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Abstract

For many years now, communication in the industrial sector has been charac-
terized by a new trend of integrating the wireless concept through cyber-physical
systems (CPS). This emergence, known as the Smart Factory, is based on the
convergence of industrial trades and digital applications to create an intelligent
manufacturing system. This will ensure high adaptability of production and more
efficient resource input. It should be noted that data is the key element in the
development of the Internet of Things ecosystem. Thanks to the IoT, the user can
act in real time and in a digital way on his industrial environment, to optimize
several processes such as production improvement, machine control, or optimiza-
tion of supply chains in real time. The choice of the connectivity strategy is made
according to several criteria and is based on the choice of the sensor. This mainly
depends on location (indoor, outdoor, … ), mobility, energy consumption, remote
control, amount of data, sending frequency and security. In this chapter, we present
an Industrial IoT architecture with two operating modes: MtO (Many-to-One) and
OtM (One-to-Many). An optimal choice of the wavelet in terms of bit error rate is
made to perform simulations in an industrial channel. A model of this channel is
developed in order to simulate the performance of the communication architecture
in an environment very close to industry. The optimization of the communication
systems is ensured by error correcting codes.

Keywords: industrial IoT, wireless communication, DWPT, IDWPT, many-to-one,
one-to-many, industrial channel, ECC

1. Introduction

In recent years, technological developments in wireless communication systems
have improved user needs in terms of accessibility, data quantity, intelligent deci-
sion making and energy consumption. These technologies are still evolving, thanks
to the integration of new techniques to improve the connectivity of billions of
objects. These connected objects, whether sensors or actuators, are by nature
autonomous physical devices with a limited energy source [1, 2]. They are able to
communicate with each other, creating a technological revolution. This revolution
is bringing more ambitious innovations in a variety of application areas: medicine,
industry, energy, security and others.

For industrial applications, research is focused on creating connected, robotic
and intelligent factories to improve current production systems. This interconnec-
tion of factories is achieved through the connected systems, in which employees,
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machines and products collaborate with each other to form the new revolution. At
the heart of this revolution, the Industrial Internet of Things (IIoT) plays a key role
in the development of connectivity for this revolution (Figure 1) [3, 4]. In such an
industrial environment, propagation differs from other conventional indoor means
of communication through its large dimensions and the nature of the objects and
obstacles inside. Thus, the industrial environment can be modeled as a fading
channel affected by impulsive and Gaussian noise [5, 6].

Given the major advantage of connectivity in the industrial environment, it is
necessary to propose wireless, robust and efficient communication architectures
inside the factory. The design of these systems differs for each application, taking
into account the constraints of the propagation environment. Unlike other tradi-
tional indoor environments such as residential buildings or offices, this environ-
ment is characterized by its large dimensions and also by the nature of its elements
and obstacles. The complexity of the industrial context as well as the noise present
in the propagation environment make it necessary to offer a robust wireless com-
munication system to cope with the various disturbances during transmission [5, 7].

In this chapter we focus on applications of industrial communication in a high
noise industrial environment. In this work, a multi-user wireless communication
system is proposed, characterized by two distinct modes of operation. The first
mode provides “Many-To-One” (MtO) communication between several transmit-
ters and a single receiver. The second mode allows one transmitter sensor to send to
several receivers in One-To-Many (OtM) mode. These modes of communication
illustrate the links between the first three levels of the CIM (Computer-Integrated
Manufacturing) pyramid, of which this pyramid illustrates the industrial model on
5 levels. The proposed communication architecture is based on the transformation
of wavelet packets The use of the wavelet transform in this context consists, on the
one hand, in generating several forms of impulses via their synthesis and being able
to simply assign them to each user, and, on the other hand, in the reconstitution of
these impulses by the receiver, thus providing an analysis method that is simple to
implement and effective. These techniques of analysis and synthesis constitute the
major advantage of the wavelet transform for pulse modulations.

