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1. Introduction 

Chronic myeloid leukaemia (CML) is a hematopoietic stem cell (HSC) disorder accounting 
for about 15-20% of all leukemias of the adult (Goldman & Melo, 2003; Black et al., 1997). 
The main haematological features are represented by an increase in the number of 
circulating mature granulocytes and their precursors and, subsequently, by a secondary 
evolution in acute leukaemia. 
In 1960, a major clue to the cause of CML was provided by Nowell and Hungerford who 

for the first time described an unusual small chromosome present in leukocytes from 

patients with this hematologic malignance (Nowell & Hungerford, 1960).  This “minute 

chromosome” abnormality, designed as the Philadelphia (Ph) chromosome, after the city 

in which it was discovered, was found in all malignant cells of CML patients and is now 

considered the hallmark of this neoplasia (Nowell & Hungerford, 1960). Importantly this 

discovery was the first demonstration of a chromosomal rearrangement linked to a 

specific cancer, and had sparked searches for associations of additional chromosomal 

aberrations with specific forms of cancer. In 1973, Rowley demonstrated that the Ph 

chromosome resulted from a reciprocal translocation between the long arms of 

chromosomes 9 and 22, t(9:22)(q34;q11) (Rowley, 1973). Later it was shown that this 

process fuses the c-ABL ( human homologue of the Abelson Murine Leukaemia virus), a 

tyrosine kinase encoding oncogene on chromosome 9, and BCR (Breakpoint Cluster 

Region), on chromosome 22, the function of which is still not clear (Groffen et al., 1984). 

This balanced translocation leads to a fusion gene, the product of which is a chimeric 

BCR-ABL protein equipped with cellular transforming ability which is ascribed to the 

elevated tyrosine kinase (TK) activity of the molecule compared to the native c-ABL 

(Konopka et al., 1984; Daley et al., 1990).  

The biochemical signal transduction pathways stimulated by BCR-ABL kinase activity are 
responsible for Ph+ CML oncogenesis (Ren, 2005; Calabretta & Perrotti, 2004; Krebs & 
Hilton, 2001; Neshat et al., 2000; Sattler et al., 2002; Sattler et al., 1999).  
Further studies have established BCR-ABL as a leukaemogenic oncogene since both mouse 
models and in vitro assays have shown that BCR-ABL, is able to induce leukaemia (Daley & 
Baltimore, 1988).  
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2. Molecular mechanisms of BCR-ABL 

Several BCR-ABL isoforms with different molecular weights have been reported (Melo & 
Deininger, 2004). Accordingly, while in all chimeric proteins the breakpoint within ABL 
gene is consistently located upstream of exon 2 (a2), the breakpoint in the BCR gene varies 
in its localization (Melo, 1996). A major breakpoint cluster region (M-bcr) and a minor 
breakpoint cluster region (m-bcr) have been defined (Kurzrock et al., 1988).  
The M-bcr maps to a 5.8 Kilobase (Kb) area spanning exons 12 through 16. The resulting 

fusion transcripts with ABL generate a 210-kDa protein named p210 which is the most 

common BCR-ABL form, being observed in 99% of the CML patients and in one-third of Ph-

positive B cell acute lymphoblastic leukaemia (Ph+ B-ALL) (Faderl et al., 1999). m-bcr 

localizes to a 54.4-kb area sited downstream of exon 1. It gives rise to a fusion transcript 

with ABL named p190. It is rarely observed in CML, but is the most frequent BCR-ABL 

isoform in Ph+ B-ALL. Finally, 3’ breakpoints downstream of BCR exon 19 have also been 

described and they give rise to a 230-kDa fusion protein (p230 BCR-ABL), which is typically 

found in the rare chronic neutrophilic leukaemia (CNL) (Pane et al., 1996).  

All three BCR-ABL fusion protein variants induce a similar CML-like syndrome in mice, but 
differ in their ability to induce lymphoid leukaemia (Li et al., 1999). 

