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1 Introduction

The complexities of speech production, perception, and comprehension are enor-
mous. This circumstance has led to the development of numerous models and
theories of language production, perception, and comprehension since the dawn
of the modern study of language structures in the early twentieth century. Espe-
cially since the rise of psycholinguistics in the 1960s, psycholinguistic methods
and findings contributed to the development of pertinent theoretical approaches
to language structure. As has been shown repeatedly in recent linguistic research,
however, it remains a challenge for most if not all established approaches to ac-
count for findings on more and more intricate features of language such as dif-
ferences in subphonemic detail.

In research on speech production, it was shown that homophonous lexemes
differ in their acoustic duration due to differences in frequency (e.g. Jurafsky et
al. 2002; Lavoie 2002; Gahl 2008; Drager 2011; Lohmann 2018). Such findings indi-
cate that phonologically identical lemmasmay differ in their phonetic realisation.
Similarly, fine phonetic differences were also found, for example, for bound ver-
sus free bases (e.g. Kemps, Ernestus, et al. 2005; Kemps, Wurm, et al. 2005), for
final segments of a mono-morphemic stem versus the final segments of the same
stem if followed by a suffix (e.g. Sugahara & Turk 2004; 2009), and for prefixes in
prefixed versus so-called pseudo-prefixed words (e.g. Smith et al. 2012). A pop-
ular case for the research of such fine-grained phonetic detail below the word
level is word-final /s/ and /z/ in English. Previous corpus studies (Zimmermann
2016; Plag et al. 2017; Tomaschek et al. 2019) showed that the acoustic duration of
word-final /s/ depends on its morphological make-up, with non-morphemic /s/
being longest and auxiliary clitic /s/ being shortest in duration. However, previ-
ous experimental studies (Walsh & Parker 1983; Hsieh et al. 1999; Seyfarth et al.
2017) found effects in the opposite direction. It is thus the first general aim of this
book to investigate by means of a production task whether such durational dif-
ferences between different types of word-final /s/ really exist, and to find a poten-
tial explanation for the contradictory nature of previous results. I will introduce
relevant theoretical approaches of speech production such as feed-forward for-
mal theories of morphology-phonology interaction (e.g. Chomsky & Halle 1968;
Kiparsky 1982), the framework of Prosodic Phonology (e.g. Booij 1983; Nespor



1 Introduction

& Vogel 2007), psycholinguistic theories of speech production (e.g. Levelt et al.
1999; Roelofs & Ferreira 2019), exemplar-based models (e.g. Goldinger 1998; Pier-
rehumbert 2001; Gahl & Yu 2006), and discriminative learning (e.g. Rescorla 1988;
Ramscar & Yarlett 2007; Ramscar et al. 2010) to discuss their respective explana-
tory limits. As the approach of discriminative learning can only be meaningfully
discussed in light of an implementation of such an approach, a linear discrim-
inative learning network (e.g. Baayen, Chuang, Shafaei-Bajestan, et al. 2019) is
implemented. This implementation not only allows for a discussion of the gen-
eral approach itself, but potentially offers insight into the nature of the durational
differences in word-final /s/.

Research on the perception of fine phonetic detail found that listeners make
use of segment durations as a cue for word boundaries (Shatzman & McQueen
2006b) and to assist in differentiating phonologically similar lemmas (Warner
et al. 2004). Findings on bare versus suffixed stems indicate that listeners make
use of acoustic duration as a cue for distinguishing such stems (Kemps, Ernes-
tus, et al. 2005; Kemps, Wurm, et al. 2005; Blazej & Cohen-Goldberg 2015). Yet,
there is barely any research on the question of how small such subphonemic du-
rational differences may be to remain perceptible. This question is answered for
individual segments by a rather dated study by Klatt & Cooper (1975). That is, to
be perceptible, a durational difference in fricatives should be of 25 ms or more.
However, these authors found that perceptibility is worse in fricatives and word-
final position. Hence, the second general aim of this book is to explore how small
a durational difference in word-final /s/ is perceptible in a same-different percep-
tion task. I will discuss the findings taking into account abstractionist approaches
(e.g. Klatt 1979; McClelland & Elman 1986; Norris 1994; Norris & McQueen 2008),
approaches relying on fine phonetic detail (e.g. Goldinger 1996), approaches com-
bining abstract representations and fine phonetic detail (e.g. Hawkins & Smith
2001; Pierrehumbert 2002), and computational models of speech perception (e.g.
ten Bosch et al. 2015; Baayen, Chuang, Shafaei-Bajestan, et al. 2019).

For an account of the influence of subphonemic detail on comprehension, one
can consider the same results which have been brought forward to describe the
perception of such fine phonetic detail. As subphonemic durational differences
are used as a cue for word boundaries (Shatzman & McQueen 2006b), they are
not only perceptible but also used in the comprehension of words. Differentiating
between unsuffixed and suffixed stems by means of acoustic durations (Kemps,
Ernestus, et al. 2005; Kemps, Wurm, et al. 2005; Blazej & Cohen-Goldberg 2015)
does not only indicate that such differences are perceived, but also that such
differences are made use of in comprehension. In general, however, there is
little research available which directly asks the question of whether subphone-
mic durational differences significantly influence comprehension (e.g. Blazej &
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Cohen-Goldberg 2015). Thus, it is the third general aim of this book to investigate
this question. This is done by means of two number-decision tasks in a mouse-
tracking paradigm. Taking into account the findings from these experiments, I
will discuss the same set of theoretical approaches as are taken into account for
the results of the perception study: abstractionist approaches, approaches rely-
ing on fine phonetic detail, approaches combining abstract representations and
fine phonetic detail, and computational models of speech perception.

The overarching goal of this book, then, is to draw a more detailed, intricate,
and exhaustive picture of the production, perception, and comprehension of sub-
phonemic detail. To achieve this goal, two important methodological decisions
were taken. First, where applicable, pseudowords as well as real words are used
as target items to account for potentially confounding effects of lexical properties
(e.g. effects of frequency, e.g. Gahl 2008; Lohmann 2018; effects of storage, e.g.
Caselli et al. 2016). Second, sound statistical analyses are performed, relying on
novel statistical techniques where appropriate. Overall, the findings presented in
this book are the results of a thorough methodological approach to item design
and statistical analysis, offering a reliable account of the nature of subphonemic
detail and a strong foundation for future research.

This book is structured as follows. In Chapter 2, I will give a detailed overview
of previous findings on the production, perception, and comprehension of sub-
phonemic durational differences and introduce pertinent theoretical approaches.
Taking these approaches as a starting point, hypotheses to be investigated in the
subsequent chapters are derived. Chapter 3 will introduce the general method
used in this book. It will discuss pseudowords as a type of item (Section 3.1.1)
and present the pseudoword and real word items used across all studies of this
book (Section 3.1.2). Statistical methods and procedures are described in Section
3.2. Then, the approach of linear discriminative learning is introduced (Section
3.3). Chapter 4 presents the production study investigating the production of
subphonemic durational differences in word-final /s/, while Chapter 5, relying
on the introduction to linear discriminative learning in Section 3.3, presents the
implementation of such a linear discriminative learning network to account for
the nature of the reported subphonemic durational differences. In Chapter 6, I
will present the perception study, which consists of a same-different task to in-
vestigate the perceptibility of durational differences in word-final /s/. Chapters 7
and 8 introduce and discuss the two number-decision tasks used to examine the
influence of subphonemic durational differences on comprehension. In Chapter
9, I will bring together the results of the individual studies presented in Chapters
4 to 8 and discuss them in light of the general aims set in the present and the
hypotheses given the following chapter. Chapter 10 concludes this book.

3





2 Subphonemic differences in
phonologically identical elements

Research of the last decades has repeatedly shown that subphonemic differences
are found in the production of phonologically identical elements (Walsh& Parker
1983; Hsieh et al. 1999; Cho 2001; Jurafsky et al. 2002; Lavoie 2002; Sugahara &
Turk 2004; 2009; Kemps, Ernestus, et al. 2005; Kemps, Wurm, et al. 2005; Gahl
2008; Drager 2011; Smith et al. 2012; Zimmermann 2016; Ben Hedia & Plag 2017;
Plag et al. 2017; Seyfarth et al. 2017; Lohmann 2018; Ben Hedia 2019; Tomaschek
et al. 2019; Plag et al. 2020) and that such differences can be perceived as well as
be used in comprehension (e.g. Klatt & Cooper 1975; Warner et al. 2004; Kemps,
Ernestus, et al. 2005; Kemps, Wurm, et al. 2005; Shatzman & McQueen 2006b).
It is on these findings that the research presented in this book is grounded. In-
stead of following a specific theory that is to be confirmed, the studies this book
reports on are of an explorative nature. The research questions addressed in the
individual studies are met with all relevant theories at hand to provide elaborate
discussions of the respective findings. The exploratory nature of this research is
typical of research spanning multiple areas of a discipline. In the present case,
findings, concepts, and approaches of morphology, phonology, phonetics, com-
putational linguistics, and psycholinguistics are combined. While this at times
may prove difficult, it also enriches the knowledge gain of the field by combin-
ing theoretical accounts spanning different subdisciplines. The overall aim of the
approach in this book follows its overarching aim of establishing substantiated
knowledge on subphonemic detail and its role in production, perception, and
comprehension.

Previous findings as well as the main theoretical accounts concerning the pro-
duction, perception, and comprehension of subphonemic detail are introduced in
the following sections, Section 2.1 and Section 2.2, respectively. In both sections,
I will first review relevant previous empirical findings before I then introduce
pertinent theoretical approaches and models. Taking the theoretical accounts as
motivation, I will derive the hypotheses to be explored in the studies of this book.
Finally, I will sum up the hypotheses for a concise overview in Section 2.3.



2 Subphonemic differences in phonologically identical elements

2.1 Production

The evidence for the presence of morphological information at the subphonemic
level emerges mainly from the study of homophonous lexemes, stems, and af-
fixes.1 For homophonous lexemes, Gahl (2008) and Lohmann (2018) investigated
acoustic realisations of seemingly homophonous word pairs such as time and
thyme and found the more frequent member of each pair to be of shorter acoustic
duration. Further evidence for differing acoustic realisations of supposedly ho-
mophonous lexemes was found by Drager (2011). Drager compared realisations
of like as adverb, verb, discourse particle, and as part of the quotative be like. Dif-
ferences surfaced in several phonetic parameters. Similar effects were found for
function words such as four and for and different uses of words such as to, which
were investigated by Lavoie (2002) and Jurafsky et al. (2002). Such fine realisa-
tional differences indicate that at the phonetic level, two or more phonologically
homophonous lemmas may differ in their realisation.

Similarly, evidence shows that seemingly homophonous elements below the
word level have different phonetic realisations. Kemps, Ernestus, et al. (2005)
and Kemps, Wurm, et al. (2005) found that in Dutch and English segmentally
identical free and bound variants of a base (e.g. help without a suffix versus help
in helper) differ acoustically. Sugahara & Turk (2004; 2009) found phonetic dif-
ferences between the final segments of a mono-morphemic stem as compared
to the final segments of the same stem if followed by a suffix, e.g. in mist rain
versus missed rain. The stem had slightly longer rhymes if followed by certain
suffixes. Seyfarth et al. (2017) found that for words ending in fricatives, the dura-
tions of a word’s morphological relatives influence the realisation of that word.
In their study, stems of multi-morphemic words showed longer durations than
similar strings of segments in homophonous mono-morphemic words (e.g. free
in frees versus freeze). They concluded that the durational targets of the multi-
morphemic word’s relatives influence the word’s duration to such an extent that
a durational difference between the respective multi-morphemic word and its
homophonous mono-morphemic counterpart arise. A similar effect of morpho-
logical relations influencing duration was found for plurals and their bare stems
in a corpus-based study by Engemann & Plag (2021).

For prefixes, Smith et al. (2012) found systematic realisational differences for
dis- and mis- between prefixed and so-called pseudo-prefixed words (e.g. dis-
colour versus discover). Prefixedwords showed longer durations and longer voice
onset times, among other things. Ben Hedia & Plag (2017) and Ben Hedia (2019)
showed that the more segmentable a prefix, the longer the duration of its nasal.

1An earlier version of this section has been published in Schmitz, Baer-Henney, et al. (2021).
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2.1 Production

On the articulatory level, Cho (2001) found evidence for the variability of in-
tergestural timing between identical strings in mono- versus multi-morphemic
contexts. In their electropalatographic study, Cho showed that the timing of the
gestures for [ti] and [ni] in Korean show more variation when the sequence is
mono-morphemic (/mati/ ‘knot’ and /pani/ ‘name’) as compared to the timing of
the same gestures in multi-morphemic sequences (/mat-i/ ‘the oldest’ and /pan-i/
‘class-nom’), thus indicating that morphological structure is reflected in articula-
tory gestures, which in turn may lead to correlates in the acoustic signal. Hence,
morphology is reflected in the phonetic realisation of otherwise identical strings
of segments.

In sum, it seems that there is vast evidence for seemingly homophonous ele-
ments, that is, lexemes, bases, and affixes, to differ on the level of speech produc-
tion. Differences on the level of segments have been reported as well. Previous
corpus studies on word-final /s/ in English found realisational differences be-
tween non-morphemic, suffix, and clitic variants. Zimmermann (2016) on New
Zealand English (data from QuakeBox corpus; Walsh et al. 2013) and Plag et
al. (2017) as well as Tomaschek et al. (2019) on North American English (data
from Buckeye Corpus of Conversational Speech; Pitt et al. 2007) found that non-
morphemic /s/ showed longer durations than suffix and clitic /s/. In turn, suf-
fix /s/ also showed longer durations than clitic /s/. While these results draw a
clear picture of /s/ duration across morphological categories (including the non-
morphemic /s/), they are subject to unbalanced data sets due to the nature of
corpora. That is, corpus data may contain a huge number of confounding and
moderator variables that experimental data can control for (e.g. Gries 2015).

Previous experimental studies, however, have reported less consistent results
and show some problematic methods and analyses.Walsh & Parker (1983) carried
out a production experiment with three homophonous word pairs (e.g. Rex and
wrecks). They measured the duration of the word-final /s/ in both the mono- and
the multi-morphemic word of each pair in three different conditions. Each word
was produced by eight to ten participants. Condition I consisted of an unambigu-
ous context; condition II consisted of a semantically neutral context; condition III
consisted of a semantically anomalous context. While in two of these conditions
there was a small difference of 9 ms in the means of the different types of /s/,
there was none in the third condition. Still, the authors concluded that “speakers
of English systematically lengthen morphemic /s/” (Walsh & Parker 1983: 204).
However, their analysed data set was small (110 observations), included a mix-
ture of common and proper nouns, and no phonetic covariates were integrated
in their analysis. Further, instead of applying appropriate inferential statistical
methods (e.g. t-tests or more advancedmethods), the mean durations of the types
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2 Subphonemic differences in phonologically identical elements

of /s/ under investigation were compared impressionistically. Therefore, there
are several reasons to be sceptical of their results.

In another study, Hsieh et al. (1999) measured /s/ duration in child-directed
speech in data originally elicited for another study (on vowel durations in func-
tion words, see Swanson & Leonard 1994). The authors found plural /s/ to be
longer than third-person singular /s/. However, as the data originally was not
designed for this endeavour, half of all plural items occurred sentence-finally,
while almost all third-person singular items occurred sentence-medially. The du-
rational difference found between the suffixes may hence have been due to ef-
fects of phrase-final lengthening (e.g. Klatt 1976; Wightman et al. 1992) rather
than to inherent phonetic differences due to morphological categories.

In a more recent study, Seyfarth et al. (2017) conducted a production experi-
ment to collect data on non-morphemic, plural, and third-person singular /s/ and
/z/ durations. They found the non-morphemic variant to be shorter than the mor-
phemic instances. However, they did not find differences between the voiced and
the voiceless allomorphs during their analysis. This may be a worrisome result,
especially considering the small number of items with voiceless allomorphs (n =
6) as compared to the high number of items with voiced allomorphs (n = 20) in
their data.

Recently, Plag et al. (2020) found plural and genitive plural /s/ to be of dif-
ferent durations. In their study, the genitive plural suffix showed significantly
longer durations as compared to the plural suffix. An overview of the durational
differences found in the aforementioned experimental studies is given in 2.1.

Table 2.1: Overview of durational differences of word-final /s/ found in
previous studies.

Study Findings

Zimmermann 2016; Plag et al. 2017, non-morphemic > plural > cliticsTomaschek et al. 2019
Walsh & Parker 1983 plural > non-morphemic
Hsieh et al. 1999 plural > third-person singular
Seyfarth et al. 2017 plural > non-morphemic
Plag et al. 2020 genitive plural > plural

In sum, there is evidence that there may be durational differences between dif-
ferent types of /s/. However, while results of corpus studies are in line with each
other, they might be flawed due to imbalanced data sets. Previous experimen-
tal studies, on the other hand, have often relied on small data sets and lacked
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2.1 Production

phonetic covariates, appropriate statistical methods, or a proper distinction of
voiced and voiceless segments. Another crucial difference between corpus and
experimental studies is the use of homophones. While all previous experimental
studies restricted their data to homophone pairs, corpus studies take into consid-
eration all words. The limitation to homophones and the resulting competition
between their representations might be a problem in itself, as it appears to be
unclear how members of homophone pairs are stored and connected to their
respective frequencies. In all cases, previous results were subject to potentially
confounding effects of the lexical properties (e.g. effects of frequency, e.g. Gahl
2008; Lohmann 2018; effects of storage, e.g. Caselli et al. 2016) and contextual
effects (e.g. phrase final lengthening, e.g. Klatt 1976; Wightman et al. 1992) of the
items under investigation. Also, so far, no experimental study included clitics in
their analysis, whereas corpus studies have suggested that clitics show different
durations than suffixes.

A study is therefore called for that investigates the durational nature of differ-
ent types of word-final /s/ in English, preferably an experimental study with
carefully controlled data avoiding potentially confounding effects. This book
presents such a study investigating word-final /s/ in English by means of a pseu-
doword production task. In this task, three types of word-final /s/ were elicited:
mono-morphemic, plural, and clitic /s/ (with the auxiliaries is and has). It will
address some of the issues of previous studies. More precisely, the use of pseudo-
words prevents potential lexical effects to confound findings (see Section 3.1.1),
while the highly controlled task evades the influence of contextual effects. Even
though the data will also contain homophone pairs to a certain extent, the in-
dividual members do not have lexical representations. That is, one can rule out
effects of competition between homophonous lexical entries due to their similar
representations. In addition, the use of pseudowords eliminates potential differ-
ences in duration due to differences in frequency between the homophones.

Let us now turn to the question of how morpho-phonetic effects can be ex-
plained at the theoretical level. Existing theories make different predictions con-
cerning the possible presence of durational differences between different types
of /s/. I will discuss four approaches here: feed-forward models of phonology-
morphology interaction, Prosodic Phonology, exemplar theory, and discrimina-
tive learning.

In standard feed-forward formal theories of morphology-phonology interac-
tion, all types of /s/, be they morphemic or non-morphemic, are treated in a simi-
lar way (e.g. Chomsky & Halle 1968; Kiparsky 1982). In the case of morphological
word-final /s/, a process called bracket erasure is said to remove all morphological
information from a pertinent word form once retrieved from the lexicon during
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the stage of lexical phonology and leaves speech production without an insight
into the morphological makeup at the stage of post-lexical phonology. After re-
trieval, there is no informational difference between word-final morphemic and
non-morphemic types of /s/. Thus, there is nothing in such a system that could
account for realisational differences, e.g. different durations, between phonologi-
cally identical suffixes and non-morphemic segments. The realisation of clitics is
a post-lexical process to begin with and thus outside the scope of any prediction
by this theory.

In the framework of Prosodic Phonology, there is a complex mapping of mor-
phological structure onto prosodic structure (Booij 1983; Nespor & Vogel 2007).
Since prosodic boundaries may correlate with particular phonetic properties, seg-
ments at such boundaries may show systematic differences in phonetic imple-
mentation (see, for example, Keating 2006). Phonetic differences between two
phonologically homophonous affixes could therefore result from a difference in
the prosodic structure that goes with the two affixes. In particular, different types
of word-final /s/ can be analysed as having different positions in the hierarchical
prosodic configuration. These configurations co-determine the degree of inte-
gration of an /s/ to the word it belongs to. These different degrees of integration
might then emerge as durational differences between types of /s/ in speech pro-
duction.

Applying the approach of Selkirk (1996), non-morphemic /s/, uncontrover-
sially, is an integral part of the prosodic word, as shown in Panel A of Figure
2.1. Goad (1998) analyses plural /s/ as an internal clitic, which is adjoined to the
highest prosodic constituent below the prosodic word, as shown in Panel B. In
Goad (2002), however, plural /s/ is analysed as an affixal clitic, like third-person
singular /s/ in Goad (2003) and Goad & White (2019), as shown in Panel C. The
prosodic status of the cliticized auxiliary /s/ is not entirely clear, but presumably,
it is best analysed as free clitic, as in Panel D.

The Prosodic Phonology approach thus posits a structural prosodic difference
between non-morphemic /s/, plural /s/, and clitic /s/. This prosodic difference
might be mirrored in durational differences. It is, however, not so clear what
particular phonetic effects this approach would predict and by which processing
mechanism the structural prosodic differences would be translated into differ-
ent articulations. The most plausible prediction would be that closer integration
into the prosodic word would correlate with shorter durations: Non-morphemic
/s/ should be shortest, clitic /s/ longest, and plural /s/ in between. From the per-
spective of phrase-final lengthening (e.g. Klatt 1976; Wightman et al. 1992), one
should also expect that clitic /s/ is longest, as it immediately precedes a phrase
boundary.

10



2.1 Production

A B C D
non-morphemic /s/ plural /s/ plural /s/ clitic /s/

internal clitic affixal clitic free clitic

PhPhrase

Pword

Syllable

bus

PhPhrase

Pword

sSyllable

cat

PhPhrase

Pword

sPword

Syllable

cat

PhPhrase

sPword

Syllable

cat

Figure 2.1: Prosodic structure of non-morphemic (A), plural (B, C), and
clitic /s/ (D) as given in literature on Prosodic Phonology.

The distinction of lexical and post-lexical processing as introduced by the
aforementioned standard feed-forward theories of morphology-phonology inter-
action is also an integral part of established theories in psycholinguistics. Ac-
cording to models of speech production such as the one proposed by Levelt et
al. (Levelt et al. 1999; see Roelofs & Ferreira 2019 for an update), morphemic
/s/ would not differ in its realisation from corresponding non-morphemic real-
isations of /s/. In such models, meanings are stored in the mental lexicon with
their forms being represented phonologically. A module called articulator uses
these phonological forms for speech production, hence, has no information on
the lexical origin of particular segments. As a consequence, in this architecture,
no systematic differences between different types of /s/ should emerge.

In contrast, exemplar-based models (e.g. Goldinger 1998; Bybee 2001; Pierre-
humbert 2001; 2002; Gahl & Yu 2006) have an architecture that would in princi-
ple allow for morpho-phonetic effects. In such models, lexemes are linked to
a frequency distribution over their phonetic outcomes as experienced by the
individual speaker. These distributions are updated with each new experience:
Experienced subtle subphonemic differences then may result in representations
mirroring these properties. While such an account may allow for durational dif-
ferences between different types of word-final /s/ to emerge from stored phonetic
representations, it leaves open the question of how such systematic differences
between clouds of exemplars would come about in the first place. The downside

11
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of this is that it is also unclear in which direction differences between different
types of /s/ should play out.

Finally, there is the discriminative learning approach, which is based on simple
but powerful principles of discriminative learning theory (Rescorla 1988; Ram-
scar & Yarlett 2007; Ramscar et al. 2010; see, for example, Baayen et al. 2011; Baa-
yen, Chuang, Shafaei-Bajestan, et al. 2019 for its application to linguistic prob-
lems). According to this theory, learning results from exposure to informative
relations among events in the individual’s environment. Individuals use the as-
sociations between these events to create cognitive representations of their en-
vironment. Most importantly, associations and their resulting representations
are updated constantly on the basis of new experiences. Associations are built
between features (cues, e.g. biphones) and classes or categories (outcomes, e.g.
different types of /s/) that co-occur in events in which the learner is predict-
ing the outcomes from the cues (Tomaschek et al. 2019). The relation between
cues and outcomes is modelled mathematically by the so-called Rescorla-Wagner
equations (Rescorla &Wagner 1972; Wagner & Rescorla 1972; Rescorla 1988). Fol-
lowing these equations, an association strength or weight increases every time a
cue and an outcome co-occur, while it decreases if a cue occurs without the out-
come in a learning event. This results in a continuous recalibration of association
strengths, which is a crucial part of discriminative learning.

In recent discriminative learning implementations, the association weights be-
tween semantic representations and phonetic representations have been shown
to be predictive of phonetic durations (e.g. Stein & Plag 2021). With regard to
final /s/, Tomaschek et al. (2019) show that the different durations of final /s/
can be understood as following from the extent to which words’ phonological
and collocational properties can discriminate between the inflectional functions
expressed by the /s/. The input features (cues) for their discriminative network
were the words (lexomes as pointers to the meaning of the forms) in a five-word
window centred on the /s/-bearing word and the biphones in the phonological
forms of these words. These cues are associated with the inflectional functions
of the /s/. Two main measurements emerged as significant predictors of /s/ dura-
tion. The so-called activation (named prior in Tomaschek et al. 2019) is a measure
of an outcome’s baseline activation, i.e. of how well an outcome is entrenched in
the lexicon. The other measure is activation diversity, which quantifies the extent
to which the cues in the given context also support other targets. The general
pattern now is the following: When the uncertainty about the targeted outcome
increases, the acoustic duration of /s/ decreases. In other words, stronger support
(both from long-term entrenchment and short-term from the context) for a mor-
phological function leads to a longer, i.e. enhanced, acoustic signal. In sum, the
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discriminative approach predicts that differences between different types of /s/
may emerge from the associations of form and meaning that speakers develop
as a result of their experience with the pertinent words. But what about pseudo-
words? It has recently been shown by Chuang et al. (2021) that these associations
also play a role for pseudowords. Pseudowords have no representation in the
lexicon, but, as these authors show, pseudowords nevertheless resonate with the
lexicon due to their formal similarity with existing words. This resonance even
influences subtle phonetic details such as duration. It is, however, yet unclear
what kinds of durational differences can be expected between different types of
/s/ in pseudowords.

Effects of informativity or predictability (which are also inherently present in
discriminative learning approaches) are also to mention, as they may play a role
as well (Seyfarth 2014; Cohen Priva 2015; Zee et al. 2021). Greater predictability of
the word in its context has been found to lead to phonetic reduction, for example,
to shortening in duration. On the other hand, higher paradigmatic predictability
has been shown to correlate with longer duration (paradigmatic enhancement,
e.g. Kuperman et al. 2007; Bell et al. 2021). As these informativity effects are nec-
essarily bound to existing words, an experiment that uses pseudowords cannot
straightforwardly test these approaches.

Based on the different theories laid out above, different hypotheses about dura-
tional differences between different types of /s/ in pseudowords can be set up. H
prod1, the Feed-Forward Hypothesis, arises from feed-forward approaches and is
in accordance with the prediction that no systematic phonetic differences should
be observed between different types of /s/. H prod2, the Prosodic Hypothesis, is
derived from prosodic approaches. According to these approaches, a higher de-
gree of prosodic integration should correlate with shorter durations. Hence, non-
morphemic /s/ should be shorter than plural /s/, and plural /s/ should be shorter
than clitic /s/. Finally, exemplar-based approaches and discriminative learning
approaches both predict the presence of morpho-phonetic effects, but it is un-
clear how these differences would play out for the three types of /s/ in the present
production study. This is encapsulated in H prod3, the Emergence Hypothesis.

In summary, the production study presented in Chapter 4 of this book intends
to establish whether there are durational differences also with pseudowords, and
if so, how these differences play out.

H prod1: Feed-Forward Hypothesis
There is no durational difference between word-final non-morphemic /s/,
plural /s/, and auxiliary clitic /s/.
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H prod2: Prosodic Hypothesis
There are durational differences between different types of word-final /s/:
non-morphemic /s/ is shorter than plural /s/, plural /s/ is shorter than aux-
iliary clitic /s/.

H prod3: Emergence Hypothesis
There are durational differences between different types of word-final /s/
(non-morphemic, plural, and auxiliary clitic).

2.2 Perception and comprehension

Findings on subphonemic durational differences give rise to two further ques-
tions. First, are listeners able to perceive such subphonemic durational differ-
ences between different types of word-final /s/? That is, are listeners not only
sensitive to differences between different phonemes (e.g. Goldstone & Hendrick-
son 2010) but can they pick up on differences between phonologically similar
but phonetically different realisations? Second, if subphonemic durational differ-
ences are perceptible, are they used in comprehension? That is, does the percep-
tion of (un-)expected subphonemic features influence the comprehension pro-
cess?

On the level of word perception and comprehension, Shatzman & McQueen
(2006b) showed that listeners make use of segment durations as a cue for word
boundaries. In their study, native speakers of Dutch listened to ambiguous sen-
tences in which plosive-initial words, e.g. pot ‘jar’, were preceded by eens ‘once’.
Additionally, the sentences could also refer to cluster-initial words instead, e.g.
een spot ‘a spotlight’. The two readings were, among other acoustic features, dif-
ferent in regard to their /s/ durations: Word-initial /s/ was overall longer in du-
ration than word-final /s/ (Δ = 51 ms). The authors found that listeners make use
of such different durations for their lexical decision. That is, the durational dif-
ference between word-initial and word-final /s/ was perceptible and used for an
informed lexical decision, i.e. in word comprehension.

Warner et al. (2004) investigated whether listeners perceive subphonemic dif-
ferences in Dutch words of identical phonetic but different underlying phonolog-
ical form, e.g. /met/ ‘measures (sg.)’ and /med/ ‘avoided (sg.)’, where both words
phonetically are transcribed as [meit]. Productions of such word pairs showed
differences in the subphonemic features between the members of a pair. One
of these features was vowel duration, which listeners showed sensitivity to: Lis-
teners were able to perceive subphonemic detail and to use this information in
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comprehension, even though differences were rather small, e.g. Δ = 3.5 ms for
vowel duration.

Kemps, Ernestus, et al. (2005) and Kemps, Wurm, et al. (2005) found that lis-
teners in Dutch and English are sensitive to the durational differences between
stems in isolation and stems as parts of affixed word forms, e.g. help without a
suffix versus help in helper. This finding is confirmed by similar results in Lee
et al. (2020) and in Blazej & Cohen-Goldberg (2015). In their study, Blazej and
Cohen-Goldberg showed that listeners make use of duration as a cue for distin-
guishing unsuffixed stems from suffixed stems, e.g. clue without a suffix versus
clue in clueless. The authors found the influence of duration as a cue to be persis-
tent in isolated and continuous speech, with full, reduced, and removed effects
of articulation, and in implicit and explicit tasks.

Taking into account the aforementioned findings, the question arises what
the just-noticeable difference to be perceived is. Klatt & Cooper (1975) found
this difference for a change in duration to a single segment to be 25 ms. That is,
below the durational difference of 51 ms found in Shatzman & McQueen (2006b)
but well above the durational difference of 3.5 ms given in Warner et al. (2004).
Further, according to Klatt and Cooper’s findings, this just-noticeable difference
threshold is influenced by several factors. Most importantly, differences in word-
final position and differences in fricatives are less well perceptible.

In sum, evidence for the perception of subphonemic differences in phonolog-
ically similar segments and its effect on comprehension exists. However, such
evidence is rather sparse and mainly concerned with lexical decisions or differ-
entiation of unsuffixed and suffixed forms. To date, there is no study which looks
into the perception and comprehension of phonologically identical but phonet-
ically and morphologically different segments. Thus, two types of studies are
called for. First, a study is needed that investigates whether durational differ-
ences found between such segments are perceptible. This is the aim of the same-
different task I present in Chapter 6 of this book. Using real words as well as
pseudowords, potential lexical effects are taken into account. Second, it needs
to be investigated whether subphonemic detail is not only perceptible but also
used in comprehension. This is the purpose of the two number-decision mouse-
tracking tasks I present in Chapters 7 and 8. Using isolated real words with non-
morphemic and plural /s/ in one of the tasks, and pseudowords with plural and
clitic /s/ embedded in real word contexts in the other, a detailed image of whether
comprehension is affected by subphonemic durational differences is drawn. That
is, evidence for real words as well as for pseudowords and for several types of
word-final /s/ will be illustrated.
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Let us now turn to the question of how the perception and comprehension of
subphonemic detail can be explained at the theoretical level. Existing theories
of speech perception and comprehension make different predictions concerning
the perception of subphonemic detail and its use in comprehension. I will discuss
several groups of approaches here: Theories that make use of abstract representa-
tions, theories that rely on sets of features, theories that combine abstract repre-
sentations and sets of features, and computational models of speech perception
and comprehension.

In abstractionist models of speech perception, the phonetics of the incoming
speech signal are translated into phonemic representations before the stage of
lexical access. That is, the result of perception is of phonological nature and
without information on phonetic detail. Well known examples of abstractionist
approaches are the TRACE model (e.g. McClelland & Elman 1986), Shortlist (e.g.
Norris 1994) and Shortlist B (Norris & McQueen 2008) as well as the speech per-
ception and lexical access model introduced by Klatt (1979). All of these models
have in common that perception of subphonemic detail is either considered to be
a peripheral process at the margins of speech perception or that it is not consid-
ered at all. Additionally, some abstractionist models (e.g. Klatt 1979) perform time
normalisation. Timing (and with that duration) is only conceived as important if
it serves a discriminative role, e.g. in stress placement. As this group of abstrac-
tionist models does not integrate subphonemic detail in the process of perception,
it cannot account for the perception of subphonemic detail and, consequently, its
use in comprehension. If subphonemic detail is not considered for the outcome of
the perception process, there is no need to perceive it in the first place. Thus, com-
prehension has no access to any subphonemic, pre-phonological-representation
information.

Approaches that make use of features instead of abstract phonemic represen-
tations form another group of speech perception models. One such model is the
Fuzzy Logical Model of Speech Perception (Massaro & Simpson 1987). It assumes
that multiple sources of information influence speech perception, that listeners
have continuous information about each source, and that the multiple sources
are used together in the most meaningful manner. Sources contribute features
of sounds as information, which are then used to build so-called summary de-
scriptions. These, in turn, are the result of the perception process. That is, com-
prehension does not make use of abstract phonological representations as in
abstractionist models but of sets of distinct features. Another model based on
features was introduced by Lahiri & Marslen-Wilson (1991). Their approach as-
sumes that there is a single underlying phonological representation per lexical
item, which is compatible with all phonologically permissible variants of it in a
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given context. Entailed in such representations is only marked information, i.e.
phonetic features. Concerning the perception of subphonemic durational differ-
ences, then, one may regard the two aforementioned models as inconclusive. If
subphonemic segmental durational differences are accounted for as a meaningful
feature, i.e. if it is assumed to be marked information, perception of durational
differences in word-final /s/ can be accounted for. Then, such differences can
be used in comprehension. If, however, duration is only considered a feature
where it distinguishes between phonemes, then perception of subphonemic du-
rational differences is uncalled for. As a consequence, subphonemic durational
differences cannot be used in comprehension.

Exemplar-based models of speech perception (e.g. Goldinger 1996) also rely
on features. They assume that individuals draw on a multitude of exemplars per
word form, which are all stored in their mental lexicon. Exemplars contain de-
tailed phonetic information, which gives space to information on subphonemic
detail. In this regard, exemplar based models account for the perceptibility of
subphonemic durational differences, as such differences are stored in exemplars
and made use of in perception and comprehension.

However, previous research has shown that effects attributed to exemplars are
not consistently found (e.g. Hanique, Aalders, et al. 2013). Such findings are the
motivation for hybrid models. One such hybrid model introduced by Pierrehum-
bert (2002) assumes abstract generalisations as well as exemplars associated with
phonological units, that is phonemes, phoneme sequences, and words. While
speech production makes use of both abstract representations and exemplars,
comprehension mainly relies on the exemplars. Another hybrid model, Polysp
(Polysystemic Speech Perception), has been introduced by Hawkins & Smith
(2001). Their model assumes that the analysis of acoustic input does not nec-
essarily rely on its transformation into its linguistic units. Rather, it is situation-
dependent whether the abstract phonological form of a word or one of its pho-
netic variants is accessed for comprehension. As phonetic detail is stored in hy-
brid models, such models can account for the perception of subphonemic differ-
ences and the usage of such differences in comprehension.

The final group of approaches to speech perception and comprehension con-
sists of computational models. One such approach is DIANA, an end-to-end com-
putational model of humanword comprehension (ten Bosch et al. 2015; ten Bosch
& Boves 2021). The implementation of DIANA supports not only the use of ab-
stract units but also takes exemplars, i.e. phonetically rich information, as input
for the modelling of comprehension. Thus, it avoids the assumption of a segmen-
tal prelexical layer between acoustic signal and the lexical layer, i.e. perception
and comprehension. Similarly, linear discriminative learning (Baayen, Chuang,
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Shafaei-Bajestan, et al. 2019; see also Sections 2.1 and 3.3) does not assume a seg-
mental representation layer for acoustic input. Instead, it makes use of Frequency
Band Summary Features (FBSFs; Arnold et al. 2017) as representations. FBSFs con-
sist of detailed information of small time intervals of the signal, containing, for
example, information on minimum, maximum, median, initial, and final inten-
sity values. The FBSFs of the complete set of acoustic input then are the result of
perception, which is a detailed representation of the perceived phonetic signal.
This representation is used in comprehension modelling. In sum, both compu-
tational approaches, DIANA and linear discriminative learning, assume detailed
phonetic information to be the result of perception, and this information is then
used for comprehension. Thus, such models can account for the perception of
subphonemic differences and their usage in comprehension.

Based on the approaches laid out above, two hypotheses about the perception
of subphonemic durational differences were formulated. H perc1, the Abstrac-
tionist Hypothesis, arises from models of speech perception that have an abstract
phonological representation as output of perception. If all fine-grained phonetic
detail is lost in perception, one needs not perceive it to begin with. H perc2,
the Phonetic Detail Hypothesis, takes exemplar and hybrid models as well as the
aforementioned computational models as a starting point to account for the per-
ception of subphonemic detail. Based on the assumption of storage and usage of
detailed phonetic information, subphonemic durational differences can be stored
and should thus be perceptible. A hypothesis based onmodels which make use of
features alone is not considered in this book, as predictions on the perceptibility
of subphonemic durational differences by such approaches are inconclusive and
thus not testable in the current setup.

