
Chapter

Performance Analysis of OpenCL
and CUDA Programming Models
for the High Efficiency Video
Coding
Randa Khemiri, Soulef Bouaafia, Asma Bahba,

Maha Nasr and Fatma Ezahra Sayadi

Abstract

In Motion estimation (ME), the block matching algorithms have a great
potential of parallelism. This process of the best match is performed by computing
the similarity for each block position inside the search area, using a similarity
metric, such as Sum of Absolute Differences (SAD). It is used in the various steps of
motion estimation algorithms. Moreover, it can be parallelized using Graphics
Processing Unit (GPU) since the computation algorithm of each block pixels is
similar, thus offering better results. In this work a fixed OpenCL code was
performed firstly on several architectures as CPU and GPU, secondly a parallel
GPU-implementation was proposed with CUDA and OpenCL for the SAD process
using block of sizes from 4x4 to 64x64. A comparative study established between
execution time on GPU on the same video sequence. The experimental results
indicated that GPU OpenCL execution time was better than that of CUDA times
with performance ratio that reached the double.

Keywords: HEVC, ME, SAD, GPU, CUDA, OpenCL

1. Introduction

The Graphics Processing Unit (GPU) [1] is a microprocessor present on graphic
cards or game consoles. It has a strong parallel framework initially dedicated to
accelerating graphics tasks. Having this innovation and programming language
General Purpose computation on GPUs (GPGPU) languages such as Compute Uni-
fied Device Architecture (CUDA) [2] and Open Computing Language (OpenCL)
[3] enabled applications development in many domains.

CUDA is an NVIDIA Corporation programming model that runs only on
NVIDIA GPUs. The OpenCL method, an effort of the Khronos Community, is very
close to the CUDA method. However, this is a requirement open for parallel pro-
gramming on various platforms: CPUs, GPUs, Digital Signal Processors (DSPs) and
other types of processors. Taking into account that, OpenCL is able to manage
several devices. The concept of context makes it possible to deal with this problem.
A context designates a set of devices.

1



However, there are two major differences. The first difference is that OpenCL
codes are much larger than CUDA C codes. The multiplatform side of OpenCL
explains this. The second difference is that the kernel is built from the host code
during runtime using the OpenCL runtime library [4].The OpenCL kernel can be
used in two ways, expressly defining the working group’s local and global size and
the local size or indirectly leaving OpenCL to select its global size of working group.
The size of a working group equals a CUDA thread size block, the size of a working
group is also known as ND Range configuration, as seen in Figure 1.

The two languages provide similar hierarchical decomposition of the computa-
tion index space explained on Table 1. The synchronization is available on thread
block/ work-group level only.

This paper proposed an implementation of the Sum of Absolute Differences
(SAD) of the High Efficiency Video Coding (HEVC) Motion Estimation (ME)
algorithm on an NVIDIA GPU using CUDA and OpenCL languages to compare
their performances.

This manuscript is structured as follows: Section 2 introduces the HEVC SAD
algorithm. In Section 3, an overview of ME is given. Section 4 gives and describes
the SAD kernel proposed. In Section 4 the experimental results and the discussion
are given. Finally, Section 5 concludes this paper.

Figure 1.
Model of software programming.

CUDA OpenCL

Grid NDRange

Thread Block Work group

Thread Work item

Thread ID Global ID

Block index Block ID

Table 1.
Execution model terminology mapping.

2

Digital Image Processing Applications



2. HEVC ME feature

The key element of HEVC is the ME, which represent the most time-consuming
task in video coding. Actually, the complexity of ME increases significantly due to
the increase in the coding block size [5]. Inter-prediction requires a great complex-
ity burden of up to 80% [6] in the total encoding process, due to the ME, which
consumes around 70% of the inter-prediction time, as mentioned Figure 2 [6].

ME is performed on a block-by-block basis and supports variable block sizes in
HEVC. This coding tree unit (CTU) structure, which offers a compromise between
a good quality and a less bit-rate, is based on three new concepts: coding unit (CU),
prediction unit (PU), and transform unit (TU) [7, 8].

Each picture is divided into CTU of size 64 � 64 pixels, which can be partitioned
after that into 4 CUs [9] sized from 8 � 8 to 64 � 64 pixels. These regions of CU
contain one or several PUs and TUs.

In the HEVC ME algorithm, SAD and SSD are the most requested functions.
These several cost functions are used to decide the best coding mode and its associ-
ated parameters. An idea of the SAD is given in the next subsection.

