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1. Introduction  

Computational plasma physics is concerned primarily with the study of the evolution of 
plasma by means of computer simulation. The main task of this computational branch is to 
develop methods able to obtain a better understanding of plasma physics. Therefore a close 
contact to theoretical plasma physics and numerical methods is necessary. Ideally 
computational plasma physics acts as a pathfinder to guide scientific and technical 
development and to connect experiment and theory. To build a valid computer simulation 
program means to devise a model which is sufficiently detailed to reproduce faithfully the 
most important physical effects, with a computational effort sustainable by modern 
computers in reasonable time (Dandy, 1993). 
Computational models have played an important role in the development of plasma physics 
since the beginning of the computer age. Advances in our understanding of many plasma 
phenomena like magnetohydrodynamic instabilities, micro-instabilities, transport, wave 
propagation, etc. have gone hand-in-hand with the increased computational power 
available to researchers. Several trends are evident in how computer modelling is carried 
out: the models are becoming increasingly complex, for example, by coupling separate 
computer codes together. This allows for more realistic modelling of the plasma. Presently 
several efforts are carried out in different countries to develop plasma numerical tools for 
several applications such as fusion, electric propulsion, active control over hypersonic 
vehicles: these efforts lead to a growing experience in CMFD field (see Park et al. 1999, 
Kenneth et al 1998, Taku and Atsushi 2004, Cristofolini et al 2007, Miura and Groth 2007, 
MacCormack 2007, Yalim 2001, Giordano and D’Ambrosio 2004, Battista 2009). 
The chapter presented was carried out in the context of a research activity motivated by 
renewed interest in investigating the influence that electromagnetic fields can exert on the 
thermal and pressure loads imposed on a body invested by a high energetic flow. In this 
regard, spacecraft thermal protection and the opportunity to use active control surfaces 
during planetary (re)entry represent the driving engineering applications. The contents of 
the study should be considered, to a certain extent, a systematic re-examination of past work 
complemented with somewhat innovative ideas. 
So, in this chapter, methodologies for plasma modelling have been developed and then 
implemented and tested into a numerical code EMC3NS, developed in the frame of this 
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work. This one has been used and tested primarily to support the design of experiments in 
problems of active flow control over bodies in an electromagnetic field in order to modify 
shock waves position, and consequently the aerothermal environment. 
These kind of experiments are not so common in the scientific community especially using 

air as working gas, thus the lack of experimental data and lesson learned in this field make 

numerical computation play an important role. So the use of valid computer simulation is 

crucial for a correct design of a flow control experiment set up diagnostics and to 

understand main physical phenomena related to this kind of problems. 

The use of magnetic fields to control external flows is not new (for instance see Bush (1958), 

Resler & Sears (1958));  recent computational and experimental technologies have moved 

this approach from mere possibility to real application, highlighting the considerable 

advantage that may be gained in re-entry operation.  

The physical ideas are incorporated into the so-called magneto-fluid-dynamic interaction 

concept: global body forces can be applied to a weakly ionized plasma using electro-

magnetic devices embedded in the vehicle. Therefore, there is a growing interest in using 

weakly ionized gases (plasmas) and electric and magnetic fields in high-speed 

aerodynamics. Wave and viscous drag reduction, thrust vectoring, reduction of heat fluxes, 

sonic boom mitigation, boundary-layer and turbulent transition control, flow turning and 

compression, on-board power generation, and scramjet inlet control are among plasma and 

MHD technologies that can potentially enhance performance and significantly change the 

design of supersonic and hypersonic vehicles and thrusters. 

Meanwhile, despite many studies devoted to these new technologies, a number of 

fundamental issues have not been adequately addressed. Any plasma created in gas flow 

and interacting with electric and magnetic fields would result in gas heating. This heating 

can certainly have an effect on the flow and, in some cases, can be used advantageously. 

However, a more challenging issue is whether significant non-thermal effects of plasma 

interaction with electric and magnetic fields can be used for high-speed flow control. In 

conventional MHD of highly conducting fluid, electric and magnetic effects give rise to 

ponderomotive force terms, which can be interpreted as gradients of electric and magnetic 

field pressures. These ponderomotive forces are successfully used for plasma containment 

in fusion devices and also play an important role in astrophysics. One might hope that these 

forces can also be used for control of high-speed flow of ionized air. However, the great 

importance of ponderomotive forces in fusion and astrophysical plasmas is due to the fact 

that those plasmas are fully, or almost fully, ionized and, therefore, are highly conductive. In 

contrast, high speed air encountered in aerodynamics is not naturally ionized, even in 

boundary layers and behind shocks if the flight Mach number is below about 8, due to the 

low static temperature. So in this case studies are necessary to set up technologies and 

methodologies to control the flow in such weak ionized regime. 