H perc1: Abstractionist Hypothesis
Listeners are not sensitive to subphonemic durational differences between
different types of word-final /s/.

H perc2: Phonetic Detail Hypothesis
Listeners are sensitive to subphonemic durational differences between dif-
ferent types of word-final /s/.

Finally, H comp, the Mismatch Hypothesis, emerges as a consequence of the
prior two hypotheses. That is, if fine-grained phonetic detail is perceptible, lis-
teners may make use of it in comprehension. Thus, comprehension should be
affected if subphonemic detail does not match its intended meaning or context.
This influence may be visible in behavioural data, such as reaction times and
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mouse trajectories. This hypothesis is supported by the exemplar-based, hybrid,
and computational approaches.

H comp: Mismatch Hypothesis
If listeners make use of subphonemic durational differences in the compre-
hension of different types of word-final /s/, then a mismatch of subphone-
mic detail and intended meaning leads to
a) slowed down comprehension processes.
b) deviated mouse trajectories.

The perception study presented in Chapter 6 aims to establish whether dura-
tional differences in word-final /s/ are perceptible. The two comprehension stud-
ies of Chapters 7 and 8, then, investigate whether subphonemic detail is made
use of in comprehension.

2.3 Summary

To summarise, this book aims at investigating three main areas potentially af-
fected by subphonemic detail: production, perception, and comprehension. Pre-
vious findings and relevant theoretical accounts were illustrated in the present
chapter.

The five subsequent chapters will each discuss one study. In Chapter 4, I will
report on the production study that investigates whether durational differences
between different types of word-final /s/ are also found in pseudowords. For this
study, the following hypotheses are relevant:

H prod1: Feed-Forward Hypothesis
There is no durational difference between word-final non-morphemic /s/,
plural /s/, and auxiliary clitic /s/.

H prod2: Prosodic Hypothesis
There are durational differences between different types of word-final /s/:
non-morphemic /s/ is shorter than plural /s/, plural /s/ is shorter than aux-
iliary clitic /s/.

H prod3: Emergence Hypothesis
There are durational differences between different types of word-final /s/
(non-morphemic, plural, and auxiliary clitic).
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2 Subphonemic differences in phonologically identical elements

Chapter 5 will present the implementation of a linear discriminative learn-
ing network that was used to analyse the data on non-morphemic and plural /s/
elicited in the aforementioned production study. This study comes without spe-
cific hypotheses. Rather, it was used to further investigate H PROD3, that is to
explore how the discriminative learning approach might account for durational
differences of different types of word-final /s/.

The third study, which constitutes Chapter 6, investigated the perception of
durational differences in word-final /s/. The hypotheses derived for this study
are the following:

H perc1: Abstractionist Hypothesis
Listeners are not sensitive to subphonemic durational differences between
different types of word-final /s/.

H perc2: Phonetic Detail Hypothesis
Listeners are sensitive to subphonemic durational differences between dif-
ferent types of word-final /s/.

Finally, I will report on the two comprehension studies in Chapters 7 and 8. The
first comprehension study used real words with non-morphemic and plural /s/
in isolation as stimuli, while the second comprehension study used pseudowords
with plural and clitic /s/ embedded into real word contexts as stimuli. For both
studies, this is the relevant hypothesis:

H comp: Mismatch Hypothesis
If listeners make use of subphonemic durational differences in the compre-
hension of different types of word-final /s/, then a mismatch of subphone-
mic detail and intended meaning leads to
a) slowed down comprehension processes.
b) deviated mouse trajectories.

While each study comes with its individual methodological details, they also
share some general methodology. In the next chapter, I will outline this general
method applied across all studies, including the sets of stimuli and the founda-
tions of the statistical analyses.
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The studies of this book share parts of their methodology: That is, the production
study (Chapter 4), the linear discriminative learning implementation (Chapter 5),
the perception study (Chapter 6), and the comprehension study on plural and
clitic /s/ (Chapter 8) all make use of the same set of pseudowords. Pseudowords
as a type of item are described in Section 3.1.1, before Section 3.1.2 explains how
the pertinent pseudowords were created. The perception study (Chapter 6) and
the comprehension study on non-morphemic and plural /s/ (Chapter 7) use sets
of real words as stimuli. These sets are also presented in Section 3.1.2.

While each type of study comes with its own specific needs concerning its
statistical analysis, a general introduction of statistical methods used in this book
is given in Section 3.2. I will explain which types of regression analysis were used,
and for what reason different types of regression analysis were applied across
the studies of this book. Finally, Section 3.3 introduces the general rationale and
mathematics of linear discriminative learning. This foundation is then used and
further specified in Chapter 5, the linear discriminative learning implementation
itself.

3.1 Stimuli

3.1.1 Pseudowords as items

Ever since Berko Gleason (1958) created the Wug Test to investigate if children
already have productive knowledge of morphological rules, pseudowords have
been the stimuli of choice in a multitude of studies in a wide variety of linguis-
tic areas: morphology and morpho-phonology (e.g. Albright 2002; Albright &
Hayes 2003; Pierrehumbert 2006; Dabrowska 2008; Krämer 2009; Kawahara 2012;
Gouskova & Becker 2013), the mental lexicon (e.g. Rubenstein et al. 1970; An-
shen & Aronoff 1988; Prasada & Pinker 1993; Vitevitch & Luce 1998; Eddington
2000; Shatzman & McQueen 2006a; Meunier & Longtin 2007), language acqui-
sition (e.g. Dollaghan 1985; Singson et al. 2000; Friedrich & Friederici 2005; van
de Vijver & Baer-Henney 2014), phonetics and phonology (e.g. Turcsan & Her-
ment 2015; Schmitz et al. 2018), written word recognition (e.g. Burani et al. 1999;
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McKay et al. 2008), spoken word recognition (e.g. Marslen-Wilson 1984), seman-
tics (e.g. Ozubko & Joordens 2011), and memory performance (e.g. Hulme et al.
1995), among many others.

Pseudowords are commonly assumed to have the advantage of removing stor-
age effects (e.g. Caselli et al. 2016) and frequency effects (e.g. Gahl 2008; Lohmann
2018), as well as effects of lexical relatedness (e.g. Schriefers et al. 1998) from the
equation (e.g. Turcsan & Herment 2015). Using pseudowords as stimuli can make
a researcher’s life easier in that one has to consider fewer interfering factors.
Along the same lines, pseudowords are commonly assumed to be semantically
empty shells (e.g. Günther 1983; Frisch et al. 2000; Turcsan&Herment 2015). Thus,
pseudowords assumably reflect the language-related capacity of speakers, e.g. in
terms of morphological productivity as in the seminal study by Berko Gleason
(1958), without any interferences caused by confounding factors, e.g. effects of
storage, frequency, or lexical relatedness. For the studies presented in this book,
this assumption provides a major advantage. Without intervening effects of stor-
age, frequency, and lexical relatedness, pseudowords make the perfect type of
item for highly controlled experimental setups. Thus, confounds of the aforemen-
tioned effects on acoustic duration can be ruled out in a production experiment,
and an interaction of such effects with perception and comprehension can be
avoided in perception and comprehension experiments.

Yet, there is a growing body of research from different areas that challenges the
assumption of semantically empty, autonomous pseudowords. On the sub-word
level, research on phonaesthemes demonstrates that certain sound combinations
are paired with meanings (Bergen 2004; Kwon & Round 2015). For example, the
/tw/ onset in words like twist, twirl, tweak, twill, tweed, tweezer, twiddle, twine,
and twinge is associated with the semantics of twisting (Bolinger 1950). Research
investigating sound symbolism repeatedly showed that certain sounds are asso-
ciated with certain shapes. Most prominently, research on the bouba/kiki phe-
nomenon showed that rounded vowels are matched with rounder shapes, and
that unrounded vowels are matched with pointed shapes. This effect holds across
different ages, i.e. can also be found in pre-school children (Maurer et al. 2006),
as well as across cultures and writing systems (Ćwiek et al. 2022). Another re-
cent example is the /r/ sound, which across a multitude of languages has been
claimed to be associated with roughness (Winter et al. 2022).

On the word level, research on onomatopoeia shows that certain combinations
of sounds can be used to imitate sound (Pratha et al. 2016). Studies on sound sym-
bolic patterns in Pokémon names show that the number of voiced obstruents cor-
relates with size, weight, evolution levels, and general strength parameters and
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that vowel height correlates with size andweight (Kawahara et al. 2018). Indepen-
dent of the individual names being proper nouns, their phonological composition
is connected to the object they name. A similar connection is found in nicknames.
For example, taller major league baseball players have longer nicknames (Shih
& Rudin 2020). Apart from proper nouns, size adjectives in English apparently
show comparable observations. Winter & Perlman (2021) found that sound struc-
ture is highly predictive of semantic size, most strongly for the phonemes /ɪ, i,
ɑ/, and /t/. Finally, the names of villains in fiction literature commonly sound
harsher, as they contain more voiceless segments (Elsen 2008). It thus seems un-
likely that pseudowords, when being used as stimuli in experiments, somehow
circumvent all these potential sub-word and word level factors which may con-
tribute to some sort of meaning.

Indeed, evidence for semantic content of pseudowords has recently been re-
ported by Chuang et al. (2021). In their study, it was shown that the assumption
that pseudowords are bare of meaning is most probably wrong. Due to their for-
mal similarity with existing words, pseudowords resonate with the lexicon. As
a result, they may in fact carry some sort of meaning. Chuang et al. (2021) im-
plemented a linear discriminative learning network (Baayen, Chuang, Shafaei-
Bajestan, et al. 2019; see Section 3.3) to demonstrate that quantitative measures
gauging the semantic neighbourhood of pseudowords predict reaction times in
lexical decision and the pseudowords’ acoustic durations. Hence, pseudowords
are not entities independent of real words, but interact with the lexicon.

This, finally, raises one important question for the present book: Can pseudo-
words be employed as stimuli without taking their semantics into consideration?
Recall the major advantage assumed for pseudowords as stimuli given earlier in
this section. First, pseudowords are held to be free of storage and frequency ef-
fects. This is still true, even with semantically non-empty pseudowords. In very
general terms, a pseudoword is a non-lexical word, and thus is neither stored in
the lexicon nor does it have a frequency. Second, pseudowords are not affected
by lexical relatedness effects. Such effects describe that a word is more easily
recognised when it is preceded by a semantically or associatively related word
than when it is preceded by an unrelated word (Schriefers et al. 1998). This, again,
still holds for pseudowords. As pseudowords are unknown to the individual, no
preceding context can make a pseudoword more recognisable. However, while
on the one hand these advantages may still hold, the findings of Chuang et al.
(2021) on the other hand show that pseudoword semantics influence reaction
times and acoustic durations.

In sum, pseudowords can be employed as stimuli, even though they apparently
are not semantically empty shells. But even as semantically non-empty shells they
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show some advantages over real words as items, as they have no previous entry
in the lexicon, have no frequency, and cannot be predicted from their context.
Yet, depending on the experiment, one is well advised to take their semantics
into consideration. In this book, the results of the production study in which
pseudowords were used as items (Chapter 4) are first analysed independently of
any pseudoword semantics. In a subsequent implementation of linear discrim-
inative learning (Chapter 5), pseudoword semantics are then considered in an
analysis of a subset of the production study data. Further, pseudowords are used
in the perception experiment (Chapter 6) and in the second comprehension ex-
periment (Chapter 8). While pseudoword items are not free of meaning, they
nonetheless are free of storage effects at the word level which potentially influ-
ence perception and production. Thus, pseudowords make good stimuli for such
tasks.

3.1.2 Real word and pseudoword stimuli

The individual experiments of this book share parts of their item sets consisting
of real words and pseudowords.1 That is, the production study (Chapter 4), the
perception study (Chapter 6), and the comprehension study on plural and clitic /s/
(Chapter 8) use the same set of pseudowords, while the perception study (Chapter
6) and the comprehension study on non-morphemic and plural /s/ (Chapter 7)
share parts of a set of real word items.

For the use of pseudowords as items, a set of forty-eight pseudowords was
created, following the phonotactic constraints of English (Gontijo et al. 2003).2

The pseudowords can be grouped into six groups depending on their onset clus-
ter and nucleus: Each group is defined by its particular stop plus approximant
onset (/pl, bl, kl, gl, pr/) and its vowel. The vowel was either a short vowel (/ɪ,
ʌ/), a long vowel (/i:, u:/), or a diphthong (/aʊ, eɪ/). In each group, eight different
pseudowords were created by adding either a single consonant coda, i.e. /p, t,
k, f/, or a consonant cluster coda, i.e. /ps, ts, ks, fs/. The set of coda consonants
preceding the /s/ was chosen in such a way that the voiceless realisation of the
/s/ allomorphs was elicited. Pseudowords with a simple coda were created for
morphemic /s/ elicitation, while pseudowords with a complex coda were created
for non-morphemic /s/ elicitation.

1An earlier version of this section has been published as part of Schmitz, Baer-Henney, et al.
(2021).

2It only later came to attention that English phonotactics do not allow for /aʊ/ nuclei to be
followed by non-coronal coda consonants such as /p, k, f/. However, as variation in pronun-
ciation was expected and accounted for where necessary, this did not influence the results of
the experiments which made use of these pseudowords.
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One issue when constructing pseudowords is their spelling. For vowels, or-
thographic representations were chosen following the highest phonotactically
legal grapheme-phoneme probabilities (Gontijo et al. 2003; see the supplemen-
tary material given in Chapter 11 for the top competitors for nucleus grapheme
representations for each pseudoword group). The aforementioned coda conso-
nants, however, showed a variety of possible orthographic representations to
choose from. That is, /p/ may be represented by <p> or <pp>, /t/ may be repre-
sented by <t> or <tt>, /k/ may be represented by <k>, <c>, or <ck>, and /f/ may
be represented by <f>, <ph>, or, exceptionally, by <gh>. When combined with a
coda-internal /s/, some additional options can be observed: /ks/ may not only be
represented as <ks>, <cs> or <cks> but also as <x>, /ps/ may be represented as
<ps>, <pps>, and <pse>, and /ts/ may be represented as <ts>, <tts>, and <tz>. The
choice of orthographic representation is important for two reasons. First, when
comparing two kinds of words, variable representations add another source of
variation of unclear consequences and should be avoided. Second, studies on the
influence of number of letters on spoken language production have found that in-
creasing the number of letters to represent a single sound may go together with
longer durations in speech (e.g. Brewer 2008). Based on these considerations, the
following orthographic representations were chosen for all word-final clusters:
/ks/ is represented uniformly as <ks>, /ps/ is represented uniformly as <ps>, /ts/
is represented uniformly as <ts>, and /fs/ is represented uniformly as <fs>. Table
3.1 shows the final set of pseudowords and their orthographic and phonological
representations.

Sets of real word itemswere created for the perception task (Chapter 6) and the
comprehension task on non-morphemic and plural /s/ (Chapter 7). All real word
items consist of one syllable to exclude a potential influence of stress placement.
Items start with a simple onset and end in either non-morphemic or plural word-
final /s/ preceded by a voiceless stop, i.e. /p, t, k/. As for the nuclei, an equal
distribution of short monophthongs, long monophthongs, and diphthongs was
desired to avoid an unwanted potential effect of vowel quality. For this, words
were extracted from the British National Corpus (BNC; Davies 2004). Table 3.2
displays all selected real words with non-morphemic word-final /s/; Table 3.3
displays all selected real words with plural word-final /s/.

As can be seen in Table 3.2, it was not possible to find monomorphemic words
with an even distribution of short monophthongs, longmonophthongs, and diph-
thongs. More precisely, only one word with a long monophthong and a word-
final non-morphemic /s/ preceded by a voiceless stop could be identified using
the BNC, i.e. corpse /kɔ:ps/. Anothermonomorphemicwordwith a short monoph-
thong was used instead.
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Table 3.1: Orthographic (orth.) and phonological (phon.) representa-
tions of all pseudowords.

Group /glɪ/ /prʌ/ /pli:/ /clu:/ /blaʊ/ /gleɪ/

ps
eu

do
w
or
ds

fo
r

m
or

ph
em

ic
/s
/

orth. glip prup pleep cloop bloup glaip
phon. /glɪp/ /prʌp/ /pli:p/ /klu:p/ /blaʊp/ /gleɪp/
orth. glit prut pleet cloot blout glait
phon. /glɪt/ /prʌt/ /pli:t/ /klu:t/ /blaʊt/ /gleɪt/
orth. glik pruk pleek clook blouk glaik
phon. /glɪk/ /prʌk/ /pli:k/ /klu:k/ /blaʊk/ /gleɪk/
orth. glif pruf pleef cloof blouf glaif
phon. /glɪf/ /prʌf/ /pli:f/ /klu:f/ /blaʊf/ /gleɪf/

ps
eu

do
w
or
ds

fo
r

no
n-

m
or

ph
em

ic
/s
/ orth. glips prups pleeps cloops bloups glaips

phon. /glɪps/ /prʌps/ /pli:ps/ /klu:ps/ /blaʊps/ /gleɪps/
orth. glits pruts pleets cloots blouts glaits
phon. /glɪts/ /prʌts/ /pli:ts/ /klu:ts/ /blaʊts/ /gleɪts/
orth. gliks pruks pleeks clooks blouks glaiks
phon. /glɪks/ /prʌks/ /pli:ks/ /klu:ks/ /blaʊks/ /gleɪks/
orth. glifs prufs pleefs cloofs bloufs glaifs
phon. /glɪfs/ /prʌfs/ /pli:fs/ /klu:fs/ /blaʊfs/ /gleɪfs/

Table 3.2: Real word items with non-morphemic word-final /s/. Fre-
quency measures are taken from the BNC (Davies 2004).

Word Frequency Vowel Vowel quality

w
or
ds

us
ed

in
th
e

fir
st

co
m
pr

eh
en

si
on

ta
sk

w
or
ds

us
ed

in
th
e

pe
rc
ep

tio
n
ta
sk mix 1669 ɪ short

box 8254 ɒ short
tax 15627 æ short
coax 12 əʊ diphthong
hoax 148 əʊ diphthong
corpse 754 ɔ long
lynx 98 ɪ short
flux 494 ʌ short
wax 644 æ short
fax 997 æ short
lapse 251 æ short
fox 1418 ɒ short
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Table 3.3: Real word items with plural word-final /s/. Frequency mea-
sures are taken from the BNC (Davies 2004).

Word Frequency Vowel Vowel quality

w
or
ds

us
ed

in
th
e

fir
st

co
m
pr

eh
en

si
on

ta
sk

w
or
ds

us
ed

in
th
e

pe
rc
ep

tio
n
ta
sk books 1669 ʊ short

steps 8254 ɛ short
rights 15627 aɪ diphthong
points 12 ɔɪ diphthong
groups 148 u long
parts 754 ɑ long
costs 98 ɔ short
crusts 494 ʌ short
rates 644 eɪ diphthong
notes 997 əʊ diphthong
sports 251 ɔ long
cheats 1418 i long

3.2 Statistical analysis

The statistical analyses for all studies were conducted using the software environ-
ment R (R Core Team 2020) in the integrated development environment RStudio
(RStudio Team 2020). Themain analyses of all studies consisted of different forms
of regression modelling. In the following sections, I will give a general introduc-
tion to the types of regression models fitted. Additionally, I will discuss issues
pertinent to the individual types of regression models and how they were dealt
with. The details of the individual models as well as the issues encountered while
developing them will be discussed in the respective chapters.

3.2.1 Linear mixed-effects regression

The analyses of the production study data and of the linear discriminative learn-
ing implementation data (see Sections 4.2 and 5.2) make use of linear mixed-
effects regression models (henceforth LMER models). LMER models as such are
an extension of multiple linear regression models. Multiple linear regression has
long been an established method to analyse linguistic data (e.g. Baayen 2008;
Winter 2019). As the name suggests, multiple linear regression can model a de-
pendent variable in the presence of multiple independent variables at once. One
can, for example, investigate whether the morphological makeup of a word-final
/s/ significantly influences its duration, while also taking into account the effects
other variables might show. While this in itself is a promising statistical tool,
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multiple linear regression falls short in one important aspect. It does not differ-
entiate between highly regular and predictable variables such as speaking rate
on the one hand, and highly irregular and virtually unpredictable variables such
as experimental participant on the other hand.

Such irregular and unpredictable variables, and the experimental participant
variable in particular, are the prototypical case of so-called random effects in lin-
ear mixed-effects regression. In general, random effects are factors with levels
randomly sampled from a larger population (Baayen 2008). That is, a random ef-
fect is not repeatable, as the set of possible levels for a repeatable factor is fixed,
with each level being repeatable itself. Taking the example of the experimental
participant variable, it makes a lot of sense to classify this variable as a random
effect: Participants of a study are a random sample of a larger population; if one
was to repeat a study, one would recruit other randomly sampled participants;
subjects may behave differently, i.e. unpredictably, on a day to day, and maybe
even hour to hour basis. This notion of random effects follows the definition
introduced by Green & Tukey (1960), and while there are other competing defi-
nitions (see e.g. Kreft & de Leeuw 1998; Searle et al. 2009; Snijders & Bosker 2011;
McElreath 2015), this is the definition I will adhere to. The counterpart of random
effects are fixed effects. These show repeatable levels and, in most cases, make
up the variable(s) of interest in a mixed-effects regression model (Baayen 2008).

LMER models were fitted as implemented by the packages lme4 (Bates et al.
2015), lmerTest (Kuznetsova et al. 2017), and LMERConvenienceFunctions (Trem-
blay & Ransijn 2020). Following the standard backward stepwise selection pro-
cess (e.g. Baayen 2008), the first model for each analysis contained the whole
set of pertinent independent variables as fixed and random effects, adhering to
the aforementioned concept of effect structures. The whole set of variables here
refers to the set of variables after taking measures to avoid issues of collinearity
(see Section 3.2.3). By starting with a full set of theoretically justified random
variables, I followed the keep it maximal policy of Barr et al. (2013) for results
that are most generalisable. Interactions of fixed effects were included where
motivated by theory.

Such a full model was then continuously reduced through step-wise exclusion
of non-significant factors using the step function for linear mixed-effects regres-
sion models introduced by the lmerTest package (Kuznetsova et al. 2017). This
function starts with the backward elimination of random-effect terms, followed
by the backward elimination of fixed-effect terms. The result of this step-wise
exclusion is a model which contains only variables with significant effects on
the dependent variable.
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At the last stage of the model fitting process, the resulting model’s residu-
als were trimmed (e.g. Baayen & Milin 2010). Data points with residuals larger
than 2.5 standard deviations were removed, ensuring a satisfactory distribution
of residuals.

The final model was then analysed in terms of its R2 values which were com-
puted with the MuMIn package (Barton 2020; for marginal and conditional R2

value computation see Nakagawa et al. 2017). The marginal R2 value of a model
indicates the percentage of variation in the data explained by the fixed effects of
that model. The variance explained by the entire model is given by its conditional
R2 value.

Lastly, the predictor strength of individual variables was checked by taking the
respective final model as template. For each predictor variable, a model was fitted
lacking a particular variable. This resulted in a number of models, each lacking
a different predictor. Then, marginal R2 values were computed for these models
and finally compared. The variable leading to the highest decrease inmarginal R2

value as compared to the final model is thus the variable showing the highest pre-
dictor strength. This procedure was implemented using the predictor_strength
function of the SfL package (Schmitz & Esser 2021).

3.2.2 Generalised additive models

As one specific type of linear regression model, LMER models assume effects of
numeric predictors to be strictly linear. This assumption is no longer met when
working with numeric predictors which show non-linear effects. Modelling a
non-linear variable as if it were linear results in inaccurate predictions, leading
to unreliable coefficients and probability values (Baayen & Linke 2020).

Thus, linear mixed-effects regression is no longer a suitable statistical tool if
such variables are to be involved. Instead, generalised additive models (hence-
forth GAMs) may be used as an appropriate tool, and indeed have been used in
various linguistic research already (see e.g. Wieling et al. 2011; Linke et al. 2017;
Milin, Divjak, et al. 2017; Tomaschek, Tucker, Fasiolo, et al. 2018). GAMs take a
number of different arguments; however, I only need to consider four of them
for the present purposes. First, categorical variables can be included in GAMs
straightforwardly. In GAMs, the effects of categorical variables are most often
reported under the term of parametric effects; a term I will use in the pertinent
sections. Second, numeric variables are included in GAMs as so-called smooth
or smoother terms. A numeric variable’s smooth term expresses the estimated ef-
fect of that variable on the dependent variable. Smooth terms, in stark contrast to
effects predicted by linear regression, can take the form of wiggly curves. Such
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wiggly curves are the weighted sum of their basis functions. I will come back
to the specifications of basis functions in the description of the modelling pro-
cess itself. Third, interactions of predictor terms are included as so-called tensor
product interactions. Fourth, GAMs can incorporate random effects. GAMs con-
taining random effects are called generalised additive mixed models (henceforth
GAMMs). Including adequate random effects may help the interpretability of the
model output as it protects against overly wiggly curves (Baayen & Linke 2020).

While general Gaussian GAMMs such as described above have not been used
in the analyses of data presented in this book, three further specialised types
of GAMMs, which rely on the same basic structures, have: GAMMs for beta
distributed data (henceforth BGAMMs; Wood 2017), piece-wise additive mixed
models (henceforth PAMMs; Bender & Scheipl 2018), and additive quantile re-
gression models (henceforth QGAMs; Fasiolo et al. 2021). BGAMMs integrate
the mathematical assumptions of beta regression in GAMMs. They can be used
to adequately model data for which observations are limited to the open inter-
val (0,1) (Ferrari & Cribari-Neto 2004; Smithson & Verkuilen 2006). While the
first choice for modelling beta distributed data in R commonly is the betareg
package (Cribari-Neto & Zeileis 2010), this package cannot integrate random ef-
fects into its model calculations. As beta regression was used for the analysis of a
subject-specific measure, a random effect for individual subjects seemed worth-
while. I thus used BGAMMs instead of common beta regression models (Chapter
6). PAMMs have been developed for time-to-event analyses in the GAMM frame-
work. They offer insight into the temporal dynamics of predictor effects. Thus,
they are the tool of choice for the analyses of the reaction time data of the com-
prehension study on non-morphemic and plural /s/ (Chapter 7). QGAMs, on the
other hand, provide an adequate tool to analyse data with a high level of autocor-
relation. Timeseries of changing coordinates are characterised by strong correla-
tions between the positions at time 𝑡 and at 𝑡 −1. Such autocorrelation is an issue
if unaddressed, as model predictions become less reliable with higher levels of
autocorrelation. QGAMs, however, show a high prediction accuracy even in the
presence of high autocorrelation (Fasiolo et al. 2021). Using QGAMs, individual
GAMs or GAMMs are fitted for any given conditional quantile of the response
distribution (Tomaschek et al. 2021). As such, QGAMs are the appropriate tool to
analyse the mouse-track coordinate data obtained by the comprehension studies
(Chapters 7 and 8).

Depending on the specific type of GAMM, suitable packages were used for
modelling. BGAMMs were fitted with the mgcv package (Wood 2017), PAMMs
were fitted with the pammtools package (Bender & Scheipl 2018), and QGAMs
were fitted with the qgam package (Fasiolo et al. 2021). As a stepwise selection
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process is uncommon in research literature using GAMMs, only one model was
created.

This model was then tested for concurvity issues (see Section 3.2.3) using the
concurvity function of the mcgv package. In case a variable showed a high con-
curvity value, this variable was excluded. The model was then re-fit without the
excluded variable, and again checked for concurvity issues.

The last step of themodel fitting process consisted of a check of basis functions.
That is, for smooth terms of the fitted models I checked whether the number
of basis functions was sufficient. This is indicated by the so-called k-index as
reported by the gam.check function of the mgcv package. The further below 1 this
value is, the more likely it is that there is a missed pattern left in the residuals
and the number of basis functions in the model specification is too low (Wood
2017). In that case, the model was re-fit with a higher number of basis functions.
The adjustment of the number of basis functions was done in small increments
as to consider two points. First, on a theoretical note, models should not be more
complex due to more basis functions than absolutely necessary, following the
reasoning of Occam’s razor. Second, on a mathematical note, the number of basis
functions should be lower than the number of a variable’s distinct values (Baayen
& Linke 2020).

3.2.3 Collinearity and concurvity

One issue to address when fitting a linear model to a multitude of conceptually
similar or potentially interrelated covariates is collinearity (Tomaschek, Hendrix,
et al. 2018). Collinearity is a threefold issue. First, it may lead to unexpected and
uninterpretable model estimates. Second, the model fit to the data may be unsta-
ble, i.e. the removal or addition of just few data points may change the model
estimates drastically. Third, it may overestimate the effect of predictors, in that
on its own a variable shows no significant effect on the dependent variable, while
in combination with collinear variables it does. To avoid these issues, before each
modelling process, variables were tested for their correlation coefficients.

For highly correlated variables, i.e. with correlation coefficients of |𝑟ℎ𝑜| ≥ 0.5,
one of two strategies was adopted. While there is no “one correct” way to deal
with collinearity (Tomaschek, Hendrix, et al. 2018), these are two of themost com-
monly used strategies. The first strategy consisted of the competitive exclusion of
one of two highly correlated variables. That is, for each pair of highly correlated
variables, two linear mixed-effects models, each containing only one of two vari-
ables, were created and comparedwith a log-likelihood test. Each of thesemodels
contained the same variable as dependent variable, one of the highly correlated
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variables as fixed effect, and subject as random intercept. This procedure was
done manually, and the results were checked with the predictor_competition
function of the SfL package. This procedure allowed me to decide which of the
covariates under discussion was a stronger predictor for the dependent variable.
This covariate was then kept while the other one was no longer used.

Depending on the number of highly correlated variables, the first strategymay
lead to a significant loss of predictor variables. Thus, in such cases a second strat-
egy was adopted: Principal Component Analysis (PCA; e.g. Venables & Ripley
2002; Baayen 2008; Tomaschek, Hendrix, et al. 2018). In a PCA, the dimensional-
ity of the data is reduced by transforming the included variables into principal
components. These transformations result in linear combinations of the predic-
tors that are orthogonal to each other. Thus, the resulting principal components
are not correlated. PCAs for sets of only numeric variables were carried out us-
ing the prcomp function of the stats package (R Core Team 2020); PCAs for sets
of numeric and factor variables were carried out using the PCAmix function of
the PCAmixdata package (Chavent et al. 2017), which allows the simultaneous
integration of continuous and discrete variables. A PCA computes as many prin-
cipal components as variables were specified as input. The next step of the PCA
is to determine how many of these principal components are meaningful and
thus should be retained for further use. For this decision, several rules of thumb
were followed (cf. O’Rourke et al. 2005; Baayen 2008). First, any component that
displays an eigenvalue greater than 1 accounts for a greater amount of variance
than had been contributed by one variable. Such a component is therefore po-
tentially meaningful. Second, one should retain enough components so that the
cumulative percentage of variance explained is equal to some minimal value. Fol-
lowing other implementations of principal component analyses, a value of 80%
was aimed at (e.g. O’Rourke et al. 2005). Third, only interpretable components
are to be retained. That is, each component is made up out of loadings, i.e. parts
of the variables included in the PCA’s computation represented by correlation
coefficient values. If none of these variables is strongly represented in a com-
ponent, the interpretability of that component is extremely low, rendering the
component of small interest for further analyses. Thus, this strategy to avoid is-
sues of collinearity is only meaningful as long as the resulting new variables are
interpretable. If they were indeed not, the aforementioned first strategy was used
instead.

Finally, all final models were checked for their variance inflation factors (VIFs).
VIF values equal to or greater than 3 indicate the risk of introducing collinearity
(e.g. Zuur et al. 2010). If a predictor with a high VIF value was identified, the
model was re-fit after the exclusion of that predictor. Then, VIFs were computed
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again to make sure all potentially harmful variance inflation factor values were
dealt with.

While collinearity is an issue in linear models, such as in LMER models, a sim-
ilar issue is at stake for non-linear models, such as in GAMMs. In the GAMM
setting, this issue is referred to as concurvity. Concurvity is the nonparametric
analogue of collinearity, and may lead to the same issues in GAMMs as collinear-
ity does in LMERs (e.g. Ramsay et al. 2003). Thus, GAMMs were checked for
issues of concurvity during the fitting process.

3.3 Linear discriminative learning

Linear discriminative learning (henceforth LDL; e.g. Baayen, Chuang, Shafaei-
Bajestan, et al. 2019) as a computational model implements a discriminative view
of learning.3 In contrast to deep learningmodels that havemultiple hidden layers
based on non-linear functions, LDL networks are very simple two-layer networks
and are linguistically transparent and interpretable. In LDL, the mental lexicon
consists of five high-dimensional numeric matrices, each of which represents a
different subsystem: the visual matrix, retina; the auditory matrix, cochlea; the
speech matrix, speaking; the spelling matrix, typing; and the semantic matrix.
For the current implementation, the semantic and the speech matrix are most
important.

With regard to the mappings between vectors, linear mappings are imple-
mented. These mappings are estimated using the linear algebra of multivariate
regression. Thus, each mapping is defined by a matrix 𝐴 that transforms the row
vectors in a matrix 𝑋 into the row vectors of a matrix 𝑌 , i.e. 𝑌 = 𝑋𝐴. Then,𝐴 = 𝑋 ′𝑌 , where 𝑋 ′ is the generalised inverse of 𝑋 . I will return to the map-
ping of matrices later in this section, and refer the interested reader to Baayen,
Chuang, Shafaei-Bajestan, et al. (2019) for an introduction to the mathematical
details, as well as to Milin, Feldman, et al. (2017) for a detailed discussion on the
restrictions and possibilities of linear mappings.

Another important feature of LDL is its notion of lexomes, i.e. basic semantic
units corresponding to words or morphological functions. As outlined in Chuang
et al. 2021, lexomes fall into two groups: content lexomes, and inflectional and
derivational lexomes. Content lexomes can be morphologically simple or com-
plex forms, i.e. cat and cats. Inflectional lexomes represent inflectional functions,
e.g. number, tense, or aspect. Derivational lexomes represent derivational func-
tions, e.g. morphological categories such as -ness, -less, or un-. Each lexome is

3An earlier version of this section has been published as part of Schmitz, Plag, et al. (2021).
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paired with a vector of the aforementioned five subsystems. That is, for the se-
mantic matrix, each lexome is pairedwith a semantic vector, making each lexome
a pointer to a semantic vector on the one hand (Milin, Feldman, et al. 2017), and
a location in a high-dimensional space on the other hand. For monomorphemic
words, the semantic vector is identical to the semantic vector of the correspond-
ing lexome. Thus, the semantic vector of the word cat, ⃖⃖ ⃖⃖ ⃗𝑐𝑎𝑡 , is identical to the
vector of the lexome cat. For complex words, the semantic vector is the sum of
its corresponding lexome vectors. Accordingly, the semantic vector of the word
cats, ⃖⃖ ⃖⃖ ⃖⃗𝑐𝑎𝑡𝑠, is the sum of the semantic vectors of the lexomes cat and plural,⃖⃖ ⃖⃖ ⃗𝑐𝑎𝑡 + ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃗plural.

In LDL, form can be represented by different units. The study presented in
Chapter 5 uses triphones to represent form, as previous studies (Milin, Feldman,
et al. 2017; Baayen, Chuang, Shafaei-Bajestan, et al. 2019; Chuang et al. 2020)
have shown that triphones capture the variability of neighbouring phonological
information well for English. Triphones are sequences of three phones within a
word form. They overlap and can be understood as proxies for phonetic transi-
tions. The cue matrix 𝐶 encodes the forms of words in a binary fashion, giving
information on which triphones are part of which word. In each word’s individ-
ual form vector 𝑐, the presence of a triphone is marked with 1, while the absence
is marked with 0. The cue vectors of all words of a set of words constitute its𝐶 matrix and each row in such a 𝐶 matrix represents a word form, while the
columns of the 𝐶 matrix represent all triphones of its underlying word set.

Meaning is containedwithin the semantic matrix 𝑆, which consists of semantic
vectors of word forms on basis of their corresponding lexomes. Thus, the seman-
tic vector 𝑠 in 𝑆 for a simplex word is identical to its corresponding lexome, while
the semantic vector 𝑠 in 𝑆 for a complex word is the sum of its corresponding lex-
omes, e.g. ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃗𝑎𝑝𝑝𝑙𝑒 + ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃗plural for apples (Baayen, Chuang, Shafaei-Bajestan, et al.
2019). Semantic vectors of lexomes can be derived in different ways (e.g. Lan-
dauer & Dumais 1997; Jones & Mewhort 2007; Shaoul & Westbury 2010; Mikolov
et al. 2013).

