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Abstract

Fluorescence lifetime imaging (FLIM) is powerful for monitoring cellular
microenvironments, protein conformational changes, and protein interactions. It can
facilitate metabolism research, drug screening, DNA sequencing, and cancer diagno-
sis. Lifetime determination algorithms (LDAs) adopted in FLIM analysis can influence
biological interpretations and clinical diagnoses. Herein, we discuss the commonly
used and advanced time-domain LDAs classified in fitting and non-fitting categories.
The concept and explicit mathematical forms of LDAs are reviewed. The output
lifetime parameter types are discussed, including lifetime components, average life-
times, and graphic representation. We compare their performances, identify trends,
and provide suggestions for end users in terms of multi-exponential decay unmixing
ability, lifetime estimation precision, and processing speed.

Keywords: fluorescence lifetime imaging, lifetime determination algorithm, fitting
method, non-fitting method, deep learning

1. Introduction

Fluorescence lifetime imaging (FLIM) is a vital and versatile technique for
assessing molecular microenvironments of fluorophores in living cells, such as pH, O2,
viscosity, temperature, or ion concentrations [1, 2]. FLIM can be a powerful “quan-
tum ruler” to measure subnanometer protein conformational changes and interactions
by quantifying the occurrence of Förster Resonance Energy Transfer (FRET) [3–7].
FLIM has been used in diverse disciplines, including biology, chemistry and biophys-
ics [8–12]; however, it is an indirect imaging technique that needs sophisticated data
analysis to deliver meaningful information. FLIM analysis can profoundly impact the
interpretations of biochemical and physical phenomena.

In time-domain approaches, FLIM usually measures a three-dimensional data
cube (x-y-t), obtained with a time-correlated single-photon counting (TCSPC) system
[13–16], a time-gated camera [17–21], or a streak camera [22–28]. A time-resolved
histogram hm at (x, y) in a measured data cube can be expressed as:
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hm ¼
X

m

k¼0

irf k�m � fm þ ϵm, (1)

irfm ¼

ð mþ1ð ÞΔt

mΔt
irf tð Þdt, fm ¼

ð mþ1ð ÞΔt

mΔt
f tð Þdt, m ¼ 0, … , M� 1, (2)

where M is the number of time-bins and ∆t is the bin width.
f(t) in Eq. (1) is the underlying fluorescence decay, usually following a multi-

exponential decay model,

f tð Þ ¼ A
X

P�1

p¼0

qp exp �t=τp
� �

,
X

P�1

p¼0

qp ¼ 1, (3)

where A is the amplitude, qp and τp are the fraction and lifetime of the pth compo-
nent (p = 0, … , P-1).

irf(t) is the instrument response function (IRF), often measured using a
sample with a much shorter lifetime than the width of the excitation pulse or a
scattering solution. The full width at half maximum (FWHM) of IRF, ∆tIRF, is given
by [16, 29].

Δt2IRF ¼ Δt2optical þ Δt2tts þ Δt2jitter, (4)

where ∆toptical is the optical pulse width, ∆ttts is the detector transit time spread,
and ∆tjitter is the detection and timing electronics jitter. With h = (h0, … , hM-1) and
irf = (irf0, … , irfM-1) already measured, A, q = (q0, … , qP-1) and τ = (τ0, … , τP-1) can
be extracted with a lifetime determination algorithm (LDA).

LDAs can be divided into two categories: fitting and non-fitting methods.
Fitting methods solve a nonlinear minimization problem argmin χ

2, where χ2 is a
merit function revealing the goodness of fit. χ2 is determined by statistics models, such
as least square estimation (LSE) or maximum likelihood estimation (MLE), using
pixelwise or global fitting modes [30]. Fitting methods suffer from slow analysis due
to extensive intrinsic convolutions. The Laguerre expansion method converts the
nonlinear-fitting problem to a linear-fitting problem [31, 32], and speeds up
deconvolution procedures.