2. Governing equations 

In the present section the set of equations to be solved is exposed; as previously described, 

the choice of a model, and thus the acceptance of all the underlying hypotheses, determines 

the nature of the results that numerical computations provide. The analysis has been carried 

out in order to provide a set of equations suitable for the problematic exposed in the 

introduction, with a limited computational cost and that have a structure easily adaptable 
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with classical aero-thermo-dynamic codes (e.g. H3NS developed by CIRA) that are nearly in 

the same field of application. For these scopes three set of equations have been analyzed: 

multi-fluid equations (Wagner 1998), MHD equations (Helander 2006), and MFD equations 

for a single fluid composed by more than one species (Giordano 2002). 

The first set of equations (three fluid equations), where each species (charged and not) is 

considered as a single fluid interacting with the other through collisions, is one of the 

more appropriate way to describe plasma flows. However, even if the collision process is 

well described, it requires a large computational cost because of the large number of 

equations to be solved (especially in presence of more chemical species (Giordano 2002)). 

The MHD set of equations describes the motion and the electrodynamics of an electrically 

neutral but electrically conducting fluid. These assumptions do not permit to have any 

information about the species present in the flowfield; moreover diffusive transport and 

charge separation are excluded by this model. These drawbacks are critical in the 

exclusion of this approach for our purposes. The MFD equations for a single multispecies 

fluid is the set of equations that more than the others is suitable for our scope since it does 

not loose information about species (charged and not), and furthermore the collisions 

process can be modelled by transport coefficients. Besides this model is not 

computationally heavy and the equation structure is easily adaptable to the one used in 

typical finite volume codes for aerothermodynamics application. The model that will be 

used and described further is able to consider a multi-temperature gas with vibrational 

temperature and electronic temperature in non equilibrium with the translational 

temperature. 

The assumptions used to write down the system of equations are the following: 

1. the velocity is not relativistic u c ;  

2. the phenomena under consideration are slow enough that 
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4. the Debye length and the ion gyro radius are small  D L  , i L  . 

The equations are written in the following; mass balance equations of the components in 

chemical non equilibrium conditions yield,  
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Pointing out the charge density as 
1

n
i
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
 


    (where iS  is equal to (+1) for 

electrons, to (-1) for ions and to (0) for neutral components) and summing up for all the 
charged species, then the electric charge balance equation is obtained  

 ( ) 0c q c

V S

dV J V dS
t

 
   

     (2.2) 

where the current is the sum of convection and conduction current c QJ V J  3; the 

momentum equation is 
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where the total energy is 
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The vibrational energy equations: 
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provides the terms  in the Eqn.(2.4). 
The opportunity of considering electronic temperature in the vibrational energy equations is 
currently object of study. The production terms of the vibrational energy equation are 
evaluated through the classical Landau Teller non equilibrium equation (Vincenti & 
Krouger 1967). 

2.1 Chemical model  
Given a generic set of Nr chemical reactions, 
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where ’ir  and ’’ir are the stoichiometric coefficients for the r-th reaction and i are the 
chemical species involved in the reactions, the production rate Ωi  of species i can be written as 

 
' '''' '
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where kfr  and kbr  are the forward and backward rate constants of the reaction r, which are 
assumed to follow the Arrhenius temperature law: 
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where the pre-exponential factors Ai, the temperature exponents r , and the activation 

energies Ei  depend upon the adopted kinetic scheme. 

The backward rate constants are related to the forward rate constants through the 
equilibrium constants Keq,r, i.e.: 
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In some cases the equilibrium coefficients can be given as a function of the temperature, and 

the backward reaction rate can be calculated directly from the Eqn. (2.9).  

For argon the reaction coefficients that have been considered in order to account for 
ionization are: 
 

n. Reaction A [mol-cm-s-K] β Ea [J/mol] 

1 AR   AR+ + e- 1.52e18 0.50 1520000 

2 AR + e   AR+ + 2e- 2.50e34 -3.8 1510793 

 
where the reaction rate coefficients of the first reaction  have been derived from:  

 2 2
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this formula is consequent from the expression of binary collision rate where m12 is the 

reduced mass, d12 is the mean diameter, kB is the Boltzmann constant and P is the steric 

factor. The second reaction rate coefficient has been taken from (Gokcet 2004). 

For air ionization one of the most important reactions governing the distribution of free 

electrons present in high temperature air plasmas is (Dunn & Lordi 1969): 

N O NO e     

In this work, in order to model air ionization several 7-species models and 11 species models 
have been used (Gupta et al. 1989, Park 1993, Kang et al.1973)  and compared also with a 
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model generated using (Park 1993) and (Kang et al.1973) derived in order to better fit 
experimental data w.r.t. the original 11 species models. The scheme adopted is reported 
hereinafter specifying for each reaction the respective source. 

