
Chapter 3

Trajectory Tracking Error Using Fractional Order PID
Control Law for Two‐Link Robot Manipulator via
Fractional Adaptive Neural Networks

Joel Perez P., Jose Paz Perez P. and
Martha S. Lopez de la Fuente

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70020

Abstract

The problem of trajectory tracking of unknown nonlinear systems of fractional order is
solved using fractional order dynamical neural networks. For this purpose, we obtained
control laws and laws of adaptive weights online, obtained using the Lyapunov stability
analysis methodology of fractional order. Numerical simulations illustrate the obtained
theoretical results.
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1. Introduction

The fractional calculus is a branch of mathematics that attracted attention since G.W. Leibnitz

proposed it in the seventeenth century. However, the researchers were not attracted to this area

because of the lack of applications and analytical results of the fractional calculus.

On the contrary, the fractional calculus currently attracts the attention of a large number of

scientists for their applications in different fields of science, engineering, chemistry, and so on.

This chapter presents the design of a fractional order nonlinear identifier modeled by a

dynamic neural network of fractional order.

Although PID controllers are introduced long time ago, they are widely used in industry

because of their advantages such as low price, design simplicity, and suitable performance.

While three parameters of design including proportional (Kp), integral (Ki), and derivative
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(Kd) are available in PID controllers, two more parameters exist in FOPID controllers for

adjustment. These parameters are integral fractional order and derivative fractional order. In

comparison with PID controllers, FOPID controllers have more flexible design that results in

more precise adjustment of closed-loop system. FOPID controllers are defined by FO differen-

tial equations. It is possible to tune frequency response of the control system by expanding

integral and derivative terms of the PID controller to fractional order case. This characteristic

feature results in a more robust design of control system, but it is not easily possible.

According to nonlinearity, uncertainty, and confusion behaviors of robot arms, they are highly

recommended for experimenting designs of control systems. Despite nonlinear behavior of

robot arm, it is demonstrable that a linear proportional derivative controller can stabilize the

system using Lyapunov. But, classic PD controller itself cannot control robot to reach suitable

condition. Several papers and wide researches in optimizing performance of the robot manip-

ulator show the importance of this issue.

There are several ways of defining the derivative and fractional integral, for example, the

derivative of Grunwald-Letnikov given by Eq. (1)

aDα

t f tð Þ ¼ lim
h!0

1

hα
X

t� αð Þ

h

� �

j¼0
�1ð Þj

α

j

� �

f t� jhð Þ (1)

where [.] is a flooring operator, while the RL definition is given by:

aDα

t f tð Þ ¼
1

Γ n� αð Þ

dn

dtn

ð

t

a

f τð Þ

t� τð Þα�nþ1
dτ (2)

For n� 1 < α < nð Þ, Γ xð Þ is the well-known Euler’s Gamma function.

Similarly, the notation used in ordinary differential equations, we will use the following

notation, Eq. (3), when we are referring to the fractional order differential equations where

αk ∈R
þ.

which is:

g t, x, aDα1
t x, aDα2

t x,…ð Þ ¼ 0 (3)

The Caputo’s definition can be written as

aDα

t f tð Þ ¼
1

Γ α� nð Þ

ð

t

a

f nð Þ
τð Þ

t� τð Þα�nþ1
dτ (4)

For

n� 1 < α < nð Þ:
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Trajectory tracking, synchronization, and control of linear and nonlinear systems are a very

important problem in science and control engineering. In this chapter, we will extend these

concepts to force the nonlinear system (plant) to follow any linear and nonlinear reference

signals generated by fractional order differential equations.

The proposed adaptive control scheme is composed of a recurrent neural identifier and a

controller (Figure 1).

We use the above scheme to model the unknown nonlinear system by means of a dynamic

recurrent neural network of adaptable weights; the above is modeled by differential equations

of fractional order. Also, the scheme allows us to determine the control actions, the error of

approach of trajectories, as well as the laws of adaptation of adaptive weights and the inter-

connection of such systems.

