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Abstract

The use of metallic biomaterials for replacement of biomedical implants has been traced 
back from the nineteenth century. These metallic biomaterials have been declared as clini-
cal success as their mechanical properties that satisfy the prerequisite of the human bone. 
Nevertheless, critical issues of the materials when they are utilised as implants; including 
the releasing toxic and harmful metal ions through wear and corrosion processes after 
longer implantation. Besides that, the bonding strength between bone and implants itself 
is considered weak due to the different components of human bone and metal implants. 
Hence, developing hydroxyapatite (HAp) coating on metallic biomaterials is expected to 
overcome the problems faced by biocompatible metallic biomaterials. As far as this, vari-
ous commercial techniques have been introduced to develop the HAp coating on metallic 
biomaterials. The techniques are including plasma-spraying method, sol-gel dip-coating, 
electrochemical deposition and high-velocity suspension plasma-spraying. The forma-
tion of HAp coating on metallic biomaterials improved the corrosion resistance together 
promoting its load-bearing ability and enhanced substrate-coating adhesion.

Keywords: surface coating, biocompatible metals, coating techniques, biomedical 
applications

1. Introduction

Metals or also known as metallic biomaterials that have been used for medical treatments 

can be traced back around 20 years. Despite a significant number of metals that are able to be 
produced in modern industries, there are only three commonly biocompatible metals that are 

used as biomedical implant materials; stainless steel (316L), cobalt-based alloys, and titanium-

based alloys [1–4]. These metallic biomaterials are typically used in orthopaedic practise since 

they have approval by the United States Food and Drug Administration (FDA) [4].
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Since the biomaterials are employed in intimate contact with living tissues, it is important 

that the materials exhibited biocompatibility characteristics. The requirement of biocompat-

ibility includes all features of bio-device functionalities during the interaction of tissues and 

cells with the implanted materials [5]. However, there are limitations of metallic biomaterials 

as an implant; weaknesses in bone-bonding ability and toxic ions released into the human 

body fluids after longer usage [6, 7]. Different chemical composition between the actual bone 
and the metal implant is one of the causes of ineffective in bone-bonding ability. Moreover, 
the metallic implants are also susceptible to corrosion degradation due to the surrounding 

aggressive body fluids [8].

Consequently, most of the researchers have introduced surface modification by applying 
bioactive ceramics such as hydroxyapatite (Ca

10
(PO

4
)

6
OH

2
) as a bioactive coating on the 

metallic implants to the implant to enhance bone-bonding ability [9, 10]. The hydroxyapatite 

(HAp) is the primary inorganic ingredient of natural bones and has been the most widely 

used ceramic-based biomaterial for over four decades in medicine and dentistry. It has been 

proven by many researchers that HAp coating allows a controlled and rapid osseointegration 

between living bone and the surface of an implant [11, 12].

There are various commercial techniques to deposit the HAp coating on the metal-based 

biomaterials. In this chapter, four commercially HAp surface coating techniques including 

plasma spraying, sol-gel dip-coating, electrochemical deposition and high-velocity suspen-

sion plasma-spraying (HVSPS) are discussed. The discussion comprises biocompatibility, 

adhesion strength and corrosion behaviour studies about three aforementioned metallic bio-

materials after the surface was coated by HAp.

2. Current issues of metallic biomaterials when applied as an implant

The selection of appropriate biomaterial to be classified as a metal implant material highly 
depends on its applications. The selected biomaterial should possess several essential charac-

teristics such as excellent biocompatibility, osseointegration, high corrosion and wear resis-

tance, suitable mechanical properties, ductility and high hardness.

2.1. Biocompatibility and osseointegration

The biocompatibility properties are defined as the ability of a material to be used in inti-
mate contact physically and chemically with living tissues of a real bone without causing any 

adverse effects. Intuitively, it is necessary to confirm that there are no negative issues befell 
to metal implanted devices and surrounding living tissues since the materials are innately 

compatible with living cells and tissues [13].