3. Cellular pathways involved in oncogenic BCR-ABL signalling 

The oncogenic potential of BCR-ABL derives from its capacity to activate intracellular 

signalling cascades that lead to uncontrolled cell proliferation, altered cell adhesion, and 

apoptosis inhibition (Daley et al., 1990; Kelliher et al., 1990). To date several signalling 

pathways affected by the constitutively active BCR-ABL have been identified, as well as 

numerous binding partners and substrates that provide a link between this pathways and 

the defects that characterize CML. Increased susceptibility to proliferate derives from 

BCR-ABL’s capacity to activate the RAS-mitogen activated protein (MAP) kinase 

signalling cascade and JAK/STAT signalling; the interaction with SRC is responsible for 

increased cell motility; resistance to apoptosis is thought to result from BCR-ABL-

mediated activation of phosphatidylinositol- 3-phosphate kinase (PI3K) and thereby of 

AKT. In summary, the net effects of these molecular alterations include inhibition of 

apoptosis, increased cell proliferation, aberrant interaction with the bone marrow stroma 

and genetic instability. Importantly all these events drive disease progression (Deninger et 

al., 2000). 

Consistent with these molecular sequelae, BCR-ABL was shown to transform hematopoietic 

progenitor cells in vitro and in vivo studies (Kantarjian et al., 2006; Hehlmann et al., 2007). 

Recent reports identified a role for other signalling cascades in CML biology, including 

Hedgehog, Wnt and Ikaros, suggesting that pharmacological inhibitors of these pathways 

may find application in the treatment of CML (Chen Zhao et al., 2009; Dierks et al., 2008; 

Mullighan & Dowing, 2008; Dierks et al., 2008). Finally, also micro RNA (miRNA) 

regulation appears to apply to CML biology since miR-203, which would normally suppress 

BCR-ABL expression, is either mutated or epigenetically silenced in CML. In the latter type 

of condition, demethylating drugs such as 5-azacytidine and 4-phenylbutyrate were shown 

to restore miR-203 and to thereby decrease BCR-ABL expression and proliferation rate of 

Ph+ human CML cell lines (Faber et al., 2008; Croce & Calin, 2005).  
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Fig. 2. Schematic view of the signal transduction pathways in cells transformed by BCR-
ABL.  

4. The CML leukaemia stem cell  

Increasing evidence suggests that only a rare subset of immature cells within the tumor, 

named "leukaemia stem cells" (LSC), are able to propagate the CML (Reya et al, 2001). This 

cell has many common features with the hematopoietic stem cells - such as self-renewal and 

pluripotency pensions- unlike these, however, are refractory to conventional chemotherapy. 

Despite the remarkable improvements in the treatment of CML, the TKIs treatment is not 

curative, suppresses the disease but is not able to eradicate the CML Achilles hell, the 

leukaemia stem cell, causing recurrence of disease (Graham et al., 2002; Copland et al., 2006) 

The relapses in CML are thought to result from the outgrowth of quiescent LSC therapy-

resistant, as the majority of leukemic cells in relapses represent (sub-) clones already present 

at diagnosis. To date the only long-term, sustainable remission derives from allogeneic bone 

marrow/peripheral blood stem cell transplantation which successfully restores normal 

hematopoiesis (Michor et al., 2005; Ljungman et al., 2009).  

Recent data suggest that aberrant self-renewal is one of the central mechanisms 

underlying the pathogenesis of chronic myeloid leukaemia - acting either at the level of 

the BCR-ABL positive pluripotential stem cell in chronic phase or at the level of a more 

differentiated progenitor to cause blastic transformation, or most probably at both levels. 

Excessive self-renewal of LSCs may be mediated via several developmental pathways, 

including the Wnt/Frizzled/beta-catenin and Musashi-Numb pathway, or TWIST-1 

oncogene and Polycomb-group protein BMI-1 (Hu et al., 2009; Ito et al., 2010; Cosset et al., 

2011). An additional candidate is the Smoothened (SMO)/Sonic Hedgehog (sHH) 

signalling pathway, which is reasonably well characterised in solid tumours but is less 

well studied in leukaemia (Dierks et al., 2008; Chen Zhao et al., 2009;). Particularly it is 

essential during embryonic development, and might play a key role in human 

malignancies when aberrantly activated. 
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5. CML treatment options 