2. Modelling of the plant

The nonlinear system (Eq. (5)) is forced to follow a reference signal:

aDα

t xp ¼ Fp xp, u
� �

≜ f p xp
� �

þ gp xp
� �

up (5)

xp, f p:∈R
n, u∈Rm, gp ∈R

nxn
:

The differential equation will be modeled by:

aDα

t xp ¼ A xð Þ þW�
Γz xð Þ þΩu:

The tracking error between these two systems:

Figure 1. Recurrent neural network scheme.
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wper ¼ x� xp (6)

We use the next hypotheses.

aDα

t wper ¼ �kwper (7)

In this research, we will use k ¼ 1, so that, Eq. (6), aDα

t wper ¼ aDα

t x� aDα

t xp,; so

aDα

t xp ¼ aDα

t xþ wper

The nonlinear system is [1]:

aDα

t xp ¼ aDα

t xþ wper ¼ A xð Þ þW�
Γz xð Þ þ wper þΩu (8)

Where the W� is the matrix weights.

3. Tracking error problem

In this part, we will analyze the trajectory tracking problem generated by

aDα

t xr ¼ f r xr, urð Þ, wr, xr ∈R
n (9)

Are the state space vector, input vector, and f r, is a nonlinear vectorial function.

To achieve our goal of trajectory tracking, we propose

e ¼ xp � xr (10)

The time derivative of the error is:

aDα

t e ¼ aDα

t xp � aDα

t xr ¼ A xð Þ þW�
Γz xð Þ þ wper þΩu � f r xr, urð Þ (11)

The Eq. (11) can be rewritten as follows, adding and subtracting the next terms cWΓz xrð Þ,

αr t,cW
� 	

, Ae and wper ¼ x� xp,; then,

aDα

t e ¼ A xð Þ þW�
Γz xð Þ þ x� xp þΩu � f r xr, urð Þ þcWΓz xrð Þ

�cWΓz xrð Þ þΩαr t,cW
� 	

�Ωαr t,cW
� 	

þ Ae� Ae

aDα

t e ¼ AeþW�
Γz xð Þ þΩu � f r xr, urð ÞþcWΓz xrð Þ þΩαr t,cW

� 	

�cWΓz xrð Þ �Ωαr t,cW
� 	

� Axr � xr þ xþ AðxÞ

(12)

The unknown plant will follow the fractional order reference signal, if:

Axr þcWΓz xrð Þ þ xr � xp þΩαr t,cW
� 	

¼ f r xr, urð Þ, where

Robotics - Legal, Ethical and Socioeconomic Impacts38



Ωαr t,cW
� 	

¼ f r xr, urð Þ � Axr �cWΓz xrð Þ � xr þ xp (13)

aDα
t e ¼ AeþW�

Γz xð Þ �cWΓz xrð Þ �Aeþ Aþ Ið Þ x� xrð Þ þΩ u� αr t,cW
� 	� 	

(14)

Now, cW is part of the approach, given by W�. The Eq. (14) can be expressed as Eq. (15), adding

and subtracting the term cWΓz xð Þ and if Γz xð Þ ¼ Γ z xð Þ � z xrð Þð Þ

aDα
t e ¼ Aeþ W� �cW

� 	
Γz xð Þ þcWΓ z xð Þ � z xrð Þð Þ þ Aþ Ið Þ x� xrð Þ �AeþΩ u� αr t,cW

� 	� 	

(15)

If

fW ¼ W� �cW and eu ¼ u� αr t,cW
� 	

(16)

And by replacing Eq. (16) in Eq. (15), we have:

aDα
t e ¼ AeþfWΓz xð Þ þcWΓ z xð Þ � z xrð Þð Þ þ Aþ Ið Þ x� xrð Þ �AeþΩeu

aDα
t e ¼ AeþfWΓz xð Þ þcWΓ z xð Þ � z xp

� �
þ z xp

� �
� z xrð Þ

� �
þ

Aþ Ið Þ x� xp þ xp � xr
� �

�AeþΩeu (17)

