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Abstract

This paper focuses on the non-fragile guaranteed cost control problem for a class of Takagi-
Sugeno (T-S) fuzzy time-varying delay systems with local bilinear models and different
state and input delays. A non-fragile guaranteed cost state-feedback controller is designed
such that the closed-loop T-S fuzzy local bilinear control system is delay-dependent asymp-
totically stable, and the closed-loop fuzzy system performance is constrained to a certain
upper bound when the additive controller gain perturbations exist. By employing the
linear matrix inequality (LMI) technique, sufficient conditions are established for the
existence of desired non-fragile guaranteed cost controllers. The simulation examples
show that the proposed approach is effective and feasible.

Keywords: fuzzy control, non-fragile guaranteed cost control, delay-dependent, linear
matrix inequality (LMI), T-S fuzzy bilinear model

1. Introduction

In recent years, T-S (Takagi-Sugeno) model-based fuzzy control has attracted wide attention,
essentially because the fuzzy model is an effective and flexible tool for the control of nonlinear
systems [1-8]. Through the application of sector nonlinearity approach, local approximation in
fuzzy partition spaces or other different approximation methods, T-S fuzzy models will be
used to approximate or exactly represent a nonlinear system in a compact set of state variables.
The merit of the model is that the consequent part of a fuzzy rule is a linear dynamic
subsystem, which makes it possible to apply the classical and mature linear systems theory to
nonlinear systems. Further, by using the fuzzy inference method, the overall fuzzy model will
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be obtained. A fuzzy controller is designed via the method titled “parallel distributed compen-
sation (PDC)’ [3-6], the main idea of which is that for each linear subsystem, the corresponding
linear controller is carried out. Finally, the overall nonlinear controller is obtained via fuzzy
blending of each individual linear controller. Based on the above content, T-S fuzzy model has
been widely studied, and many results have been obtained [1-8]. In practical applications,
time delay often occurs in many dynamic systems such as biological systems, network sys-
tems, etc. It is shown that the existence of delays usually becomes the source of instability and
deteriorating performance of systems [3-8]. In general, when delay-dependent results were
calculated, the emergence of the inner product between two vectors often makes the process of
calculation more complicated. In order to avoid it, some model transformations were utilized
in many papers, unfortunately, which will arouse the generation of an inequality, resulting in
possible conservatism. On the other hand, due to the influence of many factors such as finite
word length, truncation errors in numerical computation and electronic component parameter
change, the parameters of the controller in a certain degree will change, which lead to impre-
cision in controller implementation. In this case, some small perturbations of the controllers’
coefficients will make the designed controllers sensitive, even worse, destabilize the closed-
loop control system [9]. So the problem of non-fragile control has been important issues.
Recently, the research of non-fragile control has been paid much attention, and a series of
productions have been obtained [10-13].

As we know, bilinear models have been widely used in many physical systems, biotechnology,
socioeconomics and dynamical processes in other engineering fields [14, 15]. Bilinear model is
a special nonlinear model, the nonlinear part of which consists of the bilinear function of the
state and input. Compared with a linear model, the bilinear models have two main advan-
tages. One is that the bilinear model can better approximate a nonlinear system. Another is
that because of nonlinearity of it, many real physical processes may be appropriately modeled
as bilinear systems. A famous example of a bilinear system is the population of biological

species, which can be showed by % = Ov. In this equation, v is the birth rate minus death rate,

and O denotes the population. Obviously, the equation cannot be approximated by a linear
model [14].

Most of the existing results focus on the stability analysis and synthesis based on T-S fuzzy
model with linear local model. However, when a nonlinear system has of complex nonlinear-
ities, the constructed T-S model will consist of a number of fuzzy local models. This will lead to
very heavy computational burden. According to the advantages of bilinear systems and T-S
fuzzy control, so many researchers paid their attentions to the T-S fuzzy models with bilinear
rule consequence [16-18]. From these papers, it is evident that the T-S fuzzy bilinear model
may be suitable for some classes of nonlinear plants. In Ref. [16], a nonlinear system was
transformed into a bilinear model via Taylor’s series expansion, and the stability of T-S fuzzy
bilinear model was studied. Moreover, the result was stretched into the complex fuzzy system
with state time delay [17]. Ref. [18] presented robust stabilization for a class of discrete-time
fuzzy bilinear system. Very recently, a class of nonlinear systems is described by T-S fuzzy
models with nonlinear local models in Ref. [19], and in this paper, the scholars put forward a
new fuzzy control scheme with local nonlinear feedbacks, the advantage of which over the



