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Abstract

Electroencephalography (EEG) has evolved over the years to be one of the primary
diagnostic technologies providing information concerning the dynamics of spontaneous
and stimulated electrical brain activity. The core question of EEG is to acquire the precise
location and strength of the sources inside the human brain by knowledge of an electri-
cal potential measured on the scalp. But in what way is the source recovered? Leaving
aside the biological mechanisms on the cellular level responsible for the recorded EEG
signals, we pay attention to the mathematical aspects of the narrative. Our goal is to
provide a brief and concise introduction of the mathematical terminology associated
with the modality of EEG. We start from the very beginning, presenting step by step the
mathematical formulation behind EEG in a simple and clear manner, keeping the math-
ematical notation to a minimum. Whilst we serve only the key relations for the
described problems, we focus specifically on the limitations of each modelling approach.
In this fashion, the reader can appreciate the beauty of the formulas presented and
discover every single piece of information encoded within these formulas.

Keywords: EEG, mathematical analysis, forward problem, inverse problem, spherical
conductor, ellipsoidal conductor

1. Introduction

The human brain is a remarkable and fascinating organ exhibiting a tremendous complexity. It

makes us unique and defines who we are. In spite of our scientific and technological progression,

we do not know the particulars of its operating, and as we delve into its secrets, various surprises

emerge, for example, nearly 100 previously unidentified brain areas have been recently discov-

ered [1]. Consisting of an inconceivable network of interconnected nerve cells and fibres,
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continuously transporting and processing information, the brain is extremely vulnerable and

requires paramount protection. Several layers of safety are incorporated starting with three

connective sheets of tissue, called the meninges containing the cerebrospinal fluid, followed by

plates of bones, the skull. Above machinery safeguards the brain from mechanical damage. On

the other hand, a sophisticated barrier within the brain provides a natural defence against toxic

or infective agents.

Examining the anatomy of the brain, we recognize three distinct regions. The largest part of the

brain is the cerebrum, divided into two hemispheres. The outermost layer of the cerebrum is

the cerebral cortex, consisting of four lobes. Cognitive awareness has its origins here. The

second largest part of the brain is the cerebellum, located underneath the cerebrum and

responsible for motor control and learning. Last, but not least, an integral part of the brain

connecting the cerebrum with the spinal cord is the brainstem, regulating reflexes and crucial,

basic life functions. Detailed information can be found in [2].

The operational status of the brain is based on an alternating chain of electrical and chemical

events. On the microscopic level, encoding and transmitting of information via electrochemical

signals is achieved by the active participation of neuronal and non-neuronal constituents. Brain

cells communicate through synaptic transmissions by controlling chemical transmitters or ionic

currents which flow across their membranes. As a consequence, an electromagnetic field is gener-

ated. For a far-reaching introduction on the subject, see [3]. The question at hand now lies in the

possibility exploiting these provoked fields. It seems only reasonable that if a substantial number

of cells form a critical mass, which activates synchronously, the emerging electric and magnetic

field should be detectable. This is indeed the case and a deeply rooted concept in electrophysiol-

ogy [4, 5]. From an electrofunctional point of view, the ionic micro-flow within a single brain cell

creates an opposite polarity between two point electrical charges very close together, leading to the

notion of a dipole, a physical quantity one could say consists of the ‘fundamental unit', which

produces the observed fields. Dipoles are characterized by a vector called moment, the product of

the charge and distance, visualized as an arrow pointing from a minimum (negative charge) to a

maximum (positive charge), ergo featuring direction and magnitude. For that reason, it may be

argued that the macroscopic description of the brain's activity is best achieved when simulated as

an array of dipoles, that is, a non-uniform distribution of positive and negative charges. According

to the latter, if a small neighbourhood is stimulated, an excessive number of dipoles concur and

their electric fields would add or cancel one another depending on the direction. This complicated

and difficult situation can be avoided by introducing the concept of the equivalent current dipole

(ECD), namely a single dipole which generates the identical electric field as all of the individual

dipoles together, hence summarizing the net effect of all microscopic currents located in the

distinct region of the brain under consideration. This is a widely used approximation concept in

the framework of neuroelectromagnetism [6, 7]. On the other hand, when the exertion is no longer

confined to a focal region of the brain, then every one of these regions is simulated by an

equivalent current dipole, leading to a distribution of sources.

The main task and problem is to correlate active regions with associated generated electric

fields. This essential step is closely connected with the installation of physical structures,

namely a boundary or number of boundaries enclosing distinct regions with specific physical

characteristics, such as conductivity. The head model obtained is termed the volume conductor

model. Clearly, the level of details incorporated into the head model provides an analogous
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degree of operational freedom when it comes to investigate how the fields generated by brain

cells are transmitted through various biological tissues towards measurement apparatus. As a

result, the volume conductor model consists of the physical foundation for source analysis,

which is categorized into two major problems. The first one is associated with the calculation

of the electric potential, generated by known electrochemical sources within the brain, at

precise points at the surface of the scalp. This is the forward electroencephalographic (EEG)

problem [8–11]. The forward EEG problem has been extensively scrutinized for over 60 years

since Wilson and Bayley [12] attempted to quantify the interplay between neuronal activity

and the potentials they generate at the scalp. The reconstruction of the sources responsible for

the recorded values is called the corresponding inverse EEG problem [13].