Once matrices for form and meaning are established, one can make use of
linear mappings to compute comprehension and production. In LDL, compre-
hension refers to a model that has form vectors as input and semantic vectors as
output. I illustrate the 𝐶 matrix of a set of words with a toy lexicon containing
the words cat, bus, and eel in Equation 3.1. Here, the DISC keyboard phonetic
alphabet (the “Distinct Single Character” representation introduced by Burnage
1988) is used for triphone representation. Word boundaries are marked by the #
symbol.
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𝐶 = #𝑘{ 𝑘{𝑡 {𝑡# #𝑏𝑉 𝑏𝑉 𝑠 𝑉 𝑠# #𝑖𝑙 𝑖𝑙#( )𝑐𝑎𝑡 1 1 1 0 0 0 0 0𝑏𝑢𝑠 0 0 0 1 1 1 0 0𝑒𝑒𝑙 0 0 0 0 0 0 1 1 (3.1)

For the same toy lexicon, suppose that the semantic vectors for these three
words are the row vectors of the following 𝑆 matrix:

𝑆 = 𝑐𝑎𝑡 𝑏𝑢𝑠 𝑒𝑒𝑙( )𝑐𝑎𝑡 1.0 0.2 0.5𝑏𝑢𝑠 0.4 1.0 0.1𝑒𝑒𝑙 0.2 0.3 1.0 (3.2)

To map forms onto meanings one needs a transformation matrix 𝐹 , such that𝐶𝐹 = 𝑆 (3.3)

The transformation matrix 𝐹 is straightforward to obtain. Let 𝐶′ denote the
Moore-Penrose generalised inverse4 of 𝐶 , available in R as the ginv function of
the MASS package (Venables & Ripley 2002). Then,𝐹 = 𝐶′𝑆 (3.4)

For the toy lexicon example,

𝐹 =
𝑐𝑎𝑡 𝑏𝑢𝑠 𝑒𝑒𝑙⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

#𝑘{ 0.33 0.06 0.16𝑘{𝑡 0.33 0.06 0.16{𝑡# 0.33 0.06 0.16#𝑏𝑉 0.13 0.33 0.03𝑏𝑉 𝑠 0.13 0.33 0.03𝑉 𝑠# 0.13 0.33 0.03#𝑖𝑙 0.10 0.15 0.50𝑖𝑙# 0.10 0.15 0.50
(3.5)

4The inverse of a matrix needs not exist, rendering such a matrix a singular one. Most matrices
used in LDL implementations are singular matrices. Thus, an approximation of the inverse
must be used instead of an inverse itself. One such approximation is the Moore-Penrose gen-
eralised inverse (Moore 1920; Penrose 1955).
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with 𝐶𝐹 being exactly equal to 𝑆 in this simple example. That is, taking form
vectors as input for the prediction of semantic vectors as output, i.e. solving ̂𝑆 =𝐶𝐹 , this toy example correctly predicts 100% of all (three) words’ semantics, i.e.̂𝑠𝑖 = 𝑠𝑖. In more complex cases, semantic vectors are only approximately identical,
thus, for aword 𝑖 and its predicted semantic vector 𝑠𝑖, comprehension is successful
if ̂𝑠𝑖 shows the highest correlation with the targeted semantic vector 𝑠𝑖 (Baayen,
Chuang, Shafaei-Bajestan, et al. 2019). Following this method, one can report the
percentage of comprehension accuracy.

Production as modelled in LDL takes semantic vectors as input and delivers
form vectors as output. Using the same toy lexicon as before, I adapt its 𝐶 ma-
trix, i.e. I borrow the notation by Baayen, Chuang, Shafaei-Bajestan, et al. (2019)
and henceforth call it 𝑇 as it contains the Targeted triphones. For production,
the transformation matrix 𝐺 is of interest. Similar to 𝐹 for comprehension, it is
straightforward to obtain. Let 𝑆′ denote the Moore-Penrose generalised inverse
of 𝑆. Then, 𝐺 = 𝑆′𝑇 (3.6)

Given 𝐺, one can then predict the triphone matrix ̂𝑇 from the semantic matrix𝑆 by solving ̂𝑇 = 𝑆𝐺 (3.7)

For the toy lexicon example, the 𝐺 transformation matrix is

𝐺 = #𝑘{ 𝑘{𝑡 {𝑡# #𝑏𝑉 𝑏𝑉 𝑠 𝑉 𝑠# #𝑖𝑙 𝑖𝑙#( )𝑐𝑎𝑡 1.14 1.14 1.14 −0.06 −0.06 −0.06 −0.56 −0.56𝑏𝑢𝑠 −0.44 −0.44 −0.44 1.05 1.05 1.05 0.12 0.12𝑒𝑒𝑙 −0.09 −0.09 −0.09 −0.30 −0.30 −0.30 1.08 1.08
(3.8)

As this is a toy example, 𝑆𝐺 is identical to 𝑇 . For more complex cases, ̂𝑇 will
not be virtually identical to 𝑇 “but will be an approximation of it that is optimal
in the least squares sense” (Baayen, Chuang, Shafaei-Bajestan, et al. 2019: 21).
Triphones with the strongest support are expected to be the triphones making
up a word’s form. As triphones are not ordered, it is also checked whether the
sequence of phones can be constructed correctly. Both checking triphone support
and sequence are conveniently done by the functions of the WpmWithLdl package
(Baayen, Chuang & Heitmeier 2019). Following this method, one can report the
percentage of production accuracy.

36



3.3 Linear discriminative learning

Figure 3.1 summarises the mapping between form and meaning by the 𝐹 and𝐺 transformation matrices for comprehension and production modelling.

Figure 3.1: Illustration of mapping between 𝐶 and 𝑆 matrix via 𝐹 (i.e.
comprehension), and 𝑆 and 𝐶 matrix via 𝐺 (i.e. production). Note: In
production, 𝐶 is referred to as 𝑇 .
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4 Production of word-final /s/

As explained in detail in Section 2.1, the present production study investigates
the potential durational differences between three types of word-final /s/: non-
morphemic /s/, plural /s/, and clitic /s/ (with the auxiliaries is and has).1 Pseudo-
words are used as items to prevent potential lexical effects to confound findings
(see Section 3.1.1). Three hypotheses derived from theories and models of speech
production are examined. H prod1, the Feed-Forward Hypothesis, assumes that
there is no durational difference between different types of word-final /s/. Ac-
cording to H prod2, the Prosodic Hypothesis, non-morphemic /s/ is shorter than
plural /s/, and plural /s/ is shorter than auxiliary clitic /s/. H prod3, the Emergence
Hypothesis, assumes that there are durational differences between different types
of word-final /s/, but does not indicate what the nature of these durational dif-
ferences is.

4.1 Methodology

4.1.1 Speakers and recordings

Forty native speakers of Southern British English took part in the experiment.
Their mean age was 28.7 years, ranging from 19 to 58. Eight speakers were bi- or
multilingual, and twenty-five speakers were from London while the other fifteen
speakers were from other places in South Britain. None of the participants had a
background in linguistics.

The recordings took place at Chandler House, University College London. The
acoustic data were recorded on a computer with a Røde NT1-Amicrophone using
an RME Fireface UC audio interface and sampled at 44.1 kHz, 16 bit.

4.1.2 Materials

For the production experiment, the pseudoword paradigm by Berko Gleason
(1958) was adopted. Following her reasoning, it was assumed that phonetic effects

1An earlier version of this chapter has been published as part of Schmitz, Baer-Henney, et al.
(2021).
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found in pseudoword paradigms mirror linguistic reality. The pseudowords used
in the production experiment consist of the full set of pseudowords discussed in
detail in Section 3.1.2. For reasons of convenience, Table 4.1 lists these pseudo-
words once more.

Table 4.1: Orthographic representations of all pseudowords.

gli- pru- plee- cloo- blou- glai-

glip prup pleep cloop bloup glaip
glit prut pleet cloot blout glait
glik pruk pleek clook blouk glaik
glif pruf pleef cloof blouf glaif

glips prups pleeps cloops bloups glaips
glits pruts pleets cloots blouts glaits
gliks pruks pleeks clooks blouks glaiks
glifs prufs pleefs cloofs bloufs glaifs

To elicit the pertinent types of /s/ under investigation, i.e. non-morphemic,
plural, and is- and has-clitic /s/, 48 contexts and accompanying questions for /s/
elicitation were created. The verbs directly following the pseudowords in these
contexts were chosen in such a way that out of twelve verbs in total, three each
started with a voiceless plosive (/pl/, /k/), a vowel (/ɑ/, /i:/, /ʌ/, /eɪ/), a nasal (/m/,
/n/), and an approximant (/w/, /l/, /r/). This was done to control for possible coar-
ticulatory effects of these segmental classes with the preceding /s/. Examples are
given in (1) to (4) with pseudowords and verbs in italics (see the supplementary
material given in Chapter 11 for all contexts).

(1) Every day, the glips plays with the cloops.

(2) Two days ago, the glips ate their lunch together.

(3) Tonight, the glip’s meeting the cloop for a drink.

(4) The glip’s written a love letter to the cloop.

To keep priming effects to a minimum, pseudowords were split into two groups.
Each group consisted of 24 pseudowords, with 12 pseudowords used for mor-
phemic /s/ elicitation and 12 pseudowords used for non-morphemic /s/ elicitation.
This way it was ensured that no single participant encountered a phonologically
identical pseudoword as both mono- and multi-morphemic, i.e. no participant
was to encounter /glɪps/ as both singular and plural or clitic item. Participants
were distributed equally across both groups. Each participant was supposed to
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produce 12 tokens for each of the four types of /s/ (non-morphemic, plural, is-
clitic, has-clitic; 48 tokens overall).

To ensure that each pseudoword was elicited within each context, i.e. with
each verb for each type of /s/, twelve pseudorandomised lists were created. The
same twelve lists were used for both groups to keep them comparable. Addition-
ally, types of /s/ were alternated in such a way that no type of /s/ was elicited
twice in a row. This was done to keep priming effects to a minimum.

4.1.3 Procedure

First, participants were introduced to the idea of a recently discovered far away
planet. They were told that the inhabitants of this planet at first might appear
bizarre, but engage in activities known to the participants, and not toworry about
the unfamiliar names of the creatures. Second, the trial structure was explained,
i.e. for each slide there would be pictures and names of alien creatures, a short
explanation of a situation, and a question relevant to the situation which was to
be answered aloud. Participants were then told to proceed in a natural pace and
to take as much time as necessary to read and understand the aliens’ names as
well as the situations. To avoid possible confusion due to the simplicity of the
task at hand, participants were made to believe that they were part of a control
group of an experiment originally designed for children. Before starting practice
trials, participants were reminded to use the aliens’ names instead of pronouns
when answering. Then, a practice set of four contexts (see the supplementary
material given in Chapter 11) was used to familiarise the participants with the
experimental procedure itself.

For each trial, the screen proceeded similarly (see Figure 4.1 aswell as examples
(5) to (8)): First, the relevant pseudowords were introduced. In the stimuli testing
the plural, one pseudoword (in its plural form) was introduced, while in the other
three conditions two different pseudowords were introduced. In either case, two
images (van de Vijver & Baer-Henney 2014) representing the pseudowords were
used to create familiarity with the items under investigation. In all cases but
plural, two images of different creatures were given, while in plural contexts two
images of the same creaturewere used. The pseudowords and imageswere paired
randomly across lists to rule out possible confounding effects of appearance, e.g.
due to the bouba/kiki effect (e.g. Köhler 1929; Fort et al. 2015). Second, a context
was introduced. Third, a questionwas given to elicit an answerwith the pertinent
type of /s/ while the context slowly faded out. The fading out of the question
forced the participants not to rely on the reading-aloud of the given context. This
open format was chosen in order to elicit speech that is as natural as possible. By
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Figure 4.1: Item, context, and question display during the production
experiment.

choosing such an open format one obviously runs the risk of eliciting a large
proportion of responses that do not contain the desired forms. This drawback of
the experimental design was countered by having a large number of trials and
participants. This strategy resulted in a sufficient number of observations. The
experiment was carried out in a self-paced fashion; participants were instructed
to progress in a contextually appropriate manner and at a speaking rate they
considered to be normal.

(5) non-morphemic context
Introduction: This is a glaits. # And this is a pleeps.
Context: Every day, the glaits plays with the pleeps.
Question: What happens every day?
Answer: The glaits plays with the pleeps.

(6) plural context
Introduction: This is a glait. # And this is another one.
Context: Two days ago, the glaits ate their lunch together.
Question: What happened two days ago?
Answer: The glaits ate their lunch together.
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(7) is-clitic context
Introduction: This is a glait. # And this is a pleep.
Context: Tonight, the glait’s meeting the pleep for a drink.
Question: What’s happening tonight?
Answer: The glait’s meeting the pleep for a drink.

(8) has-clitic context
Introduction: This is a glait. # And this is a pleep.
Context: The glait’s written a love letter to the pleep.
Question: What’s happened?
Answer: The glait’s written a love letter to the pleep.

4.1.4 Labels and measurements

In a first step, all recordings weremanually transcribed on the utterance level. Us-
ing the freely available WebMAUS Basic system (Schiel 1999; Kisler et al. 2017),
a phonetic transcription and segmentation based on the manual transcription
was created. This automated segmentation was then manually checked by six
trained annotators using the software Praat (Boersma & Weenink 2019). Bound-
aries marking the beginning of an item or /s/ were moved to the nearest zero
crossing where both spectrogram and waveform indicated the initiation of the
gesture for the respective segment, following laid out segmentation criteria based
on features of specific sounds as described in the phonetic literature (e.g. Lade-
foged 2003). In the case of /s/, the boundaries were set to the zero crossing closest
to the onset and offset of the friction visible in the waveform (see Figure 4.2). If
a pause followed the /s/, the boundary was set to the point where the friction of
the /s/ dropped to silence.

The reliability of the segmentation criteria was verified by trial segmentations,
in which it was ensured that all annotators placed boundaries with only very
small variations. Each annotator worked on a disjoint set of items; segmenta-
tion criteria were regularly re-verified in meetings of the annotators. After the
segmentation process, a Praat script was used to extract the item, its phonetic
transcription, and its duration, as well as the /s/ duration itself. If applicable, the
duration of the following pause was also extracted. Additionally, the preceding
and the following word were extracted as well.
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Figure 4.2: Example acoustic analysis of the item bloup’s.

4.1.5 Pre-processing

Apart of the 1,920 (40 participants × 48 utterances) recorded data points had to be
excluded from analysis for one or more of the following reasons. If an utterance
did not include a word-final /s/, this utterance was discarded (n = 599). A high
number of failures to produce final /s/ was expected especially with the clitics
since participants could use a different tense form, or the full form of the auxil-
iary. It was also expected that participants would produce wrong pronunciations
(including those with the final /s/) of the newly encountered written word-forms,
as the participants had to retrieve them from short-termmemory after the fading
out of the context. Additionally, utterances containing stutter or hesitation (n =
29) or replacement of pseudowords by pronouns (n = 15) were excluded as well.
Some utterances were ungrammatical (n = 9), while other utterances contained
pseudowords that were not part of the original set of pseudowords (n = 8). Cases
where the interpretation of the final /s/ was ambiguous presented another prob-
lem (n = 114). An example of such a case is given in (9) where a has-clitic was
expected. Note that two pseudowords without a non-morphemic word-final /s/

44



4.2 Analysis

were introduced, while either a non-morphemic /s/ or a has-clitic /s/ was pro-
duced for the item under investigation, and most likely a non-morphemic word-
final /s/ for the second pseudoword. As for regular inflected verbs there was no
way to decide which type of /s/ had been produced in such cases, such utterances
were discarded.

(9) ambiguous case example
Introduction: This is a glait. # And this is a pleep.
Context: The glait’s attended concerts with the pleep

many times.
Question: What’s happened many times?
Answer: The glaits attended many concerts with the pleeps

many times.

After exclusions, 1,146 data points (approx. 60%) remained in the final data set.
The final data set as well as the analysis and results discussed in the following
sections can be found in the supplementary material given in Chapter 11.

4.2 Analysis

4.2.1 Covariates

The set of covariates chosen for the present study is similar to that of other stud-
ies on phonetic effects of morphological structure (Pluymaekers et al. 2005a,b;
Hanique, Ernestus, et al. 2013; Plag et al. 2017). In the following, covariates used
as fixed effects are described first. Then, variables used as random effects are
introduced.

baseDurLog. Indicating a more local speaking rate (e.g. Plag et al. 2017), base
duration was measured. Base duration in this case is equal to the summed dura-
tion of all word-internal segments preceding the /s/ under investigation. That is,
the base of multi-morphemic items and the segmental string without the final /s/
of mono-morphemic items is henceforth considered the base. The base duration
was log-transformed and centred (Robinson & Schumacker 2009; Afshartous &
Preston 2011; Winter 2019). This variable is called baseDurLog.

biphoneProb. A potential problem with using pseudowords is their phono-
tactics. Pseudowords created for this book are mostly phonotactically legal (see
Section 3.1.2 and the relevant footnote therein), and their final consonant clusters
(with /s/ as the second consonant) are not uncommon inmulti-morphemic words.
However, in mono-morphemic words these clusters are rarer, or, in the case of

45



4 Production of word-final /s/

/fs/, even unattested (e.g. in CELEX, Baayen et al. 1995). The different phonotac-
tic probabilities of these clusters could potentially influence the pronunciation
of /s/ in the pseudowords, especially when spoken in the contexts where these
words receive a mono-morphemic interpretation. To address this concern, the
probability of the final biphones /fs/ (0), /ks/ (0.00427), /ps/ (0.00058), and /ts/
(0.00072) in mono-morphemic words was included as a covariate. biphoneProb
was computed on the basis of the transcriptions of all mono-morphemic words
in CELEX.

biphoneProbSum & biphoneProbSumBin. A potential factor influencing the
duration of a word in running speech is its predictability in context. The more
predictable, the shorter the duration (Pluymaekers et al. 2005a; Bell et al. 2009;
Torreira & Ernestus 2009). Such a word bigram frequency, however, is not appli-
cable to pseudowords for obvious reasons. Instead, the summed biphone prob-
ability was used analogously as a comparable measure. The summed biphone
probability for each pseudoword and its phonological variants was calculated us-
ing the Phonotactic Probability Calculator (Vitevitch & Luce 2004). Additionally,
a binary covariate based on the summed biphone probability was created. The
threshold for low versus high summed biphone probability for biphoneProb-
SumBin was the mean of the continuous covariate. That is, all values below the
mean were considered to be low, while all values above the mean were taken as
high.

folSeg & folType. To account for potential effects of the following word on
the duration of /s/ (cf. Klatt 1976; Umeda 1977), these were included in regard to
their onset segment adjacent to the word-final /s/. This segment was included in
its phonological representation in folSeg (e.g. k for the onset of cooked) as well
as in its segmental class by folType (i.e. approximant APP for listen, fricative F
for find, nasal N for know, plosive P for cook, vowel V for eat).

gender / location / monoMultilingual. Participants’ gender and whether
they had grown up in London or elsewhere in South Britain (location) were
included as well as they may influence phonetic realisations. Additionally, par-
ticipants who were early bilinguals (i.e. the L2 was/the L2s were acquired as a
pre-school child) were categorised as multilingual, while all other participants
were categorised as monolingual in monoMultilingual.2

2Psycholinguistic experiments are standardly done with monolingual speakers (mostly of En-
glish, and mostly in the US). In the multicultural context of a large European city like London,
experiments with student populations necessarily involve speakers that are multilingual (with
varying degrees of competence). To control for this potential confound, the variable mono-
Multilingual was added. While there are studies of phonetic duration in bilingual speech
(e.g. Mack 1982; Lee & Iverson 2012) the effect of mono-/multilingualism on the duration of
word-final /s/ has not been explored yet.
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neighbourhoodDensity & neighbourhoodFrequency. The densities and
frequencies of neighbourhoods were included as covariates as the number of
neighbours may influence phonetic reduction (e.g. Gahl et al. 2012). Both neigh-
bourhood measures were taken from the CLEARPOND database (Marian et al.
2012). That is, neighbourhoodDensity describes the number of words differing
in one segment from the item in question (Marian et al. 2012: 3), while neigh-
bourhoodFrequency describes the mean frequency (per million) of these neigh-
bouring words.

pauseDur & pauseBin. In order to account for final-lengthening effects, all
stretches of silence between the offset of the word-final /s/ and the onset of the
following word were measured. Silence of 50 ms and above was considered as
pause (Lee & Oh 1999; see also Zvonik & Cummins 2003 and Krivokapić 2007
on short pause duration in between short phrases). The closure durations of fol-
lowing plosives were taken into account by subtracting the mean closure dura-
tion of the pertinent plosive (mean values for /p, t, k/ adopted from Yao 2007)
from the measured stretch of silence. It was considered a pause only if the re-
sulting duration was above the aforementioned threshold. Pause measurements
were included as the continuous variable pauseDur as well as the binary variable
pauseBin (with the levels pause and no_pause).

preC. It has been shown that the consonant precedingword-final /s/ may influ-
ence the duration of word-final /s/ (e.g. Umeda 1977). In particular, Umeda (1977:
853) finds that /s/ becomes shorter after plosives, and longer after the fricative
/θ/ (and this presumably also holds for /s/ after the fricative /f/). The consonant
preceding the final /s/ was therefore included as a covariate, preC.

speakingRate. As speaking rate is a self-evident variable affecting segment
durations, this was controlled for. The speaking rate was computed as the num-
ber of syllables in an utterance divided by the duration of the utterance. For the
statistical analysis, speakingRate was centred (Robinson & Schumacker 2009;
Afshartous & Preston 2011; Winter 2019). The computation was done automati-
cally in Praat (de Jong & Wempe 2008). This way of computing speaking rate is
similar to that utilised in previous studies (e.g. Plag et al. 2017).

item & transcription. Pseudowords were sometimes produced with varying
segmental make-up. Therefore, both the orthographic representation of the pseu-
doword and a phonological transcription of the word as spoken were included
as variables. These covariates were labelled item and transcription.

list & slideNumber. To account for possible durational differences due to
priming and similar effects, the list number (1 to 12) and the point of occurrence
during the experiment of the individual item were also included.
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speaker / age. speaker ID was included to account for inter-speaker differ-
ences in production. age was included as well, as it may show an influence on
phonetic realisations.

4.2.2 Overview of the data

An overview of all variables and their distribution is given in Table 4.2 and Table
4.3.

Table 4.2: Summary of categorical predictors and the explanatory vari-
able of interest in the final data set.

Categorical predictors Levels

item 48
transcription 67

NeighbourhoodDensity 0: 419 1: 238 2: 165 3: 107
4: 14 5: 114 6: 32 7: 30

pauseBin no: 777 yes: 342
biphoneProbSumBin low: 856 high: 263
list 24
slideNumber 48
preC f: 273 k: 292 p: 281 t: 273
folSeg 18
folType APP: 229 F: 12 N: 230 P: 300 V: 278
speaker 40
gender 2
location London: 636 elsewhere: 483
monoMultilingual monolingual: 871 multilingual: 248

Explanatory variable Levels

typeOfS nm: 308 pl: 373 is: 284 has: 154

4.2.3 Collinearity

As described in Section 3.2.3, one issue to address when fitting a model to a multi-
tude of similar covariates is collinearity (e.g. Tomaschek, Hendrix, et al. 2018). To
avoid such issues, covariates were tested for correlation issues. High correlation
coefficients, i.e. |𝑟ℎ𝑜| ≥ 0.5, were found for item and transcription (𝑟ℎ𝑜 = 0.82,𝑝 < 0.001, Spearman), pauseDur and pauseBin (𝑟ℎ𝑜 = 0.87, 𝑝 < 0.001, Spear-
man), neighbourhoodDensity and neighbourhoodFrequency (𝑟ℎ𝑜 = 0.86,𝑝 < 0.001, Spearman), biphoneProbSum and biphoneProbSumBin (𝑟ℎ𝑜 = 0.87,
48



4.2 Analysis

Table 4.3: Summary of the dependent variable and numerical predictors
in the final data set.

Dependent variable Mean St. Dev. Min Max

sDurLog 0.002 0.388 -1.201 1.098

Numerical predictors Mean St. Dev. Min Max

speakingRate 0.000 0.899 2.250 3.540
baseDurLog -1.235 0.240 -1.987 -0.375
pauseDur 0.072 0.193 0.000 3.559
neighbourhoodFrequency 27.345 84.645 0.000 412.027
biphoneProbSum 0.013 0.007 0.005 0.031
biphoneProb 0.001 0.002 0.000 0.004
age 28.740 9.743 19.000 58.000

𝑝 < 0.001, Spearman), and for folSeg and folType (𝑟ℎ𝑜 = −0.74, 𝑝 < 0.001,
Spearman).

Given the nature of the highly correlated variable pairs, that is both variables
tap into very similar features of the given items or utterances, it was decided
to make use of the competitive exclusion strategy outlined in Section 3.2.3. This
procedure led to the exclusion of item (in favour of transcription), pauseDur
(in favour of pauseBin), neighbourhoodFrequency (in favour of neighbour-
hoodDensity), biphoneProbSum (in favour of biphoneProbSumBin), folSeg
(in favour of folType), and biphoneProb (in favour of preC).

4.2.4 Statistical analysis

Differences in consonant duration may play out as differences in absolute dura-
tion or as differences in relative duration (e.g. with gemination: Oh & Redford
2012; Ridouane & Hallé 2017; Ben Hedia 2019). Some previous analyses of the du-
ration of /s/ (Plag et al. 2017) have therefore looked at both absolute and relative
duration, and the present study will also present these two types of analyses. In
the first analysis (Section 4.3.1) absolute duration of /s/ was used as the depen-
dent variable, whereas in the second analysis (Section 4.3.2) the duration of /s/
relative to the duration of the whole word was used as the dependent variable.
Relative duration (i.e. the variable proportionOfS) was calculated by dividing
the absolute duration of the /s/ by the duration of the whole word.

The dependent variable, duration of /s/, was log-transformed and centred fol-
lowing standard procedures to reduce the potentially harmful effect of skewed
distributions in linear regression models (e.g. Winter 2019). The name of this
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variable is sDurLog. proportionOfS did not have a skewed distribution and
no transformation was necessary. Following the modelling procedure for LMER
models outlined in Section 3.2.1, models for sDurLog and proportionOfS as
dependent variables were fitted, tested for collinearity issues by using variance
inflation factors, and finally trimmed. This resulted in a loss of 9 data points
(0.8%) for sDurLog and in a loss of 12 data points (1.0%) for proportionOfS,
and in both cases led to a satisfactory distribution of the residuals.

4.3 Results

4.3.1 Absolute duration

Figure 4.3 shows the distribution of the observed durations of non-morphemic,
plural, is-, and has-clitic /s/. On average, non-morphemic /s/ duration is 134 ms,
which is about 13 ms longer than plural /s/ with a mean duration of 121 ms. The
mean duration of the is-clitic is 103 ms and the mean duration of the has-clitic is
94 ms.

Figure 4.3: Observed durations of non-morphemic, plural, is- and has-
clitic /s/. The dot represents the median, the horizontal line indicates
the mean. The violin shapes represent rotated density plots describing
the distribution of the data.

Multivariate analyses as described in the previous sectionwere then conducted
to control for the many potentially intervening influences of the described co-
variates listed in Section 4.2.1. In the final model, fitted according to the pro-
cedure described above, main effects of type of /s/ (typeOfS), speaking rate
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(speakingRate), base duration (baseDurLog), pause (pauseBin), preceding con-
sonant (preC), biphone probability sum (biphoneProbSumBin), following seg-
mental type (fol-Type), and mono-/multilingualism (monoMultilingual) were
found.

Regarding the random effects, only speaker-specific random intercepts turned
out to significantly improve the model fit. The p-values for the analysis of vari-
ance of the final model are given in Table 4.4.

Table 4.4: p-values of fixed effects in the final model, fitted to the log-
transformed durations of /s/.

Sum Sq Mean Sq NumDF DenDF F.value Pr ( F)

typeOfS 5.312 1.771 3 1089.66 33.338 0.000
speakingRate 0.230 0.230 1 1117.09 4.324 0.038
baseDurLog 9.466 9.466 1 1079.58 178.220 0.000
pauseBin 6.970 6.970 1 1110.28 131.235 0.000
biphoneProbSumBin 0.398 0.398 1 1082.26 7.492 0.006
preC 0.623 0.208 3 1080.29 3.910 0.009
folType 2.677 0.669 4 1081.55 12.598 0.000
monoMultilingual 0.345 0.345 1 37.37 6.498 0.015

The final model was then analysed in terms of its R2 values which were com-
puted with the MuMIn package (Barton 2020; for marginal and conditional R2

value computation, see Nakagawa et al. 2017). The marginal R2 value of a model
indicates the percentage of variation in the data explained by the fixed effects of
that model. The variance explained by the entire model is given by its conditional
R2 value. The marginal R2 value of the model is 0.46, that is, fixed effects explain
46% of the variation in the data. The variance explained by the entire model is
61% as obtained by the conditional R2 value of 0.61.

The estimates of the final model and their p-values are given in Table 4.5.
The reference levels for the categorical predictors are: for typeOfS it is non-
morphemic /s/, for pauseBin it is no-pause, for biphoneProbSumBin it is low,
for preC it is t, for folType it is approximant, and for monoMultilingual it
is monolingual. All coefficients can be interpreted as changes relative to these
reference levels.

The predictor strength of individual predictors was checked following the
method outlined in Section 3.2.1, that is by fitting models that lacked a particular
predictor and comparing their marginal R2 values to those of the final model. The
results are reflected in the hierarchy given in (10). The decrease in R2 is greatest
when removing baseDurLog, followed by pauseBin, and so forth. Overall, the

51



4 Production of word-final /s/

Table 4.5: Fixed-effect coefficients and p-values as computed by the fi-
nal model (mixed-effects model fitted to the log-transformed and cen-
tred durations of /s/).

Estimate SE df t-value Pr(|t|)

(Intercept) -1.321 0.068 550.378 -19.498 0.000
typeOfSpl -0.114 0.019 1094.00 -6.062 0.000
typeOfSis -0.178 0.020 1096.00 -8.839 0.000
typeOfShas -0.196 0.024 1091.00 -8.140 0.000
speakingRate -0.021 0.010 1117.00 -2.079 0.038
baseDurLog 0.586 0.044 1080.00 13.35 0.000
pauseBinpause 0.206 0.018 1110.00 11.456 0.000
biphoneProbSumBinhigh 0.047 0.017 1082.00 2.737 0.006
preCf 0.061 0.020 1081.00 -3.044 0.003
preCk 0.055 0.020 1082.00 -0.303 0.006
preCp 0.050 0.020 1079.00 2.522 0.012
folTypeF 0.012 0.070 1084.00 0.171 0.864
folTypeN -0.036 0.021 1079.00 -1.764 0.078
folTypeP -0.045 0.019 1080.00 -2.384 0.017
folTypeV -0.136 0.020 1082.00 -6.85 0.000
monoMultilingualmultilingual -0.152 0.059 37.37 -2.549 0.015

morphological status of an /s/ appears to be a strong predictor of its acoustic
duration.

(10) baseDurLog » pauseBin » typeOfS » monoMultilingual » folType »
speakingRate » biphoneProbSumBin » PreC

Figure 4.4 shows the effect of the numerical variables included in the final model
on /s/ duration. The estimated values of the dependent variable and the base
duration are back-transformed into seconds. Speaking rate and base duration
show effects in the expected direction. With faster speech, /s/ becomes shorter
(Panel A), while longer base durations also come with longer /s/ durations (Panel
B).

The partial effects of the categorical variables included in the final model are
illustrated in Figure 4.5. /s/ duration is longer if the /s/ is followed by a pause
(Panel A), which can be interpreted as a clear case of phrase-final lengthening
(e.g. Cooper &Danly 1981). Higher biphone probability sum leads to longer /s/ du-
rations (Panel B). There is also an effect of the preceding consonant: The plosive
/t/ is followed by significantly shorter /s/ durations than are /k/ and /f/ (Panel
C). /s/ duration is significantly shorter when followed by a vowel, while all other
differences between following consonants are minor in nature (Panel D). Lastly,
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Figure 4.4: Partial effects of the numerical variables speakingRate
(Panel A) and baseDurLog (back-transformed, Panel B) included in
the final model, fitted to the log-transformed values of duration of /s/.

monolingual speakers produce longer /s/ durations than multilingual speakers
(Panel E).

The effect of the variable of interest, i.e. typeOfS, is plotted in Figure 4.6. As
above, the values of the dependent variable are back-transformed into seconds.

One can see that there are durational differences between the different types
of /s/. The results of pair-wise comparisons of the predicted means using Tukey
contrasts (as implemented by the SfL package, Schmitz & Esser 2021) are sum-
marised in Table 4.6.

Table 4.6: Multiple comparisons of means of duration of /s/ (Tukey con-
trasts). Significance codes: *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

Estimate SE z-value Pr(|z|)

plural - non-morphemic -0.114 0.019 -6.062 0.001 ***
is-clitic - non-morphemic -0.188 0.020 -8.839 0.001 ***
has-clitic - non-morphemic -0.196 0.024 -8.140 0.001 ***
is-clitic - plural -0.064 0.019 -3.294 0.005 **
has-clitic - plural -0.082 0.023 -3.503 0.003 **
has-clitic - is-clitic -0.018 0.023 -0.766 0.868

Based on the Tukey tests, the comparison of the different types of /s/ yields
the significant contrasts shown in Table 4.7. Considering the different durations
given in Table 4.8, the following hierarchy emerges: non-morphemic /s/ > plural
/s/ > is-/has-clitic /s/.
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Figure 4.5: Partial effects of the categorical variables pauseBin (Panel
A), biphoneProbSumBin (Panel B), preC (Panel C), folType (Panel D),
and monoMultilingual (Panel E) included in the final model, fitted
to the log-transformed values of duration of /s/.
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Figure 4.6: Partial effect of typeofS in the final model, fitted to the log-
transformed values of duration of /s/.

Table 4.7: Significant contrasts in duration between different types of
/s/. Significance codes: *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

nm pl is has

non-morphemic n.a. *** *** ***
plural n.a. ** **
is-clitic n.a.
has-clitic n.a.

Table 4.8: /s/ durations as estimated by the final model using non-
centred data. All values are back-transformed to seconds. Values given
are estimated for items without following pause, high biphone sum
probability, monolingual speakers, and across all preceding and follow-
ing segment types.

typeOfS Mean

non-morphemic 0.224
plural 0.200
is-clitic 0.187
has-clitic 0.184
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To summarise, the durational differences between non-morphemic and other
types of /s/, as well as the durational difference between plural and the clitics are
significant, while there is no significant durational difference between the two
clitics. Non-morphemic /s/ is longest in duration, followed by plural /s/, which
in turn is followed by clitic /s/.

4.3.2 Relative duration

The results for relative duration are very similar to those of absolute duration.
The p-values for the analysis of variance of the final model are given in Table 4.9.
Table 4.10 shows the coefficients for the final model. All effects go in the same
direction as in the analysis of absolute duration. The only predictors that have
lost significance when compared to the model for absolute duration are preC
and speakingRate. The differences in the means show the same pattern as in
the analysis of absolute duration, as can be seen in Table 4.11.

Table 4.9: p-values of fixed effects in the final model, fitted to the rela-
tive durations of /s/.

Sum Sq Mean Sq NumDF DenDF F.value Pr(F)

typeOfS 0.161 0.054 3 1070.68 25.510 0.000
pauseBin 0.186 0.186 1 1101.26 88.518 0.000
biphoneProbSumBin 0.015 0.015 1 36.32 6.917 0.012
folType 0.071 0.018 4 1063.31 8.389 0.000
monoMultilingual 0.010 0.010 1 37.81 4.561 0.039

4.4 Discussion

Following in the footsteps of previous studies on durational differences between
different types of /s/, this study tested whether the morphological category of
word-final /s/ has an influence on its acoustic duration in speech production. In
order to avoid imbalanced data as in the case of corpus studies, speech mate-
rial elicited by the means of highly controlled contexts of a production task was
used. For the first time in this context, pseudowords instead of real words were
used to minimise potentially confounding lexical effects. It was found that there
are significant durational differences between non-morphemic and morphemic
types of word-final /s/, with morphemic types of /s/ being significantly shorter
in duration than non-morphemic /s/. Also, there are significant durational differ-
ences between the plural suffix and the is- and has-clitic /s/, with plural /s/ being
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Table 4.10: Fixed-effect coefficients and p-values as computed by the
final model (mixed-effects model fitted to the relative durations of /s/).

Estimate SE df t-value Pr(|t|)

(Intercept) 0.299 0.007 89.73 45.827 0.000
typeOfSpl -0.019 0.004 1085.00 -5.157 0.000
typeOfSis -0.031 0.004 1070.00 -7.651 0.000
typeOfShas -0.035 0.005 1067.00 -7.260 0.000
pauseBinpause 0.033 0.004 1101.00 9.408 0.000
biphoneProbSumBinhigh 0.013 0.005 36.32 2.630 0.012
folTypeF 0.001 0.014 1068.00 0.086 0.931
folTypeN -0.006 0.004 1061.00 -1.409 0.159
folTypeP -0.007 0.004 1056.00 -1.708 0.088
folTypeV -0.022 0.004 1063.00 -5.568 0.000
monoMultilingualmultilingual -0.024 0.011 37.81 -2.136 0.039

Table 4.11: Multiple comparisons of means of duration of /s/ (Tukey
contrasts). Significance codes: *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

Estimate SE z-value Pr(|z|)

plural - non-morphemic -0.019 0.004 -5.157 0.001 ***
is-clitic - non-morphemic -0.031 0.004 -7.651 0.001 ***
has-clitic - non-morphemic -0.035 0.005 -7.260 0.001 ***
is-clitic - plural -0.011 0.004 -2.936 0.017 *
has-clitic - plural -0.015 0.005 -3.300 0.005 **
has-clitic - is-clitic -0.004 0.005 -0.854 0.827

significantly longer than clitic /s/ and with no significant difference between the
two clitics. Hence, the type of /s/ emerged as a strong, significant predictor of
segmental duration.

The differences between different types of /s/ in the present study are com-
pletely in line with previous studies that were based on speech corpora and on
different varieties of English (Plag et al. 2017 and Tomaschek et al. 2019 on North
American English; Zimmermann 2016 on New Zealand English). In those stud-
ies the same pattern of differences was found. Turning to previous experimental
studies, differing results were found. The results of both prior experimental stud-
ies (Walsh & Parker 1983; Seyfarth et al. 2017) are subject to potentially confound-
ing effects of the lexical and contextual properties of the items under investiga-
tion. Their finding of non-morphemic /s/ being shorter than morphemic /s/ may
well be an artefact of such properties. The items used in the present study, how-
ever, are much less prone to be subject to such effects as they are pseudowords
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with no established representations in the speakers’ mental lexicons. The results
on the duration of clitic /s/ cannot be compared to previously reported ones by
other experimental studies, as none of the previously conducted experimental
studies investigated clitic /s/ production.