Non-Fragile Guaranteed Cost Control of Nonlinear Systems with Different State and Input Delays Based on T-S...
http://dx.doi.org/10.5772/intechopen.69777

existing methods is that a fewer fuzzy rules and less computational burden. The non-fragile
guaranteed cost controller was designed for a class of T-S discrete-time fuzzy bilinear systems
in Ref. [20]. However, in Refs. [19, 20], the time-delay effects on the system is not considered.
Ref. [17] is only considered the fuzzy system with the delay in the state and the derivatives of

time-delay, d(t) < 1is required. Refs. [21-23] dealt with the uncertain fuzzy systems with time-
delay in different ways. It should be pointed out that all the aforementioned works did not
take into account the effect of the control input delays on the systems. The results therein are
not applicable to systems with input delay. Recently, some controller design approaches have
been presented for systems with input delay, see [2, 3, 4, 18, 24-32] for fuzzy T-S systems
and [8, 15, 33, 34] for non-fuzzy systems and the references therein. All of these results are
required to know the exact delay values in the implementation. T-S fuzzy stochastic systems
with state time-vary or distributed delays were studied in Refs. [35-39]. The researches of
fractional order T-S fuzzy systems on robust stability, stability analysis about “0 < ot <17, and
decentralized stabilization in multiple time delays were presented in Refs. [40—42], respec-
tively. For different delay types, the corresponding adaptive fuzzy controls for nonlinear
systems were proposed in Refs. [33, 43, 44]. In Refs. [45, 46], to achieve small control ampli-
tude, a new T-S fuzzy hyperbolic model was developed, moreover, Ref. [46] considered the
input delay of the novel model. In Ref. [25, 47], the problems of observer-based fuzzy control
design for T-S fuzzy systems were concerned.

So far, the problem of non-fragile guaranteed cost control for fuzzy system with local bilinear
model with different time-varying state and input delays has not been discussed.

In this paper, the problem of delay-dependent non-fragile guaranteed cost control is studied
for the fuzzy time-varying delay systems with local bilinear model and different state and
input delays. Based on the PDC scheme, new delay-dependent stabilization conditions for the
closed-loop fuzzy systems are derived. No model transformation is involved in the derivation.
The merit of the proposed conditions lies in its reduced conservatism, which is achieved by
circumventing the utilization of some bounding inequalities for the cross-product between two
vectors as in Ref. [17]. The three main contributions of this paper are the following: (1) a non-
fragile guaranteed cost controller is presented for the fuzzy system with time-varying delay in
both state and input; (2) some free-weighting matrices are introduced in the derivation pro-
cess, where the constraint of the derivatives of time-delay, d(f) < 1 and h(t) < 1, is eliminated;
and (3) the delay-dependent stability conditions for the fuzzy system are described by LMIs.
Finally, simulation examples are given to illustrate the effectiveness of the obtained results.

The paper is organized as follows. Section 2 introduces the fuzzy delay system with local
bilinear model, and non-fragile controller law for such system is designed based on the parallel
distributed compensation approach in Section 3. Results of non-fragile guaranteed cost control
are given in Section 4. Two simulation examples are used to illustrate the effectiveness of the
proposed method in Section 5, which is followed by conclusions in Section 6.

Notation: Throughout this paper, the notation P > O(P > 0) stands for P being real symmetric
and positive definite (or positive semi-definite). In symmetric block matrices, the asterisk (*)
refers to a term that is induced by symmetry, and diag{....} denotes a block-diagonal matrix.
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The superscript T means matrix transposition. The notion )7 j-1 1s an abbreviation of
> i-12_;-1- Matrices, if the dimensions are not explicitly stated, are assumed to have compat-

ible dimensions for algebraic operations.

2. System description and assumptions

In this section, we introduce the T-S fuzzy time-delay system with local bilinear model. The ith
rule of the fuzzy system is represented by the following form:

Plant Rule i :
IF 94(t) is F;; and ... and 9(t) is F;,, THEN W
X(t) = Aix(t) + Agix(t — d(t)) + Biu(t) + Bpu(t — h(t)) + Nix(£)u(t) + Ngix(t — d(t))u(t — h(t))

x(t) =), te[-1,00,i=12..,5s

where F;; is the fuzzy set, s is the number of fuzzy rules, x(t) € R" is the state vector, and u(t) € R
is the control input, 91(f), 9a(t),...,9.(t) are the premise variables. It is assumed that the premise
variables do not depend on the input u(f). A, Agi, Ni, Ngi € R™", B, By € R™! denote the system
matrices with appropriate dimensions. d(t) is a time-varying differentiable function that satisfies
0 <d(t) < 14, 0 < h(t) < 15, where 14, T, are real positive constants as the upper bound of the time-

varying delay. It is also assumed that d(t () <oy, h(t) <0y, and 04, 0, are known constants. The
initial conditions ¢(t), (f) are continuous functions of t, t € [—, 0], T = min(7y, 7).

Remark 1: The fuzzy system with time-varying state and input delays will be investigated in
this paper, which is different from the system in Ref. [17]. In Ref. [17], only state time-varying
delay is considered. And also, here, we assume that the derivative of time-varying delay is less
than or equal to a known constant that may be greater than 1; the assumption on time-varying
delay in Ref. [17] is relaxed.