3. HEVC SAD algorithm

The calculation of the Sum of Absolute Difference (SAD) is commonly used for
motion estimation in video coding. This is usually the computational intensive part
of video processing [10, 11]. It computes the difference between the pixel intensity
of the current and reference frame macro block. The motion compensation block
size is N � N, where, Currenti,j, and Referencei,jare current and reference frame

block [12].

SAD ¼

X

N�1

i¼0

X

N�1

j¼0

Currenti,j � Referencei,j

�

�

�

�

�

�
(1)

SAD is also used as an error calculation in order to define the similar block and to
evaluate the motion vector in the motion estimation phase [13]. SAD is a simple and
fast evaluation metric. This calculation takes every pixel in a block into an account.
For many motion estimation algorithms, it is therefore very efficient (Figure 3).

4. Proposed SAD kernel

The calculation of the SAD can be parallelized using GUP since it treats each
pixel separately, which corresponds to the architecture of the graphics processors

Figure 2.
HEVC inter-prediction time distribution [6].

3

Performance Analysis of OpenCL and CUDA Programming Models for the High Efficiency Video…
DOI: http://dx.doi.org/10.5772/intechopen.99823



2D-grid of threads blocks which computes all disparities for 2D blocks of the image.
Each thread computes the SAD value for a block in the search range, and a thread
block calculates the entire SAD value for an image block. The benefit is that all
SADs are calculated in the same thread block for an image block.

In [14] the authors implemented the SAD on the general purpose GPU architec-
ture. A significant acceleration of 204x for an image size of 1024 � 768 was
obtained for SAD on the GeeForce GTX 280 compared to the serial implementation
as shown in Figure 4.

Figure 3.
Block matching algorithm based on SAD.

Figure 4.
Typical mapping of a block-matching algorithm to a GPU.

4

Digital Image Processing Applications



The SAD kernel is composed of two main steps. The subtraction of the PU pixels
then the summation. The addition was achieved on the GPU with the parallel
reduction. In step1, the first N/2 elements are added to the other N/2. In the result,
in the step 2, we have N/2 elements to add up. The first half was added to the next
half. The same steps are repeated until there is only one number remaining as
shown in Figure 5 [15].

5. Experimental results

5.1 OpenCL performance on GPU compared the CPU one

OpenCL offers a convenient way to construct heterogeneous computing systems
and opportunities to improve parallel application performance. As first step, the
OpenCL SAD kernel was implemented in two platforms: CPU with 4 cores at fre-
quency 2.5 GHz and an NVDIA GPU 920 m of 954 MHz as frequency. The SAD block
dimensions are from 4� 8 to 64� 64 pixels. A comparative analysis was made on the
same video between the CPU and GPU is seen in Figure 6. It is clear from the next
figure that the GPU execution time is greater than CPU execution (Figure 7) [16].

When using the Eq. (2), Figure 6 indicates the speed up [17] of the both
implementations.

Speed� up ¼ CPU execution time=GPU execution time (2)

The speed up shows that the GPU platform is more efficient than the CPU
platform, and this is due to the efficient parallel architecture of GPU compared to
CPU. To validate the OpenCL code compared to the CUDA code the next study is
proposed.

5.2 Execution performance OpenCL GPU compared to CUDA GPU

Running the application through GPU requires these steps as it is shown in
Figure 8. For OpenCL, approach contains GPU detection and kernel compilation.

Figure 5.
Reduction technique.

5

Performance Analysis of OpenCL and CUDA Programming Models for the High Efficiency Video…
DOI: http://dx.doi.org/10.5772/intechopen.99823



The CPU input is read from the host to the device by all frameworks; the kernel is
executed on the GPU; the device is returned to the host by copy data. Finally, the
results are displayed on CPU.

Table 2 reports the kernel running time for different size of Prediction Unit
(PU) (designed the block size used). In order to get repeated average times, we
fixed each problem 10 times for both CUDA and OpenCL.

We use a normalized performance metric, called Performance (PR), to compare
the performance of CUDA and OpenCL (Figure 9).

PR ¼ CUDA execution time=OpenCL execution time (3)

If performance ratio is greater than 1, OpenCL will give a better results com-
pared to CUDA language. As shown in Figure 8, the performance ratio indicates
that the OpenCL kernel running time is better than CUDA kernel running for each

Figure 6.
Performance OpenCL comparison with GPU and CPU platforms.

Figure 7.
Speed-up using OpenCL language.

6

Digital Image Processing Applications



size block. Similar results are obtained by Frang et al. [18] and Exterman [19],
respectively.