An optimal choice of the wavelet in terms of binary error rate is made to
perform simulations in an industrial channel. A model of this channel is developed
in order to simulate the performance of the communication architecture in an

Figure 1.
IIoT communication in the context of smart factory.
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environment very close to industry. Naturally, the optimization of the communica-
tion systems is ensured by error correcting codes, this is how we proceeded. We
have optimized the performance of our system architecture through conventional
channel coding.

This chapter will be presented as follows: in the second part, the state of the art
concerning Industry 4.0 and IIoT is developed. The study concerning the discrete
wavelet packet transform is discussed in the third part. The part describes the
functioning of the proposed architecture in two modes MtO and OtM. the industrial
channel model is discussed in the fifth part. The sixth part presents the simulation
results and towards the end a conclusion.

2. State of art

2.1 Industry 4.0

Industry 4.0 is characterized by a new way of organizing plants to put an end to
complex hierarchical structures. Therefore, ICT techniques must be merged with
industrial technologies. In Industry 4.0, embedded systems, IoT and CPS technolo-
gies link virtual space to the physical world to give birth to a new connected
generation of so-called “intelligent” factories. These factories are capable of more
efficient allocation of production resources, with the main objectives of customizing
products, minimizing time to market and improving business performance. This
opens the way to a new mode of industrial transformation. The concept of Industry
4.0 was first introduced at the Hanover Industrial Technology Fair in 2011, the
world’s largest technology and industrial trade fair. In 2013, Germany officially
adopts the implementation of the concept by the German government’s identifica-
tion of Industry 4.0 in its future projects within its action plan “High-Tech Strategy
2020” (Figure 2).

It has rapidly evolved as a German national strategy based on 4 aspects: Building
the CPS network, addressing two main themes based on the plant and intelligent
production, thus achieving 3 types of integration: Horizontal, vertical and point-to-
point. The result is that German industry has welcomed the initiative with open
arms. Small, medium and large companies from all sectors participated in the
creation of this new era. However, the boost from the government has helped to
internationalize the concept of Industry 4.0. In 2014, the State Council of China
unveiled its national plan, Made-in-China 2025, inspired by Industry 4.0 and

Figure 2.
Evolution of the industry.
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designed to improve China’s industry globally, integrating digital and industrial
technologies. At the same time, several countries have adopted this concept, we cite
as an example “the new industrial France” by France, “Industrial internet and
advanced manufacturing partnership in USA” by the United States [8, 9].

2.2 IIoT vs. IoT

In the last few decades, technological developments in wireless communication
systems have improved user needs in terms of accessibility, data quantity, intelli-
gent decision making and energy consumption. These technologies are still evolv-
ing, thanks to the integration of new techniques to improve the connectivity of
billions of objects. These connected objects, whether sensors or actuators, are by
nature autonomous physical devices with a limited energy source. They are able to
communicate with each other, creating a technological revolution. This revolution
is bringing more ambitious innovations in a diverse range of applications: medicine,
industry, energy, security and others [10, 11].

For industrial applications, research is focused on creating connected, robotic
and smart factories to improve current production systems. This interconnection of
factories is achieved through the connected systems, in which employees, machines
and products collaborate with each other to form the new revolution. At the heart of
this revolution, the IIoT plays a key role in the development of connectivity for this
revolution. Based on the same concept of IoT, IIoT is based on the use of connected
sensors or actuators to improve industrial processes and manufacturing. It inte-
grates intelligence in data processing and analysis to ensure better M2M (Machine-
to-Machine) communication. This has been in existence since the integration of
electronics in the industrial sector during the third “industry 3.0” revolution. It is
now necessary to work on robust communication architectures allowing objects and
the technological choice of communication technologies and protocols, in a highly
noisy industrial environment, to communicate easily in order to build reliable
information for better decision making [12, 13].

