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1. Introduction

This chapter will discuss some interesting real applications where Fluid Dynamics equations
found fruitful applications without dealing with "strictly speaking" fluids. In particular,
thanks to the large set of analyses performed over different kinds of fluids in different
operating and boundary conditions, a wide range of Computational Fluid Dynamics
algorithms flourished tackling different aspects, from convergence rate, to stability according
to the discretization, to multigrid and linearization problems. This robust and thorough
background, both on theoretical and on practical aspects, made Computational Fluid
Dynamics (CFD) appealing also to other sciences and applications where Fluid Dynamics
equations, or similar equations very close to them, can be useful in describing complex
phenomena not related to fluids. Some applications that will be discussed concern, e.g.,
Geometry of liquid snowflakes whose contour is growing steered by curvature, staring
from a circle. Furthermore Image Restoration and Segmentation can also benefit from CFD
since a set of evolutionary algorithms, based on level-set curvature flow equations, plays
a fundamental role in steering active contours or snakes through the noise present in the
image till the complete warping of the desired framed object. Also in this case advanced
techniques like Ghost Fluids Method for two competing fluids dynamics can be used to
separate different objects in images. Other interesting applications that will be described
concern applicability of CFD to surface extraction from cloud of points. This is a common
problem when complex clouds of points, representing 3D objects or scenes are obtained by
laser scanners or multi-camera vision systems. These points represent unambiguous features
from corners or sharp edges and the final 3D closed surface must fit on these points smoothly
interpolating empty space between them. Also in this case CFD can provide useful tools to
define the evolution of a 3D surface representing the border between two competing fluids,
one representing the "inside" and the other the "outside" of the object itself. The two fluids
evolution will stop when surface sticks on all the 3D points: the viscosity of the two fluids will
control the smoothness of this surface that will wrap the cloud and turbulence is used to model
injection into grooves or narrow holes. This chapter will also discuss another interesting
application of CFD to robotic navigation in complex environments where we are looking for
the best path, both in terms of length and distance from objects, through a set of obstacles,
different terrains traversability or path slope. Also in this case an imaginary fluid with a
predefined viscosity floods from the robot position through the whole environment, its front
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2 Will-be-set-by-IN-TECH

evolution speed, accordingly to CFD, will be slower in narrow passages and, once it reaches
the target, it will define the easiest way.

2. Snowflakes and phase interfaces

In many physical problems outlines of a considered fluid have different speeds at different
points, and in many cases local speed is directly connected to the curvature. In the following
we will show how a geometrical contour, represented by a 2D line or a 3D surface of the
evolving shape changes from point to point accordingly to the local geometrical properties of
the contour itself. The presented approach can be applied to a generic N-dimensional case
and we can refer to the moving contour as a general hypersurface, anyway in the following,
we will limit without loss of generalization our considerations to a 3D space where fluid
boundary is represented by a closed surface.
In particular Sethian (1989) showed how algorithms based on direct parametrization of the
surface evolution could present ambiguous and error-prone solutions due to the local error
propagation while global approaches based on implicit representations can result in a much
more robust solution. This kind of approaches usually relies on higher dimensional functions
for which the considered surface is just represented by a level-set. The contour motion
can then be described applying the proper Hamilton-Jacobi equation related to a hyperbolic
conservation law to the implicit function and tracking the particular level-set representing the
contour itself.
Implicit function formulation is much more robust to numerical techniques with respect to
direct methods and can be implemented starting from an original closed and non-intersecting
surface: two famous physical examples are the combustion model of a flame and the grow of
a snowflake: Markstein (1951) assumed that thin flame fingers close to their ends are cooler
than their inner part and move slower that hot nonconvex regions: the proposed evolution
equation assumes that flame contour speed is inversely proportional to its curvature κ, (where
κ is positive for convex regions and negative for nonconvex ones). This assumption come from
the fact that in highly convex regions, flame particles collide with a high number of slower and
cooler surrounding particles that slow down their motion. The symmetrical effect is present in
spikes growing in snowflakes. In particular these two last examples, flames and snowflakes,
represent two very good examples where simple equations can explain very well complex
phenomena. For a comprehensive description of ice crystal growth we suggest Libbrecht
(2005), while in the following we describe how solid-liquid interface dynamics are steered by
curvature in liquid snowflakes (or Tyndall figures). We refer to some recent studies (Hennessy
(2010), Hobbs (2010)) on cylindrical discs of liquid in superheated crystals of ice. In this case
the snowflake is made of water inside ice and its geometrical shape evolution is determined
by boundary condition between solid and liquid phase. In Fig. 1 there is a typical snapshot of
a Liquid snowflake.