 

n. Reaction A [mol-cm-s-K] Β Ea [J/mol] Ref 

1 O2      2 O 1.0e22 -1.5 494706.8 P 

2 N2      2 N 3.0e22 -1.6 941190.08 P 

3 NO   N + O 1.1e17 0.0 627737.2 P 

4 NO + O    N + O2 8.4e12 0.0 161715.08 P 

5 N2 + O    N + NO   6.4e17 1.0 319257.96 P 

6 N + O    NO+ +  e- 1.6e06 1.5 265892.8 K 

7 N + O    NO+ + e- 6.7e21 -1.5 0 K 

8 O + O    O2+ +  e- 1.6e17 -0.98 671803.52 K 

9 O2+ +  e-    O + O   8.0e21 -1.5 0 K 

10 N + N    N2+ +  e- 1.4e13 0 671803.52 K 

11 N2+ +  e-    N + N   8.0e21 -1.5 0 K 

10 O2 + N2   NO + NO+ +  e- 1.38e20 -1.84 1172330.4 K 

12 NO + NO+ +  e-    O2 + N2 8.0e21 -2.5 0 K 

13 NO + N2    NO+ + N2 +  e- 2.2e15 -0.35 897955.2 K 

14 NO+ + N2 +  e-   NO + N2   2.2e26 -2.5 0.0 K 

15 NO + O2    NO+ + O2 +  e- 8.8e15 -0.35 897955.2 K 

16 NO+ + O2 +  e-   NO + O2   8.8e26 -2.5 0 K 

17 O +  e-   O+ +  e-+ e- 3.9e33 -3.78 1317832.4 P 

18 N +  e-   N+ +  e-+ e- 8.8e26 -3.82 1401807.84 P 

19 O + O2+  O+ + O2 2.92e18 -1.11 232803.2 P 

20 O+ + O2   O + O2+ 7.80e11 0.5 0.0 P 

21 N2 + N+  N + N2+  2.02e18 0.81 108087.2 P 

22 N + N2+   N2 + N+ 7.80e11 0.5 0.0 P 

23 O + NO+  NO + O+  3.63e15 -0.6 422371.52 P 

24 NO + O+   O + NO+ 1.50e13 0.0 0.0 P 

25 N + NO+  NO + N+  1.00e19 -0.93 507178.4 P 

26 NO + N+   N + NO+ 7.80e11 0.0 0.0 P 

27 O2 + NO+  NO + O2+  1.80e15 -0.6 274375.2 P 

28 NO + O2+   O2 + NO+ 1.50e13 0.0 0.0 P 

29 O + NO+  N++ O2 1.34e13 0.31 642453.69 P 

30 N++ O2   O + NO+ 1.00e14 0.0 0.0 P 

Table 1. Kinetic scheme obtained using (Park 1993) and (Kang et al.1973) 
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2.2 Thermodynamic model  
By definition a thermally perfect gas is characterized by specific heats that depend only on 
temperature. 
Hence, for a mixture of thermally perfect gases:  

  pdh c T dT  (2.11) 

 p RT  (2.12) 

where R and cp are, respectively, the gas constant and the specific heat at constant pressure 
of the mixture. They are obtained as weighted average of the gas constants and specific 
heats of the single species i-th:  

 i i
i

R Y R    p i pi
i

c T Y c T   (2.13) 

The single species specific heats and enthalpies are computed by using the (Gordon and 
McBride 1971) polynomial fits:   
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Fig. 1. Enthalpy fit extension for temperatures ranging from 6000K and 15000K. 
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These fits are written for gases with the maximum temperature of 6000K, so it has been 
necessary to extend the enthalpy fits to values of temperature typical of ionization problem 
(up to 15000K). Here is briefly reported the fitting procedure for argon: from literature 
(Drellishak et al. 1963) thermodynamic properties are derived for high temperatures then 
the coefficients are found using a least squares fitting procedure. The results for Argon 
enthalpy are shown in Fig. 1. Thermodynamic properties for high temperature air, used to 
find fit coefficients, have been found in (Hans & Heims 1968). 

2.3 Transport model  
Another critical point in the simulation of high enthalpy flows is the determination of the 
transport coefficients. In fact, the widely used Sutherland law is suitable only at low 
temperatures, while more complex models must be used when temperature exceeds 1000 K. 
An interesting way to compute transport coefficients is based on the calculation of the 
collision integral starting from intermolecular potentials knowledge (Hirshfield et al. 1954) 
and it leads to the following expressions for the diffusivities between the i-th and the j-th 
species and also for conductivity and viscosity with different sets of constants given in 
Gupta et al. 1958, Hans & Heims 1968. In this way computational efficiency is maximized 
since transport coefficients are computed only once at the start of each calculation. 