As of today, a high level of details can only be achieved with the aid of numerical models,

which are generally categorized into boundary element models (BEMs) and finite element

models (FEMs). Whereas boundary element models are adequate to portray major tissue

compartments, such as the cerebrum and skull, they fail to represent detailed anatomical

information within the compartments, such as the cerebral folding [14, 15]. Finite element

models, on the other hand, are efficient in capturing these details, but are labour intensive

and computationally demanding [16, 17].

Nonetheless, in order to gain a deeper comprehension of the problem a rigorous mathematical

analysis is essential in providing a vital step towards the recognition of the underlying phenomena

as well as identifying the limitations of the developed algorithms. The importance of mathematical

analysis cannot be emphasized enough, since (i) it allows testing the impact of modifications

regarding various variables upon the output of the system and provides further insight into

underlying physical behaviour. (ii) It serves as validation tools for the numerical models.

2. The mathematical formulation of the EEG problem

Think of the following scenario. You are conducting a series of experimental or clinical

studies, but out of curiosity and foremost for a better understanding of the way the system

under consideration behaves, you desire to build a mathematical model interpreting as best

as possible your measurements. But, where to begin? First of all, we will need a framework

which is capable of, at least to a degree, explaining what happens and why. If such a

framework does not exist, we have to formulate one. As mentioned in Section 1, the electro-

chemical activity of brain cells results in bioelectric sources which generate an electric field

in the neighbourhood of the cells. This field varies generally in time. Consequently, electro-

magnetic phenomena materialize. Luckily for us, the framework interpreting this kind of

phenomena and the starting point of our endeavour are Maxwell's equations, a set of four

equations, namely

∇� Eþ
∂B

∂t
¼ 0, ∇�H ¼ Jþ

∂D

∂t
, ∇ � B ¼ 0, ∇ �D ¼ ρ: ð1Þ

The inverted delta present in Eq. (1) is called del, or nabla, and consist of a mathematical device

named operator, a symbol indicating that an action must be performed on what follows. The
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algebraic operations of the dot (�) and cross (�) product between two vectors should not be

confused with the elementary operation of multiplication.

Maxwell equations connect the electric fields E and B, the displacement field D and the

magnetizing field H with their sources, that is, the charge density ρ and the current density J:

These fields have direction and magnitude and must be represented as vector functions (bold

capital letters). The above set of equations is also called Maxwell's macroscopic equations, and

in order to apply them, a relation between D and E, as well as H and B must be specified. For

materials without polarization and magnetization, they are

D ¼ εE, H ¼ μ�1B, ð2Þ

where ε is the relative permittivity (dielectric constant) of the material and shows how strong

the material influences the electric field E: Similarly, μ is the magnetic permeability of the

material and provides the corresponding influence on the magnetic field B:

In what follows, we shall consider the following instance. For a finite medium, we introduce the

characteristic dimension R, namely the smallest sphere with radius R which envelopes the

medium under consideration. On the special occasion where the wavelength λ of the wave

generated by the electromagnetic field is much larger than the characteristic dimension of the

medium, namely λ>>R, then the corresponding time rates of change are very small. The latter

observation leads to the quasi-static theory of Maxwell's equations, which take the form (see Ref.

[18] for details)

∇� E ¼ 0, ∇�H ¼ J, ∇ � B ¼ 0, ∇ �D ¼ ρ: ð3Þ

It can be shown [19] that for a medium the size of the brain, R equals about 20 cm whereas λ

about 400 m. Therefore, λ ffi 2000R and the application of Maxwell's quasi-static equations are

justified. Replacing Eq. (2) into Eq. (3), we immediately find

∇� E ¼ 0, ∇� B ¼ μJ, ∇ � B ¼ 0, ∇ �D ¼ ε�1ρ: ð4Þ

Let us focus on the first of Eq. (4). The curl of a vector, that is, the operator ∇� captures the idea

of how the vector field is circulating around a central axis. From this point of view, the electric

field is irrotational. By a well-known identity of vector calculus, if the curl of a vector is zero,

then the vector field in question can always be expressed as the gradient of a scalar field. In our

case, the absence of circulation of E is caused by a continuously decreasing electric potential U

along the direction of the electric field,

E ¼ �∇U: ð5Þ

An inherit characteristic of linear systems is the principle of superposition. Here, the electric

fields are superposable, meaning that the electric field generated by a number of charges can

be expressed as the vector sum of the electric fields generated by each charge separately; it
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follows from Eq. (5) that the electric potentials are superposable as well. As a result, it is much

easier to compute the provoked potential than the corresponding electric field.

At this point, the benefit of Eq. (5) is not clear yet. To show the usefulness of Eq. (5), we utilize a

theorem of vector calculus stating that the divergence of the curl of a vector always vanishes.

Applying the latter on the second of Eq. (3), we are left with

∇ � J ¼ 0 ð6Þ

and the current density of J is said to be solenoidal and expresses the steady-state condition

that the charge density ρ is not changing in time. Moreover, an applied field in a resistive

material, such as the brain, will induce a current of density Ji, directly proportional to the

applied field provided by a generalization of Ohm's law due to Kirchhoff (for a detailed

historical analysis see Ref. [20]),

Ji ¼ σE, ð7Þ

where the proportionality constant σ is termed conductivity. Therefore, the total current is

given as the sum of the primary current Jp responsible for the electric field, and the induced,

or secondary, current Ji given by Eq. (8), as

J ¼ Jp þ σE: ð8Þ

Combining Eqs. (5), (6) and (8), we arrive at the following differential equation:

∇ � ðσ ∇UÞ ¼ ∇ � Jp, ð9Þ

which must be satisfied by the electric potential U: Simple vector calculus shows that

∇ � ðσ ∇UÞ ¼ ∇U � ∇σþ σ ΔU, ð10Þ

where the symbol Δ is called the Laplacian operator.