No previous studies have used pseudowords either, so before turning to the
theoretical interpretation of the results of the present study, a few words are
in order on whether using pseudowords might have had an undesired impact
on the results. While the use of pseudowords in phonetic experiments comes
with a number of benefits (see Section 3.1.1), it also raises some questions. First,
there is the issue of phonotactic probability raised in Section 4.2.1. Two mea-
sures concerned with phonotactics (one describing the phonotactic probability
of the whole word, the other taking into consideration the consonant preceding
the word-final /s/) were included in the statistical analysis to address this issue.
It turned out that phonotactic probability influences the production of pseudo-
words, as it does for real words. Crucially, there was no interaction between
the type of /s/ and the consonant preceding it in mono-morphemic words. This
means that speakers produced these clusters in the same way, no matter whether
the cluster occurred in the mono-morphemic words or whether the cluster strad-
dled the morphemic boundary between the base and the /s/. The main effects
of the phonotactic variables turned out to be rather weak and, crucially, were
properly controlled for in the regression analysis. In sum, the phonotactics of
the final cluster does not seem to have unduly influenced the results.

Second, there might have been a problemwith another aspect of the phonolog-
ical structure of the pseudowords in the experiment, i.e. long-distance agreement
of phonological features (Coetzee 2009). Such effects of the Obligatory Contour
Principle (OCP; Coetzee 2005) might have arisen with pseudowords such as pleep
(in which initial /p/ and final /p/ share all features) or glik (in which the initial
and final sounds /g/ and /k/ share the dorsal feature). Following the findings by
Coetzee (2009), a new variable was coded to test this effect post-hoc as an addi-
tional covariate and as an interacting term of typeOfS with the following levels:
not well-formed for pseudowords in which the initial and final consonant share
all features (n = 836), moderately well-formed for pseudowords in which the ini-
tial and final consonant share the dorsal feature (n = 147), and well-formed for
all remaining pseudowords (n = 145). There was no significant main effect of this
variable on the duration of /s/, nor a significant interaction with typeOfS. OCP
effects thus cannot explain the present results.

Third, after having carried out the experiments, it came to attention that some
of the pseudowords have real word relatives that are spelled differently but are
phonologically identical: pleet(s) corresponds to pleat(s), glits corresponds to glitz
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(and no word corresponding to glit), and glik corresponds to the surname Glick
(and no surname corresponding to gliks), whereas glif(s) corresponds to glyph(s),
which has a very low frequency and thus may constitute a pseudoword for most
of the participants. These words might have unduly influenced the results and
should perhaps not have been included into the statistical analysis. To check
whether these items had any influence on the results, a data set was created con-
taining all data but the four potentially offending items. Fitting the final model
(as done in Section 4.2.4) to this new dataset resulted in basically the same find-
ings, i.e. typeOfS was still a significant predictor for /s/ duration showing the
same significant differences between non-morphemic, plural, and clitic items as
presented in Table 4.7.

It has recently been shown that the notion of pseudoword is problematic in
a more general way (also see Section 3.1.1). The notion of pseudoword itself is
usually based on the idea of the lexicon as a community construct. When talking
about the mental lexicon, however, it is clear that what is an existing word and
what is an unknown pseudoword is a matter of the individual speaker’s mental
lexicon. All participants of the present experiment denied knowing any of the
pseudowords used in this experiment when asked afterwards. At the commu-
nity level, Google frequencies of pseudowords have been shown to be a robust
predictor of reaction times in lexical decision tasks (e.g. Hendrix & Sun 2020). To
test whether Google frequency had an effect on the present results, the covari-
ate googleFreq was created containing the number of Google search hits for
each pseudoword. The addition of this covariate as either fixed effect or inter-
acting term to typeOfS resulted in its exclusion during the model simplification
procedure.

Finally, let us turn to the theoretical implications of the present results. What
do these results mean for the three hypotheses that were tested? H prod1, the
Feed-Forward Hypothesis, states that there is no durational difference between
word-final non-morphemic /s/, plural /s/, and auxiliary clitic /s/. This hypothe-
sis is rejected as carefully controlled evidence was provided that shows that the
duration of /s/ varies by morphological category. This is an effect that present
feed-forward models cannot accommodate, unless they would be refined in such
a way that post-lexical processes can arise from certain kinds of lexical informa-
tion. At present, no such refinement is available.

H prod2, the Prosodic Hypothesis, states that there are durational differences
between different types of word-final /s/, with non-morphemic /s/ being shorter
than plural /s/, and plural /s/ being shorter than the auxiliary clitic. While it is
true that there are durational differences between the categories, the observed
differences pattern in the opposite direction. The more integrated the /s/ is with
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the stem, the longer its duration. The Prosodic Hypothesis is correct in positing
that the two auxiliary clitics should show no difference in duration. Overall, how-
ever, the Prosodic Hypothesis must be rejected, as the prosodic structure does not
explain the most important patterning of the data.

Finally, H prod3, the Emergence Hypothesis, states that there are durational
differences between the different types of word-final /s/ under investigation. The
fact that such differences were found means that these differences might emerge
through the mechanisms posited by the theories underlying this hypothesis.

As mentioned in Section 2.1, Tomaschek et al. (2019) found that stronger sup-
port for a morphological function leads to a longer duration, that is as for the
present findings, non-morphemic /s/ showed the longest duration, auxiliary clitic
/s/ showed the shortest durations, and plural suffix /s/ duration was in between.
This effect seems to run counter to the predictions of information-theoretic ac-
counts and probabilistic theories, according to which words and segments are
realised shorter when they are less informative (Aylett & Turk 2004; Jaeger 2010;
Cohen Priva 2015). However, the enhancement effects are in line with studies
showing that duration increases with increasing paradigmatic certainty (Kuper-
man et al. 2007; Cohen 2014; Bell et al. 2021; Tucker, Sims, et al. 2019). For in-
stance, Kuperman et al. (2007) found that the duration of a given interfix in Dutch
compounds increases with increasing probability of this interfix (as against its
competitors) in the left constituent family of the compound.

Overall, it seems that simplistic approaches can neither explain the existence,
nor the patterning of the durational differences one finds attested. The Feed-
Forward Hypothesis is rejected because durational differences were in fact ob-
served. The Prosodic Hypothesis is rejected because the observed durational differ-
ences pattern in a direction that is opposite to the one predicted. The Emergence
Hypothesis is supported by the present findings as it proposes that durational
differences of some nature should emerge between different types of /s/.

The results of the present study may bring up further questions. First, how can
the aforementioned effects of morphological support, informativity, and paradig-
matic probability be reconciled? This question is addressed further in Chapter 5,
making use of linear discriminative learning (Baayen, Chuang, Shafaei-Bajestan,
et al. 2019; Chuang et al. 2021). Second, assuming the durational differences found
here and in previous studies are indeed systematic, one would also like to know
whether language users are able to perceive them. This automatically leads to the
question of whether all differences are perceptible or only some of them, given
the knowledge on the perception of differences in fricative durations, i.e. that
the threshold for perceptible durational differences appears to be at 25 ms (Klatt
& Cooper 1975). This question is further investigated in Chapter 6. Third, if the
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durational differences are perceptible, another question naturally suggests itself:
Do users of a language not only perceive but also make use of such differences
in comprehension? This question is addressed in Chapters 7 and 8.
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5 Modelling word-final /s/ with linear
discriminative learning

The aim of the linear discriminative learning implementation presented in this
chapter is to further investigate H prod3, the Emergence Hypothesis.1 For the pro-
duction study of Chapter 4, this hypothesis delivered a rather weak prediction:
There are durational differences between different types of word-final /s/. Using
an LDL implementation, the nature of these differences is further examined. That
is, this study investigates whether measures derived from such an implementa-
tion are capable of explaining durational differences between different types of
word-final /s/. If so, such measures will potentially provide insight into the un-
derlying effects which lead to such durational differences.

5.1 Methodology

The methodology of the present investigation consists of two main stages. First,
the implementation of the LDL network itself, including the selection of data to
train the network (Sections 5.1.1 and 5.1.2) and the implementation of required
matrices (Sections 5.1.3 to 5.1.5). Second, the extraction of several measures de-
rived from the LDL implementation (Section 5.1.6), which are then used in the
statistical analysis (Section 5.2).

5.1.1 The semantics of pseudowords

The present study follows the implementational basics outlined in Section 3.3.
However, as /s/ durations in pseudowords (and not in real words) are to be mod-
elled, there are a number of complications. The most important complication
arises from the widely shared belief that pseudowords do not have meaning (see
Section 3.1.1 for a more detailed discussion). So how can one map form and mean-
ing with forms that have no, or at least no a priori specified, meaning? In a recent
study (Chuang et al. 2021) it was shown that the assumption that pseudowords

1An earlier version of this chapter has been published as part of Schmitz, Plag, et al. (2021).
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are void of meaning is most probably wrong. Due to their formal similarity with
existing words, pseudowords resonate with the lexicon. As a result, they may in
fact carrymeaning. Chuang et al. (2021) demonstrated that quantitativemeasures
gauging the semantic neighbourhoods of pseudowords predict reaction times of
lexical decision and acoustic durations. The present study is inspired by these re-
sults and implements a similar architecture. To model resonance of pseudowords
with the lexicon, both real words and pseudowords must be included in the net-
work. The following sections will detail the combined LDL implementation of
real words and pseudowords.

5.1.2 Sets of pseudowords and real words

The pseudowords and their phonetic realisations that this study is based on are
taken from the study of word-final /s/ production presented in Chapter 4. As lin-
ear discriminative learning (e.g. Baayen, Chuang, Shafaei-Bajestan, et al. 2019) in
its current implementation does not offer the option to integrate clitics, the pseu-
doword set for the present study was limited to two types of /s/: non-morphemic
and plural /s/. Recall that some pseudowords showed a number of different real-
isations by the participants in the production experiment, e.g. prups was some-
times produced as /pɹʌps/ and sometimes as /pɹups/. Thus, not 48 (i.e. the number
of pseudowords in their orthographic representation) but 78 different phonolog-
ical forms were included in the pseudoword data set. Table 5.1 gives an overview
of all pseudowords and their phonological forms.

Table 5.1: Overview of all pseudowords and their phonological forms
used in the LDL implementation. Transcriptions are given in the DISC
keyboard phonetic alphabet (Burnage 1988).

Pseudoword Phonological form Pseudoword Phonological form

blou-

fs blufs

glai-

fs gl1fs
ks bl{ks; bluks; blVks ks gl1ks; gl{ks
ps blups ps gl1ps; gl{ps
ts bl6ts; bluts ts gl1ts; gl{ts; gl2ts

cloo-fs; -ks;
-ps; -ts

klufs; kluks;
klups; kluts

plee-fs; -ks;
-ps; -ts

plifs; pliks;
plips; plits

gli-fs; -ks; -ps; -ts

glIfs; glIks;
glIps; glIts
glifs; gliks;
glips; glits

pru-fs; -ks; -ps; -ts

prVfs; prVks;
prVps; prVts;
prufs; pruks;
prups; pruts;
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The second set of words contained real words and their phonetic realisations.
Following Chuang et al. (2021), these words were extracted from the MALD cor-
pus (Tucker, Brenner, et al. 2019). While the MALD corpus contains 26,793 real
words, only a subset of 8,285 words was used for a number of reasons. First, some
7,577 words in the corpus contain multiple affixes. As it was unclear how to han-
dle such words, these were excluded. Second, only words for which there were
semantic vectors could be used, leading to the exclusion of 6,828 further words.
Third, only words with transcriptions available in the CELEX corpus (Baayen et
al., 1995) were retained, i.e. there was no transcription available for 818 words.
Fourth, 3,285 words showed ambiguities regarding their morphology, e.g. walks
as a third-person singular verb versus the plural of a noun. As huge numbers of
words lead to extensive computation times, it was decided to exclude such cases
as well. The final set of real words contained 6,165 simple and 2,120 complexword
forms.

5.1.3 Cue matrices

As introduced in Section 3.3, cue matrices are coded in binary form, giving in-
formation on which triphones are part of which word. For the current imple-
mentation, two such cue matrices were created using the WpmWithLdl package’s
(Baayen, Chuang & Heitmeier 2019) make_cue_matrix function. First, 𝐶𝑟𝑤 , the
real word cue matrix, was created for the set of real words. Then, a second cue
matrix, 𝐶𝑝𝑤 , was created for the set of pseudowords. 𝐶𝑝𝑤 is a lot smaller than 𝐶𝑟𝑤
as there were only 78 phonological forms for pseudowords, but more than 8,000
for real words. 𝐶𝑟𝑤 was of dimension 8,285 × 7,610, while 𝐶𝑝𝑤 was of dimension
78 × 78.

5.1.4 Semantic matrices

To introduce semantics, i.e. semantic vectors, for the present set of real words, a
pre-built semantic matrix 𝐴 from Baayen, Chuang, Shafaei-Bajestan, et al. (2019)
was used. These authors derived semantic vectors based on the TASA corpus
(Ivens & Koslin 1991). For this, words were parsed into their lexomes, i.e. in-
flected words were represented by their base and sense-disambiguated labels
for their respective inflectional functions. Ambiguous forms, e.g. walks, were
disambiguated using part of speech tagging (Schmid 1999). Derived words were
assigned a lexome for their base and a lexome for derivational function. Then,
following Baayen et al. (2016) and Milin, Feldman, et al. (2017), naive discrimina-
tive learning (henceforth NDL; Baayen et al. 2011; Sering et al. 2018) was used
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to build semantic vectors. The Rescorla-Wagner update rule (Rescorla & Wagner
1972; Wagner & Rescorla 1972; Rescorla 1988) was applied incrementally to the
sentences of the TASA corpus. That is, for each sentence the algorithmwas given
the task to predict the lexomes in that sentence from all lexomes of that sentence.
This resulted in a 23,562 × 23,562 weight matrix 𝐴. This matrix lists all lexomes
as rows and columns. Thus, each row 𝑖 represents the association strengths of its
corresponding lexome with all other lexomes as are represented by the columns
of the matrix. In this state of the 𝐴 matrix, lexomes predict themselves. Thus, the
diagonal of the 𝐴 matrix is set to zero (see Baayen, Chuang, Shafaei-Bajestan,
et al. 2019 for a discussion on this procedure). Lastly, columns which mostly con-
tained zeros, i.e. no information, and showed small variances (𝜎 < 3.4 ∗ 10−8)
were removed. The resulting 𝐴 matrix is of dimension 23,562 × 5,030. Following
the method outlined in Section 3.3, a semantic matrix for real words 𝑆𝑟𝑤 can be
constructed based on 𝐴. That is, the semantic vector 𝑠 in 𝑆𝑟𝑤 for a simplex word
is identical to its corresponding lexome, while the semantic vector 𝑠 in 𝑆𝑟𝑤 for
a complex word is the sum of its corresponding lexomes. That is, the semantic
vector of apple is ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃗𝑎𝑝𝑝𝑙𝑒, while the semantic vector of apples is the sum of the
vectors of the lexomes apple and plural, i.e. ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃗𝑎𝑝𝑝𝑙𝑒𝑠 = ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃗𝑎𝑝𝑝𝑙𝑒 + ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃗plural. As a set
of real words was used, 𝑆𝑟𝑤 contained only semantic vectors for this set of real
words (instead of, e.g., all word forms of the TASA corpus). The final real word
semantic matrix 𝑆𝑟𝑤 was of dimension 8,285 × 5,487.

While this procedure is rather straightforward, the creation of a pseudoword
semantic matrix 𝑆𝑝𝑤 is not. Due to the nature of pseudowords, their lexomes
are not contained within any corpus or the 𝐴 matrix, for that matter. Instead,
one can estimate a pseudoword’s semantic content by utilising the semantic and
phonological information on real words, i.e. their 𝐶 and 𝑆 matrix (Chuang et al.
2021). That is, the same transformation matrix 𝐹 that is used for mapping real
word cues onto predicted real word meanings (see Section 3.3) can be used to
map pseudoword cues onto their estimated semantics. That is, one must first
solve 𝐹 = 𝐶′𝑟𝑤 𝑆𝑟𝑤 (5.1)

to obtain 𝐹 . Then, one can make use of the pseudoword cue matrix 𝐶𝑝𝑤 and
estimate pseudoword semantics, as𝑆𝑝𝑤 = 𝐶𝑝𝑤 𝐹 (5.2)

with 𝑆𝑝𝑤 denoting the originally estimated semantic matrix for pseudowords. In
this semantic matrix, pseudowords of identical segmental makeup show identi-
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cal semantics, as semantics are calculated only based on triphone occurrence, i.e.
the semantics of pleepssingular is identical to the semantics of pleepsplural. To dif-
ferentiate between singular and plural pseudowords, the semantic vector of the
plural lexome is added to all plural pseudowords in the 𝑆 matrix. Similarly, the
semantic vectors of alien and creature are added to all pseudoword seman-
tic vectors as participants in the original production experiment were told that
pseudowords describe alien creatures. As explained in Section 4.1, the pairing of
the pictures with pseudowords representing the alien creatures was randomised
during the experiment. A particular pseudoword thus only contained the seman-
tics of “alien creature” as a constant part of its own semantics, while other fac-
tors such as appearance, e.g. colour, shape, or number of eyes, differed across
participants. One may assume that in the course of the experiment, participants
gradually came to realise that the looks of these alien creatures, i.e. colour, shape,
etc., are not relevant to their label names. Thus, participants were just aware of
the fact that these are all alien creatures, without paying much attention to their
individual features. Please see the supplementary material given in Chapter 11
for a detailed implementation.

5.1.5 Comprehension and production

Pseudoword comprehension and production were not computed and evaluated
in isolation, but in combination with real words, simulating a real person’s lexi-
con in a pseudoword comprehension and production situation, respectively. For
this, a cue matrix 𝐶𝑐𝑜𝑚𝑏 was created based on a combined set of words, contain-
ing all aforementioned real words and pseudowords. In total, 8,440 word forms
were part of this set of words. A combined semantic matrix 𝑆𝑐𝑜𝑚𝑏 was created by
attaching 𝑆𝑝𝑤 to 𝑆𝑟𝑤 , and reordering its rows to reflect the same order of words
as found in 𝐶𝑐𝑜𝑚𝑏 using the LDLConvFunctions package (Schmitz 2021a).

Then, using the WpmWithLdl package (Baayen, Chuang & Heitmeier 2019), a
comprehensionmodel was trained and checked for accuracy. That is, taking form
vectors as input for the prediction of semantic vectors of output, ̂𝑆𝑐𝑜𝑚𝑏 = 𝐶𝑐𝑜𝑚𝑏𝐹
is solved. Comprehension is successfully modelled for a word 𝑖 if its predicted
semantic vector ̂𝑠𝑖 is most highly correlated with its targeted semantic vector𝑠𝑖. This is true for 74.41% of cases (i.e. 6,165 word forms) in the comprehension
model. In total, 25.59% of cases (i.e. 2,120 word forms) were incorrectly predicted,
with 1,912 simple and 208 complex word forms. None of the incorrectly predicted
word forms was a pseudoword.

Similarly, a production model was trained and checked for accuracy using
functions of the aforementioned R package. Thus, semantic vectors were pro-

67



5 Modelling word-final /s/ with linear discriminative learning

vided as input to predict form vectors as output, i.e. to solve ̂𝑇𝑐𝑜𝑚𝑏 = 𝑆𝑐𝑜𝑚𝑏𝐺.
Production was successfully modelled for a word 𝑖 if its predicted triphones are
those triphones present in its targeted cue vector in the correct sequence (pos-
sible sequences of triphones will be referred to below as paths). This was true
for 97.3% of cases (i.e. 8,061 word forms) in the production model. In total, 2.7%
of cases (i.e. 224 word forms) were incorrectly predicted, with 98 simple and 126
complex word forms. None of the incorrectly predicted word forms was a pseu-
doword.

5.1.6 Measures

In order to explore the potential of different measures emerging from the net-
work to predict phonetic duration, a whole range of measures, based on the mea-
sures introduced by the WpmWithLdl package (Baayen, Chuang &Heitmeier 2019)
and by Chuang et al. (2021), were extracted. The measures introduced by Chuang
et al. (2021) were extracted using the LDLConvFunctions package (Schmitz 2021a).
Please see the supplementary material given in Chapter 11 for exploratory anal-
yses of individual measures.

In the following, the semantic measures are described first. Then, the phonetic
measures are introduced.

l1norm and l2norm. The l1norm is the sum of the absolute values of vector
elements of a given word’s predicted semantic vector ̂𝑠, i.e. its city-block distance.
The l2norm is the square root of the sum of the squared values of a given word’s
predicted vector ̂𝑠, i.e. its Euclidean distance. For both variables, higher values
imply more strong links to many other lexomes. Thus, both measures may be
interpreted as semantic activation diversity.

density. For density, the correlation values of a word’s predicted semantic
vector ̂𝑠 and its eight nearest neighbours’ semantic vectors 𝑠𝑛1...𝑠𝑛8 are taken
into consideration. The mean of these eight correlation values describes den-
sity, with higher values indicating a denser semantic neighbourhood.

ALC. The Average Lexical Correlation is the mean value of all correlation val-
ues of a pseudoword’s estimated semantic vector as contained in 𝑆𝑝𝑤 with each
of the real word semantic vectors as contained in 𝑆𝑟𝑤 . Higher ALC values indi-
cate that a pseudoword’s semantics are part of a denser semantic neighbourhood.
Thus, ALC may be interpreted as a measure of semantic activation diversity for
pseudowords.

EDNN. This variable describes the Euclidean Distance of a pseudoword’s es-
timated semantic vector 𝑠 and its Nearest semantic real word or pseudoword
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Neighbour. Thus, higher values indicate a larger distance to the nearest seman-
tic neighbour. EDNN may be regarded as a measure of semantic neighbourhood
density.

NNC. The Nearest Neighbour Correlation is computed by taking a pseudo-
word’s estimated semantic vector as given in 𝑆𝑝𝑤 and checking it for the highest
correlation value against all real word semantic vectors as given in 𝑆𝑟𝑤 . This high-
est correlation value is taken as NNC value. Thus, higher values indicate that a
pseudoword is semantically close to a real word. Additionally, one can tell which
real word a pseudoword’s semantics are closest to. This measure may be inter-
preted as a measure of similarity between pseudo- and real words, indicating the
co-activation of a real word when confronted with a pseudoword.

support. This measure describes the amount of support the word-final tri-
phone (i.e. fs#, ks#, ps#, ts#) obtains for each pseudoword. The value of support
is extracted from ̂𝑇 . Higher values of this variable indicate a higher semantic
support for the word-final triphone which includes the segment of interest, i.e.
word-final /s/.

path_counts. path_counts describes the number of paths, i.e. possible se-
quences of triphones, detected for the production of a word by the production
model. path_counts may be interpreted as a measure of phonological activa-
tion diversity, as higher values indicate the existence of multiple candidates (and
thus paths) in production.

path_sum. path_sum describes the summed support of paths for a predicted
form. path_summay be interpreted as a measure of phonological certainty, with
higher values indicating a higher certainty in the candidate form.

path_entropies. path_entropies contains the Shannon entropy values that
are calculated over the path supports of the predicted form in ̂𝑇 . Thus, path_-
entropies may be interpreted as a measure of phonological uncertainty, with
higher values indicating a higher level of disorder, i.e. uncertainty.

ALDC. The Average Levenshtein Distance of all Candidate productions is the
mean of all Levenshtein distances of a word and its candidate forms. That is, for a
word with only one candidate form, the Levenshtein distance between that word
and its candidate form is its ALDC. For words with multiple candidates, the mean
of the individual Levenshtein distances between candidates and targeted form
constitutes the ALDC. Thus, higher values indicate that a word’s candidate forms
are very different from the intended pronunciation. ALDC may be interpreted as
a measure of phonological neighbourhood density as it takes into account real
word neighbourhoods for pseudowords, i.e. large values indicate sparse real word
neighbourhoods.
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5.2 Analysis

Recall that the data set of the production study (Chapter 4) contains non-morphe-
mic, plural, and clitic word-final /s/ as final segment of a pseudoword. As men-
tioned in Section 5.1.2, the present LDL implementation does not include infor-
mation on clitics. Thus, only durational data on non-morphemic and plural /s/ for
the present study are considered. A subset of 666 data points remains, with 303
observations with non-morphemic /s/ and 363 observations with plural /s/. Due
to some variable pronunciations requiring triphones not included in the present
LDL implementation, 13 data points had to be excluded, resulting in a final data
set with non-morphemic and plural /s/ durations of 653 data points, i.e. 300 en-
tries on non-morphemic /s/ and 353 entries on plural /s/. The data set and the
following analysis can be found in the supplementary material given in Chapter
11.

5.2.1 Covariates

Besides the aforementioned variables extracted and computed from the LDL im-
plementation itself (see Section 5.1.6), the following covariates adopted from the
production experiment (see Section 4.2.1) were included in the analysis. Themain
reason for this is to allow for the comparison of the performance of these pre-
dictors with the performance of LDL predictors. LDL measures often correlate
with traditional measures (such as lexical frequencies, transitional probabilities,
or neighbourhood densities), but the traditional measures have no clear correlat-
ing mechanisms in learning or processing.

There are, however, also covariates that do not tap into lexical properties, but
that control for other influences, such as speech rate, the speaker, gender, the
order of stimuli in an experiment, etc. These will be referred to as ”non-lexical
covariates” and they will also be included in regression models.

For reasons of convenience, I will repeat the covariates adopted from the pro-
duction experiment and their definitions in a shortened version in the following.
See Section 4.2.1 for a detailed account.

typeOfS. This is the explanatory variable of the production study. As the
present data set contains only two types of word-final /s/, this binary variable
codes whether the pertinent pseudoword is a singular or plural form. It takes
the value nm for pseudowords with a non-morphemic word-final /s/ and pl for
pseudowords with a plural word-final /s/.

speakingRate. The speaking rate was computed as the number of syllables in
an utterance divided by the duration of the utterance.
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baseDurLog. Indicating a more local speaking rate, base duration was mea-
sured. The base duration in this case is equal to the summed duration of all word-
internal segments preceding the /s/ under investigation. The base duration was
log-transformed and centred. This variable is called baseDurLog.

pauseBin. In order to account for final-lengthening effects, all stretches of si-
lence between the offset of the word-final /s/ and the onset of the following word
were measured. Silence of 50 ms and above was considered as pause. The closure
durations of following plosives were taken into account. Following the results
of the production study, pause information was included as binary variable with
the values pause versus no_pause.

transcription. As some pseudowords were produced with multiple pronun-
ciations, their transcription was incorporated as a categorical variable.

biphoneProbSumBin. A binary covariate based on the summed biphone prob-
ability was used as a measure of contextual predictability.

list & slideNumber. To account for possible durational differences due to
priming and similar effects, the list number (1 to 12) and the point of occurrence
during the experiment of the individual item were also included.

preC. It has been shown that the consonant preceding word-final /s/ may in-
fluence the duration of word-final /s/. The consonant preceding the final /s/ was
therefore included as a covariate, preC.

biphonePron. The probability of the final biphones /fs/, /ks/, /ps/ and /ts/ in
monomorphemic words is included as covariate to account for potential effects
of phonotactics.

folType. To account for potential effects of the followingword on the duration
of /s/, the following word was included in regard to its onset segment adjacent to
the word-final /s/. This information was included in form of its segmental class
in folType.

speaker / age. speaker ID was included to account for inter-speaker differ-
ences in production. age was included as well as it may show an influence on
phonetic realisations.

gender / location / monoMultilingual. Participants’ gender and whether
they had grown up in London or elsewhere in South Britain (location) were
included as well as they may influence phonetic realisations. Additionally, par-
ticipants who were early bilinguals (i.e. the L2 was/the L2s were acquired as a
pre-school child) were categorised as multilingual, while all other participants
were categorised as monolingual in monoMultilingual.

Finally, one additional covariate was introduced, following the discussion of
the production experiment.
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real. Some of the pseudowords used here and in the production experiment
have an orthographically different, but phonologically identical real word coun-
terpart (see Section 4.4). The variable real was introduced to control for this
potential confound. This variable is TRUE for pseudowords with such a real word
counterpart, and FALSE for those without. The following pseudowords were con-
sidered to show such counterparts: pleet(s) corresponds to pleat(s), glits corre-
sponds to glitz, and gliks corresponds to the plural of the surname Glick (as in
the Glicks live next door), whereas glif(s) corresponds to glyph(s), which has a
very low frequency and thus may constitute a pseudoword for most of the par-
ticipants.2

All of the following analyses make use of the following non-lexical covariates:
baseDurLog, speakingRate, slideNumber, and pauseBin as variables concern-
ing speech rate and continuity, preC and folType accounting for coarticulatory
effects, list taking into consideration potential priming effects, monoMultilin-
gual, gender, location, age, and speaker to account for speaker-individual
differences, and real to include effects of real word counterparts.

5.2.2 Overview of the data

An overview of all variables is given in Table 5.2 and Table 5.3.

5.2.3 Modelling strategy

Three kinds of models were devised. First, a baseline model with the traditional
predictor variables (plus the non-lexical covariates). Second, a model with LDL
predictors that also includes typeOfS as a covariate (plus the non-lexical covari-
ates). Third, a model that contains only the LDL predictors (plus the non-lexical
covariates).

The three kinds of models will allow answering the given research question.
Recall that the ultimate goal is to understand how systematic durational dif-
ferences emerge between words of different, but homophonous morphological
categories. Traditional lexical variables are predictive but cannot explain how
morphology can make its way into durational differences. But these models can
show that such differences exist by looking at the effect of the variable typeOfS.
This is the baseline model. As an alternative, a model that uses LDL measures is

2Note that in Schmitz, Plag, et al. (2021) a slightly different set of pseudowords was considered
to have real word counterparts, i.e. pleets, glits, glaiks (instead of glik), and glifs. The analysis
presented here uses the set of pseudowords given in the main text. Results reported here and in
Schmitz, Plag, et al. (2021) do not differ significantly; all effects show into the same directions.
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Table 5.2: Summary of the dependent variable and the numerical vari-
ables used in the modelling processes.

Dependent variable Mean St. Dev. Min Max

sDurLog -2.116 0.388 -3.361 -1.221

Numerical variables Mean St. Dev. Min Max

speakingRate 3.566 0.927 1.310 7.100
baseDurLog -1.203 0.232 -1.987 -0.375
biphoneProb 0.001 0.002 0.000 0.004
age 28.470 9.323 19.000 58.000
Component1 0.000 1.975 -17.748 2.509
Component2 0.000 1.959 -2.832 11.989
Component3 0.000 1.488 -4.312 2.983
Component.woA.1 0.000 1.973 -18.860 2.178
Component.woA.2 0.000 1.957 -10.011 2.894
Component.woA.3 0.000 1.487 -4.175 2.928
Component.woA.4 0.000 1.269 -3.608 3.076

Table 5.3: Summary of categorical predictors and the explanatory vari-
able of interest in the final data set.

Categorical variables Levels

typeOfS nm: 300 pl: 353
pauseBin no: 412 yes: 241
transcription 38
biphoneProbSumBin high: 161 low: 492
list 12
slideNumber 48
preC f: 156 k: 169 p: 164 t: 164
folType APP: 190 F: 11 N: 106 P: 165 V: 181
speaker 40
gender 2
location London: 392 elsewhere: 261
monoMultilingual monolingual: 532 multilingual: 121
real FALSE: 542 TRUE: 111
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5 Modelling word-final /s/ with linear discriminative learning

implemented. If these measures are predictive, they offer an explanation of the
morphologically induced phonetic differences: They emerge as a by-product of
the association of form and meaning in the mental lexicon, and this association
is the outcome of discriminative learning. By having a model that also includes
typeOfS as an additional predictor, one can see whether the LDL measures com-
pletely capture the morphological effect, or whether there is a residue of mor-
phological information that is predictive of duration but is still not captured by
the LDL measures.

5.2.4 Model A: Traditional measures

This model is meant to resemble those in previous studies on word-final /s/ du-
ration (e.g. Plag et al. 2017), with a special focus on the model found in the pro-
duction study (see Section 4.2.4). Thus, an LMER model was fitted with similar
variables and similar effect structures: typeOfS, biphoneProbSumBin, and bi-
phoneProb, as well as those control variables included in all analyses of this
study. None of these covariates showed high correlation coefficients. Hence, no
cautionary measures regarding collinearity were required before an initial full
model was constructed. Following standard procedures to reduce the potentially
harmful effect of skewed distributions in linear regression models (e.g. Winter
2019), the dependent variable, duration of /s/, was log-transformed. The name of
this variable is sDurLog. The model selection process proceeded as explained
in Section 3.2.1. That is, non-significant variables were excluded in a controlled
step-wise fashion.

Then, variance inflation factors (VIFs) were checked. The covariates biphone-
Prob and preC showed high VIF values (i.e. 46.53 and 46.88, respectively), indi-
cating potential overfitting of the model (e.g. Zuur et al. 2010; Fox & Weisberg
2019). Consequently, preC was removed from the model as it showed the highest
VIF value, following the procedure described by Zuur et al. (2010). Re-fitting the
model without preC and re-checking the new variance inflation factor values
revealed only non-problematic values.

Finally, the resulting model’s residuals were trimmed, following the reasoning
given in Section 3.2.1. This procedure led to a loss of 4 data points, i.e. 0.61% of
all data points.

5.2.5 Model B: LDL measures and typeOfS specification

This model makes use of all LDL measures as well as of the typeOfS variable.
Additionally, the non-lexical covariates are included. When fitting a model with
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such a multitude of variables, collinearity is an issue to consider. Following the
procedure given in Section 3.2.3, all covariates were checked for correlation us-
ing the SfL package (Schmitz & Esser 2021). This correlation check resulted in
eight correlation coefficients indicating a high degree of correlation, for which
the threshold was assumed to be |𝑟ℎ𝑜| ≥ 0.5. The pairs of correlated covariates as
well as their correlation coefficients are given in Table 5.4.

Table 5.4: Correlated variables and their correlation coefficients.

Variables rho Variables rho

l1norm l2norm 0.98 typeOfS NNC -0.89
path_counts path_entropies 0.95 path_counts support -0.65
path_counts ALDC 0.89 path_sum support 0.73
path_entropies ALDC 0.90 path_entropies support -0.63

Due to the high number of correlated variables, a principal component anal-
ysis was used (PCA; see Section 3.2.3 for further details) to address collinearity
issues. In a PCA, the dimensionality of the data is reduced by transforming the
included variables into principal components. These transformations result in
linear combinations of the predictors that are orthogonal to each other. Thus,
the resulting principal components are not correlated. All variables given in Ta-
ble 5.4 were included in the computation of the principal component analysis,
which yielded nine principal components.

The next step of the PCA is to determine how many of these principal com-
ponents are meaningful and thus should be retained for further use. Following
the criteria given in Section 3.2.3, the following was found. First, any compo-
nent that displays an eigenvalue greater than 1 accounts for a greater amount of
variance than had been contributed by one variable. Such a component is there-
fore potentially meaningful. This is true for components 1, 2, and 3. Second, one
should retain enough components so that the cumulative percentage of variance
explained is equal to at least 80%. This, again, is true for components 1, 2, and
3. Third, only interpretable components are to be retained. This, once again, is
true for components 1, 2, and 3. Therefore, components 1 to 3 are retained for fur-
ther analysis, all of which show an eigenvalue greater than 1, account for more
than 80% of variance, and contain strong representations of variables in their
loadings.3 But what do these principal components mean? The highest loadings

3In addition, a cluster analysis was performed. This analysis revealed clusters which align well
with the retained components of the principal component analysis. The cluster analysis can
be found in the supplementary material given in Chapter 11.
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5 Modelling word-final /s/ with linear discriminative learning

of the principal components, i.e. the correlation of the original variables to the
pertinent component, are given in Table 5.5.

Table 5.5: Loadings of original predictor variables in the three retained
principal components of the principal component analysis for model
B.

Component1 Component2 Component3

l1norm 0.397 0.348
l2norm 0.405 0.363
path_counts 0.813
path_entropies 0.828
path_sum -0.430
ALDC 0.710
NNC 0.698
support -0.650
typeOfS 0.421 0.517

Component1. Component1 ismost strongly positively correlatedwith path_-
counts, path_entropies, and ALDC, while it is most strongly negatively cor-
related with path_sum and support. For path_counts, higher values indicate
the existence of multiple candidates (and thus paths) in production. It hence func-
tions as an indicator of phonological uncertainty. Values of path_entropies re-
late to the level of uncertainty concerning the path supports of the predicted
candidate form, with higher values indicating a higher level of uncertainty. For
ALDC, higher values mean that a word’s candidate forms are very different from
the intended pronunciation, indicating uncertainty in production. path_sum de-
scribes the summed support of paths for a predicted form, with higher values
indicating a higher certainty in the candidate form. Higher values for support
suggest more certainty in the choice of the word-final triphone. Component1
can thus be described as a dimension that represents phonological or articula-
tory certainty.

Component2. Component2 ismost strongly correlatedwith l1norm, l2norm,
NNC, and typeOfS. l1norm and l2norm both imply more strong links to many
other lexomes with higher values indicating a higher semantic activation diver-
sity. Higher values of NNC suggest a close real word neighbour, which leads to
higher levels of co-activation of that real word when confronted with the pseu-
doword, also leading to higher semantic activation diversity. As for typeOfS,
Component2 is positively correlated with the presence of non-morphemic /s/
data points.
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Component3. Component3 is similar to Component2 as it is also strongly
correlated with l1norm, l2norm, and typeOfS. Again, for l1norm and l2norm
higher values indicate higher semantic activation diversity. typeOfS is positively
correlated for plural /s/ data points. I will come back to the interpretation of this
correlation in Section 5.3.2.

In a next step, LMER models were fitted following the procedure given in Sec-
tion 3.2.1. As in Section 5.2.4, the dependent variable, duration of /s/, was log-
transformed to reduce the potentially harmful effect of skewed distributions in
linear regression models. Following the backward step-wise selection process for
model selection, a first model containing all remaining variables is created. That
is, Component1, Component2, Component3, density, ALC, EDNN, baseDur-
Log, speakingRate, pauseBin, folType, preC, and real were included as fixed
effects. The remaining variables, gender, location, monoMultilingual, age,
list, and speaker, were included as random intercepts.

This full model was then continuously reduced through step-wise exclusion of
non-significant variables. Then, variance inflation factors (VIFs) were computed.
For the present model, all variance inflation factor values were below 3. Thus, no
action was necessary. Finally, the resulting model needed trimming of its resid-
uals. This resulted in a loss of 6 data points (0.92%).

