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1. Introduction

Complex or dusty plasmas are multi-component plasmas, which, in addition to the usual

plasma components i.e. ions and electrons, contain micron-sized particles, also called grains

or dust. These particles acquire high electric charges, and interact collectively over long

distances. Like colloids, complex plasmas form solid- and liquid-like structures with long

range correlations and exhibit phase transitions. Unlike colloids, they exhibit a range of

dynamic phenomena such as particle-mediated linear and nonlinear waves, shocks, wakes,

instabilities, etc. Complex plasma crystallisation has been theoretically predicted (Ikezi, 1986)

and subsequently discovered in the early 1990s (Chu & I, 1994; Hayashi & Tachibana, 1994;

Melzer et al., 1994; Thomas et al., 1994) giving rise to the interest in the field among the whole

physics community.

Particles in complex plasmas can be illuminated by a laser light and easily observed with a

video camera yielding their full kinetic information i.e. positions and velocities. This makes

them useful as model systems for studying various phenomena in solids and liquids at the

microscopic level (Thomas & Morfill, 1996). Since it is almost impossible and very expensive

to observe the dynamics of real solids and liquids at the kinetic level, model systems are used

to study the fundamental properties of phase transitions, diffusion, viscosity and elasticity.

These model systems include colloids, granular media and complex plasmas, collectively

known as soft matter. Phenomena in complex plasmas have analogues and applications in

many different fields of science and technology such as plasma physics, fusion, solid state

physics, fluid dynamics, acoustics, optics, material science, nanoscience, nanotechnology,

environment protection, space exploration and astrophysics (Fortov et al., 2005a; Merlino &

Goree, 2004; Morfill & Ivlev, 2009).

Arguably the most common technique to simulate complex plasmas is molecular dynamics
(MD). It solves numerically the equations of motion for each individual particle comprising

the system under investigation. It is also applied to simulate biomolecules, polymers, solids,

colloids, granular media, atomic nuclei, galaxies, and stellar systems. MD simulations of

complex plasmas are used in this chapter to determine their structural and dynamic properties

as well as to identify the underlying physical mechanisms of various phenomena.

This chapter is organised as follows. Section 2 describes applications, natural occurrence,

scientific significance, and multidisciplinary character of complex plasmas. MD methods and
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their experimental verification techniques will be detailed in Sections 3 and 4 respectively.

Finally, numerical results and their comparison with experiments will be discussed in

Section 5 and concluding remarks will be presented in Section 6.

2. Overview of complex (dusty) plasmas

The term “dusty plasmas” originated in astrophysics, where polydisperse (various size

and shape) dust grains are exposed to various charged particles, ionised gases, and

ionising radiation. Laboratory studies often involve high quality monodisperse (same size)

microspheres added to gas discharges to study various complex and collective phenomena

that do not occur in natural dusty plasmas. Thus the term “complex plasmas” (Samsonov

et al., 2000) is often used instead, by analogy with “complex fluids”, where similar complex

phenomena are observed in multicomponent fluids.

2.1 Charging and forces

Mixed with a plasma, grains or microparticles collect ions and electrons and typically charge

negatively due to higher mobility of electrons (Bronold et al., 2009; Goree, 1994; Melzer et al.,

1994). However in the presence of ionising radiation, such as UV light, or thermionic emission,

the particle charge may become positive. Typical charges are of the order of ∼ 104 electrons

for ∼ 10 µm diameter particles. The charge value is proportional to the electron temperature

and to the particle radius. The time it takes a particle to reach an equilibrium charge, the

charging time, is inversely proportional to the particle size and plasma density (Goree, 1994).

Its typical value is ∼ 100 ns for ∼ 10 µm grains in typical laboratory conditions. The particle

charge is not constant and it fluctuates around an equilibrium. This may cause instabilities

and if the charge value changes its sign, it may even result in particle coagulation.

Highly charged particles are affected by electric fields in the discharge and interact with

each other electrostatically. Their interaction potential is usually assumed to be of a Yukawa

(Debye-Hückel or screened Coulomb) type, if the background plasma is isotropic (Kennedy

& Allen, 2003). This approximation has been also shown to be valid for particles levitating in

a plasma sheath at the same height (Konopka et al., 2000) as in monolayer complex plasmas.

Flowing plasma makes particle-particle interaction anisotropic with regions of negative and

positive potentials (ion wake) (Melandsø& Goree, 1995; Vladimirov et al., 2003) and it also

affects the charge of downstream particles.

Apart from the electrostatic force, grains are affected by other forces. Gravitational force

becomes dominant for particles with a diameter � 1 µm in the bulk of the discharge. Large

particles are pushed by the gravity down into the plasma sheath, where the electric field is

strong enough to levitate them. This effect makes it necessary to use microgravity conditions

in order to produce large three dimensional (3D) structures. Neutral drag force results from

collisions with the gas molecules. It is equivalent to friction and damps particle motion.

Streaming ions affect grains via an ion drag. This force is responsible for a void formation

(Goedheer et al., 2009; Samsonov & Goree, 1999). Thermophoretic force arises due to a

temperature gradient. It can be used for particle levitation (Rothermel et al., 2002). Intense

light sources create a light pressure force, which is utilised for grain manipulation (Liu et al.,

2003).
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Complex plasmas can be characterised by two parameters. The coupling parameter Γ = U/T

is the average ratio of the electrostatic potential energy to the kinetic energy of particles. The

screening parameter κ = a/λD is the ratio of the interparticle distance to the screening (Debye)

length. These parameters determine if the complex plasma is in the crystalline or a liquid state
(Hamaguchi et al., 1997; Ikezi, 1986; Vaulina et al., 2002). Crystalline plasmas, which have

long range correlations, are characterised by large values of the coupling parameter Γ � 170

(Ikezi, 1986). Liquid phase state has smaller values 1 � Γ � 170 and short range correlations.

Solids and liquids are strongly coupled states. Gaseous state is weakly coupled (Γ < 1), with

uncorrelated particle positions.

2.2 Natural occurrence and significance

Dust is abundant in space, where it is found in planetary rings, comet tails, interstellar clouds,

and planetary nebulae. The sources of ionisation are also present, such as charged particles

from cosmic rays and stellar winds, gas ionised by the stellar radiation, stellar radiation

itself, and various radioactive elements in the dust, which emit charged particles and ionising

gamma rays. Dusty plasma effects are believed to be involved in formation of dark spokes in

Saturn rings (Hartquist et al., 2003). Charge fluctuations are known to enhance coagulation

of particles (Konopka et al., 2005). This effect may influence the models of planet formation.