By using singleton fuzzifier, product inferred and weighted defuzzifier, the fuzzy system can
be expressed by the following globe model:

Zh ) [Ax(t) + Agix(t — d(£)) + Biu(t) 4 Buu(t — h(t)) + Nix(t)u(t)

+ Nyix(t — d(t))u(t — h(t))]
where

hi(3(1)) = wi(d /Zl ; w;i(3(t)) = H}v . yij(S(t)) i (3(1)) is the grade of member-
ship of 9(t) in F;;. In this paper, it is assumed that w;(8(t)) >0, Z w;(9(t)) > 0 for all t. Then,

we have the following conditions h,(5(t)) 2 0, Zi: X (9 )) =1 for all t. In the consequent, we
use abbreviation h;, hy;, x4(t), ua(t), xu(t), un(t), to replace hy(3(t)), h{(S(t — h(t))), x(t — d(t)), u(t — d
(1)), x(t — h(t)), u(t — h(t)), respectively, for convenience.
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The objective of this paper is to design a state-feedback non-fragile guaranteed cost control law
for the fuzzy system (2).

3. Non-fragile guaranteed cost controller design

Extending the design concept in Ref. [17], we give the following non-fragile fuzzy control law:
IF 9(t) is Fi and ... and 8,(t) is F.
THEN u(t) = p(Ki & AKi)x(H)
14 xT(K; + AK;) T (K; + AK;)x

= psin®; = pcos O;(K; + AK)x(t)  B)

where p >0 is a scalar to be assigned, and K; € R™" is a local controller gain to be determined.
AK; represents the additive controller gain perturbations of the form AK; = H;F,(t)Ey; with
H; and Ej; being known constant matrices, and Fz(t) the uncertain parameter matrix

satisfying FT(HFi()<Lsin6; = X0 cos0; =1 0;e[-2,9, K =K; + AK;(t) =
\/ 1+XTK,TK,X \/ 1+XTK Kx

K; + HiFi(t)Ek;.

The overall fuzzy control law can be represented by

=3 __pKlh) = hipsind, = " hip cos 6Kx(1) @

=1 /1 +xTK; Kx =1 =1

When there exists an input delay /(t), we have that

S S
w(t) = Zhh;p sing; = Zhh;p cos @, Kxp,(t) )
=1 =1
where sing, = 7&”}1{ , cosQ =1 el-z,q, K =K + AK(t—h(t)) = Ki+

e —— ¢
1+x:K1 Kx, I+XIK, Kx,

Hlpl(t — h(t))Ek[.

So, it is natural and necessary to make an assumption that the functions h; are well defined all ¢
€ [—12, 0], and satisfy the following properties:

hi(8(t — h(t)))20, fori=1,2,....5,and > ;_; li(S3(t — h(t))) = 1.

By substituting Eq. (5) into Eq. (2), the closed-loop system can be given by
x(t) = Z h,‘hjhhl(/lijx(f) +Adi]-xd(t) + Ahilxh(t)) 6)
ij =1

where

Ajj = A; + psin O;N; + p cos GjBiK-, gyt = Agi + psin@,Ng;, Apig = p cos qolBhif(,.
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Given positive-definite symmetric matrices S € R"*" and W € R, we take the cost function

J= r (0 Sx(t) + uT(HWu()]dt @)
0

Definition 1. The fuzzy non-fragile control law u(t) is said to be non-fragile guaranteed cost
if for the system (2), there exist control laws (4) and (5) and a scalar ], such that the closed-
loop system (6) is asymptotically stable and the closed-loop value of the cost function (7)
satisfies | < J.

4. Analysis of stability for the closed-loop system

Firstly, the following lemmas are presented which will be used in the paper.

Lemma 1 [20]: Given any matrices M and N with appropriate dimensions such that ¢ > 0, we have
M'N+N'"M<eM"'M+e ' N'N.

Lemma 2 [21]: Given constant matrices G, E and a symmetric constant matrix S of appropriate
dimensions. The inequality S + GFE + E'F'G" < 0 holds, where F(t) satisfies F'(t) F(t) < I if and only
if, for some e >0, S+ eGG" + ¢ 'ET E<0.

The following theorem gives the sufficient conditions for the existence of the non-fragile
guaranteed cost controller for system (6) with additive controller gain perturbations.