2.1 Liquid snowflakes surface evolution

The typical modelization of snowflakes surface growing is the Gibbs-Thomson equation
where the interface temperature TI , between the solid and the liquid part is ruled by the
equation:

TI (κ) = TM

(

1 − κ
γ

ρL

)

(1)
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Fluid Dynamics Without Fluids 3

Fig. 1. A typical Tyndall figure (Liquid snowflake)

Where TM is the equilibrium temperature of a planar solid-liquid interface (273.15K for water),
κ is the curvature, γ is the surface energy per unit area for the solid-liquid interface, ρ is the
density of a specific phase but in this case we are assuming equal density both for ice and
water and L is the latent heat of fusion. The steering interface force is then due to the pressure
variation across the interface and depends from curvature:

ps − pl = ρ (sl − ss) (TI − TM) = ρL

(

TI (κ)

TM
− 1

)

(2)

Where the subscript l and s refer to liquid and solid state respectively and s indicates the
entropy per unit mass, for further details refer to (Hills & Roberts (1993)).
A further improvement in the Gibbs-Thomson model considers surface energy anisotropy due
to crystal ice structure (six fold symmetry), this will add a dependence of the surface energy γ

from the relative orientation of the surface with respect to the underlying crystal. Accordingly
to (Davis (2001)) a six fold symmetrical crystal will have a:

γ6 = γ0

[

1 +
σn

n2 − 1
cos (nθ)

]∣

∣

∣

∣

n=6
(3)

Where σn represents the anisotropy degree and the complete interface temperature will be,
accordingly to (Pimpinelli & Villain (1999));

TI (κ) = TM

⎛

⎝1 − κ
γ6 +

d2γ6
dθ2

ρL

⎞

⎠ (4)

In particular, accordingly to equations 3 and 4, whenever |σn| < 1 we are in a week anisotropy
condition, i.e. the surface energy γ is always positive, and, at equilibrium, the surface will
resemble a smooth line, while, for anisotropy values greater that one, as for the snowflakes
water example, the thermodynamic equilibrium implies a closed polygonal made of straight
line segments (Dobrushin et al. (1992)).
Once the Temperature of the interface is determined the shape of the boundary between the
liquid and solid part and its time evolution can be recovered from the energy conservation,
in particular, in order for the ice-water interface to advance inside the solid part, two energy
contributions must be provided: one for solid melting and one for interface stretching. The
melting energy that must be provided per unit of time for a surface A that is moving inside
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4 Will-be-set-by-IN-TECH

the solid at a normal speed vn is lmel = ρLAvn while the energy contribution per unit of time
due to surface stretching is lsur = γ dA

dt ; which, accordingly to the differential geometry can be
written as:

lsur = γ
dA

dt
= Aγκvn (5)

The surface advancement is steered by two opposite heat diffusive fluxes: one inside the liquid
part and one inside the solid part; respectively: −kl∇Tl and ks∇Ts where k indicates the
thermal conductivity of the considered phase.
The equilibrium of energy equations per area and time unit can be written as:

lmel

A
+

lsur

A
= (−kl∇Tl + ks∇Ts) · n (6)

i.e.:
(ρL + γκ) vn = (−kl∇Tl + ks∇Ts) · n (7)

Where n is surface normal oriented from the liquid part towards the solid one; this equation
is called the Stefan condition. The numerical solution for the liquid-solid interface evolution,
accordingly to the Stefan condition, requires some particular precaution due to accuracy that
must be placed in surface tracking. Since the analyzed problem is far from thermodynamic
equilibrium due to the superheated temperature of the solid, some typical approaches, e.g. the
Enthalpy model (Shastri & Allen (1998)), are not accurate. In fact, Enthalpy approach, even
if requires only the evaluation of a single parabolic PDE at each time step, assumes that the
interface is within a mushy solid-liquid region and the evolving interface is just approximated.
A possible extension of Enthalpy approach to account for superheated solid state could be
phase-field models; anyway an accurate interface tracking requires a very small grid spacing
resulting in a high computational cost (Biben et al. (2005)). One of the method that in recent
years is getting growing attention is Level-set: in the following of this chapter we will show it
versatility and accuracy in many CFD applications and in liquid snowflakes shape definition.

3. Level-set methods

For most of real CFD systems symbolic formulation that easily yield to symbolic mathematical
solution is unfeasible, and the goal becomes to find the system modelization with the best
trade-off between accuracy and computational complexity accounting for local, global and
independent properties of the moving surface. In particular we will refer to "local" as
properties associated to local surface features (e.g. curvature, local density or temperature),
"global" as properties associated to overall surface shape or extension, while independent
properties are not linked to the surface itself, like a flow below the surface. The Level-set
method aims to track a thin propagating interface over time, it outperforms many other
approaches handling topological complexities such as corners and cusps, and in handling
complexities in the evolving interface such as entropy conditions and weak solutions. A
detailed description of level-set can be found in (Sethian (1999)).
The general idea is to define a function φ (p, t) over the whole space-time domain, where p

indicates a point in the space and t represents the time variable. The initial surface is the zero
level-set of an implicit function for t = 0: i.e. the starting surface is the set of points p so that
φ (p, t) = 0 the value of the φ function for non-interface points is, the signed distance from the
surface where ’signed’ means that different signs indicate internal or external position with
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Fluid Dynamics Without Fluids 5

respect to the closed surface. The discrete formulation requires that the value of φ is initially
evaluated over all the mesh points and the steering equations would require the update of
each point at each time step. This computational complexity of order O(n3) at each time step
could be unacceptable in many practical cases so many faster update solutions have been
proposed; the most common are:

• Narrow band: the updated mesh points are only those in a small stripe surrounding
the interface, this will reduce computation to O(n2) but as soon as the interface
is approaching the stripe boundary all values must be recomputed (more details in
(Adalsteinsson & Sethain (1995))

• Octree: relevant mesh points and high detailed surface regions can be divided in sub-grids,
e.g. a cube can be split in eight sub-cubes (the method name come from here) and the
procedure can be iterated for higher precision. More details can be found in (Losasso et al.
(2004))

• Sparse block grid: The whole domain is subdivided in blocks representing clusters of the
original grid points (they can be overlapped or not) then the update is evaluated only on
blocks containing the surface narrow band. (Further details in (Bridson (2003))

3.1 Level-set evolution

Accordingly to the previous description the set of points belonging to the surface will satisfy
the zero level-set condition:φ (p(t), t) = 0 where p(t) represents the path of a surface point.
The first temporal derivative will become:

dφ (p(t), t)

dt
=

∂φ

∂t
+∇φ ·

dp(t)

dt
= 0 (8)

Considering the normal unitary vector to a generic point of φ for a generic level-set (contour),
n =

∇φ
|∇φ|

the speed function v along this direction is then:

v (t) =
dp (t)

dt
· n (9)

obtaining:
dφ (p(t), t)

dt
=

∂φ

∂t
+ v (t) |∇φ| = 0 (10)

In the cases considered in the following and in many physical cases the interface evolution
is ruled by a Hamilton-Jacobi equation and the local velocity can be assumed proportional to
the local curvature of the surface itself:

v = v0 − ǫκ (11)

where ǫ is a constant and

κ =
φxxφ2

y − 2φyφxφxy + φyyφ2
x

(

φ2
x + φ2

y

)3/2 (12)

.
We can rewrite φ as follows:

∂φ

∂t
= −v0 |∇φ|+ ǫκ |∇φ| (13)
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6 Will-be-set-by-IN-TECH

3.2 Liquid snowflakes surface evolution

Assuming that the ice is radiated with an external electromagnetic radiation normal to its
surface ( a focused beam with a gaussian shape) the heat will follow an exponential decay
penetration, accordingly to the following heat propagation equation:

I (r, z) = I0e−(r/rb)
2−αz (14)

where I0 is the central beam intensity, rb is its standard deviation while r is the in-plane
coordinate for the ice surface. Furthermore z is the coordinate orthogonal to the ice surface
and α is a penetration coefficient. The formation of the liquid snowflake is then in the in-plane
direction. A level-set function can the be defined where φ is the normalized temperature that
follows heat PDE:

{

∂φ
∂t = ∇2φ + e−(r/β)

2
for the liquid

cpr
∂φ
∂t = kr∇2φ + αre−(r/β)

2
for the solid

(15)

where cpr =
cps

cpl
is the relative measure of heat capacities, kr = ks

kl
is the relative thermal

conductivity and αr =
αs
αl

is the relative absorbtion coefficient.
The liquid/solid interface is then associated to the zero level-set in a sort of rescaled Celsius
scale. Experimental observations show that liquid snow flakes often begin as circular discs
which then grow outwards in a radially symmetric manner. However, after a certain amount
of time, the interface becomes unstable and small, sinusoidal perturbations with a well defined
wave-number appear. In Fig. 2 it is possible to see the growing of a liquid snowflake starting
from a circle and then evolving with equally spaced rippling.

Fig. 2. Liquid snow flakes formation starting from a circle and the evolving, accordingly to
linear instabilities with sinusoidal perturbations

The eq. 15, accordingly to the problem symmetry can be written in polar coordinates for the
quasi-steadily condition:

⎧

⎨

⎩

1
r

∂
∂r

(

r
∂φ
∂r

)

+ 1
r2

∂2φ
∂θ2 + e−(r/β)2

= 0 for the liquid

1
r

∂
∂r

(

r
∂φ
∂r

)

+ 1
r2

∂2φ
∂θ2 + αr

kr
e−(r/β)2

= 0 for the solid
(16)

Even small linear perturbations must satisfy the equations above and an integer number of
oscillations (first order approximation) will constitute the zero level-set. Assuming a starting
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Fluid Dynamics Without Fluids 7

contour equal to a circle of radius R the curvature will be equal to κ = − 1
R The time evolution

of the level-set accordingly to the aforemention equations is represented in Fig. 3 where a
very good agreement of the zero level-set with real data is reached. For further details about
analytical integration of eq. 16 refer to (Hennessy (2010)).

