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1. Introduction  

The PID controllers (P, PD, PI, PID) are very widely used, very well and successfully 
applied controllers to many applications, for many years, almost from the beginning of 
controls applications (D'Azzo & Houpis, 1988)(Franklin et al., 1994). (The facts of their 
successful application, good performance, easiness of tuning are speaking for themselves 
and are sufficient rational for their use, although their structure is justified by heuristics: 
"These ... controls - called proportional-integral-derivative (PID) control - constitute the 
heuristic approach to controller design that has found wide acceptance in the process 
industries." (Franklin et al., 1994, pp. 168)). 
 In this chapter we state a problem whose solution leads to the PID controller architecture 
and structure, thus avoiding heuristics, giving a systematic approach for explanation of the 
excellent performance of the PID controllers and gives insight why there are cases the PID 
controllers do not work well. Namely, by the use of Linear Quadratic Tracking (LQT) theory 
(Kwakernaak & Sivan, 1972)(Anderson & Moore, 1989) control-tracking problems are 
formulated and those cases when their solution gives the PID controllers are shown. 
Further, problem of controlling-tracking high order polynomial inputs and rejecting high 

order polynomial disturbances is formulated. By applying the LQT theory extended family 

of PID controllers – the family of generalized PID controllers denoted PImDn-1 is derived. 

This provides tool for application of optimal controllers for those systems that the 

conventional PID controllers are not satisfactory, for generalization and derivation of further 

results. The notation of generalized PID controllers, PImDn-1, is consistent with the notation 

of controllers for fractional order systems (Podlubny, 1999). 

The present work is strongly motivated by problems-question tackled by the author during 

a continuous work on high performance servo and motion control applications. Some of the 

theoretical results that have had motivated and led to the present work have been 

documented in (Rusnak, 1998, 1999, 2000a, 2000b). Some of the presented architectures 

appear and are recommended for use in (Leonhard, 1996, pp. 80, 347) without rigorous 

rationale and were partial trigger for the presented approach. 

By Architecture we mean, loosely, the connections between the outputs/sensors and the 
inputs/actuators; Structure deals with the specific realization of the controllers' blocks; and 
Configuration is a specific combination of architecture and structure. These issues fall within 
the control and feedback organization theory that have been reviewed and presented in a 
concise form in (Rusnak, 2002, 2005) and in a widened form in (Rusnak, 2006, 2008). It is 
beyond the scope of this chapter. It is used here as a basis at a system theoretic level to 
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enable formulation of the control-feedback loops organization problem that leads to the 
family of generalized PID controllers. This article does not deal with the numerical values of 
the controllers' filters coefficients/gains; rather it concentrates in organization of the control 
loop and structure of the filters. This is the way the optimal LQT theory is used. 
The LQT theory requires a reference trajectory generator. The reference trajectory is 
generated by a system that reflects the nominal behavior of the plant. The differences are the 
initial conditions, the input to the reference trajectory generator and the deviation of the 
actual plant from the nominal one. The zero steady state error is imposed by integral action 
of a required order on the state tracking error. 
The generalized controllers derived by the presented methodology have been applied to 
high performance motion control in (Nanomotion, 2009a, 2009b) and to high performance 
missile autopilot in (Rusnak and Weiss, 2011).  
The novelty of the results in this approach is that it shows for what problems a controller 
from the family of PID controllers is the optimal controller and for which it is not. 
The importance of this result is: 
1. From theoretical point of view it is important to know that widely used control 

architecture can be derived from an optimal control/tracking problem. 
2. The solution shows for what kind of systems the PID controller is optimal and for 

which systems it is not, thus showing why a PID controller does not perform well for all 
systems. This will enable to forecast what control designs not to apply a PID controller. 

3. For those systems that the PID is not the controller architecture derived from the 
optimal control approach shows what is the optimal controller architecture and 
structure, thus achieving generalization. 