5.3 Comparative study

In this section, we compared the time performance of our proposed implemen-
tation to State-of-the-Art process [20, 21].

In the work presented by Xiao et al. [20], when comparing the result of the
proposed with the HEVC reference software, experimental results show that the
proposed GPU implementation achieves 34.4% encoding time reduction on average
while the BD-rate increase is only about 2% for a typical low delay setting. Another
interesting work is proposed by Karimi et al. [21] used a specific real-world appli-
cation to compare the performance of CUDA with NVIDIA’s implementation of

Figure 8.
Algorithm flow.

Block sizes GPU execution time (μs)

CUDA language OpenCL language

CU 8 � 8 PU 4 � 8 6.63 5.592

PU 8 � 4 6.885 5.482

PU 8 � 8 7.573 5.831

CU 16 � 16 PU 8 � 16 8.224 6.013

PU 16 � 8 8.402 5.909

PU 16 � 16 8.992 6.356

CU 32 � 32 PU 16 � 32 10.17 6.451

PU 32 � 16 9.037 6.503

PU 32 � 32 9.729 6.877

CU 64 � 64 PU 32 � 64 10.265 7.964

PU 64 � 32 13.1 7.297

PU 64 � 64 13.687 8.614

Table 2.
GPU and CPU application running times in seconds.

7

Performance Analysis of OpenCL and CUDA Programming Models for the High Efficiency Video…
DOI: http://dx.doi.org/10.5772/intechopen.99823



OpenCL. Contrary to our results, CUDA’s kernel execution was here consistently
faster than OpenCl’s, despite the two implementations running nearly identical
code. CUDA seems to be a better choice for applications where achieving as high a
performance as possible is important. Otherwise the choice between OpenCL and
CUDA can be made by considering factors such as prior familiarity with either
system, or available development tools for the target GPU hardware. The perfor-
mance will be dependent on some variables, including code quality, algorithm type
and hardware type.

6. Conclusion

OpenCL is quite competitive with CUDA on the NVIDIA graphics processor in
terms of performance. In this work, the use of OpenCL as a portable language for
the development of GPGPU applications was studied. SAD is the largest part of
runtime and calculation in motion estimation the reduction technique was used to
implement the SAD, which significantly allows reducing the run time. The perfor-
mance ratio was equals to 2 when comparing the OpenCL implementation to the
CUDA one.

Paralleling multiple GPU algorithms could improve performance. In addition to
the ME algorithm of the Joint Collaborative Video Coding Team (JCT-VC) [22], we
assume that the suggested concept can also be applied.

Conflict of interest

The authors declare no competing interests.

Figure 9.
Performance ratio.

8

Digital Image Processing Applications



Author details

Randa Khemiri1,2*, Soulef Bouaafia1, Asma Bahba3, Maha Nasr3

and Fatma Ezahra Sayadi3

1 Faculty of Sciences, Electronics and Microelectronics Laboratory, University of
Monastir, Monastir, Tunisia

2 Higher Institute of Computer Science and Multimedia Gabes, University of Gabes,
Tunisia

3 Networked Objects, Control, and Communication Systems Laboratory (NOCCS),
National Engineering School of Sousse, University of Sousse, Sousse, Tunisia

*Address all correspondence to: randa.khemiri@gmail.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

9

Performance Analysis of OpenCL and CUDA Programming Models for the High Efficiency Video…
DOI: http://dx.doi.org/10.5772/intechopen.99823



References

[1]Osama, M., Wijs, A.: Parallel SAT
Simplification on GPU Architectures. In:
Vojnar T., Zhang L. (eds) Tools and
Algorithms for the Construction and
Analysis of Systems. TACAS. Lecture
Notes in Computer Science, 114(27)
(2019).

[2] Yang, X., Jian, L., Wu, W. et al. J
Real-Time Image Proc, https://doi.org/
10.1007/s11554-018-0803-y, 2019.

[3] Karimi, K., Dickson, N. G., Hamze,
F.: A Performance Comparison of
CUDA and OpenCL (2010).

[4] Tsuchiyama, R., Nakamura, T.,
Iizuka, T., Asahara, A.: The OpenCL
Programming Book. Fixstars
Corporation (2010).

[5] Richardson, I.: ‘HEVC an
introduction to high efficiency video
coding’, VCodexVideo Compression, h
ttp://vcodex.com/, accessed 15
January 2016.