Fig. 3. on the top raw: different snapshots of the zero level set evolution varying the relative
absorbition αr ; instead on the bottom line different level set values (different temperatures)
are presented for the larger curve of the raw above

4. Motion planning for traveling robots in complex environments

Fluid dynamics and Level-set formulation can also be fruitfully adopted in Motion planning
Algorithms. In particular the flexibility of the presented technique for time optimal motion
planning with moving obstacles can be easily integrated with further constraints like different
terrains traversability, path narrowing or fuel economy. Many classical techniques are present
in literature for shortest path search with stationary obstacles, a good survey can be found
in Latombe (1991). The space-time representation of obstacles moving in a 2D environment,
assuming that one axis will be the time variable will be a solid structure. In Fig. 4 there is the
representation of a circular obstacle moving in thex-y plane along x direction with an abrupt
slow down.
As shown in Kimmel et al. (1998) the search for the time-optimal path within the
aforementioned 3D time-space can be reduced to the search in a reduced set of 2D regions
forming a Multivalued Distance Map (MDM). A Distance Map from a point p is a function
that assigns to each point q in the considered domain a value corresponding to the "minimal
length" (geodesic). The simplest approach uses a contour with a constant speed propagating
from a small circle around p and the distance assigned to each crossed point q is proportional
to the propagation time. If obstacles are moving the optimal path will be the minimal geodesic
only when it does not cross any moving obstacles in the scene. For all the other cases a
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8 Will-be-set-by-IN-TECH

Fig. 4. a space-time representation for a circular obstacle moving in the x-y plane along the x
direction that slow down its speed

more sophisticated approach is required: MDM will keep track of multiple crossing of the
propagating contour when moving obstacles are present: in particular MDMp (q, 1) will
indicate the first time at which the point q is reached from p while MDMp (q, 2) will indicate
the second time at which, accordingly to the moving objects the propagating contour can reach
q, and so on. We will call N (q) the number of times that the propagating front will cross that
point. Once the MDM is built for all points in the domain, the best path is obtained using a
back-track procedure.
Consider now, given the source point p, a continuous surface S in the space-time domain,
centered in p indicating the wavefront contour as a function of time: S = {(x, y, t (x, y))},
where a contour at a specific geodesic distance d̄, α

(

d̄
)

is given by:

α
(

d̄
)

=
{

q|dg (p, q) = d̄
}

(17)

where dg (p, q) is the minimal geodesic distance along the surface S . Accordingly to
Kimmel et al. (1995), due to the continuity and smoothness of S we can define a curvilinear
abscissa u for α

(

u, d̄
)

.
If we assume that the motion velocity is constant, V without loss of generality we can also
assume that V = 1 then the geodesic distance d = dg (p, q) coincides with time t and α (u, d) =
α (u, t) the equal distance contour evolution rule is:

∂α (u, t)

∂t
= N × T (18)

where T is the unit vector tangent to α while N is the unit vector normal to the surface S .
To avoid point discontinuities the starting contour α (u, 0) is a small circle around the point p

and the projection of equation 18 on the x-y plane will be the velocity vector orthogonal to the
actual front, VN :

VN = P (N × T) · n (19)

where P() is the projector on the x-y plane and n =
(

nx, ny
)

is the unit normal to the planar
curve in the x-y plane.
The evolution of the planar contour will then be:
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∂P (α (t))

∂t
= −VNn (20)

In Fig. 5 there is a graphical representation of the aforementioned quantities.

Fig. 5. The time evolution of variable α, and the definition of the moving front velocity VN

Calling p =
∂t(x,y)

∂x and q =
∂t(x,y)

∂y , accordingly to (Kimmel et al. (1995)) we can write:

N =
(−p,−q, 1)

√

1 + p2 + q2
(21)

and:

VN =

√

(1 + q2) n2
x + (1 + p2) n2

y − 2pqnxny

1 + p2 + q2 (22)

Since the minimal geodesics are perpendicular to the equal distance contours on the surface,
we can track the optimal trajectory starting from the destination point and, considering the
equal distance contour α crossing it we have to move backward thanks to the orthogonality
between the optimal path and the equal distance contour:

η = − (N × T) (23)

Using an arc length parametrization for the curve α we can write r =
∂MDMp

∂x , l =
∂MDMp

∂y and
using a normalization function

ψ (p, q, r, l) =
p2 + q2 + 1

√

l2 (1 + p2) + r2 (1 + q2)− 2pqrl
(24)

and the backtracking rule will then consist in tracking, from destination point q over the
surface S , the best path β so that:

∂β

∂t
= η = ψ (p, q, r, l)

[

r
(

1 + q2
)

− pql, l
(

1 + p2
)

− pqr, pr + ql
]

(25)
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If there are moving obstacles along the path the MDMp becomes multivalued and it could be
possible that some points change their index along the optimal path, to account for this all
distance values must be evaluated at a candidate point.

4.1 The Level-set approach

Moving obstacles introduce new boundary constraints and dealing with them could be very
complex following the previously describer approach, a simpler way could be using the
level-set approach where the projection of α on the x-y plane is the zero level set φ = 0 and φ

will be negative in the interior and positive in the exterior of the zero level set.

