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Abstract

This paper focuses on the non-fragile guaranteed cost control problem for a class of Takagi-
Sugeno (T-S) fuzzy time-varying delay systems with local bilinear models and different
state and input delays. A non-fragile guaranteed cost state-feedback controller is designed
such that the closed-loop T-S fuzzy local bilinear control system is delay-dependent asymp-
totically stable, and the closed-loop fuzzy system performance is constrained to a certain
upper bound when the additive controller gain perturbations exist. By employing the
linear matrix inequality (LMI) technique, sufficient conditions are established for the
existence of desired non-fragile guaranteed cost controllers. The simulation examples
show that the proposed approach is effective and feasible.
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1. Introduction

In recent years, T-S (Takagi-Sugeno) model-based fuzzy control has attracted wide attention,

essentially because the fuzzy model is an effective and flexible tool for the control of nonlinear

systems [1–8]. Through the application of sector nonlinearity approach, local approximation in

fuzzy partition spaces or other different approximation methods, T-S fuzzy models will be

used to approximate or exactly represent a nonlinear system in a compact set of state variables.

The merit of the model is that the consequent part of a fuzzy rule is a linear dynamic

subsystem, which makes it possible to apply the classical and mature linear systems theory to

nonlinear systems. Further, by using the fuzzy inference method, the overall fuzzy model will
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be obtained. A fuzzy controller is designed via the method titled ‘parallel distributed compen-

sation (PDC)’ [3–6], the main idea of which is that for each linear subsystem, the corresponding

linear controller is carried out. Finally, the overall nonlinear controller is obtained via fuzzy

blending of each individual linear controller. Based on the above content, T-S fuzzy model has

been widely studied, and many results have been obtained [1–8]. In practical applications,

time delay often occurs in many dynamic systems such as biological systems, network sys-

tems, etc. It is shown that the existence of delays usually becomes the source of instability and

deteriorating performance of systems [3–8]. In general, when delay-dependent results were

calculated, the emergence of the inner product between two vectors often makes the process of

calculation more complicated. In order to avoid it, some model transformations were utilized

in many papers, unfortunately, which will arouse the generation of an inequality, resulting in

possible conservatism. On the other hand, due to the influence of many factors such as finite

word length, truncation errors in numerical computation and electronic component parameter

change, the parameters of the controller in a certain degree will change, which lead to impre-

cision in controller implementation. In this case, some small perturbations of the controllers’

coefficients will make the designed controllers sensitive, even worse, destabilize the closed-

loop control system [9]. So the problem of non-fragile control has been important issues.

Recently, the research of non-fragile control has been paid much attention, and a series of

productions have been obtained [10–13].

As we know, bilinear models have been widely used in many physical systems, biotechnology,

socioeconomics and dynamical processes in other engineering fields [14, 15]. Bilinear model is

a special nonlinear model, the nonlinear part of which consists of the bilinear function of the

state and input. Compared with a linear model, the bilinear models have two main advan-

tages. One is that the bilinear model can better approximate a nonlinear system. Another is

that because of nonlinearity of it, many real physical processes may be appropriately modeled

as bilinear systems. A famous example of a bilinear system is the population of biological

species, which can be showed by
dθ

dt
¼ θv. In this equation, v is the birth rate minus death rate,

and θ denotes the population. Obviously, the equation cannot be approximated by a linear

model [14].

Most of the existing results focus on the stability analysis and synthesis based on T-S fuzzy

model with linear local model. However, when a nonlinear system has of complex nonlinear-

ities, the constructed T-S model will consist of a number of fuzzy local models. This will lead to

very heavy computational burden. According to the advantages of bilinear systems and T-S

fuzzy control, so many researchers paid their attentions to the T-S fuzzy models with bilinear

rule consequence [16–18]. From these papers, it is evident that the T-S fuzzy bilinear model

may be suitable for some classes of nonlinear plants. In Ref. [16], a nonlinear system was

transformed into a bilinear model via Taylor’s series expansion, and the stability of T-S fuzzy

bilinear model was studied. Moreover, the result was stretched into the complex fuzzy system

with state time delay [17]. Ref. [18] presented robust stabilization for a class of discrete-time

fuzzy bilinear system. Very recently, a class of nonlinear systems is described by T-S fuzzy

models with nonlinear local models in Ref. [19], and in this paper, the scholars put forward a

new fuzzy control scheme with local nonlinear feedbacks, the advantage of which over the
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existing methods is that a fewer fuzzy rules and less computational burden. The non-fragile

guaranteed cost controller was designed for a class of T-S discrete-time fuzzy bilinear systems

in Ref. [20]. However, in Refs. [19, 20], the time-delay effects on the system is not considered.

Ref. [17] is only considered the fuzzy system with the delay in the state and the derivatives of

time-delay, _dðtÞ < 1 is required. Refs. [21–23] dealt with the uncertain fuzzy systems with time-

delay in different ways. It should be pointed out that all the aforementioned works did not

take into account the effect of the control input delays on the systems. The results therein are

not applicable to systems with input delay. Recently, some controller design approaches have

been presented for systems with input delay, see [2, 3, 4, 18, 24–32] for fuzzy T-S systems

and [8, 15, 33, 34] for non-fuzzy systems and the references therein. All of these results are

required to know the exact delay values in the implementation. T-S fuzzy stochastic systems

with state time-vary or distributed delays were studied in Refs. [35–39]. The researches of

fractional order T-S fuzzy systems on robust stability, stability analysis about “0 < α < 1”, and

decentralized stabilization in multiple time delays were presented in Refs. [40–42], respec-

tively. For different delay types, the corresponding adaptive fuzzy controls for nonlinear

systems were proposed in Refs. [33, 43, 44]. In Refs. [45, 46], to achieve small control ampli-

tude, a new T-S fuzzy hyperbolic model was developed, moreover, Ref. [46] considered the

input delay of the novel model. In Ref. [25, 47], the problems of observer-based fuzzy control

design for T-S fuzzy systems were concerned.

So far, the problem of non-fragile guaranteed cost control for fuzzy system with local bilinear

model with different time-varying state and input delays has not been discussed.