Osseointegration denotes to a direct structural and functional connection between ordered, 

living bone and the surface of a load-carrying implant. It involves the process of new bone 

production and bone healing. Therefore, it is essential for an implant to have an appropriate 

surface to integrate well with surrounding bone. Surface chemistry, surface roughness and 

surface topography are the factors that vital for good osseointegration [14, 15].
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2.2. Corrosion and metal ions release

Among critical issues and challenges of the medical implant are facing is the failure of an 

implant due to the corrosion aggressiveness. Consequently, a metal that performs well out-

side the human body may suffer a severe corrosivity reaction in the body as the environment 
is physically and chemically different from ambient. Due to that fact, all of the corrosion-
resistant metallic implants reacted to an acidic environment and began to corrode when diag-

nosed for a long time in the human body. Most researchers have claimed that active implants 

corrosivity process rouse after 12–15 years of implantation period [6, 16].

3. Commercial techniques for hydroxyapatite-based coating onto  

metallic implant

The surface coating application offers the possibility of modifying the surface properties of 
implant devices to achieve improvements in biocompatibility, reliability, and performance. 

Therefore, most researchers have reported excellent studies of HAp coating onto various 

metallic implants specifically related to their biocompatibility and corrosion behaviour. 
Nowadays, different HAp deposition techniques have been carried out to overcome the bio-

compatibility, and corrosion issues arose from the metallic biomaterials [12, 17]. These depo-

sition techniques include plasma spraying, sol-gel technique, electrochemical deposition and 

High-Velocity Suspension Plasma-spraying.

3.1. Plasma-spraying technique

Plasma spray is one of the popularly used methods used to deposit biocompatible HAp coat-

ing onto metallic implants [18, 19]. In these recent years, this approach is highly utilised for 

dental and orthopaedic implants. The indirect method of plasma spray applies melting and 

spraying onto the surface by a method an electric arc. The process involves heating the dry 

powder feedstock by thermal plasma jet. Then, the thermal plasma jet accelerates and impacts 

the feedstock towards the substrate. The powder feedstock is flattened in the form of lamellae. 
Plasma spraying can be carried out under vacuum, controlled atmospheres, or in an ambient 

atmosphere. Air or vacuum spraying is one of the plasma-assisted depositions, which is very 

popular compared to other methods. The coatings applied by plasma spray can have rela-

tively good mechanical properties. The relative temperatures in the jet are 10,000 K, 12,000 K 

or as high as 30,000 K, intensely declining with the nozzle’s distance [20]. Practically all the 

materials are melted and propelled towards a substrate.

Development of the coated layer on a titanium (Ti) alloy surface with hydroxyapatite pow-

der for 10 s shows better apatite adhesion, strong adhesion between implant and bone, and 
enhanced osteoconductivity [21]. The properties of HAp coating are mainly determined by 

the thickness of the coating layer. The thickness of HAp coating obtained on the Ti6Al4V alloy 

by the air plasma spray (APS) was about 150 μm thickness. This range of coating’s thickness 

significantly diminishes the fatigue strength while the range between 25 and 100 μm thick-

ness does not show such effect [22]. The reasons for the reduction in fatigue strength might 
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be due to the intrinsic stresses that happened during spraying, coating cracks, and most sig-

nificantly stresses discharged during spraying. The difference in the stiffness of the metal 
substrate and coating is also significant.

The coating deposition by a suspension plasma spray (SPS) obtained a relatively thin coating 

layer 5–50 μm as compared to other plasma-spray techniques and only could be achieved 

by dry powder processing [23]. The dry powder particles used for the SPS having diameters 

ranging from a few submicrometer to a few micrometres [24]. The thicknesses of APS coatings 

are in the range 200–300 μm and quite porous. The coating thickness depends on the com-

position of plasma gas used which is Ar/H
2
/N

2
/He, plasma gun input power, gas flow rate, 

powder feeding rate and characteristics of feed materials, and spray stand-off distance, which 
are frequently varied [25, 26].

