this chapter, a multi-cloud approach offers several new possibilities

and advantages for telemedicine applications, but it also presents some risks and

disadvantages. As was shown in the “real life case”, by using the MODAClouds

ecosystem, our main character was able of taken benefit of the advantages of such

approach, and at the same time, he could avoid most of the risks and disadvantages

associated to a multi-cloud deployment.

14 Healthcare Application 139

References

1. Deliverable 4.3.3 MODACloudML IDE final version

2. Deliverable 2.3.2 decision making toolkit requirements and architecture, and update on business

methodology

3. Deliverable 7.1.2 case studies requirements—Final version

4. Deliverable 8.1 case study design analysis

5. Deliverable 8.4.2 Healthcare application design—Final prototype design

6. Deliverable 9.3.2 prototype of healthcare application final release

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 15

Operation Control Interfaces

Craig Sheridan and Darren Whigham

15.1 Introduction

An interesting commercial use-case for Flexiant of the MODAClouds solution is

based upon adding extra functionality to Flexiant Cloud Orchestrator (FCO) [1]

Triggers [2]. Triggers are functions that allow an action in FCO to initiate a second

action, which can either be internal or even external to Flexiant Cloud Orchestrator.

A trigger is simply a block of Flexiant Development Language (FDL) [3] code,

which is a Lua [4] based language, that is used to extend Flexiant Cloud Orchestra-

tor.Triggers will run either before an event occurs (a pre trigger) or after an event

occurs (a post trigger) which can be used to perform a variety of actions such as auto-

matically starting servers at creation time or mailing and alerting based on customer

actions.

15.2 Language for Triggers Description

A trigger is written as a block of Flexiant Development Language (FDL) code, which

is a Lua based language used to extend Flexiant Cloud Orchestrator. FDL is written

as a code block and run within the platform itself. Within FDL there are multiple

APIs [5] that can be called such as billing, trigger, and payment. For this chapter we

will focus on the trigger API. Triggers can be used to perform any of the following

actions:

C. Sheridan · D. Whigham (B)

Flexiant, London, UK

e-mail: dwhigham@flexiant.com

C. Sheridan

e-mail: csheridan@flexiant.com

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_15

141

142 C. Sheridan and D. Whigham

• Sending email as a result of an action or state change

• Making an HTTP call and processing the result

• Making user API or admin API calls from within FCO.

• Writing an entry in the syslog

• Running a local executable file

• Reading or writing to a file

• Manipulating XML documents, objects, and nodes

To achieve these different actions, various trigger types are utilised. The following

table lists these different ‘triggerTypes’, as well as whether the trigger is initiated

before (PRE) or after (POST) the initiating event.

15.3 Architecture of the Trigger Support

The FDL Trigger API, named “TRIGGER”, is activated when the user returns from

an entry point with the API set to TRIGGER. This makes the entry point a trigger.

Once an entry point has been set to act as a trigger, it will return three pieces of

additional data when describing themselves; triggerType, triggerOptions, and value

object.

The triggerType is the type of event that will initiate the trigger, for example an

API call or a change in resource state. This can be refined using the triggerOption

object, which is a list stating the specific events that can initiate the trigger. For

example, if the triggerType indicates that the trigger can be initiated by a server state

change, the triggerOptions determine which server states initiate the trigger.

The value object has the same layout as in the API (See SOAP Value). Each value

object specifies a configurable value, together with its validator, thus setting out the

permissible values for it.

With all FDL APIs, including TRIGGER, anything which a user prints (to STD-

OUT or STDERR) will go to the Jade sysout log. The user can log any string to the

normal log with logger (which takes a string). If the Lua throws an exception, Jade

will catch it. However, the user should aim not to throw exceptions but instead return

something appropriate depending on the API.

The entry point will always be called with a single parameter p dependent on the

API being called, or a value of nil. If a value other than nil is passed, the return value

of the function depends upon the API. In this case, the function is expected to return

a table that describes itself. This table will contain the following keys:

• api: the name of the API as a string (for instance “BILLING”)

• version: the version of the API as a number.