Non-fitting methods can provide lifetime parameters much faster than fitting
methods, but some can only provide average lifetimes or graphic representation rather
than specific lifetime components. Non-fitting methods should be used carefully
according to applications. As discussed in [33–35], the intensity-weighted average

lifetime, τI ¼
PP�1

p¼0qpτ
2
p=
PP�1

p¼0qpτp, can estimate the average collisional constant kq
from the Stern–Volmer constant KD, whereas the amplitude-weighted average life-

time, τA ¼
PP�1

p¼0qpτp, can estimate FRET efficiency and assess dynamic quenching

behaviors, as described by the Stern–Volmer equation. τI was previously misused in
FRET efficiency estimation, introducing significant bias when the decay follows a
multi-exponential decay model.

The practical use of diverse LDAs depends on applications. Due to the time-
consuming estimation procedure, fitting methods are generally used for offline analy-
sis, providing more decay information, including lifetime components and average

2

Fluorescence Imaging - Recent Advances and Applications



lifetimes, than most non-fitting methods. Meanwhile, non-fitting methods are suitable
for real-time FLIM applications, as they are much faster and more hardware-friendly.

This work attempts to review widely used and newly developed cutting-edge LDAs
for time-domain FLIM analysis. The subsequent sections are arranged as follows.
Section 2 reviews fitting methods, such as the least squares estimation, maximum
likelihood estimation, global fitting using iterative convolution and variable projection
approaches, and Laguerre expansion deconvolution methods. Section 3 reviews non-
fitting methods, including rapid lifetime determination, center-of-mass, integral
extraction, phasor, τA/τI, deep learning, and histogram clustering methods. Finally, we
conclude this review in Section 4 and speculate on future research directions.

2. Fitting methods

Fitting methods use iterative constrained optimization algorithms to estimate
fitting parameters based on a specified decay kinetics model. Feedback is provided at
each iteration for updating or terminating the process with a criterion. The weighted
least squares estimation (LSE) and the maximum likelihood estimation (MLE) are
commonly used for FLIM analysis, and these methods have been compared using
synthetic and experimental data [36–39]. Although it is well known that MLE is more
efficient and accurate than LSE, as FLIM data is Poisson distributed rather than
Gaussian distributed [40–44], LSE is still more popular than MLE in FLIM analysis.
Attempts have been made to provide robust MLE fitting algorithms, which are coun-
terparts of the Levenberg–Marquardt procedure for LSE [45–47].

The global fitting method can accelerate analysis by assuming spatial lifetime
invariances to reduce the degree of freedom significantly. The Laguerre expansion
method can accelerate analysis by converting the nonlinear-fitting problem to a
linear-fitting problem to speed up deconvolution procedures.

2.1 Weighted least squares estimation (LSE)

The weighted LSE defines a merit function as [48, 49],

χ2 ¼
X

m

hm � ĥm
� �2

σ2m
, (5)

where hm is the measured counts, ĥm is the predicted counts, and σm is the count
deviation in Bin m. By minimizing χ2, lifetime parameters can be obtained. For
Poisson distributed data, the variance is equal to the actual value hm

true of Bin m, that

is, σm ¼
ffiffiffiffiffiffiffiffiffi

htruem

q

. As this actual value is not available, χ2 can be approximated as:

χ2P ¼
X

m

hm � ĥm
� �2

hm
, χ2N ¼

X

m

hm � ĥm
� �2

max hm, 1ð Þ
, (6)

where χ2P and χ2N are Pearson’s and modified Neyman’s χ2. Studies show that
Neyman weighting underestimates the target answer, whereas Pearson weighting
affords an acceptable answer when the total count is more than 1000 [39].
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2.2 Maximum likelihood estimation (MLE)

MLE maximizes the probability that the data can occur given a model and a set of
parameters. The likelihood L can be expressed as [50, 51].

L ¼
Y

m

P hm; ĥm
� �

, (7)

where P hm; ĥm
� �

is the probability that Binm has hm counts if the actual value is ĥm

. Because the measurements are Poisson distributed, the Poisson likelihood becomes.

LP ¼
Y

m

ĥm
hm

hm!
e�ĥm : (8)

If Eq. (8) is divided by the maximum possible likelihood LP hm; hmð Þ, then

λ ¼ LP hm; ĥm
� �

=LP hm; hmð Þ: (9)

A merit function can be defined as:

χ2mle ¼ �2 ln λ ¼ 2
X

m

ĥm � hm
� �

� 2
X

m, hm 6¼0

hm ln ĥm=hm
� �

: (10)

Based on the Poisson likelihood function, MLE can ensure unbiased estimations.