Furthermore, the structure and bonding properties of HAp coating on metallic biomaterials 

can be improved by using heat treatment process. Annealing process transformed a partial 

amorphous coating into a crystalline layer [22]. The mostly higher crystallinity of the coating 

layer was supposed to have excellent adhesion characteristics. Annealing at a higher tempera-

ture such as at 700°C for 1 h could enhance the coating purity, hydroxyl group and crystal-

linity degree. However, the high spraying power values can cause a lowering of the adhesion 

strength between the coating and substrate due to the higher content of amorphous HAp [27]. 

Based on the observations of the annealing process of HAp coated at 1100°C under vacuum 

condition, the secondary β phase formed while hydroxyl groups are diminished. The higher 
the temperature of the annealing process, the greater the formation of the compound oxide of 

Ti and Ca with the characteristic metallic Ti disappeared [28].

An introduction a coupling agent through chemical bonding can enhance adhesion strength 

between the HAp coating and metallic implants [29]. The addition of Ti to the HAp improved 

the bonding strength of the coating significantly [30]. The bonding strength was increased 

from 14.5 to 17.3 MPa as the composition of the reinforced coating was between 20 and 

60 wt.% Ti. The increment in the Ti content could cause better adhesion of the coating layer to 
the substrate for further enhancement. According to Ref. [31] proposed HAp reinforced with 

10 wt% (80Al
2
O

3
-20TiO

2
) on the Ti6Al4V alloy. This solution enhances the adhesion strength 

to above 32 MPa.

3.2. Sol-gel dip-coating method

Recently, a combination of sol-gel preparation and dip-coating method are extensively 

employed for a coating on a metallic biomaterial. The method is one of the coating methods 

used for enhancement of adhesion strength [32, 33]. A calcium phosphate (CaP) precursors 

are the most important solutes for sol preparation. The CaP precursor is the combination 

of calcium (calcium nitrate) and phosphorus (phosphorus pentoxide or triethyl phosphate). 

Normally, there are two solvents will be mixed with the CaP precursors. Most often water and 

ethanol are used as a solvent for the sol preparation [34, 35].

The dip-coating is a method which includes three steps: (i) dipping, (ii) withdrawing, 

and (iii) drying. This technique offers various advantages such as low-cost set-up, process 
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simplicity, uniformity of deposition, low processing temperature, and the ability to coat 

irregular shapes and patterns [36, 37]. The substrate is dipped and withdrawn from the 

solution at a fixed speed. Therefore, the coating’s thickness is in good control without 
producing waste [38, 39].

Additionally, the coating amount and the layer thickness can also be controlled by altering 

the frequency of suspension and the number of dippings. HAp coating via sol-gel dip-coating 

technique can obtain homogenous coating and the coating thickness in the range 0.05–15 mm 

[33, 40]. The coating thickness varies according to the viscosity of the sol-gel used [12]. A 

lower annealing temperature used for sol-gel dip-coating process can produce adhesive thin 

coating layer without severe cracking. An extremely high temperature (6000–10,000°C) is 

applied in plasma-spray deposition can decompose the HAp properties into tricalcium phos-

phate, tetra-calcium phosphate, calcium oxide (CaO), and others amorphous phases [41, 42]. 

When increasing annealing temperature from 375 to 500°C, the adhesion strength between 

HAp coating and the substrate increases [43, 44].

Latterly, several modifications of sol-gel dip-coating method are developed to enhance the 
quality of coating surface. A poly ε-caprolactone (PCL) was applied to HAp to promote osseo-

integration by observing the pores formation on a surface level [45]. The addition of PCL on 

HAp onto Ti6Al4V substrate was reported as a good grouping owing to a large thickness of 

the coating, around 184 μm. There was no crack formation on the coating surfaces, and the 

most significant results revealed that the adhesion between the coating and the substrate was 
improved. The absence of cracks on the coating surface was reflected necessarily. This is an 
effective prevention of wear and corrosion for the substrate. Hence, the amount of releasing 
metal ions into surrounding (body fluid) can be minimised as the coated metal exhibit better 
corrosion resistance [46–48].