And:
eu ¼ u1 þ u2 (18)

So, the result for Ωu1 is

Ωu1 ¼ �cWΓ z xð Þ � z xp
� �� �

� Aþ Ið Þ x� xp
� �

, (19)

and Eq. (17) is simplified:

aDα
t e ¼ AeþfWΓz xð Þ þcWΓ z xp

� �
� z xrð Þ

� �
þ Aþ Ið Þ xp � xr

� �
�AeþΩeu

Taking into account that e ¼ xp � xr, the equation for aDα
t e is

aDα
t e ¼ Aþ Ið Þeþ ~WΓz xð Þ þcWΓ zðeþ xrð Þ � zðxrÞÞ þΩu2

¼ Aþ Ið ÞeþfWσ xð Þ þcW σðeþ xrð Þ � σðxrÞÞ þΩu2

If φ eð Þ ¼ σðeþ xrð Þ � σðxrÞÞ, then

aDα
t e ¼ Aþ Ið ÞeþfWσ xð Þ þcWφ eð Þ þΩu2 (20)

Now, the problem is to find the control law Ωu2, in which it stabilizes to the system Eq. (20).

We will obtain the control law using the fractional order Lyapunov methodology.
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4. Asymptotic stability of the approximation error

From Eq. (20), we consider the stability of the tracking error, for which we first observe that

e,cW
� 	

¼ 0, is an equilibrium state of dynamical system from Eq. (20), and we consider a

particular case when A ¼ �λI,λ > 0

For such stability analysis of the trajectory tracking (Eq. (20)), we propose the following FOPID

control law [2]:

Ωu2 ¼ Kpeþ KiaD
�α
t eþ KvaD

α
t e� γ

1

2
þ
1

2
kcWk2L2φ

� �
e (21)

Our objective is to find Kp, Ki, Kv,cW , L2φz
, and this guarantees that the tracking error given by

Eq. (20) is asymptotically stable, for which we will later propose a Lyapunov function, with

γ > 0 ; this control law (Eq. (21)) is similar to [3].

A FOPID controller, also known as a PIλDα controller, takes on the form [4]:

u tð Þ ¼ Kpe tð Þ þ KiaD
�λ
t e tð Þ þ KdaD

α
t e tð Þ

where λ and α are the fractional orders of the controller and e tð Þ is the system error, where

λ ¼ α. Note that the system error e tð Þ replaces the general function f tð Þ.

We will show that the feedback system is asymptotically stable. Replacing Eq. (21) in Eq. (20),

we have

aDα
t e ¼ Aþ Ið ÞeþfWσ xð Þ þcWφ eð Þ þ Kpeþ KiaD

�α
t eþ KvaD

α
t e� γ

1

2
þ
1

2
kcWk2L2φ

� �
e, then

1� Kvð ÞaDα
t e ¼ Aþ Ið ÞeþfWσ xð Þ þcWφ eð Þ þ Kpeþ KiaD

�α
t e� γ

1

2
þ
1

2
kcWk2L2φ

� �
e. If

a ¼ 1� Kvð Þ, then

aDα
t e ¼

1

a
Aþ Ið Þeþ

1

a
fWσ xð Þ þ

1

a
cWφ eð Þ þ

1

a
Kpeþ

1

a
KiaD

�α
t e�

γ

a

1

2
þ
1

2
cW

2

L2φ

� �
e (22)

aDα
t e ¼

�1

a
λ� 1þ Kp

� �
eþ

1

a
fWσ xð Þ þ

1

a
cWφ eð Þ þ

1

a
KiaD

�α
t e�

γ

a

1

2
þ
1

2
cW

2

L2φ

� �
e (23)