Theorem 1. Consider system (6) associated with cost function (7). For given scalars p >0, 71 >0, 7>
0, 01 >0, 02 >0, if there exist matrices P >0, Q1 >0,Q2>0,R;>0,R,>0,K;,i=1,2,..., 5 Xy, Xp,
X5, X4, Y1, Yo, Y3, Yy, and scalar € > 0 satisfying the inequalities (8), the system (6) is asymptotically
stable and the control law (5) is a fuzzy non-fragile guaranteed cost control law, moreover,

J<xT(0)Px(0) + JO xT(s)Qx(s)ds + JO JO %7 (s)Ryx(s)dsdO
—d(0)

-1 JO

0 0 (0
+J xT(s)Qyx(s)ds + J J %1 (s)Rpi (s)dsd6 =],

—h(0) —12J0
Tiﬂ * *
1XT —1Ry * <0, ijl=12..s (8)
TZZT 0 —T2R2
Tll,ij * * *
Tori Toi * *
where T,‘jl _ 21,1 22,i ,

Ts1,i Taii Taau  *
Ta,i Tai Tz Ta
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Tiij= Q1 + Qo+ X1 + X] + Y14 + ATY] + 8+ 2ep?Y1 Y1 + 46" (NI N, + (BK))'(BK)))
+ 71 + 71 + p?K; WK,
Tori=—X] + X, + 2o+ YoAi + ALY],  Tai=23—Z1+X;+ Y34,
Ty =—(1-01)Q — Xo — X3 + YoAu + ALY, +26p?Y,Y," + 46 'NEN,,
Ty = X3+ YsAg — 73,  Tai=—(1—-02)Qs — Zs — Z +2p*Y3Y3" + 471 (BuK,) "Bk,
Tai=P+ Xy +Zs+ YaAi — Y], Tay; = X4 + Y4A; — Y3,
Ty = —Zs — Y3, Tag = TRy + ToRy — Yy — V4T +2ep2Y4Y].

Proof: Take a Lyapunov function candidate as

t xT(s)le(s)ds+J0 Jf %T(s)Ry% (s)dsd6
—11 Jt+0

¢ 0t ©)
+J xT(s)sz(s)ds—O—J J %7 (s)Rpx (s)dsdO

t—h(t) —Tp Jt+0

V(x(t), t) = xT(£)Px(t) + Jt—d(t)

The time derivatives of V(x(t),t), along the trajectory of the system (6), are given by

V(x(t), £) = 26T ()P(1) +x"(H)(Qy + Qo)x(t)

_(1 - d(t))xg(t)led(t) + J&T(t)('rlRl + Tsz)i(t) (10)

—Jt (5 Ry ()ds — (1 — F(B)T (50 (F) — J 7 (s)Ros (s)ds

t—1y t—15

Define the free-weighting matrices as X = [X] X3 X} XI]T, Y=1[Y] v, Y} YZ]T,
Z=[ZV 7} 7} ZI|', where X, € R™", Yy € R™", Z € R™", k =1, 2, 3, 4 will be
determined later.

Using the Leibniz-Newton formula and system equation (6), we have the following identical
equations:

T (X1 + X7 (X2 + x5 (X5 + 27 (8) Xa] [x(£) — xa(t) — J:d(t) x(s)ds] =0,
(8 Zy + x5 (8 Za + xF () Z5 + 2T (£) Za] [x(t) — x4 (t) — J:ihm x%(s)ds] = 0, 11)

ih,»hjh,[xT(t)Y] + X7 (D)Y2 +x] () Ya + %7 () Ya][Agx(t) + Agaxa(t) + A (t) — %(H] = 0
ij=1

Then, substituting Eq. (12) into Eq. (11) yields
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V(x(t), t) = 26T ()P () + x" () (Q) + Qa)x(t) + 2" () (T1Ry + T2R2)% (1)
—(1 = d(1)xg (HQuxa(t) — (1 = h(#))x} (£)Qn (1)

Jt ()R (s)ds + 20T () X[x(t) — x4(t) — J:d(t) X (s)ds]
J (5) Rt (s)dds + 20T () Z[x(t) — 1 (8) —J:h()X(s)ds]

+ 20T (B)Y Z il [ A () + Agixa(t) + Apaxn(t) — 2(8)]
i 1=1

2T (PR () + 2T (8)(Qr + Qo)x(b) + &7 (1) (11 Ry + 12Rp)% (1)
—(1 = 01)x] ())Qqxa(t) — (1 — a2)xy (H) Qo (t)
—Jt  E ORI + 207 (X)) —xlt) - Jt #(s)ds]
t—d(t

t—d(f)

(12)

ff 7 (5)Ro (5)%(s)ds + 21T (B Z[x(t) — () — J[ #(s)ds]
t—h(t) t=h(t)

+ 207 (8)Y Z ik [N (8) + Adixa(t) + Apaxi (8) — %(£)] + 27 (£)Sx(t)
ij, =1

+Zh hip*xT (DK, cos O;WK; cos 0x(t) — [xT()Sx(t) + uT () Wu(H)]
i, j=1

where n(t) = [x"(t), x5(), xE(0), #7(1))".