When the conductivity varies in space, that is, the medium under consideration is inhomoge-

neous, consisting of compartments which are not of the same material, the quantity ∇σ differs

from zero. On the other hand, when the conductivity is constant in space (homogeneous,

isotropic) or constant by direction (anisotropic), then the gradient of σ vanishes. In the latter

case, the electric potential U is related to the primary current Jp by Poisson's equation,

ΔU ¼ σ
�1
∇ � Jp: ð11Þ

Note that the ‘source term’, namely the right-hand side of Eq. (11), is not the primary current per

se, but the divergence of Jp multiplied by 1 over σ. In view of Eq. (11), the forward EEG problem

is now formulated as follows. Given the primary current density Jp, calculate the electric potential
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on the surface of the medium. On the contrary, calculating Jp from the knowledge of U consists

of the inverse EEG problem.

So far, we managed to derive at an equation which allows the computation of the electric

potential, but our framework is still incomplete. Because the medium under consideration is

finite, that is, confined in space by a closed surface-boundary, we need a set of additional

constrains, the so-called boundary conditions, which U has to satisfy as well. This stems from

the fact that when the medium, in which a wave propagates, displays alterations in its material

properties (e.g. different conductivities), the wave is reflected, transmitted or both. In any case,

at the interface S separating two regions V1, V2 the wave and its normal derivative must be

continuous at the interface, namely

U1 ¼ U2 and σ1∂νU1 ¼ σ2∂νU2 on S, ð12Þ

where σ1, σ2 denote the conductivity of V1, V2, respectively. Above relations are valid only if

no charged layer near the interface exists, that is, the absence of primary currents in the vicinity

of S is secured. The first of Eq. (12) is known as Dirichlet condition, whereas the second is

called a Neumann condition. Neumann conditions must be supplemented by the compatibility

condition that the sum of all contributions of the normal derivative ∂νU on S must cancel out,

that is,

∮ ∂νU dS ¼ 0: ð13Þ

Further note that, by virtue of ∂νU, the value of the electric potential is non-unique up to an

additive constant. Eqs. (11)–(13) are all we need in order to tackle the EEG problem.

3. The brain modelled as a volume conductor

The next step in our journey is to introduce a geometry simple enough in order to carry out the

mathematics associated, still adequate realistic in order to illustrate what happens. In practice,

above specifications are never met. On the grounds that our interest is focused on the deriva-

tion of analytic formulas which will allow us to identify and recognize underlying phenomena,

we restrain ourselves to the study of two particular geometries: (i) the spherical and (ii) the

ellipsoidal. The distinctness of these two geometries lies in a different representation of the

same point in space.

Before we continue, we have to incorporate our assumption regarding the nature of the

primary current. For a single, localized dipole at point r0 and moment Q, we consider

Jp ¼ Qδðr� r0Þ, ð14Þ

where the functional δðrÞ is the Dirac measure, a concept included in the analysis by the reason

of representing the concentration of Jp to a single point [21].
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3.1. The homogeneous spherical brain

The simplest possible geometry in order to represent the brain consists of a spherical homoge-

neous conductor with radius a and conductivity σ. The reasons are twofold. First of all, it is a

good fit to the actual brain. Secondly, it is the only geometry for which data regarding

geometrical and physical aspects are immediately available. For example, knowledge of the

brains volume can be directly translated into the radius of the corresponding sphere. Impor-

tantly, the spherical geometry allows the deduction of explicit expressions for the quantities

involved and therefore permits a thorough investigation of the behaviour of the system under

scrutiny without running every single time a—mostly time-consuming—computer simulation.

The obvious question at hand is what part of the brain do we model? Clearly, since our initial

model is based on homogeneity, it cannot represent the brain en masse, as mentioned in

Section 1. So we start with the uppermost region of the human central nervous system, the

cerebrum. It is therefore of uttermost importance to be aware of the strengths and weaknesses

of the proposed model(s). Without any doubt, the homogeneous spherical model presents an

unrealistic assumption of the brain-head system. So why should we bother with theoretical

models? The answer is relatively simple. We need them in order to be able to draw conclusions

when we move to build models of higher complexity. They serve the important task revealing

gaps between forthcoming models, but more substantially they allow us to test the reliability

of the introduced algorithms in a straightforward and timely matter. On the other hand, with

the homogeneous model, activity in subcortical structures is impossible to detect. Moreover,

the influence of the bone architecture enclosing the brain cannot be assessed as well. The latter

implies that we actually do not record EEG data at all, but rather monitor the electrophysiol-

ogy of the (exposed) cerebrum by electrocorticography (ECoG), or intracranial electroenceph-

alography (iEEG).

3.1.1. Forward and inverse problem for a single dipole and multiple dipoles

Having aforementioned remarks in mind, let's begin finding a relation which connects the

electric potential on the surface of our conductor model with the electric activity of cells inside.

Our goal is achieved solving Eq. (11) combined with expression (14), namely

ΔU ¼ σ
�1Q � ∇δðr� r0Þ, r < a ð15Þ

supplemented by the condition

∂rU ¼ 0, r ¼ a, ð16Þ

which follows at once from the second condition (12) expressing the circumstance that the

conductivity outside the brain vanishes, and expresses the ‘reality’ that no current exists

outside the brain.1 Note that the compatibility condition (13) is automatically satisfied by

Eq. (16).