Spacecraft and satellites are often charged by the solar wind (Whipple, 1981). This can cause

their malfunction due to electrical breakdown. It also increases the drag force due to enhanced

collisions with ions. Lunar and Martian dust can be charged by the solar radiation and

levitate above the planet surface (Sternovsky et al., 2002). It poses threat to machinery and

spacesuits because of its abrasive properties. Charged ionospheric aerosols affect radio wave

propagation (Cho et al., 1996) and often disrupt communications. Ultrafine charged particles

in the Earth atmosphere influence cloud formation by providing centres of condensation

and thus affect the Earth radiative budget (Boulon et al., 2010) with implications for climate

models. Aerosol charging modifies the atmospheric chemistry as well as the formation and

transport of pollutants (Aikin & Pesnell, 1998).

2.3 Industrial applications

Particles with designed properties are grown in a plasma environment for various

technological applications (Boufendi et al., 2011). These include production of fine

powders for ceramics and catalysts, phase separated materials, coatings for solar cells, and

nanocoatings for optics. Undesirable dust growth has been observed in ultra-clean etching

reactors. As the size of the semiconductor device features has approached 22 nanometers, a

single dust particle of a similar size can destroy a whole device, significantly reducing the

yield of the manufacturing process. This requires strict measures to prevent dust formation.

Fusion devices were found to produce metal dust in significant quantities by evaporating or

sputtering their walls. This dust is flammable, radioactive and poses safety hazard. It can

contaminate and quench the plasma reducing energy yield.

2.4 Complex plasmas as model systems

One of the most interesting laboratory uses of complex plasmas is to study properties of

solids and liquids at the microscopic or kinetic level. Complex plasmas possess a unique
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combination of properties and share many of them with other model systems such as colloids

and granular media. Grains in complex plasmas can be easily observed. They have sizes

of a few microns and separation distances of almost a millimetre. Thus complex plasmas

remain optically thin over many interparticle distances. Illuminated with a laser, particles can
be imaged with a video camera producing images with high contrast. Typical timescales of

particle motion are of the order of 10 ms, meaning that a moderately high speed camera is

adequate. The damping rate due to the background gas can be below 1 s−1. This makes it

possible to observe grain-mediated wave motion. The particle-particle interaction potential is

continuous and long range, qualitatively similar to that in real solids and liquids. Complex

plasmas exhibit a multitude of dynamic phenomena such as waves (Nunomura et al., 2002;

Zhdanov et al., 2003), solitons (Durniak et al., 2009; Samsonov et al., 2002), shock waves

(Luo et al., 1999; Samsonov & Morfill, 2008), melting and crystallisation (Knapek et al., 2007),

Mach cones (Nosenko et al., 2003; Samsonov et al., 1999), diffusion (Nunomura et al., 2006),

heat transport (Nosenko et al., 2008; Nunomura et al., 2005a), and shear flows (Hartmann

et al., 2011). Here we will focus on MD simulations of these phenomena in strongly coupled

complex plasmas.

3. Numerical models for complex plasmas

Computer simulations are used to describe and predict the behaviour of systems whose

complexity makes analytical treatments impossible or very difficult. Numerical models

advance our understanding of what basic processes are responsible for different observable

phenomena. They can be rerun using exactly the same initial conditions (Durniak &

Samsonov, 2010) with altered physical processes (e.g. forces) or parameters (e.g. damping

rate). Examples of numerical simulations of complex plasmas include dynamics of bilayers

(Hartmann et al., 2009), self diffusion in two dimensional (2D) liquids (Hou, Piel & Shukla,

2009), phase transition between solid and liquid (Farouki & Hamaguchi, 1992), phonons in

a linear chain (Liu & Goree, 2005a), diffusion in 2D liquids (Ott & Bonitz, 2009a), defect

dynamics (Durniak & Samsonov, 2010), shear flows (Sanbonmatsu & Murillo, 2001), and

nonlinear wave propagation (Durniak et al., 2009). There are two basic types of numerical

simulations: stochastic and deterministic. The Monte Carlo method (Sheridan, 2009b) belongs

to the first type, while the molecular dynamics (Allen & Tildesley, 1987) and the fluid model

(Goedheer et al., 2009) to the second. MD simulations often incorporate stochastic elements in

order to simulate Brownian motion and the effects of finite temperature. All these techniques

are used to simulate complex plasmas, however here we will only consider the MD method.

3.1 Numerical methods

MD simulations solve numerically the equations of motion for every particle comprising the

system. Newtonian equations of motion are used in classical simulations (Allen & Tildesley,

1987). The most common integration techniques employed in complex plasmas include Verlet

(Liu et al., 2006), velocity-Verlet (Klumov et al., 2010), Swope (Ott & Bonitz, 2009a), leapfrog

(Ma & Bhattacharjee, 2002), predictor-corrector (Farouki & Hamaguchi, 1994), Gear-like (Hou,

Piel & Shukla, 2009), Beeman-like (Couëdel et al., 2011; Donkó et al., 2010), Runge-Kutta
(Jefferson et al., 2010; Zhdanov et al., 2003), and Runge-Kutta with variable step (Cash Karp)

(Durniak et al., 2010). Performance of several integration algorithms for complex plasma
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problems in presence of a magnetic field has been investigated (Hou, Mis̆ković, Piel & Shukla,

2009).

In order to simulate thermodynamic processes correctly, canonical or microcanonical

ensembles are used. This requires conservation of certain thermodynamic quantities (volume,

particle number, temperature, energy, etc.) by the algorithm. Numerical errors tend to

accumulate and increase the total energy of the system. Energy conserving integrators, such as

Verlet and Beeman, are often utilised in order to keep the total energy of the system constant.

Since a relatively small number of particles is involved in the simulation, their kinetic

energy and thus temperature tend to have significant fluctuations. Constant temperature is

maintained by deterministic techniques such as Nosé-Hoover thermostat (Liu et al., 2006) and

velocity rescaling (Ohta & Hamaguchi, 2000; Ott & Bonitz, 2009a), or by stochastic methods

such as Andersen thermostat (Nelissen et al., 2007) or Langevin dynamics (Schveı̆gert et al.,

2000). Langevin dynamics is an extension of the MD method, in which a random (Langevin)
force and a damping term are added to the equations in order to simulate the effects of liquid

or gaseous background on micron-sized particles. This accounts for random kicks by fast

moving molecules as well as for the friction force caused by the liquid or gas drag.

Computing pair interactions for all possible pairs of particles in an ensemble is very costly,

when the number of particles is large. Since the interaction force decreases with the distance, it

is possible to simplify the calculations. Short range interactions allow introduction of a cut-off

distance (Vaulina & Dranzhevski, 2006) beyond which the forces are neglected. This method

needs to maintain a list of neighbours to keep track of interacting grains in order to increase

efficiency. Long range forces can not be easily truncated, however they can be averaged to
reduce the computational cost. Several methods are used such as the Ewald summation (Ott

et al., 2011), the fast multipole, the tree code, and particle-mesh-based techniques (Frenkel &

Smit, 2002; Rapaport, 1995), and an example of the latter the particle-particle particle-mesh

method (Donkó et al., 2008). The number of particles in the simulation can be reduced using

periodic boundary conditions: a particle exiting a simulation box from one side will re-enter

on the opposite side. Particles interact not only with other particles in the simulation box but

also with particles in image boxes (Donkó et al., 2010; Hamaguchi, 1999). Free boundaries are

also often used in complex plasma simulations.

