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1. Introduction  

Visually-assisted optical indoor wireless local area network (LAN) is promising not only for 
high-speed but for offering intuitive user interface. Free-space optical communications 
(FSOC)(Jahns, 1994) are a key technology to create image-based ultra-fast wireless 
communication systems of the future. Compared with radio-frequency (RF) electromagnetic 
waves, the outstanding features of free-space light in terms of wireless communications are 
two-dimensional imaging with lenses as well as much higher frequency (> 100 THz), spatial 
and wavelength parallelism, and security. I believe that fusion of imaging and free-space 
optical communications can dramatically improve usability of indoor wireless LANs (Barry, 
1994; O'Brien, 2005; Nonaka, 2006). 

I have developed a new indoor optical wireless LAN system (Kagawa, 2003) that can offer a 
visually-intuitive user interface as well as high-speed data transfer based on two kinds of 
multiplexing. The key device is a complimentary-metal-oxide- semiconductor (CMOS) image 
sensor (Fossum, 1997). The device developed can receive several high-frequency amplitude-
modulation optical signals at the same time as well as capture ordinary video-rate movies. 

The image in the optical wireless LAN can be understood in two ways. One is that it shows 
the positions of communication nodes or the hub on the scene in a visual manner, which is 
very intuitive. For example, an actual scene image overlapped with identifiers like icons of 
communication nodes or the hub will add a feature of location awareness to the normally 
invisible network. Such interface combining the cyber space with the real will make the 
computer network more user-friendly. The other understanding of the image is spatial 
parallelism. Each light source out of the same line of sight is spatially separated on the 
image, which implies high-speed optical data acquisition by space-division-multiplexing 
(SDM) optical communications if the fast optical signals incident on different pixels can be 
read out concurrently. 

In the FSOC, chromatic dispersive elements such as a grating are able to convert 
wavelength-division-multiplexing (WDM) to SDM by decomposing a single WDM light 
beam to multiple spots on the CMOS image sensor. The dedicated CMOS image sensor 
enables a fusion of imaging and FSOC, and can enhance the communication bandwidth of 
indoor wireless networks. 
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In this chapter, preliminary experiments of WDM optical data transmission with the 
dedicated CMOS image sensor are shown. In Sec. 2, fundamental configurations of the 
SDM-WDM indoor optical wireless LAN system and the communication modules are 
described. In Sec. 3, a wide-angle beam steering optics is mentioned. In Sec. 4, preliminary 
experiments with the dedicated CMOS image sensor and the beam steering optics are 
shown. Section 5 summarizes this Chapter.  

2. SDM-WDM indoor optical wireless LAN 

2.1 System configuration 

Figure 1 shows a schematic drawing of the proposed space- and wavelength-division-
multiplexing (SDM-WDM) indoor optical wireless LAN(Fujiuchi, 2004). The nodes 
connected to personal computers communicate each other via the hub installed on the 
ceiling. One of the most significant features of the proposed optical wireless LAN is that 
dedicated CMOS image sensors are utilized at both of the hub and the nodes as multi-point 
parallel photoreceivers as well as an image sensor for detecting the positions of 
communication target(s) on the scene.  
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Fig. 1. SDM-WDM indoor optical wireless LAN using dedicated CMOS image sensors. 

The dedicated CMOS image sensors are able to receive multiple optical signals at the 
different positions on them concurrently. With this ability, SDM can be adopted for the 
uplinks because the uplinks are multi-to-one connection. On the other hand, the downlinks 
are physically one-to-one connection between the hub and a node when the hub has only 
one transmitter. To increase the bandwidth of the downlink, parallelism of the dedicated 
CMOS image sensor is applied to implement a WDM feature. 

The dedicated CMOS image sensor is equipped with two kinds of electric outputs: a movie 
of scene images and parallel digital output of optical signals. Each pixel operates in one of 
two functional modes: an image sensor mode and a photoreceiver mode. A communication 
link is established as follows; Firstly, the functional mode of every pixel is set to the image 
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sensor mode, and each node and the hub emits a diffusive light with a predefined frequency 
or a sequence as a position marker. After the positions of the nodes and the hub are 
specified with some image processing, the operation mode of the pixels receiving the optical 
signals is set to the photoreceiver mode. Then, they begin to emit a narrow beam toward the 
detected counterpart(s). After the connection is established, the scene image captured at the 
hub is transferred to the node, and it is displayed with the identifiers of the nodes such as 
icons superimposed. The network users can recognize where the other communication 
nodes are in the communication area. 