The definition of the molecular structure of BCR-ABL tyrosine kinase domain has led to 
development of potent and specific tyrosine kinase inhibitor (TKIs) (Druker, 2008; Johnson 
et al., 2003).  TKIs such as imatinib mesylate (Gleevec™, Novartis), nilotinib ( Tasigna™, 
Novartis) and dasatinib (Sprycell™, Bristol-Myers Squibb) induce apoptosis in CML but not 
in healthy tissues, which is thought to result from addiction of CML cells to BCR-ABL 
signalling. The use of TKIs has led to remarkable improvements in disease outcome, in turn 
making TKIs the gold standard front line CML therapeutics. Importantly, although TKIs do 
induce disease remissions in most CML patients, they are not curative because of their 
incapacity to eradicate CML-LSC. Moreover, acquired resistance to TKIs is commonly 
observed and requires the prompt introduction of other TKIs that retain activity against 
BCR-ABL (Talpaz et al., 2002; Sawyers et al., 2002). Therefore, a timely and accurate follow-
up is crucial for the management of CML and for effective therapeutic decisions (Druker et 
al., 2006; Kantarjian et al., 2008; O`Brien et al., 2003; Lahaye et al., 2005; Cervantes et al., 
2003; Branford et al., 2003; Hughes & Branford, 2006). Additionally, such relapses are 
thought to result from the activation and proliferation of otherwise quiescent and therapy-
resistant LSCs (Graham et al., 2002; Copland et al., 2006). Newer molecular therapies are 
being developed to eradicate the LSC pool by targeting critical signaling molecules that are 
essential for LSC maintenance.  

6. CML monitoring  

The remarkable progress in the treatment of CML over the past decade has been 

accompanied by steady improvements in our ability to accurately and sensitively monitor 

the status of the disease with the use of molecular markers, aimed at recognizing the depth 

of remission, and by use of readings to guide the choice of strategy for therapeutic 

interventions (Hughes et al., 2006).  

However, the identification of patients that will experience a failure of TKI treatment, and 
appropriately altering the therapeutic strategy based on such monitoring, remains a 
challenge.  
Routine CML diagnostics largely relies nowadays on traditional blood cell count, 
cytogenetic analysis (standard karyotype with or without fluorescence in situ hybridization-
FISH), and real time quantitative polymerase chain reaction (RT-Q-PCR) for BCR-ABL 
messenger RNA (mRNA). These tests allow defining the haematological, cytogenetic, and 
molecular response to treatment, respectively (Kantarjian et al., 2008; Hughes et al., 2006). 
The haematological response to treatment is assessed by peripheral blood cell counts and by 
spleen size, and is classified as: 
1. Complete haematological response (CHR): normalization of peripheral blood counts with 

no immature blood cells and with disappearance of any sign of disease 
2. Partial haematological response (PHR): presence of immature blood cells and/or persistent 

splenomegaly. The next level of response is the cytogenetic one (CyR), defined as a 
decrease in the number of Ph+metaphases in a bone marrow aspirate (using ≥ 20 
metaphases). This is categorized as:   

1. Complete cytogenetic response (CCyR): 0% Ph+ metaphases 
2. Partial cytogenetic response (PCyR): 1-35% Ph+ metaphases  
3. Minor cytogenetic response: 36-65% Ph+ metaphases  
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4. Minimal cytogenetic response: 66-95% Ph+ metaphases  
CCyR or PCyR configure a major cytogenetic response (MCyR). Finally, residual leukaemia 

cells (minimal residual disease, MRD) can be detected using RT-Q-PCR. Particularly, the 

molecular response is defined as a decrease of the BCR-ABL to control gene transcript ratio 

according to the International Scale (IS) (see below):  

1. Complete molecular response (CMR): undetectable level of chimeric transcript  
2. Major molecular response (MMR): reduction in transcript levels of at least 3-log from 

standard baseline level (which represent 100% on the International Scale) or ≤1%. 