φ (P (α (t)) , t) = 0 (26)

A graphical representation of this process can be seen in Fig. 6.
The next step requires the definition of the evolution law for φ, that, accordingly to the chain
rule can be written as:

∇φ (P (α (t)) , t)
∂P (α (t))

∂t
+

∂φ (P (α (t)) , t)

∂t
= 0 (27)

Furthermore, accordingly to this level-set formulation, the in-plane normal vector can be
written as n =

∇φ
‖∇φ‖ . This relation together with the Lagrangian evolution equation:

∂φ (P (α (t)) , t)

∂t
= −VN ‖∇φ‖ =

√

(1 + q2) φ2
x + (1 + p2) φ2

y − 2pqφxφy

1 + p2 + q2 (28)

This is the Eulerial formulation for curve evolution.

Fig. 6. Implicit representation of the projection of the α function through the level-set.
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Fig. 7. (a) the terrain definition, (b) a squared object moves across the scene. (c) α(u, t) for
different values of t representation (d)Back tracking from the final point toward the starting
one along the estimated geodesic path

The steps for the best path definition can then be summarized as:

1. Evolve the PDE (eq.28) till the destination point is reached.

2. back-track along the optimal path till the origin.

In Fig. 7 there is the representation of level-set evolution, accordingly to moving objects, in an
"egg-box" terrain where a square is moving across the scene.
Terrain traversability can be easily integrated in the presented approach since it is possible to
define a map F (x, y) describing the terrain traversability according to continuous values from
1 (optimal traversability) to 0 (impassable) and the optimal path can be obtained just changing
eq. 18 into

∂P (α (t))

∂t
= −F (x, y)VNn (29)

Further velocity dependencies, e.g. from the vehicle weight reduction due to fuel combustion,
can be accounted introducing a time dependance in VN . More complex conditions can be
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easily added just acting on VN , e.g. if the Robot has a specific shape the velocity can reflect the
ability to walk through a narrow path or to turn at a specific point. In some cases the F (x, y)
correcting function is called viscosity for it similarity to fluid property that can prevent or
slow down motion in particular circumstances.

5. Surface reconstruction from cloud of points

The temporal evolution of a volumetric implicit function can also be fruitfully applied to
reconstruct 3D surfaces form large set of unorganized sample points. The evolving front
can be thought as the surface that separates two different fluids obeying specific fluid
dynamics laws. One remarkable feature of this approach is its ability to model complex
topologies using a set of intuitive tools derived from fluid physics: Global and local surface
descriptors are used allowing the parallelization of the algorithm on different object parts
working with different resolutions and accuracies. The problem of building surfaces from
unorganized sets of 3D points has recently gained a great deal of attention. In fact, in
addition to being an interesting problem of topology extraction from geometric information,
its applications are becoming more and more numerous. For example, the acquisition of large
sets of 3D points is becoming easier and more affordable using, for example, 3D-scanners
(Registration and fusion of intensity and range data for 3d modelling of real world scenes (2003)).
The presented approach is particularly important in applications where objects are better
described by their external surface rather than by simple unorganized data (clouds of points,
data slices, etc.). For example, in medical applications based on Tomography scans or NMRs
it is often necessary to visualize some specific tissues such as the external surface of an
organ starting from the acquired 3D points. This can be achieved by selecting the points
that belong to a specific class (organ boundary, tissue, etc.) and then generating the surface
from their interpolation. In most cases the definition of this surface is an ill-posed problem
as there is no unique way to connect points of a dataset into a surface, therefore it is often
necessary to introduce constraints for globally or locally controlling the surface behavior. As
a matter of fact, the resulting surface often turns out to exhibit a complex topology due to
noise in the acquired data or ambiguities in the case of non-convex objects Hoppe (1994). In
order to overcome such problems, surface wrapping algorithms need to incorporate specific
constraints on the quality of the data fitting (surface closeness to the acquired points), on
the maximum surface curvature and roughness, on the number of resulting triangles, etc.
The existing surface reconstruction methods can be classified into two broad categories:
the former describes the surface as an implicit function while the latter describes it in an
explicit form. Explicit (boundary) representations describe the surface in terms of point
connections, and traditional approaches are based on Delaunay triangulation, Voronoi
diagrams (Amenta et al. (1998)) or NURBS (Piegel & Tiller (1996)).
Here we will show how Level-set technique together with Volume of Fluid end Fluid
Dynamics equations can be fruitfully applied to obtain a wrapping surface with intuitive
parameters tuning. To evaluate quality of the final reconstruction an important parameter
that can also be used as stopping condition for the surface evolution is an energy functional
defined as:

E (Γ) =

⎡

⎣

∫

Γ

dp (x) ds

⎤

⎦

1/p

, 1 � p � ∞ (30)