3.2 Interaction and confinement

Since plasmas contain a mixture of species moving on very different time scales, it is

impossible to simulate a meaningful number of them as individual particles even using a

supercomputer. Thus complex plasmas are typically simulated as microparticles interacting

via an effective potential. The ion-electron plasma is not explicitly included and enters

only as a screening parameter in the interaction potential. The neutral gaseous background

is simulated as a friction force. This approach is valid in most cases, as comparisons

with experiments show. However there were some notable attempts to include all plasma

components (Ikkurthi et al., 2009; Joyce et al., 2001). It is also frequently assumed that the
particles have a constant charge, which is often a very good approximation for large and

highly charged grains.

The most frequently used particle-particle interaction potential in complex plasma

simulations is Yukawa, however Coulomb (Lai & I, 1999) as well as a repulsive-attractive
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potentials have been used (Chen , Yu & Luo, 2005). Other forces can be added e.g. due

the influence of magnetic fields (Hou, Shukla, Piel & Mis̆ković, 2009), ion drag (Ikkurthi

et al., 2009), or external excitations (Durniak et al., 2009). External excitations applied to an

equilibrated structure allow to investigate non-equilibrium dynamics (Donkó et al., 2010), and
various dynamic phenomena (Jefferson et al., 2010).

Since Yukawa potential is purely repulsive, an additional confinement is needed, if free

boundary conditions are used. The most common confining potential is parabolic (Durniak

et al., 2009; Ma & Bhattacharjee, 2002; Nelissen et al., 2007), but other shapes have been used

such as 4th order (Lai & I, 1999), 10th order (Durniak et al., 2010), soft-wall (Ott et al., 2008),

and hard-wall (Klumov et al., 2009). Special shapes of confinement are used in order to obtain

particular particle arrangements, e.g. a 2D annular potential to obtain rings (Sheridan, 2009a)

and anisotropic potentials for elliptical clusters (Cândido et al., 1998), linear chains (Liu &

Goree, 2005a), or flat disks (Durniak et al., 2010).

The Langevin dynamics method includes a stochastic force and a dynamic damping force into

the equations of motion. The stochastic force does not depend on the particle momentum. It

has a zero mean value and a Gaussian probability distribution with a correlation function:

〈Li(t)〉 = 0, 〈Li(t)Lj(t
′)〉 = 2νmkBTδ(t − t′)δij (1)

where ν is the damping coefficient, kB is the Boltzmann constant, T the temperature of the

system and the indices i and j are linked to particles. The damping force is often chosen to

be equal to the gas drag force, which depends on the gas pressure, the kind of gas and the

momentum exchange between the gas molecules and the grain surface (Epstein, 1924).

3.3 Our simulation code

The code used to simulate the complex plasmas presented in this chapter is based on

an objects-oriented multi-threaded programming. It is assumed that the microparticles

comprising a complex plasma interact with each other via a Yukawa potential, their motion

is damped by a neutral drag, and that they are confined in an external potential well with

free boundaries. A Langevin force is used to study effects of finite temperature. The ions

and electrons are not explicitly included in the model. We take into account the interaction

of every microparticle with every other one (particle-particle code), thus there is no cut-off

for the potential. The equations of grain motion are solved using a fifth order Runge Kutta

method with the Cash Karp adaptive step size control (Press et al., 1992). This makes the code

precise, simple and stable at the expense of computational efficiency. It is used to simulate a

wide range of dynamic phenomena in a system of several thousand particles.

The model is based on the Newtonian equations of motion written for each microparticle:

mr̈s = fint
s + f

f r
s + f

con f
s + Ls(t) + fext

s , f
f r
s = −mνṙs

fint
s = −∇ ∑

j �=s

U0, U0(rsj) = Q2(4πǫ0rsj)
−1 exp(−rsj/λD) (2)

f
con f
s = −m[Ω2

h(xs + ys) + Ω2
vzs]
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where m is the particle mass, r = x + y + z is the particle coordinate (z = 0 for 2D) with the

subscripts s and j denoting different particles, f
f r
s is the friction force due to collisions with

neutrals, fint
s is the grain-grain interaction force, fext

s is the external excitation force, Ls(t) is

the Langevin force (1), ν is the damping rate, Ωh and Ωv are respectively the horizontal and

vertical confinement parameters of the well (Ωv = ∞ in 2D case), U0 is the Yukawa interaction

potential, λD is the Debye screening length, Q is the particle charge and rsj = |rs − rj| is the

intergrain distance. The overdots denote time derivatives. Q and λD are kept constant during

the simulation. Dimensionless units are used: the lengths are normalised in terms of the

screening length λD and the time in terms of t⋆ =
√

4πǫ0mλ3
D/Q2. The units are converted

into the dimensional units after the simulation is completed, to facilitate comparison with the

experiments. The code records the position, velocity, and potential energy of each particle at

specified time steps.

After seeding the grains randomly, the code is run with the external and Langevin forces

switched off until the equilibrium is reached and a monolayer crystal lattice or a solid 3D

cluster is formed. The structural properties of the resulting crystals are characterised before

they are utilised as inputs for simulations of dynamic phenomena. These simulations are

performed by applying various excitation forces. A random (Langevin) force is used to

simulate the thermal Brownian motions of particles and to obtain phonon spectra. Pulsed

excitations are applied to investigate nonlinear waves and structural properties of complex

plasmas.

We use the following parameters m = 5× 10−13 kg, λD = 1 mm, Q = −16000e (where e is the

electron charge) in all our simulation runs. Other parameters are listed in Table 1.

3.4 Data and structural analysis

The results of complex plasma simulations are analysed in order to determine their basic

microscopic and macroscopic parameters, structural and dynamical properties using standard

methods, which are also used for analysing the experimentally obtained particle tracks.

The local orientation of 2D crystalline cells is characterised using the local bond

orientational order parameter for each lattice cell: ψ6 =
1

N

N

∑
j=1

e6i θj = |ψ6|e
i θ6 , θ6 =

arctan[Im(ψ6)/Re(ψ6)], where N is the number of nearest neighbours, θj is the angle between

the x-axis and the bond connecting the central particle with its neighbour j. The average bond

orientation angle θ6 is used to highlight crystal grains separated by strings of defects as well

as lattice deformations. The value of |ψ6| gives the local order parameter, which is equal to

one for an ideal crystal.