6.1 Cytogenetic and FISH  

The Ph chromosome can be detected by standard cytogenetic techniques in the vast majority 
of patients (Osarogiagbon, 1999). In patients who are cytogenetically Ph chromosome 
negative (Ph–), molecular techniques such as FISH and RT-Q-PCR may be useful in 
detecting BCR-ABL. Cytogenetic analysis is typically performed by chromosome banding of 
at least 20 bone marrow cells in metaphase allowing to identify the t(9:22) translocation 
(Haferlach et al., 2007). In addition, cytogenetic also allows to define any additional 
chromosomal abnormality (i.e. additional Ph chromosome, isochromosome 17q, trisomy 8, 
or trisomy 19), thereby providing additional prognostic information. Baccarani et al. 
recommend that, at diagnosis, two cytogenetic analyses are performed in order to increase 
the sensitivity of the method. Furthermore, if less than 20 metaphases are visualized, the 
cytogenetic analysis should be validated by FISH or by RT-Q-PCR (see below) (Baccarani et 
al., 2008). Importantly, in 5% of CML cases no cytogenetically-detectable Ph chromosome 
can be demonstrated, since the BCR-ABL fusion oncogene derives from a submicroscopic 
genetic fusion. In these cases, FISH or RT-Q-PCR will demonstrate the presence of the 
specific genetic abnormality. Traditional FISH uses 5’ BCR and 3’ ABL fluorescent probes of 
different colours while more recent FISH reagents use 3-4 probes (D-FISH). Such probes can 
detect the variant translocations leading to Ph chromosome formation and are also 
associated with low false positive rates (Dewald et al., 1998; Wang et al., 2001; Landstrom & 
Tefferi, 2006; Sinclair et al., 1997; Seong et al., 1995). Interphase or hypermetaphase FISH can 
be performed on peripheral blood specimen or bone marrow aspirates, respectively. 
Interphase FISH is applicable to a larger population of cells since does not require cycling 
cells. On the other hand, this technique is associated with a background signal greater than 
1-5% (depending on the specific probe used in the assay) (Cuneo et al., 1998; Le Gouill et al., 
2000; Lesser et al., 2002; Raanani et al., 2004). Hypermetaphase FISH is applicable only to 
dividing bone marrow cells (Schoch et al., 2002). This approach is more sensitive and can 
analyze up to 500 metaphases at a time. Usually, FISH results correlate with traditional 
cytogenetic analysis and with RT-Q-PCR results, thus remaining a convenient and sensitive 
diagnostic tool (see below).   