2.2 Communication modules 

As shown in Fig. 2, the primary hardware components of the hub module are laser sources 
with different wavelengths, a wavelength multiplexer, a beam deflector, and a beam steering 
lens(Kagawa, 2008a) for the transmitter part, an imaging lens and the dedicated CMOS image 
sensor for the receiver part, and a position marker. To embody the optical multiplexer, 
dichroic mirrors or a blazed grating can be selected according to the size and the wavelength 
pitch of the laser diodes. The position marker is a diffusive light source such as a light emitting 
diode (LED) that illuminates the whole room, which is used as a position marker at the first 
step of the connection establishment. The composition of the node module is somewhat 
different. It has only a single laser source and no optical multiplexer in the transmitter part. On 
contrary, a blazed grating as a demultiplexer is added to the receiver part. 

In Fig. 2, deflection of the light beam is introduced by the micro-electro-mechanical-systems 
(MEMS) mirror (Petersen, 1980; Miyajima, 2001). However, the amount of the deflection is 
not typically enough to cover the whole room. To overcome the limitation, a beam steering 
lens for amplifying the beam deflection was proposed (Kawakami, 2003). 
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Fig. 2. Optical data transmission and beam deflection. 
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3. Dedicated CMOS image sensor 

3.1 Sensor architecture 

The CMOS image sensor dedicated to the proposed SDM-WDM indoor optical wireless 
LAN is a fusion of an ordinary image sensor and an array of photoreceiver circuits used in 
optical fiber communications. Figure 3 shows a block diagram of the dedicated CMOS 
image sensor. The pixel array is composed of NX×NY pixels, and the sensor has NC parallel 
photoreceivers and data output channels. All signals for the communication are fully 
differential. For the image sensor mode, the image readout circuits are prepared at the top of 
the pixel array. The circuits below the pixel array are for the photoreceiver mode, which are 
composed of transimpedance amplifiers (TIA) with offset cancellation current sources 
controlled by automatic offset cancellers (AOCs) post amplifiers, bus drivers, an analog 
multiplexer to select NC outputs out of NX columns, bus receivers, a crosstalk reduction 
matrix operator, limiters to binarize the amplified photo-signals, and open-drain buffers. 
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Fig. 3. Sensor architecture. 

3.2 Pixel 

3.2.1 Circuits 

To implement the multi-point optical data acquisition function, each pixel has digital control 
logic to change its behaviour according to the operation mode (Fig. 4). For the signal 
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readout, pixel<i, j> has two kinds of output signal lines: one analog image output line 
(Vaps<i>) and two differential analog photocurrent output lines (Vsig<i-1>, Vref<i-1>, 
Vsig<i>, and Vref<i>) in the both sides of the pixel, which are selected by MEM_L<i, j> and 
MEM_R<i, j>. Note that <i, j> denotes the pixel position. xs<i> and ys<j> are horizontal and 
vertical addressing signals.  rr<j> and  rs<j>  are row reset and select signals, respectively. 
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Fig. 4. Pixel circuits. 

For the signal readout, the pixel has two kinds of output signals as mentioned above. The 
differences between two operation modes are detection schemes of the optical signal. In the 

image sensor mode, photocurrent is accumulated at the photodiode so that extremely high 

photosensitivity is achieved but its speed is very slow (up to around several MHz). In the 
photoreceiver mode, the photocurrent is directly put out to the TIA and amplified. In the 

photoreceiver mode, the photocurrent is directly amplified by the TIA prepared for each 
column without accumulation. Therefore, it can detect high-frequency signals but has low 

sensitivity. These complementary features are suited to detect the dim marker light in the 
imager mode and the strong narrow beam for communication in the photoreceiver mode. 

3.2.2 Dynamic pixel reconfiguration for fully differential signaling 

Another important feature of the pixel is dynamic differential reconfiguration to work as 
either a reference or a signal pixel. Without this feature, we cannot receive photo signals 
while capturing images because many kinds of noise sources on the CMOS image sensor 
and the print circuit board significantly decrease the signal integrity of the photoreciever 
circuits. While optical signals are amplified with capturing images, image readout digital 
circuitry becomes noise sources. Such common-mode noise can be suppressed by 
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differential signalling. However, fully differential configuration needs replica pixels to put 
out the reference signal, which increases the pixel area (Zimmerman, 2003).  