Heat treatment of thin and loosely packed coated substrate is often required to densify the 

coating layer and to increase the adhesion strength between the substrate and coating [47, 

49, 50]. The high temperature is applied to cure the coated substrates to improve the adhe-

sion strength between coating and substrate, and to achieve apatite structures inside the 

applied coating layers [51, 52]. However, the curing temperatures have been implemented 

below the melting point of the materials to prevent upsetting the surface integrity of the 
substrates. It has been indicating that the development of <1 μm thickness of HAp coating 

on 316L stainless steel was suited as the substrate also exposed to annealed temperatures 

of around 375–400°C [43]. The bonding strength of the as-produced coatings was about 

44 MPa, which indicates good adhesion. For the presently investigated HAp/316L stain-

less steel system, the interlocking component of adhesion was maximised through surface 

roughening.

Lately, a modification of the sol-gel dip-coating has been proposed. TiO
2
/HAp bi-layer coating 

and TiO
2
/HAp composite coating were introduced into 316L stainless steel (316L SS) [53]. The 

two types of the coating were compared, and TiO
2
/HAp exhibited better structural features 

and biocompatible properties due to the proper attachments of stem cells onto the surface, 
proliferated, and presented a polygonal morphology different from the fibroblastic-like mor-

phology found on 316L SS.
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The combination of sol-gel and dip-coating method have been classified as uncomplicated, 
inexpensive, and sustainable coating technique for coating the metal-based substrate that to be 

used as implants. In comparison to the natural precipitation approaches, this method can coats 

the complex shapes or design efficiently. Also, shortened the processing times and relatively 
low temperatures is applied by this method to cover with the HAp layers on metallic substrates.

3.3. Electrochemical deposition

Electrochemical deposition is one of the commercial coating methods for biomedical implants 

[54]. Anodic or cathodic systems frequently conducted by the electrodeposition process. In 

this process, anodic deposition alone is inadequate to produce small feature size materials 

on the substrates. Regarding this, cathodic deposition has unique advantages for modern 

and medical applications [55–57]. Through this method, two regular procedures are applied 

for the coating preparation: (1) the electrophoretic process (EPD) and (2) the electrolytic 

procedure (ELD). EPD is the process that provides the utilisation of suspensions of ceramic 

particles while the ELD is the process of formation of metal salts from solutions. The electro-

chemical deposition is extensively employed for coating on a titanium substrate. The subse-

quent filtrate is used as the electrolyte once the CaP proportion dissolved in distilled water 
[58, 59]. The procedure is performed from watery arrangements like those appropriated as 

a part of the wet substance deposition. Interestingly, graphite and also platinum has been 

engaged as the standard reference electrode for anodic material.

One of a kind favourable circumstances in HAp coating deposition process conducted 

through the electrochemical technique is the ability to form a uniform coating and the coat-

ing process quick [60]. The procedure can be performed at moderately low temperature 

[61]. Electrophoresis process can produce impregnated ceramic particle towards a porous 

substrate and composite consolidation. Besides, a significant aspect of sintering behaviour 
greatly depends on the state of agglomeration of ceramic powders. The lower the sintering 

temperature, the more densify the close-packed of the fine particle and further leads to the 
formation of agglomerate-free structures [62]. The pre-sedimentation process can separate the 

aggregates [63]. Besides, defect areas could drive a higher rate of deposition, bringing about 

the uniformity of the deposit materials and better packing assembly of materials. The higher 
rate and better deposition layer are due to the insulating behaviour of the deposition.