2.3 Global fitting (GF)

The global fitting method uses a least squares estimate χ2GF for all histograms as the
merit function,

χ2GF ¼
X

s

X

m

h sð Þ
m � ĥ

sð Þ

m

� �2

σ
sð Þ2
m

, (11)

where the superscript s represents Histogram s. GF treats the lifetime components τ
as constants, but the amplitude A and fraction q as variables for all histograms. There
are two strategies for implementing GF, the iterative convolution and the variable
projection approaches. The variable projection approach appears to be faster than the
iterative convolution method, as investigated in [52].

2.3.1 Iterative convolution

The underlying decay is estimated with.

f̂
sð Þ

m ¼ Â
sð Þ X

P�1

p¼0

q̂p
sð Þe

�tm
τ̂p , (12)

where τ̂p are estimated constant lifetimes for all histograms with Â
sð Þ
and q̂p

sð Þ

being the parameters for Histogram s.

4

Fluorescence Imaging - Recent Advances and Applications



Then the estimated signal can be expressed as:

ĥ
sð Þ

m ¼
X

m

k¼0

irf k�m � f̂
sð Þ

m , m ¼ 0, … , M� 1: (13)

Using Eq. (13), we can minimize Eq. (11) with constrained LSE. The analysis speed
is significantly affected by chosen initial conditions. S. Pelet et al. compared different
strategies for initial guesses [30] and proposed an efficient image segmentation method.

2.3.2 Variable projection

The idea of global fitting with variable projection is to minimize a projection
function that depends only on nonlinear parameters τ and obtain linear parameters
A(s) and q(s). A matrix whose columns only depend on τ is constructed,

Φ τ̂ð Þ ¼ φ0 τ̂0ð Þ, … , φP�1 τ̂P�1ð Þ½ �, (14)

where φp τ̂p
� �

¼ φp τ̂p; t0
� �

, … , φp τ̂p; tM�1

� �

h iT
, φp τ̂p; tm

� �

¼
Pm

k¼0irf k�m �

exp � tm
τ̂p

� �

, and p = 0, … , P-1.

Then the estimated signal can be written as:

ĥ
sð Þ

m ¼
X

P�1

p¼0

â sð Þ
p φp τ̂p; tm

� �

, (15)

where âp
sð Þ ¼ Â

sð Þ
q̂p

sð Þ. Eq. (11) becomes.

χ2GF ¼
X

s

X

m

h sð Þ
m �

PP�1
p¼0â

sð Þ
p φp τ̂p; tm

� �

� �2

σ
sð Þ2
m

, (16)

χ2GF ¼
X

s

∥h
sð Þ
�Φ τ̂ð Þâ sð Þ

∥2, (17)

where h
sð Þ
is h sð Þ weighted by σ

sð Þ
m , Φ τ̂ð Þ is Φ τ̂ð Þ weighted by σ

sð Þ
m , and â sð Þ ¼

â0
sð Þ, … , âP�1

sð Þ
h iT

.

For a given τ̂, Eq. (17) is minimized when â sð Þ ¼ Φ τ̂ð Þ�h
sð Þ
, where Φ τ̂ð Þ� is the

symmetric generalized inverse of Φ τ̂ð Þ. Then Eq. (17) can be rewritten as:

χ2GF ¼
X

s

∥P⊥
Φ τ̂ð Þh

sð Þ
∥2, (18)

where P⊥
Φ τ̂ð Þ ¼ I �Φ τ̂ð ÞΦ τ̂ð Þ� [52], which can be calculated by matrix decomposi-

tion ofΦ τ̂ð Þ using the QR method. Eq. (18) only has the nonlinear parameter, reducing
the minimization parameter space considerably. Once τ̂ is obtained by minimizing

Eq. (18), the linear parameter â sð Þ can be obtained as a solution of h sð Þ ¼ Φ τ̂ð Þâ sð Þ. The
implementation can be achieved with the VARP2 code [53].
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2.4 Laguerre expansion (LE)