Figure 5 shows the schematic of the dynamic differential reconfiguration. In the figure, 2×2 
pixels receiving optical signals work as a signal pixel, and four pixels in their both sides 
work as a reference pixel. With this method, differential signalling can be realized without 
replica pixels 

Communication light spot

Signal output Reference output

Ref

Ref Ref

Ref
Sig

Sig Sig

Sig

 

Fig. 5. Dynamic pixel reconfiguration. 

3.3 Prototype sensor 

Table 1 and Fig. 6 show specifications and a photograph of the dedicated CMOS image 
sensor. To build a demonstration system, photosensitivity of the CMOS image sensor should 
be high. Therefore, a high-sensitive but slow photodiode comprised of an N-well/ P-
substrate-junction diode was selected. The bandwidth of the photo-amplifier was designed 
to be comparable with that of the photodiode. Figure 7 and Table 2 show a prototype board 
and specifications of an advanced version of the dedicated CMOS image sensor fabricated in 
a 0.18-┤m CMOS technology. This chip has not been fully tested. 

 

Technology 0.35-┤m CMOS 2-poly, 3-metal 

Chip size 9.8 mm sq. 

Pixel count 64 x 64 

Pixel size 100 ┤m sq. 

Photodiode structure N-well/ P-substrate 

Fill factor 16% (no microlens) 

Photoamplifier 
Regulated cascode amp (TIA)/ Cherry-Hooper amp 

 (post amp and gain stage) 

Total transimpedance gain 2.5 kΩ – 2.5 MΩ (simulation) 

Bandwidth 7.9 MHz (simulation) 

Number of channels 4 

Table 1. Specifications of the CMOS image sensor. 
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Fig. 6. Photograph of the prototype CMOS image sensor. 

 

Fig. 7. Prototype board for CMOS image sensor in a 0.18-┤m CMOS technology. 

 

Technology 0.18-┤m CMOS 1-poly, 5-metal 

Pixel count 180×84 

Pixel size 31.25 ┤m×62.50 ┤m 

Photodiode structure Deep N-well/ P-well 

Fill factor 20% 

Communication channels 4 

Data rate >1.0Gbps/ch (simulation) 

Table 2. Specifications of the CMOS image sensor in a 0.18-┤m CMOS technology. 
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4. Wide-angle beam steering optics 

4.1 Optical setup 

The task of the optical transmitter is to deliver a narrow laser beam for communication to 
anywhere in the whole room with a size of more than 5 m by 5 m. For this purpose, a beam 
steering optics shown in Fig. 8 is proposed. The optical system is composed of three parts: a 
wavelength multiplexer, a beam deflector, and a beam-deflection-angle enhancer. The 
feature of the system is that the beam deflection enhancer is inserted at the exit of the beam 
steering optics to realize a compact and wide-angle optical transmitter. 

To combine laser beams with wavelengths of ┣1-┣4 into a single beam, the following 
equation should be satisfied. Note that δ, Δ┣, d, and f1 are the pitch and the wavelength 
difference of the adjacent lasers, the pitch of the blazed grating, and the focal length of lens, 
L1. 

 
  .1fd
 

 (1) 

Because the availability of the MEMS mirror satisfying the requirements for the optical 
transmitter is not always good, the beam deflection part is implemented by a combination of 
a focusing lens (L2) on a compact two-dimensional stage and a collimator lens (L3). The 
focusing lens, L2, moves in the plane perpendicular to the optical axis. In this setup, an 
intermediate image is generated at the relayed image position in Fig. 8. When the 
displacement of L2 in one axis is represented by Δ, the output angle of the beam from L3, 
θIN, is written by 

   1
3Tan ,IN f    (2) 

where f3 means the focal length of L3. The beam steering lens as the beam deflection 
enhancer amplifies the input angle of the collimated beam, θIN, with a certain angle gain to 
obtain the large output angle, θOUT. With the beam steering lens, a wide range of the beam 
deflection angle can be achieved for a small displacement of L2. 
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Fig. 8. Optical setup of wide-angle beam steerer. 
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4.2 Beam steering lens 

The beam steering lens has a reverse-telephoto-type configuration (Smith, 2000). A prototype 
lens whose structure and specifications shown in Fig. 9 and Table 3, respectively, were designed 
and fabricated (Miyawaki, 2007; Kagawa, 2008a).  The lens is designed for wavelengths of an 
850-nm band, and its maximum field of view is 140-degree. The maximum gain of the beam 
angle is 3.5. A ray diagram is shown in Fig. 10. Because the left surface of the rear lens has a 
large curvature, the rear lens is composed of aspherical surfaces to minimize the output beam 
distortion. The feature of this beam steering lens is large tolerance of the alignment along the 
optical axis due to its infinite conjugate design, which makes assembly easier. 