  1

1

,
lnln




 n
N

n
ijnij TdD

     

  1

1

,
lnln




 n
N

n

ini Tb
    

  1

1

,
lnln




 n
N

n

ini Ta
. 

Once derived the single species properties, total conductivity and viscosity are calculated 
using Wilke (Hirshfielder 1954) formulas. The mixture diffusion coefficient for species i-th is 
obtained as reported in Bird (1954). 
Polynomial coefficients for ionized species have been found fitting data from (Capitelli et 

al. 2000); the results of the fitting procedure for NO+, N+ and O+ are shown for viscosity 

in Fig. 2. 
 

 

Fig. 2. Viscosity in function of temperature for charged species NO+, N+ and O+ 
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2.4 Electrical conductivity  

In order to evaluate electrical conductivity its classical expression has been written down: 
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where υeH  is the collision frequency between electrons and heavy particles measured in Hz. 

By substituting the constant values the expression becomes: 

  eH
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 8

1081794.2
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.  

Considering collision frequency as eH H eH en Q u   and substituting the electron mean 

velocity (under Maxwellian distribution hypothesis) the following expression yield: 

 eH

e

Q

T
2/1

12
104.535909


   (2.16)

 

where He nn is the degree of ionization. For what concerns QeH an expression for air 

could be found in (Baum 1965). 

2.5 Maxwell equations  

Maxwell equations have to be solved together with the fluid equations in order to solve the 

full MFD system: equations are the following: 
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they can be rewritten in conservative form, 
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  (2.20) 

2.6 Collision modeling  

In order to correctly describe collision processes that in this kind of equations determine the 

transport properties of the fluid, a momentum equation could be written down for each 

spatial direction, neglecting time derivatives as: 
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In the previous equations the cyclotronic vector 
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divided by   gives the Hall parameter vector that represent the Hall parameter along all the 

space dimension: 
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Decoupling the equations multiplying by ne, and reminding from previous section that 
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 , with a matrix pivoting technique it can be obtained the relation between electric 

field and current, i.e. 
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 (2.22)

 

From Eqn. (2.22) the tensor e  is directly derived. 

3. Numerical discretization of the full system and solving methodologies 

In the previous parts the fundamental equations governing an MFD plasma flow have been 

described. They constitute a system of 11 scalar equations plus one scalar equation for each 

species considered and one scalar equation for each vibrating species considered. In the 

following the numerical strategy and methods adopted to solve the systems will be exposed 

All the equations briefly reported in the previous section have the following conservative 

form:  

    
V V V

W dV F n dS dV
t 


   

      (3.1) 

so they can be simply discretized following a finite volume approach: 

 
1,6

( )
dW

V F n S V
dt


 

       (3.2) 

The unknown vector  W , the flux vector ( F ) and the source term vector ( ) used in the 

finite volume discretization are reported below. 
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(3.3) 

3.1 Numerical solving strategy description: Weak coupling 
From the vectorial form of the system of equations we have a synthetic view of what kind of 

system we have to solve. It is also clear that it includes terms of different physical nature, in 

particular it combines acoustic and electromagnetic terms. In the present analysis it has been 

chosen to split this system of equations into the two following sub-systems: 

1. Fluid-Dynamics equations sub-system 
2. Maxwell equations sub-system 
This strategy, named from literature (Giordano and D’Ambrosio 2005) ‘weak coupling’, 

allows us to treat separately the Maxwell equations and then to ”freeze” the resulting 

electromagnetic field and to solve the fluid-dynamic sub-system. 

The main reason behind the choice of this procedure is the highly different characteristic 

speed of propagation between sound and light. The fluid-dynamic phenomena (accounted 

for in the first sub-system) propagate at the speed of sound, while the electromagnetic 

phenomena (described by the Maxwell equations) propagate at the speed of light. Since 

light travels at least one hundred thousand times faster than sound, it is advisable to split 

the main system. Moreover, the differences of signals propagation in space make crucial the 

adoption of different numerical methods to solve each sub-system. Since the equations are 

solved both in space and time, one of the most striking differences between these two 

numerical methods will be the choice of the integration time interval, dt. Much shorter 

intervals are requested when solving Maxwell equations, because of the higher propagation 

speed for the phenomena involved. The numerical method for the Maxwell equations solver 

will be investigated in the next section. Another issue to be faced with is how these two sub-

systems communicate each other. It is apparent that they are coupled, because the 

electromagnetic fields appear on the right hand side of the momentum and energy 

conservation equations, while the fluid velocity and the electric transport properties are 

directly linked to the current density (which plays an important role in the second Maxwell 

equation). Therefore it is necessary to find a way to solve the sub-systems alternately. The 

algorithm to be followed is sketched in the figure below: 
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Fig. 3. System solving strategy 

So, given the initial conditions (both for fluid-dynamic variables and electromagnetic fields) 

the solution procedure to solve the system is: 

 The fluid-dynamic subsystem is solved. 

