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Abstract

Radioactive contamination of soils is an issue of severe importance for Ukraine remain-
ing with a significant post-Soviet baggage of not settled problems regarding radioactive 
waste. Regular radioecological observations and up-to-date contamination mapping 
based on advanced geoinformation techniques give an ability to prepare for, respond to, 
and manage potential adverse effects from pollution with radionuclides and heavy metals. 
Hyperspectral satellite imagery provides potentially powerful tool for soil contamination 
detection and mapping. An intention to find a relation between remotely sensed hyper-
spectral and ground-based measured soil contamination fractions in area of the uranium 
mill tailings deposits near Kamianske city was made. An advanced algorithm based on 
known TCMI (target-constrained minimal interference)-matched filter with a nonnega-
tive constraint was applied to determine the soil contamination fractions by hyperspectral 
imagery. The time series maps of spatial distribution of the soil contamination fractions 
within study area around the Sukhachevske tailings dump are presented. Time series 
analysis of the map resulted in two independent parameters: the average value for the 
entire observation period and the daily mean increment of the soil contamination fractions.

Keywords: Pre-Dnieper chemical plant, uranium mill tailings, soil contamination 
fractions, hyperspectral imaging, spectral unmixing, time series analysis

1. Introduction

Nowadays, agriculture became the leading branch of the Ukrainian economy. Ukraine places 
among the world’s top 10 producers of wheat, barley, corn, and soybeans and is the leader 
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in the production and export of sunflower. One-third of Ukrainian agrarian products are 
exported to European countries. Such agricultural achievements are primarily caused by the 
rich land potential of the country. There are 60.4 million hectares of mollisols in Ukraine. 
Moreover, almost 42 million hectares (about 69%) of them are arable lands and farmlands. 
The southern and central regions of Ukraine are especially fertile due to the highest content 
of humus in the local mollisols [1].

According to the Constitution of Ukraine, “Land shall be the main national asset and as 
such shall be under special protection” (Art. 14). Nevertheless, more than half of the fertile 
lands in Ukraine suffer from different types of degradation: loss of the fertile layer, erosion, 
and contamination. The problem of radioactive contamination of soils is extremely topical 
for Ukraine [2].

The mining and processing of uranium ore started in Soviet Ukraine in the late 1940s as a 
secret without any requirements of environmental safety. Uranium raw materials enrich-

ment lasted in Ukraine until the Soviet Union fell apart in 1991. Currently, there are about 
120 local contaminated sites that are identified inside and near Kamianske (former city name is 
Dniprodzerzhynsk). The exposure dose of these spots in several times is higher than the control.

Production Association of Pre-Dnieper chemical plant (PA PCP) was one of the most powerful 

uranium enterprises of the former USSR. Activity of the enterprise has led to formation of ura-

nium ore traces. In particular, they can appear in a form of specific contamination fractions on the 
surface of the soil. Such focal points of the radiation pollution are enriched with radium-226 and 
other uranium-thorium radionuclides. They have been formed as a result of uranium extraction 
and ore recycling. There are nine radioactive waste storage facilities developed since the pro-

duction at the PA PCP was launched. They are placed at the plant site as well as adjacent areas.

Radioactive solid and liquid waste is accumulated in gullies and hollows and on the upper 
terrace of the Dnieper river near other mining and metallurgical enterprises. Agricultural 

lands adjoin uranium tailings from all sides. Each year, as a result of wind erosion, more than 
30 tons of radioactive dust settles on the arable lands. Also, radionuclides may be discharged 
to the atmosphere through by radon emanation.

Production of uranium concentrate was halted on PCP in connection with Soviet Union col-
lapse. Several liquidation-reclamation actions were made within environmental programs to 
manage safe condition of uranium production with PCP [3, 4]. However, the management and 
maintenance of these neglected facilities are still problems of the current interest. Therefore, 
environmental security requires the use of modern technologies [5].

A set of environment security technologies are needed to be implemented to monitor, assess, 
and visualize the agricultural soil contamination. It will give an ability to prepare for, respond 
to, and manage potential adverse effects from radioactive pollution.