4. The present approach advises how to design PID controller on finite time interval, i.e. 
when the gains are time varying. 

5. The generalization can be used in deriving generalized PID controllers for high order 
SISO systems, for SIMO and MIMO systems (Rusnak, 1999, 2000a), for time–varying 
and non-linear systems; thus enabling a systematic generalization of the PID controller 
paradigm. 

6. The design procedures of PID controllers are assuming noise free environment. The 
presented approach advises how to generalize the PID controller configuration in 
presence of noises by the use of the Linear Quadratic Gaussian Tracking-LQGT theory 
(Rusnak, 2000b). 

7. The conventional PID paradigm introduces integral action in order to drive the steady 
state tracking errors in presence of constant reference trajectory or disturbance. The 
present approach enables to systematically generalize the controller to drive the steady 
state tracking errors to zero for high order polynomial inputs and disturbances. 

8. Choosing the optimal generalized PID controller reduces the quantity of controller 
parameters-gains that are required for tuning, Thus saving time during the design process. 

9. The LQT motivated architecture enables separate treatment of the transient, by the 
trajectory generator, and the steady state performance by introducing integrators into 
the controllers (Rusnak and Weiss, 2011).  

The results on the architecture and structure of the PID controllers' family for 1st and 2nd 
order are rederived in the article. Specifically, it is shown that the classical one block PID 
controller is optimal for Linear Quadratic Tracking problem of a 2nd order minimum phase 
plant. For plants with non-minimum phase zero the family of PID controllers is only 
suboptimal. Multi output single input architectures are proposed that are optimal.  
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Throughout this chapter the same notation for time domain and Laplace domain is used, 
and the explicit Laplace variable (s) is stated to avoid confusion wherever necessary. 

2. The optimal tracking problem 

The optimal tracking problem is introduced in (Kwakernaak & Sivan, 1972) (Anderson & 
Moore, 1989). The nth order system is 

 
; ( ) ,o ox Ax Bu x t x

y Cx

  



  (1) 

where x is the state; u is the input and y is the measured output, xo is a zero mean random 
vector. 

The th order reference trajectory generator is 

 
; ( ) ,r r r r r r o ro

r r r

x A x B w x t x

y C x

  



 (2) 

where xr is the state; wr is the input and yr is the reference output; wr is a zero mean 

stochastic process, xro  is zero mean random vector. Further it is assumed that n=. The case 

n≠ is beyond the scope of this chapter. 
The integral action is introduced into the control in order to “force” zero tracking errors for 
polynomial inputs, and to attenuate disturbances (Kwakernaak & Sivan, 1972)(Anderson & 
Moore, 1989). This is done by introducing the auxiliary variables, integrals of the tracking 
error. This way the generalized PID controller, denoted PImDn-1, is created. That is, the state 
is augmented by 
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where (m) is the number of integrators that are introduced on the tracking error. 
The control objective is 
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The optimal tracking problem (Kwakernaak & Sivan, 1972) is to find an admissible input 
u(t) such that the tracking objective (5) is minimized subject to the dynamic constraints (1-
4). 
All vectors and matrices are of the proper dimension. 

3. Solution of the optimal tracking problem 

In order to solve the Optimal Tracking Problem we augment the state variables 
(Kwakernaak & Sivan, 1972) and further assume that A=Ar, B=Br and C=Cr. This assumption 
states that the nominal values of the plant's parameters are known. The case A≠Ar, B≠Br and 
C≠Cr is beyond the scope of this chapter. 
We have the error system 

 ; ( ) ,x x r x o ro oe Ae Bw Bu e t x x      (6) 
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then the problem is minimization of (5) subject to (1-4) is the problem of minimization of 
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The solution is (Kwakernaak & Sivan, 1972) (Bryson & Ho, 1969) 
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If we appropriately partition P, then 
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Notice that the solution is independent of the reference trajectory generator input, rw .  
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4. Architectures 

As stated in the introduction Architecture deals with the connections between the 
outputs/sensors and the inputs/actuators; Structure deals with the specific realization of 
the controllers' blocks; and Configuration is a specific combination of architecture and 
structure. These issues fall within the of control and feedback organization theory (Rusnak, 
2006, 2008), and are beyond the scope of this chapter. 
In this chapter we deal with three specific architectures. These are: 
1. Parallel controller architecture; 
2. Cascade controller architecture; 
3. One block controller architecture. 