5.2.6 Model C: LDL measures only

This model uses all LDL measures but does not incorporate the typeOfS covari-
ate. As in the previous model, there was a high number of highly correlated vari-
ables (see Table 5.4 with the exception of the correlation of typeOfS and NNC, as
typeOfS is not included in this analysis). I therefore again computed a principal
component analysis, following the procedure outlined in Section 3.2.3. Follow-
ing the first two criteria, two principal components are to be retained. However,
considering the third criterion, it is found that the two components are not read-
ily interpretable as they show relatively high positive or negative correlations
with all or almost all variables, without indicating a clearly discernible dimen-
sion underlying the patterns of correlations. I thus turned to the procedure of
competitive exclusion to reduce collinearity issues as introduced in Section 3.2.3.
This procedure led to the exclusion of l2norm, path_counts, path_entropies,
and path_sum.

Linear mixed-effects regression models were fitted according to the procedure
given in Section 3.2.1. That is, an initial full model was fitted with the follow-
ing variables: l1norm, ALDC, support, density, ALC, EDNN, NNC, baseDur-
Log, speakingRate, pauseBin, folType, preC and real. As for random effects,

77



5 Modelling word-final /s/ with linear discriminative learning

random intercepts for gender, location, monoMultilingual, age, list, and
speaker were included. The dependent variable, duration of /s/, again was log-
transformed.

This full model was then continuously reduced through step-wise exclusion
of non-significant variables, following the aforementioned procedure. Then, vari-
ance inflation factors were computed, resulting only in non-problematic values.
Finally, the resulting model needed trimming of its residuals. This procedure led
to a loss of 8 data points, i.e. 1.2% of all data points.

5.3 Results

5.3.1 Model A: Traditional measures

The final model of traditional measures included effects of the following vari-
ables: type of /s/ (typeOfS), speaking rate (speakingRate), log-transformed base
duration (baseDurLog), pause (pauseBin), following segmental type (folType),
and the summed biphone probability (biphoneProbSumBin). As for random ef-
fects, random intercepts for speaker and random slopes for typeOfS are in-
cluded. The p-values of the analysis of variance of the final model are given in
Table 5.6.

Table 5.6: p-values of fixed effects in model A, fitted to the log-
transformed durations of /s/.

Sum Sq Mean Sq NumDF DenDF F.value Pr(F)

typeOfS 0.711 0.711 1 37.90 13.845 0.001
speakingRate 0.163 0.163 1 604.07 3.165 0.076
baseDurLog 6.278 6.278 1 572.80 122.247 0.000
pauseBin 5.430 5.430 1 635.92 105.722 0.000
biphoneProbSumBin 0.646 0.646 1 596.28 12.580 0.000
folType 2.199 0.550 4 605.15 10.703 0.000

The marginal R2 value of the model is 0.43, i.e. fixed effects explain 43% of
variation in the data (see Section 3.2.1 for details on R2 values). Taking random
effects into account as well, the conditional R2 value is 0.62. That is, the model
explains 62% of data variation in total. The R2 values are similar to the values
found for the final model of the production experiment (see Section 4.3.1).

The estimates of the final model and their p-values are given in Table 5.7. The
reference levels for the categorical predictors are: for typeOfS it is nm, for pause-
Bin it is no_pause, for biphoneProbSumBin it is high, and for folType it is APP.
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Table 5.7: Fixed-effect coefficients and p-values as computed for model
A (mixed-effects model fitted to the log-transformed duration of /s/).

Estimate SE df t-value Pr(|t|)

(Intercept) -1.202 0.083 407.927 -14.520 0.000
typeOfSpl -0.087 0.023 37.896 -3.721 0.001
speakingRate -0.022 0.012 604.072 -1.779 0.076
baseDurLog 0.635 0.057 572.805 11.057 0.000
pauseBinpause 0.234 0.023 635.917 10.282 0.000
biphoneProbSumBinlow -0.076 0.021 596.279 -3.547 0.000
folTypeF -0.001 0.073 610.436 -0.007 0.994
folTypeN -0.004 0.028 600.528 -0.134 0.893
folTypeP -0.027 0.025 599.182 -1.107 0.269
folTypeV -0.145 0.025 610.241 -5.852 0.000

The predictor strength of individual covariates was checked by taking the fi-
nal model as template. For each predictor variable, a model was fitted lacking
the particular variable. For each of these models, R2 values were computed and
compared following the method outlined in Section 3.2.1. The variable leading
to the highest decrease in R2 value as compared to the final model is thus the
variable showing the highest predictor strength. The results of this comparison
are reflected in the hierarchy given in (1). The decrease in R2 is greatest when
removing baseDurLog, followed by pauseBin, and so forth. The resulting order
is identical to the one found in the analysis of production experiment for the
complete data set (see Section 4.3.1).

(1) baseDurLog » pauseBin » typeOfS » folType » speakingRate » bi-
phoneProbSumBin

5.3.2 Model B: LDL measures and typeOfS specification

In the final model including LDL measures as well as the typeOfS covariate as
parts of the individual components resulting from the principal component anal-
ysis and fitted according to the procedure described in Section 3.2.1, one finds
effects of the first principal component (Component1), the third principal com-
ponent (Component3), density, ALC, base duration (baseDurLog), following
pause (pauseBin), following segmental type (folType), and preceding conso-
nant (preC). Regarding random effects, only a speaker-specific random inter-
cept turned out to significantly improve model fit. The p-values of the analysis
of variance of the final model are given in Table 5.8.
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Table 5.8: p-values of fixed effects in model B, fitted to the log-
transformed durations of /s/.

Sum Sq Mean Sq NumDF DenDF F.value Pr(F)

Component1 0.376 0.376 1 618.06 6.970 0.008
Component3 1.340 1.340 1 627.71 24.819 0.000
baseDurLog 6.751 6.751 1 620.55 125.080 0.000
pauseBin 5.805 5.805 1 642.19 107.568 0.000
folType 2.093 0.523 4 617.98 9.695 0.000
preC 0.702 0.234 3 615.33 4.334 0.005
density 0.219 0.219 1 621.79 4.067 0.044
ALC 0.293 0.293 1 623.25 5.425 0.020

The marginal R2 value of the final model is 0.42, thus fixed effects explain 42%
of the variation in the data. The conditional R2 value of the final model is 0.60,
that is fixed and random effects taken together explain 60% of variation.

The estimates of the final model and their p-values are given in Table 5.9. The
reference levels for the categorical predictors are: for pauseBin it is no_pause,
for folType it is APP, and for preC it is f.

Table 5.9: Fixed-effect coefficients and p-values as computed for model
B (mixed-effects model fitted to the log-transformed duration of /s/).

Estimate SE df t-value Pr(|t|)

(Intercept) -1.106 0.124 635.215 -8.952 0.000
Component1 0.014 0.005 618.057 2.640 0.008
Component3 -0.041 0.008 627.708 -4.982 0.000
baseDurLog 0.652 0.058 620.548 11.184 0.000
pauseBinpause 0.237 0.023 642.193 10.371 0.000
folTypeF -0.014 0.075 621.463 -0.180 0.857
folTypeN -0.006 0.029 614.760 -0.198 0.843
folTypeP -0.028 0.025 615.172 -1.126 0.261
folTypeV -0.141 0.025 620.352 -5.612 0.000
preCk -0.023 0.027 614.436 -0.835 0.404
preCp -0.040 0.027 614.491 -1.475 0.141
preCt -0.095 0.028 615.916 -3.414 0.001
density -0.241 0.119 621.790 -2.017 0.044
ALC -5.302 2.277 623.246 -2.329 0.020

As described in Section 3.2.1, the predictor strength of individual covariates
was checked by taking the final model as template. The result of this procedure
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is reflected in the hierarchy in (2). The decrease in R2 is greatest when removing
baseDurLog, followed by pauseBin, and so forth. In sum, variables containing
measures obtained by the LDL analysis appear to be meaningful predictors of /s/
duration.

(2) baseDurLog » pauseBin » Component3 » folType » ALC » density »
Component1 » PreC

Figure 5.1 shows the effect on /s/ duration of the numerical variables included
in the model. The estimated values of the dependent variable sDurLog, i.e. /s/
duration, and baseDurLog, i.e. base duration, are back-transformed into seconds.
For Component1, higher values lead to longer /s/ durations (Panel A), while for
Component3, higher values lead to shorter /s/ durations (Panel B). Higher values
of density (Panel C) and ALC (Panel D) come with shorter /s/ durations. Longer
bases come with longer /s/ durations (Panel E).

The partial effects of the categorical variables included in the final model are
illustrated in Figure 5.2. Pauses lead to longer /s/ durations (Panel A), which is
most likely a case of phrase-final lengthening (e.g. Cooper &Danly 1981). There is
also an effect of the following segment type, with /s/ being shorter when followed
by a vowel (Panel B). This difference is significant for all consonant types being
compared against vowels with the exception of fricatives. However, as there is
only a small number of fricative cases in the data, this non-significant difference
is potentially not meaningful. Lastly, there is an effect of preceding consonant
on /s/ duration (Panel C). /s/ duration is significantly longer if preceded by a
voiceless labiodental fricative /f/ or a voiceless velar stop /k/ as compared to cases
where /s/ is preceded by a voiceless alveolar stop /t/. All other comparisons are
non-significant.

Let us turn to the variables of interest, i.e. those derived from the LDL network.
Component1 acts as a general measure of phonological certainty. High values
of Component1 come with high values of path_counts, path_entropies, and
ALDC, indicating a high level of phonological uncertainty. At the other end of
the Component1 dimension, high values of path_sum and support indicate a
high level of phonological certainty. Higher uncertainty appears to lead to longer
/s/ durations, while higher certainty appears to lead to shorter /s/ durations.

Recall from Section 5.2.5 that Component3 relates to semantic activation di-
versity and to the presence of the plural suffix. Higher values of Component3
indicate a higher level of semantic activation diversity. Higher levels of activa-
tion diversity then lead to shorter /s/ durations (see Panel B of Figure 5.1). High
values of Component3 are positively correlated with the presence of plural /s/.
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Figure 5.1: Partial effects of the numerical variables Component1
(Panel A), Component3 (Panel B), density (Panel C), ALC (Panel D),
and baseDurLog (back-transformed, Panel E) included in model B, fit-
ted to the log-transformed values of duration of /s/.
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Figure 5.2: Partial effects of the categorical variables pauseBin (Panel
A), folType (Panel B), and preC (Panel C) included in model B, fitted
to the log-transformed values of duration of /s/.

It appears that the presence of plural makes words semantically more similar to
each other as they share this meaning component. Hence, it is to be expected
that plural words live in a space of greater semantic activation diversity. Compo-
nent3 is not only a measure of semantic activation diversity, but also indicates
that plural pseudowords show a tendency of having a higher degree of seman-
tic activation diversity as compared to monomorphemic pseudowords in general.
density and ALC also tap into the semantics of pseudowords. That is, similar to
Component3, higher values indicate higher levels of semantic activation diver-
sity. These higher levels then lead to shorter /s/ durations.

5.3.3 Model C: LDL measures only

The final model of LDL measures only was fitted with effects of the follow-
ing variables: l1norm, ALC, NNC, log-transformed base duration (baseDurLog),
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pause (pauseBin), following segmental type (folType), and preceding consonant
(preC). The speaker variable was included as random intercept. The p-values of
the analysis of variance of the final model are given in Table 5.10.

Table 5.10: p-values of fixed effects in model C, fitted to the log-
transformed durations of /s/.

Sum Sq Mean Sq NumDF DenDF F.value Pr(F)

l1norm 0.685 0.685 1 611.07 13.473 0.000
baseDurLog 6.047 6.047 1 627.51 118.901 0.000
pauseBin 5.440 5.440 1 632.72 106.956 0.000
folType 2.056 0.514 4 610.10 10.105 0.000
preC 0.761 0.254 3 607.96 4.985 0.002
ALC 0.534 0.534 1 615.51 10.504 0.001
NNC 0.778 0.778 1 619.67 15.296 0.000

With a marginal R2 value of 0.41, the fixed effects of this model explain 41% of
variation within the data. The conditional R2 value of the model is 0.61, that is
the complete model accounts for 61% of variation.

The coefficients of the final model and their p-values are given in Table 5.11.
The reference levels for the categorical covariates are: for pauseBin it is no_pause,
for folType it is APP, and for preC it is f.

Table 5.11: Fixed-effect coefficients and p-values as computed for model
C (mixed-effects model fitted to the log-transformed duration of /s/).

Estimate SE df t-value Pr(|t|)

(Intercept) -2.334 0.320 625.440 -7.301 0.000
l1norm -0.044 0.012 611.066 -3.671 0.000
baseDurLog 0.624 0.057 627.514 10.904 0.000
pauseBinpause 0.233 0.022 632.719 10.342 0.000
folTypeF -0.019 0.073 613.088 -0.267 0.790
folTypeN -0.005 0.028 607.324 -0.195 0.845
folTypeP -0.023 0.024 607.817 -0.950 0.343
folTypeV -0.140 0.025 611.952 -5.693 0.000
preCk -0.029 0.027 607.726 -1.058 0.291
preCp -0.053 0.027 607.478 -1.950 0.052
preCt -0.101 0.028 608.068 -3.632 0.000
ALC -6.663 2.056 615.511 -3.241 0.001
NNC 1.221 0.312 619.671 3.911 0.000

As for both other final models, the predictor strength of the individual predic-
tors was checked. This procedure resulted in the hierarchy of predictor strength
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given in (3). That is, the decrease in R2 is greatest when removing baseDurLog,
followed by pauseBin, and so forth.

(3) baseDurLog » pauseBin » folType » NNC » l1norm » ALC » preC

Figure 5.3 displays the effect on /s/ duration of the numerical variables included
in the model. Base duration shows an identical effect as compared to model B in
Section 5.3.2, i.e. longer base durations come with longer /s/ durations.
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Figure 5.3: Partial effects of the numerical variables l1norm (Panel A),
baseDurLog (back-transformed, Panel B), ALC (Panel C), and NNC
(Panel D) included in model C, fitted to the log-transformed values of
duration of /s/.

Figure 5.4 shows the effect on /s/ duration of the categorical variables included
in the model. Pauses again come with longer /s/ durations, and /s/ is shorter if
followed by a vowel. There is also an effect of the preceding consonant, with /s/
duration being significantly longer if preceded by a voiceless labiodental fricative
/f/ or a voiceless velar stop /k/ as compared to cases where /s/ is preceded by a
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5 Modelling word-final /s/ with linear discriminative learning

voiceless alveolar stop /t/. These results are generally in line with those by the
analysis in the previous section.
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Figure 5.4: Partial effects of the categorical variables pauseBin (Panel
A), folType (Panel B), and preC (Panel C) included in model C, fitted
to the log-transformed values of duration of /s/.

Taking a closer look at the variables of interest, one finds that higher values
of l1norm and ALC, i.e. higher semantic activation diversity, lead to shorter /s/
durations. As in model B, higher levels of semantic activation diversity come
with shorter /s/ durations. For NNC, it is found that /s/ duration is longer if a
pseudoword is semantically similar to a real word.

5.4 Discussion

The production study presented in Chapter 4 of this book as well as previous
studies (Zimmermann 2016; Plag et al. 2017; Seyfarth et al. 2017; Tomaschek et
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al. 2019; Plag et al. 2020) reported that there are significant differences in the
acoustic duration between different types of word-final /s/ in English. Such du-
rational differences challenge established feed-forward theories of morphology-
phonology interaction (e.g. Chomsky & Halle 1968; Kiparsky 1982) as well as the-
ories of psycholinguistics (e.g. Levelt et al. 1999; Roelofs & Ferreira 2019; Turk
& Shattuck-Hufnagel 2020). The present study investigated whether measures
derived on the basis of a discriminative learning theory are predictive of /s/ du-
rations in pseudowords. In particular, LDL networks that model the production
of a word based on its relation to the rest of the lexicon were implemented.

The predictive possibilities of LDL measures were explored by fitting three
different models: a) a model based on the traditional predictors as used in pre-
vious studies (Plag et al. 2017; Tomaschek et al. 2019) and most importantly in
the production study reported in this book; b) a model with LDL measures and a
variable typeOfS specifying the presence or absence of an affix; and c) a model
with LDL measures but without a variable specifying the presence or absence of
an affix. Both models with LDL measures show that such measures are predic-
tive of /s/ durations. This result is the most important of the present study. While
traditional variables such as lexical frequencies, bigram frequencies, transitional
probabilities, or neighbourhood densities measure important lexical properties,
it is unclear why they would manifest themselves in a particular morphological
effect in speech production. In LDL such effects can emerge through themapping
of form and meaning in a clearly defined process of discriminative learning.

All regression models showed a similar hierarchy of predictor strength for the
variables included in the models. For the traditional model A, typeOfS is the
third-strongest predictor of /s/ duration and for model B this spot is taken by
Component3, while there is no comparable variable included in model C. Com-
paring the variance explained by the fixed effects of the different models, one
finds that the traditional model accounts for most variation, i.e. 43%, while the
LDL model including the typeOfS variable accounts for 42%, and the LDL model
without the typeOfS variable accounts for 41% of variation. Thus, in terms of
marginal R2 values, all three models are close to each other. To check whether
these differences in marginal R2 values are of significance, the three models were
refitted to the untrimmed data set and then compared with a likelihood-ratio test.
The results suggest that there is no significant difference between the traditional
model and the LDL model including the typeOfS variable. However, the LDL
model without the typeOfS variable shows a significantly worse fit (𝑝 < 0.01).
This seems to indicate that the LDL measures do not capture the full amount of
the variance that is captured by the variable typeOfS. This means that there is
still something about the morphological function that translates into duration
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and that is not properly modelled by the associative measurements of the learn-
ing network. The same problem holds, incidentally, for the traditional model
(model A), in which the usual lexical measures (such as lexical frequencies, neigh-
bourhood densities, etc.) and phonetic covariates (such as pauses, speech rate,
etc.) are also not able to cover all durational variance. The morphological residue
in both types of analysis remains a conundrum that calls for more sophisticated
approaches in future research.

The LDL measures included in the final models are either concerned with se-
mantic activation diversity (Component3, ALC, & density in model B; l1norm
& ALC in model C), semantic similarity (NNC in model C) or with phonological
certainty (Component1 in model B).

Higher degrees of semantic activation diversity come with shorter /s/ dura-
tions. This effect is similar to the one which was reported by Tucker, Sims, et al.
(2019) in a study on stem vowels and Tomaschek et al. (2019) in their NDL study
on /s/ duration. A higher degree of activation diversity makes it “more difficult to
discriminate the targeted outcome from its competitors” (Tomaschek et al. 2019:
27). As for production, a prolongation of the acoustic signal is dysfunctional if
the prolongation maintains or increases the discrimination problem instead of
contributing to resolving it (Tomaschek et al. 2019).

In the model without typeOfS as predictor variable, NNC (i.e. a pseudoword’s
semantic similarity to its closest semantic real word neighbour) emerges as signif-
icant (see model C). Why so? As reported in Section 5.2.5, the typeOfS variable
and NNC are strongly negatively correlated (𝑟ℎ𝑜 = −0.89). Post-hoc analysis
shows that plural /s/ has significantly lower NNC values as compared to non-
morphemic /s/ (Wilcoxon test, 𝑝 < 0.001). It therefore appears that NNC takes
over the role of differentiating between plural and non-morphemic /s/ in model
C.

As for phonological certainty, one finds that higher phonological certainty
comes with shorter /s/ durations, while higher phonological uncertainty comes
with longer /s/ durations. Shorter durations in contexts of high phonological cer-
tainty may be related to effects of frequency, i.e. highly frequent forms are pro-
duced with higher certainty and are thus shorter.

The results of the present study may bring up further questions. First, are
the predictive measures found for word-final /s/ duration in pseudowords also
predictive for word-final /s/ duration in real words? The NDL implementation
of Tomaschek et al. (2019) suggests that they are, but LDL networks still need to
be implemented. It would be especially interesting to model those data sets that
have yielded seemingly contradictory effects. Second, taking into account that
the specification of typeOfS in the modelling process leads to a significantly
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better model fit, one may ask what the underlying reasons for this significant
effect are. This then automatically leads to another question: Is it possible to
catch the effect of the typeOfS specification in terms of (new) LDL measures?

To summarise, this study was the first to investigate durational differences
between different types of word-final /s/ (non-morphemic versus plural /s/) in
pseudowords by means of an LDL implementation, measures, and resulting sta-
tistical analyses. The findings yielded important evidence on the question of how
such durational differences come to be, i.e. they can be predicted based on their
pseudoword’s relations to the lexicon. It was demonstrated that durational dif-
ferences emerge from the pseudoword’s resonance with the lexicon by way of
differing degrees of semantic activation diversity and phonological uncertainty.
These manifestations of the relations to other words in the lexicon in turn are
the result of discriminative learning.
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6 Perception of word-final /s/

As introduced in detail in Section 2.2, the perception study presented here in-
vestigates whether subphonemic durational differences in word-final /s/ are per-
ceived by listeners. Two hypotheses derived from theories and models of speech
perception are examined. H perc1, the Abstractionist Hypothesis, assumes that
listeners are not sensitive to subphonemic durational differences. H perc2, the
Phonetic Detail Hypothesis, predicts that subphonemic durational differences are
perceptible. Subsequently, listeners are assumed to be sensitive to such differ-
ences. The two hypotheses are tested by analysing the results of a same-different
task.

6.1 Methodology

6.1.1 Participants

Forty native speakers of New Zealand English took part in the same-different
task. One participant had to be excluded right away as they did not respond in
any trial. Themean age of the remaining 39 subjects was 23.0 years, ranging from
18 to 39. Six participants identified as multilingual. The experiment took place at
the University of Canterbury, Christchurch, New Zealand, from December 2020
to March 2021.

6.1.2 Materials

The speech materials consisted of pseudowords as well as of real words and real
word filler items. As the aim of the present experiment was to study the percep-
tion of word-final /s/, only those pseudowords with word-final /s/ were used. The
24 pseudowords used as stimuli were introduced in Section 3.1.2. For reasons of
convenience, Table 6.1 lists these pseudowords once more.

The set of twelve real words used in this experimentwas also introduced in Sec-
tion 3.1.2. Recall that words were taken from the British National Corpus (Davies
2004), following a number of criteria. That is, words had to have a word-final
/s/ as part of a voiceless stop plus sibilant coda; they had to be either singular



6 Perception of word-final /s/

Table 6.1: Orthographic (orth.) and phonological (phon.) representa-
tions of the pseudowords used in the same-different task.

/glɪ/ /prʌ/ /pli:/ /clu:/ /blaʊ/ /gleɪ/

orth. glips prups pleeps cloops bloups glaips
phon. /glɪps/ /prʌps/ /pli:ps/ /klu:ps/ /blaʊps/ /gleɪps/

orth. glits pruts pleets cloots blouts glaits
phon. /glɪts/ /prʌts/ /pli:ts/ /klu:ts/ /blaʊts/ /gleɪts/

orth. gliks pruks pleeks clooks blouks glaiks
phon. /glɪks/ /prʌks/ /pli:ks/ /klu:ks/ /blaʊks/ /gleɪks/

orth. glifs prufs pleefs cloofs bloufs glaifs
phon. /glɪfs/ /prʌfs/ /pli:fs/ /klu:fs/ /blaʊfs/ /gleɪfs/

or plural nouns with one syllable; and the number of short monophthong, long
monophthong, and diphthong nuclei had to be equally distributed across words
for both singular and plural nouns. For singular /s/, it was not possible to fully
meet the final criterion as there was only one word with a long monophthong
nucleus. Another monomorphemic word with a short monophthong was used
instead. The set of real words is given in Table 6.2.

Table 6.2: Real words used in the same-different task.

Non-morphemic /s/ Plural suffix /s/

Item Vowel quality Item Vowel quality

mix short books short
box short steps short
tax short rights diphthong
coax diphthong points diphthong
hoax diphthong groups long
corpse long parts long

Additionally, twelve filler items were employed. All filler items were singular
nouns consisting of a single syllable with either a short monophthong, a long
monophthong, or a diphthong as nucleus. The nucleus type followed the same
distribution as for the items described above, i.e. one third of filler items per type
of nucleus. Half of the filler items ended in /f/, while the other half ended in /θ/.
See Table 6.3 for all filler items.

The recording of the speech materials took place at a soundproof booth of the
Department of Linguistics at the University of Tübingen. For this, reading lists
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Table 6.3: Filler items used in the same-different task.

Non-morphemic /s/ Plural suffix /s/

Item Vowel quality Item Vowel quality

riff short death short
muff short myth short
wife diphthong faith diphthong
safe diphthong growth diphthong
grief diphthong booth long
hoof long path long

were created. On these lists, items were embedded within the sentence “He said
item to me.”. A trained native speaker of New Zealand English read the entire
reading list aloud for practice before recording the list three times. The record-
ings were sampled at 44.1 kHz, 16 bit.

For each item the best of the three recordings was chosen by manual inspec-
tion. First, all recordings were analysed using Praat following the segmentation
conventions laid out in Section 4.1.4. Recordings with production errors, e.g.
laughter, stutter or vocal fry, or segmentation difficulties were dismissed. Sec-
ond, the remaining segmented target and filler items were spliced from their
surrounding contexts, resulting in audio files only containing the words of in-
terest. Third, the duration of the items and filler items was measured using a
Praat script (de Jong & Wempe 2008) and then analysed in R. The result of this
analysis is given as the mean durations presented in Table 6.4. Lastly, for each
item the version closest to the mean duration of its nucleus type was chosen for
further use in the experiment to keep durational differences between items to a
minimum.

Table 6.4: Mean durations of items and filler items across recordings in
seconds.

Item type Short vowel Long vowel Diphthong

real words mean
sd

0.576
0.109

0.613
0.102

0.572
0.062

pseudowords mean
sd

0.521
0.060

0.551
0.042

0.550
0.046

filler mean
sd

0.455
0.052

0.490
0.067

0.549
0.071
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In a next step, the final /s/ duration of all items was manipulated in such a way
that it corresponded to the mean /s/ duration for non-morphemic and plural /s/
found in the reference study by Plag et al. (2017). For example, in the case ofmix
the duration of the final /s/ was changed to 318 ms, while in the case of books the
duration of the final /s/ was changed to 283 ms. This was done for all items, i.e.
real words and pseudowords.

Pseudowords were treated as both singular and plural nouns. That is, pseudo-
words were equally distributed across four groups as follows. First, each group
consisted of at least one pseudoword ending in /ps/, /ts/, /ks/, and /fs/. Second,
groups A and B had two additional pseudowords ending in /ps/ and /ts/, respec-
tively, while groups C and D had two additional pseudowords ending in /ks/ and
/fs/, respectively. See Table 6.5 for the distribution of pseudowords across groups.

Table 6.5: Pseudoword distribution across the groups A-D used in the
same-different task.

Group A Group B Group C Group D

gli- ps ts ks fs
plee- ts ps fs ks
cloo- ks ts ps fs
pru- fs ks ts ps
blou- ps fs ks ts
glai- ts ps fs ks

The pseudowords in groups A andCwere treated as singular nounswith a non-
morphemicword-final /s/, while the pseudowords in groups B andDwere treated
as plural nouns with a plural word-final /s/. Their /s/ durations were changed
accordingly. This way of handling type of /s/ across pseudowords was chosen to
keep priming effects across pseudowords to a minimum, i.e. no participant was
to encounter pseudowords with both singular and plural /s/ durations.

Then, four altered versions of each modified item were created. Each non-
morphemic /s/ item was edited in such a way that 10 ms, 20 ms, 35 ms, or 75
ms were subtracted from the word-final /s/ duration, making it gradually more
similar to plural word-final /s/ in terms of its duration. For plural /s/ items, 10
ms, 20 ms, 35 ms, or 75 ms were added to the word-final /s/ duration, making it
gradually more similar to non-morphemic word-final /s/ in terms of its duration.
This resulted in five different /s/ durations per recorded item. See Table 6.6 for all
final /s/ durations across non-morphemic and plural /s/ items. Depending on the
pertinent item, the duration of the word-final /s/ took up more than half of the
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total word duration (cf. Table 6.4 and Table 6.6) and was notably longer than the
original non-edited /s/ which showed a mean duration of 174 ms. Nonetheless, all
items sounded natural. In total, five versions for each of the 12 real word items
and for each of the 24 pseudoword items were created, resulting in 180 items.
Each participant was to listen to 90 of them, i.e. (12 real words + 6 pseudowords)
× 5 versions.

Table 6.6: Durations in milliseconds for non-morphemic and plural /s/
for real word and pseudoword items.

Mean ± 10 ms ± 20 ms ± 35 ms ± 75 ms

non-morphemic 318 308 298 283 243
plural 283 293 303 318 358

A similar approach was used for the manipulation of filler items. Their final
fricative duration was altered as well. For this, the mean duration of word-final
/f/ and /θ/ was measured after extracting the recorded filler items from their
contexts. It was found that the mean duration of word-final /f/ was 244 ms, while
the mean duration of /θ/ was 217 ms. It was therefore decided that the duration
of /f/ was treated similarly to that of non-morphemic /s/, i.e. it was shortened,
while the duration of /θ/ was treated similarly to that of plural /s/, i.e. it was
lengthened. The different durations for both /f/ and /θ/ are given in Table 6.7.

Table 6.7: Durations in milliseconds for /f/ and /θ/ for filler items.

Mean ± 10 ms ± 20 ms ± 35 ms ± 75 ms

/f/ filler items 244 234 224 209 169
/θ/ filler items 217 227 237 252 292

6.1.3 Procedure

The same-different task was conducted in OpenSesame (Mathôt et al. 2012). First,
participants were introduced to the same-different task. They were told that dur-
ing the following experiment, they were to hear two recordings of the sameword
at a time and that they had to decide whether these two recordings were identi-
cal or different. It was explained that they should decide as quickly as possible
and answer by pressing either the same or different key on the keyboard. The
key assigned to same was “A”, the key assigned to different was “K”. The “A” key
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was pressed using the left index finger, the “K” key was pressed using the right
index finger. Both options were given on screen during the entire experiment as
illustrated by Figure 6.1. The participants were also told that if they did not de-
cide on either option within a certain amount of time, the next trial would start
automatically. Each participant started with ten practice trials, which consisted
of six pseudoword items for familiarisation and four filler items.

Figure 6.1: Option display during the perception experiment.

Each trial was preceded by a fixation cross and a stretch of silence of 450
ms. Then, both recordings played, with reaction time measurement starting at
the onset of the second recording. The word-final /s/ of both recordings was
either similar or different in duration, following one of the possible combinations
given in Table 6.8, resulting in a trial number of 270, i.e. (12 real word items + 6
pseudoword items + 12 filler items) × 9 combinations. The experiment was split
into four main parts to allow for short pauses. Each part consisted of either 67
or 68 trials (67 × 2 + 68 × 2 = 270). Within each of the four parts, target and filler
items were distributed evenly but pseudorandomised, i.e. it was prevented that
two trials in a row neither contained the same target or filler item nor the same
combination of /s/ durations.

Participants were given a 2,000 ms window to react, starting after the offset
of the second recording. After that a time-out was recorded. The next trial auto-
matically started 2,500 ms after the offset of the second recording if no reaction
was recorded.
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Table 6.8: Combinations of /s/ durations used in the same-different
task. mean is the mean duration found in Plag et al. (2017) for
non-morphemic and plural /s/. ± represents a subtraction for non-
morphemic /s/ items and an addition for plural /s/ items.

Same/different /s/ durations of items Same/different /s/ durations of items

same mean vs. mean different mean vs.
mean ± 10 ms

same mean ± 10 ms vs.
mean ± 10 ms different mean vs.

mean ± 20 ms

same mean ± 20 ms vs.
mean ± 20 ms different mean vs.

mean ± 35 ms

same mean ± 35 ms vs.
mean ± 35 ms different mean vs.

mean ± 75 ms

same mean ± 75 ms vs.
mean ± 75 ms

6.2 Analysis

Data of same-different tasks are often analysed in terms of their error-rates (e.g.
Belke & Meyer 2002; Norris & Kinoshita 2008; Lupker et al. 2018). For example,
if a certain condition A shows a significantly higher error rate as compared to
another condition B, it is concluded that perception of condition A is significantly
worse. Figure 6.2 shows the overall error rates of the present same-different task
results.

For a durational difference of 0 ms, the error rate is rather low with about
4%. For the 10 ms difference, the error rate is 96%; for the 20 ms difference, the
error rate is 93%; for the 35 ms difference, the error rate is 91%; and for the 75
ms difference, the error rate is 62%. However, the overall results do not take
into account inter-subject differences. It may very well be the case that some
participants aremore sensitive to durational differences or that some participants
simply were more motivated to deliver a good performance. Figure 6.3 shows the
overall results for all participants.

One can clearly see that some participants outperform others. For example,
participant s035 already improves their error rate at a difference of 20 ms, while
participant s030 shows virtually no correct responses for durational differences
between 10 ms and 35 ms, and only some for 75 ms.

One possible way to proceed from these descriptive findings is to fit a statisti-
cal model to the data. However, as has become visible, there are clear differences
between subjects, which points towards another issue: Individuals may have dif-
ferent levels of conservativity. That is, a more conservative participant will less
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Figure 6.2: Overall error rates for the same-different task for all dura-
tional differences and across all subjects. For a durational difference of
0 ms the error rate is represented by the part of the bar corresponding
to different, while for all other durational differences the error rate
is the given part of the pertinent bars corresponding to same.

often respond with different, while a less conservative participant will more of-
ten respondwith different, irrespective of the stimuli they hear. This intra-subject
bias is neglected if one was to use the raw data, as was done in this section thus
far.

A common way to factor in this participant bias is to make use of Signal De-
tection Theory (e.g. Macmillan 1993; Macmillan & Creelman 2005) and its mea-
sures. Signal Detection Theory can be applied in the analysis of any experiment
in which two possible stimulus types are to be discriminated, i.e. in which error
rates are the dependent variable of interest. The different measures of Signal De-
tection Theory have been used to analyse, among other things, recognition mem-
ory, lie detection, personnel selection, jury decision-making, medical diagnosis,
industrial inspection, information retrieval, and congenital amusia (e.g. Stanis-
law & Todorov 1999; Pfeifer & Hamann 2018). Signal Detection Theory makes
use of all four cells of discriminative results as illustrated in the toy example in
Table 6.9.

To calculate themost commonly used Signal Detection Theorymeasure, a bias-
free measure of subject sensitivity called 𝑑′, one must first calculate the hit rate𝐻 𝐻 = 𝐻𝐼 𝑇𝐻𝐼 𝑇 + 𝑀𝐼 𝑆𝑆 (6.1)

and the false alarm rate 𝐹
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Figure 6.3: Error rates per subject for the same-different task for all
durational differences. For a durational difference of 0 ms the error
rate is represented by the part of the bar corresponding to different,
while for all other durational differences the error rate is the given part
of the pertinent bars corresponding to same.
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Table 6.9: Types of results for a discriminative task as described by type
of stimulus and type of response. Values illustrate a toy example.

response: different response: same

stimulus: different hit 20 miss 5
stimulus: same false alarm 10 correct rejection 15

𝐹 = 𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀𝐹𝐴𝐿𝑆𝐸 𝐴𝐿𝐴𝑅𝑀 + 𝐶𝑂𝑅𝑅𝐸𝐶𝑇 𝑅𝐸𝐽 𝐸𝐶𝑇 𝐼 𝑂𝑁 . (6.2)

Then, 𝑑′ can be computed as𝑑′ = 𝑧(𝐻) − 𝑧(𝐹) (6.3)

where 𝑧(.) is the Z-transform of either variable. However, 𝑑′ can only be mean-
ingfully used if two assumptions regarding the decision variable are met (Stanis-
law & Todorov 1999). First, the signal and noise distributions are both normal.
Second, the signal and noise distributions have the same standard deviation. In
the present case, noise is equivalent to trials with two identical stimuli. If one
of the assumptions is violated, 𝑑′ will vary with the response bias (Stanislaw &
Todorov 1999). Thus, it was decided to use an alternative measure, 𝐴′, instead.𝐴′ is a nonparametric variant of 𝑑′ (Pollack & Norman 1964) and its values range
between 0 and 1, where higher values indicate higher sensitivity, and 1 indicates
perfect performance. 𝐻 and 𝐹 , as introduced above, are also used to calculate 𝐴′:

𝐴′ = 0.5 + [𝑠𝑖𝑔𝑛(𝐻 − 𝐹)(𝐻 − 𝐹)2 + |𝐻 − 𝐹 |4𝑚𝑎𝑥(𝐻 , 𝐹) − 4𝐻𝐹 ] , (6.4)

where the term 𝑠𝑖𝑔𝑛(𝐻 − 𝐹) is +1 if 𝐻 − 𝐹 > 0, 0 if 𝐻 = 𝐹 , and −1 otherwise.𝑚𝑎𝑥 (𝐻 , 𝐹 ) equals either 𝐻 or 𝐹 , whichever is greater (Stanislaw & Todorov 1999).
For the above toy example given in Table 6.9, 𝐴′ then is

𝐴′ = 0.5 + [(0.8 − 0.4)2 + |0.8 − 0.4|4 ∗ 0.8 − 4 ∗ 0.8 ∗ 0.4 ] , (6.5)

that is, 𝐴′ has a value of about 0.79. Thus, in the example, sensitivity is quite
high.

In the following sections, I will first introduce the covariates used in the anal-
ysis of the same-different task data. Then, I will present the analysis of the data,
including the calculation of 𝐴′ values from the raw data, and the statistical mod-
elling of 𝐴′ as dependent variable.
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6.2.1 Covariates

The set of covariates used in the analysis of the subject sensitivity data calculated
from the same-different task results is more restricted than other sets of covari-
ates in this book. As 𝐴′ values are calculated across all trials of a subject, item
specific variables such as typeOfS (non-morphemic versus plural) and typeOf-
Word (real word versus pseudoword) cannot be used as covariates. However,
analysing the raw data with chi-square tests strongly suggests that no signifi-
cant difference for these variables were found (𝑝 > 0.05 for all comparisons; see
the supplementary material given in Chapter 11). As sensitivity may very well
vary between subjects, an additional covariate on how regularly subjects play
musical instruments was introduced. In the following, covariates used in pre-
vious studies of this book are described first. For these, definitions are briefly
repeated for convenience and adapted to perception where necessary. Then, the
newly introduced covariate is given. Finally, the covariate used as random effect
is listed.

age. Subjects’ age was included as it may show an influence on hearing capa-
bilities, with older subjects often experiencing a loss of hearing (e.g. Lee 2013).

monoMultilingual. To account for potential influences of other L1s besides
English, the binary covariate monoMultilingual was introduced.

musicalInstrument. It has been shown that advanced players of musical in-
struments show an increased performance of phonological perception and of de-
tecting durational differences in speech (e.g. Anvari et al. 2002; Milovanov et al.
2009). Thus, information on how regularly each subject plays a musical instru-
ment was collected.

subject. subject ID was included to account for inter-speaker differences in
perception.