The goal of the research was the elimination of the negative environmental effects of the PCP 
activity. Uranium milling activities is a source of considerable soil contamination by radioactive 
substance, making a harmful impact on environment and the population. Regular  radioecological 
observations and up-to-date contamination mapping become a primary issue for  environmental 
protection of areas surrounding uranium ore milling works. Hyperspectral satellite imagery 
provides a potentially powerful tool for radioactive pollutant detection and mapping.
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2. Main sources and ways of soil contamination

2.1. Uranium mill tailings deposits

The Sukhachevske tailings dump and Base S tailings deposit are located on the right bank of 
the Dnieper 5 km southeast of Kamianske (Figure 1a).

The Sukhachevske wet uranium tailings dump is still partly covered with water. The dump 
is located on the left branch of the Rozsoluvata ravine in the Sukha Sura river valley. The 
tailings’ construction is a ravine partitioned by two dams and consisted of two sections, one 
arranged behind the other (Figure 1b). Base S tailings deposit is located 830 m east of the 
Sukhachevske tailings dump.

The chemical composition of wastes formed the major source of uranium ore minerals (quartz, 
feldspar, hydromica, kaolinite) combined with the chemicals used during ore processing (sulfu-

ric and nitric acid) and products of neutralization of the resulting acidic environment (lime). The 

exposure dose rate of gamma radiation on the surface of the waste not covered by water varies 
from 100 to 1800 mcR/h. Power of equivalent dose of gamma radiation at a height of 1 m above 
the surface of the stored materials is changed in the downstream part from 0.31 to 4.08 μSv/h, in 
the upper reaches of 0.59–4.4 μSv/h, and averages the lower section of 1.91 ± 0.55 μSv/h.

The concentrations of radon-222 in the waste varies from 0.17 ± 0.03 MBq/m3 to 1.73 ± 0.25 MBq/m3  

at a depth of 0.6 m. The flux density of radon-222 from the surface is in the range of 
0.03–1.475 Bq/m2·s.

Figure 1. Location of the main uranium mill tailings deposits around Kamianske city (a) and an aerial photo of 
Sukhachevske tailings dump from http://wikimapia.org (b).
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Liquid waste is represented by the waters of a pond in the central part of the tailings dump 
and pore water in the bulk of the solid waste. The slurry water contains barium, cadmium, 
strontium, cobalt, fluoride, nickel, zinc, silicium, manganese, and aluminum.

The main purpose of another tailings deposit—Base S—was a temporary warehousing of raw 
uranium delivered to the plant for further processing. It was built in 1960 and was in opera-

tion until 1990.

Now, the technology for waste storage at the tailings dump is disturbed: water pumping sta-

tions and conduits were destroyed; the feeding of water to the tailings dump was terminated; 
fencing facilities are destroyed in many places; and sewage water pipeline from PCP to the 
Sukhachevske uranium tailings dump suffered from numerous violations and corrosion. As a 
result, radioactive dust and sewage water have contaminated surrounding areas.

2.2. Ways of radioactive contamination spreading

2.2.1. Wind-driven spread of contaminants

The frequency of repetition directions of the wind is one of the determining factors to assess 
the transport of fine particles from the surface of waste storage. The right side of Kamianske 
city is under prevailing southerly wind spreading. This fact coincides with increment of tech-

nogenic load from the southern side of the second section of Sukhachevske tailings dump [6]. 

The predominant annual average wind frequency of occurrence has its maximum in north-
northwest direction (Figure 2). However, the excess over the rest is minimal.

Average wind speed is in the range of 2.9–4.4 m/s (Table 1).

A large part of the surveillance zone near the Sukhachevske tailings dump is used for agri-
cultural production. About 90% of the total area of farmland is plowed and used for cereals 
(wheat, barley, corn, oats), forages, and technical crops (sunflower and rape) cultivation. Lower 
slopes and bottoms of the ravines are used for haymaking and grazing. The  forest  vegetation 
in the area is represented by forest belts on the plateau and its slopes. Each year, because of 
wind erosion, considerable amount of contaminated dust particles settle on arable lands.