General Electric presents the Industrial Internet as a term meaning the integra-
tion of complex physical machines with networked sensors and software. The
Industrial Internet brings together areas such as IoT, Big Data, machine learning
and M2M (Machine to Machine) communication to collect and analyze machine
data and use it to adjust operations.

According to the Industrial Internet Consortium IIC, the Industrial Internet
connects intelligent devices and machines with people at work, enabling better
decisions through advanced analysis that leads to transformational business out-
comes. The Industrial Internet covers the non-consumer side of the IoT and applies
“internet thinking” to industrial environments.

The Industrial Internet consists of three key elements that together represent the
essence of the idea:

• Smart machines: this means connecting machines, fleets, facilities and
networks around the world with advanced controls, sensors and software
applications.

• Advanced analysis: means combining the power of physics-based analysis,
domain expertise, automation and predictive algorithms to understand how
machines and systems work.

• People at work: essentially means connecting people at all times to support
smarter operations, design and maintenance, as well as high quality of service
and safety.
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The connection and combination of these three key elements allows companies
and economies to benefit from many new opportunities and efficiency gains in
several areas. The industrial internet will accelerate productivity growth in the same
way that the industrial revolution and the internet revolution have done in the past.

3. Wavelet packet discrete transform

As a matter of principle, the multiresolution analysis in L2(R) space of the
continuous functions of a real variable and an integrable square can be extended to
subspaces of it. That is, the same scheme can be applied to the W j subspaces
generated by the previous analysis. Figure shows the hierarchy of the wavelet
packet decomposition: it illustrates the principle of wavelet packet decomposition
through the analysis of all subspaces [14]. Figures 3 and 4 illustrate the principle of
this decomposition by the discrete wavelet transform.

The analysis used in the wavelet packet transform leads to a decomposition into
frequency sub-bands of the input signal. This analysis can be carried out either by
the same scale and wavelet functions, which is usually the case, or by different
functions. This makes it possible to change the basic functions at each scale. It can
be said that perfect reconstruction is ensured by reusing during synthesis, and for
a precise resolution of the base functions combined with those used during the
analysis at this same resolution. The procedure of analyzing subspaces of signal
detail in addition to the approximation subspaces is generally referred to as
“wavelet packet analysis.”

Because this transform presents a good symmetry of structure which results in
identical sampling frequencies on all the inputs of the synthesis filter bank, and on
all the outputs of the analysis filter bank, our choice was directed towards an
implementation of the discrete wavelet packet transform. This approach will facil-
itate the generation of the pulses and be able to identify their content (nature of the
transmitter, or value of the transported data) [15].

3.1 Packet wavelet transform

The main objective of the wavelet packet decomposition is to extend the con-
struction of a new base from all generated subspaces. By definition, the

Figure 3.
Discrete wavelet transform decomposition principle.
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multiresolution analysis of an approximation space V j is decomposed into two
lower resolution spaces V jþ1 and W jþ1 [16]. Therefore, this division is obtained by

transforming the base ϕ j 2
jþ1t� k

� �

n o

k∈Z
de V j in two orthogonal bases:

ϕ jþ1 2 jþ1t� k
� �

n o

k∈Z
de V jþ1 et ψ jþ1 2 jþ1t� k

� �

n o

k∈Z
for W jþ1.

Note P this tree in which each node corresponds to a subspace Pn
j which admits

an orthogonal base Pn
j t� kð Þ

n o

k∈Z
. At a resolution level j we will have:

Pn
j ¼ P2n

jþ1 ⊕P2nþ1:

jþ1 (1)

The functions obtained are wavelet packets that are recursively determined by:

P2n
jþ1 tð Þ ¼

ffiffiffi

2
p X

k

h kð Þp2njþ1 2t� kð Þ (2)

P2nþ1
jþ1 tð Þ ¼

ffiffiffi

2
p X

k

g kð Þp2njþ1 2t� kð Þ (3)