Due to the IRF introduced in FLIM data, iterative fitting methods include an
enormous amount of convolutions, which is time-consuming [54]. Furthermore, iter-
ative deconvolution methods require acquiring a considerable number of counts,
which would increase the acquisition time. Numerous mathematical tools have been
devised for deconvolution [55–59], and LE is faster and more robust than others. LE
estimates the underlying fluorescence decay f with an ordered set of discrete-time
Laguerre basis functions (LBFs) [60, 61],

f̂m ¼
X

L�1

l¼0

ĉlbl m; αð Þ, (19)

where L and α are the basic parameters and ĉl is the estimated lth expansion
coefficient. The lth discrete-time LBF is defined as:

bl m; αð Þ ¼ α
m�lð Þ
2 1� αð Þ

1
2

X

l

i¼0

�1ð Þi
m

i

� �

l

i

� �

αl�i 1� αð Þi, (20)

where 0 < α < 1 and l = 0, … , L-1.
Substituting Eq. (19) for fm in Eq. (1), the estimated signal becomes:

ĥm ¼
X

m

i¼0

X

L�1

l¼0

ĉl � irfm�i � bl i; αð Þ ¼
X

L�1

l¼0

ĉl � υl m; αð Þ, (21)

where υl m; αð Þ ¼
Pm

i¼0irfm�i � bl i; αð Þ. Then, Eq. (5) becomes.

χ2LE ¼
X

m

hm �
PL�1

l¼0 ĉl � υl m; αð Þ
� �2

σ2m
, (22)

where V = [v0, … , vL-1] and vl = [vl(0, α), … , vl(M-1; α)]T. Eq. (22) can be

minimized with the ordinary and constrained LSE, as demonstrated in [61]. Once ĉ ¼

ĉ0, … , ĉL�1½ �T is determined, f̂ can be recovered with Eq. (19). Then decay parameters

can be extracted from f̂ using the fitting methods mentioned above or the following
non-fitting methods.

Setting proper L and α depends on the lifetime dynamic range and the measure-
ment window T = MΔt [32]. Automated Laguerre deconvolution methods have been
reported to optimize L and α during the deconvolution routine [62, 63].

3. Non-fitting methods

Fitting methods usually require experienced users to set proper initial conditions
and require time-consuming iterative computations, making unsupervised non-fitting
methods attractive for robust, real-time FLIM analysis. We review the rapid lifetime
determination, center-of-mass, integral extraction, phasor, τA/τI, deep learning, and
histogram clustering methods.
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3.1 Rapid lifetime determination (RLD)

RLD needs two time-gated signals for the lifetime estimation of mono-exponential
decays. The initial RLD method utilizes two consecutive time-gates of equal widths
[64], as shown in Figure 1(a). By integrating the signal within the time-gated
windows, the lifetime can be determined using,

τRLD ¼
�ΔtTG

ln D1=D0ð Þ
, (23)

where D0 and D1 denote the integrated signal in Gates 1 and 2, and ΔtTG denotes
the time-gate width. This calculation is simple and fast; however, it has limited
estimation accuracy and precision in a narrow lifetime range determined by the
gate width. To optimize RLD, several strategies with overlapping and unequal
time gates, as shown in Figure 1(b), have been proposed [65–67], suggesting
optimized gating schemes. In optimized RLD schemes, the ratio of D1 and D0 can be
expressed as:

DR ¼
D1

D0
¼

exp �Y ΔtTG
τ

� �

� exp � Y þWð Þ ΔtTG
τ

	 


1� exp � ΔtTG
τ

� � , (24)

where ΔtTG is the width of Gate 1 and Y and W are the rising edge and width
coefficient of Gate 2. Lifetimes τRLD can be solved by applying Newton’s method.

RLD can deal with multiple types of FLIM data, including TCSPC, streak camera,
time-gated counting, and time-gated imaging data. However, RLD performs differ-
ently for uncorrelated and correlated datasets, as analyzed in ref. [66]. For multi-
exponential decays, RLD can provide average lifetimes which are neither intensify-
nor amplitude-weighted. Additionally, with three-time gates, the lifetime estimation
dynamic range of RLD can be expanded for mono-exponential decays [21]. With four
time-gates, we can extract lifetime components of bi-exponential decays [68, 69]. IRF
is usually neglected in RLD, introducing estimation bias, especially for short lifetimes
comparable with IRF’s width.