Figure 2. Frequency of wind directions (%) by long-term observations: (а) July average and (b) annual average [7].
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2.2.2. Transfer of contaminants by hydrological network and surface runoff

Surface runoff from contaminated land is one of the major processes responsible for the con-

tamination of water bodies. From the catchment area, the contaminants draining into the 
streams accumulate in floodplains and riverbeds. Rivers, drying out in warm seasons, cause 
secondary wind-driven contamination.

The Sukha Sura river is a tributary of the Mokra Sura river. Meantime, the pool of the Mokra 
Sura river is bordered with pool of the Samotkan river from the northwest, with the river 
Bazavluk in the southwest, with the Tomakovka river from the east, and near the Dnieper 
river from the north and east (Figure 3).

3. Materials and methods

3.1. Target and background spectral separation

Known algorithms for polluting agents’ detection, which are used to analyze the spectrometric 
measurements, are based on the target and background spectral separation [8]. Therefore, the target 
spectra are necessary before starting the analysis of hyperspectral imagery. Before  hyperspectral 
imaging engagement, the spectrometric measurements of contaminated soil samples were per-
formed in ground control points (GCP), which are plotted in Figure 4a. Soil equivalent dose rate 
measurements were performed 10 times for each sample and then averaging (Tables 2 and 3).

Laboratory spectrometric measurements of field samples were carried out using the 
FieldSpec 3FR high-precision portable spectrometer (Figure 4b) developed by Analytical 

Month I II III IV V VI VII VIII IX X XI XII Year

Wind speed (m/sec) 4.2 4.4 4.2 3.9 3.3 3.2 3.0 2.9 3.0 3.5 3.6 3.8 3.6

Table 1. Average month and annual wind speed by long-term observations (m/s) [7].

Figure 3. Basin of the Mokra Sura river.
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Spectral Devices, Inc. (ASD, Inc.) company (http://www.asdi.com//). The main specifications 
of FieldSpec 3FR instrument are as follows: spectral range is 350–2500 nm, spectral sampling 
interval is 1.4 nm inside 350–1000 nm range, 2 nm inside 1000–2500 nm range, and output 
spectral sampling interval is 1 nm (interpolated).

Spectra of the field samples measured using FieldSpec3FR were calibrated as absolute reflec-

tance, including both reflectance value and standard deviation. It is clear that to match the 

Figure 4. Ground control points of in situ measurements (a) and ASD FieldSpec 3FR portable spectrometer used for 
spectrometric measurements of contaminated soil samples (b).

The Sukhachevske tailings dump

Point code С 1 С 2 С 3 С 4 С 5 С 6 С 7 С 8 С 9 С 10

Equivalent dose 
rate (μSv/h)

0.11–
0.16

0.10–
0.14

0.09–
0.12

0.12–
0.16

0.11–
0.14

0.08–
0.12

0.09–
0.13

0.69–
0.80

0.16–
0.19

0.18– 

0.23

Table 2. Results of in situ measurements of soil equivalent dose rate at the Sukhachevske tailings dump.

The Base S tailings deposit

Point code B 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10

Equivalent dose 
rate (μSv/h)

1.15–
1.24

0.38–
0.44

0.21–
0.26

0.15–
0.21

0.39–
0.46

0.39–
1.08

2.22–
2.41

2.02–
2.13

0.14–
0.18

0.13– 

0.17

Table 3. Results of in situ measurements of soil equivalent dose rate at the Base S tailings deposit. Comparative to average 

background within Dniprodzerzhinsk city [7]  equivalent dose rate in points B1, B6, B7 and B8 was 8-17 times more.
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FieldSpec 3FR and Hyperion spectra correctly, the latter one should be recalibrated to land 
surface reflectance too.

The target spectra of soil samples at sites B and C within PCP acquired by FieldSpec 3FR 
spectrometer are shown in Figure 5.

3.2. Hyperspectral imagery time series and preprocessing

The Hyperion imaging spectrometer was part of the NASA’s Earth Observing Mission 1 
(EO-1). Hyperion was the first imaging spectrometer to routinely acquire science-grade data 
from Earth orbit. Its 242 bands covered the visible, near-infrared, and shortwave infrared 
bands (400–2500 nm) with 10 nm bandwidths. The spatial resolution of 30 m was sufficient to 
address most land application issues [9].