And if w ¼ 1
aKiaD

�α
t e, then aDα

t w ¼ 1
aKie tð Þ [5]; then, we rewrite Eq. (23) as:

aDα
t e ¼

�1

a
λ� 1þ Kp

� �
eþ

1

a
fWσ xð Þ þ

1

a
cWφ eð Þ þ w�

γ

a

1

2
þ
1

2
cW

2

L2φ

� �
e (24)

We will show that the new state e,wð ÞT is asymptotically stable and the equilibrium point is

e,wð ÞT ¼ 0,0ð ÞT , when fWσ xrð Þ ¼ 0, as an external disturbance.
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Let V be, the next candidate Lyapunov function as [6]:

V ¼
1

2
eT , wT
� �

e,wð ÞT þ
1

2a
tr fW TfW
n o

(25)

The fractional order time derivative of Eq. (25) along with the trajectories of Eq. (24) is

aDα
t V ¼ eTaDα

t eþ wTaDα
t wþ

1

a
tr aDα

t
fW TfW

n o
(26)

aDα
t V ¼ eT

�1

a
λ� 1þ Kp

� �
eþ

1

a
fWσ xð Þ þ

1

a
cWφ eð Þ þ w�

γ

a

1

2
þ
1

2
cW

2

L2φ

� �
e

� �

þ
1

a
fW T

Kieþ
1

a
tr aDα

t
fW TfW

n o (27)

In this part, we select the next learning law from the neural network weights as in [7] and [8]:

tr aDα
t
fW TfW

n o
¼ �eTfWσ xð Þ (28)

Then, Eq. (27) is reduced to

aDα
t V ¼

�1

a
λ� 1þ Kp

� �
eTeþ

eT

a
cW φ eð Þ þ 1þ

Ki

a

� �
eTw�

γ

a

1

2
þ
1

2
kcWk2L2φ

� �
eTe (29)

Next, lets consider the following inequality proved in [9]

XTY þ YTX ≤XTΛXþ YTΛ�1Y (30)

which holds for all matrices X,Y∈R
nxk and Λ∈R

nxn with Λ ¼ ΛT
> 0. Applying (30) with

Λ ¼ I to the term eT

a
cWφ eð Þ from Eq. (29), where

eTcWφ eð Þ ≤
1

2
kek2 þ

1

2
L2φk

cWk2e2 ¼
1

2
1þ L2φk

cWk2
� 	

kek2

we get

aDα
t V ≤

�1

a
λ� 1þ Kp

� �
eTeþ

1

a

eTe

2
þ
1

2
kcWk2L2φ

� �
eTeþ 1þ

Ki

a

� �
eTw�

γ

a

1

2
þ
1

2
kcWk2L2φ

� �
eTe

(31)

Here, we select 1þ
Ki

a

� �
¼ 0 and Kv ¼ Ki þ 1, with Kv ≥ 0 then Ki ≥ � 1, with this selection

of the parameters from Eq. (31) is reduced to:

aDα
t V ≤

�1

a
λ� 1þ Kp

� �
eTe�

γ� 1ð Þ

a

1

2
þ
1

2
kcWk2L2φ

� �
eTe (32)
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Of the previous inequality, Eq. (32), we need that the fractional order Lyapunov derivative,

aDα
t V ≤ 0, to ensure that the trajectory tracking error is asymptotically stable, that is,

limt!∞ e tð Þ ¼ 0, which means that the nonlinear system follows the reference signal.

To achieve this purpose, we select:

λ� 1þ Kp > 0, a > 0, γ� 1ð Þ > 0, aDα
t V ≤ 0, ∀ e, w, cW 6¼ 0, e 6¼ 0

With the above Eq. (32), the control law that guarantees asymptotic stability of the tracking

error is given by Eq. (33)

u ¼ Ω†½�cWΓ z xð Þ � z xp
� �� �

� Aþ Ið Þ x� xp
� �

þ Kpeþ KiaD
�α
t eþ KvaD

α
t e

�γ
1

2
þ
1

2
kcWk2L2φ

� �
eþ f r xr, urð Þ � Axr �cWΓz xrð Þ � xr þ xp

(33)