Applying Lemma 1, we have the following inequalities:

2T (1) Yq A (t) <2xT (5 Y1 Aix (£) + ep?x T (£) Y1 Ve Tx(t) + e IxT (1) (NN, + (B,K]-)T(Bifj))x(t),
2xT(t)Y]Ad,lxd( <227 (1) Y1Auxa(t) + ep? sin 2T (£) Y1 Y1 "x () + e Il (HNEN x4 (8),

(1)1 Anax, (1) < €p? cos 2T () Y1 Y1 x(8) + 1] (8) (ByK)) T (B, K ), (8),
2T (1) Yo Ay (8) <25 (1) Yo Aix () + ep?x ] (H) Yo Yo Txey (1) + e 2T (#) (N]N; + (B; ]) (B:K:))x(1),
2T (1) Y1 A () < ep® cos 2T (1) Y1 Y1 Tx(t) + e (1) (B K,) " (B:K )x,, (1),
2x) (1) Yo Ay (1) <2x5 (H) Y2 Aix (t) + ep?x] (1) Yo Yo Ty () + e 12T () (NTN; + (B, ) (B:K:))x(1),
2x () Y2 Agnxa(t) <203 (1) Yo Aaiy () + £p? sin >y (¢ )YzYszfz( ) + e g (ONGN 4 (1), (13)
204 () Y2 i () S €p? cos 2y (£) Y2 Yo Txa () + €] (1) (B, K)) T (B, Ky ), (1),

2xp (1) YAy (t) <2xF (£) YaAix(t) + ep?xp (1) Y3 Y3Tx, () + e 22T () (N]N; + (BK; )T(B Ki))x(t),
(t

2T (1) Y3 gaxa(t) S2xT (1) Y3Aaixy(t) + ep? sin 2] (1) Y3 Y3 T, (1) + e ] (HNEN iy (1),

21 (£) Y3 A (£) < € cos 2t (£) Y3 YaTxn(t) + e7'xf (£) (B, K)) (B,K ), (£),

227 (1) Yayx(t) <227 () YaAx(t) + ep®2T () YaYa T2 (1) + e 2T (O (NIN; + (BK)) T (BK)))x(#),
2xT (8)Yaaixa(t) <2x T VY 1Agixy(t) + epx ( VWYaYaTx(f) + el (¢ )NdTlNdlxd(t)

287 (8) Yy (£) < €p? cos 2T (1) Ya Ya 5k (£) + €] (1) (B, K)) (B K )x, (1)
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Substituting Eq. (13) into Eq. (12) results in

t

S t
V), ) < 3 (5T (6) — J T (s) Ry (s)ds — J 7 (5)Rat (5)ds
ij,1=1 t—d(t) t=h(t)

—217T(t)XJ

t t

%(s)ds — 2r]T(t)ZJ %(s)ds — [xT(£)Sx(t) + uT (HWu(t)]

t—d(t) t=h(t)

< Z hihilun" ()(Tig + i XRy ' X" + 1, ZRy ' Z7)n(t)
ij,1=1 (14)

_Ltfd(r) (UT(t)X * iT(S)RORﬁ (UT(t)X + XT(S)R1>Td5

—Jf (17 ()Z + £ ()R ) R (W (OX + 5T ()R ) s — T ()Sx(8) + (O War(1)]
t—h(t)

< bkl (8)(Ti + 1XRy'XT + 12 ZRy ' Z)n(t) — [T (£)Sx(t) + u™ () W (b))
ij,1=1

where

T, i * * *

N Troii Ty * * - _ _ T
Ty = Wi S , Ty, = T,i + sziT cos 0;WK; cos 0; — pZKiTWK]».
Ts,i Taip Taza  *

Ty, Tai Tz Ty
In light of the inequality K»T WK]- + K]T WK, SKTWK + FjT WK/, we have

V(x(t), 1)< 25: h,'hjh;,mT(t)(Tijz + T XRTIXT + 1 ZR 1 Z0)n(8) — [xT(£)Sx(t) + uT (HWu(f)] (15)
i =1

Applying the Schur complement to Eq. (8) yields
Ti + +0XR' X" + 0ZR'Z" < 0, Tjj + Tji + 211 XRy ' X" + 21, ZR, ' ZT < 0.
Therefore, it follows from Eq. (15) that
Vx(t), t)< — [xT(t)Sx(t) + u (HWu(t)] < 0 (16)
which implies that the system (6) is asymptotically stable.

Integrating Eq. (16) from 0 to T produces

JT[xT(t)Sx(t) +uT (HWu(B)dt< — V(x(T), T) + V(x(0), 0) < V(x(0), 0)
0

35
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Because of V (x(£),f) = 0 and V(x(t), t) < 0, thus %im V(x(T), T) = ¢, where c is a nonnegative

constant. Therefore, the following inequality can be obtained:

0

J < xT(0)Px(0) + J xT(s)Qyx(s)ds + r JO %7 (s)Ry% (s)dsd6 + JO xT(s)Q,x(s)ds
—h(0)

—11 J0O

—d(0) (17)

0 0
+ [ ‘ %1 (s)Rpi (s)dsd6 =],
. 0

—Tp

This completes the proof.