The electrochemical deposition process can form a homogeneous coating layer which 

enhances the adhesion strength between the coating layer and implant surface [64]. The HAp 

coating on CoCrMo metal implant with the thickness of 200 nm can hold the coating quality of 

around 17.5 MPa which has been considered as the base prerequisite for the minimum adhe-

sion quality of HAp deposition on metallic biomaterials [65, 66]. However, the HAp coated 

substrate was deposited at 10 mA/cm2 and annealed for 1 h at 500°C showed the thickness of 

the coating is approximately 18.6 μm revealed stronger adhesion strength (106.3 MPa) of HAp 

coating [67]. The electrochemical deposition of HAp on metal substrates used common strate-

gies to diminish their debasement; unfortunately, it contains abandon of it onto the coating 

surface [68]. Hydroxide (OH−) particles are created at the substrate (cathode) surface with the 
electric current crossed the electrodes as they immersed in an electrolyte during electrochemi-

cal deposition process [69]. The condition occurs due to the electrochemical response effect 
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that is typically significant as the system insignificantly response towards the water, in which 
leads to important in the arrangement of a lot of hydrogen gas [27, 70]. Development of the 

hydrogen gas air pockets on the surface of the substrate may rapidly occur and thus results 

in the decreasing of the nucleation and presence of calcium phosphate. In this manner, it may 

prompt the arrangement of non-uniform coating [71, 72]. To conquer the defects, the execu-

tion of HAp coating ought to tackled and enhanced higher current thickness.

A few modifications are recommended to adjust the direct current electrochemical deposi-
tion technique that should be more reasonable in the accompanying approach. H

2
O

2
 was 

added to replace the H
2
O during the deposition process, thus brings down the current depo-

sition method. Replacement of H
2
O

2
 will able to modify the entire part of the system of elec-

trochemical response [73]. The impacts of H
2
 development might be evacuated due to the 

expansion of peroxide. Therefore, the thick and uniform coating might be shaped [61]. The 

increased adhesion and crystallinity of the HAp coating were achieved by pulsed current 

electrodeposition method at lower current density with longer pulse off time. The results 
of pulsed electrodeposition show that the relaxation time of the pulse is beneficial for the 
growth of HAP because it allows the diffusion of ions from bulk solution to the surface of the 
electrode and thus lowers the concentration polarisation in the next pulse on time. Besides, 

by applying galvanostatic pulse electrodeposition to HAp coating on metal implants showed 

improvement in adhesion strength of HAp coating and metal implant due to pulsed current 

densities [74].

The previous research has confirmed that by deposition of HAp coating onto metallic bioma-

terial showed the improvement of corrosion performance [75]. Moreover, the coatings have 

significantly changed by forming new apatite crystal after 7 days immersion in SBF solution 
[76]. These indicate that HAp has bioactivity and biocompatibility properties which can pro-

vide improvement between tissues and metal implants.

An anodization process has been introduced as pre-treatment for electrochemical deposition 

[77]. The purpose of anodization is to support developing mechanical interlocks flanked by 
the metal substrate and HAp coating [78, 79]. Without post-treatment, homogenous and pure 

HAp coating can be accomplished through the anodising process. It was stated by He et al. 

[80] that the Al coating on Ti substrate with anodization and hydrothermal treatment. The 

results from the holes of anodised aluminium oxide (Al
2
O

3
) within the coating deposition, 

there is a growth of CaP. Besides, Yang et al. [81] have conducted anodic oxidation treat-

ment for bioactive Ti metal. Even though the electrochemical and pre-treatment process has 

become vital, the studies on HAp coating deposited by an electrochemical method on the 

porous anodised Ti substrate still in progress stage [82].