In this paper, the problem of delay-dependent non-fragile guaranteed cost control is studied

for the fuzzy time-varying delay systems with local bilinear model and different state and

input delays. Based on the PDC scheme, new delay-dependent stabilization conditions for the

closed-loop fuzzy systems are derived. No model transformation is involved in the derivation.

The merit of the proposed conditions lies in its reduced conservatism, which is achieved by

circumventing the utilization of some bounding inequalities for the cross-product between two

vectors as in Ref. [17]. The three main contributions of this paper are the following: (1) a non-

fragile guaranteed cost controller is presented for the fuzzy system with time-varying delay in

both state and input; (2) some free-weighting matrices are introduced in the derivation pro-

cess, where the constraint of the derivatives of time-delay, _dðtÞ < 1 and _hðtÞ < 1, is eliminated;

and (3) the delay-dependent stability conditions for the fuzzy system are described by LMIs.

Finally, simulation examples are given to illustrate the effectiveness of the obtained results.

The paper is organized as follows. Section 2 introduces the fuzzy delay system with local

bilinear model, and non-fragile controller law for such system is designed based on the parallel

distributed compensation approach in Section 3. Results of non-fragile guaranteed cost control

are given in Section 4. Two simulation examples are used to illustrate the effectiveness of the

proposed method in Section 5, which is followed by conclusions in Section 6.

Notation: Throughout this paper, the notation P > 0(P ≥ 0) stands for P being real symmetric

and positive definite (or positive semi-definite). In symmetric block matrices, the asterisk (*)

refers to a term that is induced by symmetry, and diag{….} denotes a block-diagonal matrix.
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The superscript T means matrix transposition. The notion
Ps

i, j¼1 is an abbreviation of
Ps

i¼1

Ps
j¼1. Matrices, if the dimensions are not explicitly stated, are assumed to have compat-

ible dimensions for algebraic operations.

2. System description and assumptions

In this section, we introduce the T-S fuzzy time-delay system with local bilinear model. The ith

rule of the fuzzy system is represented by the following form:

Plant Rule i :

IF ϑ1ðtÞ is Fi1 and… and ϑvðtÞ is Fiv; THEN

_xðtÞ ¼ AixðtÞ þ Adixðt� dðtÞÞ þ BiuðtÞ þ Bhiuðt� hðtÞÞ þNixðtÞuðtÞ þNdixðt� dðtÞÞuðt� hðtÞÞ

xðtÞ ¼ φðtÞ, t∈ ½�τ1, 0� ; i ¼ 1, 2,…, s

(1)

where Fij is the fuzzy set, s is the number of fuzzy rules, x(t) ∈ Rn is the state vector, and u(t) ∈ R

is the control input, ϑ1(t), ϑ2(t),…,ϑv(t) are the premise variables. It is assumed that the premise

variables do not depend on the input u(t). Ai, Adi, Ni, Ndi ∈Rn�n, Bi, Bhi ∈Rn�1 denote the system

matrices with appropriate dimensions. d(t) is a time-varying differentiable function that satisfies

0 ≤ d(t) ≤ τ1, 0 ≤ h(t) ≤ τ2, where τ1, τ2 are real positive constants as the upper bound of the time-

varying delay. It is also assumed that _dðtÞ ≤ σ1, _hðtÞ ≤σ2, and σ1, σ2 are known constants. The

initial conditions φ(t), ϕ(t) are continuous functions of t, t∈ ½�τ, 0�, τ ¼ minðτ1, τ2Þ.

Remark 1: The fuzzy system with time-varying state and input delays will be investigated in

this paper, which is different from the system in Ref. [17]. In Ref. [17], only state time-varying

delay is considered. And also, here, we assume that the derivative of time-varying delay is less

than or equal to a known constant that may be greater than 1; the assumption on time-varying

delay in Ref. [17] is relaxed.

By using singleton fuzzifier, product inferred and weighted defuzzifier, the fuzzy system can

be expressed by the following globe model:

_xðtÞ ¼
Xs

i¼1

hiðϑðtÞÞ½AixðtÞ þ Adixðt� dðtÞÞ þ BiuðtÞ þ Bhiuðt� hðtÞÞ þNixðtÞuðtÞ

þNdixðt� dðtÞÞuðt� hðtÞÞ�

(2)

where

hiðϑðtÞÞ ¼ ωiðϑðtÞÞ=
Xs

i¼1
ωiðϑðtÞÞ,ωiðϑðtÞÞ ¼

Yv

j¼1
μijðϑðtÞÞ, μij (ϑ(t)) is the grade of member-

ship of ϑi(t) in Fij. In this paper, it is assumed that ωiðϑðtÞÞ ≥ 0,
Xs

i¼1
ωiðϑðtÞÞ > 0 for all t. Then,

we have the following conditions hi(ϑ(t)) ≥ 0,
Xs

i¼1
hiðϑðtÞÞ ¼ 1 for all t. In the consequent, we

use abbreviation hi, hhi, xd(t), ud(t), xh(t), uh(t), to replace hi(ϑ(t)), hi(ϑ(t� h(t))), x(t� d(t)), u(t� d

(t)), x(t � h(t)), u(t � h(t)), respectively, for convenience.
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The objective of this paper is to design a state-feedback non-fragile guaranteed cost control law

for the fuzzy system (2).

3. Non-fragile guaranteed cost controller design

Extending the design concept in Ref. [17], we give the following non-fragile fuzzy control law:

IF ϑ1ðtÞ is F
i
1 and… and ϑvðtÞ is F

i
v

THEN uðtÞ ¼
ρðKi þ ΔKiÞxðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xTðKi þ ΔKiÞ
TðKi þ ΔKiÞx

q ¼ ρ sinθi ¼ ρ cosθiðKi þ ΔKiÞxðtÞ (3)

where ρ > 0 is a scalar to be assigned, and Ki ∈ Rl�n is a local controller gain to be determined.