6.2 PCR-based approaches to CML monitoring  

Nested reverse transcriptase PCR can detect one CML cell in a background of ≥ 100.000 
normal cells (Martinelli et al., 2006). However, it remains a purely qualitative assay which is 
only capable of demonstrating the presence or absence of CML cells. Nested-PCR is 
normally only used to confirm the achievement of CMR. RT-Q-PCR methods are less 
sensitive than qualitative PCR (by 0.5-1 order of magnitude) but they have the advantage of 
determining the actual percentage of BCR-ABL transcripts and can therefore be used to 
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track changes in the number of leukemic cells over time (Lowemberg, 2003; Hughes et al., 
2003; Merante et al., 2005; Mauro et al., 2004; Cortes et al., 2004). Currently, RT-QPCR for 
BCR-ABL is the recommended approach for routine follow-up of CML patients and is 
considered the gold standard test for routine therapeutics decision. The BCR-ABL transcript 
levels are expressed as a percentage ratio of BCR-ABL compared to ABL transcripts. ABL 
acts as control gene to compensate for variations in the quality of the RNA and for 
differences in the efficiency of the reverse transcription reaction. The last years have seen 
numerous efforts to standardize the molecular approaches to CML monitoring as well as 
their interpretation criteria. In order to harmonize the results across laboratories worldwide, 
a standard pre-treatment baseline value for each laboratory was established. Thus, a 
molecular response is defined by reductions from an absolute baseline (common to all) 
rather than a relative baseline (individualized). This ensures that patients with the same 
level of response have the same degree of residual disease. Additionally, under- or over-
estimation of the extent of response due to individual variations is avoided by using a 
common standard baseline. According to the international reporting scale (IS) the absolute 
BCR-ABL value to define major molecular response is standardized at 0.1% (or 3 log) 
reduction from the laboratory-specific pretreatment standard baseline (Hochhaus & 
Dreyling, 2008; Hochhaus et al., 1996). A value of 1.0% is approximately equivalent to the 
achievement of a CCyR and a CMR is achieved when transcripts are undetectable (Branford 
et al., 2006; Muller et al., 2007, 2008). Because of its high sensitivity, CML monitoring by RT-
Q-PCR enables to define an early loss of response once CCyR has been achieved (Wang, 
2000, Press et al., 2006). Additionally, early molecular monitoring after initiation of 
treatment helps to identify patients at higher risk of relapse after pharmacological treatment 
onset as well as after allogeneic bone marrow transplantation ( Olavarria et al. 2002; Lange 
et al., 2004; Asnafi et al., 2006). Finally, another advantage of CML monitoring by RT-Q-PCR 
is the feasibility of this method on peripheral blood samples. In a large cohort of patients 
monitored to BCR-ABL mRNA levels after allogeneic bone marrow transplantation, we 
found that peripheral blood and bone marrow samples perform equally well in terms of 
sensitivity in relapse detection and show a very good correlation of results. Thus, molecular 
monitoring of CML with RT-Q-PCR can be performed using peripheral blood  samples 
instead of bone marrow ( Ballestrero et al., 2009). The drawbacks of this method include a 
substantial incidence of false negative tests, which on the other hand, is strongly reduced 
when serial evaluations are performed.  Nowadays, RT-Q-PCR monitoring is included as 
integral part of the management of CML patient treated with TKIs and must be performed 
every 3 months even in patients in MMR. An increase in BCR-ABL levels of 2 to 5 fold is an 
early sign of relapse, and suggests the need to switch to another type of treatment as soon as 
possible.  

6.3 Mechanisms of resistance  

A growing problem in the treatment of CML is resistance to treatment since most patients in 

chronic phase initially respond to TKIs but subsequently relapse and/or progress to 

accelerated phase or blast crisis (Talpaz et al., 2002; Sawyers et al., 2002). Primary resistance 

or, perhaps more appropriately, primary refractoriness (typically BCR-ABL independent), is 

defined as the failure to achieve initial response to therapy and is only seen in 

approximately 5% of newly diagnosed patients in chronic phase of CML. (Apperley, 2007) 

Acquired resistance, defined as the loss of previous response, is more common. About 10-
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15% of patients in TKIs treatment develop treatment failure at a rate of approximately of 1-

4%/year). Resistance to TKIs may be primary or secondary and is usually classified in BCR-

ABL-dependent or -independent. The BCR-ABL-dependent mechanisms include 

reactivation of BCR-ABL signaling through mutations in the ABL kinase domain (KD), and 

increased production of BCR-ABL at the genomic (gene amplification) or transcript 

(overexpression) levels (Campbel et al., 2002, Morel et al., 2003;  Hochhaus et al., 2002). 

Conversely, BCR-ABL independent resistance mechanisms involve: i) a drop in the 

intracellular drug concentration through expression of drug efflux (such as multidrug-

resistant P-glycoprotein MDR-1) (Mahon et al., 2000;  le Coutre et al., 2000) or drug influx 

(such as hOCT1 that affects intracellular drug availability) ( Thomas et al., 2004) genes; ii) 

activation of Src family of kinases (SFKs); and iii) acquisition of additional chromosomal 

abnormalities with Ph-chromosome ( O’Dwyer et al., 2002, 2004; Schoch et al., 2003). 