600 Fluid Dynamics, Computational Modeling and Applications

www.intechopen.com



Fluid Dynamics Without Fluids 13

where Γ represents the surface, x is the set of 3D points, d is the euclidean distance between
the point x and the closest point on the surface Γ and 1 ≤ p ≤ ∞ is the order of the functional
distance: for p = 2 it gives a root mean square error while for p = 1 we just focus on the point
with the maximum distance from Γ. looking for the surface that minimizes the functional (30)
is similar to enveloping the data set with a membrane with certain elastic properties and have
this membrane to evolve in time until it comes to rest. This time evolution paradigm can be
described as:

∂Γ

∂t
= −

⎡

⎣

∫

Γ

dp (x) ds

⎤

⎦

1
p −1

dp−1 (x)

[

∇d (x) · n +
1
p

d (x) κ

]

n (31)

Euler-Lagrange equation can the be used to find its minimum:

dp−1 (x)

[

∇d (x) · n +
1
p

d (x) κ

]

(32)

where n points accordingly to the evolving point direction, κ indicates the mean curvature,
∇d (x) · n represents the surface attraction term and d (x) κ is the surface tension. An
important consideration is that function d (x) will automatically impose that the final surface
is more flexible where the 3D points dataset is denser and more rigid in low density regions:
this will allow smoother regions where we have less samples and accurate fitting in highly
sampled regions. Fluids, with their properties like surface tension and viscosity represent an
optimal modelization for the warping surface providing us with a flexible tool for this goal.
Also in this case we present a Level-set approach, in particular we will adopt an implicit
function φ over the spatial 3D domain so that φ (x, t) = 0 represent the warping surface Γ (t)
at time t, for the initialization we use φ (x, t) |t = 0 = D where D is the signed distance of
x from Γ (t) (positive values indicate external points while negative ones represent internal
points). One possible approach to make surface Γ to converge towards the cloud of points
is, accordingly to Zhao et al. (2001), to use the fluids convection defining a velocity field v (x)
accordingly to:

∂Γ (t)

∂t
= v (Γ (t)) (33)

In particular we adopted, as a steering potential field, the distance function d (x) so that the
velocity field v is oriented towards the minima of the potential field: v = −∇d (x). So,
accordingly to eq. 8, the level-set evolution in this case can be defined as:

∂φ

∂t
= ∇d (x) · ∇φ (34)

A major computational drawback comes from the fact that the φ function at each time iteration
becomes more and more compressed presenting a growing slope across the zero level-set
which could introduce numerical imprecisions. To solve this problem some solutions are
present in literature, for example a level-set re-initialization in a region around the zero level:
this is particularly useful for Fast Marching methods which, as described in section 3 for
the Narrow Band approach Sethian (1999). Other approaches, instead, suggest a different
implementation for the Hamilton Jacobi PDE like Gomes & Faugeras (1999). In particular in
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Marcon et al. (2008) a quite different interpretation for the level-set function is presented that
aims to conciliate Level-set upgrade, narrow band approach, discretization issues and Volume
of Fluid (VoF) method: in particular, the VoF method (see Noh & Woodward (1976)) has been
formulated in a variety of forms and re-introduced under different names such as the "cell
method" and the "partial fractions method". The key idea behind this technique is to define
a fixed computational grid and assign to each grid cell a value that describes the relative
proportions of two materials contained in that cell. Our particular modeling metaphor is
based on two immiscible fluids of opposite densities ρ = 1 and ρ = −1, which identify the
surfaceŠs outside and inside, respectively. More specifically, cells completely filled with outer
fluid take on the value +1 while cells that are only filled with inner fluid will take on the value
-1. When filled with a mix of both fluids, the cell is assigned an intermediate value in the
] − 1, 1[ range, which measures the relative density of the mix (i.e. a value of zero indicates
the same amount, half and half of the two fluids inside the cell). As a first step we define a
bounding box that completely encloses the point cloud. We assume that this box is completely
filled with inner fluid and that the whole space outside of the box is filled with outer fluid.
We define the rules of evolution so that both fluids are set in motion by the presence of data
points, which act as attractors. This fluid migration takes place in compliance with laws of
conservation. According to such rules, the front starts propagating inward (towards the cloud
of points) and stops only when the inner fluid is confined "inside" the cloud of points and the
interface between the two fluids wraps the point-cloud. At each iteration step we will replace
the value of points on the domain boundary B with 1 (this is equivalent to place outer fluid
sources on the domain boundary), the cells with values greater than 1 will be clipped with
value ’1’ while cells with values lower that -1 will be clipped to -1: this will be equivalent to
remove excess fluids from cells without any need to introduce further fluid sources or drains.
Two main contribution to fluid motion are considered: convective and diffusive: the first one
is important for steering the zero level-set toward the cloud of points while the second has
an important role in smoothing evolving front. Accordingly to the Gauss theorem when no
sources or drains are present the fluid density will follow eq. (35):