ΔKi represents the additive controller gain perturbations of the form ΔKi = HiFi(t)Eki with

Hi and Eki being known constant matrices, and Fi(t) the uncertain parameter matrix

satisfying Fi
TðtÞFiðtÞ ≤ I. sinθi ¼

KixðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þxTK
T

i Kix

q , cosθi ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þxTK
T

i Kix

q , θi ∈ ½�π
2 ,

π
2�, Ki ¼ Ki þ ΔKiðtÞ ¼

Ki þHiFiðtÞEki.

The overall fuzzy control law can be represented by

uðtÞ ¼
X

s

i¼1

hi
ρKixðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xTKi
T
Kix

q ¼
X

s

i¼1

hiρ sinθi ¼
X

s

i¼1

hiρ cosθiKixðtÞ (4)

When there exists an input delay h(t), we have that

uhðtÞ ¼
X

s

l¼1

hhlρ sinϕl ¼
X

s

l¼1

hhlρ cosϕl
~K lxhðtÞ (5)

where sinϕl ¼
~K lxhðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þxT
h
~K

T

l
~K lxh

q , cosϕl ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þxT
h
~K

T

l
~K lxh

q , ϕl ∈ ½�π
2 ,

π
2�,

~K l ¼ Kl þ ΔKlðt� hðtÞÞ ¼ Klþ

HlFlðt� hðtÞÞEkl.

So, it is natural and necessary to make an assumption that the functions hi are well defined all t

∈ [�τ2, 0], and satisfy the following properties:

hiðϑðt� hðtÞÞÞ ≥ 0, for i = 1,2,…,s, and
Ps

i¼1 hiðϑðt� hðtÞÞÞ ¼ 1.

By substituting Eq. (5) into Eq. (2), the closed-loop system can be given by

_xðtÞ ¼
X

s

i, j, l¼1

hihjhhlðΛijxðtÞ þ ΛdijxdðtÞ þ ΛhilxhðtÞÞ (6)

where

Λij ¼ Ai þ ρ sinθjNi þ ρ cosθjBiKj, Λdil ¼ Adi þ ρ sinϕlNdi, Λhil ¼ ρ cosϕlBhi
~K l.
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Given positive-definite symmetric matrices S ∈ Rn�n and W ∈ R, we take the cost function

J ¼

ð

∞

0

½xTðtÞSxðtÞ þ uTðtÞWuðtÞ�dt (7)

Definition 1. The fuzzy non-fragile control law u(t) is said to be non-fragile guaranteed cost

if for the system (2), there exist control laws (4) and (5) and a scalar J0 such that the closed-

loop system (6) is asymptotically stable and the closed-loop value of the cost function (7)

satisfies J ≤ J0.

4. Analysis of stability for the closed-loop system

Firstly, the following lemmas are presented which will be used in the paper.

Lemma 1 [20]: Given any matrices M and N with appropriate dimensions such that ε > 0, we have

MT N + NT M ≤ ε MT M + ε�1 NT N.

Lemma 2 [21]: Given constant matrices G, E and a symmetric constant matrix S of appropriate

dimensions. The inequality S + GFE + ETFTGT < 0 holds, where F(t) satisfies FT(t) F(t) ≤ I if and only

if, for some ε > 0, S + εGGT + ε�1ET E < 0.

The following theorem gives the sufficient conditions for the existence of the non-fragile

guaranteed cost controller for system (6) with additive controller gain perturbations.

Theorem 1. Consider system (6) associated with cost function (7). For given scalars ρ > 0, τ1 > 0, τ2 >

0, σ1 > 0, σ2 > 0, if there exist matrices P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, Ki, i = 1, 2,…, s, X1, X2,

X3, X4, Y1, Y2, Y3, Y4, and scalar ε > 0 satisfying the inequalities (8), the system (6) is asymptotically

stable and the control law (5) is a fuzzy non-fragile guaranteed cost control law, moreover,

J ≤ xTð0ÞPxð0Þ þ

ð0

�dð0Þ

xTðsÞQ1xðsÞdsþ

ð0

�τ1

ð0

θ

_xTðsÞR1 _xðsÞdsdθ

þ

ð0

�hð0Þ

xTðsÞQ2xðsÞdsþ

ð0

�τ2

ð0

θ

_xTðsÞR2 _xðsÞdsdθ ¼J0

Tijl � �

τ1X
T �τ1R1 �

τ2Z
T 0 �τ2R2

2

6

4

3

7

5
< 0; i, j, l ¼ 1, 2,…, s (8)

where Tijl ¼

T11, ij � � �

T21, i T22, i � �

T31, i T32, ij T33, il �

T41, i T42, i T43 T44

2

6

6

6

6

4

3

7

7

7

7

5

,
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T11, ij ¼ Q1 þQ2 þ X1 þ XT
1 þ Y1Ai þ AT

i Y
T
1 þ Sþ 2ερ2Y1Y1

T þ 4ε�1ðNT
i Ni þ ðBiKjÞ

TðBiKjÞÞ

þ ZT
1 þ Z1 þ ρ2K

T

i WKi,

T21, i ¼ �XT
1 þ X2 þ Z2 þ Y2Ai þ AT

diY
T
1 , T31, i ¼ Z3 � Z1 þ X3 þ Y3Ai,

T22, ij ¼ �ð1� σ1ÞQ1 � X2 � XT
2 þ Y2Adi þ AT

diY
T
2 þ 2ερ2Y2Y2

T þ 4ε�1NT
diNdi,

T32, i ¼ �X3 þ Y3Adi � ZT
2 , T33, il ¼ �ð1� σ2ÞQ2 � Z3 � ZT

3 þ 2ερ2Y3Y3
T þ 4ε�1ðBhi

~K lÞ
TBhi

~K l

T41, i ¼ Pþ X4 þ Z4 þ Y4Ai � YT
1 , T42, i ¼ �X4 þ Y4Ai � YT

2 ,

T43 ¼ �Z4 � YT
3 , T44 ¼ τ1R1 þ τ2R2 � Y4 � Y4

T þ 2ερ2Y4Y
T
4 :