Although gene amplification occurs more frequently than point mutations (10–4 per cell 

division vs. 10–9(Hochhaus A et al., 2002) clinical resistance is much more likely to be due to 

a point mutation in the BCR-ABL TK domain than to BCR-ABL amplification ( Willis et al., 

2005). To date more than 50 mutations have been identified, each of which arises at variable 

frequencies and with different consequences ( Jabbour et al., 2006; Shah et al., 2002; Branford 

et al., 2002; Hofmann et al., 2002; Roche-Lestienne et al., 2002; Deninger et al., 2000; Soverini 

et al., 2004, 2005; Chu et al., 2005; Nicolini et al., 2006; Barthe et al., 2002; Irving et al., 2004; 

Wei et al., 2006; Wang et al., 2006). Mutations may occur in various ATP-binding sites, such 

as the phosphate-binding loop (P-loop), activation site, catalytic site, or other areas in the 

BCR-ABL structure. Depending on the mutation site, resistance to imatinib will either be 

absolute or relative, or it will be clinically irrelevant. Earlier studies have associated P-loop 

mutations and the T315I mutation with the worst outcomes (Cortes et al., 2007). Mutations 

within the P-loop site are found in 30-40% of the resistant cases and reduce susceptibility to 

imatinib by 70 to 100 folds. The T315I mutation in BCR-ABL occurs in 0.16-0.32% of newly 

diagnosed patients in chronic phase, leading to substitution of threonine 315 with 

isoleucine. This “gatekeeper” mutation also affects the response to the currently existing 

second-generation TKIs. Therefore, upon its identification, patients should be considered for 

alternative pharmacological treatments or for allogeneic bone marrow transplantation.  

6.4 Mutational analysis  

A careful mutational screening allows the timely identification of potential mutant clones 
and suggests the most suitable second-line treatment based on the in vitro sensitivity of the 
specific mutation. The technologies used to identify and quantify the ABL KD mutations 
include: direct sequencing (Branford et al., 2003), subcloning and sequencing, denaturing-
high performance liquid chromatography analysis (DHPLC), pyrosequencing and allele 
specific oligonucleotide PCR. Direct sequencing represents the most widespread method 
used for routine monitoring. Its main drawback is the low detection limit (20%) which is 
responsible for false negative results. Fluorescent-based allele-specific oligonucleotide PCR 
(ASO-PCR) assays have higher detection limit (0.1%), although their main drawback is that 
the search for specific mutations does not include screening of the entire KD region of the 
BCR-ABL gene. Nowadays, numerous groups perform DHPLC to monitor CML patients, 
followed by a sequence analysis to confirm the data. DHPLC has a detection limit of 1-5% 
(Deininger et al., 2004). Mutation studies might be performed on peripheral blood or bone 
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marrow although a direct comparison of these two types of samples has not been done yet. 
The search for BCR-ABL mutations should be performed, according to NCCN CML 
guidelines (NCCN Clinical Practice Guidelines in Oncology, 2010), in the following 
conditions: 
1. Progression to accelerated or blast phase  
2. Treatment failure  
3. Suboptimal therapeutic responses  
4. Increasing BCR-ABL levels (5 to 10 fold in mRNA)  

6.5 Scheduling CML diagnostics and monitoring  

An effective CML monitoring entails an appropriate follow up-schedule (Baccarani et al., 

2006). Evidence obtained in clinical trials has prompted experts to formulate consensus 

recommendations to assess the response to treatment in patients with Ph+ CML (Quintas-

Cardama & Cortes, 2005). In the diagnostic setting, bone marrow cytogenetics is 

recommended before initiation of treatment. Additionally, a nested PCR confirms the 

diagnosis of CML and establishes the type of BCR-ABL fusion transcript present. Bone 

marrow cytogenetics is able to detect chromosomal abnormalities that FISH is not able to 

detect. However, if bone marrow collection is not feasible, FISH on peripheral blood 

specimen with dual probe (BCR and ABL genes) is a suitable tool to confirm the diagnosis. 