∂ρ

∂t
= ∇ · (vρ) +∇ · (ξ∇ρ) (35)

where ρ indicates the fluid density, vρ is the convective term indicating the amount of fluid
per volume unit that is transported by the velocity field while ξ∇ρ represents the diffusive
part where ξ is the diffusive term (further details in (Gueyffier et al. (1999))). In this approach
a point will be assigned a velocity that is proportional to the vector v that joins that point
to the closest data point. This way data points act as attractors for both internal and external
fluids and, therefore, for the evolving front: each sample point represents a central vector field.
Even if this attraction field has no physical equivalent, it is physically consistent thanks to its
irrotational characteristic (see Marcon et al. (2008) for further details). This fact guarantees
algorithmic convergence. In Figures 8 and 9 it is possible to see the direction and intensity of
the steering field toward the cloud of points and different level-set curves; in particular in the
magnification of zones A and B is possible to see how the steering field automatically stops
external liquid from entering the object (all the internal arrows point outside) while, in the
convex part, the steering field force the outer fluid to enter the convex region.
In Fig. 10 we represent the final state for the wrapping of a two dimensional cloud of points.
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Fig. 8. a 2D non-convex example, arrows indicate the steering velocity field toward the cloud
of points and different level-sets are also represented. Zones A and B are zoomed in Fig.9

Fig. 9. zoom of zone A and B of Fig. 8 in particular different behavior of the steering field
prevents external fluid from entering the convex part in B while favor its penetration in A
(nonconvex region)

Further aspects from fluid dynamics can be fruitfully applied, e.g. the diffusive parameter
ξ in eq. 35 is a delicate parameter as it is strictly connected to fluid viscosity. High values
of ξ result in a smooth but often inaccurate surface while low values result in a surface
that strictly honors the data but is sensitive to acquisition noise. As a matter of fact for
laser scanner acquisitions the portions of the object with high samples density ( usually due
to multiple acquisitions from different viewpoints) requires high accuracy and/or present
complex topologies, while smoother or less critical areas usually exhibit a lower sample
density. In order to account for that, we can establish an inverse dependency between the
diffusive constant ξ and the local point density:

ξ =
α

1 + ρp
(36)
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Fig. 10. the wrapping of a set of 2D points (top right), the zero level-set at the end of the
evolution represent the joining line, inner points have positive ψ while external ones have
negative values

where α is a parameter that indicates the estimated noise in the point location (the higher the
value the smoother the surface). The density ρp at a given point is defined as the number
of samples that fall into a cube of volume V/N around that point, where V is the volume of
the point cloud (approximated by the volume of the smallest parallelepiped that contains the
point cloud) and N is the total number of samples. This means that if all the samples would
be uniformly distributed in the considered volume (like in a cubic crystal) in each cubic cell
of volume V/N there would be just one sample. In our case, since we have to define the ρp

variable for each voxel, we define it as the sum of all the points falling inside a cube of volume
V/N centered at the voxel center. In surface regions with a low point density the diffusive
constant ξ corresponds to a smooth surface, while in high-density zones ξ becomes very low,
to guarantee that the surface will strictly honor the sample points.
The level-set evolution equation is then the following:

⎧

⎪

⎨

⎪

⎩

∂φ(x,t)
∂t = ∇ · (vφ (x, t)) + ξ∇2φ (x, t) , t � 0

φ (x, t) = +1, t � 0, x ∈ B
φ (x, 0) = −1 x /∈ B

(37)

where the second raw indicates that the boundary B of the considered domain is always kept
equal to +1 assuming that those points are sources of external fluid. The third raw indicates
that at the starting point all the points inside the domain are filled with the internal fluid. In
Fig. 11 the level-set evolves toward the cloud of points which is a laser scanner acquisition of
a plaster wolf.
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Fig. 11. Evolution of the zero level-set toward a 3D cloud of points acquired by a laser
scanner. The level-set starting from the boundary of the considered volume (top left) evolves
towards the final cloud of points.

5.1 Turbolence and convex regions

In some particular cases, where high curvature is present in nonconvex regions with a small
entrance, external fluid could be inhibited from entering (e.g. consider the cloud of points of
Fig. 12).

Fig. 12. a set of points presenting a high curvature region within a concavity

For cases like these a further help could come from vorticity. In particular, since our steering
field is based on the distance from the closest point it will be a conservative irrotational vector
field and when the outer fluid will approach the concavity mouth it will be pushed to its
borders without the opportunity to get inside (we underline that this condition is different
from the one in Fig. 8 where the concavity of the region A does not present high curvature and
external fluid is correctly steered inside the region). A possible solution consists in introducing
a rotational component in the steering field, this could be obtained adding periodically a small
random displacement for each point around its original position: it will result in a vorticity
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contribution: ζ = ∇× v (x) the resulting effect is that inner fluid in convex regions is pushed
inside and outside with the same probability while in nonconvex regions inner fluid that
went inside stays there and progressively fills the region. Particular care must be placed in
introducing the amount of random points displacement since convergence of the algorithm is
no more guaranteed by the conservative vector field.