Delauney triangulation of the lattice is used in order to find the nearest neighbours of each

particle and determine their numbers. An ideal hexagonal lattice would have particles with
6 nearest neighbours. Lattice defects are defined as lattice cells that have other numbers of

neighbours, such as 5 or 7. Dislocations are pairs of 5- and 7- fold cells, they are also called

penta-hepta defects and are characterised by their Burgers vectors, perpendicular to the axis

formed by the two defective cells. Defects and dislocations play an important role in melting

and plastic deformations (Durniak & Samsonov, 2011; Knapek et al., 2007).
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Case Effect D N Ωh ν κ � Fex0 x0 w τ Excitation
(Hz) (Hz) (mm) (arb.u.) (mm) (mm) (s) space time (t)

1. phonon 2D 3000 2 1 0.725 50.2 0.01 - - - stochastic stochastic
spectrum

2. soliton 2D 3000 0.5 1 1.325 93 3 17 2 0.185 2×Gaussian parabola
collision

3. tsunami 2D 3000 2 1 0.725 50.2 1 12 3 0.185 half-Gaussian parabola

4. shock 2D 3000 2 1 0.725 50.2 4.5 12 2 0.185 half-Gaussian parabola

5. defect 2D 3000 2 1 0.575 50.2 1 12 2 0.185 half-Gaussian parabola
dynamics

6. plasticity 2D 3000 2 1 0.725 50.2 0.75 17 2 9.2 2×half-Gaussian half-parabola
7. clusters 2D 3-150 2 2 0.725 50.2 - - - - - -

8. clusters 3D 150 2 2 0.725 50.2 - - - - - -

9. Mach 2D 3000 2 1 0.725 50.2 0.005 12 0.5× 1 - moving anisotropic v = 50 mm/s
cone Gaussian

10. melting 2D 3000 3 2 0.575 41.5 8 17 2 0.185 half-Gaussian parabola

Table 1. Parameter values used in our simulations. D is the dimensionality of the simulation (2D or 3D), N is the number of particles,
Ωh is the horizontal confinement parameter [Ωz = Ωh for 3D simulation (case 8)], ν is the damping rate, κ is the screening parameter,
� is the initial crystal diameter, Fex0 is the amplitude of the excitation force Fex, x0 is the force offset with respect to the centre of the
lattice, w is the width and τ is the duration of the force. Continuous randomly changing excitation force is used to simulate phonon
spectra (case 1). Pulsed excitation force is applied on one (cases 3-5,10) or both (cases 2,6) sides of the lattice. Its spatial profile is

either Gaussian Fex ∝ exp

[

−
(x + x0)

2

w2

]

or half-Gaussian, that is Gaussian for x ≤ |x0| and Fex = const for x > |x0|. The temporal

profile (cases 2-5,10) is a parabola (inverted and truncated at negative values) Fex ∝ 1 −

(

1 −
t

τ

)2

for t ≤ 2τ and Fex = 0 otherwise.

It is modified in case 6 to keep a constant value after the maximum is reached (Fex = const for t ≥ τ). For cases 1-8 and 10, the
excitation force is independent of y. The Mach cones are simulated using an anisotropic Gaussian excitation force

Fex ∝ exp

[

−
(x − x0 − vt)2

w2
x

−
y2

w2
y

]

, with wx = 0.5 mm, and wy = 1 mm, moving with a speed v = 50 mm/s. The amplitude of the

excitation force Fex0 is expressed in terms of the parameter 4πǫ0λ2
D/Q2.
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The number density of the lattice is computed using the Voronoi analysis (Voronoi, 1908). A

Voronoi cell is defined as a set of points for which a given particle is the nearest. The local

number density is proportional to the inverse area in 2D (volume in 3D) of a Voronoi cell. The

compression factor of a lattice is calculated as the ratio of the number density n of a strained
lattice to its unperturbed number density n0.

The kinetic temperature of a complex plasma is determined from the velocities of individual

particles. The lattice is split into bins and the average bin velocity 〈v〉 is calculated. It is

then subtracted from the speeds of all particles. The average kinetic energy E in the bin

is determined using the mean square random velocity E =
m

2
〈(v − 〈v〉)2〉, where m is the

particle mass. The kinetic temperature T is found from the relation E =
d

2
kBT, where kB is the

Boltzmann constant and d is the number of the degrees of freedom.

A correlation analysis is performed in order to assess the structure of complex plasmas. The

pair correlation function g(r) gives the probability of finding a specific distance between two

particles in the system relative to the probability of finding that distance in a completely

random particle distribution of the same density (Crocker & Grier, 1996; Quinn et al., 1996).

It measures the translational order of the lattice. For a perfect crystal at zero temperature g(r)
is a series of δ-functions. At non-zero temperature peaks have finite widths and decaying

amplitude. The position of the first peak of the pair correlation function is determined by the

interparticle spacing and is often used to measure the average interparticle distance.

4. Experimental verification

Like any other simulations, numerical models of complex plasmas have to be verified by

comparison with the experiments. The code should reproduce the same phenomena as
observed in the experiment with similar quantitative characteristics.

4.1 Laboratory complex plasmas

The most frequently used method to obtain high quality complex plasmas in the laboratory

is to add premanufactured monodisperse plastic microspheres to the plasma (Thomas et al.,

1994). Since the crystalline state is most often the subject of interest, relatively large (∼ 10 µm

in diameter) particles are used. The reason for that is the lower boundary of the coupling

parameter (Γ ∝ Q2/T � 170) required for crystallisation (Sect. 2.1). The value of the kinetic

temperature can not be lower than the temperature of the neutral gas, which is close to the

room temperature. Thus the coupling parameter can be only increased by increasing the

potential energy of the grains or their charge Q, which is a function of the grain size. The

dependence of the charge on the particle size makes it also necessary to use monodisperse

particles in order to make their charges, potential energies, and levitation heights identical.

Most ground-based experiments utilise a capacitively coupled radio-frequency (rf) gas

discharge (Donkó et al., 2010; Durniak & Samsonov, 2011; Käding et al., 2008). The particles

are suspended in the plasma sheath, where a strong electric field counteracts the gravity. They

typically form between one (Nosenko & Zhdanov, 2009) and a few layers (Quinn & Goree,

2001) creating 2D and quasi-2D structures. In order to obtain 3D structures, gravity has to be

compensated (Sect. 2.1). This can be done in a strong electric field such as in striations of a
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direct current glow discharge (Fortov et al., 2005b), using a thermophoretic force (Arp et al.,

2004), or under microgravity conditions on parabolic flights or on board International Space

Station (Konopka et al., 2005; Seurig et al., 2007). A Q-machine (Luo et al., 1999) has also been

used to create weakly coupled complex plasmas using polydisperse particles.
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Fig. 1. Experimental setup for ground-based complex plasma experiments. (a) Side view. A
discharge is formed in a vacuum chamber. Micron-sized plastic spheres levitate in the
plasma sheath above the rf electrode. (b) Oblique view. The particles are illuminated by a
laser sheet and imaged with a top view video camera. They are excited electrostatically using
the wires stretched across the electrode. (c) Experimental rig. The chamber (shown in the
centre) has optical access from 5 sides. The optical system for illumination is shown on the
left and the video camera on the top. (d) Close-up view of the experiment. The wires are
positioned on both sides of the monolayer particle cloud. This setup has been used to verify
complex plasma simulations.