Nowadays, a few methods have been presented to enhance mechanical properties of the 

implants. One of those methods is through reinforcing materials such as zirconia oxide (ZrO
2
), 

carbon nanotubes (CNTs), and titanium oxide (TiO
2
) [11, 83–87]. On the other hand, several 

reported regarding the HAp-based coating showed the enhancement in adhesion strength 

approaching 70% greater compared to pure HAp coating [88]. HAp coating with the addi-

tion of single-walled nanotubes (SWNT) managed to get homogenous, high crystallinity and 

crack-free coatings formation. Additionally, the adhesion strength of the coating and sub-

strate after introducing SWNT is approaching from 15.3 to 25.7 MPa [88].
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In correlation to a single layer coating of HAp, the result of a double layer of HAp coat-

ing showed uniformity with good adhesion strength [89]. Furthermore, the formation of the 

oxide layer as an intermediate layer between the substrate and coating helps to maintain 

the diffusion of harmful impurities from the substrate towards the coating surface to avoid 
decomposition of HAp [90]. By applying high-temperature annealing or sintering in the for-

mation of a uniform and denser CaP coating post-electrodeposition [91], a superior adhe-

sion behaviour of coated layer can be formed. Albayrak et al. [92] have reported the same 

technique used by Yuan and Golden [89]. Titanium oxide (TiO
2
) was introduced as an oxide 

layer on the Ti6Al4V substrate prior HAp coating. The coated substrates with the presence of 

TiO
2
 had the thickness about 30 μm and were soaked for 1 min with different voltages as 10, 

20, and 50 V. With decreasing the voltage value, the result showed an increment of adhesion 

strength. Comparison of the adhesion strength between electrodeposition methods was listed 

in Table 1.

In conclusion, HAp coatings conducted via electrochemical deposition technique are formed 

progressively by nucleation and growth processes and lead to form a uniform structure. 

The electrochemical deposition technique can form a broad range of coating thickness. Also, 

the electrochemical deposition process decreases the corrosion behaviour of the substrate 

through the coating. Consistently, sintering procedure enhances densification, bonding and 
adhesion behaviours of the coating. An interlayer between the substrate and the coating has 

been introduced to overwhelm the issue of HAp decomposition. Therefore, the electrochem-

ical deposition technique can be one of great guarantee of the future edition for metallic 

biomaterials.

Composition Thickness (μm) Adhesion strength (MPa) Reference

CoCrMo + HAp 0.2 17.5 [66]

1. Ti6Al4V + HAp (flake-shaped) 10 6.8 [83]

2. Ti6Al4V + HAp (spherical) 10 10.7

3. Ti6Al4V + sHAp/CNT-Ti 10 10.6

4. Ti6Al4V + HAp (needle-shaped) 10 8.5

1. Ti + HAp (without oxidation) 3 5.0 [82]

2. Ti + HAp (with oxidation) 3 7.3

1. Ti + HAp 10 15.3 [88]

2. Ti + SWNTs/HAp 10 25.7

1. Ti6Al4V + HAp 30 13.8 [92]

2. Ti6Al4V + TiO
2
 (10 V)/HAp 30 21.0

3. Ti6Al4V + TiO
2
 (20 V)/HAp 30 13.1

4. Ti6Al4V + TiO
2
 (50 V)/HAp 30 11.9

Table 1. Values of adhesion strength of HAp coatings deposited by electrodeposition process [33].
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3.4. High-velocity suspension plasma-spraying

Currently, High-Velocity Oxygen-Fuel (HVOF) flame spraying method has been advanced. 
The method gives promising results regarding allowing the formation of suspension spraying 

layer [93–95]. By introducing the axial powder injection, the new high-velocity suspension 

flame spraying (HVSFS) process typically would be able to resolve the injection complications 
[96–98]. Regarding this, the highest velocity of the particle would be able to produce better 
coating protection with low porosity. This innovative suspension thermal spray technique 

is ideally becoming the most in-demand technique in depositing a thin layer of coating on 

the substrate [99, 100]. In comparison to the other method such as electrophoretic coating 

for pure HAp, the coating does not require any heat treatment or post-deposition for con-

solidation. Furthermore, the method features relatively lower processing cost with high and 

efficient productivity [101, 102]. As compared to conventional dry powders, the suspension 

based feedstock could ignite more flexibility in creating new composite materials by altering 
the material compositions in which controlling the primary particle morphology [103, 104]. 