Theorem: The control laws (Eq. (33)) and the adaptive weights (Eq. (28)) ensure that the

trajectory tracking error between the fractional nonlinear system (Eq. (8)) and the fractional

reference signal (Eq. (9)) satisfies limt!∞ e tð Þ ¼ 0

Remark 2: From Eq. (32), we have

aDα
t V ≤

�1
a λ� 1þ Kp

� �
eTe�

γ� 1ð Þ
a

1

2
þ
1

2
kcWk2L2φ

� �
eTe < 0, ∀ e 6¼ 0, ∀ cW , where V is decreas-

ing and bounded from below by V 0ð Þ, and:

V ¼ 1
2 eT , wT
� �

e,wð ÞT þ 1
2a tr

fW TfW
n o

,; then we conclude that e, fW ∈ L1; this means that the

weights remain bounded.

5. Simulation

The manipulator used for simulation is a two revolute joined robot (planar elbow manipula-

tor), as shown in Figure 2.

The dynamics of the robot is established by [10, 11], Mij qð Þ, i, j ¼ 1, 2 of the inertia matrix

M qð Þ as

M11 qð Þ ¼ m1l
2
c1 þm2 l21 þ l2c2 þ 2l1lc2 cos q2

� �� �
þ I1 þ I2;

M12 qð Þ ¼ m2 l2c2 þ l1lc2 cos q2
� �� �

þ I2;

M21 qð Þ ¼ m2 l2c2 þ l1lc2 cos q2
� �� �

þ I2;

M22 qð Þ ¼ m2l
2
c2 þ I2:

C11 q, _qð Þ ¼ �m2l1lc2 sin q2
� �

_q2;

C21 q, _qð Þ ¼ �m2l1lc2 sin q2
� �

_q1 þ _q2
� �

;
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C21 q, _qð Þ ¼ �m2l1lc2 sin q2
� �

_q1

C22 q, _qð Þ ¼ 0

And the torque vector g qð Þ:

g1 qð Þ ¼ m1lc1 þm2l1ð Þgsin q1
� �

þm2lc2gsin q1 þ q2
� �

;

g2 qð Þ ¼ m2lc2gsin q1 þ q2
� �

;

Thus, it is possible to write the equations of motion using the Lagrange equations for fractional

manipulator system as [12]:

m1 þm2ð Þl21θ
€

1 þm2l1l2θ€2 cos θ2 � θ1ð Þ �m2l1l2 _θ
2

2 sin θ2 � θ1ð Þ þ m1 þm2ð Þgl1 sin θ1ð Þ

þ
ðα� 1Þ

ðt� τÞ
m1 þm2ð Þl21

_θ1 þm2l1l2 _θ2cos θ2 � θ1ð Þ

 �

¼ Q1

m2l
2
2θ
€

2 þm2l1l2θ€1 cos θ2 � θ1ð Þ þm2l1l2 _θ
2

1sin θ2 � θ1ð Þ þm2gl2 sin θ2ð Þ

þ
ðα� 1Þ

ðt� τÞ
m2l

2
2
_θ2 þm2l1l2 _θ1cos θ2 � θ1ð Þ


 �

¼ Q2

The terms containing α indicate the additional terms resulting from the fractional order model

and the right-hand sides denote the generalized force terms resulting from the forcing func-

tions, and there is a specific set of values for Q1 and Q2 for each case.

Figure 2. Diagram of the prototype planar robot with two degrees of freedom.
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With the end of supporting the effectiveness of the proposed controller, we have used a

Duffing equation.

The fractional order neural network is modelling by the differential equation:

aDα
t xp ¼ A xð Þ þW�

Γz xð Þ þΩu, with A ¼ �λI, I ∈R4x4, and λ ¼ 20, W� is estimated using the

learning law given in Eq. (28).