4.1 Parallel controller architecture 
This control architecture is directly derived from the Solution of the Optimal Tracking 
Problem as derived in (Asseo, 1970) and in (12). The parallel controller can be written 
directly from (12) in Laplace domain as 
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For 2nd order system the parallel controller architecture takes the form. 

    1 1 1 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )r ru s C s x s x s C s x s x s     (14) 

Figure 1 presents the block diagram of the parallel controller architecture for a 2nd order 
system. 
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Fig. 1. Parallel controller architecture for 2nd order system. 

4.2 Cascade controller architecture 

By elementary block operation (13) can be written as 
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This is the cascade controller architecture. For 2nd order system the cascade controller 

architecture takes the form. 

   1
2 2 2 1 1 2 2 1 1

2

( ) ( ) {( ) ( )}r r v r p r

C
u s C x x x x C x x C x x

C

 
        

 
 (16) 

Figure 2 presents the block diagram of the cascade controller architecture for a 2nd order 

system. The rationale for the notation of Cp (position) and Cv (velocity) will be presented in 

the sequel. 

 
 
 

2
x

2rx

1rx

vCpC

1
x

u

 
 

Fig. 2. Cascade controller architecture for 2nd order system. 

4.3 One block controller architecture 

By elementary operation on (13), and exploiting the relations between the state space 

variables, the one block controller architecture can be written as  

  1 1( ) ( ) ( ) ( )ru s  =C s x s x s  (17) 

Figure 3 presents the block diagram of the one block controller architecture. 
 
 
 

rx1 1
xu

 
 

Fig. 3. One block controller architecture. 

4.4 Discussion 

Although from input-output transfer function point-of-view, there is no formal difference 

between the different architectures, there is difference with respect to the response to initial 

conditions, effects of saturation and nonlinearities, robustness, and more.  
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5. Controllers for first order system 

As a first order system is considered, this leads to the one block controller architecture only. 

5.1 P controller 

Here we have 

  1 1x ru = k e k x x   (18) 

This is the proportional - P controller. 

 1( )C s  = k  (19) 

5.2 PI controller 

Here we have 
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This is the proportional + Integral - PI controller. 
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This is the proportional + double integrator - PI2 controller. 
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This is the proportional + (m) integrators -  PIm controller. 
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Table 1 summarizes the one block generalized PID controller structure for first order system. 
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Table 1. One block generalized PID controllers for 1st order system. 

6. Controllers for second order system 

Second order plant and the trajectory generator are assumed and are represented in the 

companion form 
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 The plant's and trajectory's state generator are denoted 
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The reason for selecting the state space representation (27) is that plant without zero, i.e. 

1 0b  , is a case that is often met in motion control with electrical and PZT motors (Rusnak, 

2000a). For plant without zero 2x y  , so that 
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and one can deal with position feedback, feedback on y , and velocity feedback, feedback on 

y . For this reason in this chapter we will call, with slight abuse of nomenclature, the 

feedback loop on y  the position loop and the feedback loop on 2 ,( ),x y  the velocity loop. 

6.1 PD controller 

Feedback without integral action is implemented. The tracking errors are  

 
1 r 1r 1

2 2r 2

 y -y x -x

 x -x
x

x

e e

e

  
  (33) 

The controller is 
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6.1.1 Parallel controller  

    1 r 2 2r 2y -y x -xu k k   (35) 

6.1.2 Cascade controller  
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6.1.3 One block controller 

To get the one block controller we substitute (30) and get (in Laplace domain) 
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This is the PD controller. 