 

10.8 mm

Input

 

Fig. 9. Configuration of the beam steering lens. 

Wavelength 845-851 nm 

Focal length 2.1 mm 

Field of view 140 degree (max) 

Overall length after assembly 10.2 mm 

Working distance 5.0 mm 

Acceptable input beam diameter 1.0 mm 

Effective output diameter 10 mm 

Beam angle gain 3.5 (max) 

Material K-SFLD6 (front),PBK40 (rear) 

Table 3. Specifications of the beam steering lens. 
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Fig. 10. Ray diagram. 
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4.3 Prototypes 

A mounted lens is shown in Fig. 11. With this lens, the beam steering optics shown in Fig. 8 
was constructed (Fig. 12). For simplicity, WDM was not implemented in this prototype. A 
laterally-single-mode GaAs vertical-cavity surface-emitting laser (VCSEL) was used as a 
laser source (FujiXerox, Model VCSEL-AS-0001, wavelength of 840-860 nm, maximum beam 
divergence of 20 degrees (FWHM), optical output power of 2 mW). The focusing lens, L2, 
was mounted on a movable compact stage (mechOnics, Model MS15, travel of 3.5 mm, 
maximum speed of 1.5 mm/s). f3 was set to 2.2 mm. For this configuration, Δ should should 
range between about ±0.8 mm. 

(Unit: cm)
 

Fig. 11. Beam steering lens. 

Beam deflector

Beam steering lens
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Fig. 12. Prototype of beam steerer. 
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5. Experiments 

5.1 SDM data transfer 

Figure 13 shows an experimental setup for uplink. The receiver of the hub was installed on 
the ceiling, and two transmitters ware placed on a desk. The vertical distance between the 
hub and the node was about 1.75 m. Transmitted data were generated by the data generator 
(Model DG2030, Tektronix, four digital output channels, data rate of 400Mbps per channel). 
For electric-to-optic (E/O) conversion, E/O converters (Model LL-650GI (┣=650 nm), LL-
780GI (┣=780 nm), LL-900GI (┣=900nm), Graviton Inc., bandwidth of 1.2GHz) were used. 
The dedicated CMOS image sensor was controlled by a field-programmable gate array 
(FPGA). Control commands such as "start" or "stop image capturing", "set the pixels in the 
photoreceiver mode", and "set all the pixels in the image sensor mode" were issued by a 
personal computer through serial communication interface. An analog signal of the video 
output from the CMOS image sensor was converted to 10-bit digital value by an analog-to-
digital conversion (ADC) chip. Then, it was transferred to the personal computer through a 
10-bit parallel digital input-output (I/O). 

1.75 m

Hub

Node

 

Fig. 13. Experimental setup for SDM data transfer. 

Figure 14(a) shows a scene image captured at the hub when all pixels operated in the image 
sensor mode. A video lens (TECH SPEC, focal length of 4.3 mm, F/1.8) was used. Two regions 
indicated by the arrows in the figure are transmitters on the desk. Then, the operation mode of 
these pixels was set to the photoreceiver mode. Due to the dynamic reconfiguration, 4×2 pixels 
for each region became white. It is because these pixels are biased by the TIAs to amplify the 
photocurrent directly. The optical power before the imaging lens was about 200 ┤W.  
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(a)

(b)

Transmitters

 

Fig. 14. Captured images for (a) all pixels in image sensor mode and (b) two rectangles in 
photoreceiver mode. 

Figure 15 shows eye diagrams for the two nodes while images were being captured. The data 
rate was 10 Mbps/channel. This result shows that common-mode noise from the digital 
circuits on the CMOS image sensor to the photoreceiver circuits was well suppressed. The data 
rates were the same, but the wavelengths were different; for channel-1 and -2, the wavelengths 
were 780 nm and 650 nm, respectively. The delay becomes larger as the wavelength becomes 
longer. The differences of rise and fall times in the waveforms reflect dependency of the delay 
of the diffusion carriers generated in the silicon substrate of the CMOS image sensor on the 
wavelength. In the results shown in Ref. (Kagawa, 2008b) without differential signalling, the 
signal to crosstalk ratio (SCR), defined as the signal saturation level relative to peak-to-peak 
crosstalk, was 2.2 dB. With the full-differentiation technique, the SCR was about 11dB and 
18dB for one of the differential pair and after subtraction, respectively. 