Subsequently, the cytogenetic evaluation is recommended at 6 and 12 months from the 

beginning of treatment. If a CCyR is achieved at 6 months, it is not necessary to repeat the 

cytogenetic evaluation at 12 months. If patients is not in a CCyR at 12 months, a cytogenetic 

evaluation should be repeated at 18 months. Once cytogenetic remission is achieved, 

residual disease should be monitored using BCR-ABL transcript levels by RT-Q-PCR, which 

is the most sensitive technique to monitor BCR-ABL. The hybrid transcript levels should be 

measured every 3 months at the beginning of treatment and then every 3-6 months since a 

CCyR is achieved. A steady decline in BCR-ABL transcripts indicates an ideal response to 

therapy. Rising level of BCR-ABL transcript (1 log increase) following the achievement of a 

MMR, mandates to repeat the molecular analysis after 1 month (Baccarani et al., 2006). If the 

result is confirmed, bone marrow cytogenetics should be performed, BCR-ABL 

quantifications by RT-Q-PCR should be scheduled every month, and a kinase domain 

mutational analysis should also be done (Wang et al., 2003). The evaluation of the 

hematologic response foresees that, starting from treatment onset, blood cell counts are 

performed every 2 weeks until a stable CHR is achieved, then every 3 months (Deininger, 

2005). If the patient fails to achieve CHR by 3 months, the treatment is generally regarded as 

a failure, indicating the need to consider alternative therapeutic strategies.  

In summary, the international guidelines recommend the following testing schedule when 

monitoring treatment of CML patients:  

1. Hematologic responses should be assessed at diagnosis, then every 2 weeks until a 
CHR has been achieved and confirmed, then every 3 months or as required.  

2. Cytogenetic responses should be assessed at diagnosis,  and every 6 months until a 
CCyR is achieved and confirmed, then every 12 to 36 months as long as MMR is stable   

3. Molecular responses should be assessed every 3 months, or monthly if an increasing 
BCR-ABL transcript level is detected. 

4. Mutational analysis in occurrences of suboptimal response or failure; recommended 
before changing to other TKIs or other therapies 
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FISH may be preferred over conventional cytogenetics as it can evaluate more cells and 
peripheral blood can be used instead of bone marrow. However it is only recommended 
prior to treatment to identify cases of Ph-, BCR-ABL CML and those with variant 
translocations, Ph amplification, or del9q+. 
 

 

Fig. 1. Proposed algorithm for CML monitoring according to the National Comprehensive 
Cancer Network guidelines.  

7. Conclusions  

Chronic myeloid leukaemia is a biological model of how the molecular understanding of a 
disease is able to provide the substrate for therapy and diagnostics. The recent molecular 
analysis of the leukaemia cell has generated an extraordinary range of discoveries about the 
anomalies developed during the cell growth, promoting the development of innovative 
therapeutic approaches for this type of hematopoietic neoplasia. In particular with the 
introduction of TKIs we have embarked on a journey aiming to reduce disease burden and 
prolonging survival.  
Additionally the molecular tools to monitor disease and characterize resistance are 
remarkably effective not only in the diagnostic evaluation but even in the management of 
CML patients. While traditional cytogenetics with or without FISH and qualitative nested-
PCR are essential for the diagnosis of CML, serial RT-Q-PCRs are the mainstay of 
therapeutic monitoring and MDR assessment (Kantarjian et al., 2008). In cases of treatment 
failure, highlighted by increasing BCR-ABL levels and/or by loss of hematologic and 
cytogenetic responses, mutational analysis to identify KD mutations should be considered in 
order to meet the better treatment decisions (i.e. use alternative TKIs or stem cell 
transplantation) (Hughes et al., 2006). Additionally, an early identification of treatment 
failure increases the chance that alternative treatments will be effective (Jabbour et al., 2009).   
However the major current impediment to cure for CML patients resides in the cancer stem 
cell population that is neither oncogene addicted nor sensitive to TKIs. Thus, one of the 
major challenges is to recognize as early as possible the patient destined to fail TKIs to revise 
the therapeutic strategy. Additionally, an early identification of treatment failure increases 
the chance that alternative treatments will be effective.  
Hence the need for increasingly sophisticated technologies for an early detection of 
molecular relapse. In this field the comprehensive analysis of the CML genome, by the 
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single nucleotide polymorphism arrays, will provide the basis for a molecular approach to 
guide therapeutic decisions. (Boultwood et al., 2010)In summary the CML represents one of 
the best examples of tumour malignancies and despite the numerous advantages of modern 
technologies, it is important to continue interpreting laboratory data within the clinical 
context of the patient in order to effectively and inexpensively utilize current and nascent 
laboratory tools. 
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