Proof: Take a Lyapunov function candidate as

VðxðtÞ, tÞ ¼ xTðtÞPxðtÞ þ

ðt
t�dðtÞ

xTðsÞQ1xðsÞdsþ

ð0
�τ1

ðt
tþθ

_xTðsÞR1 _xðsÞdsdθ

þ

ðt
t�hðtÞ

xTðsÞQ2xðsÞdsþ

ð0
�τ2

ðt
tþθ

_xTðsÞR2 _xðsÞdsdθ

(9)

The time derivatives of V(x(t),t), along the trajectory of the system (6), are given by

_V ðxðtÞ, tÞ ¼ 2xTðtÞP _xðtÞ þ xTðtÞðQ1 þQ2ÞxðtÞ

�ð1� _dðtÞÞxTd ðtÞQ1xdðtÞ þ _xTðtÞðτ1R1 þ τ2R2Þ _xðtÞ

�

ðt
t�τ1

_xTðsÞR1 _xðsÞds� ð1� _hðtÞÞxTh ðtÞQ2xhðtÞ �

ðt
t�τ2

_xTðsÞR2 _xðsÞds

(10)

Define the free-weighting matrices as X ¼ ½XT
1 XT

2 XT
3 XT

4 �
T, Y ¼ ½YT

1 YT
2 YT

3 YT
4 �

T ,

Z ¼ ½ZT
1 ZT

2 ZT
3 ZT

4 �
T, where Xk ∈ Rn�n, Yk ∈ Rn�n, Zk ∈ Rn�n, k = 1, 2, 3, 4 will be

determined later.

Using the Leibniz-Newton formula and system equation (6), we have the following identical

equations:

½xTðtÞX1 þ xTd ðtÞX2 þ xTh ðtÞX3 þ _xTðtÞX4�½xðtÞ � xdðtÞ �

ðt
t�dðtÞ

_xðsÞds� � 0,

½xTðtÞZ1 þ xTd ðtÞZ2 þ xTh ðtÞZ3 þ _xTðtÞZ4�½xðtÞ � xhðtÞ �

ðt
t�hðtÞ

_xðsÞds� � 0,

Xs

i, j¼1

hihjhl½x
TðtÞY1 þ xTd ðtÞY2 þ xTh ðtÞY4 þ _xTðtÞY4�½ΛijxðtÞ þ ΛdilxdðtÞ þ ΛhilxhðtÞ � _xðtÞ� � 0

(11)

Then, substituting Eq. (12) into Eq. (11) yields
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_V ðxðtÞ, tÞ ¼ 2xTðtÞP _xðtÞ þ xTðtÞðQ1 þQ2ÞxðtÞ þ _xTðtÞðτ1R1 þ τ2R2Þ _xðtÞ

�ð1� _dðtÞÞxTd ðtÞQ1xdðtÞ � ð1� _hðtÞÞxTh ðtÞQ2xhðtÞ

�

ðt
t�τ1

_xTðsÞR1 _xðsÞdsþ 2ηTðtÞX½xðtÞ � xdðtÞ �

ðt
t�dðtÞ

_xðsÞds�

�

ðt
t�τ2

_xTðsÞR2 _xðsÞdsþ 2ηTðtÞZ½xðtÞ � xhðtÞ �

ðt
t�hðtÞ

_xðsÞds�

þ 2ηTðtÞY
Xs

i, j, l¼1

hihjhhl½ΛijxðtÞ þ ΛdilxdðtÞ þ ΛhilxhðtÞ � _xðtÞ�

≤ 2xTðtÞP _xðtÞ þ xTðtÞðQ1 þQ2ÞxðtÞ þ _xTðtÞðτ1R1 þ τ2R2Þ _xðtÞ

�ð1� σ1Þx
T
d ðtÞQ1xdðtÞ � ð1� σ2Þx

T
h ðtÞQ2xhðtÞ

�

ðt
t�dðtÞ

_xTðsÞR1ðsÞ _xðsÞdsþ 2ηTðtÞX½xðtÞ � xdðtÞ �

ðt
t�dðtÞ

_xðsÞds�

�

ðt
t�hðtÞ

_xTðsÞR2ðsÞ _xðsÞdsþ 2ηTðtÞZ½xðtÞ � xhðtÞ �

ðt
t�hðtÞ

_xðsÞds�

þ 2ηTðtÞY
Xs

i, j, l¼1

hihjhhl½ΛijxðtÞ þ ΛdilxdðtÞ þ ΛhilxhðtÞ � _xðtÞ� þ xTðtÞSxðtÞ

þ
Xs

i, j¼1

hihjρ
2xTðtÞK

T

i cosθiWKj cosθjxðtÞ � ½xTðtÞSxðtÞ þ uTðtÞWuðtÞ�

(12)

where ηðtÞ ¼ ½xTðtÞ, xTd ðtÞ, x
T
h ðtÞ, _xTðtÞ�T.

Applying Lemma 1, we have the following inequalities:

2xTðtÞY1ΛijxðtÞ ≤ 2x
TðtÞY1AixðtÞ þ ερ2xTðtÞY1Y1

TxðtÞ þ ε�1xTðtÞðNT
i Ni þ ðBiKjÞ

TðBiKjÞÞxðtÞ,

2xTðtÞY1ΛdilxdðtÞ ≤ 2x
TðtÞY1AdixdðtÞ þ ερ2 sin 2φlx

TðtÞY1Y1
TxðtÞ þ ε�1xTd ðtÞN

T
diNdixdðtÞ,

2xTðtÞY1ΛhilxhðtÞ ≤ ερ
2 cos 2φlx

TðtÞY1Y1
TxðtÞ þ ε�1xTh ðtÞðBhi

~K lÞ
TðBhi

~K lÞxhðtÞ,

2xTd ðtÞY2ΛijxðtÞ ≤ 2x
T
d ðtÞY2AixðtÞ þ ερ2xTd ðtÞY2Y2

TxdðtÞ þ ε�1xTðtÞðNT
i Ni þ ðBiKjÞ

TðBiKjÞÞxðtÞ,

2xTðtÞY1ΛhilxhðtÞ ≤ ερ
2 cos 2φlx

TðtÞY1Y1
TxðtÞ þ ε�1xTh ðtÞðBhi

~K lÞ
TðBhi

~K lÞxhðtÞ,

2xTd ðtÞY2ΛijxðtÞ ≤ 2x
T
d ðtÞY2AixðtÞ þ ερ2xTd ðtÞY2Y2

TxdðtÞ þ ε�1xTðtÞðNT
i Ni þ ðBiKjÞ

TðBiKjÞÞxðtÞ,

2xTd ðtÞY2ΛdilxdðtÞ ≤ 2x
T
d ðtÞY2AdixdðtÞ þ ερ2 sin 2φlx

T
d ðtÞY2Y2

TxdðtÞ þ ε�1xTd ðtÞN
T
diNdixdðtÞ,

2xTd ðtÞY2ΛhilxhðtÞ ≤ ερ
2 cos 2φlx

T
d ðtÞY2Y2

TxdðtÞ þ ε�1xTh ðtÞðBhi
~K lÞ

TðBhi
~K lÞxhðtÞ,

2xTh ðtÞY3ΛijxðtÞ ≤ 2x
T
h ðtÞY3AixðtÞ þ ερ2xTh ðtÞY3Y3

TxhðtÞ þ ε�1xTðtÞðNT
i Ni þ ðBiKjÞ

TðBiKjÞÞxðtÞ,

2xTh ðtÞY3ΛdilxdðtÞ ≤ 2x
T
d ðtÞY3AdixdðtÞ þ ερ2 sin 2φlx

T
h ðtÞY3Y3

TxhðtÞ þ ε�1xTd ðtÞN
T
diNdixdðtÞ,

2xTh ðtÞY3ΛhilxhðtÞ ≤ ερ
2 cos 2φlx

T
h ðtÞY3Y3

TxhðtÞ þ ε�1xTh ðtÞðBhi
~K lÞ

TðBhi
~K lÞxhðtÞ,

2 _xTðtÞY4ΛijxðtÞ ≤ 2 _x
TðtÞY4AixðtÞ þ ερ2 _xTðtÞY4Y4

T _xðtÞ þ ε�1xTðtÞðNT
i Ni þ ðBiKjÞ

TðBiKjÞÞxðtÞ,

2 _xTðtÞY4ΛdilxdðtÞ ≤ 2 _x
TðtÞY4AdixdðtÞ þ ερ2 _xTðtÞY4Y4

T _xðtÞ þ ε�1xTd ðtÞN
T
diNdixdðtÞ,

2 _xTðtÞY4ΛhilxhðtÞ ≤ ερ
2 cos 2φl

_xTðtÞY4Y4
T _xðtÞ þ ε�1xTh ðtÞðBhi

~K lÞ
TðBhi

~K lÞxhðtÞ

(13)
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Substituting Eq. (13) into Eq. (12) results in

_V ðxðtÞ, tÞ ≤

X

s

i, j, l¼1

hihjhhlη
TðtÞTijηðtÞ �

ðt

t�dðtÞ

_xTðsÞR1 _xðsÞds�

ðt

t�hðtÞ

_xTðsÞR2 _xðsÞds

�2ηTðtÞX

ðt

t�dðtÞ

_xðsÞds� 2ηTðtÞZ

ðt

t�hðtÞ

_xðsÞds� ½xTðtÞSxðtÞ þ uTðtÞWuðtÞ�

≤

X

s

i, j, l¼1

hihjhhlη
TðtÞðTijl þ τ1XR

�1
1 XT þ τ2ZR

�1
2 ZTÞηðtÞ

�

ðt

t�dðtÞ

�

ηTðtÞXþ _xTðsÞR1

�

R�1
1

�

ηTðtÞXþ _xTðsÞR1

�T

ds

�

ðt

t�hðtÞ

�

ηTðtÞZþ _xTðsÞR2

�

R�1
2

�

ηTðtÞXþ _xTðsÞR2

�T

ds� ½xTðtÞSxðtÞ þ uTðtÞWuðtÞ�

≤

X

s

i, j, l¼1

hihjhhlη
TðtÞð~T ijl þ τ1XR

�1
1 XT þ τ2ZR

�1
2 ZTÞηðtÞ � ½xTðtÞSxðtÞ þ uTðtÞWuðtÞ�

(14)

where

~T ijl ¼

~T 11, ij � � �

T21, i T22, i � �

T31, i T32, ij T33, il �

T41, i T42, i T43 T44

2

6

6

6

6

4

3

7

7

7

7

5

, ~T 11, ij ¼ T11, ij þ ρ2K
T

i cosθiWKj cosθj � ρ2K
T

i WKj:

In light of the inequality K
T

i WKj þ K
T

j WKi ≤K
T

i WKi þ K
T

j WKj, we have

_V ðxðtÞ, tÞ ≤
X

s

i, j, l¼1

hihjhhlη
TðtÞðΤijl þ τ1XR

�1
1 XT þ τ2ZR

�1
2 ZTÞηðtÞ � ½xTðtÞSxðtÞ þ uTðtÞWuðtÞ� (15)

Applying the Schur complement to Eq. (8) yields

Τii þþτ1XR
�1
1 XT þ τ2ZR

�1
2 ZT

< 0,Τij þ Τji þ 2τ1XR
�1
1 XT þ 2τ2ZR

�1
2 ZT

< 0:

Therefore, it follows from Eq. (15) that

_V ðxðtÞ, tÞ ≤ � ½xTðtÞSxðtÞ þ uTðtÞWuðtÞ� < 0 (16)

which implies that the system (6) is asymptotically stable.

Integrating Eq. (16) from 0 to T produces

ðT

0

½xTðtÞSxðtÞ þ uTðtÞWuðtÞ�dt ≤ � VðxðTÞ, TÞ þ Vðxð0Þ, 0Þ < Vðxð0Þ, 0Þ
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Because of V (x(t),t) ≥ 0 and _V ðxðtÞ, tÞ < 0, thus lim
T!∞

VðxðTÞ, TÞ ¼ c, where c is a nonnegative

constant. Therefore, the following inequality can be obtained:

J ≤ xTð0ÞPxð0Þ þ

ð0

�dð0Þ

xTðsÞQ1xðsÞdsþ

ð0

�τ1

ð0

θ

_xTðsÞR1 _xðsÞdsdθþ

ð0

�hð0Þ

xTðsÞQ2xðsÞds

þ

ð0

�τ2

ð0

θ

_xTðsÞR2 _xðsÞdsdθ ¼J0

(17)

This completes the proof.