4.2 The experimental setup

Our experiments are performed in a capacitively coupled rf discharge vacuum chamber as

shown in Fig. 1. An argon flow (a few sccm) maintains a constant working gas pressure

(1-2 Pa) in the chamber. An rf power is applied to the lower disc electrode, which is 20 cm

in diameter. The chamber itself is the other grounded electrode. Due to different area of the

electrodes and different mobility of ions and electrons, the powered electrode has a negative

self-bias voltage, which helps to suspend the particles in the plasma sheath against the gravity.

The particles used are monodisperse plastic microspheres 8.9 or 9.19 µm in diameter. They

are injected into the plasma through a particle dispenser, levitated in the plasma sheath, and

confined radially by a rim on the outer edge of the electrode, forming a monolayer hexagonal

lattice of approximately 6 cm in diameter. The particles are illuminated by a horizontal thin

(0.2-0.3 mm) sheet of laser light and imaged by a top-view digital camera. Two parallel

horizontal tungsten wires, both 0.1 mm in diameter are placed below the particles. Negative

pulses applied to one or both wires excite compressional disturbances and deformations.
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The experimental results are analysed by identifying the particle positions in all video frames

using the intensity weighted moment method (Feng et al., 2007; Ivanov & Melzer, 2007). The

particle velocities are calculated by tracking their positions from one frame to the next.

5. Results and discussion

5.1 Structure of complex plasmas

Complex plasmas are formed into different shapes by the confinement potential (see Sect. 3.2).

Parameters of the confinement should be selected to ensure that stable structures are formed.

The structures of interest include linear 1D chains, monolayer 2D lattices, and 3D balls.

Different parameter values result in formation of zigzag lines instead of chains (Sheridan,

2009a), or multiple layers instead of monolayers. The only structure stable against shear

perturbations in crystalline monolayers is hexagonal (Durniak et al., 2010). Several different

structures exist in bilayer lattices (Donkó & Kalman, 2001) and transition between them is

controlled by the layer separation. As the separation increases, the structure changes from

hexagonal to staggered square and then to staggered rhombic.

(a) (b) (c)

Fig. 2. Crystalline structures commonly observed in 3D complex plasmas: (a) hexagonal
close packed (hcp), (b) body centred cubic (bcc), and (c) face centred cubic (fcc).

More crystal structures are observed in multilayer and 3D strongly coupled systems. Face

centred cubic (fcc), body centred cubic (bcc), and hexagonal close packed (hcp), illustrated in

Fig. 2, have been identified in (Hamaguchi et al., 1997; Klumov et al., 2009). Phase diagrams of

the phase transitions between liquid, bcc and fcc phases have been simulated by (Hamaguchi,

1999).

5.2 Linear and nonlinear waves

Complex plasmas sustain waves, which are analogous to those in ordinary solids and liquids.

Small amplitude linear waves as well as nonlinear waves, solitons and shocks are observed.

Most wave experiments in crystalline complex plasmas are performed in monolayers, since
they are easy to obtain at low gas pressure. This results in very low damping and therefore

underdamped wave motion can be studied in great details.

5.2.1 Small amplitude waves

Complex plasmas can be in the solid or liquid state (Sect. 2.1). Crystalline monolayer complex

plasmas sustain acoustic compressional and shear wave modes, as shown experimentally and

numerically in (Donkó et al., 2008; Zhdanov et al., 2003). The phonon spectra are isotropic

for long wavelength phonons, but strongly anisotropic in the short wavelength case. The
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compressional mode has a higher frequency than the shear mode. As the complex plasma

crystal melts, the shear mode disappears, while a dust thermal mode appears (Nunomura

et al., 2005). Brownian simulation has been used to calculate the cut-off wavenumber for the

shear mode in a liquid state and to compare the wave spectra in 2D complex plasma solids
and liquids with those from different analytical theories (Hou, Mis̆ković, Piel & Murillo, 2009).

It confirmed the existence of the dust thermal mode first observed by (Nunomura et al., 2005).

Lattices formed of particles with two different sizes exhibit optical compressional and shear

modes. Simulation of bilayers revealed the existence of the optical modes and verified the

existence of the k = 0 energy (frequency) gap (Hartmann et al., 2009).

The method to compute phonon spectra from either experimental or simulated data relies

on the Fourier transform of particle velocities v(x, t) both in time t and in the x-direction

(Nunomura et al., 2002; Zhdanov et al., 2003):

V(k, ω) =
1

LoTo

M

∑
m=0

N

∑
n=0

v(xmn, tmn) exp[i(kxmn + ωtmn)]

where k and ω are the wave number and the frequency, N and M are the numbers of data

points in space and time respectively, Lo is the length of the field of view and To is the

recording period. The longitudinal and transverse modes are resolved by using vx and vy

components of the velocity respectively. The resulting phonon spectra are shown in Fig. 3.

They are obtained using a MD simulation (Table 1, case 1) with a stochastic force. The

theoretical dispersion relations (Donkó et al., 2008; Hou, Mis̆ković, Piel & Murillo, 2009) are

calculated for a perfect hexagonal lattice by solving the eigenvalue problem for the dynamical

matrix Dµν:

||ω2(k, ϕ)− Dµν(k)|| = 0, Dµν(k) =
1

m ∑
j

∂2U0(rj)

∂µ∂ν
[1 − cos(k · rj)],

where the summation is performed over all particles j with coordinates rj and mass m; U0(rj)
is the Yukawa potential (Eq. 2), and coordinates µ, ν take the values {x, y}. The spectra depend

on the propagation angle or the direction of k. The longitudinal L and transverse T modes are

given by:

ω2
L,T(k, ϕ) =

1

2

[

Dxx + Dyy ±
√

(Dxx − Dyy)2 + D2
xy

]

. (3)

In the limit of long wavelengths the dispersion relations (Eq. 3) become ωL,T = cL,Tk, where

cL,T are the longitudinal and transverse wave speeds, which depend on the particle charge and

the screening parameter. This can be used to determine the values of Q and κ in experiments.