Remark 2: In the derivation of Theorem 1, the free-weighting matrices X, € R"*", Y, € R"*", k=
1, 2, 3, 4 are introduced, the purpose of which is to reduce conservatism in the existing delay-
dependent stabilization conditions, see Ref. [17].

In the following section, we shall turn the conditions given in Theorem 1 into linear matrix
inequalities (LMIs). Under the assumptions that Y3, Y5, Y3, Y, are non-singular, we can define
the matrix Y; T = AZ,i=1,2,3,4,Z=P ,A>0.

Pre- and post-multiply (8) and (9) with © =diag{Y;", Y, Y5, v, v, Y,'} and
OF =diagly; 7, Y, Y50, v, T, v, T, Y, T}, respectively, and letting Q; =Y;7'Q;Y: T,
Q=YY Re=Ys 'RYy L k=12X =Y, ' XY, L Zi =Y ' ZYi T, 1= 1, 2,3, 4,
we obtain the following inequality (18), which is equivalent to (8):

TH/,‘]‘ * * * * *

TQLZ‘ T22,i * * * *

Toi Tai Twa  x * <0, ijl=12..5 (18)
Ty, Tai T Ty * *

X1 1Xs 1Xs 11Xy —-TR; *

T2Z1 TzZz TzZ3 TzZ4 0 —Tsz

where

T = Q1+ Qo + X1 + Xy + AAZ + AZAT 4+ N2ZSZ + 26p°] + 4e ' \*ZNIN,Z
+Z1+ ZT + 4c A (BK,2) (B Z) + p*A2ZK; WK,Z,

Toi= X +Xp+ Zo + AAZ+ AZAY, Taii=Z5— 21+ Xy + AAZ,

Ty, =N Z+AAZ — AZ + Xy + Za,

Tyi=—(1-01)Q; — Xa — Xy + AA4Z + AZAL + 2ep2I + 4e ' A2ZNIN . Z,

Tayi = —Xy — Zo + AAgZ — AZA}, Tapi= — Xa+AAZ — AZ,

Tygi = —(1—02)Qy — Zs — Zy + 46 ' A%(B,,K12) "B, K/ Z + 2¢p?1,

T = —Zy — AZ, Ty = TRy + TaRy — AZ — AZT + 2¢p°I.

Applying the Schur complement to Eq. (18) results in
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(DH,i * *
Ljp= Doy P+ | <0, ijl=12..5s (19)
Dz1,3 0 D33
where
?11,1' * * * * *
TZl,i Tzz,i * * k *
Dy, = j?al,i isz,i T33, ik * *
Ta,i Tai T Tu k- *
1X: 1nXeo nuXs; uXy —uk *
1221 TzZz T2Z3 TzZ4 0 *Tsz
With
Tii= Q1+ Qo+ X1+ X, +AAZ + AZAT + Zy + Z] + 2¢p],
Toi=—(1-01)Q1 — X = X, + AAGZ + AZAY, + 2¢p?],
T33 = 7(1 — 0'2)@2 — 73 — ZT, + 2€p21.
r Az 0 0 0
o AN;Z 0 0 0
T AABKZ 0 0 0
L pAKZ 0 0 0
[0 ABuKiZ 0 0
D3y, =
0 0 AN4Z 0
-s*' o0 0 0
o -i1 o 0
4
B
4
L 0 0 0o -w!
- Zz 0
D33 = e
0 —-1
L 4

Obviously, the closed-loop fuzzy system (6) is asymptotically stable, if for some scalars A > 0, there
exist matrices Z > 0,Q > 0,R > 0 and X3, Xa, X3, K;, i = 1,2, .., s satisfying the inequality (19).
Theorem 2. Consider the system (6) associated with cost function (7). For given scalars p >0, 11 >0,
75,>0,0,>0,0,>0and A >0, >0, if there exist matrices Z > 0,Q; > 0,R; >0,Q, > 0,R, >0
and X1, X, X3, Xa, M, i=1,2,...,5 and scalar & > 0 satisfying the following LMI (20), the system (6) is
asymptotically stable and the control law (5) is a fuzzy non-fragile guaranteed cost control law

Oy * —
|:®2,ijl @3:| <O; 1/];1—1,2,...,5 (20)

Moreover, the feedback gains are given by

37
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Ki=MzZ"'i=1,2..,5

and

0 0 (0 0
J < xT(0)Px(0) + de(O) xT(s)Qqx(s)ds + J, L X7 (s)Ry% (s)dsd6 + th(o) xT(s)Q,x(s)ds