• ref: a unique identifier for the function. Do not use identifiers starting with an

underscore; these are reserved for Flexiant.

• name: a string containing the name of the entry point (max 50 characters)

• description: a string containing a description of the entry point (maximum 250

characters)

15 Operation Control Interfaces 143

• execution function: a reference to a LUA function which is the function to call

with values of p other than nil. If this is not specified or is specified as nil, then

the same function will be called.

15.4 Usage of Triggers to Enable Load Balancing

Triggers are most commonly used to access all the functionality that is offered by

FCO, but they can also be used to make external API calls. Trigger functionality

has been added as part of the MODAClouds project to extend the platform and tools

capabilities. Within the MODAClouds project a number of unique triggers have been

developed.

The first of these triggers is called the Auto Server Failover trigger, which is called

should a server be shutdown or killed within a certain customers account.

Upon being called this trigger looks for a Live Server tag attached to the server,

and if found, replaces it with a Backup server tag. This new tag can be anything, such

as Faulty Server, but for this example Backup server will be used. The trigger then

looks in the FCO account for a VM tagged Backup server that is in a stopped state

and starts it. Finally, once the new server is started, the Backup server tag is removed

and a Live server tag is added.

Another trigger that has been created for the MODAClouds project is the Auto

Alert Mail trigger. This will send an email to the account owner to alert them that a

server has stopped or been killed. The Auto Alert Mail trigger works by looking for

an “Auto Mail” tag assigned to the relevant account whenever FCO registers that a

server has been shutdown or killed. This tag contains the recipient address to send

an email to, and once found, the trigger sends a message to the address to inform the

account holder that a server has been shut down. The message includes the UUID [6]

of the server and the Date/time stamp for when this server was shutdown. This useful

trigger therefore allows account owners to be notified of any issues with their servers,

as well as recording a date/timestamp within the syslog to allow for troubleshooting.

Both of the Auto Server Failover and Auto Mail Alert triggers have been combined

and included within the MODAclouds solution as detailed in the following section.

Within the Modacloud project, these triggers have been implemented to work in

conjunction with load balancers. As detailed in Fig. 15.1.

The Load Balancer will be set up within the FCO Cloud platform. Behind this

will be a number of VM’s that will serve load balancers. These VMs will be tagged

within FCO as either a Live Server or a Backup Server In the event of an error with

these servers that cannot be resolved internally, the server is then shutdown. When

this shutdown occurs then the triggers created.

144 C. Sheridan and D. Whigham

Fig. 15.1 MODAcloud triggers

15 Operation Control Interfaces 145

15.5 Related Work

To be able to monitor and provide similar solutions that are presented here with

other Cloud providers external tools/programs using the Cloud providers APIs must

be used. To be able to match this functionality providers such as OnApp, VMWare

and OpenStack would have to look at using external API calls.

Within FCO and with the use of Triggers and FDL, FCO allows the ability to

run and monitor from within the platform rather than using external applications to

query using the API. The key benefit of this from a Cloud provider is the reduction

in the number of external API calls and the functionality works regardless of the

hypervisor/storage/network model underneath.

15.6 Conclusions

This chapter has provided an overview of the trigger technology developed by Flexi-

ant for use within the MODAClouds project. It has showcased the practical use of this

service within a real world example and the importance of such technology within

the MODAClouds solution. Detailed is the technology underpinning the triggers

technology and example triggers created that are freely available and open sourced.