Ch#1

Ch#2

Clock

 

Fig. 15. Eye diagrams for the two nodes. 
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5.2 WDM data transfer 

The experimental setup shown in Fig. 16 is for a WDM optical data transfer for the 
downlink. Three wavelengths were multiplexed by dichroic mirrors and travelled 1.65 m 
through the free space. At the receiver, the beam was demultiplexed to three optical spots 
on the CMOS image sensor through a transparent blazed grating (grating constant of 
300/mm, diffraction efficiency of more than 60%) and a imaging lens (SCHNEIDER, 
wavelength range of visible to infrared light, focal length of 12 mm, F/1.4). The frequency of 
each wavelength channel was set to be different. The waveforms for three wavelengths are 
shown in Fig. 17. The result shows that demultiplexing of the multiplexed optical signals 
was successfully achieved.  
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Fig. 16. Optical setup for WDM optical data transfer. 

650 nm

780 nm

900 nm

 

Fig. 17. Waveforms for three wavelength channels in WDM optical data transfer. 

5.3 Beam steering 

The prototype system of the beam steering optics with the fabricated beam steering lens was 
demonstrated and characterized experimentally. Figure 18 shows a simplified measurement 
setup. Output beam angle, radial and orthogonal spot size, and output power were 
measured.  
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Optical transmitter 
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Fig. 18. Configuration for characterizing the beam steering lens. 

Figure 19(a) shows a measured relationship between the input and the output beam angles 
of the beam steering lens. The maximum output beam angle was about 66 degrees in the 
experiments, which was large enough to cover a 5 m-by-5 m room when the vertical 
distance between the hub and a node was larger than 2 m. The maximum angle gain was 
3.4, which showed a good agreement with the design. 
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Fig. 19. Experimental results of the scan lens: (a) relationship between input and output 
beam angles, (b) beam sizes on the ceiling, and (c) power efficiency. 
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The beam size on the receiver plane is a significant concern because it defines received power, 
namely, the signal integrity. The beam size strongly depends on the radiation angle and the size 
of the laser source. Figure 19(b) shows the beam sizes measured on the ceiling 173 cm above the 
beam steering optics. The radial beam size increases as the output beam angle becomes large. 

Figure 19(c) shows the optical power efficiencies of the beam steering lens. The minimum 
efficiency at the maximum output beam angle was bout 0.8 (-2dB). Note that the sidelobes of 
the beam were included in the measured power, and the actual efficiencies were possibly 
smaller than the results in Fig. 19(c).When we assume that the received optical power is in 
proportion to the beam area, the optical power variation at the receiver introduced by the 
beam steering optics is about 13dB, which can be tolerated by the dedicated CMOS imager 
by a gain control of the photoreceiver circuits. In conclusion, the experimental results 
showed that the prototype beam steering optics operated successfully. 

6. Conclusion 

A space- and wavelength-division-multiplexing (SDM and WDM) indoor optical wireless 
LAN system, which is based on a dedicated CMOS image sensor to realize a compact, high-
speed, and intelligent nodes and hub, was described. The dedicated CMOS image sensor 
can detect multiple fast optical data concurrently as well as captures ordinary images from 
which positions of communication nodes or the hub is obtained. In this Chapter, with the 
CMOS image sensor, an application of WDM technique to downlinks was demonstrated. 
64x64-pixel custom CMOS image sensor with 4-channel concurrent data acquisition function 
was fabricated. Experimental results showed that the CMOS sensor received 10Mbps x 3ch 
WDM data while capturing ordinary images. A wide-angle beam steering optics with a 
beam steering lens for amplifying the output beam angle was demonstrated. A prototype 
beam steering lens optimized for a near-infrared wavelength of 850 nm was fabricated. 
Experimental results showed that the maximum output beam angle was about ±60 degrees, 
which was enabled to cover a 5m-by-5m room (for the ceiling 2.0 m above the nodes), and 
the optical power efficiency was larger than 0.8. The received optical power variation caused 
by the power efficiency fluctuation and the beam distortion was roughly estimated to be 
13dB, which was tolerated by the dedicated CMOS imager. 
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