Figure 1.
Rapid lifetime determination (RLD) schemes with (a) equal and (b) unequal time-gate widths.
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3.2 Center-of-mass method (CMM)

CMM provides intensity-weighted average lifetimes for multi-exponential decays
[70–72],

τCMM ¼

ð

∞

0
t � h tð Þdt

ð

∞

0
h tð Þdt

�

ð

∞

0
t � irf tð Þdt

ð

∞

0
irf tð Þdt

¼

PP�1
p¼0qpτ

2
p

PP�1
p¼0qpτp

≈

PM�1
m¼0tm � hm
PM�1

m¼0hm
�

PM�1
m¼0tm � irfm
PM�1

m¼0irfm
:

(25)

Li et al. proposed two versions of bi-exponential CMM (BCMM) that provide
lifetime components information [73].

3.3 Integral extraction method (IEM)

For IEM, deconvolution is required to obtain f̂ with which the average lifetime can
be determined as [74, 75].

τIEM ¼ �

ð

∞

0
g tð Þdt

ð

∞

0
g’ tð Þdt

≈
X

P�1

p¼0

qpτp ≈ �

PM�1
m¼0Sm � f̂m

PM�1
m¼0

f̂m�f̂m�1

Δt

¼ �
Δt
PM�1

m¼0Sm � f̂m

f̂M�1 � f̂ 0
, (26)

where Sm = [1/3, 4/3, 2/3, … , 4/3, 1/3] are the coefficients for numerical integra-
tion based on Simpson’s rule,

g tð Þ ¼ A
X

P�1

p¼0

qpτpe
� t

τp 1� e
�Δt

τp

h i

: (27)

τIEM is an estimator of amplitude-weighted lifetimes.

3.4 Phasor method

The phasor method transforms each histogram into a phasor, like a vector. The
sine-cosine transforms of decays are represented in a phasor plot as a two-dimensional
histogram [76–80]. Phasor components g and s for time-domain FLIM can be
expressed as:

g ¼

ð

∞

0
f tð Þ � cos ωtð Þdt
ð

∞

0
f tð Þdt

¼

PP�1
p¼0

qpτp

1þω2τp2

PP�1
p¼0qpτp

¼
Re þ s∙B

A
, (28)

s ¼

ð

∞

0
f tð Þ � sin ωtð Þdt
ð

∞

0
f tð Þdt

¼

PP�1
p¼0

ωqpτp
2

1þω2τp2

PP�1
p¼0qpτp

¼
A∙Im� B∙Re

A2 þ B2
, (29)
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where

Re ¼

ð

∞

0
h tð Þ � cos ωtð Þdt
ð

∞

0
h tð Þdt

≈

PM�1
m¼0hm � cos ωtmð Þ

PM�1
m¼0hm

, (30)

Im ¼

ð

∞

0
h tð Þ � sin ωtð Þdt
ð

∞

0
h tð Þdt

≈

PM�1
m¼0hm � sin ωtmð Þ

PM�1
m¼0hm

, (31)

A ¼

ð

∞

0
irf tð Þ � cos ωtð Þdt
ð

∞

0
irf tð Þdt

≈

PM�1
m¼0irfm � cos ωtmð Þ

PM�1
m¼0irfm

, (32)

B ¼

ð

∞

0
irf tð Þ � sin ωtð Þdt
ð

∞

0
irf tð Þdt

≈

PM�1
m¼0irfm � sin ωtmð Þ

PM�1
n¼0 irfm

: (33)

Phasor plots’ interpretation is usually user-dependent by manually selecting
regions of interest in a phasor plot to find corresponding regions in fluorescence
images. Based on the feature that pixels with similar fluorescence decays tend to
congregate and form a cluster in a phasor plot, machine learning techniques have been
developed with clustering methods [81] to automatically organize phasors into sensi-
ble groupings. Up to four-lifetime components can be resolved from a phasor plot
using the rule of a linear combination of phasors [82], a graphical approach [83], and a
computational nonlinear minimization algorithm [83].