6.1.4 Discussion 

1. We used the assumption that 2 1 2 1( ) / ( ) ( ) / ( )r rx s x s x s x s  and ignored the response to 

initial conditions. 
2. For 2nd order plant with a stable zero the optimal controller is a proper PD controller, 

i.e. no direct derivative is required. 
3. The pole/filter of the derivative in (37) cancels out the zero of the plant (28). This is 

optimal/correct for deterministic (noiseless) systems. For systems with noisy 
measurements this cancelation is no more optimal (Rusnak, 2000b). 

4. The cancellation of the plant's zero by the optimal controller creates an uncontrollable 

system. This may work (although is not good practice) for stable zero. However, when 

the plant has non-minimum phase (unstable) zero the optimal PD controller induces 

uncontrollable unstable mode, which means that the Optimal PD controller 

cannot/should not be implemented in the one block controller architecture. 

5. As for a plant with unstable zero the optimal one block PID controller cannot be 

realized, then measurement of the two states, or an observer is required if one wishes to 

build the optimal controller. 

6. If stable controller is required it is possible to implement the optimal PD one block 

architecture controller only for minimum phase plants! 

7. For 2nd order system without zero the deterministic optimal controller is not proper, i.e. 

requires pure derivative. 

6.2 PID controller 

Zero steady state tracking error on the output is required. The tracking errors are 
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The controller is 
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and the controller in Laplace domain  
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k
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s
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6.2.1 Parallel controller 

    3
1 r 2 2r 2y -y x -x

k
u k k

s

    
 

 (41) 

www.intechopen.com



 
Family of the PID Controllers  

 

41 

6.2.2 Cascade controller 

    1 3
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( ) x -x y -y
k s k

u s k
k s

 
  

 
 (42) 

6.2.3 One block controller 

To get the one block output controller derive we substitute (30) and get (in Laplace domain) 

 

   3 32 2
1 2 2r 2 1 1r 1

1

32 2
1 2

1 2 1 1

( ) x -x x -x

( )
( )

( ) ( ) 1
I D

P
D

k kk x
u s  = k e k e k e e

s s x s

ku s b s a b k k s
C s  = k k k

e s b s b a b s s s

    


     

  

 (43) 

This is the PID controller. 

6.2.4 Discussion 

1. Remarks in section 6.1.4 apply here mutatis mutandis. 
2. For 2nd order plant with a stable zero, the optimal controller with one integrator is a 

stable proper PID controller, i.e. no direct derivative is required. 

6.3 PID controller in PIV configuration  

Zero steady state tracking error on the output and the second state (velocity) is required. 

The tracking errors are 

 1 ,1r 1 x1

2r 2 x2

x - x e

x - x e

   
    
   

    1 = ,
x1

x2

e dt

e dt


 
 
 
 




 (44) 

The controller is 

  1 2 3 4 1 2 3 4

x1

x2

x1 x2 x1 x2
x1

x2

e

e
u k k k k k e k e k e dt k e dt

e dt

e dt

 
 
 

     
 
 
 

 


 (45) 

and in Laplace domain 

 3 4
1 x1 2 x2 x1 x2( ) e e e e  

k k
u s  = k k

s s
 (46) 

6.3.1 Parallel controller  

    3 4
1 r 2 2r 2( ) y -y x -x

k k
u s  = k k

s s

       
  

 (47) 
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6.3.2 Cascade controller - the PIV configuration  

    1 34
2 2r 2 r

2 4

( ) x -x y -y
k s kk

u s = k
s k s k

         
 (48) 

This is called the PIV configuration (Proportional feedback in position loop and 
proportional+integral feedback in the velocity loop) (configuration=combination of 
architecture and structure) as there is almost proportional feedback (Lead-Lag) on the position 

1x  and then in the velocity loop on 2x  there is proportional and one integral feedback. 