 Maxwell equations are solved, using as input the value of current density which has 
been found at the end of step one. This leads to update the electromagnetic field 
intensity. 

 The newly found values for E and B are sent back again to the fluid dynamic over to 
update the residual of the equations, which perform another step like the first one 
(keeping E and B constant). 

These three steps make the solution march in time for an interval dt. They have to be 
repeated iteratively until the required total time of simulation is reached. 

3.2 Fluid-dynamic subsystem: Starting platform description and upgrades through 
magneto-fluid-dynamic problems treatment 
CIRA H3NS code numerical structure has been used as starting platform. H3NS is a 

RANS structured multi-block finite volume solver that allows for the treatment of a wide 

range of compressible fluid dynamics problems considering air as a working gas. The 

fluid can be treated considering air as a prefect gas or as a mixture of perfect gases in of 

thermo-chemical non equilibrium (5 species air and 3 vibrational temperatures). With 

respect to the numerical formulation, conservation equations are written in integral form, 

and discretized with a finite volume, cell centred technique. Eulerian fluxes are computed 

with a Flux Difference Splitting method (Borrelli and Pandolfi 1990). Second order 

formulation is obtained by means of an Essentially Non Oscillatory reconstruction of 

interface value. Viscous fluxes are computed with a classical centred scheme. Time 

integration is performed by employing an explicit multistage Runge-Kutta algorithm 

coupled with an implicit evaluation of the source terms. 

More accurate description of the models implemented and validation tests in 2D and 3D 

hypersonic problems could be found in (Schettino et al. 2008), (Battista et al. 2007). In order 

to be able to treat magneto fluid dynamic problems the following upgrades have been 

implemented: 

 Capability in the treatment of a generic multi-component reacting mixtureof perfect 
gases including ionized species (Arrhenius formulation). 
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 Electromagnetic terms added at the equations implemented 

 Thermodynamic properties formulation in terms of Gordon-Mc Bride Polynomial fits. 
(Gordon and McBride 1971) 

 Extension of thermodynamic properties (specific heat, enthalpy and entropy) to higher 
temperatures. 

 Included ionized species transport properties. 

 Effects of electromagnetic field on transport accounted. 
Models considered for these upgrades have been widely discussed in previous Sections. 

3.3 Numerical methodologies for Maxwell equations : Implicit and explicit Maxwell 
equation solver design 
In this section the numerical methods used to solve Maxwell equations are discussed. So far, 

two methods have been employed, one of them is implicit, the other one explicit. Each 

method has its own strengths and its drawbacks. In the two paragraphs below, they are 

explained and compared. The equations to be discretized are the Maxwell equations in 

conservative form ((2.19), (2.20)), i.e.: 

    M M M

V V V

W dV F dS dV
t 


  

      (3.4) 
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  (3.5) 

The superscript “M” reminds that this method is being applied to the Maxwell equations. 

3.3.1 Implicit methodology 
The great strength of all implicit numerical schemes is their great stability. Using an implicit 

method it is possible to choose a larger integration time interval without compromising the 

stability of the method itself. This is most relevant when dealing with signals which travel 

so fast as the electromagnetic waves.  

Explicit schemes make time advancement very simple, but often suffer severe restrictions on 

time step due to the loss of stability. On the other side, implicit schemes generally have 

much better numerical properties in term of stability and so allow a larger time step, but 

require the solution of a system of equations to perform time integration. When analyzing a 

3D problem as in the present case, the matrix associated to the system is too large to be 

inverted in a reasonable computational time. This means that an iterative method has to be 

applied to solve the system. So, the time saved using a larger time step is actually lost in 

solving a large linear system of equations at each iteration. To introduce the implicit 

method, a 1D simple case is described. Then, the result obtained will be extended to the 3D 
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case. Discretizing equation (3.1), and looking to  it is possible to write in a finite volume 

fashion: 

      
11 1

2( )   ( )
M K K K

M M MN
IN OUT N

N N

W
A x F F A A x

t

            
  (3.6) 

Here the subscript “N” addresses the cell we are referring to, while the superscript “K” 
indicates the time interval considered.  