It should be noted that:
p00 represents the scaling function and p10 the associated wavelet via multi-

resolution analysis and noted respectively ϕ and ψ.
The filters hn and gn are respectively the low-pass and high-pass filters

represented by quadrature mirror filters, and linked by the following equation:

G nð Þ ¼ �1ð Þnh 1� nð Þ (4)

The impulse response of the filters satisfies the following conditions:

X

n

h n� 2kð Þh n� 2lð Þ ¼ δkl &
X

n

h nð Þ ¼
ffiffiffi

2
p

(5)

X

n

g n� 2kð Þg n� 2lð Þ ¼ δkl &
X

n

g nð Þ ¼ 0 (6)

Figure 4.
Scale 4 decomposition procedure by discrete wavelet packet transform. H represents the low-pass filter and G the
high-pass filter.
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3.2 Decomposition and reconstruction

Recall that each function f(t) in the L2(R) space can be decomposed on the basis
of functions {pnj,k tð Þ, where (j,k)ϵZ*Z} as follows:

F tð Þ ¼
X

n, k

anj,kp
n
j,k tð Þ (7)

with j the depth of decomposition, k the time index, and n the frequency index
equivalent to the wavelet number.

The coefficients anj,k at a given scale j are expressed as a scalar product of the

signal to be analyzed and the analyzing function:

anj,k ¼ f , pnj,k

D E

¼
ðþ∝

�∝

f tð Þpnj,k tð Þdt (8)

The wavelet packet decomposition is shown in Figure 5. In this example, the
wavelet packet analysis of the function f is performed with a depth of 4.

The set of coefficients anj,k constitutes the discrete wavelet packet transform

(DWPT) of f(t) and its inverse transform (IDWPT) is given by:

anj,k ¼
X

i∈Z

hk�2ia
2n
j,k þ

X

i∈Z

gk�2ia
2nþ1
j,k (9)

The wavelet packet transform simply consists of filtering the signal using a low-
pass filter hn and a high-pass filter gn. As for synthesis, it is a regrouping of the
signals into a single signal that represents the signal already analyzed. These two
approaches give rise to filter banks that check the following conditions:

hn ¼ h�n et gn ¼ g�n (10)

4. Proposed communication architecture

In this chapter, two multi-user operating modes have been studied and tested:
the “Many-to-One” mode (MtO) and the “One-to-Many” mode (OtM). The choice

Figure 5.
IDWPT-based transmitter and DWPT-based receiver.
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of these modes depends essentially on the existence in the current communication
architectures (master-slave, bidirectional), in order to facilitate adaptation for a
better integration [17–19].

4.1 Many-to-One mode

The MtO mode corresponds to multi-sensor communication from several sen-
sors to a single receiver (Figure 6). Each transmitting sensor is in the form of an
IDWPT block ensuring the activation of a single input for this transmitter, which
allows the transmitting sensor to be identified already. Therefore, each input of the
IDWPT block on transmission corresponds to a single output of the DWPT block on
reception.

Based on the CIM pyramid (Figure 7), this mode of communication corresponds
to a communication from level 0 and 1 to level 2. In this mode, data from one or
more low flow sensors are transmitted at the same time to the same receiver, and

Figure 6.
Many-to-One mode.

Figure 7.
Operation of MTO and MtO modes in the CIM pyramid.
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the activation of one of the inputs generates the activation of a user. Figure 8
illustrates an 8-input architecture corresponding to 8 potential sensors (scale 3).
Therefore, each transmitter uses a single input that is different from the other
inputs. The pulse shape of each activated input is different from the waveforms of
the other inputs, the other non-activated inputs will be set to zero.

The DWPT-based receiver receives the data stream from all transmitters at the
same time. However, each sensor is identified by a unique filter output at the
receiver that represents the same input at the receiver. This mode has a higher
bandwidth occupancy than single user mode because each user (input enabled) will
occupy a separate sub-band. This will result in frequency selectivity of the channel
due to interference between users, for which it will be necessary to protect the

Figure 8.
Transmitter operation in MtO mode.