[6]Kim, J., Jun, D.S., Jeong, S., et al.: ‘An
SAD-based selective bi-prediction
method for fast motion estimation in
high efficiency video coding’, ETRI J.,
2012, 34, (5), pp. 753–758.

[7] Tai, S., Chang, C., Chen, B., et al.:
‘Speeding up the decisions of quad-tree
structures and coding modes for HEVC
coding units’, Adv. Intell. Syst. Appl.
(SIST 21), 2013, 2, pp. 393–401.

[8]Hyang-Mi, Y., Jae-Won, S.: ‘Fast
coding unit decision algorithm based on
inter and intra prediction unit
termination for HEVC’. IEEE Int. Conf.
Consumer Electronics (ICCE), Las
Vegas, 2013, pp. 300–301.

[9] Khemiri, R., Bahri, N., Belghith, F.,
Bouaafia, S., Sayadi, F.E., Atri, M.,
Masmoudi, N. : ‘Fast Motion
Estimation’s Configuration Using
Diamond Pattern and ECU, CFM, and

ESD Modes for Reducing HEVC
Computational Complexity’. In book:
Digital Imaging. Publisher: IntechOpen,
pp. 1-18.

[10] Praveen, K., Kannappan, P.,
Ankush, M., Guna, S.: Parallel Blob
Extraction using Multicore Cell
Processor. Advanced Concepts for
Intelligent Vision Systems (ACIVS),
320–332 (2009).

[11] Vanne, J., Aho, E., Hamalainen, T.
D., Kuusilinna, K.: A High-Performance
Sum of Absolute Difference
Implementation for Motion Estimation,"
Circuits and Systems for Video
Technology, IEEE Transactions on, 16
(7), 876-883 (2006).

[12] The individual procedures of
OpenCL: processing program coding,
separating individual tasks and
transferring them to the respective
processors. © Khronos-Group.

[13] Junaid, T., Sam, K., Hui, Y.: HEVC
intra mode selection based on Rate
Distortion (RD) cost and Sum of
Absolute Difference (SAD), Journal of
Visual Communication and Image
Representation, 35, 112-119 (2016).

[14] Jinglin, Z., Jean François, N., Jean-
Gabriel, C.: Implementation of Motion
Estimation Based On Heterogeneous
Parallel Computing System withOpenc.
14th Ieee International Conference On
High Performance Computing and
Communications (HPCC), Liverpool,
United Kingdom (2012).

[15] Khemiri, R., Kibeya, H., Sayadi, F.
E., Bahri, N., Atri, M., Masmoudi, N.:
Optimization of HEVC motion
estimation exploiting SAD and SSD
GPU-based implementation. IET Image
Processing, 12(2), 243-253 (2018).

[16] Khemiri, R., Chouchene, M., Barhi,
H., et al.: Fast SAD algorithm of HEVC

10

Digital Image Processing Applications



video encoder on two successive GPU
generations’, Int. J. Imaging Robot, 17,
(2), 1–11 (2017).

[17] Chouchene, M., Sayadi, F., Bahri,
H., Dubois, J., Miteran, J., Atri. M.:
Optimized Parallel Implementation of
Face Detection based on GPU
component. Microprocessors and
Microsystems, 393–404 (2015).

[18] Jianbin, F., Ana Lucia, V., Henk, S.:
A Comprehensive Performance
Comparison of CUDA and OpenCL.
International Conference on Parallel
Processing, ICPP Taipei, Taiwan (2011).

[19] Exterman, D.: CUDA vs OpenCL:
Which to Use for GPU Programming,
(2021).

[20] Xiao, W., Wu, F., Xu, J., Shi, G.:
Fast HEVC Encoding with GPU Assisted
Reference Picture Selection, In: Huet B.,
Ngo CW., Tang J., Zhou ZH.,
Hauptmann A.G., Yan S. (eds)
Advances in Multimedia Information
Processing – PCM 2013. PCM 2013.
Lecture Notes in Computer Science,
Springer, 8294, https://doi.org/10.1007/
978-3-319-03731-8_22 (2013).

[21] Karimi, K., Dickson, N. G.,
Hamze F., A Performance Comparison
of CUDA and OpenCL, Cornell
University, https://arxiv.org/abs/
1005.2581 (2011).

[22] The Joint Collaborative Team on
Video Coding (JCT-VC) https://hevc.
hhi.fraunhofer.de/.

11

Performance Analysis of OpenCL and CUDA Programming Models for the High Efficiency Video…
DOI: http://dx.doi.org/10.5772/intechopen.99823