M
INF  and M

OUTF  can be written as: 
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Considering again equation (3.6), expanding to the first order all the terms with superscript 
different than “K” (i.e. the terms that are not evaluated at the instant “k”) and dividing both 
sides by the surface area A, yields: 
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Here the superscript “k” has been dropped, since  it is clear that each term in the above 
equation (3.7) is evaluated at the time “k”. 
For a 3D analysis this procedure leads to the following equation (assuming to work on a 
“x,y,z” Cartesian grid, with cubic cells): 
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 (3.8) 

 : is used to indicate a spatial interval 

 : is used to indicate a time interval 

 , x yn n : are the numbers of cells along x and y apxis respectively 
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[C], [L], [R], etc… are 6x6 square matrixes (remind that F  and W are six-elements vectors). 

This equation is just a system of totn scalar equations, where totn ( x y zn n n ) is the total 

number of grid cells. It can be written in the following more compact form: 

          1 1 1
[ ]

2 2 2

yx zt t t
D W F F F t

x y z

  
           

  
   (3.9) 

Where: 

 

This system has to be solved at each time step. The unknowns are the temporal increments 

W , whose knowledge is necessary to update the vector W (containing the intensities of 

the electromagnetic fields) all through the spatial domain of integration. [D] is a seven 

diagonal block matrix. Given the considerable dimensions of the matrix [D] its inversion is 

very expensive in terms of computational time. Therefore, an iterative method is required to 

solve the system, i.e. it is strongly necessary to use a proper pre-conditioner to achieve a 

faster convergence to the solution. 

3.3.2 Explicit methodology 
An explicit method allows to directly find the unknown values for electromagnetic field at 
each time step, with no need of solving a large system of equations. The explicit method 
employed is “centred in space” and “forward in time”. As a consequence, the equation (3.1) 
can be discretized as follows: 
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  (3.10) 

Each term is evaluated at instant “k”. Rearranging the previous equation for the simple case 
of cubic cells: 
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Although here the solution, W , can be easily obtained, the trouble with this method 

regards its stability. So the CFL (Courant–Friedrichs–Lewy) number must be chosen 
carefully in order to have an acceptable time step and to grant the method stability. 

Considering the very high speed of signal propagation ( 83 10  m/sc   ), this means that 

the time step must be extremely short. However, this second method turns out to be faster 

than the implicit one due to its simplicity. The second order explicit numerical method 

used in this work and reported in 1D formulation in Eqn.3.11 (again, N represent the 

space step and K the time step) has been compared with literature numerical methods like 

Lax-Friederichs and Lax-Wendroff methods (Chung 2010), for the solution of the classical 

advection equation test consisting in the propagation of a square and a smooth wave, 

using as conditions a wave speed of 60 m/s, a grid spacing ( x ) of 10-3 m and a time step 

( t ) of 10-5 s. 

  1
1 1 1 2 1 2

1 1

3 2
K K K K K K K K
N N N N N N N N

t
q q q q q q q q

x


     
         

 (3.12) 
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Fig. 4. Lax-Friederichs results after 40 timesteps (left) and 400 timesteps (right) 
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Fig. 5. Lax--Wendroff results after 40 timesteps (left) and 400 timesteps (right)  
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Fig. 6. Results with the method suggested in the present work results after 40 timesteps (left) 
and 400 timesteps (right)  

The results show that the proposed numerical method is comparable with the literature ones 
in terms of quality of the result; moreover, due to its simplicity it is faster than other more 
complex methods available in literature (Chung 2010).  

3.3.3 Orlanski condition for free boundaries 
When dealing with electromagnetic waves in a finite domain, one of the most complicated 
problems is to set a proper free boundary condition in order to avoid wave reflections. An 
option could be to extend the computational domain far enough from the electromagnetic 
wave sources. This is not acceptable, because of the cost in terms of  computational time and 
storage memory. A 3D code like the one developed in this work (HOPE) is already much 
demanding and it is important to keep the total number of cells as low as possible. Besides, 
if the time span simulated is not very short, the waves will reach the boundary anyway and 
they will be reflected back into the domain (moreover the grid has to be the same for the 
fluid dynamic part and it is impossible to consider to solve NS multi specie equation in a too 
much extended domain). 
 

   

Fig. 7. Magnetic field Bz generated by a current flowing along the “x” direction, after 200 
time steps (left after 1000 time steps (right). The electromagnetic wave is reflected at the 
boundary and the solution is completely corrupted after 1000 time steps. 
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Initially the condition adopted on the fluxes crossing the boundary cells was simply the 
following one: 

1
K K
N NF F  , where the subscript N indicates the last cell of the domain and N+1 is the so 

called ghost cell; K indicates the time step considered. 
So the flux associated to the ghost cell was exactly the one associated to the last cell of the 

domain. Of course this leads to wave reflection, as it is apparent in the following pictures 

where the magnetic field generated by a wire is represented. After 200 iterations the wave 

has already reached the boundary and starts to be reflected, after 1000 iterations the wave 

reflection has completely messed up the solution.  