1This statement is true only for a homogeneous conductor as described in Section 3.
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Employing analytic techniques, the interested reader can find all details in Ref. [22]; it is

not hard to show that the solution regarding Eqs. (15) and (16) evaluated at the surface is

given as

Usurfðr̂, r0Þ ¼
X

∞

n¼1

X

n

m¼�n

Am
n ðr̂0ÞY

m
n ðr̂Þ, A

m
n ðr̂0Þ ¼

Q

σnanþ1
� ∇r0

�

rn0Y
m

n ðr̂0Þ
�

, ð17Þ

where a hat ‘^’denotes the unit vector, Y and Y are the spherical harmonics and corresponding

complex conjugate, respectively, which are complex-valued functions, the latter with equal real

part and imaginary part equal in magnitude but opposite in sign [23].

Expression (17) can be simplified using a summation formula [22, 24] yielding the following

closed form:

Usurfðr̂, r0Þ ¼
Q

4πσ
� 2

R

R3
þ

1

aR

Rr̂ þ R

Rþ r̂ � R

� �

, R ¼ ar̂ � r0, ð18Þ

where an italics-type capital letter denotes the magnitude of the corresponding vector. Eq. (18)

consists of the simplest, straightforward expression regarding EEG data.

Let us now concentrate on the most important aspect when it comes to imaging modalities,

such as EEG, namely the problem of identifying the primary source by means of a generated

electromagnetic field. We recall that the notion of an equivalent dipole source has been

adopted in order to summarize the entire microscopic currents located in the vicinity of a

specific area in the brain. Notwithstanding, there does not exist an exclusive source configura-

tion for each set of electroencephalographic measurements, constituting the corresponding

inverse problem non-unique. The only way to eliminate non-uniqueness is to provide supple-

mentary information's, that is, imposing additional assumptions. By introducing the assump-

tion of an equivalent dipole source, the inverse problem can be solved exactly as we will show

in the sequel.

The inverse problem for the homogeneous spherical conductor is formulated as follows. From

surface measurements, we identify the potential Usurf, given via Eq. (17), from which we have

to calculate the position r0 ¼ ðx0, y0, z0Þ and moment Q ¼ ðQx, Qy, QzÞ of the dipole. In our

case, this is easily achieved, noting that every detail regarding r0 and Q are encoded into the

coefficients Am
n of expansion (17). The latter are evaluated with the aid of the orthogonality

condition

Am
n ¼ ∮Usurfðr̂, r0ÞY

m

n
ðr̂ÞdSðr̂Þ: ð19Þ

A word of caution with respect to Eq. (19). In order to employ the latter, we must know the

surface potential on every single point via Eq. (17). In practice, the function Usurf is acquired as

a continuous function via interpolation of the discrete set of EEG measurements. Moreover,

since each vector contains three coordinates, in order to pinpoint the position and moment of

the dipole, at least six equations are required. As a result, we expand the coefficients Am
n , given
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via Eq. (17), for n ¼ 1 and 2 providing eight relations in total. The first three of them, namely

A�1
1 , A0

1 and A1
1, are proportional to the components Qx, Qy, Qz of Q, and thus we find

Qx ¼
ffiffiffiffiffiffi

2π

3

r

σa2ðA�1
1 �A1

1Þ, Qy ¼ �i

ffiffiffiffiffiffi

2π

3

r

σa2ðA�1
1 þA1

1Þ, Qz ¼ 2

ffiffiffiffi

π

3

r

σa2A0
1, ð20Þ

where i denotes the imaginary unit. It is not hard to show that whereas the difference A�1
1 �A1

1

is real valued, the corresponding sum is imaginary. The remaining five coefficients Am
2 for n ¼ 2

and m ¼ �2,�1,0,1,2 connect the position of the dipole with its moments which are eliminated

utilizing Eq. (20). Again, after some algebra we have

x0 ¼
a
ffiffiffi

5
p A�2

2

A�1
1

�A2
2

A1
1

 !

, y0 ¼ �i
a
ffiffiffi

5
p A�2

2

A�1
1

þA2
2

A1
1

 !

, z0 ¼
2a
ffiffiffi

5
p 1

A1
1

A1
2 �

A2
2A

0
1

ffiffiffi

2
p

A1
1

 !

: ð21Þ

There is another way to recover the solution to the inverse problem for a single dipole. The

approach illustrated provides a glimpse into the beauty of mathematical analysis. We will

show that the uniqueness of the inverse problem, for a single dipole, is closely connected with

the condition of attaining certain relations connecting the measured data. Considering that we

need six equations to identify the source, we expand Eq. (17) for n ¼ 1, 2 and express the

resulting relation in Cartesian coordinates, yielding [25]

Usurf ¼ A1x0 þ A2y0 þ A3z0 þ B1x0
2 þ B2y0

2 þ B3z0
2 þ C1x0y0 þ C2x0z0 þ C3y0z0 þ… ð22Þ

where again the first three coefficients A1, A2, A3 are proportional to the components of Q,

whereas the remaining six involve products of the position of the dipole with its moments.

