

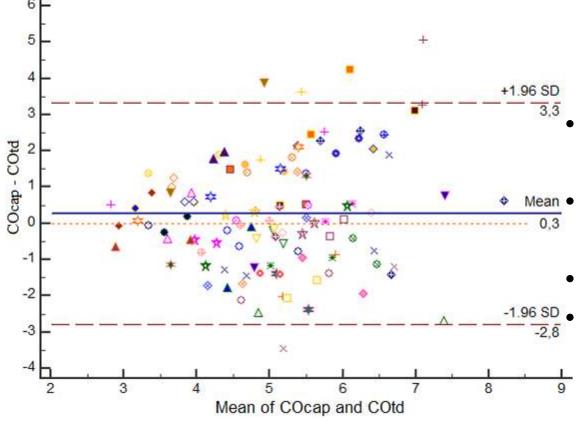
Ability of CapstesiaTM, a new smartphone Pulse Pressure Variation (PPV) and Cardiac Output (CO) application, to predict fluid responsiveness in mechanically ventilated patients.

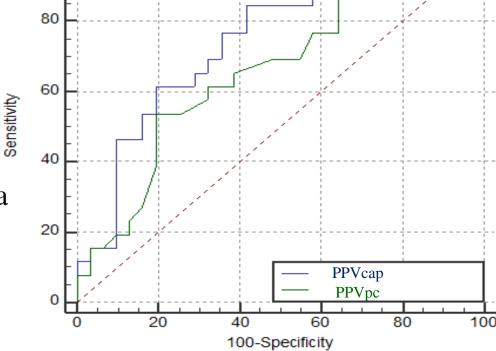
Boudart C¹, Joosten A¹, Desebbe O², Huybrechts I¹, Barvais L¹, Van Obbergh L¹

1 Erasme ULB Bruxelles, Dept of Anaesthesiology, Bruxelles, Belgium,
 2 Clinique de la Sauvegarde, Dept of Anaesthesiology & Intensive Care, Lyon, France

Background:

- In mechanically ventilated patient, fluid responsiveness (FR) can be predicted using PPV and evaluated by monitoring CO.
- Capstesia[™] is a new smartphone application which automatically calculates PPV and CO from a digital picture of the arterial waveform from any monitor.
- The primary goal of this study was to compare the ability of PPV obtained with the Capstesia[™] application (PPVcap) against pulse contour technology (PulsioFlex[™] Monitor, Maquet) (PPVpc) to predict FR.
- The secondary goal was to assess the trending ability of CO obtained with the Capstesia[™] application (COcap) compared to the gold standard transpulmonary thermodilution method (COtd)


Methods:


- After ethical approval and written informed consent, mechanically ventilated patients undergoing CABG were included.
- FR was defined as an increase in COtd greater than 10% following a volume expansion of 5 mL/kg ideal body weight of 3% modified gelatin.
- COtd measurement, COcap and PPVcap were obtained simultaneously. COtd, COcap, PPVcap and PPVpc were all obtained before and after the fluid loading.
- A ROC curve analysis determined the ability of PPVcap and PPVpc to predict FR.
- The agreement between COcap and COtd was assessed with the Bland-Altman analysis.
- The ability of COcap to follow the variations of COtd before and after fluid loading was assessed by a fourquadrant plot analysis.

Results:

- A total of 57 patients were included.
- There was no difference in the ability of PPVcap and PPVpc to predict FR (AUC 0.736 (CI95%: 0.603-0.844) vs. 0.677 (CI95%: 0.540-0.795, p=0.3).
- PPVcap > 7.6 % could predict FR with a sensitivity of 85% and a specificity of 58% whereas PPVpc >10.3% could predict FR with a sensitivity of 54% and a specificity of 81%.

- Mean COcap was 5.2 L/min (range: 4.1-9.6 L/min)
 Mean COtd was 4.9 L/min (range: 4.0-8.7 L/min).
- The Bland-Altman analysis showed a mean bias of 0.3 L/min with limits of agreement of -2.8 L/min and +3.3 L/min.
- The percentage error was 60%.
 - The concordance rate between variations of COtd and COcap was 73% (95%CI: 68-78).

<u>Conclusion</u>: Our findings show that PPVcap and PPVpc can both weakly predict fluid responsiveness. The CO calculated by CapstesiaTM application is not in agreement with the gold standard pulmonary thermodilution method and cannot be used to assess the fluid responsiveness.