+JO JO 2T (s)Ro% (s)dsd6 =],

-1, J O
where
AEZ 0 0 0 0 0 0 0 0 0 0 0
AEGZ 0 0 0 0 000 0 0 0 0
0 0 AEyZ 0 0 0 0 0 0 0 0 0
©i=| 0 0 0 00000 (BH)" 0 0 0 ’
0 0 0 00O0O0OO0 0 pH 0 0
0 0 0 000O0O0C 0 0 0 (BuH)'
©; = diag{ — oI, — I, — oI, —6'I, —o67', — 571,
[ TH, * * * * * * * * * * * i
TZ], TZZ,i * * * * * * * * * *
T311 T32/l‘ T33 * * * * * * * * *
T41, i T42, i T43, i T44 * * * * * * * *
T]?1 T]Yz T])_(3 T]X;; 7T‘1E1 *_ * * * * * *
@1 il = ’l'zZ] T2Z2 TzZ3 T2Z4 0 7T2R21 * . * * * * *
’ AZ 0 0 0 0 0 -5 * * * * *
AN:Z 0 0 0 0 0 0 — =« x x  x
ABM; 0 0 0 0 0 0 0 — = x  x
pAM; 0 0 0 0 0 0 0 0 -w' « «
0 ANsZ 0 0 0 0 0 0 0 0 - =«
0 0 AByM; O 0 0 0 0 0 0 00—

Proof: At first, we prove that the inequality (20) implies the inequality (19). Applying the Schur
complement to Eq. (20) results in

0o 0 0
0o 0 0
0o 0 0
0 0 0
88 8 00000O0O0O0 (BH)" 0 0 0
P tol o ) 0 000O0O0OOOO 0 pH 0 0
0o 0 0 00000O0O0O0 O 0 0 (ByH)"
BH, 0 0
0 pH,‘ 0
0o 0 0
| 0 0 ByH]
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[(AEyZ)" (AEZ)" 0 ]
0 0 0
0 0 (AEwZ)"
0 0 0
0 0 0 AE4Z 0 0 000000000
e 8 8 8 AE4Z 0 0 00000 0O0O00f<0
: : : 0 0 AEwZ 0 0 0000000
0 0 0
0 0 0
0 0 0
Lo 0 0|

)]

Using Lemma 2 and noting M; = K;Z, by the condition (21), the following inequality holds:

0 * * x x  k ok % %k ok k
0 0 * x %k ok ok % %X x ok ok
0 0 0 * ok ok ok k% ok ok kX
0 0 0 0 * % * * *x % ok *
0 0 0 0 0 * x *x * * * x
0 0 0 0 0 0 * % * * * =%
Pt 9 0 0 0000 % x x x x| =0 22)

0 0 0 00 0 0 0 *x % =* =«
/\B,-AK]Z 0 0 00 0 0 0 0 % =% =x
pAAKZ 0 0 000 0O0O0 0 % =
0 0 0 00 0 00 O0O0 0 =

L 0 0 ABAK,Z 0 0 00 0O 0 0 O 0]

where AK; = AK;(t — d(t)).

Therefore, it follows from Theorem 1 that the system (6) is asymptotically stable and the
control law (5) is a fuzzy non-fragile guaranteed cost control law. Thus, we complete the proof.

Now consider the cost bound of

0 0 (0 0
J<xT(0)Px(0) + [7[1(0) xT(s)Qqx(s)ds + [7 L %T(s)Ry%(s)dsd6 + Lh(o) xT(s)Q,x(s)ds

0 0
+ J J %T(s)Ry% (s)dsd6 =],
—T2 0

Similar to Ref. [23], we supposed that there exist positive scalars @y, ay, az, a4, s, such that
271 < all, Aljpélp < 0(21, %PQZP < (X3I, j—zpﬁlp < 0(41, %Pﬁzp < 0(51.

Then, define S;1=0Q; 7, S2=Q, 7}, Ski=R17}, Spo=R,~!, by Schur complement lemma, we
have the following inequalities:
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[—anl 1 —apl 1P —azl 1P —ayl 1P
<0, <0, <0, <0,
I -Z P S P S P Spy
[—asl 1 zZ 1 S I S I
> T <o, >0,7% |20 7% _ |20 23)
| 1P Sk I z I I Q

= Y

[Sri T Spp I
_ =0, _
R I R

Using the idea of the cone complement linear algorithm in Ref. [24], we can obtain the solution
of the minimization problem of upper bound of the value of the cost function as follows:

0
minimize{trace(PZ + Sg1Q; + S Q> + Sr1R1 + SraRz + a1xT(0)x(0) + azj xT(s)x(s)ds
—d(0)

s [ooneao o[ oo vas] [ oo 4)
~h(0)

—11 JO 0

—T5

subject to (20), (23), €>0,0; >0,Q, >0, Ry >0,R, >0,Z>0,a; >0,i=1,...,5

Using the following cone complement linearization (CCL) algorithm [24] can iteratively solve
the minimization problem (24). o

5. Simulation examples

In this section, the proposed approach is applied to the Van de Vusse system to verify its
effectiveness.