Substituting the expressions for Qx, Qy, Qz into B1, B2, B3, C1, C2, C3, we arrive at the linear but

overdetermined system Ar0 ¼ b with

A ¼

2A1 �A2 �A3

�A1 2A2 �A3

�A1 �A2 2A3

A2 A1 0
A3 0 A1

0 A3 A2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

, b ¼ 6a2

5

B1

B2

B3

C1

C2

C3

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: ð23Þ

Adopting Gauss elimination, we find that the position of the dipole is given as

x0 ¼
3

2A1A2A3
ðA1aÞ � ~b, y0 ¼

3

2A1A2A3
ðA2aÞ � ðℝz

~bÞ, y0 ¼
3

2A1A2A3
ðA3aÞ � ðℝy

~bÞ, ð24Þ

where a ¼ ðA1,A2,A3ÞT , ~b ¼ ð�C1,C2,C3ÞT , T denotes transposition, whereas ℝy and ℝz denote

the rotation matrices about the y- and z-axis, respectively.

A very important aspect, revealed by the above analysis, is evidence that the dipoles position

specified by relations (24) is unique, only if the recorded values for the coefficients present in

Eq. (22) satisfy the following relations:
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2A1A2A3ðB3 � B2Þ þ 3A1ðA
2
2 � A2

3ÞC2 þ 3ðA2
2 þ A2

3ÞðA3C1 � A2C3Þ ¼ 0,

�2A1A2A3ðB2 þ 2B3Þ þ 3A2ðA
2
3 � A2

1ÞC3 þ 3ðA2
1 þ A2

3ÞðA1C2 � A3C1Þ ¼ 0:

ð25Þ

Indeed, replacing the analytic expressions for the coefficients of Eq. (22) into Eq. (25), these are

trivially satisfied. Complementary, we briefly state that the least-square solution to Eq. (23) is

r0 ¼ A
þbþ ðI� A

þ
AÞY, where Aþ is the pseudoinverse of A, and Y is an arbitrary vector [26].

Evidently, the presence of Y constitutes the solution non-unique. Nonetheless, for a single

dipole the equality A
þ
A ¼ I holds true, leading to the minimum norm solution r0 ¼ A

þb:

However, in ‘reality’ EEG recordings provide values for the coefficients Am
n , as given in

Eq. (17), but our uniqueness criteria (25) are bound to the coefficients of Eq. (22). So, how do

the correlate? Well, connection formulas are established by expanding the first eight terms of

the surface potential (17). These terms are then rearranged to form an expression similar to

Eq. (22). Comparing the resulting relation with Eq. (22) provides the connection. The final

formulas can be found in Ref. [25].

Until now, we attended the situation where brain activity is simulated by a single dipole. What

happens if a larger area or multiple areas are stimulated? Is a single dipole adequate to

describe the event? Multiple areas of the cortex are often expected to be active at the same

time, so the answer must be no. In Section 2, we mentioned that the electric fields are super-

posable. As a consequence, the surface potential due to N-dipole sources is computed as the

sum of the potentials Uj corresponding to dipoles located at r0j and strength Qj: In order to

calculate their positions and moments, we require at least 6N equations. Although an analytic

inversion algorithm can be derived [27], the steps necessary are cumbersome and beyond the

scope of the present document. It remains, however, the question of identifying multiple

localized sources by means of a recorded potential. Is it possible to be led into an erroneous

conclusion when we have to recognize the number of activated areas? This situation can occur

when data (coefficients) received are falsely interpreted as evoked by a single dipole. To show

this, we first rewrite the surface potential resulting from a single dipole (17), in the form

Usurfðr̂, r0Þ ¼
1

4πσ

X∞

n¼1

2nþ 1

nanþ1
ðQ � ∇r0Þr

n
0Pnðr̂ � r̂0Þ, ð26Þ

employing the addition theorem for Legendre functions Pn: The same expression is valid on

the occasion of N dipoles, that is,

Usurfðr̂, r0jÞ ¼
1

4πσ

X∞

n¼1

2nþ 1

nanþ1

XN

j¼1

ðQj � ∇r0jÞr
n
0jPnðr̂ � r̂0jÞ: ð27Þ

Since we consider the surface potentials to be identical, irrespective of the number of dipoles,

the coefficients of Eqs. (26) and (27) must be equal, namely

ðQ � ∇r0Þr
n
0Pnðr̂ � r̂0Þ ¼

XN

j¼1

ðQj � ∇r0jÞr
n
0jPnðr̂ � r̂0jÞ: ð28Þ
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If Eq. (28) is satisfied, a distinguishing between dipoles is not possible. A thorough investiga-

tion of the latter shows that if the dipoles are parallel to each other, the uniqueness conditions

(25) are fulfilled and it is impossible to decide if the measurements are induced by a single or

finite number of dipoles [25].

3.1.2. Forward and inverse problem for distributed activity

If we abandon the assumption that the primary current Jp is represented by a dipole, the

additional information leading to a unique solution regarding the inverse problem is automat-

ically lost. Notwithstanding, dropping the dipole hypothesis allows us to simulate compli-

cated activation patterns in terms of distributed currents. The potential on the surface is

computed solving Eq. (11) directly, accompanied by proper boundary conditions. For the

inverse source problem, non-uniqueness remains a point of concern.

Albanese and Monk [28] illustrated that it is not possible to recreate a three-dimensional

current based on EEG measurements. This result has been practically demonstrated in Ref.

[27], where the authors show that the radius of a small spherical current cannot be recovered.

For currents having dimensions less than three, the inverse EEG problem admits a unique

solution. In previous sections, we swiftly examined currents of zero dimensionality, namely

dipoles. In what follows, we will explore the forward and inverse EEG problems for one- and

two-dimensional continuously distributed currents [29, 30].