Images are available for free download through the United States Geological Survey (USGS) 
EarthExplorer. Timeline includes EO-1/Hyperion products on the 4-year period from 20 July 
2012 to 13 July 2016 (Figure 6). All the images have been radiometrically calibrated based 
on gain and offset values from metadata file. As a result, a stack of 196 bands in 426–2395 nm 
range for each image have been formed.

The images were converted into surface reflectance using MODTRAN 4 atmospheric 
model approach [10]. It uses only approximate specification of sensor band locations 
(i.e., central wavelengths) and their radiometric calibration; no additional metadata were 
required [11].

Figure 5. Target spectra of soil samples: (a) at the Sukhachevske tailings dump and (b) at the Base S tailings deposit.
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Each band of every image of timeline was checked on salt-and-pepper noise in two iterations 
by signal-to-noise ratio (SNR). Bad band list was formed to remove low SNR bands [12]. New 

stack for images consists of 87 bands in 487–2324 nm range. All the images have been clipped 
by image coordinate system and geo-referenced.

3.3. Hyperspectral imagery processing for target spectral mapping

Usually, polluting substances are present in the soil in a small amount and therefore con-

tribute insignificantly to the overall reflection spectrum. A spectral unmixing technique 
is used to detect such small impurities. Coarse spatial resolution of hyperspectral imager 
leads to the possibility of several different spectra capturing jointly, causing errors in their 
separation [13]. If the spectral samples are quite a few, it is possible to separate the differ-

ent spectral one from another, even within a joint field of view. The linear unmixing model 
is used most commonly. This model calculates the contribution of each spectrum  available 

Figure 6. EO-1/Hyperion images over the Sukhachevske tailings dump: Band combinations are R, 640; G, 548; and B, 
487 nm.
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within the field of view. Linear unmixing model provides the homogeneous spectral 
weighing in proportion to their fractions within the field of view [14]. Methods and algo-

rithms for spectral unmixing are developed for decades [15]. In our case the hyperspec-

tral imagery from NASA’s EO-1/Hyperion satellite sensor (https://eo1.gsfc.nasa.gov/) was 
used. This instrument operates in 400–2500 nm spectral range with 30 m spatial resolution 
on the ground surface [16].

The general processing dataflow is described by the flowchart in Figure 7 diagram.

Both hyperion sensor and FieldSpec spectrometer raw data are calibrated for land surface reflec-

tance output. Then, the high spectral resolution FieldSpec data transformed into Hyperion’s 
spectral signatures through the FieldSpec’s spectral convolution with Hyperion’s band spectral 
responses [17]. Now, it is possible to perform pixel-by-pixel matching of the target and current 
signatures for spectral fraction mapping. The matching procedure implies simultaneous reli-

ability evaluation of the target signature retrieving. Further, these estimates are used to adjust 
the values of detected target spectral fractions (the fusion operator). Finally, the distribution 
maps of the target spectra are generated for the entire hyperspectral image scene.

The spectral unmixing model assumes that every ith spectral signature, i = 1 … n, can be writ-
ten as an m-dimensional vector y

i
, where m is the number of spectral samples, and each jth 

target spectrum—by an m-dimensional vector x
j
, j = 1 … p. Let X as the matrix of target spectra 

of size m × p, and α
i
 = (α

1
, α2 … αр)Т as the vector of target spectral fractions in the ith spectral 

signature. Linear mixing model for y
i
 spectrum is expressed by equation:

   y  
i
   = X  α  

i
   +  ε  

i
    (1)

where ε
i
 is the residual vector which can be considered as the additive noise [18].

Figure 7. Hyperspectral imagery general flowchart.
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The main restriction of unmixing is exceedance of the spectral sample number over the num-

ber of target spectra which are unmixed:

  m ≥ p  (2)

If all elements of X matrix are known, then the problem comes down to solving a system 
of linear equations by least squares (LS) method, possibly with some constraints: nonnega-

tively (nonnegatively constrained least squares (NCLS)), sum-to-one equality (sum-to-one 
constrained least squares (SCLS)), or both simultaneously (fully constrained least squares 
(FCLS)). In [8] paper a special algorithm based on modified FCLS method was proposed.