6.3.3 One block output controller 

To get the one block controller we substitute (30) and get (in Laplace domain) 

 

3 4
1 2

3 4 2
1 2

1

( )

( )
( )

( ) 1

x1 x2

I D
P

D

k k
u s k e k e

s s

ku s k x k k
C s = k k k

e s s s x s s

        
  

              

 (49) 

This is the PID controller. 

6.3.4 Discussion 

1. Remarks in section 6.1.4 apply here mutatis mutandis. 
2. Two different tracking problems (38, 44) lead to the same one block controller. 
3. In the parallel architecture there is a PI controller in each of the errors (47). 
4. Although formally the cascade architecture controller requires the tuning of six 

parameters in (48), the deterministic optimal PIV controller needs the tuning of four 
parameters only, as can be deduced from (46). 

6.4 PI
2
D controller 

Zero steady state tracking error on the output for ramp input or disturbance is required. The 
tracking errors are  

 
1 1 1 1

2 2 2

2 1

 - -

 -

   






 





x r r

x r

e y y x x e

e x x  (50) 

The controller is 

 
   1 2 3 4 1 2 3 4

1 2 3 4x1 x2 x1 x1

u k k k k k k k k

k e k e k e dt k e dt

                    

   




 

x1x1
x2x2
x11

2 x1

ee
ee
e dtη

η e dt
 (51) 

and in Laplace domain  
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   3 4
1 2 2r 2 2

( ) x -x
k k

u s  = k e k e e
s s

    (52) 

6.4.1 Parallel controller 

    3 4
1 r 2 2r 22

y -y x -x
k k

u k k
s s

     
 

 (53) 

6.4.2 Cascade controller 

  
 

 
2

1 3 4

2 2r 2 r2
2

( ) x -x y -y
k s k s k

u s k
k s

  
  
 
 

 (54) 

Two integrators in the position loop and proportional feedback in the velocity loop. 

6.4.3 One block output controller 

To get the one block controller we substitute (30) and get (in Laplace domain) 

 

       3 34 4 2
1 1r 1 2 2r 2 1 1r 1 2 1r 12 2

1

32 2 4 2
1 2 2 2

1 2 1 1

( ) x -x x -x x -x x -x

( )
( )

( ) ( ) 1
I I D

P
D

k kk k x
u s  k k k k

s s xs s

ku s b s a b k k k k s
C s k k k

e s b s b a b s s ss s 

             
   


        

  

 (55) 

This is the PI2D controller. 

6.4.4 Discussion 

1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.5 PI
2
D controller in IPIV configuration  

Here we want to force zero steady state tracking error on the second state, as well, however 
in different configuration, i.e. 

 1  ,1r 1 x1

2r 2 x2

x - x e

x - x e

   
    
   

    
 1 = ,

2r 2

e

x - x

 
 
 
 




   2 1 2 11 0 , x1or e e          (56) 

The controller is 

 
   

1
1

2
2

1 2 3 4 1 2 3 4
11

2 1

1 1 2 2 3 1 4 1

                    

   




 



x
x

x
x

x

x

x x x x

ee
ee

u k k k k k k k k
e dt

e dt

k e k e k e dt k e dt

 (57) 
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and in Laplace domain  

    3 54
1 2 2r 2 2r 2 2

( ) x -x x -x
k kk

u s  = k e k e e
s s s

     (58) 

6.5.1 Parallel implementation 

    3 5
1 2 r 2r 2

k k
u k y - y x - x

s s

         
  

k

k +

s
4

2  (59) 

6.5.2 Cascade controller – the IPIV configuration  

      
2

1 3 52 4
2r 2 r

2 4

( ) x -x y -y
k s k s kk s k

u s
s s k s k

  
  

  
 (60) 

This is called the IPIV configuration (Proportional +integral feedback in position loop and 

proportional +integral feedback in the velocity loop) as there is almost proportional 

feedback on the position loop, y, and then in the velocity loop on, x2, there is proportional 

and one integral feedback. 