Figure 9.
One-to-Many mode.
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transmitted data as much as possible. Nevertheless, this will allow synchronous
communication of several sensors to the same receiver.

4.2 One-to-Many mode

For the OtM mode, an IDWPT transmitter is characterized by n inputs, capable
of sending information to m DWPT receivers with n outputs each.

Note that the information sent via input (i) is retrieved at output (i). This is the
inverse mode of the MtO mode where the equipment’s of levels 1 and 2 of the CIM
pyramid send the same information to the level sensors. This mode is equivalent to
the master-slave architecture in a conventional industrial communication system.
Although the data rate of the transmitted data is generally low, the reception of
information from several sensors creates spatial diversity that allows the data to be
retrieved by at least one receiver. Figure 9 illustrates the transmission of data from
a single sensor to 4 receivers. The data sent will be detected in the 5th output of the
4 receivers, as shown in Figure 10.

5. Industrial channel

Signals in an industrial environment are subject to several disturbances due to
propagation phenomena. These disturbances significantly degrade system perfor-
mance. This environment is affected by very complex noise and interference caused
by machine temperatures, vibrations, metal structures and heavy machinery
[SHA09]. In addition, the signal is subject to attenuation and shadowing effects
caused by abstractions in the propagation channel. The mobility of equipment and
people in the wireless medium can also cause time-varying effects. These effects can
significantly destroy the information exchanged and thus degrade any communica-
tion system performance in the industry [CHE16]. Therefore, it is necessary to
estimate the propagation channel in order to design and evaluate the entire wireless
transmission system for industrial applications.

5.1 Fading

For wireless propagation in an industrial context, the received information is
subject to attenuation and fading effects, of which the expression of the received
signal is:

Figure 10.
Receiver in one-to-many mode.
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y tð Þ ¼ h tð Þ ∗ s tð Þ þ n tð Þ (11)

Where, h(t) is the channel impulse response, s(t) is the transmitted signal and
n(t) is the additive noise.

In a factory, sensors/actuators are usually arranged according to the production
system configuration. Measurements of narrowband and broadband indoor chan-
nels have been performed through research in several industrial environments [20],
and have shown that the time impulse response h(t) at a fixed location in an
industrial context follows a reduced exponential distribution [21, 22]. This distri-
bution depends mainly on the delay and power of each channel, which is shown in
Saleh Valenzuela’s model [23]. The delay spread of the channels can be determined
from the impulse response as a function of the transmission frequency and the LOS
(Line-Of-Sight) or NLOS (Non-Line-Of- Sight) configurations. Thus, the objective
of the research work is to validate the IDWPT/DWPT-based architecture under a
simulated industrial channel, and we then generated a channel impulse response
based on the measurements from the work [24, 25] for both LOS and NLOS
configurations at 2.4 GHz. The simulated channel impulse response includes 10
significant paths (Figure 11).

In order to represent a channel fading phenomenon, all paths follow the same
statistical distribution [26]. The time envelope of the received signal follows the
Rician statistical distribution in the LOS scenario and the Rayleigh distribution in
the NLOS case.

P xð Þ ¼ x

σ2
exp � x2 þ K2

2σ2

� �

I0
Kx

σ2

� �

(12)

With I0 xð Þ is the Bessel function changed to zero order. K is the shape parameter
called Rician factor. For K = 0, P(x) converges to the Rayleigh distribution.