5.2.2 Nonlinear pulses and solitons

Pulsed excitation applied to a lattice with a laser or a biased wire results in a localised

propagating disturbance. This disturbance can be compressional (Nosenko et al., 2002;

Samsonov et al., 2002) or shear (Nunomura et al., 2000). If it complies with the Korteveg-de
Vries (KdV) equation it is called a KdV soliton. The properties of these solitons include

conservation of the soliton parameter (AL2 = const, where A is the soliton’s amplitude and L
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Fig. 3. Phonon spectra in a hexagonal crystalline complex plasma monolayer. (a)
Longitudinal and (b) transverse wave modes. The colour scale indicates the normalised
spectral power ||V(k, ω)||. The solid lines correspond to the theoretical dispersion relations
of longitudinal (a) and transverse (b) modes for different propagation directions varying
from 0◦ to 30◦ in increments of 5◦. The dashed lines show complementary transverse (a) and
longitudinal (b) modes.
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Fig. 4. Collision of counter-propagating solitons. (a) Number density of interacting solitons
vs distance and time. The collision point corresponds to the peak of number density. (b)
Number density versus distance at different times t=0.5 s (before the collision), t=0.7 s (at the
collision point), and t=0.9 s (after the collision).

is its width) and a relation between the propagation speed and the amplitude (faster solitons

have larger amplitudes). This has been observed in a 2D experiment and a linear chain

simulation (Samsonov et al., 2002). Interactions between nonlinear waves is another subject

of interest. Experimental and numerical investigation of collisions of counter-propagating

solitons in complex plasma monolayers find that solitons with larger amplitude experience

larger delays and that the amplitude at the collision point is different from the sum of the

initial soliton amplitudes (Harvey et al., 2010). Figure 4 shows a head-on collision of two

solitons simulated with the parameters of Table 1, case 2. The amplitudes of the pulses slightly

decrease due to the neutral damping as they propagate. The amplitude of the overlapping

solitons is lower than the sum of the initial amplitudes.

Waves can gain amplitude due to nonlinear effects even in the presence of damping. A

soliton propagating in a lattice with decreasing number density gains amplitude as observed

in simulation (Table 1, case 3) and experiment (Fig. 5). It is found that the measured amplitude

gain is higher than that predicted by the KdV equation with damping included (Durniak et al.,

2009).
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Fig. 5. “Tsunami” effect observed in an inhomogeneous complex plasma lattice. The particle
velocity vx along the wave propagation direction is shown as a function of time and distance
in (a) simulation and (b) experiment. The amplitude of the nonlinear wave increases as the
number density decreases at later times even in the presence of a damping force. The wave
trajectories curve upward as their speeds decrease.

5.3 Shock waves

Shock waves are propagating discontinuities arising from large amplitude perturbations,

therefore they cannot be treated as small amplitude waves. Shocks can cause phase transitions

and present a challenge for simulations since they are likely to cause numerical instabilities.

Experimental observations of shock waves in complex plasmas were reported in (Fortov et al.,

2005b; Samsonov et al., 2003; 2004). The structure of a simulated shock (Table 1, case 4)

is shown in Figure 6. The shock front has a thickness of a few interparticle distances and

an oscillatory structure. It propagates from left to right at a velocity decreasing from 57 to

46 mm/s or a Mach number varying from 1.9 to 1.6. The lattice, initially in the solid state, is

melted after the shock. There is a discontinuous jump at the shock front in compression factor,

number density, kinetic temperature, and defect fraction (Durniak et al., 2010; Samsonov &

Morfill, 2008).
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Fig. 6. Simulated shock wave in a monolayer complex plasma visualised as (a) particle
positions, (b) Voronoi map with 5-fold defects marked by △ and 7-fold by �, and (c) velocity
vector map. The oblique propagation is due to the alignment of the crystal lattice. The
discontinuity at the shock front is illustrated by (d) compression factor, (e) flow velocity, and
(f) kinetic temperature plots computed for a cropped lattice (−12 ≤ x ≤ 25 mm and
|y| ≤ 2.5 mm) at time t = 0.54 s. The oscillatory shock structure is clearly visible.
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5.4 Defect dynamics and plastic deformation

Lattice defects and dislocations determine mechanical properties of crystals and may be

responsible for material fatigue and catastrophic failure. The effect of temperature on defects

in 2D Coulomb clusters has been studied numerically by (Nelissen et al., 2007). It was found

that the defect mobility strongly depends on the neighbouring defects, that the geometrical

defects have different dynamics than the topological defects, and that a fast cooling rate

favours formation of a non-equilibrium glass-like state with many defects. Dislocations

have been observed to propagate in crystalline complex plasmas supersonically (Nosenko

et al., 2007). They interact with nonlinear waves (Durniak & Samsonov, 2010) and they are

generated during shear slips in plastic deformations (Durniak & Samsonov, 2011).

2 mm
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Fig. 7. Interaction of defects with large amplitude waves. (a) Simulated trajectories of isolated
dislocations were placed with their initial Burgers vectors b pointing left (in −ex direction).
The direction of the wave excitation force Fex (and thus the wave propagation direction) is
shown with the same colour as the corresponding wave trajectories. The dislocations move
either in small increments due to elastic deformations of the lattice, or in large jumps due to
lattice structural changes. One can see that the defect jumps occur in directions almost
parallel to the Burgers vector regardless of the wave propagation direction. The crystal lattice
(b) is initially characterised by a screening parameter κ = 0.725. The defects are marked by �
(7-fold defect) and � (5-fold defect) and the Burgers vector by the pink arrow.

The interaction of a dislocation with a wave is simulated using parameters listed in Table 1,

case 5. Figure 7a shows the trajectories of an isolated dislocation as the wave passes by

from different directions (runs 1-4). The excitation wave has an amplitude between 4.8 and

6.1 mm/s in all runs and propagates at about 38 mm/s. The dislocation either stays at the

same lattice site, or jumps to a neighbouring pair of particles. In the former case it displaces

roughly in the direction of the wave, while in the latter case it moves almost parallel to its

Burgers vector. This result agrees with the experiment (Durniak & Samsonov, 2010).

Plastic deformation under a uniaxial compression is numerically modelled using the

conditions of Table 1, case 6. As the strain increases and exceeds the elastic limit, shear
slips occur causing stress relaxation. This happens because a uniaxial compression is a

superposition of a uniform compression and shear. Complex plasmas are very compressible

and do not change their structure under a uniform compression. However their shear strength

is not very high, thus their structural failure results in a shear slip. Shear slips are initialised by

generation of a pair of dislocations, which move in opposite directions (Durniak & Samsonov,

2011).
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Fig. 8. Plastic deformation of a crystal lattice under a slow uniaxial compression. (a) Time
evolution of the crystal width and of the fraction of defective lattice cells (those with other
than a 6-fold symmetry). (b) Time evolution of the particle trajectories shows that the local
stress is relaxed by a shear slip (trajectories twist at time 2 s). The crystal defects are marked
in blue (7-fold defect) and green (5-fold defect). Only the particles along the slip line are
shown. Voronoi maps (c-e) with defects marked by △ (5-fold) and � (7-fold) visualise the
lattice structure at (c) t=1.5 s, (d) t=2.04 s, and (e) t=2.3 s. The colour scale shows the bond
orientation angle θ6. A pair of dislocations is generated at t=2.04 s, they separate and move in
opposite directions as the slip progresses. Velocity vector maps show the particle velocities at
(f) t=1.5 s, (g) t=2.04 s, and (h) t=2.3 s. The colour scale indicates the angle between the
velocity vector and the horizontal axis. The slip is shown as particle rows moving in opposite
directions.