To avoid wave reflections, Orlanski (1976) conditions have been adopted. These are special 

conditions that define the flux through the boundaries considering what happened at 

previous time instants. So the boundary flux at instant Nt  is dependent on the fluxes in the 

nearby cells at instants 1Nt   and 2Nt  . The condition can be written as: 

 
2 1

1 1

1 2

1 1

K K K
N N N

t tc c
x xF F F
t t

c c
x x

 
 

      
            

  (3.13) 

t , time step 

x , grid spacing 
Some complication can be found if the propagation velocity is unknown, but dealing with 

electromagnetic waves there is no such problem. The propagation velocity is constant and 

equal to c. 

Again the previous case of a magnetic field generated by a wire is represented in the next 

picture. Only the boundary conditions have been changed and this time there is no 

reflection at all. The waves are absorbed and in both cases, after 200 and after 1000 

iterations, the solution is clean. 

 

   

Fig. 8. Magnetic field Bz generated by a current flowing along the “x” direction, after 200 

time steps (left) and  after 1000 time steps (right). Applying Orlanski conditions there is no 

reflection and the situation is unchanged in the two cases. 
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4. Models validation numerical tests  

A simple validation test for different models was presented in Battista et al. (2008, 2009). 
Hereinafter three main validation tests will be presented. 

4.1 Validation test 1 - Ionization chemistry in re-entry experiment: RAM-C II 
The aim of the RAM-C program  was to obtain a better understanding of the factors that 
influence transmission of radio waves through plasmas and to search for methods to reduce 
or eliminate blackout (Schexnayder et al 1977). In this frame some experimental data have 
been collected about the electrons number density at different flight speed and altitudes. 
The RAM-C test has been considered here in order to compare numerical results in terms of 
electron number density with the experimental data. For our scopes, the trajectory point 
characterized by an altitude of 70 km and a re-entry speed of 7654 m/s, corresponding to a 
Mach number of about 26, has been considered. 
 

 

Fig. 9. Geometry and payload configuration of the RAM-C II test with highlighted electron 
density measurement stations considered in this work. 

The results obtained with the 11 species model proposed in this work are shown in the 
following Fig. 10 and compared with experimental data in terms of electron number density. 
 

 

Fig. 10. Numerical and experimental data comparison at different RAM-C stations. 
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4.2 Validation test 2 - Ionization chemistry in an expansion experiment: Calspan 
nozzle  
In the test campaign described in Dunn and Lordi (1969), electron temperatures and electron 
densities have been measured in the Calspan nozzle; the working gas was air and the 
equilibrium reservoir conditions were T0=6850 K and P0=0.94738 MPa. Geometry and grid 
used in this test is reported in Battista (2009). In Fig. 12 are reported the comparison of 
numerical data obtained with different kinetic schemes with experimental data. It is evident 
that the scheme proposed here is the one, among the 11 species schemes, that better 
reproduce experimental ne behaviour.  
 

 

Fig. 11. Test 2: Mach number and total enthalpy distributions 

 

Fig. 12. Test 2 Electron number density comparison with experimental data 
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4.3 Validation test 3 - Coupled simulation in argon: ALTA test  
The basic concepts of magneto fluid-dynamic interaction for plasma flow control in the 
shock layer of an hypersonic vehicle are here briefly described. Referring to the axis-
symmetric blunt body configuration shown in Fig. 13, assuming that a part of the gas is 
ionized, and that some device embedded within the body generates the B field (amber 

lines), free charges are subject to a force per charge units u B .  

  F q E u B    (4.1) 

This force exerted upon the charged particles in the shock layer tends to drive them in the 
direction u B , and (due to a different collisional behaviour between ions and electrons) on 

a macroscopic scale generates a current density flowing orthogonally to the velocity field 
direction (Faraday currents). 
The current density can be expressed by the generalized Ohm law: 

  J E u B     (4.2) 

The Faraday current density generates the J B body force represented with red arrows. 

These forces act in a direction opposite to the flow. Furthermore, since conductivity in 

electromagnetic field assumes a tensorial form, Hall currents (due to Hall collisions) arise 

orthogonally to B and u B directions and weaken Faraday currents as well as J B force. 