References

1. Flexiant (2015) Software Features Tour. https://www.flexiant.com/flexiant-cloud-orchestrator/

2. Flexiant (2015) 3rd Party Plugins. https://www.flexiant.com/plugins/about-plugins/

3. Flexiant (2016) Flexiant Cloud Orchestrator Developer Guide. http://docs.flexiant.com/display/

DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide

4. Ierusalimschy R, de Figueiredo LH, Celes W (2006) Lua 5.1 Reference Manual. http://www.

lua.org/manual/5.1/

5. Flexiant (2016) Introduction to Jade APIs. http://docs.flexiant.com/display/DOCS/

Introduction+to+Jade+APIs

6. IETF (2005) A Universally Unique IDentifier (UUID) URN Namespace. https://www.ietf.org/

rfc/rfc4122.txt

https://www.flexiant.com/flexiant-cloud-orchestrator/
https://www.flexiant.com/plugins/about-plugins/
http://docs.flexiant.com/display/DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
http://docs.flexiant.com/display/DOCS/Flexiant+Cloud+Orchestrator+Developer+Guide
http://www.lua.org/manual/5.1/
http://www.lua.org/manual/5.1/
http://docs.flexiant.com/display/DOCS/Introduction+to+Jade+APIs
http://docs.flexiant.com/display/DOCS/Introduction+to+Jade+APIs
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt

146 C. Sheridan and D. Whigham

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

Chapter 16

Conclusion and Future Research

Arnor Solberg and Peter Matthews

16.1 Summary

The MODAClouds approach offers a set of innovative techniques for development

and runtime operation management of multicloud applications. In particular it deliv-

ers an open source integrated development environment for the high-level design,

cloud service selection, early prototyping, QoS assessments, semi-automatic code

generation, and automatic deployment of multicloud applications, as presented in

Part I Dev. Secondly it delivers a run-time environment for monitoring, dynamic

adaptation, and data migration to optimize multicloud application execution with

respect to quality of service concerns, as presented in Part II Ops. Thirdly it deliv-

ers DevOps enabling features supporting continuous design, deployment and QoS

analysis for performance optimization, as presented in Part III DevOps. Finally to

demonstrate the technology the book discusses a set of applications from various

domains ranging from more classical information systems with the model manage-

ment and business process modelling applications to the Internet of Things and Cyber

Physical Systems domains with e-health and smart city applications. Part IV Appli-

cations discusses the demonstration of the general applicability the MODAClouds

approach and the main MODAClouds techniques and features, as presented in Part

IV Applications.

A. Solberg (B)

Stiftelsen SINTEF, Postboks 4760 Sluppen, 7465 Trondheim, Norway

e-mail: Arnor.Solberg@sintef.nopleaseaddhere

P. Matthews (B)

CA Technologies UK, Ditton Park, Riding Court Road, Datchet SL3 9LL, UK

e-mail: peter.matthews@ca.com

© The Author(s) 2017

E. Di Nitto et al. (eds.), Model-Driven Development and Operation

of Multi-Cloud Applications, PoliMI SpringerBriefs,

DOI 10.1007/978-3-319-46031-4_16

147

148 A. Solberg and P. Matthews

16.2 Outlook and Further Research

While the MODACLouds approach addresses a set of concerns for multicloud appli-

cation development and operation, many challenging concerns remain, and new con-

cern arise as new opportunities are discovered in the pace of the continuously evolving

digitalized world.

A trend is that increasingly large and complex systems and systems of systems

need to be executed, managed and evolved on hybrid infrastructures consisting of a

continuum of cloud, fog, Cyber Physical Systems and Internet of Things resources

and devices. Coping with this continuum represent daunting challenges. These chal-

lenges also embrace dealing with "old" concerns but in an even larger scale and in

new contexts, for example, seamless management of vast heterogeneity, QoS guar-

antees and optimization of such complex systems, security, privacy and vulnerability

control etc.

A recent trend related to multicloud is federated clouds, where the cloud feder-

ation can consist of multiple clouds. MODAClouds provides baseline technologies

to support this. Moreover, there is an acknowledgement that the centralized cloud

model (all the data are computed and processed centrally in the cloud) that have

been the dominating cloud application model until now, does not meet significant

requirements such as response time and efficient resource exploitation. A decentral-

ized cloud model where computation and processing are also performed at the edges

(i.e., fog computing) and the optimal utilization of tiny devices, e.g., for real time

response, require new methods and techniques for development and operation.