5.5 Coulomb (Yukawa) clusters

Coulomb (or Yukawa) clusters are systems of up to a few hundred charged particles confined

in a 2D or 3D well and interacting via a Coulomb (or Yukawa) potential. They occur in systems

of trapped electrons, ions, colloids, and complex plasmas. Since they comprise a small number
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of particles, they are easy to model numerically (Nelissen et al., 2007). Properties of clusters

are different from those of the bulk material and they depend on the cluster size (Yurtsever

et al., 2005), the interaction and confinement potentials. The emergence of bulk behaviour in

a strongly coupled Yukawa cluster has been studied in (Sheridan, 2007). Clusters are often
simulated using the Monte Carlo method, however we will focus here on the MD technique.

Figure 9 shows the structure of 2D and 3D clusters simulated using the parameters of Table 1,

cases 7 (2D) and 8 (3D). The particles in these clusters interact via a Yukawa potential and

are confined in an isotropic parabolic potential. The structure of the clusters results from the

interplay between the particle-particle interaction and the global confinement. The interaction

potential favours hexagonal order whereas the confinement induces a circular symmetry.

Thus large clusters have a hexagonal inner core and circular outer shells, while small ones

tend to contain only shells (Lai & I, 1999). The same effect is observed in 3D clusters (Arp

et al., 2004; Totsuji et al., 2002). Clusters assume particularly stable configurations at certain

“magic” numbers of particles (Tsuruta & Ichimaru, 1993). The effect of the screening length

on the structure of Coulomb balls has been studied in (Bonitz et al., 2006; Käding et al., 2008):

particles moved from the outer shells to the inner ones as the screening length increased.

Metastable states of 3D Yukawa clusters can occur with a significantly higher probability than

the ground state. The results strongly depend on the screening parameter and the damping

coefficient. Slow cooling favours the ground state over the metastable ones (Kählert et al.,

2008). The effects of anisotropic confinement and interaction potentials have been studied by

(Killer et al., 2011). The structure of spherical clusters was found to be unaffected by a weak

ion focus unlike the structure of elongated clusters.

Since clusters have a finite size, they have a finite number of normal modes of oscillations.

Knowing the normal modes of a system allows to determine its response to external

excitations, i.e. its dynamics. Clusters of N particles in a harmonic potential well have

2N normal modes. Oscillations of clusters are not purely compressional or shear, however

they can be described as compression-like or shear-like (Melzer, 2003). It was shown that

in asymmetric potentials both the rotational and breathing modes of elliptical clusters were

robust (Sheridan et al., 2007). Melting and defect excitation in Coulomb clusters have been

also investigated (Lai & I, 2001; Nelissen et al., 2007).

5.6 Mach cones

Mach cones are propagating V-shaped disturbances. Their existence in a dusty plasma of

Saturn rings was first predicted by (Havnes et al., 1995). They were then observed in a

monolayer complex plasma (Samsonov et al., 1999), where they were generated by fast

particles moving parallel to the main layer. They had a multiple V-shaped structure formed

by compressional waves. The properties of Mach cones were confirmed using laser excitation

(Melzer et al., 2000). The opening angle of Mach cone obeys the relation µ = sin−1(1/M),
M = v/c being the Mach number of an object moving at speed v through a medium with an

acoustic speed c. Measurements of this angle can therefore be used as a diagnostic tool for

complex plasmas to detect inhomogeneity (Zhdanov et al., 2004). Since there are two acoustic

wave modes in plasma crystals, compressional and shear (see Section 5.2.1), two types of Mach

cones exist. They are distinguished by the particle motion in the cone front. The particles move
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Fig. 9. Simulated Coulomb clusters in (a) 2D and (b,c) 3D. The red lines correspond to the
particle bonds calculated by a Delauney triangulation, which reveals the static structure of
the clusters. The numbers of particles N in the 2D clusters are shown in (a). The 3D cluster
(b) has been been generated using 150 particles. Its shell structure is visualised in (c) by

plotting the particle positions in cylindrical coordinates (r =
√

x2 + y2, z). In (b) the colour
scale corresponds to the particle’s vertical position z.

perpendicular to the cone front in compressional Mach cones and parallel to the front in shear

Mach cones (Ma & Bhattacharjee, 2002; Nosenko et al., 2003).
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Fig. 10. Simulated Mach cone (wake). The velocity vector map (a) shows particle positions
and speeds at t = 0.55 s. The Mach cone consists of a shear and a compressional cone. The
shear cone is generated by the shear lattice wave and the compressional cone by the
longitudinal wave. Their structures are revealed by (b) the vorticity ∇× v and (c) the
divergence ∇ · v maps respectively.

Figure 10 shows a numerically generated Mach cone with parameters listed in Table 1 case

9. The excitation force has been chosen similar to that reported by (Ma & Bhattacharjee, 2002;
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Nosenko et al., 2003). We visualise the cones by plotting the velocity vector map (Fig. 10a) and

also the vorticity and divergence maps of simulated particle positions, which highlight the

shear (Fig. 10b) and compressional (Fig. 10c) cones respectively. The compressional cone has

a multiple structure while the shear cone is single. This is due to the fact that the shear wave
is slower and thus it can propagate a shorter distance than the compressional before being

damped. The angles of the inner and outer compressional cones might be slightly different

due to nonlinear effects (Samsonov et al., 2000).

5.7 Phase transitions

MD simulations of charged grains in plasmas have been used to study phase transitions before

this became possible experimentally (Farouki & Hamaguchi, 1992). Solid and liquid phases

have been predicted as well as a hysteresis at the transition between them. This hysteresis

corresponds to a superheated solid and supercooled liquid. Solid superheating was later

observed experimentally (Feng et al., 2008). Phase diagrams of Yukawa systems have been

computed in (Robbins et al., 1988) predicting liquid as well as solid fcc and bcc structures.

Simulations show that strongly screened Yukawa systems have a triple point or a point on the

phase diagram where liquid, bcc, and fcc phases coexist, whereas weakly screened Yukawa

systems do not have a triple point (Hamaguchi et al., 1997). In experiments, phase transitions

can be induced by stochastic laser heating, shear flows (Nosenko & Zhdanov, 2009), shock

waves (Knapek et al., 2007) or by changing the discharge power (Rubin-Zuzic et al., 2006). In

the latter case a propagating crystallisation front has been observed. It was shown that this

process is fundamentally 3D (Klumov et al., 2006). Complex plasma recrystallisation has been

simulated by (Hartmann et al., 2010). It was found that the sizes of crystal domains have a

power-law time dependence.