A weighted average lifetime, τPhasor, can also be derived using phasors,

τPhasor ¼
s

gω
¼

PP�1
p¼0

qpτp
2

1þω2τp2

PP�1
p¼0

qpτp

1þω2τp2

, (34)

where ω = 2π/T,T = MΔt is the measurement window. The weights of τPhasor are
qpτp

1þω2τp2
. If τp < < T, then the weights are approximately equal to qpτp, i.e. τPhasor is close

to intensity-weighted lifetimes.

3.5 τA/τI method

We proposed the τA/τI method, a multi-exponential decay visualization method
using two types of average lifetimes, τI and τA. As mentioned previously (discussed in
ref. [35]), a fluorescence decay can be approximated by a bi-exponential decay model,
so that the ratio of τA and τI can be expressed as:

τA

τI
¼

1þ q1 R� 1ð Þ
� �2

1þ q1 R2 � 1
� � , (35)
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where R = τ1/τ2. The distribution of τA/τI (Figure 2) shows that when R ≈ 1 or
q1 ≈ 0 or 1, τA/τI ≈ 1. With a decrease in R or an increase of q1, τA/τI decreases.
Therefore, the ranges of q1 and R of a pixel can be determined by τA/τI.

With a TCSPC dataset of tSA201 cells, Figures 3 and 4 show the results of the
selected pixels within different τA/τI ranges in (a) τI, (b) τA, (c) τA/τI images, (d)
histograms, (e) phasor plots, and (f) τA/τI plots. For the pixels within τA/τI = 0.2 � 0.5
(Figure 3), the histograms clearly show that τA is much smaller than τI, which means
the difference between τ1 and τ2 is significant. Figure 3 (f) shows that the ranges of q1
and R are approximately 0.5 � 1 and 0 � 0.2, respectively. For the pixels with τA/
τI = 0.5 � 1 (Figure 4), τA is closer to τI, meaning the pixels have decays close to
mono-exponential.

τA/τI is an intuitive tool for visualizing multi-exponential decays in a lifetime
image. Separating the average lifetime images with τA/τI is easier than phasor plots
because τA/τI is one-dimensional, and phasors are two-dimensional. Furthermore, τA/
τI can intuitively show the q1 and R ranges.

3.6 Deep learning (DL)

Recently, DL-based FLIM analysis methods have been reported. DL features hier-
archical representation learning by extracting high-level features through multiple
nonlinear transformations of low-level features. DL shows a powerful ability to learn
complex data and functions. The advent of DL breaks the conventional “model-
driven” paradigm and offers us a new “data-driven” approach to solving general
optimization problems. Given sufficient labeled training data, DL algorithms can
directly map the raw input data to their corresponding results, thus avoiding time-
consuming iterative optimization processes. Wu et al., first employed DL with a
multi-layer perception (MLP) network using one input layer, one output layer, and
two hidden layers [84]. The input layer has 57 entries depending on the number of
time-bins in a histogram. The output layer has four neurons mapping four-lifetime
parameters for bi-exponential decays. The investigation reveals that MLP can provide

Figure 2.
Distribution of τA/τI with q1 = 0 � 1 and R = 0 � 1 [35].
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comparable or better performances and generate lifetime images at least 180-fold
faster than conventional LSE. However, IRF was not considered in their work. Smith
et al. proposed a 3D convolutional neural network (CNN) architecture named

Figure 3.
(a) τI-intensity image, (b) τA-intensity image, (c) τA/τI ratio image, (d) histograms of τI (yellow) and τA (blue),
(e) phasor plot, and (f) distribution of τA/τI of the selected pixels in (c) with τA/τI = 0.2 � 0.5 [35].