6. Image processing and viscous noise removal

Fluid dynamics applied together with level-set method can also provide a powerful tool for
noise removal in complex images (i.e. when noise is not simply removable using intensity
thresholds of histogram analysis), a Total Variation denoising approach is presented in
(Osher & Fedkiw (2002)) where the regularization algorithm is based on this PDE:

Lu = λRu, (38)

where u is the image represented as a 2D function (u (x, y)) that indicates intensity value for
each point; R is the regularization operator and L is the time-space operator. A very common
energy functional E(u) whose minimization provide the denoised image is the Mumford-Shah
multiscale segmentation model:

min
u

E (u) =
1
2

∫

Ω

(u − u0)
2dx + μ

∫

Ω\Γ

|∇u|2 dx + νH2(Γ) (39)

where u0 is the given noisy image, Ω is the image function domain and μ is a weighting
coefficient for the average smoothness of regions divided by the contour Γ. ν is the weight
coefficient for the total contour length expressed by the Haussdorf measure H.
The minimization of E(u) will provide an piecewise-smooth approximation of the initial u0
image, Γ has the role of approximating the edges in the image u0 and u will be smooth only in
Ω\Γ; Accordingly to the level-set formulation the implicit function will be φ and in particular
φ(x) = 0 represents the contour Γ separating region of positive values of φ from the region
of negative values. In particular u+(x) will be the intensity function representing values of
the region where φ(x) > 0 while u−(x) will represent the intensity of points in the φ(x) < 0
region. Eq. 39 then become:

min
u

E
(

u+, u−, φ
)

=
∫

Ω

(

u+ − u0
)2

H (φ) dx +
∫

Ω

(

u− − u0
)2

(1 − H (φ))dx+

+μ
∫

Ω

∣

∣∇u+
∣

∣

2
H (φ) dx+μ

∫

Ω

∣

∣∇u−
∣

∣

2
(1 − H (φ)) dx+ν

∫

Ω

|∇H (φ)|
(40)

Where H() represents the Heaviside step function and the last term,
∫

Ω

|∇H (φ)| is the integral

in the sense of geometric measure, i.e. for a 2D case, is the length of contour Γ.
The minimization can be done iteratively on u+ , u− and on φ, in particular, minimizing with
respect to u+ and u−, i.e. deriving eq. 40, will give:

u+ − u0 = μ∇2u+ (41)
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and
u− − u0 = μ∇2u− (42)

which correspond to the diffusive part inside the borders defined by Γ, since ∂u+,−

∂n
= 0 (i.e.

no diffusion will take place across the boundary keeping edges sharp). While, deriving with
respect to φ will give:

∂φ

∂t
= δǫ (φ)

[

−
∣

∣u+ − u0
∣

∣

2
− μ

∣

∣∇u+
∣

∣

2
+

∣

∣u− − u0
∣

∣

2
+ μ

∣

∣∇u−
∣

∣

2
+ ν∇

(

∇φ

|∇φ|

)]

(43)

Accordingly to a steepest descendent approach. The δǫ indicates that the delta of Dirac, in
a discrete environment, must be calculated in a narrow band and, to prevent discontinuities
u+ has to be extended, in the narrow band, for φ < 0 values and also u− has to be extended
in the narrow band for φ > 0. A possible approach to these extension could be the "Ghost
fluid Method" (Fedkiw et al. (1999)) where the interface is treated as a moving boundary.
Solving the governing equations (Terashima & Tryggvason (2009)) with the extension of the
discontinuous variables across the fluids interface, (for real CFD applications this is usually
entropy), will reduce smearing of discontinuities providing smooth convergence to the final
image without oscillations. In Fig. 13 is represented how the contour between the two image
parts is steered accordingly to the Ghost Fluid Method in the narrow band while in Fig. 14 it
is possible to see the evolution of the contour across the noisy image: diffusive terms smooth
uniform regions reducing noise while the contour evolution smoothly warp the objects.

Fig. 13. update procedure in the narrow band points
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Fig. 14. zero level set evolution accordingly to the Mumford-Shah energy minimization for
object segmentation and image denoising

7. Conclusion

In this chapter we have shown some significant implementations of Computational Fluid
Dynamics equations in completely different contexts ranging from image denoising to optimal
path research for moving robots. In recent literature it is also possible to find different
applications to many other research fields: The main reason for this large diffusion and reuse
of CFD equations can be mainly addressed to:

• the actual deep insight and knowledge both into the theoretical and computational aspect
of fluids.

• The accuracy and stability of modelling equations that can grant convergence in a wide
variety of applications.

• Versatility and adaptability of different models from multiphase, to viscous or
compressible fluids that provide the user with many intuitive and easy-to-tune parameters
allowing an easy adaptation to different contexts.

• The close relation to physical quantities that in many cases can automatically provide the
minimum energy solution.

All these aspects concurred in making CFD a science that goes well beyond fluids analysis
providing a self consistent, well known, spread of tools to find fruitful and unlimited
applications in engineering, computer science and other scientific research fields.
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