We begin by assuming that the current is a small line segment of length 2L, centred at r0 and

oriented along an arbitrary direction α̂: The primary current is then approximated as

Jp ≃Qþ tA, where t is a variable taking values in the interval [-L,L], whereas A is the direc-

tional derivative of Jp along α̂: Replacing the approximation of Jp into Eq. (11) provides the

surface potential in the case of a linearly distributed current [29]. Knowledge of the surface

measurements enables us to identify the position, moment, orientation and size of the current.

Consequently, we have to determine 13 parameters and require a sufficient number of equa-

tions to be able to perform the identification. Operationally, the procedure in order to obtain

this set of equations is in principle the same as for a single dipole. We expand the surface

potential in a series of harmonic, homogeneous polynomials in Cartesian coordinates, where

the coefficients of each monomial are known. Moreover, each coefficient contains a certain

number of unknown parameters. Here, we must determine 13 unknowns which means we

have to analytically calculate at least 13 coefficients, building the necessary system of equa-

tions. However, as the number of unknowns grows the concluding system of equations turns

highly nonlinear. In the one-dimensional case, the system consists of a total of 19 equations

with four constrains. It is possible to solve the latter at least semi-analytically [29].

When investigating the two-dimensional case, the mathematical complexity takes it up a notch.

Assuming that the current is a small disk of radius ε, centred at r0 and perpendicularly oriented to

the vector r0, the primary current can be approximated as Jp ≃Qþ r � ~D: The quantity ~D is called

dyadic, a second-order tensor containing physical or geometrical information. The surface poten-

tial is provided replacing Jp into Eq. (11) and solving the corresponding boundary value problem.

Reaching that goal facilitates long and tedious manipulations involving integration as well [30].
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The inverse problem, on the other hand, follows the guidelines outlined earlier. Due to the specific

orientation of the primary current, only seven parameters have to be determined. Once more, the

system of equations from which these parameters will be decided is nonlinear [30].

An independent view to the particular problem has been provided by Fokas [31]. After

formulating the surface potential with explicit Q dependence (26), computing the surface

potential for a continuously distributed current is straightforward. One has to replace Q by Jp

and integrate the resulting expression with respect to the volume of the conductor. The

associated manipulations can be simplified by introducing Helmholtz decomposition for the

primary current, which states that any three-dimensional smooth vector field can be resolved

into the sum of an irrotational and solenoidal vector field, ∇Ψ ðr0Þ and Aðr0Þ, respectively. As a

result, assuming Jp ¼ ∇Ψþ ∇�A under the condition that ∇ �A ¼ 0, we find

Usurfðr̂, r0Þ ¼ ∮
X∞

n¼1

C
m
n ðΔΨÞrn0Pnðr̂ � r̂0Þdvðr̂0Þ: ð29Þ

Note that the electric potential depends only on ΔΨ ðr0Þ. The integral in Eq. (29), obtained using

Gauss theorem and integration by parts, can be computed analytically if we expand Ψ ðr0Þ in

terms of spherical harmonics, namely

Ψ ðr0Þ ¼
X∞

n¼1

Xn

m¼�n

ψm
n
ðr0ÞY

m
n ðr̂0Þ, ð30Þ

furnishing

Usurf ¼
X∞

n¼1

Xn

m¼�n

ðαn
_ψm

n
� β

n
ψm
n
ÞYm

n ðr̂Þ: ð31Þ

It is remarkable that the above coefficients can be determined only under the assumption that

Ψ ðr0Þ is a bi-harmonic function, namely a solution to the bi-harmonic operator ΔΔ: However,

the precise description of the coefficients ψm
n
remains open.

3.2. The homogeneous ellipsoidal brain

From the point of view of mathematical analysis, any three-dimensional object, such as the brain,

would be best approximated with the aid of a coordinate system with three degrees of freedom,

one in each direction. Fortunately, aforesaid system exists and is called the ellipsoidal coordinate

system. Whereas the spherical coordinate system consists of concentric spheres centred at the

origin, in the ellipsoidal coordinate system, each point is specified by the intersection of three

non-degenerate second-degree surfaces, corresponding to an ellipsoid, a hyperboloid of one

sheet as well as a hyperboloid of two sheets. This constitutes the ellipsoidal system significantly

more complex and demanding than the spherical one (see [32] for an analytic account). For

example, whereas knowledge of the brain's volume can be directly translated into the radius of

the corresponding sphere, the volume of an ellipsoid is proportional to the product of three

parameters a1, a2, a3, the so-called semi-axes of the ellipsoid. Hence, there does not exist a unique

combination of those three parameters providing the volume of the brain. In spite of the
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ramifications, the ellipsoidal system is an environment, which allows the installation and inter-

pretation of analytical algorithms to a great extent as well. This stems from the fact that it is the

most general system where the Laplacian operator assumes a spectral decomposition. As we

dive into this particular system, we recognize that the ellipsoidal geometry is responsible for

drastic variations in the behaviour of EEG when compared to the sphere.

3.2.1. Forward and inverse problem for a single dipole and distributed activity

In order to acquire the surface potential for an active dipole within an ellipsoidal brain, the

same machinery as for the sphere is utilized. There are, however, some differences. The

spherical coordinates are easily established by fixing the centre of the system and moving a

distance r away. Symmetry will do the rest. In the ellipsoidal system, the procedure works a lot

different. In order to solve boundary value problems in the ellipsoidal coordinate system, such

as the forward EEG problem, it is essential to adopt an ellipsoid in such a way as to fit the

actual boundary of the conductor under consideration, by choosing a particular value of the

ellipsoidal ‘radial’ variable ρ. This is secured if we use the boundary of our domain to be the so-

called reference ellipsoid and construct the ellipsoidal system that is based on it. Further,

denote by h1, h2, h3 the three semifocal distances from which the orthogonal ellipsoidal coordi-

nate system ðρ, ν,μÞ is derived. Each confocal ellipsoidal surface is defined by a constant value

of the ‘radial’ variable ρ∈ ðh2,∞Þ, with ρ ¼ a1 indicating the reference ellipsoid.