Figure 4.
(a) τI-intensity image, (b) τA-intensity image, (c) τA/τI ratio image, (d) histograms of τI (yellow) and
τA (blue), (e) phasor plot, and (f) distribution of τA/τI of the selected pixels in (c) with τA/τI = 0.5 � 1 [35].
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fluorescence lifetime imaging network (FLI-Net) to quantify fluorescence decays at
fast speeds [85]. FLI-Net is designed and trained for TCSPC FLIM, and gated intensity
charged-coupled device (ICCD) based FLIM. FLI-Net’s input is a 3D data cube (x, y, t),
and output is bi-exponential decay parameters. Synthetic data is used for training,
avoiding acquiring massive training datasets experimentally. FLI-Net is about 30-fold
faster than SPCImage, the widely used FLIM processing software. FLI-Net outperforms
LSE and MLP, especially with low photon counts range from 25 to 100. Xiao et al.
proposed an easier and faster trained 1D CNN architecture named 1D-ConvResNet
[86]. Compared with 2D or 3D CNNs, 1D-ConvResNet is more hardware-friendly and
can be implemented on field-programmable gate array (FPGA) devices. Synthetic data
is used for training and the training time with a CPU (Intel i7–4790) is about 0.5 hours,
8-fold faster than FLI-Net with a GPU (NVIDIA TITAN Xp GPU). Experimental FLIM
datasets with an intensity threshold of 100 counts per pixel were used for validation,
and analyzing a 256 � 256 image takes several seconds on a laptop. To generate high-
quality FLIM images under photon-starved conditions (50 counts per pixel), Chen et al.
introduced a method called flimGANE [87]. It was derived from the Wasserstein GAN
algorithm, where an “artificial” high-photon-count fluorescence decay histogram can
be produced with a generator with a low-photon-count input. Using a well-trained
generator and an estimator, a low-quality decay histogram can be mapped to a high-
quality counterpart and provides bi-exponential lifetime parameters within 0.32 ms/
pixel using a CPU, which is 258-fold faster than LSE and 2800-fold faster than MLE in
generating a 512 � 512 FLIM image. However, it takes up to 500 h to fully train the
network. Additionally, using time-resolved single-pixel datasets, a deep CNN named
Net-FLICS (fluorescence lifetime imaging with compressed sensing) was reported [88].

DL methods for spatial resolution enhancement of FLIM images are also devel-
oped, including SRI-FLIMnet for reconstructing high-resolution images from low-
resolution 3D FLIM data [89] and CNN-based denoising method removing noise in
phasor plots after the K-means clustering segmentation [90].

Although DL is promising in real-time FLIM analysis even under starve photon-
starved conditions and needs no user-dependent initial conditions, it suffers from long
training times (hours to days) when retaining is required due to the change of IRF.
Whenever the laser source for excitation and the detector are changed, the IRF can also
vary, and the network should be retrained, reducing the universality. Recently, many
attempts have been made to alleviate this disadvantage. For example, Zang proposed
an online neural network training method using the extreme learning machine (ELM)
[91]. ELM does not require a back-propagation process in the training phase. There-
fore, it provides a much faster training speed, enabling online network training for any
system configuration. The phasor coordinates of a fluorescence decay can also serve as
the network’s inputs, which can be viewed as a simple feature engineering to reduce
the training time significantly [92]. Despite some trade-offs in current DL algorithms,
it is no doubt that DL has excellent potential in a wide range of FLIM-related applica-
tions. DL algorithms can also be implemented on edge-computing platforms like
FPGAs and smartphones to develop intelligent and portable FLIM devices [93].

3.7 Histogram clustering (HC)

The HC method devised by Li et al. can improve FLIM analysis speed and accuracy
by sorting histograms with similar profiles in a dataset into several clusters and
significantly reducing the number of histograms to be analyzed [94]. HC implements
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clustering with two features of a histogram. It is a preprocessing method that can work
with the LDAs mentioned above. The performances for producing decay parameter
images without and with HC using synthetic and experimental datasets were investi-
gated [94]. The execution time texe and the mean squared error (MSE) of a FLIM
dataset following a bi-exponential decay model with 150 � 150 pixels and 256 time-
bins are shown in Table 1. LE-LSE and LE-IEM stand for LSE and IEM with the
Laguerre expansion method; IC and VP represent iterative convolution and variable
expansion global fitting approaches.