Furthermore, a fine powder particle either in micro- or nano-sized particles could be fabri-
cated by thermal spray community. The method enables direct delivery of the particles into 

the gas or plasma jet. Direct processing of fine particles dispersed in liquid solvent signifi-

cantly yield smaller lamella size of the coating layer that depends on the standard parameters 

of spray powder processing [105].

HVSFS technique could produce high-quality and low-thickness coatings especially when 

the layer thickness is below 50 μm [96, 106]. The development of the system does indeed fill 
in the gap between conventional thermal spraying and thin-film technologies (PVD, CVD). 
The thinner coatings produced from this technique usually contain less residual stress with 

minimising risks of delamination [107, 108]. The coated properties especially the one involves 

bonding strength between the substrate and coated layer produced from HVSFS techniques 

tends to be affected severely due to the effect of processing parameters such as gas flow, 
air-fuel ratio spray distance, and electric arc current. As reported by Gadow et al., [106], bioc-

eramic coatings could be based on dry spray HAp powder used for HVOF and APS nanoscale 

and HAp suspension (water-based) for HVSFS.

By introducing different suspension solution medium such as diethylene glycol (DEG) as 
a substitute of water suspension, the result of the adhesion strength of the HAp coatings is 

enhanced and supposed to be superior [106]. The DEG-based solution increases the adhe-

sion strength compared to the water-based suspension. In fact, DEG-based suspension offers 
many advances properties such as low interlayer porosity with denser coatings. The result-

ing condition is due to the higher adhesion strength. The maximum adhesion strength is 

around 25 N/mm2 as reported for HVSFS-HAp coating [106]. Additional of TiO
2
 layer acts as 

a thermal insulating layer onto commercially pure Ti slows down heat extraction from the 

deposited material to the substrate [109, 110]. The HVSFS deposited HAp coatings are typi-

cally dense with 27–37 μm in thickness and some transverse micro-cracks. Even the crystallin-

ity characteristic is of between 10 and 70%, depending on the deposition parameters and the 

amount of a TiO
2
 concentration. The adhesion strength between the metal substrate and HAp 

coating enhanced due to the presence of TiO
2
 layer as shown in Figure 1.
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The APS, HVOF and HVSFS methods are extensively practised for HAp coating processes 

especially the one involves Ti metal as substrates [111, 112]. The processing parameters 

such as gas flow, air-fuel ratio, electric arc current and spray distance are the primary fac-

tor in determining the coating properties performance concerning the adhesion strength 

between substrate and coating of these thermal spraying techniques [113, 114]. The incre-

ment of the flow rate of oxygen enhances the behaviour of the coating composite. Besides 

that, fuel flow rate also plays a significant role in influencing the coating performance. 

Increasing oxygen flow rate along with fuel flow rate leads to higher adhesion strength. 

Other than that, reducing the spray distance also brings to stronger adhesion strength 

[98, 104, 115].

4. Summary

The choice of metallic biomaterials such as 316L stainless steel, cobalt-based alloy, titanium 

and its alloys will continue to be used extensively in the medical field as medical implants 
due to their excellent mechanical properties and adaptability within the physiological envi-

ronment. Currently, a major issue of metallic implants is the failure to perfect pair to the local 

tissue environment in the human body. This inharmonious is due to the different chemi-
cal compositions between metallic implants and human bone. The surface modification of 
the metal-based materials via four common coating techniques namely plasma-spray, sol-

gel, dip-coating, electrochemical deposition and high-velocity suspension plasma-spraying 

(HVSPS) was introduced to enhance bioactivity, to prevent wear and corrosion and to control 

harmful metal ions released into the body. It is proven that the surface modification via coat-
ing can succeed the limitation of the metallic biomaterials.

Figure 1. Adhesion strength of the HVSFS-deposited HAp coatings [110].
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