Closer inspection of the newly introduced covariate, musicalInstrument, re-
vealed that there was an uneven distribution of subjects across levels. That is,
only 5% (n = 8) of trials had very often as value for musicalInstrument, while
41% (n = 64) had never as value. This skewed distribution is maintained by the
levels in between, with 8% often (n = 12), 20% sometimes (n = 32), and 26%
rarely (n = 40). Due to the skewed distribution and the therefore small amount
of data points for some levels, it was decided to drop musicalInstrument as a
covariate. If there was an effect of musicalInstrument nonetheless, this should
then be indirectly considered as part of the subject random effect.
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6 Perception of word-final /s/

6.2.2 Overview of the data

An overview of all variables used in the analysis of subject sensitivity and their
distribution is given in Table 6.10.

Table 6.10: Summary of the dependent variable and the numerical and
categorical predictors in the final data set.

Dependent variable Mean St. Dev. Min Max

aprime 0.323 0.131 0.226 0.904

Numerical predictors Mean St. Dev. Min Max

age 23.000 5.235 18.000 39.000

Categorical predictors Levels

monoMultilingual monolingual: 128 multilingual: 28
subject 39

Explanatory variable Levels

durDif 10 ms: 39 20 ms: 39 35 ms: 39 75 ms: 39

6.2.3 Modelling subject sensitivity

Using the formula for calculating 𝐴′ as given in Equation 6.4 and as implemented
by the psycho package for R (Makowski 2018), 𝐴′ values for all subjects were
computed. That is, for each subject, the results for the four durational differences
10 ms, 20ms, 35 ms, and 75mswere used to calculate an 𝐴′ value. This resulted in
four 𝐴′ values per participant. The four durational differences are the predictor
of interest in the regression modelling: durDif.

These 𝐴′ values then entered a regression analysis as dependent variable. As𝐴′ assumes values in the standard unit interval (0, 1), regression models such as
LMERs or gaussian GAMMs are not sufficient, because such models do not take
into account the interval constraint of the dependent variable. As a workaround,
one could transform the 𝐴′ values using, for example, a logit-transformation.
However, this comes with several drawbacks (cf. Cribari-Neto & Zeileis 2010).
It was thus decided to use beta regression as briefly introduced in Section 3.2.2
as the statistical tool of choice instead. Beta regression models assume that the
dependent variable follows a beta distribution, i.e. that it assumes values in the
open interval of (0, 1). Commonly, beta regression in R is done using the betareg
package (Cribari-Neto & Zeileis 2010). However, the betareg implementation
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does not allow for random effects in its model specification. As it was plausible
to assume inter-subject differences in the given context, the mgcv package (Wood
2017) and its GAMM implementation were made use of instead.While the default
for GAMMs is to assume a dependent variable of gaussian distribution, GAMMs
can also be specified for dependent variables following a beta distribution. This
is what I call BGAMMs (see Section 3.2.2).

A BGAMM was fitted with 𝐴′ as dependent variable. The predictor of inter-
est, durDif, and the covariate monoMulitlingual were included as parametric
effects. age was included as smooth term and subject was specified as random
smooth term. Following the procedure introduced in Section 3.2.2, the model was
checked for issues of concurvity and of too few basis functions; no issues were
found. The final data set as well as the analysis and results discussed in the fol-
lowing sections can be found in the supplementary material given in Chapter
11.

6.3 Results

A significant effect of durDif was found. Neither the effect of monoMulitlin-
gual nor the effect of age reached significance. As anticipated, the random
smooth of subject reached significance. This was to be expected due to the vast
differences between subjects already found in the raw data. The results of the
BGAMM fitted to the 𝐴′ values are given in Table 6.11. For the parametric terms,
I provide the β estimates and the corresponding standard errors (SE), z-values,
and p-values. For the smooth terms, the estimated degrees of freedom, the refer-
ence degrees of freedom, the χ2 values, and the p-values are given.

Figure 6.4 shows the partial effect of durDif. Participants show overall little
sensitivity towards durational differences of 10 ms and 20 ms. For 35 ms a rather
small but nonetheless significant increase in sensitivity is found as compared to
the 10 ms difference. A clear increase in sensitivity is found for the durational
difference of 75 ms as compared to the other differences. Thus, perceptibility of
the 10 ms and 20 ms differences is rather low; the perceptibility of the 35 ms is
significantly higher; and the perceptibility of the 75 ms difference is highest.

The overall significant differences in sensitivity are given in Table 6.12. Partic-
ipants are significantly more sensitive towards the 75 ms difference as compared
to all other durational differences.

As shown by the subject-specific 𝐴′ estimates indicated by points in Figure 6.4,
however, inter-subject differences remain high. Especially the biggest durational
difference, 75 ms, shows a discernible amount of variation. The raw by-subject
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Table 6.11: Summary of the BGAMMfitted to the𝐴′ valueswith durDif
andmonoMultilingual as parametric predictors, age as smooth term,
and subject as random smooth term.

Parametric Terms Estimate SE z value Pr(|z|)

(Intercept) -1.008 0.079 -12.818 0.000
durDif20 0.125 0.079 1.578 0.114
durDif35 0.206 0.077 2.676 0.007
durDif75 0.993 0.069 14.358 0.000
monoMultilingual -0.089 0.137 -0.648 0.517

Smooth Terms edf Ref.df Chi.sq p-value

age 1.000 1.000 0.001 0.982

Random Smooth Terms edf Ref.df Chi.sq p-value

subject 28.400 36.000 144.904 0.000

Figure 6.4: Partial effect of durDif as found by the BGAMM. The hor-
izontal lines indicate the estimated 𝐴′ mean for each durational differ-
ence; the points illustrate subject-specific estimates.
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Table 6.12: Significant contrasts found for the different /s/ durations
contrasted in the same-different task. Significance codes: *** 𝑝 < 0.001,
** 𝑝 < 0.01, * 𝑝 < 0.05.

10 ms 20 ms 35 ms 75 ms

10 ms n.a. ** ***
20 ms n.a. ***
35 ms n.a. ***
75 ms n.a.

𝐴′ values as illustrated in Figure 6.5 confirm the notion of high inter-subject
variability. While some subjects show little increase in sensitivity between the
10 ms and 75 ms differences (e.g. subjects s020 and s030), other subjects show
a clear increase in sensitivity (e.g. subjects s035 and s056). Overall, a higher 𝐴′
value and thus sensitivity can be found for the 75 ms difference for most subjects.

6.4 Discussion

Following previous studies on the perception of subphonemic differences, the
present study investigated whether the durational differences between different
types of word-final /s/ are perceptible. As such, this is the first study to look into
the perception of phonologically identical but morphologically and phonetically
different segments. Since real words as well as pseudowords were used as items,
potential lexical effects were taken into account. It was found that durational
differences in word-final /s/ as small as 10 ms and 20 ms are overall not well per-
ceptible. Durational differences of 35 ms and 75 ms show significantly increased
perceptibility, while a durational difference of 75 ms by far shows the greatest
perceptibility.

What does this mean for the perceptibility of durational differences found for
different types of word-final /s/? The durational differences found in Plag et al.
(2017) and in the production study of Chapter 4 are given in Table 6.13. None
of the durational differences between the different types of /s/ is as high as 75
ms. However, considering the findings by Plag et al. (2017), one would expect
the differences between the non-morphemic /s/ and morphemic types of /s/ to
be somewhat perceptible as these differences are all at least equal to or bigger
than 35 ms. Taking into account the findings of Chapter 4, only the durational
difference between non-morphemic and clitic /s/ should be somewhat percep-
tible, as only this difference is close to or bigger than 35 ms. Considering both
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Figure 6.5: By-subject 𝐴′ values across all durational differences.
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studies (Plag et al. 2017 and Chapter 4), the findings indicate that at least some
of the durational differences found between different types of /s/ are likely to be
perceptible.

Table 6.13: Durational differences between non-morphemic, plural, is-,
and has-clitic /s/ in milliseconds found in Plag et al. (2017) and the
production study presented in Chapter 4.

non-morphemic plural is-clitic has-clitic

non-morphemic Plag et al. n.a. 35 57 65
Chapter 4 n.a. 14 31 37

plural Plag et al. n.a. 22 30
Chapter 4 n.a. 17 23

is-clitic Plag et al. n.a. 8
Chapter 4 n.a. 6

has-clitic Plag et al. n.a.
Chapter 4 n.a.

The significant increase in sensitivity of the 35 ms durational difference found
in the present study is more or less in line with the findings by Klatt & Cooper
(1975). Recall that in their experiment, the just-noticeable difference to be per-
ceived was 25 ms. That is, a durational difference between the 20 ms and 35 ms
difference. The sensitivity between these two durational differences showed a
significant increase, thus indicating that the just-noticeable difference to be per-
ceived most likely lies within this range.

However, an overall increase in perceptibility was only found for the dura-
tional difference of 75 ms, for which the difference in sensitivity is significant
for all comparisons. While I cannot give a definitive answer to the question of
why this is the case, I want to propose two considerations. First, fricatives such
as /s/ are not only perceived in terms of their duration but also by their centre
of gravity, spectral peak location, spectral moments, noise duration, amplitude,
and other acoustic features. In the present study, only one of many features –
duration – was controlled for and manipulated. Perceptibility might be higher if
all acoustic features are manipulated accordingly. Second, in their study, Klatt
& Cooper (1975) found that durational differences in word-final position and in
fricatives are less well perceptible as compared to other positions and consonants.
As the present study investigated differences between fricatives in word-final po-
sition, perceptibility was expected to be rather low.
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Let us now turn to the theoretical implications of the present results. How
do the results relate to the two hypotheses that were tested? H perc1, the Ab-
stractionist Hypothesis, assumes that listeners are not sensitive to subphonemic
durational differences. As was illustrated, listeners show an increased sensitivity
towards a durational difference of 35 ms and such a difference in duration was
found between different types of word-final /s/ (e.g. Plag et al. 2017; Chapter 4).
Also, none of the tested durational differences distinguishes between phonemes
of English: No matter what its acoustic duration within a reasonable range, an
/s/ is an /s/. Thus, the Abstractionist Hypothesis is rejected.

As listeners were sensitive to subphonemic durational differences, H perc2,
the Phonetic Detail Hypothesis, can potentially be confirmed. Assuming that fine-
phonetic detail is perceived and stored, this hypothesis can most likely account
for the present findings. Recent findings in neurobiology (Beach et al. 2021) are
especially compatible with the notion of hybrid models, as are part of this hy-
pothesis. That is, brain response patterns in same-different tasks suggest that
the perception process does not require loss of subphonemic detail. Instead, the
neural representation of perceived speech includes phonemic and subphonemic
detail. Yet, a final decision on whether theories underlying this hypothesis can
account for the present findings can only be reached with pertinent implemen-
tations.

The results of the present study then give rise to a further question: Are dura-
tional differences between different types of word-final /s/ made use of in com-
prehension? This question will be investigated in Chapters 7 and 8.
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As illustrated in detail in Section 2.2, two comprehension studies are part of this
book. This chapter presents the first of these studies on the comprehension of
subphonemic differences in word-final /s/. It makes use of real words in isolation
with non-morphemic and plural word-final /s/ as items. Effects on comprehen-
sion were tested using a number-decision task in a mouse-tracking paradigm.
Considering extant models and approaches of speech perception and compre-
hension, H comp, the Mismatch Hypothesis, is investigated. That is, if listeners
make use of subphonemic durational differences in the comprehension of differ-
ent types of word-final /s/, then a mismatch of subphonemic detail and intended
meaning is predicted to lead to a) slowed down comprehension processes, and b)
deviated mouse trajectories.

7.1 Methdology

7.1.1 Participants

Forty native speakers of New Zealand English took part in the experiment. They
were the same participants who also participated in the same-different task de-
scribed in Chapter 6. As was the case for the perception experiment, one parti-
cipant did not respond in any trials and was therefore excluded. The experiment
took place at the University of Canterbury, Christchurch, New Zealand, from
December 2020 to March 2021.

7.1.2 Materials

For the present experiment, only real words were used. Recall that words were
taken from the British National Corpus (Davies 2004), following a number of
criteria. That is, words had to have a word-final /s/ as part of a voiceless stop plus
sibilant coda; they had to be either singular or plural nouns with one syllable; and
the number of short monophthong, long monophthong, and diphthong nuclei
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had to be equally distributed across words for both singular and plural nouns.
For singular /s/, it was not possible to fully meet the final criterion as there was
only one word with a long monophthong nucleus. Another monomorphemic
word with a short monophthong was used instead. As such words had already
been sampled for the perception experiment in Chapter 6, that set of words was
used here as well. Additionally, six newwords for both singular and plural nouns
were added to increase the overall amount of data without a repetition of items
(see Winter & Grice 2021, on why repetitions are not desirable). Table 7.1 gives
an overview of the complete set of words. As it was not possible to find more
monomorphemic words with an even distribution of short monophthongs, long
monophthongs, and diphthongs as nuclei, further monomorphemic words with
a short monophthong nucleus were used instead.

Table 7.1: Words used as items in the number-decision task. The upper
half of words is identical to the set of words used in the perception
experiment. The lower half of words was added for the present com-
prehension experiment.

Non-morphemic /s/ Plural suffix /s/

item vowel quality item vowel quality

mix short books short
box short steps short
tax short rights diphthong
coax diphthong points diphthong
hoax diphthong groups long
corpse long parts long
lynx short costs short
flux short crusts short
wax short rates diphthong
fax short notes diphthong
lapse short sports long
fox short cheats long

The set of twenty-four target itemswasmatchedwith a set of twenty-four filler
items. Half of the filler items were high frequency monosyllabic singular words
ending in any consonant but /s/. The other half of the filler items were disyllabic
plurals ending in /ɪz/. The type of nucleus, i.e. short or long monophthong and
diphthong, was distributed equally across both groups of fillers. All fillers used
in the present experiment can be found in Table 7.2.

The recording of the speech materials took place at a soundproof booth of
the Department of Linguistics at the University of Tübingen. For the recording

110



7.1 Methdology

Table 7.2: Filler items used in the number-decision task.

High frequency singulars /ɪz/ plurals

item vowel quality item vowel quality

end short kisses short
fact short fences short
head short passes short
thing short senses short
home diphthong roses diphthong
point diphthong houses diphthong
way diphthong bases diphthong
side diphthong spices diphthong
car long classes long
world long horses long
room long nurses long
court long uses long

procedure, reading lists were created. On these lists, target items were embed-
ded within the sentence “He said item to me.”, while filler items were embedded
within the sentence “He said item again.”. The latter sentence was used for filler
items as some of them ended in alveolar stops, /d/ and /t/. Thus, the word to fol-
lowing the respective filler items would have potentially led to splicing problems
later on due to coarticulatory effects, i.e. the omission of one of the two stops,
between filler item and the following word. To keep differences due to phrasal
context to a minimum, the decision was made to embed all filler items into the
second sentence, including those without word-final alveolar stop. Target items
were not embedded within the same sentence but within the one mentioned first,
as for word-final /s/ a following stop simplifies the segmentation procedure due
to the clear cut-off between friction and closure in the acoustic signal. Examples
of target and filler items embedded in the pertinent sentences are given in (1) and
(2), respectively.

(1) He said hoax to me.

(2) He said world again.

A trained native speaker of New Zealand English read the entire reading list
aloud for practice before recording the list three times. The recordings were sam-
pled at 44.1 kHz, 16 bit.

For each item the best of the three recordings was chosen by manual inspec-
tion. First, all recordings were analysed using Praat following the segmentation
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conventions laid out in Section 4.1.4. Recordings with production errors, e.g.
laughter, stutter or vocal fry, or segmentation difficulties, e.g. the absence of
a stop release, were dismissed. Second, the remaining segmented items and filler
items were spliced from their surrounding contexts, resulting in audio files only
containing the words of interest. Third, the duration of the target and filler items
was measured using a Praat script (de Jong & Wempe 2008) and then analysed
in R. The result of this analysis is given as the mean durations presented in Ta-
ble 7.3. Lastly, the version closest to the mean duration of its nucleus type was
chosen for further use in the experiment to keep durational differences between
items to a minimum.

Table 7.3: Mean durations of items and filler items across recordings in
seconds.

Item type Short vowel Long vowel Diphthong

target items mean
sd

0.576
0.109

0.613
0.102

0.572
0.062

singular
filler items

mean
sd

0.469
0.082

0.467
0.035

0.523
0.071

plural
filler items

mean
sd

0.609
0.081

0.607
0.056

0.613
0.069

Next, for each target the chosen recording was edited so that the word-final /s/
was replaced with another word-final /s/. For recordings of the so-calledmatched
condition, this new word-final /s/ was taken from another recording of the same
word. If the /s/ was a non-morphemic /s/, its duration was manipulated in such a
way that is corresponded to the mean non-morphemic /s/ duration found in Plag
et al. (2017). If the /s/ was a plural /s/, its duration was changed to the mean plural
/s/ duration found in the same study, accordingly. For recordings of the so-called
mismatched condition, the new word-final /s/ was taken from a monomorphemic
target in case of a plural base and from a plural target in case of a monomor-
phemic pseudo-base, i.e. the string of segments of a monomorphemic target with-
out the word-final /s/. The duration of the /s/ was then manipulated in such a
way that it corresponded to the mean duration found in Plag et al. (2017) for the
other type of /s/. That is, a non-morphemic /s/ was changed to the duration of a
plural /s/, and a plural /s/ was changed to the duration of a non-morphemic /s/.
This procedure resulted in two recordings per target word, one of the matched
condition and one of the mismatched condition. For example, for the monomor-
phemic target word mix, there was an audio stimulus with an /s/ duration of
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318 ms for the matched condition and an audio stimulus with an /s/ duration of
283 ms for the mismatched condition. For a plural target like books, there was
an audio stimulus with an /s/ duration of 283 ms for the matched condition and
an audio stimulus with an /s/ duration of 318 ms for the mismatched condition.
As the (pseudo-)base and the /s/ in both conditions have been spliced together,
a one-sided effect of “sounding manipulated” on the experiment’s results was
ruled out.

In sum, each participant completed 72 trials, i.e. 12matched non-morphemic /s/
items + 12 matched plural /s/ items + 12 mismatched non-morphemic /s/ items +
12 mismatched plural /s/ items + 12 high frequency singular items + 12 /ɪz/ plural
items.

7.1.3 Procedure

The number-decision task was conducted in OpenSesame using the mousetrap
plugin for mouse-tracking (Kieslich & Henninger 2017). Participants were intro-
duced to the task at hand. They were told that in the following experiment they
had to decide whether an audio recording was describing “one” or “two or more”
entities. They were told to mouse-click on the corresponding button in the top
right or top left corner of the screen as quickly as possible. Figure 7.1 illustrates
what participants saw on screen for each trial. The participants were also told
that if they did not decide on either option within a certain amount of time, the
next trial would start automatically. Each participant started with six practice tri-
als in which recordings of filler items were used (see the supplementary material
given in Chapter 11).

Each trial was preceded by a stretch of silence of 450 ms. Then, one of the
recordings was played, with reaction time and mouse-tracking measurement
starting at the onset of the recording. Participants were given a window of 2000
ms starting after the onset of the recording to react, after that a time-out was
recorded. The next trial started automatically 2500 ms after the onset of the
recording if no reaction was recorded. Mouse-tracks were recorded with a fre-
quency of 100 Hz.

7.2 Analysis

The data of the mouse-tracking experiment were analysed in terms of reaction
times and mouse trajectories. In the following section, covariates used in the
analyses are introduced. Section 7.2.2 then presents the analysis of reaction time
data. The analysis of the mouse-tracks is given in Section 7.2.3.
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Figure 7.1: Option display during the comprehension experiment. The
mouse cursor indicates the position the mouse was reset to in each
trial.

7.2.1 Covariates

The set of covariates used in the analyses of the present study is similar to that
of other studies on phonetic effects of morphological structure (Pluymaekers et
al. 2005a,b; Hanique, Ernestus, et al. 2013; Plag et al. 2017; as well as those used
in previous chapters of this book). Additionally, some further covariates, which
may either influence perception or reactions based on perception, have been in-
troduced. In the following, covariates based on previous studies on morpholog-
ical structure are described first. For covariates which have been introduced in
detail in Chapters 4 and 6, definitions are briefly repeated for convenience and
adapted where necessary. Then, newly introduced covariates are given. Finally,
covariates used as random effects are listed.

biphoneProbSum. A covariate based on the summed biphone probability was
used as a measure of contextual predictability.

monoMultilingual. To account for potential influences of other L1s besides
English, the binary covariate monoMultilingual was introduced.

age. Subjects’ age was included as it may show an influence on reaction times,
with older subjects generally reacting slower than younger subjects (e.g. Fozard
et al. 1994).

neighbourhoodDensity. Neighbourhood densities were included as covari-
ate as the number of neighbours may influence phonetic reduction (e.g. Gahl et al.
2012). The measure was created using the CLEARPOND database (Marian et al.
2012). neighbourhoodDensity describes the number of words differing in one
segment from the item in question (Marian et al. 2012: 3).
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trialNumer. To account for possible effects of training and fatigue, the num-
ber of the trial during the experiment for each of the items per subject was in-
cluded.

googleFreqLog. To account for potential effects of frequency (e.g. Baayen
et al. 2006; Keuleers et al. 2010; Brysbaert et al. 2011), Google frequency was in-
cluded as covariate as it has been shown that Google frequencies are a robust
predictor of reaction times (e.g. Hendrix & Sun 2020). The value of googleFre-
qLog is the log-transformed number of Google search hits for each individual
item as obtained on July 16, 2021.

typeOfS. This binary variable codes whether the pertinent pseudoword is
a singular or plural form. It takes the value nm for pseudowords with a non-
morphemic word-final /s/ and pl for pseudowords with a plural word-final /s/.

musicalInstrument. It has been shown that advanced players of musical in-
struments show an increased performance of phonological perception and of
detecting durational differences in speech (Anvari et al. 2002; Milovanov et al.
2009). Thus, information on how regularly each subject plays a musical instru-
ment was added as covariate.

condition. The condition variable is the explanatory variable of interest. Its
levels are matched and mismatched and refer to the matched and mismatched
conditions introduced by the creation of the audio stimuli. Recall from Section
7.1.2 that in matched stimuli (pseudo-)base and duration of the word-final /s/
match up, while there is a discrepancy of (pseudo-)base and word-final /s/ dura-
tion for mismatched stimuli.

correct. correct is a binary variable coding whether the answer clicked on
by the subject in the relevant trial is the correct answer regarding the stimulus’
(pseudo-)base.

dominantHand. Reaction times between the dominant and the non-domi-
nant hand may differ (Gignac & Vernon 2004). The information of which hand
was dominant in each subject was added as a covariate, as all participants used
the same hand (i.e. their right hand) to use the mouse.

order. This variable codes the order of X and Y coordinates, i.e. their chrono-
logical order in the observedmouse-tracks. order was incorporated as a variable
to account for the natural sequence of coordinates, i.e. to account for potential
influences of auto-correlation.

videoGames. It has been shown that playing video games can reduce reaction
times (e.g. Dye et al. 2009). The relative frequency of how often a subject engages
in playing video games was therefore included as a categorical covariate called
videoGames.
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item. For each item, its orthographic representation was contained as level of
item. This covariate was used as a random effect to account for potential differ-
ences between individual targets not covered by other covariates.

subject. subject ID was included to account for inter-speaker differences in
perception.

Closer inspection of the covariates describing subject characteristics, i.e. dom-
inantHand, monoMultilingual, musicalInstrument, and videoGames, re-
vealed that for all of these variables there was an uneven distribution of subjects
across levels. That is, only 7% (n = 117) of trials had left for dominantHand,
and only 19% (n = 302) of trials had multilingual for monoMultilingual. For
musicalInstrument and videoGames, which both have five levels, the distri-
bution is even more uneven. The level least represented in musicalInstrument
is very often with 6% (n = 95), while the most represented level is never with
41% (n = 666). A similar picture is found for videoGames, where the least repre-
sented level is often with 8% (n = 126), while the level most represented is never
with 38% (n = 621). The uneven distribution of data points across variables and
their levels also led to some “empty cells” within the possible combinations of
levels across covariates. For example, all subjects for which the value of mono-
Multilingual is multilingual have right as their dominantHand. There are
no multilingual subjects who play a musical instrument often or very often
and no multilingual subjects who often play videoGames. Further, all left-
handed subjects never play a musicalInstrument and they rarely or never
play videoGames. Due to this issue of sparse data and as for such variables with
levels underrepresented in the sample it is unclear whether effects, found or not
found, are due to a real effect of the variable or simply an artefact of chance. It
was thus decided to drop the following covariates: dominantHand, musicalIn-
strument, and videoGames. monoMultilingual is retained for the analyses
as the variable is directly related to language and because the variable has been
used in other analyses of this book.

7.2.2 Reaction times

The present reaction time data were analysed using piece-wise additive mixed
models (PAMMs; Bender et al. 2018, and as briefly introduced in Section 3.2.2). In
the following, I will introduce the basics of PAMMs; the interested reader is re-
ferred to Hendrix & Sun (2020) for a more thorough introduction using linguistic
data and to Bender et al. (2018) for a more detailed mathematical implementation.

PAMMs are a relatively novel technique of time-to-event analysis, that is they
model the time until an event of interest occurs. The event of interest in the
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present number-decision task is the “one” or “two or more” response to a stim-
ulus. Thus, the dependent variable in a PAMM is the instantaneous probability
of a response as it evolves over time, not the reaction time itself (Hendrix & Sun
2020). Using PAMMs allows for an insight into the temporal dynamics of predic-
tor effects. Hence, PAMMs do not only capture effects covering entire trials but
also effects that occur only during particular parts of trials or show different ef-
fects during different parts of trials. A central function of time-to-event analysis
is the probability density function 𝐹(𝑡):

𝐹(𝑡) = ∫𝑡−∞ 𝑓 (𝑥)𝑑𝑥 = 𝑃(𝑇 ≤ 𝑡). (7.1)

The probability density function describes the probability that the response
time 𝑇 is smaller than or equal to a given time 𝑡 . Closely related to the probability
density function is the survival function:𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑃(𝑇 > 𝑡). (7.2)

The survival function describes the probability of the time at which the event
of interest occurs, 𝑇 being greater than at a given time 𝑡 . For the present exper-
iment, the survival function describes the probability that subjects did not yet
respond to a stimulus at time 𝑡 . However, the mathematical properties of the
function are not optimal for modelling purposes (Hendrix & Sun 2020). Thus,
PAMMs make use of a closely related function, the hazard function. The hazard
function describes the instantaneous probability that the event of interest occurs
at time 𝑡 , given that the event did not occur already. It is defined as

𝜆(𝑡) = lim𝑑𝑡→∞ 𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 | 𝑇 ≥ 𝑡)𝑑𝑡 = − 𝑑𝑑𝑡 𝑙𝑜𝑔(𝑆(𝑡)). (7.3)

Before one can create PAMMs on reaction time data, though, the data have
to be transformed. That is, the modelling of PAMMs requires data in the so-
called piece-wise exponential data format (Bender & Scheipl 2018). While stan-
dard linear models (e.g. LMERs) or non-linear regression models (e.g. GAMMs)
would use reaction times as dependent variable, PAMMs use the information on
whether or not a stimulus was responded to at time 𝑡 as dependent variable. The
piece-wise exponential data format splits the time each stimulus is at risk of be-
ing responded to into 𝐽 intervals. The intervals (𝑘𝑗−1, 𝑘𝑗], 𝑗 = 1…𝐽 are defined by
the cut points 𝐾0 < ⋯ < 𝐾𝐽 . The choice of cut points is arbitrary (Hendrix & Sun
2020); over-fitting is prevented through penalisation of wiggliness (e.g. Wood
2017). 𝑡𝑗 then equals 𝑘𝑗 , i.e. 𝑡 is derived from the defined cut points 𝐾 . Following
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Hendrix & Sun (2020), cut points at the extreme ends of the response time dis-
tribution were opted for. That is, cut points prior 770 ms, as only 11 trials (0.68%)
were responded to earlier than 770 ms after stimulus onset, and after 1970 ms, as
only 12 trials (0.74%) were responded to later than 1970 ms after stimulus onset,
were excluded. An example of the transformed data is given in Table 7.4.

Table 7.4: Example of the piece-wise exponential data format for one
stimulus instantiating the word box.

row ID item tstart tend interval offset status

1 256 box 0.00 817.00 (0.00,817] 6.706 0
2 256 box 817.00 922.00 (817.00,922.00] 4.654 0
3 256 box 922.00 977.00 (922.00,977.00] 4.007 0
… … … … … … … …
26 256 box 1345.92 1363.00 (1345.92,1363.00] 2.838 0
27 256 box 1363.00 1379.08 (1363.00,1379.08] 2.079 1

The piece-wise exponential data format contains a separate row for each in-
terval for each stimulus. In each row, the start (tstart) and end point (tend) of
the interval are given. The end points are included as predictor in a PAMM to
estimate the hazard function over time. The offset variable provides informa-
tion about the exact response time for each stimulus. For intervals in which no
response was recorded (rows 1 to 26), the offset is the log-transformed dura-
tion of the interval, while for intervals in which a response was recorded (row
27), the offset is the log-transformed value of the difference of the exact time
of response and the start of the interval, i.e. tstart. Please note the notation of
the interval information: (𝑘𝑗−1, 𝑘𝑗] indicates that the first value, 𝑘𝑗−1, is included
in the interval while the second value, 𝑘𝑗 , is not. 𝑘𝑗 , then, is the starting value
of the following interval. The dependent variable in PAMMs, status, is a binary
variable, which encodes whether a word was responded to (1) or not (0) in the
pertinent interval.

A PAMM is then defined as follows:

𝜆(𝑡|𝑥𝑖) = 𝜆0(𝑡𝑗)𝑒𝑥𝑝 ( 𝑝∑𝑘=1 𝑓𝑘(𝑥𝑖,𝑘 , 𝑡𝑗) + 𝑏ℓ𝑖) , ∀ 𝑡 ∈ (𝐾𝑗−1, 𝐾𝑗] (7.4)

with the predictor values 𝑥𝑖 for stimulus 𝑖 defining the hazard function 𝜆(𝑡|𝑥𝑖) at
all time points 𝑡 in the interval 𝑗 ≔ (𝐾𝑗−1, 𝐾𝑗]. 𝜆0(𝑡𝑗) is the baseline hazard for
time interval 𝑗, 𝑓𝑘(𝑥𝑖,𝑘 , 𝑡𝑗) are smooth functions for predictor 𝑘 ∈ 1, …, 𝑝 for each
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time point 𝑡 in the interval 𝑗, and 𝑏ℓ𝑖 are random intercepts associated with group𝑙 ∈ 1, …, 𝐿 to which stimulus 𝑖 belongs (Hendrix & Sun 2020).

7.2.2.1 Overview of the data

An overview of all variables used in the PAMM modelling process and their dis-
tribution is given in Table 7.5 and Table 7.6.

Table 7.5: Summary of the dependent variable and the numerical pre-
dictors in the final data set.

Dependent variable Levels

status 0: 41471 1: 1616

Numerical predictors Mean St. Dev. Min Max

biphoneProbSum 0.015 0.009 0.002 0.043
age 23.313 5.575 18.000 39.000
neighbourhoodDensity 17.068 10.039 1.000 34.000
trialNumber 36.358 20.678 1.000 72.000
googleFreqLog 9.190 0.787 7.658 10.302
tend 1234.455 212.414 817.000 1960.000

Table 7.6: Summary of the categorical predictors and the explanatory
variable in the final data set.

Categorical predictors Levels

typeOfS nm: 22159 pl: 20928
correct no: 7795 yes: 35292
monoMultilingual monolingual: 37578 multilingual: 5509
item 24
subject 39

Explanatory variable Levels

condition matched: 21176 mismatched: 21911

7.2.2.2 Fitted models

APAMMwas fittedwith status as dependent variable and biphoneProbSumBin,
age, neighbourhoodDensity, trialNumer, and googleFreqLog as smooth
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terms. For each smooth, time-varying predictor effects were allowed for by in-
cluding tensor product interactions between time, i.e. tend, and the predictor it-
self (seeWood 2017, for further details on tensor product interactions). To ensure
interpretable results, the predictor smooths were limited to four basis functions,
and time-by predictor interactions were limited to fourth order non-linearities.
No limits were set on the smooth for time. The categorical covariates typeOfS,
condition, correct, and monoMultilingual were included as parametric ef-
fects. The covariates item and subject were included as random smooth terms.
Starting from this initial model, the modelling process proceeded as introduced
in Section 3.2.2. It was found that the k-index value of the tensor product interac-
tion of tend and trialNumber was 0.006. Recall that k-values well below 0.05
indicate potentially missed patterns in the residuals. Re-modelling with a limit of
a sixth instead of a fourth order non-linearity resolved the issue. The prediction
error curve (e.g. Mogensen et al. 2012) displaying the Brier score (e.g. Brier 1950;
Gerds & Schumacher 2006; Bradley et al. 2008) of the final model is displayed in
Figure 7.2. As a reference, the Brier score of the Kaplan-Meier estimate (Kaplan &
Meier 1958) is given. The Brier score measures the accuracy of probabilistic pre-
dictions. The lower its value for a set of predictions, the better the predictions
are calibrated. The range of possible Brier score values is (0, 1). In the present
case, the Brier score of the PAMM is considerably better than the Brier score of
the Kaplan-Meier estimate. This indicates that the inclusion of the covariates in
the PAMM improves the accuracy of the model predictions.

A valid question to ask when using novel statistical methods is whether the
extra work is worth the trouble, i.e. whether the novel methods result in, for
example, models with a higher fit. To answer this question for the present case,
an LMER model with reaction time as dependent variable was fitted. As fixed
effects, the parametric effects and smooth terms given in the PAMM formula (i.e.
biphoneProbSum, age, neighbourhoodDensity, trialNumber, googleFre-
qLog, typeOfS, condition, correct and monoMultilingual) were specified.
item and subject were included as random intercepts. The modelling process
then followed the procedure introduced in Section 3.2.1. The final LMER model
and the PAMM model were then compared by their AIC values: The AIC value
of the LMER model was 21, 811.36, the AIC value of the PAMM was 15, 360.92.
That is, the AIC value of the PAMM was smaller by 6, 450.438 points. Thus, the
PAMM shows a significantly better fit. Regarding its model formula, the final
LMER model only contained trialNumber and monoMultilingual as fixed ef-
fects and subject as random effect. To briefly foreshadow the results presented
in the next section, the LMER model did not find a significant effect for age,
while the PAMM did find a significant interaction of age and time (tend). This
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Figure 7.2: Comparison of the Brier scores of the fitted PAMM and its
Kaplan-Meier estimate equivalent.

difference then denotes the potentially most prominent advantage of PAMMs: As
mentioned in Section 7.2.2, PAMMs allow for an insight into the temporal dynam-
ics of predictor effects, while LMERmodels fitted to the raw reaction time data do
not. Overall, fitting PAMMs instead of LMER models appears to be worthwhile
for the present data.

7.2.2.3 Results

Main effects of the following predictors were found: tend, trialNumber, and
monoMultilingual. Additionally, the interactions between tend and trial
and between tend and age reached significance. The results of the PAMM fit-
ted to the reaction time data are given in Table 7.7. For the parametric terms,
I provide the β estimates and the corresponding standard errors (SE), z-values,
and p-values. For the smooth terms, the estimated degrees of freedom, the refer-
ence degrees of freedom, the χ2 values, and the p-values are given. The R script
used for the analyses as well as the data set can be found in the supplementary
material given in Chapter 11.

Figure 7.3 shows the distribution of raw reaction times for items in thematched
and mismatched condition. On average, matched stimuli are reacted to after
1374 ms, while mismatched stimuli are reacted to after 1388 ms.
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Table 7.7: Summary of the PAMM fitted to status with typeOfS, con-
dition, correct, and monoMultilingual as parametric effects, bi-
phoneProbSum, age, NeighbourhoodDensity, trialNumber, and
GoogleFreqLog as smooth terms, and item and subject as random
smooth terms.

Parametric Terms Estimate SE z value p-value

(Intercept) -6.867 0.152 -45.238 0.000
typeOfSpl 0.133 0.101 1.321 0.187
monoMultilingualmultilingual 0.788 0.302 2.614 0.009
conditionmismatched -0.044 0.051 -0.858 0.391
correctyes 0.061 0.075 0.810 0.418

Smooth Terms edf Ref.df Chi.sq p-value

tend 7.830 8.653 1516.374 0.000
GoogleFreqLog 1.002 1.003 0.468 0.682
biphoneProbSum 1.001 1.002 0.989 0.321
NeighbourhoodDensity 1.300 1.495 1.760 0.391
age 1.002 1.002 3.258 0.071
trialNumber 1.001 1.002 64.063 0.000

Interactions edf Ref.df Chi.sq p-value

tend, GoogleFreqLog 1.352 1.613 0.580 0.753
tend, biphoneProbSum 1.539 1.882 1.238 0.423
tend, NeighbourhoodDensity 1.016 1.031 1.215 0.281
tend, age 5.942 7.321 20.257 0.007
tend, trialNumber 2.982 3.012 50.727 0.000

Random Smooth Terms edf Ref.df Chi.sq p-value

item 3.112 20.000 3.879 0.267
subject 34.184 36.000 505.162 0.000

Taking into account this rather small difference of 14 ms and the overall sim-
ilarity of shape between the two RT distributions, it is not surprising that con-
dition as a predictor did not reach significance in the PAMM. The significant
effects found instead are explained in the following.