For different output types, we suggested the fastest FLIM analysis methods: 1) LE-
LSE with HC for all lifetime component images with texe = 3.36 s, 116-fold shorter than
texe without HC; 2) VP with HC for constant lifetimes, q1, τA, and τI images with
texe = 0.31 s, 10-fold shorter than texe without HC; and 3) LE-IEM with HC as the
second choice for τA with texe = 0.63 s, 98-fold shorter than texe without HC, and CMM
as the second choice for τI with texe = 0.2 s without or with HC (biased if the most
significant lifetime > T/4). The analysis was conducted in MATLAB, and it can be
translated to C or other environments to speed up the analysis.

HC can benefit applications demanding real-time FLIM, such as clinical diagnosis
and fast screening. In the future, deep learning methods can be employed for
unsupervised histogram clustering.

4. Conclusions

Lifetime determination algorithms (LDAs) play a vital role in FLIM analysis. The
results provided by diverse LDAs profoundly impact the interpretation of observed
phenomena. Numerous approaches have been developed with notable features in
terms of photon efficiency, estimation speed, accuracy, and precision. Fast FLIM

LDA texe (s) MSE

q1 τ1 (ns
2) τ2 (ns

2) τA (ns2) τI (ns
2)

Without HC

LE-LSE 389.45 0.019 0.173 0.198 0.110 0.027

LE-IEM 62.30 X X X 0.102 X

CMM 0.20 X X X X 0.185

IC 724.82 0.100 X X 0.678 1.098

VP 3.34 0.033 X X 0.122 0.178

With HC

LE-LSE 3.36 0.011 0.102 0.104 0.037 0.025

LE-IEM 0.63 X X X 0.038 X

CMM 0.20 X X X X 0.180

IC 11.85 0.017 X X 0.102 0.050

VP 0.31 0.014 X X 0.048 0.093

Table 1.
texe and MSE evaluated by lifetime determination algorithms without and with histogram clustering [94].
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analysis under low-photon conditions is universally desirable, especially for real-time
and single-molecular FLIM. This mini review focuses on the popular and cutting-edge
LDAs used in time-domain FLIM. The progress in LDAs has shown possibilities for
real-time FLIM under low photon conditions.

Fitting methods estimate lifetime parameters by solving an iterative minimization
problem. The least squares estimation (LSE) introduces bias even with high photon
counts (>1000), while the maximum likelihood estimation (MLE) is unbiased and
photon efficient, as FLIM data is Poisson distributed. With robust algorithms, MLE
instead of LSE can be used as a standard. The iterative convolution of IRF with
exponential decays in LSE and MLE is time-consuming. The global fitting and
Laguerre expansion methods have been proposed to accelerate analysis.

Non-fitting methods are attractive, as they can be much faster and more
hardware-friendly than fitting methods because of simple calculations. However,
non-fitting methods for a specific application should be careful. RLD using two time-
gates is suitable for mono-exponential decays but may introduce a bias for lifetimes
comparable with IRF’s width. CMM and IEM deliver intensity- and amplitude-
weighted average lifetimes, respectively. The phasor method can graphically show
exponential decays in a phasor plot. The τA/τI method is a multi-exponential decay
visualization method that uses two types of average lifetimes, which can intuitively
show lifetime components’ fraction and lifetime ratio. The deep learning method
employs fully connected networks, 3D CNN, 1D CNN, and GAN algorithms in rapid
FLIM analysis under photon-starved conditions, down to 50 counts per pixel. How-
ever, its long retraining time (hours to days) limits its universality when IRF is
changed. The histogram clustering (HC) method suggests that histograms having
similar profiles can be clustered for one calculation. By embedding HC, the algorithms
mentioned above can be significantly accelerated with an execution time down to
30 μs/pixel.

In summary, the existing LDAs reveal different features in FLIM analysis, and it is
hard to judge which one is replaceable. We believe that software with multiple
embedded LDAs is desirable for end-users, providing comprehensive and comple-
mentary information for robust analysis. In addition, the newly developed “data-
driven” DL-based LDAs and LDA accelerating method HC are promising, as they can
not only enhance speed but also accuracy, especially for photon-starved applications.
More efforts are expected to shrink retraining time for DL and increase clustering
performance for HC via deep learning.
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