Unfortunately, in practice, as a rule, the all spectral composition of the whole scene is 
unknown. In this case the other method must be applied which extract one or more known 
target spectra, and the rest are considered as unwanted [19]. The TCMI (target-constrained 

minimal interference) filter, proposed in [20] paper, is the most perfect of such methods. In 
TCMI filter the estimation of sum of target spectral fractions in ith signature is equal to wT y

i
, 

where y
i
 is the mixed spectrum and w is the solution of minimization problem:

   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

  w   T   x  j   =  { 
 1 if j is target

   
 0 otherwise

   

     j = 1 .. p  

  ∑ 
i=1

  
n

      ( w   T   y  
i
  )    2  → min

     (3)

Generally, it is can be assumed that the first k spectra are the target and rest k + 1 … p ones are 

unwanted. Then, an explicit formula for w will be as follows:

   w   T  =  ( 1  
1
   .. 1  

k
   ,   0  

k+1
  .. 0  

p
   )    ( X   T   Y   −1  X)    −1   X   T   Y   −1   (4)

where Y =   ∑ 
i=1

  
n

     y  
i
    y  

i
  T  .

If the target signature is alone, then the TCMI filter is simplified to the CEM (constrained 
energy minimization) one [21]. Thereupon,

   w  CEM  T   =   
 x  

1
  T   Y   −1 
 __________ 

 x  
1
  T   Y   −1   x  

1
  
    

where x
1
 is the target spectrum.

In order to apply the TCMI filter for target spectral fractions, the ones estimations in ith mixed 
signature will be.

   α  
TCMIi

   =   ( X   T   Y   −1  X)    −1   X   T   Y   −1   y  
i
    (5)

where α
TCMIi

 is a p-dimensional vector. The TCMI and CEM filters can be reduced to linear 
transform of spectra with the kind of a LS method also known as the OSP (orthogonal sub-

space projection) method [22].
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Any components of α
TCMIi

 vector can be negative. Theoretically, the small value of fraction 
estimate indicates that this spectrum is not present inside mixed signature. Nevertheless, the 
negative values are unacceptable as fraction estimates. To avoid the negative values of esti-
mates, it is reasonable to apply a method similar to the NCLS. Such improvement of the clas-

sical TCMI algorithm was proposed in [23] paper.

Combination of the TCMI and NCLS methods consists in finding a target spectral fractions α
i
 

in the ith mixed signature as a minimum value in the equation system with constraints:

   { 
   ( y  

i
   − X  α  

i
  )    T   Y   −1   ( y  

i
   − X  α  

i
  )  → min 

      α  
ij
   ≥ 0, j = 1, 2 .. p

     

Like TCMI and CEM, the TCMI-NCLS method is reduced to spectral multiplication by the Y–1/2 

matrix and to succeed application of the NCLS method. The TCMI-NCLS algorithm provides a 
higher accuracy than the classical TCMI in spectral unmixing for land cover classification [23].

The processing of hyperspectral imagery for soil contamination mapping of study area was 
carried out through the determination of target spectral fractions in each hyperspectral pixel 
by the TCMI-NCLS algorithm.

Our previous experience has shown that it is necessary to estimate the error probability and 
to adjust the expected values of target spectral fractions (the Fusion procedure) for reliable 
results. Similar approach was applied for soil contamination mapping within Kiev city area 
using the hyperion hyperspectral image [24]. Techniques based on information divergence 
[25], Bhattacharyya statistical distance [26], spectral-topological classifier [27], and fuzzy deci-
sion tree [28] were considered. Finally, the information divergence and Bhattacharyya statisti-
cal distance were involved to adjust the target spectral fractions after TCMI-NCLS algorithm 
applying over input hyperspectral image.