6.5.3 One block output controller 

To get the one block output controller we substitute (30) and get (in Laplace domain) 

 

   3 5 4
1 2 2r 2 2r 22

3 52 4 2 1 2
1 2 2 2

1 1

( ) x -x x -x

( )
( )

( ) 1
I I D

P
D

k k k
u s  = k e k e e

s ss
k ku s x k x k k k s

C s = k k k
e s x s s x s ss s 

   

        


 (61) 

This is the PI2D controller. 

6.5.4 Discussion 

1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.6 PI
2
D controller in PI

2
V configuration  

Here we want to force zero steady state tracking error on the rate of the output as well, 
and 
 

1 1r
1

2 2r

x -x
,

x -x
x1

x2

e

e


   
    
   

    
x1

1 = ,
x2

e dt

e dt


 
 
 
 




  

  2 1   (62) 

The controller is 
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 


































dt

dt

dt

dt
kkkkkku

x2

x1

x2

x1

x2

x1

e

e

e

e

e

e

654321

 (63) 

and in Laplace domain  

      3 5 64
1 2 2r 2 2r 2 2r 22 2

( ) x -x x -x x -x
k k kk

u s k e k e e
s s s s

       (64) 

6.6.1 Parallel controller 

    3 5 64
1 r 2 2r 22 2

y -y x -x
k k kk

u k k
s ss s

           
   

 (65) 

6.6.2 Cascade controller – the PI
2
V configuration 

    
2 2

2 4 6 1 3 5
2r 2 r2 2

2 4 6

x -x y -y
k s k s k k s k s k

u
s k s k s k

    
  

   
 (66) 

This is called the PI2V configuration (Proportional feedback in position loop and 

proportional +double integral feedback in the velocity loop) as there is almost proportional 

feedback (Lead-Lag) in the position loop, on y, and then in the velocity loop, on x2, there is 

proportional and two integrals feedback. 

6.6.3 One block output controller 

 

   3 5 64
1 r 2 2r 22 2

3 5 64 2 2
1 22 2

1 2 1 1

1 2
2

( ) y -y x -x

( )
( )

( ) ( )

1
I I D

P
D

k k kk
u s k k

s ss s

k k ku s k b s a b
C s  = = k k

e s s s b s b a bs s

k k k s
k

s ss 

           
   

               

   


 (67) 

This is the PI2D controller. 

6.6.4 Discussion 

1. Remarks in section 6.1.4 apply here mutatis mutandis. 

6.7 Summary 

This section presented the family of the generalized PID controllers for 2nd order systems. 
The following tables summarize the structure of the controllers in the different architectures. 
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Table 2 presents the family of generalized PID controllers for 2nd order systems in the 

parallel architecture that are able to drive the tracking error to zero for up to constant 

acceleration input and disturbance. Formally, if all possible parallel configurations are 

enumerated then there are three more parallel structures as detailed in Table 3. However 

these additional structures are equivalent to the respective structures in Table 2 as 

detailed in the rightmost column. Therefore these configurations are not considered in the 

following. 

 
 
 

Generalized PID controller - Parallel architecture (Figure 1) 

 Cx1 Cx2 § 

PD k1 k2 6.1 

PID k1+k3/s k2 6.2 

PID- PIV k1+k3/s k2+k4/s 6.3 

PI2D k1+k3/s+k4/s2 k2 6.4 

PI2D-IPIV k1+k3/s+k5/s2 k2+k4/s 6.5 

PI2D- PI2V k1+k3/s+k5/s2 k2+k4/s+k6/s2 6.6 

Table 2. The structure of the parallel architecture controllers for 2nd order plant. 