5.2 Noise

In the case of wireless communication systems, the noise added to the received
signal is White Gaussian Noise (WGN additive). In an industrial environment, the
signals will be affected by noise, which is represented as impulsive noise from
motors, regulators, electrical equipment and others. However, the industrial noise
n(t) in equation will be modeled as a superposition of AWGN w(t) and impulsive

Figure 11.
Simulated channel impulse response.
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noise i(t) having a very high variance. Then, i(t) is modeled as a two-state first-
order Markov process thus describing the typical impulsive noise [27] (Figure 12).

n tð Þ ¼ w tð Þ þ i tð Þ (13)

where w(t) and i(t) are zero-mean Gaussian processes whose probability density
functions are respectively:

P w tð Þ½ � ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2πσ2
p exp �w tð Þ2

2σ2

" #

(14)

P i tð Þ½ � ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πRσ2
p exp � i tð Þ2

2Rσ2

" #

(15)

With R ≥ 1 is a scale constant of the amplitude of the impulse noise. The higher
the amplitude, the greater the noise. For our simulations, we use R = 50 which
corresponds to significant impulse noise.

6. Simulations, results and performances

In this section, we will present the simulation results of the IDWPT/DWPT
architecture under a noisy industrial channel. All the simulations presented in this
chapter are performed under MATLAB.

6.1 Simulations and results

The proposed system is based on a multi-user IDWPT/DWPT architecture for 2n

sensors/actuators in an industrial environment. The transmitters are based on the
IDWPT implementation in the form of synthesis filter banks, and the receivers are

Figure 12.
Industrial noise with a scale factor R = 50.

12

Wavelet Theory



based on DWPTs implemented as analysis filter banks. The industrial channel is
described as a Rician fading channel for the LOS configuration and a Rayleigh
fading channel for the NLOS configuration at the 2.4GHz frequency affected by
impulsive noise. In our simulations, we choose the “Symlet” wavelet that has dem-
onstrated the lowest bit error rate for the IDWPT/DWPT architecture under an
AWGN channel (Figure 13).

In the case of the MTO mode in multi-sensor configuration, the frames for each
user are 16 bits long and randomly generated. This data configuration is due to the
fact that sensors in industrial environments transmit short data packets. These data
frames are pulse modulated and each transmitter is identified by a unique signal.
Figure 14 shows the signals from 4 different sensors (1, 5, 12 and 16) in an archi-
tecture with 16 transmitter sensors. The 16 generated signals are all different from
each other because the binary data at the input of each filter are different.

Based on the effect of channel fading due to delay propagation in addition to
AWGN noise for the LOS and NLOS configurations, it is clear that the multipath
effect disturbs the signals of the different users and thus causes interference
between them. The proposed architecture allows signal detection at reception for all
users as shown in Figure 15 for a SNR (Signal to Noise Ratio) greater than 20 dB
[27–33].

With fading effects, and the addition of industrial noise composed of Gaussian
noise and impulse noise, the bit error rate is shown in Figure 15. The communica-
tion architecture converges more slowly and performance decreases, but it allows
the full information of an SNR up to 35 dB. In the case of industrial noise, the data
may be completely lost if the effects of the channel are not properly taken into
account.

In the case of the OtM mode, a single transmitter based on DWPT with n inputs
sends data to m receivers based on DWPT with n outputs each. The principle of this
mode is to activate only one input (i) of the transmitter and force the others to zero.
When receiving, the data will be detected at output (i) of each receiver. The data
are modulated through pulse modulation using a “Symlet” pulse. Figure 16 shows

Figure 13.
Performance of four wavelets.

13

Industrial IoT Using Wavelet Transform
DOI: http://dx.doi.org/10.5772/intechopen.93879



the signals received at the 4 receivers. The data is recovered at the 7th output
corresponding to the activated input.

Based on the fading channel and AWGN noise for LOS and NLOS configura-
tions, the architecture detects the signal on reception. According to the simulation
results shown in Figure 16 the transmitted signal is detected at the receiving sensor
array for the LOS and NLOS channels at 2.4 GHz. Detection is virtually error-free
above 20 dB. Some differences between the LOS and NLOS configurations are

Figure 14.
BER/SNR on a fading channel with AWGN noise for MtO mode.