It is possible to ensure further improvement in evaluation reliability by analyzing the time 
series of research area imagery rather than stand-alone images. Time series analysis is a uni-
versal tool for the systems and process state assessment, as well as for its prediction. Time 
series analysis is especially important for the remote sensing data processing [29]. The pur-

pose of time series analysis is to determine the parameters of the occurring change dynamics, 
primarily the trend and periodic components [30]. The Earth’s surface imagery time series 
should be considered as composite of individual time series in each pixel.

4. Results and discussion

In the current research, the subfractions of each target spectrum were summed up, and in this 
way, the maps of spatial distribution of soil with pollution has been formed. Figure 8 contains 

the spatial distribution of the total fractions of target spectra within the scene of the study area. 
Since the applied algorithm detects contaminant fractions only on the surfaces of exposed soil 
and has restrictions for detecting them on other soils covered with snow or vegetation, spatial 
distribution of the total fractions of target spectra is differently represented in the images of 
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certain stages of the season. The least indicative are the images of the warm period when most 

of the study area is covered by natural (in the floodplain of the Sukha Sura river) or agricultural 
(on the arable lands) vegetation as it can be seen from the images of 10 May 2013, 20 July 2013, 
and 13 July 2016. The image for the snowless winter period (18 February 2015) demonstrates 
spatial distribution of the contaminant fractions most entirely, excepting small areas of artificial 
surfaces and areas covered with snow and ice. Spatial distributions of the contaminant frac-

tions on the images of the autumn period (18 September 2014, 17 September 2015) are reflected 
depending on the soil exposure and the way it was cultivated during agricultural works and dif-
fer from year to year. Besides, the detection of contaminant fractions can also be affected by the 
state of the soil at the time of survey, to the extent that it is waterlogged, cultivated, or eroded.

The pixel-by-pixel simultaneous processing of all target spectral maps resulted in spatial dis-

tributions of time series parameters. Because the total number of hyperspectral images in time 
series was not too large, an analysis of their time series turns into the linear trend extracting 
[31]. The linear trend is described by two independent parameters: the average value for the 
entire observation period and the daily mean increment. The results of parameter calculation 
of Hyperion image’s time series linear trend for both scenes are illustrated in Figure 9.

The data on average value and daily increment show hot spots of high technogenic load 
around Rozsoluvata ravine.

Figure 8. Target spectral total fractions by fused TCMI-NCLS algorithm.
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5. Conclusions

Our research was made with intention to find a relation between remotely sensed hyper-

spectral and ground-based measured soil contamination fractions in the area of the uranium 
mill tailings deposits. Other types of urban industrial landscapes were not involved in the 
process of hyperspectral classification. Airborne dust and erosion processes were selected as 
the main reasons of environment pollution with radionuclides and heavy metals in the terri-
tory occupied with two tailings of uranium mill tailings. The spectra of field samples taken 
near the two deposits were compared with hyperspectral images. The maps on average value 
and daily increment assessment are background to classify area with different levels of tech-

nogenic load.

Additionally, our research has confirmed that hyperspectral imaging is a useful and an effi-

cient tool for soil contamination mapping. One allows to detect small contaminant fractions 
on the soil surface by spectral end-member unmixing, if it is not shaded by vegetation or 
other covers. The proposed NCLS-TCMI algorithm is more advanced than the known CEM 
and TCMI ones, and it provides more reliable detection of soil contaminant’s fractions. At the 
same time, the similarity of contaminated and non-contaminated soils’ spectra and the small 
value of detected fractions have resulted in the need for additional adjustment of mapping 
outputs. This specified problem can be mitigated by taking certain measures when preparing 
the input data and carrying out the mapping. First, the reference spectra should be prepared 

Figure 9. Spatial distributions of the time series parameters: (a) daily mean increment and (b) average value for the entire 
observation period.
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not only for soils but also for other land covers within the scene. This will make it possible to 
carry out a full-scale land cover classification and to build a mask of soil of interest only before 
the final mapping. Second, the reference spectra of both contaminated and non-contaminated 
soils are required for contaminants’ reliable detection. This will permit the Bayesian rule 
engagement for similar spectral discrimination.

Future works should be devoted to the development of complete all-in-one technology for 
mapping of soil contamination using hyperspectral imagery and its wide-ranging statistically 
significant probation over variety of test sites.
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