Panel A of Figure 7.4 shows the partial effect (𝑝 < 0.001) of the categorical vari-
able monoMultilingual. It is found that multilingual subjects show a higher
probability of earlier responses than monolingual subjects. This effect is visible
in the distribution of the raw RT data (Panel B) as well. However, one should take
this effect with caution as the number of multilingual subjects’ data points (n
= 302) is much smaller than the number of monolingual subjects’ data points (n
= 1326).
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Figure 7.3: Observed reaction times for trials of matched and mis-
matched items. The dot represents the median, the horizontal line in-
dicates the mean. The violin shapes represent rotated density plots de-
scribing the distribution of the data.

Figure 7.4: Partial main effect of monoMultilingual (A), and observed
reaction times for monolingual and multilingual subjects (B).
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A significant main effect of trialNumber (𝜒2 = 63.890, 𝑝 < 0.001) was found,
as well as a significant interaction between time and trialNumber (𝜒2 = 50.205,𝑝 < 0.001). The effect of trialNumber is modulated by the interaction with
time as shown in Figure 7.5. Warmer colours indicate higher hazard rates.1 That
is, the interaction between trialNumber and time indicates that the increase of
the instantaneous probability of a response for later trials is especially prominent
during the early stages of the response window. Later on, the facilitatory main
effect of trialNumber is offset by an opposite effect of the partial interaction
between trialNumber and time.

Figure 7.5: The effect of the interaction between trialNumber and
time. Warmer colours indicate higher hazard rates.

Finally, a significant interaction between time and age (𝜒2 = 20.151, 𝑝 < 0.05)
was found. This effect is illustrated in Figure 7.6. Again, warmer colours indi-
cate higher hazard rates. That is, the interaction between age and time indicates
that the increase of the instantaneous probability of a response for ages between
approximately 23 and 28 years is especially prominent during the mid to late
stages of the response window, i.e. around 1400 ms to 1750 ms into the trial. The
grey area indicates ranges for which no or not enough data were available to the

1Note that readers of a black and white version of this book should rely on the numbers on the
lines instead. Warmer colours correspond to positive values, while cooler colours correspond
to negative values.
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model.2 As only few subjects (n = 4) contribute to the data above the grey area,
shown effects should be interpreted with caution.

Figure 7.6: The effect of the interaction between age and time. Warmer
colours indicate higher hazard rates.

7.2.2.4 Interim summary: Reaction times

Overall, condition as a predictor did not reach significance in the PAMM. That
is, participants respondedwith the same speed tomatched andmismatched items.
Instead, effects of monoMultilingual, trialNumber, and age were found.

7.2.3 Mouse-tracks

Mouse-tracking data elicited in OpenSesame using the mousetrap plugin (Kies-
lich & Henninger 2017) were worked with in R using the mousetrap package
(Kieslich et al. 2019). Following standard procedures, the raw mouse-tracking
data were first transformed to the so-calledmousetrap data format using the mt_-
import_mousetrap function. This function transforms the vectors of X and Y co-
ordinates and their associated timestamps into meaningful row-by-row data for

2For readers of a black and white version of this book this area should be visible as dark grey
area, which is almost shaped like a perfect rectangle.
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further processing. Then, trials without mouse-movement were discarded. Dur-
ing the experiment subjects clicked on the right and left options on screen (see
Section 7.1.3). To make mouse-tracks to both sides comparable, those towards
the right option were mirrored vertically. Finally, all mouse-tracking data were
time-normalised. Time-normalisation is commonly performed if the number of
recorded X and Y coordinates varies across trajectories, which typically is the
case for trajectories of differing reaction times. After time-normalisation with a
constant number of equally sized time steps, all trajectories have the same num-
ber of recorded positions, and the positions at different relative time points can
be compared across trajectories.

Figure 7.7 shows the mean trajectory of all spatially adjusted and time-norma-
lised mouse-tracks used in the present analysis in the lower left panel. The panel
on top displays the overall distribution of all X coordinates, with a clear peak
around a value of 0. The panel on the right shows the overall distribution of all Y
coordinates, with a clear peak around a value of about 380. The peaks correspond
to the position to which the mouse was reset to for each trial.

As all mouse-tracks were spatially transformed, they all move towards the left
option in the very end. Thus, one can also derive some further information from
Figure 7.7. That is, taking into account the right part of the density plot of the
X coordinates, it becomes visible that subjects in some trials must have deviated
from a direct path. For example, if the final answer was the left option, at some
point during the trial the mouse must have been on the (far) right part of the
screen.

Figure 7.8 displays the average mouse-tracks for the variable of interest, con-
dition. Judging from the raw aggregated data alone, a difference betweenmouse-
tracks of matched and mismatched trials is visible. In the following, I will explain
how the statistical analysis of the mouse-tracking data investigating the differ-
ence between matched and mismatched trials was conducted.

Initially, regular Gaussian generalised additive mixedmodels were fitted to the
X and Y coordinates of the mouse-track data. However, model criticism revealed
that the fitted GAMMs showed rather problematic amounts of autocorrelation.
Autocorrelation, ormore specifically temporal spatial autocorrelation, is the asso-
ciation between data values over time. Depending on the sign of autocorrelation,
model estimates can either be over- or underestimated (Charlton 2009). Thus,
models with a high degree of autocorrelation are unreliable in their predictions.
It was therefore decided to use QGAMs instead of GAMMs. QGAMs, as briefly
introduced in Section 3.2.2, are additive quantile regression models. They are a
distribution-free method for estimating the predicted values for any given quan-
tile of the response distribution. As QGAMs are a relatively new tool within the
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Figure 7.7: Mean trajectory of all spatially adjusted and time-
normalised mouse-tracks (lower left), and density distribution of X and
Y coordinates (on top and on the right, respectively).

toolbox of GAMs, I will explain the main characteristics of QGAMs as introduced
by Fasiolo et al. (2021) in the following. The interested reader is referred to the
aforementioned paper for a more thorough mathematical introduction.

Quantile regression, as conducted by QGAMs, aims at modelling the 𝜏 th quan-
tile of the response, 𝑦 , conditionally on a 𝑝-dimensional vector of covariates, 𝑥 ,
with 𝑘 basis functions, where 𝜏 ∈ (0, 1). The 𝜏 th quantile then is𝜇 = inf {𝑦 ∶ 𝐹(𝑦 |𝑥) ≥ 𝜏} . (7.5)

This can also be defined as the minimiser of the expected loss𝐿(𝜇|𝑥) = ∫ 𝜌𝜏 (𝑦 − 𝜇)𝑑𝐹(𝑦 |𝑥), (7.6)

where the quantity 𝜌𝜏 (𝑧) is the pinball loss (Koenker 2005; Gneiting 2011), which
attributes different weights to observations depending on the sign of the residu-
als 𝑧:

127



7 Comprehension of non-morphemic and plural /s/

Figure 7.8: Mean trajectories of mouse-tracks for matched and mis-
matched item trials.

𝜌𝜏 (𝑧) = {(𝜏 + 1)𝑧 if 𝑧 < 0𝜏𝑧 if 𝑧 ≥ 0 . (7.7)

The quantile estimator is thus penalised to prevent overfitting, and the amount
of penalisation is determined by the so-called learning rate, which determines the
relative weight of the loss and the penalty. A QGAM then is defined as

𝜇𝜏 (𝑖) = 𝛽0 + 𝜌∑𝑘=1 𝑓𝑘(𝑥𝑖,𝑘) + 𝑏ℓ𝑖 . (7.8)

The term ∑𝜌𝑘=1 𝑓𝑘(𝑥𝑖,𝑘) can represent either a linear effect or a non-linear effect
without a predefined structure. 𝑏ℓ𝑖 models random intercepts for group ℓ = 1, ..., 𝐿
to which observation 𝑖 belongs, and 𝛽0 is the y-intercept.

In less technical terms, QGAMs make use of the general features of GAMs
in modelling linear and non-linear effects as well as random effects. Instead of
taking into account the whole range of data for their fitting process, each QGAM
is restricted to a given conditional quantile of the data. Splitting the data into ten
equally sized conditional quantiles, one can infer, for example, the following. Let
us assume that the data are ordered from lowest to highest value, as is the case
for the density plots of Figure 7.9 Then the so-called 0.1 quantile (Panel A) will
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consist of the first 10% of data, that is the tenth of the data consisting of the lowest
values. The 0.5 quantile (Panel B), then, consists of the first 50% of the data, and
the 0.9 quantile (Panel C) contains all data but the highest 10%.
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Figure 7.9: Illustration of the three conditional quantiles 0.1 (Panel A),0.5 (Panel B), and 0.9 (Panel C) in blue.

Fitting QGAMs to several of these quantiles allows for a detailed picture of
the effects to be investigated. If an effect is present in the 0.1 quantile but no
longer present in the 0.3 quantile, for example, one can conclude that the effect
is significant for data of the lowest 10% but loses its significance when taking into
account higher valued data points. If the same effect then regains its significance
in the 0.5 quantile, one can conclude the opposite. While there is no effect for the
lowest 30% of data points, there again is an effect when including the following
20% of data points. QGAMs take into account all covariates specified in their
model formula to arrive at their weighted conditional quantile distribution.

Before one can model X and Y coordinates of mouse-tracks as provided by the
mousetrap plugin (Kieslich & Henninger 2017) for OpenSesame, the data have
to be prepared. After the initial preparations mentioned at the beginning of this
section, i.e. after time-normalisation and spatial transformation, the mousetrap
package (Kieslich et al. 2019) provides coordinates and other data in R in a so-
called mousetrap object. To extract the pertinent data needed, i.e. the X and Y
coordinates, the time stamps corresponding to each coordinate value, as well as
a unique identifier per trial, the extract_x, extract_y, and extract_t functions
of the mtqgam package (Schmitz 2021b) were used.

Taking a closer look at the extracted coordinate data, it is found that the coor-
dinate system as used per default by the mousetrap plugin (see, for example, axes
in Figure 7.7 and Figure 7.8) is rather unintuitive for the Y dimension: Coordinates
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higher up on the screen show negative Y coordinate values, while coordinates
lower down on the screen show positive Y coordinate values. For X coordinates,
the system is more intuitive: Coordinates further to the right have positive X co-
ordinate values, while coordinates further to the left have negative X coordinate
values. Using this default coordinate system would result in an obscure order
of conditional quantiles. Consider the 0.1 conditional quantile, which consists of
the lowest 10% of data points, as an example. As Y shows lowest values for mouse
positions high up on the screen and X shows lowest values for mouse positions
further to the left, the first quantile would correspond to the end or near-end
of the mouse-tracks instead of to their start. Analogously, the 0.9 quantile, then,
would correspond to the start or near-start of the mouse-tracks. Thus, modelling
the coordinate data with their default signmeans doing things from back to front.
For this reason, the original coordinate data’s sign was reversed.

Merging the coordinate and time stamp data with the data on the set of co-
variates provided in Section 7.2.1, one can then model QGAMs. As mentioned
previously, the coordinates used in the present analysis are time-normalised. For
the current implementation, I chose a number of n = 140 time steps for the time-
normalisation process. Kieslich et al. (2019) provide no reasoning on why the
mousetrap package uses a number of n = 101 per default but refer to Spivey et al.
(2005) instead. However, in Spivey et al. (2005) the number of time steps remains
unmotivated. I arrived at n = 140 by arbitrarily taking the mean RT of all trials̄𝑥 ≈ 1400 ms and dividing it by 10. An example of the prepared data is given in
Table 7.8.

Table 7.8: Example of the data format for a matched trial.

order trialNumber time x_coordinate y_coordinate condition

1 1 0 0 -380.000 matched
… … … … … …
66 1 585.4700 -2.000 -380.000 matched
67 1 594.4748 -2.000 -380.000 matched
68 1 603.4800 -2.348 -382.652 matched
… … … … … …

110 1 972.7770 113.944 -124.724 matched
111 1 981.7840 121.141 -103.685 matched
… … … … … …

130 1 1152.9210 238.000 216.000 matched
131 1 1233.9860 238.000 216.000 matched

For each trialNumber the prepared data set contains a separate row for each
time step. The individual time steps are numbered in the variable order. The
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point in time of the time stamp is given in time. For each time stamp, the X and
Y coordinates are contained in x_coordinate and y_coordinate, respectively.
condition, then, is the previously introduced explanatory variable of interest,
and its value is repeated for each row of a trial. The same is true for all other
covariates of the data set (not shown in Table 7.8). In the above example, the first
row is the very first coordinate pair recorded at time 0. The data of rows 66 to
68 show that even though time passed, the mouse was not moved at all (rows
66 to 67) or moved only slightly (rows 67 to 68). From rows 110 to 111, mouse
movement is clearly visible in the X and Y coordinates. Finally, in rows 130 and
131 (and following), the target is reached. Thus, time continues to pass until time
stamp number 140 is reached, while X and Y coordinates remain unchanged.

7.2.3.1 Fitted models

The complete set of data (n = 261,240) was split into two separate data sets de-
pending on whether the (pseudo-)base of the target word belonged to a singular
or plural noun. This resulted in two smaller data sets, with n = 142,380 for singu-
lar pseudo-bases and n = 118,860 for plural bases. This was done because the aim
of the present analysis was to investigate whether a mismatch of (pseudo-)base
and /s/ duration influenced the mouse-tracks. While this can also be found out
with the complete data set, interactions of (pseudo-)base types and further co-
variates would have been a necessary part of the model formula. It was decided
against using such multiple interactions as they make model interpretation more
complex while offering basically the same insights as the implementation with
split data sets. Moreover, fitting QGAMs is computationally costly, with near-
exponentially increasing computation times for bigger data sets and more com-
plex effect structures. Thus, choosing the implementation of several QGAMs for
smaller data sets also kept the carbon footprint of the analysis down.

Both data sets were then further reduced by excluding trials which had been
responded to incorrectly. While correct was a potential covariate for modelling
QGAMs, the difference between correctly and incorrectly answered trials is not
the main interest of the present study. This decision led to an overall loss of n =
46,760 data points (17.9%), resulting in n = 102,480 for singular pseudo-bases and
n = 112,000 for plural bases. An overview of all variables contained in the two
data sets is given in Table 7.9 and Table 7.10.

For both data sets, two sets of QGAMs were fitted. One set of QGAMs was
fitted to X coordinates, and one set of QGAMswas fitted to Y coordinates. I aimed
at estimating the conditional quantiles corresponding to 𝜏 = 0.1, 0.3, 0.5, 0.7 and0.9. Thus, each set of QGAMs consisted of five QGAMs, one for each of the five
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7 Comprehension of non-morphemic and plural /s/

Table 7.9: Summary of the dependent variables and the numerical and
categorical predictors in the singular pseudo-base data set.

Dependent variables Mean St. Dev. Min Max

x_coordinate 74.643 152.998 -511.000 512.000
y_coordinate -176.898 250.926 -410.000 384.000

Numerical predictors Mean St. Dev. Min Max

order 70.500 40.414 1.000 140.000

Categorical predictors Levels

item 12
subject 39

Explanatory variable Levels

condition matched: 50120 mismatched: 52360

Table 7.10: Summary of the dependent variables and the numerical and
categorical predictors in the plural base data set.

Dependent variables Mean St. Dev. Min Max

x_coordinate 75.413 150.252 -512.000 511.000
y_coordinate -192.441 243.169 -410.000 384.000

Numerical predictors Mean St. Dev. Min Max

order 70.500 40.414 1.000 140.000

Categorical predictors Levels

item 12
subject 39

Explanatory variable Levels

condition matched: 50120 mismatched: 52360
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quantiles. Taking into account more extreme quantiles, i.e. 0.1 and 0.9, as well as
the median quantile 0.5 and the quantiles between the median and the extreme
quantiles, i.e. 0.3 and 0.7, one obtains a detailed picture of how predictors affect
the coordinate data. In total, ten QGAMs for each of the two data sets were fitted,
that is five for X coordinates and five for Y coordinates. This resulted in a total
number of twenty QGAMs.

The model formula for all QGAMs was similar. The dependent variable was ei-
ther x_coordinate or y_coordinate. condition was introduced as parametric
term. order was given as smooth term with the default k-value of 9, and item
and subject were included as random smooth terms. The model formula was
kept simple due to the extensive computational times of QGAMs.

All models were then checked according to the process introduced in Sec-
tion 3.2.2. It was found that the k-index value of the order smooth term was
well below 0.05 for all QGAMs, thus indicating potentially missed patterns. Re-
modelling the set of QGAMs for X coordinates of plural bases as a test case with
higher k-values (𝑘 = 18, 30, 60, and 120) revealed that nomatter what the k-value,
the general effect of all covariates remained unchanged. Following Wood (2017),
it was therefore concluded that the k-value was large enough so that re-fitting all
twenty computationally costly QGAMs was not necessary. The final data sets, as
well as the analysis and results discussed in the following sections, can be found
in the supplementary material given in Chapter 11.

7.2.3.2 Results

Across all twenty models, an effect of condition was found 12 times. An effect
of the order smooth was found in all models. Similarly, the random smooths of
item and subject reached significance in all QGAMs. The overall model fit is
high with a mean deviance explained of 𝐷 = 70.74%. For both data sets, QGAMs
fitted to Y coordinates show overall higher rates of deviance explained (𝐷 =79.67%) than their X coordinate counterparts (𝐷 = 61.81%). For all four sets of
QGAMs, the QGAM fitted to the 0.5 quantile shows the lowest rate of deviance
explained (𝐷0.5 = 61.15%), while the QGAMs fitted to themore extreme quantiles
show the highest rates of deviance explained (𝐷0.1 = 82.86% and 𝐷0.9 = 79.63%).

The effects found in the QGAMs fitted to X and Y coordinates of the monomor-
phemic pseudo-base data set are displayed in Table 7.11. The model estimates of
these and all following QGAMs are part of the supplementary material given in
Chapter 11. Note that here and in the following, I will refrain from discussing the
effects of the smooth terms as they are not the main interest of investigation.
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There are significant effects of condition in four QGAMs fitted to the X co-
ordinate data and in four QGAMs fitted to Y coordinate data. For 𝜏 = 0.3, 0.5, 0.7
and 0.9 condition shows a significant effect for X and Y coordinates. The effects
are illustrated in Figure 7.10. Where a significant effect is found, X coordinates
are further to the right and Y coordinates are further down in the mismatched
condition. Recall that QGAMs rely on conditional quantiles. Thus, the estimates
shown in Figure 7.10 and similar plots illustrate the nature of an effect taking into
account a certain quantity of the overall data (e.g. the lowest 10% of dependent
variable data values in 𝜏 = 0.1). The estimates do not illustrate the positions of
mouse-tracks at certain points of their trajectory.

Table 7.11: Summary of the effects found in the QGAMs fitted to the X
and Y coordinates of the monomorphemic pseudo-base data set. Signif-
icance codes: *** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

X coordinates Y coordinates

quantiles: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Parametric Terms

(Intercept) *** *** *** *** *** *** *** *** *** **
conditionmismatched n.s. * *** *** *** n.s. *** *** *** ***

Smooth Terms

order *** *** *** *** *** *** *** *** *** ***

Random Smooth Terms

item *** *** *** *** *** *** *** *** *** ***
subject *** *** *** *** *** *** *** *** *** ***

For the QGAMs fitted to the plural base data set, the effects found for X and Y
coordinates are given in Table 7.12. condition reaches significance in four mod-
els fitted to the X coordinate data: 𝜏 = 0.1, 0.3, 0.5 and 0.7. The effect is illustrated
in Figure 7.11. Where condition shows a significant effect for X coordinates,
coordinates of mismatched trials are further to the right. For Y coordinates, con-
dition misses significance across all models.

7.2.3.3 Interim summary: Mouse-tracks

Across all QGAMs, a significant effect of condition emerged 12 times. Espe-
cially X coordinates are affected by condition, as 8 of the 12 significant effects
are found in QGAMs fitted to X coordinate data. For Y coordinates, significant ef-
fects of condition are only found in the monomorphemic pseudo-base data set.
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7.3 Discussion

Figure 7.10: Effects of condition as found in the QGAMs modelled to
the X and Y coordinates of the monomorphemic pseudo-base data set.
The lines indicate the confidence intervals of the estimated X and Y
coordinate values.

Where a significant effect is found, coordinates of mismatched trials are further
to the right and lower down.

7.3 Discussion

The present number-decision study set out to investigate if listeners make use
of subphonemic durational differences in the comprehension of non-morphemic
and plural word-final /s/. This question was analysed following H comp, theMis-
match Hypothesis: If subphonemic durational differences are made use of, then a
mismatch of subphonemic detail and intended meaning leads to a) slowed down
comprehension processes and b) deviated mouse trajectories.
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Table 7.12: Summary of the effects found in the QGAMs fitted to the
X and Y coordinates of the plural base data set. Significance codes: ***𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05.

X coordinates Y coordinates

quantiles: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Parametric Terms

(Intercept) ** *** *** *** *** *** *** *** *** ***
conditionmismatched ** *** *** ** n.s. n.s. n.s. n.s. n.s. n.s.

Smooth Terms

order *** *** *** *** *** *** *** *** *** ***

Random Smooth Terms

item *** *** *** *** *** *** *** *** *** ***
subject *** *** *** *** *** *** *** *** *** ***

Part a) of the hypothesis was tested by modelling the reaction time data in
a PAMM. It was found that reaction times are not significantly influenced by
the mismatch of durational information. As such, the first part of the hypothesis
is rejected. That is, reaction times are similar for trials with matched and mis-
matched durational information. Thus, comprehension processes apparently are
not slowed down.

Part b) of the hypothesis was investigated by fitting QGAMs to the X and Y co-
ordinate data of the mouse-tracks recorded during the experiment. QGAMs were
fitted separately for singular pseudo-bases and plural bases to achieve a way of
direct comparisons between matched and mismatched /s/ trials within one type
of (pseudo-)base. The results of the QGAMs show an overall significant effect
of matched versus mismatched durational information on X coordinates. That
is, X coordinates of trials with durationally mismatched items are significantly
further to the right. For Y coordinates, significant effects were only found in the
singular pseudo-base data: Mismatched trials come with Y coordinates which are
further down.

How do these findings relate to the second part of the hypothesis? Looking at
the results for X coordinates, which are further to the right in mismatched trials,
one can interpret the findings as a confirmation of the hypothesis. Recall that
mouse-tracks were mirrored where applicable, that is all tracks move towards
the upper left corner of the coordinate system. Thus, an ideal non-deviated tra-
jectory would be a straight line between the mouse cursor starting position and
one of the answer options. As this non-deviated straight line moves linearly to-
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7.3 Discussion

Figure 7.11: Effects of condition as found in the QGAMs modelled to
the X and Y coordinates of the plural base data set. The lines indicate
the confidence intervals of the estimated X and Y coordinate values.

wards the upper left corner, X coordinates which are further to the right can
be understood as deviation from that direct path and as a detour towards the
other answer. Taking into account that the X coordinates of mismatched trials
are overall significantly further to the right, then, one can conclude that mis-
matched durational information led to overall higher deviations from the direct
path. While this effect on X coordinates was found for both data sets, the effect
on Y coordinates was only found for singular pseudo-bases. Analogously, the
lower Y coordinates for mismatched trials can be interpreted as a deviation from
the direct path. Thus, the results of the mouse-tracking analysis confirm the sec-
ond part of the hypothesis: Mouse-tracks of trials with mismatched items are
deviated.

However, there are two major points that need to be addressed. First, the anal-
ysis did not consider whether the word-final /s/ of a particular stimulus has been
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7 Comprehension of non-morphemic and plural /s/

heard already. While this, in theory, should not pose a problem, because QGAMs
were fitted to quantiles across the distribution of coordinates and thus included
ranges of coordinates for which the word-final /s/ has been heard, I nonetheless
checked whether a difference in results is found. For this, I created two binary
variables: s_onset and s_offset. s_onset encodes the time of the onset of the
word-final /s/ and s_offset encodes the time of the offset of the word-final /s/.
Based on these variables, I created data sets which contained only data for which
either the onset of the /s/ was audible or for which the offset of the /s/ was au-
dible already. Using these data sets, I refitted the QGAMs presented in the main
analysis of this chapter. The overall results of these new QGAMs are similar to
those reported here (see the supplementary material given in Chapter 11). Thus,
considering only data for which the onset or offset of the word-final /s/ was au-
dible does not change the general results.

Second, the analysis presented in this chapter excluded time as a relevant fac-
tor. Recall that all mouse-tracks were time-normalised during the pre-processing
of the data. While this made mouse-tracks more easily comparable for my pur-
poses, time is nonetheless a factor one might consider in other types of analyses.
Following, for example, Blazej & Cohen-Goldberg (2015), one can analyse the
raw, non-normalised mouse trajectories. For this, I divided all X and Y coordi-
nate data into 200 increments of 10 ms. The average for all of these increments
was then calculated. The result of this procedure is illustrated in Figure 7.12. As
indicated by the dashed line, the /s/ onset was on average at 389 ms, while the /s/
offset, as indicated by the dotted line, was at 689ms after the stimulus onset. Com-
paring Panels A and B, higher deviations between coordinates of matched and
mismatched stimuli are again found for X coordinates as compared to Y coordi-
nates. For both types of coordinates, differences between the trajectories become
visible between the onset and offset of the word-final /s/. This finding indicates
that listeners make use of the durational information. As time unfolds, the dura-
tion of the pertinent /s/ either corresponds to its expected duration (match) or it
over-/undershoots its expected duration (mismatch). In the latter case, then, this
mismatch of expected and perceived duration leads to a deviation of the mouse-
track towards the other option. Considering time as a factor thus confirms the
main findings of this chapter and provides further insight into the found effects.

Let us now turn to the theoretical implications of the present results. As par-
ticipants of the present study showed an influence of subphonemic durational
differences on their comprehension in terms of mouse-tracks, theories which
exclude such information from the result of the perception process cannot ac-
count for these findings (e.g. Klatt 1979; McClelland & Elman 1986; Norris 1994;
Norris & McQueen 2008). If perception as such is not sensitive to subphonemic
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Figure 7.12: Averaged mouse position on the x-axis (Panel A) and on
the y-axis (Panel B) for matched and mismatched trials as a function of
time. The dashed horizontal lines indicate the average /s/ onset time;
the dotted horizontal lines indicate the average /s/ offset time.

durational differences, and as a result, no such information is forwarded to the
comprehension process, the comprehension process cannot make use of such
durational detail. Thus, no difference between matched and mismatched trials
should have been found. However, such theories can account for the null results
of the reaction time analysis.

Exemplar and hybrid models (e.g. Goldinger 1996; Hawkins & Smith 2001; Pier-
rehumbert 2002; Hanique, Aalders, et al. 2013) as well as computational models
such as DIANA (ten Bosch et al. 2015; ten Bosch & Boves 2021) and LDL (Baa-
yen, Chuang, Shafaei-Bajestan, et al. 2019) can potentially account for the find-
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7 Comprehension of non-morphemic and plural /s/

ings of the mouse-track analysis. As such approaches assume the storage of fine-
phonetic detail, such detail can be perceived and made use of in comprehension.
However, it remains unclear why an effect of subphonemic durational informa-
tion is found in mouse-tracks but not in reaction times.

Overall, it seems that no theoretical account can straightforwardly explain
the findings of the present number-decision task. While reaction times are not
influenced by durational mismatches in word-final /s/, mouse-tracks are. One
might argue that reaction times on the one hand and mouse-tracks on the other
hand represent different parts of the comprehension process, deliver different
amounts of detail on the comprehension process, or show different levels of sen-
sitivity towards mismatched information. Reaction times provide a single data
point per trial and allow for little insight into the time window between the start
and end of a trial. Even when analysed with novel sophisticated statistical meth-
ods such as PAMMs, they provide much less detail on what happens during a
particular trial as compared to the continuously measured mouse-tracks. Thus,
reaction times between matched and mismatched trials may very well be sim-
ilar as is the case in the present study, while what happens before a response
is recorded is not. These potential differences in the time window between the
start of the trial and the response are captured by mouse-tracks. In the present
case, this more detailed account of the comprehension process showed a signifi-
cant influence of mismatched durational information. The present findings, then,
can be understood as non-contradictory, as their underlying measures, reaction
times and mouse-tracks, capture different aspects of the comprehension process:
speed versus decision-making.

However, a detailed account of such potential differences is a subject for future
research. Similarly, it has been briefly shown that time should not be disregarded
for the analysis of mouse-tracking data. Thus, further analyses considering time
as a factor, for example, an analysis of saccades, should be the aim of future re-
search. Finally, one question remains: Are the results presented in this chapter
confounded by lexical effects of the real word items used as stimuli? To inves-
tigate this question, a second comprehension task in which pseudowords were
used is presented in the following chapter.
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As explained in detail in Section 2.2, two comprehension studies are part of this
book. This chapter presents the second of these studies on the comprehension
of subphonemic differences in word-final /s/. The two studies differ in two main
regards. First, the comprehension study described in Chapter 7 made use of real
words in isolation, the comprehension study presented in this chapter uses pseu-
dowords embedded within sentences as stimuli. Second, the first comprehension
study used non-morphemic and plural word-final /s/, while this second study
uses plural, is-, and has-clitic word-final /s/. As in the previous comprehension
study, effects on comprehension were tested using a number-decision task in a
mouse-tracking paradigm. Considering extant models and approaches of speech
perception and comprehension, H comp, the Mismatch Hypothesis, again is ex-
plored. However, taking into account the findings of the first comprehension
study, reaction times are not investigated in the present study. That is, only the
second part of the hypothesis is considered: If listeners make use of subphone-
mic durational differences in the comprehension of different types of word-final
/s/, then a mismatch of subphonemic detail and intended meaning is expected to
lead to deviated mouse trajectories.

8.1 Methdology

8.1.1 Participants

Forty-two native speakers of New Zealand English took part in the experiment.
Their mean age was 22.5 years, ranging from 18 to 54. Eight participants identi-
fied as multilingual. The experiment took place at the University of Canterbury,
Christchurch, New Zealand, from December 2020 to March 2021.

8.1.2 Materials

The speech materials consisted of pseudowords embedded within sentences. The
pseudowords used are those forty-eight described in Section 3.1.2. I repeat all
pseudowords in Table 8.1 for convenience.
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Table 8.1: Orthographic (orth.) and phonological (phon.) representa-
tions of all pseudowords used in the number-decision task.

/glɪ/ /prʌ/ /pli:/ /clu:/ /blaʊ/ /gleɪ/

orth. glips prups pleeps cloops bloups glaips
phon. /glɪps/ /prʌps/ /pli:ps/ /klu:ps/ /blaʊps/ /gleɪps/

orth. glits pruts pleets cloots blouts glaits
phon. /glɪts/ /prʌts/ /pli:ts/ /klu:ts/ /blaʊts/ /gleɪts/

orth. gliks pruks pleeks clooks blouks glaiks
phon. /glɪks/ /prʌks/ /pli:ks/ /klu:ks/ /blaʊks/ /gleɪks/

orth. glifs prufs pleefs cloofs bloufs glaifs
phon. /glɪfs/ /prʌfs/ /pli:fs/ /klu:fs/ /blaʊfs/ /gleɪfs/

All pseudowords were embedded into short context sentences of either simple
past, present progressive, or present perfect tense. Additionally, the remaining
context disambiguated between plural and non-plural contexts. In sentenceswith
simple past tense, the agents were two aliens of the same kind (see (1) & (2)) doing
something together or to each other. This ensured a plural reading of the context.
In sentences with present progressive tense, agents were a single alien doing
something to or with another alien in object position (see (3) & (4)). In sentences
with present perfect tense, agents were single aliens who had done something
to or with another alien in object position (see (5) & (6)). That is, for the is- and
has-clitic, the following verb ensured the pertinent clitic reading of the context.
Almost exclusively irregular verbs were used to create the context sentences to
ensure no ambiguities between them. Twenty-four contexts per type of /s/ were
created, resulting in a total number of seventy-two context sentences. See the
supplementary material given in Chapter 11 for a list of all verbs and contexts.

(1) The glips ate their lunch together.

(2) The glips blew a kiss to each other.

(3) The glip’s eating cake with the bloup.

(4) The glip’s blowing a kiss to the bloup.

(5) The glip’s eaten the bloup’s lunch.

(6) The glip’s blown kisses to the bloup every day of their marriage.

The context sentences were made into a reading list, which was then read and
recorded three times by a trained native speaker of New Zealand English. Record-
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ings took place at the soundproof booth of the Department of Linguistics at the
University of Tübingen. The recordings were sampled at 44.1 kHz, 16 bit.

For each sentence the best of the three recordings was chosen by manual in-
spection. First, all recordings were analysed using Praat following the segmen-
tation conventions laid out in Section 4.1.4. Recordings with production errors,
e.g. laughter, stutter or vocal fry, or segmentation difficulties, e.g. the absence of
a stop release, were dismissed. Second, the speaking rate of sentences was mea-
sured using a Praat script (de Jong & Wempe 2008) and then analysed in R. As
the contexts used in the current experiment differ in length, i.e. in number of
syllables, speaking rate appeared to be a more appropriate measurement of sim-
ilarity across utterances as compared to duration itself as used in the previous
two experiments. Speaking rate was computed as number of syllables divided by
utterance duration. The resulting mean speaking rate was 3.024 with a standard
deviation of 0.551. Lastly, for each sentence, the iteration closest to the mean
speaking rate was chosen for further use in the experiment resulting in a final
mean speaking rate of 3.021 with a standard deviation of 0.380.

Then, the final /s/ duration of all items was manipulated in such a way that it
corresponded to the mean /s/ duration for plural, is-, and has-clitic /s/ found in
the reference study by Plag et al. (2017). That is, in the case of a plural context
such as (1) the duration of the final /s/ was changed to 283 ms, while in the case
of is-clitic contexts such as (3) the duration of the final /s/ was changed to 261 ms,
and in the case of has-clitic contexts such as (5) the duration of the final /s/ was
changed to 253 ms. These versions are manipulated so that their /s/ durations
match those of previous findings. Thus, these items are referred to as matched
items.

For mismatched items, /s/ durations were changed as follows. For each plural
context, two new versions were created. One contained the typical duration of an
is-clitic /s/, while the other one contained the typical duration of a has-clitic /s/.
For each is-clitic and has-clitic context, a new version was created with the du-
ration of a typical plural /s/. The final number of contexts and their /s/ durations
are given in Table 8.2. Each participant took part in 192 trials, i.e. 2 × 24 matched
plural /s/ items + 2 × 24 mismatched plural /s/ items + 24 matched is-clitic /s/
items + 24 mismatched is-clitic /s/ items + 24 matched has-clitic /s/ items + 24
mismatched has-clitic /s/ items.

8.1.3 Procedure

Similar to the experiment in Chapter 7, the number-decision task was conducted
in OpenSesame using the mousetrap plugin for mouse-tracking (Kieslich & Hen-
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Table 8.2: Number of versions per type of word-final /s/ and their /s/
durations. Mean values are taken from Plag et al. (2017).

Version 1:
matched

Version 2:
mismatched

Version 3:
mismatched

is-clitic context
mean of is-clitic /s/
261 ms

mean of plural /s/
283 ms

has-clitic context
mean of has-clitic /s/
253 ms

mean of plural /s/
283 ms

plural context
mean of plural /s/
283 ms

mean of is-clitic /s/
261 ms

mean of has-clitic /s/
253 ms

ninger 2017). First, participants were introduced to the task at hand. They were
told that in the following experiment they had to decide whether a sentence is
about the action of two identical aliens, i.e. aliens of the same species and name,
or about the action of one alien. They were told to mouse-click on the matching
“one” or “two or more” button, respectively, in the top left and top right corner
of the screen. Figure 8.1 illustrates what participants saw on screen for each trial.
The participants were told that if they did not decide on either option within a
certain amount of time, the next trial would start automatically. Each participant
started with five practice trials.

Each trial was preceded by a stretch of silence of 450 ms accompanied by a
white screen. Then, one of the recordings was played, with reaction time and

Figure 8.1: Option display during the comprehension experiment. The
mouse cursor indicates the position the mouse was reset to in each
trial.
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mouse-tracking measurement starting at the onset of the recording. Participants
were given a window of 4500 ms starting after the onset of the recording to react,
after that a time-out was recorded. The next trial then started automatically 5000
ms after the onset of the previous recording, starting with the next inter-trial
white screen. Mouse-tracks were recorded with a frequency of 100 Hz.

8.2 Analysis

The analysis of the present data is similar to the analysis of the mouse-tracking
data in the comprehension study on non-morphemic and plural word-final /s/ in
Chapter 7. First, mouse-tracking data were extracted, spatially transformed, and
time-normalised with n = 140 time steps using the mousetrap package (Kieslich
et al. 2019) in R. Figure 8.2 shows the aggregated mean trajectory of the spatially
transformed and time-normalisedmouse-tracks in the lower left panel. The panel
on top gives the overall distribution of all X coordinates, with a peak visible
around a value of 0. The panel on the right displays the overall distribution of all
Y coordinates, with a peak around a value of 380. As in Chapter 7, the positions
of the peaks corresponds to the position at which the mouse cursor started for
each trial.

Then, X and Y coordinates were extracted using the mtqgam package (Schmitz
2021b). As in Section 7.2.3, the sign of the coordinate data were reversed to allow
for a straightforward interpretation. An example of the resulting data structure
is given in Table 8.3.

Finally, the prepared data set was analysed using additive quantile regression
models (QGAMs; Fasiolo et al. 2021).

Table 8.3: Example of the data format for a matched trial.

order trialNumber time x_coordinate y_coordinate condition

1 1 0 0 -380.000 matched
… … … … … …
9 1 201.9568 2.000 -380.000 matched

10 1 227.2014 3.440 -379.560 matched
11 1 252.4460 6.734 -375.266 matched
… … … … … …

110 1 2751.6619 72.487 90.160 matched
111 1 2776.9065 139.647 120.597 matched
… … … … … …

130 1 3256.5540 274.000 199.000 matched
131 1 3281.7986 274.000 199.000 matched
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Figure 8.2: Mean trajectory of all spatially adjusted and time-
normalised mouse-tracks (lower left), and density distribution of X and
Y coordinates (on top and on the right, respectively).