Consider in what follows a homogeneous ellipsoidal conductor with semi-axes ai, i¼ 1,2,3 and

conductivity σ which takes the place of the reference ellipsoid for our ellipsoidal coordinate

system. The surface potential is again computed by solving Eq. (11) combined with expression

(14), namely

ΔU ¼ σ�1Q � ∇δðr� r0Þ, h2 < ρ < a1, ð32Þ

∂ρU ¼ 0, ρ ¼ a1: ð33Þ

Employing analytic techniques, the interested reader can find all details in Ref. [33], the

solution regarding Eqs. (29) and (30) evaluated at the surface is

Usurfðr; r0Þ ¼
1

σ

X∞

n¼1

X2nþ1

m¼1

Bm
n ðr0ÞE

m
n ðμÞE

m
n ðνÞ, B

m
n ðr0Þ ¼

Q � ∇r0E
m
n ðr0Þ

d
: ð34Þ

where Em
n are the Lamé functions, Em

n ðrÞ symbolizes the triple product of these Lamé functions,

and d some constant. Compared to the corresponding solutions for the spherical conductor, the

above formula looks very similar to Eq. (17). As usual, the devil is in the detail.

Before proceeding, we mention that an elegant and straightforward expression connecting the

surface potential with the moment Q and position r0 of the dipole, similar to Eq. (18), does not

exist for the ellipsoidal conductor.

We turn now to the inverse problem. In principle, the procedure described for the sphere is

generally applicable since it is geometry independent. Note again that every detail regarding

the moment Q and position r0 of the dipole is encoded into the coefficients of expansion (31).
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As a result, we expand the coefficients Bm
n for n ¼ 1 and 2 yielding eight relations in total.

Defining a new parameter gmn as

gmn ¼ Q � ∇r0E
m
n ðr0Þ ¼ d Bm

n ð35Þ

which incorporates characteristics, such as the geometrical and physical properties of the

conductor, as well as the EEG measurements, the algebraic manipulations leading to the

solution are somewhat a little more painless. Solving a linear system of six equations with six

unknowns, it can be shown [34] that the dipoles position r0 and moment Q depends only on

g11, g
2
1, g

3
1, g

3
2, g

4
2, g

5
2 as

x0 ¼
1

2h2h3

g32
g21

þ
g42
g31

�
g11g

5
2

g21g
3
1

� �

, y0 ¼
1

2h1h3

g32
g11

þ
g52
g31

�
g21g

4
2

g11g
3
1

� �

, z0 ¼
1

2h1h2

g42
g11

þ
g52
g21

�
g31g

3
2

g11g
2
1

� �

ð36Þ

and

Qm ¼
hm

h1h2h3
gm1 , ð37Þ

for every m ¼ 1,2,3, respectively. Expressing two of the triple products E
m
n ðrÞ in Cartesian

coordinates, namely for n ¼ 2 and m ¼ 1,2, we obtain two constrains similar to Eq. (25), which

are satisfied by the constants g11, g
2
1, g

3
1, g

3
2, g

4
2, g

5
2 as

g12 ¼ 2ðΛ� a21ÞðΛ� a22ÞðΛ� a23Þ
Q1x0
Λ� a21

þ
Q2y0
Λ� a22

þ
Q3z0
Λ� a23

� �

ð38Þ

and

g22 ¼ 2ðΛ0 � a21ÞðΛ
0 � a22ÞðΛ

0 � a23Þ
Q1x0
Λ0 � a21

þ
Q2y0
Λ0 � a22

þ
Q3z0
Λ0 � a23

� �

, ð39Þ

where Λ,Λ0 are ellipsoidal parameters depending on the semi-axes ai, i ¼ 1,2,3.

In the case of a continuously distributed current, we follow the example laid out for the sphere.

Replacing Q by the primary current Jp in Eq. (31) and integrating over the volume of the

conductor gives

Usurfðr; r0Þ ¼ ∮
X

∞

n¼1

X

2nþ1

m¼1

Dm
n ðr0ÞðΔΨ ÞEm

n ðμÞE
m
n ðνÞdvðr̂0Þ, ð40Þ

where Helmholtz's decomposition has been used. We compute the above integral analytically

by expanding Ψ ðr0Þ in terms of the product of Lamè functions Em
n ðμÞE

m
n ðνÞ, namely

Ψ ðrÞ ¼
X

∞

n¼1

X

2nþ1

m¼1

ψm
n ðρÞE

m
n ðμÞE

m
n ðνÞ: ð41Þ

After a series of cumbersome algebra, it can be shown that [31]
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Usurf ¼
X

∞

n¼1

X

2nþ1

m¼1

Dm
n ðr0ÞΙ

m
n Em

n ðμÞE
m
n ðνÞ, ð42Þ

where

Ιmn ¼

ð

a1

h2

ψm
n
ðρÞ

d

dρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 � h
2
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 � h
2
2

q

d

dρ
E
m
n ðρÞ

� �

dρ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1
2 � h

2
3

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1
2 � h

2
2

q

�

E
m
n ða1Þ

_ψm
n
� _E

m
n ða1Þψ

m
n

�

: ð43Þ

As for the spherical conductor, additional information is required in order to evaluate the

coefficients ψm
n

: A possible approach to uniquely determine the coefficients ψm
n
is to consider

some form of minimizer. For example, a widely used concept in medical imaging is the

minimum principle, the assumption that the current should have minimum ‘strength', mathe-

matically expressed as the minimization of the L2 norm of Jp:

4. Discussion

We presented a brief but concise introduction of the mathematical terminology associated with

the modality of EEG. Having in mind medical and health professionals, we start from the very

beginning, presenting step by step the physics and mathematical formulation behind EEG in a

simple manner, keeping the mathematical notation to a minimum. The tools and techniques

needed in order to derive at the presented results are intentionally not incorporated for two

reasons. First of all, the procedure deriving at these formulas is not an easy task in general.

Secondly, the main focus of this work is to display the beauty of the final expressions for every

problem, showing how every single piece of information is encoded within these formulas and

by what means the extraction of conclusions is accomplished.

Our introduction starts with the most elementary model possible, which, at the same time, is

also the most straightforward and understandable of models. Representing the brain as a

homogeneous sphere is an unrealistic assumption but serves an important task. At present, it

is the only geometry for which the electromagnetic fields generated by a dipole source are

exactly known in closed form. Further, it is needed in order to be able to draw conclusions

when we move to build models of higher complexity. It therefore reveals disparities between

forthcoming models, but more substantially, it allows us to test the reliability of the introduced

algorithms in a straightforward and timely matter. Moreover, an analytic benchmark problem

is provided, which can be used to test existing and new formulations.

For example, based on the homogeneous spherical model it is shown in Ref. [35] to what

degree deformations present at the conductor's surface affect EEG measurements. Although

the EEG data are evaluated in a view to a deformed conductor, the calculations are accom-

plished based on the spherical geometry, furnishing a fast analytic algorithm prone to almost
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minimum error. Another characteristic example of rigorous mathematical analysis is the quan-

titative description of the non-uniqueness for the EEG inverse problem, presented in Ref. [36].

Therein, splitting the current into components, the authors prove that none of those compo-

nents contributes to both the electric and scalar magnetic potential; in other words, recordings

of EEG and MEG do not contain overlapping information about the current. However, afore-

mentioned property holds no longer true if the spherical conductor is disregarded.

Analogous conclusions are valid for the ellipsoidal geometry as well. For example, the authors

consider in Ref. [37] the frequent case when clinical data of unknown origin are implemented in

computational simulations. We mentioned earlier that there exist a plethora of combinations of

the product a1, a2, a3 furnishing the same value for the volume of the brain. If we look at the

instance where EEG measurements originate from a brain with fixed values a1, a2, a3 but are

interpreted in the sequel by different values, what would be the error? Well, it turns out that the

error can reach as high as 20%, depending on the position and strength of the primary current.

The error analysis presented in Ref. [37] can be considered as rather straightforward, since

both ellipsoids under consideration were confocal, that is, members of the same ellipsoidal

system enjoying the same foci. In plain words, no member of a confocal family touches

another. Consequently, there exists a single curve, which cuts both ellipsoids normally, and

the corresponding intersecting points consist of the most proximate pair between the two

ellipsoids in each direction. These two points are employed in the analysis calculating the

aforementioned error. But what would happen if the two ellipsoids would not be considered

to be confocal? This interesting case is also more realistic.

In order to provide an answer to the latter, a sophisticated correspondence is needed connecting

two points on the surface of two ellipsoids which are now non-confocal. This means that there

probably exists a point shared by both ellipsoids. In Ref. [38], the authors investigated the effect

implied by a deviation of the eccentricities of the ellipsoidal model on the electric potentials

registered as the EEG data. In this case, the error reaches high values up to almost 100%.

Turning our attention from the geometrical deformation of the conductor model, to the phys-

ical assumption of homogeneity, we acknowledge the significance of the non-homogeneity

imposed by the layers of different conductivity that cover the host tissue of the EEG source.

The conductive elements that constitute the scalp, the scull and the meninges, which interfere

between the EEG measurements and the cerebrum, are affected by the electromagnetic field

produced by activation of the source. Hence, they induce a volume current that perturbs the

total electric potential registered on the EEG receptors on the scalp. The effect of this physical

perturbation of the potential has been studied by incorporating a layered conductivity profile

in all the models discussed in the present review, by characterizing each layer by a distinct but

constant conductivity value.

Indicatively, we infer that switching to a layered ellipsoidal model of the head-brain system,

the functional form of the electric potential, is basically unaltered. One of the authors has

showed [39] that the conductivity profile of the layered structure enters the potential formula

by normalizing each term by a constant which incorporates the conductivity jumps across the

interfaces and the geometrical characteristics of the layers. Analogous results show a similar
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effect on the inhomogeneous conductor [31]. Hence, the formula of the electric potential that

will serve as the stepping stone for the inverse calculations is the one that corresponds to the

most realistic inhomogeneous models that acknowledge the layered conductivity profile of

the head-brain system. A promising challenge for future investigations refers to incorporating

the anisotropic conductivity profile, where the conductivity varies with the direction into each

separate compartment, modelling, for example, the different conductivity of the white matter

of the brain than that of grey matter.

Using tensor conductivity for modelling the brain anisotropy is one of the many analytical

mathematical challenges of this fascinating area of functional brain imaging while creative

mathematical modelling has a lot to contribute in the close examination of EEG theory and

applications.
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