Preparing the cloud to improve the management of big data and machine learning

are challenges that will require cloud architectures to evolve in the areas of cloud

networking, deployment practices and run-time management as well as managing

security and privacy needs. Networking and deployment practices will support an

agile and DevOps approach to application requirements fulfillment.

DevOps is part of a strategy that will lead to continuous delivery, the frequent

updates and bug fixes that are characteristic of the best apps in the mobile arena. This

project has shown that creating applications from previously composed services will

shorten the delivery time. The use of SLA monitoring and automated deployment

also embrace a DevOps strategy. Cloud services that have to be unit tested after

change and composed into an application that can have automated or semi-automated

integration testing again shortens the application supply chain. All of these support

a DevOps approach, however, there needs to be more work done on increasing the

automated supply chain to include integration testing, requirements management and

composition.

An additional area that will require further work is in the security domain. When-

ever cloud computing adoption is discussed there are many commentators and users

who claim that the cloud is insecure. This is now being countered by the realization

that most of the security and vulnerability issues are the same issues for IT in general.

There are no authentication issues that are present in cloud computing architectures

such as SaaS and PaaS that are not there in general non-cloud applications. The addi-

16 Conclusion and Future Research 149

tion of multi cloud applications where federations of cloud services, containers and

microservices are orchestrated or tightly bound into applications brings some inter-

esting challenges. Since many of these services are not fully under the developers

control, being accessed only by APIs there is an increased risk to an application. A

composed or orchestrated application is only as secure as the least secure component.

It is important in an increasingly agile development world that the security metrics of

a service are well understood and reported. Making note of liability exclusions in an

SLA, even if its not in small print, is of no comfort to an organization who has been

penetrated via an insecure service. This is well recognised and is being addressed in

a number of research programs, not the least the MUSA project. This project is tar-

getted at the above security issues and will extend the MODAClouds DSS to enable

the selection and runtime monitoring of service security performance as well as risk,

cost etc., that are part of the MODAClouds project. There are other proposals as

well as funded research in the area of regulatory compliance, assurance etc. that are

addressing the security gaps in cloud and particularly multicloud applications. This

area will become increasingly important as more public services become available,

delivering government, finance and healthcare data to the application developers and

user.

Open Access This chapter is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, duplication, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the work’s

Creative Commons license, unless indicated otherwise in the credit line; if such

material is not included in the work’s Creative Commons license and the respective

action is not permitted by statutory regulation, users will need to obtain permission

from the license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by/4.0/

	Preface
	Contents
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Related Work
	1.4 The MODAClouds Approach
	1.5 The MODAClouds Toolbox
	1.6 Book Objectives
	References

	2 Cloud Service Offer Selection
	2.1 Introduction: Selecting Services for Agile Application Development
	2.2 Decision Support System for Cloud Service Selection
	2.3 Cloud Service Description Standardization
	2.4 Data Gathering in Multi-Cloud Environments
	2.5 Coping with Complexity in SaaS
	2.6 Decision Support Tools for Cloud Service Selection
	2.7 Technical Challenges and Implementation
	2.8 Conclusion: Evolution of Cloud Services, Decision Support and Future Work
	Reference

	3 The MODAClouds Model-Driven Development
	3.1 Introduction
	3.2 The Design-Time Development Process
	3.3 Overall Language Architecture
	3.4 MODACloudML Sub Models
	3.4.1 CCIM Models
	3.4.2 Example
	3.4.3 CPIM and CPSM Models
	3.4.4 Example

	3.5 Related Work
	3.6 Conclusion
	References

	4 QoS Assessment and SLA Management
	4.1 Introduction
	4.2 Case Study: Meeting in the Cloud (MiC)
	4.3 QoS Assessment and Optimisation
	4.3.1 Assessment
	4.3.2 Optimisation
	4.3.3 LINE