Figure 15.
BER/SNR on a fading channel with industrial noise for MTO mode.
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detected from an SNR of 14 dB. This is mainly due to the effects of channel fading
and channel dispersion which must be corrected using channel coding during
transmission. Taking into account the effect of industrial noise, the communication
architecture allows the full detection of 30 dB SNR information as shown in
Figure 17. The difference in error rate is very large and depends on the
propagation channel.

Figure 16.
BER/SNR on a 2.4 GHz fading channel with AWGN noise for OTM mode.

Figure 17.
BER/SNR on a fading channel with industrial noise for OTM mode.
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6.2 Performances: ECC

To improve the reliability of the architecture compared to the industrial fading
channel, we propose to add an error-correcting channel code on the transmitter side
(Figure 18). We use two coding techniques: a convolutional code and RS (Reed
Solomon) codes. For the convolutional code, we choose an encoder using a trellis
diagram with a generating polynomial matrix of having a constraint length of 7 and
a code rate = 1/2. On the receiver side, we use a Viterbi decoder [28–30].

As for the Reed Solomon encoder, we use an RS(31,17) with 31 code word
symbols and 17 message symbols based on the length of the transmitted data.

As shown in Figure 19 for an architecture with 8, 16 and 32 users on an indus-
trial channel with AWG noise fading, the error correction code improves the
robustness of the architecture against channel fading as a function of the number of
sensors used. For a better graphical representation, we have shown the results for
only 4 users in each case; for 8 users (user 1, 3, 5 and 7), for 16 users (user 1, 6, 12,
16) and for 32 users (user 1, 12, 22 and 30).

For a fading channel with AWG noise, the SNR is reduced by 2 dB using both
convolutional and RS code for an 8-user (or sensor) architecture, and by 4 dB for RS

Figure 18.
Architecture for 8 sensors with channel coding.

Figure 19.
BER/SNR on a fading channel with AWGN noise for MTO mode.
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code in the case of a 32-user use. For a fading channel with industrial noise, the
signal-to-noise ratio is reduced by 8 dB for an architecture with 16 users using a
convolutional code and by 5 dB for 32 users using an RS code, as shown in
Figure 20. For a better illustration, Table 1 shows the different SNR values for a
fixed linear bit error rate of 0.1 with or without error-correcting coding [31, 32].

We conclude that for communication over an industrial fading channel, RS
coding is optimal for a 32-user architecture. However, convolutional coding is
optimal for a 16-user architecture. In the case of an 8-user architecture, the
convolutional and RS codes are equal.

Figure 20.
BER/SNR on a fading channel with industrial noise for MTO mode.

Number of

sensors

No

code

Convolutional code

1/2

RS

(31,17)

Fading channel with AWGN noise 8 14 dB 12 dB 12 dB

16 12 dB 14 dB 14 dB

32 14 dB 12 dB 10 dB

Fading channel with industrial

noise

8 20 dB 18 dB 18 dB

16 28 dB 20 dB 26 dB

32 30 dB 28 dB 25 dB

Table 1.
System parameters with coding.
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7. Conclusion

A robust IIoT multi-user architecture based on IDWPT in transmitter and
DWPT in receiver under an industrial channel has been presented in this chapter.
The industrial channel was modeled as a fading channel affected by impulse noise
combined with AWGN. The wireless sensor network architecture presented, with
its two communication modes MtO and OtM, provides better data reception results
for a noisy industrial environment. The robustness of the architecture can be
improved by using channel coding or industrial noise thresholding at reception. By
using a conventional error correction code with a rate of 1/4, the robustness of the
MtO mode has been greatly improved and all signals are fully decoded from an 8 dB
SNR on a fading channel. In MtO mode, signals are decoded from 6 dB on the same
channel. Using an optimal threshold receiver, errors are eliminated by about 25 dB
for MtO and OtM modes on a noisy industrial channel. As a perspective, we wish to
compare the performance of the proposed architecture with the conventional
OFDM communication system.
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