Remark 2: In the derivation of Theorem 1, the free-weighting matrices Xk ∈ Rn�n, Yk ∈ Rn�n, k =

1, 2, 3, 4 are introduced, the purpose of which is to reduce conservatism in the existing delay-

dependent stabilization conditions, see Ref. [17].

In the following section, we shall turn the conditions given in Theorem 1 into linear matrix

inequalities (LMIs). Under the assumptions that Y1, Y2, Y3, Y4 are non-singular, we can define

the matrix Yi
�T ¼ λZ, i = 1, 2, 3, 4, Z = P�1,λ > 0.

Pre- and post-multiply (8) and (9) with Θ ¼ diag{Y�1
1 , Y�1

2 , Y�1
3 , Y�1

4 , Y�1
4 , Y�1

4 } and

Θ
T ¼ diag{Y�T

1 , Y�T
2 , Y�T

3 , Y�T
4 , Y�T

4 , Y�T
4 }, respectively, and letting Q1 ¼ Y1

�1Q1Y1
�T ,

Q2 ¼ Y1
�1Q2Y1

�T , Rk ¼ Y4
�1RkY4

�T, k ¼ 1, 2, Xi ¼ Yi
�1XiYi

�T, Zi ¼ Yi
�1ZiYi

�T, i = 1, 2, 3, 4,

we obtain the following inequality (18), which is equivalent to (8):

T11, ij � � � � �

T21, i T22, i � � � �
T31, i T32, i T33, il � � �
T41, i T42, i T43 T44 � �
τ1X1 τ1X2 τ1X3 τ1X4 �τ1R1 �
τ2Z1 τ2Z2 τ2Z3 τ2Z4 0 �τ2R2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

< 0, i, j, l ¼ 1, 2,…, s (18)

where

Τ11, ij ¼ Q1 þQ2 þ X1 þ X
T

1 þ λAiZþ λZAT
i þ λ2ZSZþ 2ερ2I þ 4ε�1λ2ZNT

i NiZ

þ Z1 þ ZT
1 þ 4ε�1λ2ðBiKjZÞ

TðBiKjZÞ þ ρ2λ2ZK
T

i WKiZ,

Τ21, i ¼ �X
T

1 þ X2 þ Z2 þ λAiZþ λZAT
di, Τ31, i ¼ Z3 � Z1 þ X3 þ λAiZ,

Τ41, i ¼ λ2Zþ λAiZ� λZþ X4 þ Z4,

Τ22, i ¼ �ð1� σ1ÞQ1 � X2 � X
T

2 þ λAdiZþ λZAT
di þ 2ερ2I þ 4ε�1λ2ZNT

diNdiZ,

Τ32, i ¼ �X3 � Z2 þ λAdiZ� λZAT
di, Τ42, i¼ � X4þλAiZ� λZ,

Τ33, il ¼ �ð1� σ2ÞQ2 � Z3 � Z
T

3 þ 4ε�1λ2ðBhi
~K lZÞ

TBhi
~K lZþ 2ερ2I,

Τ43 ¼ �Z4 � λZ, Τ44 ¼ τ1R1 þ τ2R2 � λZ� λZT þ 2ερ2I:

Applying the Schur complement to Eq. (18) results in
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Γijl ¼
Φ11, i � �
Φ21, ij Φ22 �
Φ31, il 0 Φ33

2

4

3

5 < 0, i, j, l ¼ 1, 2,…, s (19)

where

Φ11, i ¼

T 11, i � � � � �

T21, i T 22, i � � � �

T31, i T32, i T 33, il � � �
T41, i T42, i T43 T44 � �
τ1X1 τ1X2 τ1X3 τ1X4 �τ1R1 �
τ2Z1 τ2Z2 τ2Z3 τ2Z4 0 �τ2R2

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

With

Τ11, i ¼ Q1 þQ2 þ X1 þ X
T

1 þ λAiZþ λZAT
i þ Z1 þ ZT

1 þ 2ερ2I,

Τ22, i ¼ �ð1� σ1ÞQ1 � X2 � X
T

2 þ λAdiZþ λZAT
di þ 2ερ2I,

Τ33 ¼ �ð1� σ2ÞQ2 � Z3 � Z
T

3 þ 2ερ2I:

Φ21, ij ¼

λZ 0 0 0

λNiZ 0 0 0

λBiKjZ 0 0 0

ρλKjZ 0 0 0

2

6

6

6

4

3

7

7

7

5

Φ31, il ¼
0 λBhi

~K lZ 0 0

0 0 λNdiZ 0

" #

Φ22 ¼

�S�1 0 0 0

0 �
ε

4
I 0 0

0 0 �
ε

4
I 0

0 0 0 �W�1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Φ33 ¼
�
ε

4
I 0

0 �
ε

4
I

2

6

4

3

7

5

Obviously, the closed-loop fuzzy system (6) is asymptotically stable, if for some scalars λ > 0, there

exist matrices Z > 0, Q > 0, R > 0 and X1, X2, X3, Ki, i ¼ 1, 2, ::, s satisfying the inequality (19).