 
 
 

Generalized PID controller - Parallel architecture (Figure 1) 

 Cx1 Cx2 § 

PID k1 k2+k4/s 6.2 

PI2D k1 k2+k4/s+k6/s2 6.4 

PI2D-IPIV k1+k3/s k2+k4/s+k6/s2 6.5 

Table 3. The structure of the parallel architecture controllers for 2nd order plant. 

Tables 4 and 5 present the family of generalized PID controllers for 2nd order systems in 

the cascade architecture and in the one block controller architecture, respectively, that are 

able to drive the tracking error to zero for up to constant acceleration input and 

disturbance. 

 
 

Generalized PID controller - Cascade architecture (Figure 2) 

 Cp (position-outer loop) Cv (velocity-inner loop) § 

PD k1 k1/k2 6.1 

PID  (k1s+k3)/k2/s k2 6.2 

PIV  (k1s+k3)/(k2s+k4) (k2s+k4)/s 6.3 

PI2D  (k1s2+k3s+k4)/k2/s2 k2 6.4 

IPIV  (k1s2+k3s+k5)/s(k2s+k4) (k2s+k4)/s 6.5 

PI2V  (k1s2+k3s+k5)/(k2s2+k4s+k6) (k2s2+k2s+k6)/s2 6.6 

Table 4. The structure of the cascade architecture controllers for 2nd order plant. 
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One block PD, PID and generalized PID controller (Figure 3) 

Controller type plant integral action(m) § 

PD kP+kD s no zero 0 6.1 

PD kP+kD s/(s D+1) zero 0 6.1 

PID kP + kI/s+kDs no zero 1 6.2,3 

PID kP+ kI/s+kD s/(sD+1) zero 1 6.2,3 

PI2D kP +kI1/s+kI2/s2+kDs no zero 2 6.4,5,6 

PI2D kP+kI/s+kI1/s+kI2/s2+kDs/(s D+1) zero 2 6.4,5,6 

Table 5. The structure of one block generalized PID controller for 2nd order plant with and 
without minimum phase zero. 

7. Reference trajectory generator 

The reference trajectory generator encapsulates the required closed loop behavior as stated 
by the system specification-requirements. There can be two cases: the trajectory is either 
unknown or known in advance. The former case gives the well known pre-filter that creates 
the feed-forward as well. In the second case, for example, minimum time trajectories for 
limited acceleration or jerk, minimum acceleration or jerk energy trajectories, or any other 
profile can be required. Both cases are presented in (Leonhard, 1996, pp. 80, 347, 363-364, 
367) and in many other publications. 

8. Discussion 

In this chapter the generalized PID controllers for 1st and 2nd order system that are able to 

drive the tracking error to zero for up to second order polynomials inputs and disturbances 

have been derived. This presented in detail a methodology to derive additional members of 

the family of generalized PID controllers for high order system (Rusnak, 1999) and high 

order polynomial inputs and disturbances. These are the PImDn-1 controllers. 

Following the theory and the author's experience the full state feedback, especially the 

cascade architecture, Figure 2, is preferable over the one block controller, Figure 3. This may 

come at the expense of higher cost. However in modern digital control loop that are using 

absolute or incremental encoders the position and velocity information is derived at the 

same cost.    

The motion control engineers prefer the cascade controller because of implementation and 

tuning easiness. The most important feature is that in the cascade architecture the feedback 

loop can be tuned sequentially. That is, start with the velocity-inner loop, that is usually 

high bandwidth, and then to proceed to the position-outer loop. The same apply to higher 

order generalized PID controllers. 

9. Conclusions 

By the use of LQR theory we formulated a control-tracking problem and showed those cases 
when their solution gives members of the PImDm-1 family of controllers. This way heuristics 
are avoided and a systematic approach to explanation for the excellent performance of the 
PID controllers is given. The well known one block PID controller architecture is optimal for 
Linear Quadratic Tracking problem of 2nd order systems with no zero or stable zero.  
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