8.2.1 Fitted models

The complete set of coordinate data (n = 1,017,800) was split into four separate
data sets. Recall that there were three types of word-final /s/ involved in this
study, i.e. plural, is-, and has-clitic /s/. Targets in plural context sentences were
once manipulated to bear the mismatched /s/ duration of an is-clitic, and once to
bear the mismatched /s/ duration of a has-clitic. An overview of the four subsets
and the contexts they contain is given in Table 8.4.

subsetIP thus contained results on is-clitic contexts with either is-clitic /s/
or plural /s/ durations (n = 260,400). subsetHP contained results on has-clitic
contexts with either has-clitic /s/ or plural /s/ durations (n = 229,600). subsetPI
contained results on plural contexts with either plural /s/ or is-clitic /s/ dura-
tions (n = 263,900). subsetPH, finally, contained results on plural contexts with
either plural /s/ or has-clitic /s/ durations (n = 263,900). Similar to the analysis of
mouse-tracks in the comprehension study on non-morphemic and plural /s/ pre-
sented in Section 7.2.3, the individual subsets were created in order to determine
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Table 8.4: Overview of the four subsets used in the QGAM modelling
process. Each subset contains mouse-track coordinate data of dura-
tionally matched andmismatched stimuli. Within each subset, the type
of context is kept constant, while the manipulation of the pertinent
word-final /s/ either corresponds to a match or mismatch in duration.
Subset names contain information on the type of context (first sub-
script letter) and the /s/ duration that constitutes a mismatch (second
subscript letter).

Subset name Condition Context /s/ duration

subsetIP
matched is-clitic is-clitic
mismatched is-clitic plural

subsetHP
matched has-clitic has-clitic
mismatched has-clitic plural

subsetPI
matched plural plural
mismatched plural is-clitic

subsetPH
matched plural plural
mismatched plural has-clitic

whether a mismatch of context and word-final /s/ influenced mouse-tracks to a
significant extent. While this is also possible with the specification of interaction
terms in the QGAM formula, it was again decided against this method due to the
high computational costs as well as due to the increased complexity of model
interpretation.

Two sets of QGAMs were fitted to each of the four subsets. One set of QGAMs
was fitted to X coordinates, one set of QGAMswas fitted to Y coordinates. I aimed
at estimating the conditional quantiles corresponding to 𝜏 = 0.1, 0.3, 0.5, 0.7 and0.9. Thus, each set of QGAMs consisted of five individual QGAMs, one for each
of the five quantiles. In total, ten QGAMs for each of the four subsets were fitted,
that is five for X coordinates and five for Y coordinates. This resulted in a total
number of forty QGAMs.

Taking into account the low number of incorrectly answered trials in the data
of Chapter 7, I checked the amount of data points for which the wrong answer
was given in the present data. Again, only few data points for wrong answers, i.e.
about 9% (n = 89,740), were found. It was decided to exclude correct as a variable
for the QGAM model formula, and to only use data on correctly answered trials
instead. This led to slightly smaller data sets, i.e. n = 243,600 for subsetIP; n =
193,340 for subsetHP; n = 246,820 for subsetPI; and n = 244,300 for subsetPH.
An overview of all variables contained in the four subsets is given in Table 8.5.
See Section 7.2.1 for the definitions of all covariates.
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Table 8.5: Summary of the dependent variables and the numerical and
categorical predictors in the four subsets.

Subset(s) Mean St. Dev. Min Max

subsetIP 50.326 135.957 -511.000 512.000
subsetHP 48.251 142.696 -511.000 512.000
subsetPI 32.086 142.656 -512.000 511.000
subsetPH 32.507 141.780 -512.000 511.000
subsetIP -173.983 250.326 -410.000 384.000
subsetHP -160.199 253.547 -410.000 384.000
subsetPI -181.272 245.044 -410.000 384.000
subsetPH -177.168 248.281 -410.000 384.000

Subset(s) Mean St. Dev. Min Max

all 70.500 40.414 1.000 140.000

Subset(s) Levels

all 24
all 42

Subset(s) Levels

subsetIP matched: 121940 mismatched: 121660
subsetHP matched: 97020 mismatched: 96320
subsetPI matched: 123760 mismatched: 123060
subsetPH matched: 121800 mismatched: 122500

All QGAMs used the same model formula. The dependent variable was ei-
ther x_coordinate or y_coordinate. condition was introduced as parametric
term. order was given as smooth term with the default k-value of 9, and item
and subject were included as random smooth terms. Checks revealed that the
k-value of the order smooth term was too low. However, as in Section 7.2.2.2,
it was found that no matter the k-value, the effect of all covariates remained
unchanged. Following Wood (2017), it was therefore, again, decided to not re-fit
the computationally costly QGAMs. The final data set as well as the analysis and
results discussed in the following sections can be found in the supplementaryma-
terial given in Chapter 11. In the following, the results of the modelling process
will be presented.

8.2.2 Results

A significant effect of conditionwas found 24 times across all forty models. The
smooth term of order as well as the random smooth terms of item and subject
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reached significance in all models. The overall model fit is rather high with a
mean deviance explained of 𝐷 = 58.75%. Across all four data sets, QGAMs fitted
to Y coordinates showed overall higher rates of deviance explained (𝐷 = 68.29%)
than their X coordinate counterparts (𝐷 = 49.21%). For all four sets of QGAMs,
the QGAMfitted to the 0.5 quantile showed the lowest rate of deviance explained
(𝐷0.5 = 44.69%), while the QGAMs fitted to the more extreme quantiles showed
the highest rates of deviance explained (𝐷0.1 = 75.41% and 𝐷0.9 = 72.06%).
8.2.2.1 subsetIP

The effects found in the QGAMs fitted to the X and Y coordinates of subsetIP
are given in Table 8.6. The model estimates of these and all subsequent QGAMs
are part of the supplementary material given in Chapter 11. Note that here and
in the following, I will refrain from discussing the effects of the smooth terms as
they are not the main interest of investigation.

There are significant effects of condition in two QGAMs fitted to X coor-
dinate data and in two QGAMs fitted to Y coordinate data. For both types of
coordinates, these effects are found for 𝜏 = 0.7 and 𝜏 = 0.9. The effects are illus-
trated by Figure 8.3. Where a significant effect is found for X coordinates, tracks
of mismatched trials are further to the left as compared to tracks of matched tri-
als. For Y coordinates, the effect of condition leads to coordinates further up for
mismatched trials. Recall that due to the use of conditional quantiles in QGAMs,
the estimates shown in Figure 8.3 and similar plots illustrate the nature of an
effect taking into account a certain quantity of the overall data. Such plots do
not illustrate the positions of mouse-tracks at certain points of their trajectory.

8.2.2.2 subsetHP

For subsetHP, the found effects are given in Table 8.7. The effect of condition
reaches significance in three QGAMs fitted to X coordinates, i.e. in the 𝜏 = 0.1, 0.7
and 0.9 quantiles. For Y coordinates, significant effects are found in all QGAMs
but the QGAM fitted to the 𝜏 = 0.9 quantile. The effects are illustrated in Figure
8.4. For X coordinates in 𝜏 = 0.1, the effect of condition leads to coordinates
further to the right. Taking into account more data, the effect is reversed in 𝜏 =0.7 and 0.9, i.e. coordinates of mismatched trials are further left. The effect of
condition on Y values is similar across all quantiles. That is, mismatched trials
show further up Y coordinates.
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Table 8.6: Summary of the effects found in the QGAMs fitted to the
X and Y coordinates of subsetIP. Significance codes: *** 𝑝 < 0.001, **𝑝 < 0.01, * 𝑝 < 0.05.

X coordinates Y coordinates

quantiles: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Parametric Terms

(Intercept) *** *** *** *** *** *** *** *** *** n.s.
conditionmismatched n.s. n.s. n.s. *** *** n.s. n.s. n.s. ** ***

Smooth Terms

order *** *** *** *** *** *** *** *** *** ***

Random Smooth Terms

item *** *** *** *** *** *** *** *** *** ***
subject *** *** *** *** *** *** *** *** *** ***

Figure 8.3: Effect of condition as found in the QGAMs modelled to
the X and Y coordinates of subsetIP. The lines indicate the confidence
intervals of the estimated X and Y coordinate values.
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Table 8.7: Summary of the effects found in the QGAMs fitted to the X
and Y coordinates of subsetHP. Significance codes: *** 𝑝 < 0.001, **𝑝 < 0.01, * 𝑝 < 0.05.

X coordinates Y coordinates

quantiles: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Parametric Terms

(Intercept) *** *** *** *** *** *** *** *** *** **
conditionmismatched *** n.s. n.s. ** *** * *** *** *** n.s.

Smooth Terms

order *** *** *** *** *** *** *** *** *** ***

Random Smooth Terms

item *** *** *** *** *** *** *** *** *** ***
subject *** *** *** *** *** *** *** *** *** ***

Figure 8.4: Effect of condition as found in the QGAMs modelled to
the X and Y coordinates of subsetHP. The lines indicate the confidence
intervals of the estimated X and Y coordinate values.
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8.2.2.3 subsetPI

Table 8.8 presents the effects found for QGAMs fitted to the subsetPI data. A
significant effect of condition is found in quantiles 𝜏 = 0.1, 0.3 and 0.5 for X
coordinates, and in all quantiles but 𝜏 = 0.1 for Y coordinates. The effects are
displayed in Figure 8.5. Where the effect of condition is significant for X val-
ues, coordinates of mismatched trials are further right. For Y coordinates, the
effect of condition comes with coordinates further down for mismatched trial
coordinates.

8.2.2.4 subsetPH

Finally, the effects found in the QGAMs fitted to the X and Y coordinates of the
subsetPH data are given in Table 8.9. condition shows a significant effect on
X coordinates in quantiles 𝜏 = 0.5, 0.7 and 0.9. For Y coordinates, a significant
effect is found in all quantiles but 𝜏 = 0.9. The effects are illustrated in Figure
8.5. For X coordinates, the effect of condition comes with coordinates further
left for mismatched trials. For Y coordinates, the effect of condition leads to
coordinates lower down for mismatched trials.

8.2.2.5 Overall results

An overview of significant deviations found for the coordinates of mismatched
stimuli trials across all quantiles and subsets is given in Table 8.10. Considering
the overall influence of condition, one canmake two general observations. First,
Y coordinates of mismatched stimuli trials are higher and, with the exception of𝜏 = 0.1 for subsetHP, further to the left if a mismatch is caused by a plural
/s/ duration, as is the case in subsetIP and subsetHP. Second, Y coordinates of
mismatched stimuli trials are lower if a mismatch is caused by an is- or has-clitic
/s/ duration, as is the case in subsetPI and subsetPH, while for X coordinates no
clear pattern is visible.

8.3 Discussion

The number-decision task presented in this chapter investigated whether listen-
ers make use of subphonemic durational differences in comprehension. It is dif-
ferent to the comprehension study presented in Chapter 7 by several aspects.
First, pseudowords instead of real words were used as items. Thus, the effects
found in the present study cannot be confounded by effects of lexical storage,
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Table 8.8: Summary of the effects found in the QGAMs fitted to the
X and Y coordinates of subsetPI. Significance codes: *** 𝑝 < 0.001, **𝑝 < 0.01, * 𝑝 < 0.05.

X coordinates Y coordinates

quantiles: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Parametric Terms

(Intercept) *** n.s. *** *** *** *** *** *** *** n.s.
conditionmismatched n.s. n.s. n.s. *** *** *** *** *** *** n.s.

Smooth Terms

order *** *** *** *** *** *** *** *** *** ***

Random Smooth Terms

item *** *** *** *** *** *** *** *** *** ***
subject *** *** *** *** *** *** *** *** *** ***

Figure 8.5: Effect of condition as found in the QGAMs modelled to
the X and Y coordinates of subsetPI. The lines indicate the confidence
intervals of the estimated X and Y coordinate values.
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Table 8.9: Summary of the effects found in the QGAMs fitted to the X
and Y coordinates of subsetPH. Significance codes: *** 𝑝 < 0.001, **𝑝 < 0.01, * 𝑝 < 0.05.

X coordinates Y coordinates

quantiles: 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Parametric Terms

(Intercept) *** n.s. *** *** *** *** *** *** *** n.s.
conditionmismatched ** *** *** n.s. n.s. n.s. * *** *** ***

Smooth Terms

order *** *** *** *** *** *** *** *** *** ***

Random Smooth Terms

item *** *** *** *** *** *** *** *** *** ***
subject *** *** *** *** *** *** *** *** *** ***

Table 8.10: Overview of the direction of significant deviations found
for coordinates in mismatched stimuli trials across all quantiles and
subsets.Where no direction is given, no significant effect of condition
was found.

subsetIP subsetHP subsetPI subsetPH𝜏 X Y X Y X Y X Y

0.1 right higher lower left
0.3 higher lower left lower
0.5 higher lower left lower
0.7 left higher left higher right lower lower
0.9 left higher left right lower

frequency, or relatedness which are commonly associated with real words and
their representations in the mental lexicon (see Section 3.1.1). Second, items were
presented in carrier sentences and not in isolation. This was necessary to disam-
biguate between different types of /s/ in the long run, as the number-decision
process for pseudowords cannot rely on lexical knowledge. Third, plural, is-, and
has-clitic word-final /s/ were part of the items, while the previous comprehen-
sion study investigated non-morphemic and plural word-final /s/. By investigat-
ing different types of /s/ across studies, one obtains a more detailed picture of
potential effects. Despite these differences, both comprehension studies shared
the same hypothesis. Building on extant models of speech perception and com-
prehension, H comp, the Mismatch Hypothesis, was explored: If subphonemic
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Figure 8.6: Effect of condition as found in the QGAMs modelled to
the X and Y coordinates of subsetPH. The lines indicate the confidence
intervals of the estimated X and Y coordinate values.

durational differences are made use of, then a mismatch of subphonemic detail
and intended meaning leads to a) slowed down comprehension processes, and b)
deviated mouse trajectories. Part a) of the hypothesis was not investigated in the
present study, as null results were found in the comprehension study of Chap-
ter 7. Thus, one question remained: Did a mismatch of subphonemic durational
information lead to deviated mouse trajectories?

This question was investigated using QGAMs fitted to the X and Y coordinate
data of the mouse-tracks recorded in the number-decision task. QGAMs were fit-
ted separately for four subsets of data: 1) subsetIP, 2) subsetHP, 3) subsetPI, and
4) subsetPH, where the first subscript letter indicates the context and the second
subscript letter indicates the mismatched type of /s/ (I = is-clitic; H = has-clitic; P
= plural). In each of the subsets, trials of items with matched and mismatched /s/
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duration were compared, while the items’ bases as well as the sentence the items
were embedded within were kept constant. The overall results of the QGAMs
show an effect of matched versus mismatched durational information across all
four subsets. Taking a closer look at the nature of the found effects, one finds
effects going into different directions between subsets (see Table 8.10). For X co-
ordinates, coordinate values of mismatched stimuli trials are further to the left
for subsetIP, subsetHP, and subsetPH. For subsetPI, however, X coordinate val-
ues of mismatched trials are further to the right. For Y coordinates, one finds a
difference between both clitic contexts and both plural contexts: Y coordinates
are higher up when a mismatch is caused by a plural /s/ duration, but they are
further down when the mismatch is caused by a clitic /s/ duration. Similar ef-
fects were found for QGAMs fitted post-hoc to the data for which the onset of
the word-final /s/ has been heard already (see Section 7.3 for a discussion and the
supplementary material given in Chapter 11 for model overviews).

What do these findings mean in regard to the notion of deviated mouse-tracks
due to mismatched subphonemic durational information? Recall that the mouse-
tracks were mirrored where applicable, that is all tracks move towards the up-
per left corner of the coordinate system. Thus, an ideal non-deviated trajectory
would be a straight line between the mouse cursor starting position and one of
the answer options. As this non-deviated straight linemoves linearly towards the
upper left corner, X coordinates which are further to the left or right and Y coor-
dinates which are further up or down can be understood as deviation from that
direct path. If mismatched subphonemic durational information was to cause de-
viation from that ideal path, one would expect X coordinates to be further to the
right and Y coordinates to be lower down, as such a deviation would express the
expected effect of a mismatch: As context and /s/ duration do not match up, com-
prehension is influenced, and the mouse-track is deviated towards the incorrect
response for the pertinent trial. Taking a trial with a clitic context as an example,
a mismatch is caused by the plural /s/ duration of the target word’s word-final /s/.
If comprehension is influenced by this durational mismatch, one would predict
mouse movement towards the plural response due to the word-final /s/ duration.
Once the entire context is processed, a correct answer is given.Moving themouse
away from the incorrect towards the correct response then results in an overall
more deviated mouse-track.

How do the present findings relate to this prediction of a deviated path? For
X coordinates, a deviation to the right was found for 𝜏 = 0.9 of subsetHP and
across subsetPI. In all other significant cases, mismatched trials showed X coor-
dinates further to the left instead. For Y coordinates, the expected lower coordi-
nate valueswere found for subsetPI and subsetPH, while subsetIP and subsetHP
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showed higher Y coordinate values instead. That is, only the results for subsetPI
fully meet the expected directions of deviations. subsetPH meets the directions
for Y coordinates, but not for X coordinates. The two subsets inwhich amismatch
is caused by a plural /s/ duration, subsetIP and subsetHP, show deviations of the
opposite directions instead: X coordinates are mainly further to the left and Y co-
ordinates are higher up. Nonetheless, the Mismatch Hypothesis is confirmed by
the overall findings: Comparing mouse-tracks of matched and mismatched stim-
uli trials, one finds that they significantly deviate from each other across more
than half of all QGAMs.

However, how can one explain the opposing findings between subsetIP and
subsetHP on the one, and subsetPI and subsetHP on the other hand? Noticeably,
the effects found within the two clitic context subsets, as well as the effects found
within the two plural context subsets are mostly similar. General differences in
effect directions for Y coordinates are only found between these two groups. One
potential explanation that comes to mind is the overall frequency of plural and
clitic /s/ in the language. In the British National Corpus (Davies 2004), is-clitic
<’s> is attested 311,146 times and has-clitic <’s> is attested 22,816 times. For plural
<s>, the most frequent entry alone, things, has a frequency of 40,453 which is
almost double the frequency of the has-clitic. Considering just plural /s/, one
finds a frequency of about 140,000 when taking into account the top ten most
frequent /s/ plural forms alone. That is, plural /s/ is overall far more frequent
than clitic /s/. If a pseudoword contains the duration of a plural /s/, mouse-tracks
deviate differently than predicted, i.e. further to the left and further up, as plural
/s/ duration is the expected duration. The plural /s/ duration is expected as it is
more frequent across the language. If a pseudoword contains the duration of a
clitic /s/, mouse-tracks are deviated as predicted, i.e. further down, as this is a less
expected duration due to the relatively low frequency of the clitic /s/ duration.
Note that this is but an idea which requires further investigation.

Overall, the present results confirm that comprehension is significantly influ-
enced by a mismatch of subphonemic durational information in word-final /s/.
This finding is in line with the results of the mouse-track analysis presented for
the comprehension study in Chapter 7 of this book. The nature of the found de-
viations, however, remains unaccounted for and requires further research.

Let us now turn to the theoretical implications of the present findings. Ab-
stractionist theories which exclude subphonemic durational information from
the perception and comprehension process cannot account for the present find-
ings (e.g. Klatt 1979; McClelland & Elman 1986; Norris 1994; Norris & McQueen
2008). If such durational differences are not perceived, they cannot be used in
comprehension. As significant differences between mouse-tracks of trials with
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matched versus mismatched durational information were found, such abstrac-
tionist approaches cannot explain the present results.

Exemplar and hybrid models (e.g. Goldinger 1996; Hawkins & Smith 2001;
Pierrehumbert 2002; Hanique, Aalders, et al. 2013) and computational models
(DIANA, ten Bosch et al. 2015; ten Bosch & Boves 2021; LDL, Baayen, Chuang,
Shafaei-Bajestan, et al. 2019) could in principle account for the present results.
These approaches assume the storage of subphonemic detail. Such detail can
be perceived and made use of in comprehension. However, it remains unclear
how exemplar and hybrid models would account for the reverse effects found
for clitic versus plural contexts. Computational models, however, might be able
to shed further light on this issue. Taking LDL as a starting point, one could
use the phonological and semantic measures derived from an implementation
such as the one given in Chapter 5 as predictors to model coordinate data. Con-
sidering that one of these measures apparently reflects the distinction between
non-morphemic and plural /s/ (see Section 5.4), it might verywell be the case that
another measure can capture the effect of durational matches and mismatches.
However, for such an implementation additional steps are required. First, audio
data instead of phonological triphones has to be used as input to provide infor-
mation on subphonemic durational differences. Second, one has to find a way to
include clitic /s/, because clitic /s/ has not been incorporated in LDL implemen-
tations yet.

In sum, no theoretical account can straightforwardly explain the findings of
the present number-decision task. Mouse-tracks are influenced by mismatched
subphonemic durational information in pseudowords. However, the nature of
this influence is unaccounted for: Opposing directions of effects are found when
comparing mismatched trials of clitic contexts and plural contexts. An explana-
tion for these reversed effects should be motivation for future research. Such
research might benefit from new LDL implementations and derived measures.
Overall, the present study showed that subphonemic durational information is
used in comprehension, and that such results are found independently of effects
of lexical storage, frequency, and relatedness.
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In this book, I set out to establish substantiated knowledge on subphonemic de-
tail and its role in production, perception, and comprehension. To achieve this
goal, I used real words and pseudowords as items where applicable and I con-
ducted thorough statistical analyses using novel statistical techniques where ap-
propriate. To investigate the production, perception, and comprehension of sub-
phonemic detail I made use of word-final /s/ in English as it is not only found as
non-morphemic segment, but also has numerous morphological functions: plu-
ral, genitive, genitive plural, third-person singular, as well as the clitics of is, has,
and us (as in let’s). Using a subset of these different types of /s/ – non-morphemic,
plural, is-, and has-clitic /s/ – I conducted five studies. The aims of these studies
were to determine whether such different types of /s/ show differences in their
acoustic duration in production (Chapter 4), to gain further insight into how such
durational differences come to be (Chapter 5), to learn whether durational differ-
ences in word-final /s/ are perceptible (Chapter 6), and to examine if durational
differences in word-final /s/ are made use of in comprehension (Chapters 7 and 8).
All investigations were of an explorative nature, addressing hypotheses derived
from relevant theories to provide elaborate discussions of the pertinent findings.
In the following, the respective hypotheses are repeated and then discussed based
on the findings of the individual studies. Finally, all results are brought together
to draw an overall picture of the production, perception, and comprehension of
subphonemic detail in word-final /s/.

The production study presented in Chapter 4 of this book investigatedwhether
there are durational differences in the acoustics of non-morphemic, plural, is-,
and has-clitic word-final /s/. Using pseudowords as items in a highly controlled
production task, it was made sure that effects of lexical frequency, predictability,
and storage did not confound the results. It was shown that non-morphemic
/s/ was longest, plural /s/ was shorter, and clitic /s/ was shortest. While these
differences were found to be significant, the difference between the is- and the
has-clitic was not. The following hypotheses were investigated:

H prod1: Feed-Forward Hypothesis
There is no durational difference between word-final non-morphemic /s/,
plural /s/, and auxiliary clitic /s/.
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H prod2: Prosodic Hypothesis
There are durational differences between different types of word-final /s/:
non-morphemic /s/ is shorter than plural /s/, plural /s/ is shorter than aux-
iliary clitic /s/.

H prod3: Emergence Hypothesis
There are durational differences between different types of word-final /s/
(non-morphemic, plural, and auxiliary clitic).

H prod1, the Feed-Forward Hypothesis, is rejected as it predicted no durational
differences between different types of word-final /s/. If standard feed-forward
models of speech production underlying this hypothesis were refined in such a
way that post-lexical processes can arise from certain kinds of lexical informa-
tion, only then the present findings could be accounted for. H prod2, the Prosodic
Hypothesis, is rejected as it predicted the opposite direction for durational dif-
ferences, with non-morphemic /s/ being shortest and clitic /s/ being longest in
duration. This pattern is clearly not compatible with the present results. The the-
ories underlying H prod3, the Emergence Hypothesis, can potentially account for
the present findings. The fact that durational differences were found indicates
that such differences might emerge through the mechanisms introduced by the
theories underlying this hypothesis. However, claiming that the hypothesis is
therefore confirmed would be a fallacy: Only an implementation of one of such
underlying theories can show whether the particular theory and its mechanisms
can account for the durational differences found in the present production study.

Hence, an implementation of one of the underlying theories, linear discrimi-
native learning, was used to further investigate the hypothesis. This LDL imple-
mentation and its analysis were presented in Chapter 5 of this book. Using the
non-morphemic and plural /s/ durational data elicited in the production study,
the analyses of the LDL implementation resulted in three main findings. First,
measures derived from an LDL network trained on real words and pseudowords
are predictive of word-final /s/ duration in pseudowords. Such measures are in-
deed just as predictive of /s/ durations as are more traditional variables. Second,
even though such LDLmeasures show about the same level of predictivity, the ef-
fect of the type of /s/ as a variable is not fully captured by them. That is, the type
of the word-final /s/ remained a significant predictor when introduced among
measures derived from the LDL network. This indicates that there is more to the
type of /s/ than the variables used in the present implementation. Third, even
though the type of /s/ is not fully captured by the LDL measures, especially one
of these measures, the correlation with the semantic nearest neighbour, showed
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a high correlation with the type of /s/. Hence, intricate semantic properties of
the types of /s/ under investigation are indeed captured by measures derived
from the LDL network. Coming back to the hypothesis at hand, H prod3, the
Emergence Hypothesis, it is found that it can be confirmed in regard to one of its
underlying theories, linear discriminative learning.

Taking the results on the production of word-final /s/ as a starting point, the
perception study presented in Chapter 6 asked whether such durational differ-
ences are perceptible. For this, a same-different task with real words and pseu-
dowords as items was conducted. For each item, a version with the pertinent
prototypical duration of non-morphemic or plural /s/ was created. Then, four
further versions were constructed with their word-final /s/ either being incre-
mentally shortened (mono-morphemic items) or lengthened (plural items) by 10
ms, 20 ms, 35 ms, and 75 ms. The results indicate that, on average, listener sen-
sitivity is rather low for durational differences of 10 ms and 20 ms, and slightly
but significantly higher for a durational difference of 35 ms. For the 75 ms dura-
tional difference, a significantly improved sensitivity was found. The following
hypotheses were investigated:

H perc1: Abstractionist Hypothesis
Listeners are not sensitive to subphonemic durational differences between
different types of word-final /s/.

H perc2: Phonetic Detail Hypothesis
Listeners are sensitive to subphonemic durational differences between dif-
ferent types of word-final /s/.

H perc1, the Abstractionist Hypothesis, is rejected. The hypothesis was built on
theories which assume that subphonemic durational differences are not percepti-
ble. Due to the strictly phonological nature of perception found in such theories,
these and the present findings are fully incompatible. H perc2, the Phonetic Detail
Hypothesis, can be confirmed under two premises. First, only an implementation
of the models underlying the hypothesis can sufficiently confirm whether a par-
ticular model’s mechanisms can account for the present findings. Second, listen-
ers showed sensitivity to subphonemic durational differences. However, major
increases in sensitivity and overall high levels of sensitivity were only found for
the biggest durational difference of 75 ms – a difference that is not found in stud-
ies on the durational differences between different types of /s/. Thus, according
to the present findings, not all durational differences between different types of
/s/ found in studies on their acoustic duration are assumed to be well perceptible.
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Importantly, there most likely is an issue of methodology at hand here. Same-
different tasks such as the one used in the present perception study are metalin-
guistic tasks. Hence, certain properties of language are the main focus for parti-
cipants of such tasks instead of language or language use itself. Thus, participants
encountered a task they are not familiar with and that extends beyond their day-
to-day usage of language: differentiating isolated words by the duration of their
word-final /s/. It might thus very well be the case that a same-different task is
not the most appropriate experimental setup to investigate the perceptibility of
subphonemic durational differences.

A type of task that focuses more narrowly on language use itself was used in
the two comprehension tasks presented in Chapters 7 and 8. In number-decision
tasks, participants were asked to decide whether an isolated word (Chapter 7) or
the agent in a sentence (Chapter 8) was singular or plural. In the case of isolated
words, wordswith non-morphemic and plural /s/ were used as target items. In the
case of agents in a sentence, pseudowords with plural, is-, and has-clitic /s/ were
used as target items. In both experiments, /s/ durations were either matched with
their context, e.g. a plural word had an /s/ with a typical plural /s/ duration, or /s/
durationsweremismatchedwith their context, e.g. a plural word had an /s/ with a
typical non-morphemic or clitic /s/ duration. It was found that reaction time was
not influenced by the durational mismatch of word-final /s/ and (pseudo-)base.
Mouse-tracks, however, showed a significant effect of mismatched durations in
that they followed significantly different paths as compared to the mouse-tracks
of matched items. In both comprehension studies, the following hypothesis was
investigated:

H comp: Mismatch Hypothesis
If listeners make use of subphonemic durational differences in the compre-
hension of different types of word-final /s/, then a mismatch of subphone-
mic detail and intended meaning leads to
a) slowed down comprehension processes.
b) deviated mouse trajectories.

As no differences in reaction times were found in Chapter 7, part a) of H comp
cannot be confirmed. That is, the overall time to react to an audio stimulus with
a mismatched /s/ duration is just as long as the time to react to an audio stimulus
with a matched /s/ duration. Part b) of H comp, however, is confirmed by the
findings, as mouse-tracks of both conditions, matched and mismatched, signif-
icantly differed, i.e. the mouse-tracks of the mismatched stimuli trials deviated
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from themouse-tracks of the matched stimuli trials. While the patterning of devi-
ation as such is not straightforwardly explainable, especially taking into account
the results of Chapter 8, an influence of mismatched subphonemic durational
differences was found, nonetheless.

How do the findings of the individual studies relate to the overarching goal of
this book to draw a more detailed, intricate, and exhaustive picture of the pro-
duction, perception, and comprehension of subphonemic detail? For production,
it was found that different types of word-final /s/ are indeed different in terms of
their acoustic duration. The nature of these differences is in line with previous
corpus studies, but not with previous experimental studies. Analysing the du-
rational differences not only by means of traditional variables but also by using
measures derived from an LDL implementation, it was shown that suchmeasures
are predictive of word-final /s/ durations. Thus, the origin of durational differ-
ences in word-final /s/ can most likely be explained by the resonance of words
with the lexicon. Taking into account the highly controlled methodology of the
production study, its results, the measures derived from the LDL implementa-
tion, and the analyses of these measures, the first general aim of this book can be
addressed: Subphonemic durational differences between different types of word-
final /s/ exist. A potential explanation for the contradictory nature of previous
results lies within the applied methodology and statistical analyses used in previ-
ous experimental studies. While these previous studies used homophonous real
words as target items, I used pseudowords instead, avoiding the potential issues
and uncertainties regarding the representation of homophones within the men-
tal lexicon. Making use of an LDL implementation, pseudowords were shown
not to be semantically empty, but to resonate with the lexicon. The measures
derived from the LDL implementation, then, allowed for further insight into the
origin of such durational differences. That is, higher degrees of semantic activa-
tion diversity and higher levels of phonological certainty come with shorter /s/
durations.

For perception, it was found that listeners showed higher sensitivity for du-
rational differences of 35 ms and 75 ms as compared to the smaller differences
of 10 ms and 20 ms. The results indicate that durational differences of 35 ms
are somewhat perceptible, while durational differences of 75 ms show a further
increased level of perceptibility. These results are more or less in line with the
findings by Klatt & Cooper (1975) in that these authors claimed 25 ms to be the
just-noticeable durational difference to a segment. As Klatt & Cooper (1975) also
noted that durational differences in word-final fricatives are less well perceptible,
the increase in sensitivity and thus perceptibility found for 35 ms is close to their
25 ms, but the threshold is most likely higher due to /s/ being word-final and a
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9 General discussion

fricative. Regarding the second general aim of this book, then, one can conclude
that the durational difference to a single segment to be perceptible should be at
least of 35 ms if it is a fricative in word-final position. Note, however, the afore-
mentioned issue of the metalinguistic nature of the same-different task on why
the overall sensitivity was found to be rather low.

For comprehension, it was found that subphonemic durational differences in-
deed influence comprehension. Using target itemswithmatched andmismatched
durational /s/ information, it was found that mouse-trajectories for matched ver-
sus mismatched items were significantly different across all types of /s/ under
investigation. This finding suggests that durational differences are used in com-
prehension, and should thus also be perceptible even though the overall low sen-
sitivity values obtained in the perception task might suggest otherwise. Reaction
times, on the other hand, did not significantly differ between matched versus
mismatched item trials. However, reaction times only represent a single data
point per trial while mouse-tracks give insight into the decision-making process
during comprehension. Regarding the third general aim of this book, then, one
may conclude that comprehension is influenced by subphonemic durational dif-
ferences. More precisely, while the time between perception and the outcome
of comprehension is not significantly influenced, the comprehension process be-
tween the input of an audio stimulus and the outcome of comprehension appears
to be significantly affected.

So what does the overall picture of the production, perception, and compre-
hension of subphonemic detail look like? Subphonemic detail is influenced by
morphological make-up as different types of word-final /s/ show differences in
their acoustic durations and is perceptible if durational differences are above a
certain threshold. Subphonemic detail influences and is made use of in the pro-
cess of comprehension. Aswas demonstrated, these overall results ultimately call
for revisions of models of speech production, perception, and comprehension
which do not incorporate subphonemic detail in their pertinent representations
and processes.
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10 Conclusion

This book set out to investigate the production, perception, and comprehension
of subphonemic detail. To operationalise the investigation, word-final /s/ in En-
glish was used in real word and pseudoword target items for a production task,
an implementation of linear discriminative learning, a same-different task, and
two number-decision tasks.

The first general aim of the present book was to examine whether durational
differences inmorphologically different types ofword-final /s/ – non-morphemic,
plural, is-, and has-clitic /s/ – can be found and how such differences can be ac-
counted for.While previous studies reported such differences, the nature of these
differences deviated between previous corpus studies and previous experimental
studies. The results obtained in the production task presented in this book are in
line with the findings of previous corpus studies. That is, non-morphemic /s/ is
longest in duration, clitic /s/ is shortest in duration, and plural /s/ duration is in
between non-morphemic /s/ and clitic /s/ durations. The two clitics under inves-
tigation were found not to be significantly different in terms of their durations.
Turning to the results of the LDL implementation, it seems that the durational
differences are connected to a word’s resonance with the lexicon in that its se-
mantic activation diversity and its phonological certainty are predictors of its
word-final /s/ duration.

The second general aim of this book was to investigate how small a dura-
tional difference in word-final /s/ is perceptible. Using a same-different task, it
was found that listeners showed a higher sensitivity for a durational difference
of 35 ms as compared to smaller durational differences. This finding is more or
less in line with previous work in that the just-noticeable durational difference
should be at about 25 ms, but higher for word-final fricatives as is the case for
word-final /s/.

The third general aim of this book was to find out whether subphonemic du-
rational differences significantly influence comprehension. To investigate this
issue, two number-decision tasks in a mouse-tracking paradigm were used. One
task made use of isolated real words with either durationally matched or mis-
matched non-morphemic and plural /s/ duration, while the other task used pseu-
dowords embedded within sentences with either durationally matched or mis-



10 Conclusion

matched plural, is-, and has-clitic /s/ duration as target items. It was found that
reaction times are not influenced by the mismatch of durational information.
However, both comprehension studies found a significant difference between
mouse-tracks of trials of matched versus trials of mismatched durational infor-
mation. Thus, the process of comprehension itself apparently is influenced by
subphonemic detail, while the duration of the process of comprehension is not.

The investigation of the general aims revealed that a discernible number of
extant models of speech production, perception, and comprehension cannot ac-
count for the present findings. Subphonemic durational differences are not pre-
dicted at all, or their directions are either unpredicted or said to be the opposite
of what was found. The perception of subphonemic durational detail is ruled out
completely, and an influence on comprehension is thus not considered. In light
of the findings presented in this book, then, such models need to be revised. Yet,
some promising, especially computational, approaches already exist. Future im-
plementations of such accounts will showwhether and how such approaches can
be used to explain the intricacy of language structure. The complexities of speech
production, perception, and comprehension remain enormous. The present book
may have shed light on only a few of many issues: the production, perception,
and comprehension of subphonemic detail. It was demonstrated by the findings
of this book that various theoretical approaches to the production, perception,
and comprehension of language and its fine-grained phonetic detail are in need
of revision.
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11 Supplementary material

The supplementary material for this book consists of additional tables sorted by
chapters, scripts and data for all analyses, and a markdown documentation of
the LDL implementation - all originally created for the dissertation this book is
based on.

The supplementary material is available at: https://osf.io/rc7xj/

https://osf.io/rc7xj/
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Production, perception, and
comprehension of subphonemic
detail

The complexities of speech production, perception, and comprehension are enormous.
Theoretical approaches of these complexitiesmost recently face the challenge of account-
ing for findings on subphonemic differences. The aim of the present dissertation is to
establish a robust foundation of findings on such subphonemic differences.

One rather popular case for differences in subphonemic detail is word-final /s/ and /z/
in English (henceforth S) as it constitutes a number of morphological functions. Using
word-final S, three general issues are investigated. First, are there subphonemic dura-
tional differences between different types of word-final S? If there are such differences,
how can they be accounted for? Second, can such subphonemic durational differences
be perceived? Third, do such subphonemic durational differences influence the compre-
hension of S?

These questions are investigated by five highly controlled studies: a production task,
an implementation of Linear Discriminative Learning, a same-different task, and two
number-decision tasks. Using not only real words but also pseudowords as target items,
potentially confounding effects of lexical storage are controlled for.

Concerning the first issue, the results show that there are indeed durational differ-
ences between different types of word-final S. Non-morphemic S is longest in duration,
clitic S is shortest in duration, and plural S duration is in-between non-morphemic S and
clitic S durations. It appears that the durational differences are connected to a word’s
semantic activation diversity and its phonological certainty. Regarding the second is-
sue, subphonemic durational differences in word-final S can be perceived, with higher
levels of perceptibility for differences of 35 ms and higher. In regard to the third issue,
subphonemic durational differences are found not to influence the speed of comprehen-
sion, but show a significant effect on the process of comprehension. The overall results
give raise to a revision of various extant models of speech production, perception, and
comprehension.
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