Theorem 2. Consider the system (6) associated with cost function (7). For given scalars ρ > 0, τ1 > 0,

τ2 > 0, σ1 > 0, σ2 > 0 and λ > 0, δ > 0, if there exist matrices Z > 0, Q1 > 0, R1 > 0, Q2 > 0, R2 > 0

and X1, X2, X3, X4, Mi, i = 1,2,…,s and scalar ε > 0 satisfying the following LMI (20), the system (6) is

asymptotically stable and the control law (5) is a fuzzy non-fragile guaranteed cost control law

Θ1, ijl ∗

Θ2, ijl Θ3

� �

< 0, i, j, l ¼ 1, 2,…, s (20)

Moreover, the feedback gains are given by
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Ki ¼ MiZ
�1, i ¼ 1, 2,…, s

and

J ≤ xTð0ÞPxð0Þ þ

ð0

�dð0Þ

xTðsÞQ1xðsÞdsþ

ð0

�τ1

ð0

θ

_xTðsÞR1 _xðsÞdsdθþ

ð0

�hð0Þ

xTðsÞQ2xðsÞds

þ

ð0

�τ2

ð0

θ

_xTðsÞR2 _xðsÞdsdθ ¼J0

where

Θ2, ijl ¼

λEkjZ 0 0 0 0 0 0 0 0 0 0 0
λEkiZ 0 0 0 0 0 0 0 0 0 0 0
0 0 λEklZ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ðBiHjÞ

T 0 0 0

0 0 0 0 0 0 0 0 0 ρHT
i 0 0

0 0 0 0 0 0 0 0 0 0 0 ðBhiHlÞ
T

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

Θ3 ¼ diag{� δI, � δI, � δI, � δ�1I, � δ�1I, � δ�1I},

Θ1, ijl ¼

Τ11, i � � � � � � � � � � �

Τ21, i Τ22, i � � � � � � � � � �
Τ31, i Τ32, i Τ33 � � � � � � � � �
Τ41, i Τ42, i Τ43, i Τ44 � � � � � � � �
τ1X1 τ1X2 τ1X3 τ1X4 �τ1R1 � � � � � � �
τ2Z1 τ2Z2 τ2Z3 τ2Z4 0 �τ2R21 � � � � � �
λZ 0 0 0 0 0 �S�1 � � � � �

λNiZ 0 0 0 0 0 0 �ε
4I � � � �

λBiMj 0 0 0 0 0 0 0 �ε
4I � � �

ρλMi 0 0 0 0 0 0 0 0 �W�1 � �
0 λNdiZ 0 0 0 0 0 0 0 0 �ε

4I �
0 0 λBhiMl 0 0 0 0 0 0 0 0 �ε

4I

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Proof: At first, we prove that the inequality (20) implies the inequality (19). Applying the Schur

complement to Eq. (20) results in

Φ1, ijl þ δ

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

BiHj 0 0
0 ρHi 0
0 0 0
0 0 BhiHl

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

0 0 0 0 0 0 0 0 ðBiHjÞ
T 0 0 0

0 0 0 0 0 0 0 0 0 ρHT
i 0 0

0 0 0 0 0 0 0 0 0 0 0 ðBhiHiÞ
T

2

6

4

3

7

5
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þδ�1

ðλEkjZÞ
T ðλEkiZÞ

T 0
0 0 0
0 0 ðλEklZÞ

T

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

λEkjZ 0 0 0 0 0 0 0 0 0 0 0
λEkiZ 0 0 0 0 0 0 0 0 0 0 0
0 0 λEklZ 0 0 0 0 0 0 0 0 0

2

4

3

5 < 0

(21)

Using Lemma 2 and noting Mi = KiZ, by the condition (21), the following inequality holds:

Φ1, ijl þ

0 � � � � � � � � � � �
0 0 � � � � � � � � � �
0 0 0 � � � � � � � � �
0 0 0 0 � � � � � � � �
0 0 0 0 0 � � � � � � �
0 0 0 0 0 0 � � � � � �
0 0 0 0 0 0 0 � � � � �
0 0 0 0 0 0 0 0 � � � �

λBiΔKjZ 0 0 0 0 0 0 0 0 � � �

ρλΔKiZ 0 0 0 0 0 0 0 0 0 � �
0 0 0 0 0 0 0 0 0 0 0 �
0 0 λBhiΔ

~K lZ 0 0 0 0 0 0 0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

< 0 (22)

where Δ~K i ¼ ΔKiðt� dðtÞÞ.

Therefore, it follows from Theorem 1 that the system (6) is asymptotically stable and the

control law (5) is a fuzzy non-fragile guaranteed cost control law. Thus, we complete the proof.

Now consider the cost bound of

J ≤ xTð0ÞPxð0Þ þ

ð0

�dð0Þ

xTðsÞQ1xðsÞdsþ

ð0

�τ1

ð0

θ

_xTðsÞR1 _xðsÞdsdθþ

ð0

�hð0Þ

xTðsÞQ2xðsÞds

þ

ð0

�τ2

ð0

θ

_xTðsÞR2 _xðsÞdsdθ ¼J0

Similar to Ref. [23], we supposed that there exist positive scalars α1, α2, α3, α4, α5, such that

Z�1
≤ α1I,

1
λ2 PQ1P ≤ α2I,

1
λ2 PQ2P ≤ α3I,

1
λ2 PR1P ≤ α4I,

1
λ2 PR2P ≤ α5I.

Then, define SQ1¼Q1
�1, SQ2¼Q2

�1, SR1¼R1
�1, SR2¼R2

�1, by Schur complement lemma, we

have the following inequalities:
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�α1I I

I �Z

" #

≤ 0,
�α2I 1

λ
P

1
λ
P SQ1

" #

≤ 0,
�α3I 1

λ
P

1
λ
P SQ2

" #

≤ 0,
�α4I 1

λ
P

1
λ
P SR1

" #

≤ 0,

�α5I 1
λ
P

1
λ
P SR2

" #

≤ 0,
Z I

I Z

" #

≥ 0,
SQ1 I

I Q1

" #

≥ 0,
SQ2 I

I Q2

" #

≥ 0,

SR1 I

I R1

" #

≥ 0,
SR2 I

I R2

" #

≥ 0,

(23)

Using the idea of the cone complement linear algorithm in Ref. [24], we can obtain the solution

of the minimization problem of upper bound of the value of the cost function as follows:

minimizeftraceðPZþ SQ1Q1 þ SQ2Q2 þ SR1R1 þ SR2R2 þ α1x
Tð0Þxð0Þ þ α2

ð0

�dð0Þ

xTðsÞxðsÞds

þα4

ð0

�τ1

ð0

θ

_xTðsÞ _xðsÞdsdθþ α3

ð0

�hð0Þ

xTðsÞxðsÞdsþ α5

ð0

�τ2

ð0

θ

_xTðsÞ _xðsÞdsdθg

subject to ð20Þ; ð23Þ; ε> 0;Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, Z > 0,αi > 0, i ¼ 1,…, 5

(24)

Using the following cone complement linearization (CCL) algorithm [24] can iteratively solve

the minimization problem (24). □

5. Simulation examples

In this section, the proposed approach is applied to the Van de Vusse system to verify its

effectiveness.