Γz xð Þ ¼ tanh x1ð Þ, tanh x2ð Þ,…, tanh xnð Þð ÞT, Ω ¼
0 0 1 0
0 0 0 1

� �T

and the u is calculated using

Eq. (33). The plant is stated in [3] and [13], and it is given by:

D qð Þq€þ C q, _qð Þ _q þ G qð Þ ¼ τ

We try to force this manipulator to track a reference signal [14] given by undamped Duffing

equation:

x€� xþ x3 ¼ 0:114 cos 1:1tð Þ : x 0ð Þ ¼ 1, _x 0ð Þ ¼ 0:114

To get the fractional order Duffing’s system, this equation can be rewritten as a system of the

first-order autonomous differential equations in the form [15]:

x tð Þ

dt
¼ y tð Þ

y tð Þ

dt
¼ x tð Þ � x3 tð Þ � αy tð Þ þ δcos ωtð Þ

Here, the conventional derivatives are replaced by the fractional derivatives as follows:

aDα
t x tð Þ ¼ y tð Þ

aDα
t x tð Þ ¼ x tð Þ � x3 tð Þ � αy tð Þ þ δcos ωtð Þ

where α is the fractional orders and α, δ, ω are the system parameters.

Illustrated, the response in the time, angular position and torque applied to the fractional

nonlinear system are shown in Figures 3–7. As can be observed, the trajectory tracking

objective is obtained

α ¼ 1, β ¼ 1

Its phase space trajectory is given in Figure 8, and the time evolution for the position angles

and applied torque are shown in Figures 9–12. As can be seen in Figures 9 and 10, the

trajectory tracking is successfully obtained where plant and reference signals are the same.

α ¼ 0:99, β ¼ 0:99
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Figure 3. A phase space trajectory of Duffing equation.

Figure 4. Time evolution for the angular position q1 (rad) of link 1.

Trajectory Tracking Error Using Fractional Order PID Control Law for Two‐Link Robot Manipulator via…
http://dx.doi.org/10.5772/intechopen.70020

45



Figure 5. Time evolution for the angular position q2 (rad) of link 2.

Figure 6. Torque (Nm) applied to link 1.
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Figure 7. Torque (Nm) applied to link 2.

Figure 8. A phase space trajectory of Duffing equation.

Trajectory Tracking Error Using Fractional Order PID Control Law for Two‐Link Robot Manipulator via…
http://dx.doi.org/10.5772/intechopen.70020

47



Figure 9. Time evolution for the angular position q1 (rad) of link 1.

Figure 10. Time evolution for the angular position q2 (rad) of link 2.
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Figure 11. Torque (Nm) applied to link 1.

Figure 12. Torque (Nm) applied to link 2.
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Figure 13. A phase space trajectory of Duffing equation.

Figure 14. Time evolution for the angular position q1 (rad) of link 1.
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Figure 15. Time evolution for the angular position q2 (rad) of link 2.

Figure 16. Torque (Nm) applied to link 1.
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Its phase space trajectory is given in Figure 13, and the time evolution for the position angles

and applied torque are shown in Figures 14–17. As can be seen in Figures 14 and 15, the

trajectory tracking is successfully obtained where plant and reference signals are the same.

α ¼ 0:001, β ¼ 0:001

As can be observed, in the graphs of the trajectory tracking, the experimental results obtained

in this chapter show a good experimental performance. The laws of control are obtained

online, as well as the laws of adaptive weights in the fractional order neural network.

The control laws obtained are robust to modeling errors and nonmodeled dynamics (unknown

nonlinear systems).

6. Conclusions

We have discussed the application of the stability analysis by Lyapunov of fractional order to

follow trajectories of nonlinear systemswhosemathematical model is unknown. The convergence

of the tracking error is established by means of a Lyapunov function, as well as a control law

based on Lyapunov and laws of adaptive weights of fractional order dynamical neural networks.

The results show a satisfactory performance of the fractional order dynamical neural network

with online learning.

Figure 17. Torque (Nm) applied to link 2.
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