	4.4 SLA Management
	References

	5 Monitoring in a Multi-cloud Environment
	5.1 Introduction
	5.2 Tower 4Clouds Architecture
	5.3 Application Configuration Model
	5.4 Monitoring Rules
	5.5 Conclusion
	References

	6 Load Balancing for Multi-cloud
	6.1 Introduction
	6.2 Load Balancing Controller
	6.3 Load Balancing Reasoner
	6.4 Multi-cloud Load Balancing
	6.4.1 Usage Scenario of Multi-cloud Load Balancing

	6.5 Load Balancing and Failure Management
	6.6 Conclusion
	References

	7 Fault-Tolerant Off-line Data Migration: The Hegira4Clouds Approach
	7.1 Introduction
	7.2 Hegira4Clouds Intermediate Meta-Model
	7.3 Architecture and Fault Tolerance Features
	7.3.1 Virtual Data Partitioning
	7.3.2 Recovering from Faults

	7.4 Evaluation: Migrating Tweets
	7.5 Discussion and Conclusion
	References

	8 Deployment of Cloud Supporting Services
	8.1 Introduction
	8.2 MODAClouds Execution Platform
	8.2.1 mOS
	8.2.2 Platform Sub-systems

	8.3 Supporting Services
	8.3.1 Object Store
	8.3.2 Artifact Repository
	8.3.3 Load Balancer Controller
	8.3.4 Batch Engine

	8.4 Conclusions
	References

	9 Models@Runtime for Continuous Design and Deployment
	9.1 Introduction
	9.2 The Models@Runtime Approach
	9.3 The MODAClouds Models@Runtime Engine
	9.3.1 The Comparison Engine
	9.3.2 Adaptation Commands
	9.3.3 State Tracking
	9.3.4 Interaction with the Models@Runtime Engine

	9.4 Related Work
	9.5 Conclusion
	References

	10 Closing the Loop Between Ops and Dev
	10.1 Introduction
	10.2 FG Architecture
	10.2.1 FG Analyzer
	10.2.2 FG Actuator
	10.2.3 FG Reporter

	10.3 Workflow
	10.4 Estimation Techniques for FG Analysis
	10.4.1 A Bayesian Approach Based on Queue-Lengths
	10.4.2 A Maximum-Likelihood Approach Based on Queue-Lengths and Response Times

	10.5 Conclusion
	References

	11 Cloud Patterns
	11.1 Introduction
	11.2 Motivational Guidance
	11.3 MODAClouds-Specific Patterns
	11.4 Conclusions
	References

	12 Modelio Project Management Server Constellation
	12.1 Introduction
	12.2 Proposed Architecture
	12.3 Use of MODAClouds Design and Runtime Components
	12.3.1 Modelling with Creator 4Clouds
	12.3.2 Multi-cloud Deployment with CloudML 4Clouds
	12.3.3 Cost and Performance Analysis with SPACE 4Clouds
	12.3.4 Multi-cloud Monitoring and Management with Energizer 4Clouds

	12.4 Conclusion
	References

	13 BPM in the Cloud: The BOC Case
	13.1 Introduction
	13.2 Context and Motivation
	13.3 Application Scenario
	13.3.1 Cloud Provider Selection
	13.3.2 Application Deployment to Multiple Clouds
	13.3.3 Cloud Application Monitoring
	13.3.4 Cloud to Cloud Migration

	13.4 Conclusion and General Recommendations
	References

	14 Healthcare Application
	14.1 Introduction
	14.2 EHealth Cloud Solution: Why to Deploy It in a Multi-Cloud Environment?
	14.3 Risks and Problems
	14.4 EHealth and MODAClouds: The Story
	14.5 Conclusions
	References

	15 Operation Control Interfaces
	15.1 Introduction
	15.2 Language for Triggers Description
	15.3 Architecture of the Trigger Support
	15.4 Usage of Triggers to Enable Load Balancing
	15.5 Related Work
	15.6 Conclusions
	References

	16 Conclusion and Future Research
	16.1 Summary
	16.2 Outlook and Further Research