 

 

Fig. 13. Scheme of the interaction over a blunt body 

Such concepts are used for active flow control in the experiment considered here and used 
for models validation. 
The test considered here is the one described in Cristofolini et al. (2006) and numerically 

investigated. It consists in an array of the magnets that has been assembled to form a conical 
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test body with a half-vertex angle of 22.5 deg and the maximum diameter of 40 mm. A 

cylindrical, 40 mm diameter section is placed behind the cone. Two pressure sensors are 

embedded in the iron elements between the magnets, one on the cone surface and one in the 

cylindrical expansion region. The test geometry is reported in Fig. 14. The free stream 

conditions considered are directly obtained from the nozzle argon viscous test reported in 

Battista (2009), since the experiment considered here has been carried out in ALTA Heat 

facility using Mach 6 nozzle .  

 

 
 

Fig. 14. Geometry of the test body 

Calculations have been carried out on the domain shown in Fig. 15 where also the 
computational grid characterized by 78x60 cells is depicted. 
 

 

Fig. 15. Computational domain and grid 

Magnetic field is given as boundary condition on the wall of the test article and has been 

deduced from Cristofolini  (2006). For the outer boundary the Orlanski boundary condition 

has been used except for the face on the symmetry plane where the proper boundary 

condition has been applied. Results in terms magnetic field are reported in Fig. 16. 
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Fig. 16. Computed magnetic field lines. 

In Fig. 17 has been shown the comparison in terms of pressure between magnetic and non-

magnetic case, in Fig. 18 the comparison with experimental data in terms of pressure shows 

a quite good agreement; it has to be remarked that the MHD interaction has a strong effect 

on body pressure distribution, this could be used for an active control scopes.  

 

 

Fig. 17. Computed pressure field without and with MHD interaction 
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Fig. 18. Pressure along the body wall 

5. Conclusions 

A three-dimensional model for magnetofluiddynamic problems solution has been 

proposed considering plasma as a single fluid in thermo-chemical non equilibrium. For 

chemistry, transport and thermodynamic treatment a macroscopic approach has been 

followed that allows for the treatment of a general mixture of perfect gases including 

ionized species. This, in turn, permits not only to deal with non-equilibrium air problems, 

but gives the opportunity to consider seeded flows or extraterrestrial atmospheric flows 

in presence of ionization. Models for electrical conductivity have been proposed for air 

depending upon gas composition and temperature, accounting also the effect of charged 

particles collisions that could be important in some cases. For what concerns numerical 

solving strategy a loosely coupling technique to solve full system of equations (Navier-

Stokes and Maxwell) has been extended to 3D problems. Both numerical methods for 

Maxwell equations have been developed and tested, in particular both time marching 

explicit and implicit methods have been considered and tested for the solution of Maxwell 

equations. Actually explicit methodology is more rapidly reaching convergence than the 

implicit one. 

Test validation results are in good agreement with available experimental data, and shows 

that effect of magneto-fluid-dynamic interaction could be relevant for aerospace 

applications.  

Currently CIRA and ALTA with Bologna University Electrical Department are working 

together in the design of MFD interaction experiments in air in order to understand the real 

opportunity of  application of these technology to Earth re-entry (Cristofolini et al 2010). 
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6. Nomenclature 

Latins  

B  Magnetic field 
D Diffusion coefficients 
e energy, electron charge 
e- electron 
E  energy  
E Electric field   
h Enthalpy per unit mass 
k Rate constant  
J  Flux, Currents 
m mass 
M Mach number, Molecular Weight 
n Number density 
NA Avogadro Number 
P Pressure 

q  Heat flux 

q generic system variable 
R Radius 
T Temperature 
t Time 
S Surface 
ui velocity components  

V  Velocity 

V Volume 
x x-coordinate 
y y-coordinate 
z z-coordinate 

Greeks 

0
  Dielectric Vacuum constant  

D
  Debye Length 

e  Dielectric tensor  

μ Mobility  

  Production terms 
ρ Density 
σ Conductivity 

  Stress tensor 

  Collision Frequency 

  Frequency 

Subscripts 

a activation 

 freestream conditions 
ad adiabatic wall 
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ce electron oscillation  
e electronic 
i ionic 
r radiative  
v vibrational 
stag stagnation point 
tot total 
w wall 

7. Acronyms 

BC Boundary Condition 

CFD Computational Fluid Dynamics 

CFL  Courant - Freidricks -Lewy  Number  

CMFD Computational Magneto Fluid Dynamics  

EMC3NS  Electro Magnetic Generalized Chemistry High Enthalpy 3D Navier-
Stokes solver 

ENO Essentially Not Oscillatory 

EU Inviscid computation 

FDM Finite Difference Method 

FVM Finite Volume Method 

FDS Flux Difference Splitting 

H3NS Hypersonic high enthalpy 3D Navier-Stokes solver. 

MFD Magneto Fluid Dynamics 

MHD Magneto Hydro Dynamics  

NE  Non equilibrium computation 

NS  Navier Stokes computation 

PG  Perfect Gas approximation computation 

PIC Particle In Cell 
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