Example: Consider the dynamics of an isothermal continuous stirred tank reactor for the Van
de Vusse
%1 = —50x1 — 10x3 + u(10 — x7) + u(t — h) + u(t — h)(0.5x1 (t — d) + 0.2x2(t — d)) + 5x2(t — d)

X2 = 50x1 — 100x, — u(t —h) +u(t —h)(0.3x1(t — d) — 0.2x2(t — d)) + 10x2(t — d) — 5x1(t — d) ()

From the system equation (25), some equilibrium points are tabulated in Table 1. According to
these equilibrium points, [x, 1], which are also chosen as the desired operating points, [x', u'.],
we can use the similar modeling method that is described in Ref. [16].

X! xl, u, Uae
[2.0422 1.2178] [2.0422 1.2178] 20.3077 20.3077
[3.6626 2.5443] [3.6626 2.5443] 77.7272 77.7272
[5.9543 5.5403] [5.9543 5.5403] 296.2414 296.2414

Table 1. Data for equilibrium points.
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Thus, the system (25) can be represented by
R : if x1 is about 2.0422 then
X5(f) = Axs(t) + Agixas(t) + Brus(£) + Brauas(t) + Nixs(8)us(£) + Narxas (£) uns ()

R?: if x1 is about 3.6626, then

X5(8) = Axs(t) + Agaxas () + Baug(£) + Baautns (1) + Noxs (£)us(t) + Napxas (£)uns (t)
R3: if x1 is about 5.9543, then

X@(f) = A3X§(i’) =+ Ad3xd5(t) + Bgué(t) + Bd3uh§(f) + N3X{)(t)u§(t) —+ ng,x,;l(s(t)uhé(t)

(26)

where
A — —75.2383 7.7946 A — —98.3005 11.7315 An— —122.1228 8.8577
1= 50 —-100 |"7* T 50 —-100 |"“P® 50 —-100 |’
-1 0 10 0 5
N1 =Ny =N; = [ 0 71};31 =B, =B3 = [ 0 :|;Ad1 =Ap =Ap = {10 75},

05 0.2 1 )
Ny =Ngp =Ng = {03 _02:|/Bh1 =By =Bz = {0},%:36(15)—968,

us = u(t) — ui,, Xas = x(t—d) — x;e, ups = u(t —d) — u/hQ.

1 0
0 1

gain perturbation AK of the additive form is give with Hy = H, = H; =0.1, E;; =[0.05 —0.01],
Ewn =[0.02 0.01], Ex3=[-0.01 O0].

The cost function associated with this system is given with S = { }, W = 1. The controller

Rule 1 Rule 2 Rule 3
(] S
\
\
\
0.8 \ 1
0-6 L \ _
\
\
\\
0.4+ \ -
\
0.2+ B
0 L I L L L L
0 1 2 3 4 5 6 7 8

Figure 1. Membership functions.
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0.1 00.2 0.3
time

Figure 2. State responses of xy(t).

0.4

1.5

0 0.1
time

Figure 3. State responses of x,(t).
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79.5
79‘)‘, |
\
|
|
7851
78t |
\
775¢ \\ .
77 | | |
0 0.1 0.2 0.3 0.4
time

Figure 4. Control trajectory of system.
The membership functions of state x; are shown in Figure 1.

Then, solving LMIs (23) and (24) for p=0.45, A =1.02and 6 =0.11, 71 =1, =2,01 = 0,0, =0
gives the following feasible solution:

{4.2727 4.3007} o0 _ {14.1872 4.9381}

~1.3007 64906 | ~' [ -1.9381 13.0104 | ~*
{ 83691 —1.3053

Ry =

5.2020 2.2730
,Ry = e =1.8043,
—1.3053  7.0523 2.2730 1.0238

Ky = [~0.4233 —0.5031], K, = [~0.5961 — 0.7049], Ky = [~0.4593 — 0.3874].

B {3.1029 1.2838}
©11.2838 2.0181)

Figures 24 illustrate the simulation results of applying the non-fragile fuzzy controller to the
system (25) with x’, = [3.6626 2.5443]" and ', = 77.7272 under initial condition o) =[1.2

~1.8]", t € [-2 0]. It can be seen that with the fuzzy control law, the closed-loop system is
asymptotically stable and an upper bound of the guaranteed cost is ], = 292.0399. The simulation

results show that the fuzzy non-fragile guaranteed controller proposed in this paper is effective.

6. Conclusions

In this paper, the problem of non-fragile guaranteed cost control for a class of fuzzy time-
varying delay systems with local bilinear models has been explored. By utilizing the Lyapunov
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stability theory and LMI technique, sufficient conditions for the delay-dependent asymptoti-
cally stability of the closed-loop T-S fuzzy local bilinear system have been obtained. Moreover,
the designed fuzzy controller has guaranteed the cost function-bound constraint. Finally, the

effectiveness of the developed approach has been demonstrated by the simulation example.
The robust non-fragile guaranteed cost control and robust non-fragile H-infinite control based
on fuzzy bilinear model will be further investigated in the future work.
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