Example: Consider the dynamics of an isothermal continuous stirred tank reactor for the Van

de Vusse

_x1 ¼ �50x1 � 10x31 þ uð10� x1Þ þ uðt� hÞ þ uðt� hÞð0:5x1ðt� dÞ þ 0:2x2ðt� dÞÞ þ 5x2ðt� dÞ

_x2 ¼ 50x1 � 100x2 � uðt� hÞ þ uðt� hÞð0:3x1ðt� dÞ � 0:2x2ðt� dÞÞ þ 10x2ðt� dÞ � 5x1ðt� dÞ
(25)

From the system equation (25), some equilibrium points are tabulated in Table 1. According to

these equilibrium points, [xe ue], which are also chosen as the desired operating points, ½x0e u
0
e�,

we can use the similar modeling method that is described in Ref. [16].

xT
e

xT
de

ue ude

[2.0422 1.2178] [2.0422 1.2178] 20.3077 20.3077

[3.6626 2.5443] [3.6626 2.5443] 77.7272 77.7272

[5.9543 5.5403] [5.9543 5.5403] 296.2414 296.2414

Table 1. Data for equilibrium points.
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Thus, the system (25) can be represented by

R1
: if x1 is about 2:0422 then

_xδðtÞ ¼ A1xδðtÞ þ Ad1xdδðtÞ þ B1uδðtÞ þ Bh1udδðtÞ þN1xδðtÞuδðtÞ þNd1xdδðtÞuhδðtÞ

R2
: if x1 is about 3:6626, then
_xδðtÞ ¼ A2xδðtÞ þ Ad2xdδðtÞ þ B2uδðtÞ þ Bd2uhδðtÞ þN2xδðtÞuδðtÞ þNd2xdδðtÞuhδðtÞ

R3
: if x1 is about 5:9543, then
_xδðtÞ ¼ A3xδðtÞ þ Ad3xdδðtÞ þ B3uδðtÞ þ Bd3uhδðtÞ þN3xδðtÞuδðtÞ þNd3xdδðtÞuhδðtÞ

(26)

where

A1 ¼
�75:2383 7:7946

50 �100

� �

, A2 ¼
�98:3005 11:7315

50 �100

� �

, A3 ¼
�122:1228 8:8577

50 �100

� �

,

N1 ¼ N2 ¼ N3 ¼
�1 0
0 �1

� �

; B1 ¼ B2 ¼ B3 ¼
10
0

� �

; Ad1 ¼ Ad2 ¼ Ad3 ¼
0 5
10 �5

� �

,

Nd1 ¼ Nd2 ¼ Nd3 ¼
0:5 0:2
0:3 �0:2

� �

, Bh1 ¼ Bh2 ¼ Bh3 ¼
1
0

� �

, xδ ¼ xðtÞ � x
0

e,

uδ ¼ uðtÞ � u
0

e, xdδ ¼ xðt� dÞ � x
0

de, uhδ ¼ uðt� dÞ � u
0

he:

The cost function associated with this system is given with S ¼
1 0
0 1

� �

,W ¼ 1. The controller

gain perturbation ΔK of the additive form is give with H1 = H2 = H3 = 0.1, Ek1 = [0.05 �0.01],

Ek2 = [0.02 0.01], Ek3 = [�0.01 0].

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

x1

Rule 2Rule 1 Rule 3

Figure 1. Membership functions.
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Figure 2. State responses of x1(t).
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Figure 3. State responses of x2(t).
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The membership functions of state x1 are shown in Figure 1.

Then, solving LMIs (23) and (24) for ρ = 0.45, λ = 1.02 and δ ¼ 0:11, τ1 ¼ τ2 ¼ 2,σ1 ¼ 0, σ2 ¼ 0

gives the following feasible solution:

P ¼
4:2727 �1:3007

�1:3007 6:4906

� �

, Q1 ¼
14:1872 �1:9381

�1:9381 13:0104

� �

, Q2 ¼
3:1029 1:2838

1:2838 2:0181

� �

,

R1 ¼
8:3691 �1:3053

�1:3053 7:0523

� �

, R1 ¼
5:2020 2:2730

2:2730 1:0238

� �

, ε ¼ 1:8043,

K1 ¼ �0:4233 � 0:5031�, K2 ¼ ½�0:5961 � 0:7049�, K1 ¼ ½�0:4593 � 0:3874�:½

Figures 2–4 illustrate the simulation results of applying the non-fragile fuzzy controller to the

system (25) with x0e ¼ ½ 3:6626 2:5443 �T and u0e ¼ 77:7272 under initial condition ϕ(t) = [1.2

�1.8]T, t ∈ [�2 0]. It can be seen that with the fuzzy control law, the closed-loop system is

asymptotically stable and an upper bound of the guaranteed cost is J0 = 292.0399. The simulation

results show that the fuzzy non-fragile guaranteed controller proposed in this paper is effective.

6. Conclusions

In this paper, the problem of non-fragile guaranteed cost control for a class of fuzzy time-

varying delay systems with local bilinear models has been explored. By utilizing the Lyapunov

0 0.1 0.2 0.3 0.4
77

77.5

78

78.5

79

79.5

time

u

Figure 4. Control trajectory of system.
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stability theory and LMI technique, sufficient conditions for the delay-dependent asymptoti-

cally stability of the closed-loop T-S fuzzy local bilinear system have been obtained. Moreover,

the designed fuzzy controller has guaranteed the cost function-bound constraint. Finally, the

effectiveness of the developed approach has been demonstrated by the simulation example.

The robust non-fragile guaranteed cost control and robust non-fragile H-infinite control based

on fuzzy bilinear model will be further investigated in the future work.
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