Figure 11 shows melting and recrystallisation of a complex plasma lattice excited by a shock

wave. The simulation parameters are given in Table 1 case 10. As the shock propagates,

the kinetic temperature increases and defects are generated (fig. 11a)). The pair correlation

function calculated at different times indicates that the order in the system decreases during

melting and then increases reaching almost the initial level at 6 s as the lattice recrystallises.

5.8 Transport phenomena

Transport phenomena are irreversible statistical processes which are responsible for transfer

of mass, momentum, or energy in matter. These processes use similar mathematical

formalisms and are described by similar equations. The three most commonly considered

transport phenomena are diffusion (mass transfer), heat conduction (energy transfer), and

viscosity (momentum transfer). Their fundamental nature makes them very important for

understanding basic properties of matter. Complex plasmas offer a possibility to study

these processes at the level of individual particles and compare experiments directly to MD

simulations.

Two simulation techniques are used to study transport phenomena: the equilibrium and

nonequilibrium methods (Donkó & Hartmann, 2008). The first method calculates the particle

trajectories of a system in a state of statistical equilibrium (Vaulina et al., 2008). The second
method applies a perturbation to an equilibrated system and measures the changes it causes
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Fig. 11. Crystal melting and recrystallisation caused by a shock wave applied to the lattice.
(a) Time evolution of the kinetic temperature and defect fraction. As the lattice crystallises
their values return to the initial ones. (b) Pair correlation function at different times. The
lattice structure changes from solid (t=0 s), to liquid (t=0.5 and 2 s), and back to solid (t=6 s).
Voronoi maps visualise the lattice structure at (c) t=0 s, (d) t=0.5 s, (e) t=2 s, and (f) t=6 s. The
lattice defects are marked by � (7-fold), � (5-fold), and ∗ (other).

(Sanbonmatsu & Murillo, 2001). If the investigated system exhibits small deviations from the

statistical equilibrium, which is the case for equilibrium simulations, the transport coefficients

are found from the Green-Kubo relations (Donkó et al., 2009). Nonequilibrium simulations

calculate the transport coefficients directly, by computing the diffusion coefficient from the

mean square displacement (Ohta & Hamaguchi, 2000), viscosity coefficient from the velocity

profile (Sanbonmatsu & Murillo, 2001), or the thermal conductivity from the temperature

gradient (Hou & Piel, 2009). Both equilibrium and nonequilibrium methods might produce

artifacts due to the finite size of the system or insufficient recording time, thus care should

be taken. Another possible problem is the existence of the transport coefficients in particular

systems. It was found that in a 2D Yukawa liquids the diffusion coefficient exists at high

temperature and the viscosity coefficient at low temperature but not in the opposite limits

(Donkó et al., 2009). The thermal conductivity did not appear to exist at high temperature and

it could not be evaluated at low temperature due to computational limitations.

The diffusion is governed by the Fick’s law: J = D∇C, where J is the diffusion flux, D is the

diffusion coefficient, C is the molecular concentration. The diffusion coefficient determines

the time dependence of the mean square displacement of all particles 〈|r(t)− r(0)|2〉 = 4Dtα.

If α = 1 the diffusion is normal, otherwise (α �= 1) it is anomalous: α > 1 corresponds

to superdiffusion and α < 1 to subdiffusion. The temperature dependence of the diffusion

coefficient for 3D Yukawa systems has been studied by (Ohta & Hamaguchi, 2000). It was
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found to be independent of the screening parameter. Different methods of computing the

diffusion coefficient at short observation times have been compared by (Vaulina et al., 2008)

and the required minimum observation time has been estimated. Anomalous diffusion has

been reported in 2D Yukawa systems in some simulations (Hou, Piel & Shukla, 2009; Liu &
Goree, 2007) as well as experiments (Juan & I, 1998), which contradicts some other numerical

(Vaulina & Dranzhevski, 2006) and experimental results (Nunomura et al., 2006). As shown

by (Ott & Bonitz, 2009b) the diffusion exponent depends critically on the neutral gas friction,

which makes anomalous diffusion a transient effect in simulations. This certainly does not

rule out superdiffusion in experiments, however it is possible that limited fields of view

and insufficiently long observation times might obscure anomalous effects and the role of

nonequilibrium states in the experimental dissipative-driven systems. The effect of coherent

transport on the diffusion exponent, e.g. waves and flows is also difficult to rule out.

Shear viscosity in strongly coupled 3D Yukawa system has been studied by (Sanbonmatsu

& Murillo, 2001). It was found that the viscosity coefficient has a minimum and that it is

nonlocal, with the scale length consistent with the correlation length. The decay of the velocity

profile deviates from the one predicted by the Navier-Stokes equation. The minimum of

the viscosity coefficient is also observed in 2D Yukawa liquids (Liu & Goree, 2005b). The

wavenumber-dependent viscosity, which characterises the viscous effects at different length

scales has been computed by (Feng et al., 2011). They have also verified the accuracy of the

Green-Kubo relation for static viscosity in the presence of damping. Dynamic shear viscosity

has been studied experimentally and numerically by (Hartmann et al., 2011) and shown to

exhibit strong frequency dependence. A shear-thinning effect has been demonstrated under

static shear.

Heat conductivity in a 2D strongly coupled system has been simulated using nonequilibrium

methods by (Hou & Piel, 2009). The results show that the heat conductivity coefficient

depends on the damping rate and indicate that it might be temperature-dependent. The

experimental results, however, show no temperature dependence within the experimental

uncertainty (Nosenko et al., 2008; Nunomura et al., 2005a).

Since the Newton’s law of viscosity, the Fourier’s law of heat transfer, and the Fick’s law

of molecular diffusion are very similar, relations between the transport coefficients can be

found. The Stokes-Einstein formula relates the diffusion and viscosity coefficients. It has been

thoroughly tested in 3D liquids even at the molecular level. In 3D strongly coupled complex

plasmas the Stokes-Einstein relation has been verified for a wide range of temperatures down

to the solidification point (Donkó & Hartmann, 2008). However this relation is violated in 2D

complex plasmas near the disordering transition, remaining valid at higher temperatures (Liu

et al., 2006).

6. Conclusion

Methods of molecular dynamics simulations of complex plasmas and their results have been

reviewed in this chapter and illustrated by examples of such simulations. Complex plasmas

belong to the soft matter class of materials; they are formed by mesoscopic and highly charged

particles immersed in a plasma. They are underdamped due to their gaseous background

and thus ideally suitable for studying dynamic effects at the particle level. Complex plasmas
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resemble colloids and some effects such as phase transitions, diffusion and shear flows can be

observed in both. Some phenomena such as waves, shocks, kinetic temperature, and phonon

heat transfer exist only in complex plasmas. The numerical results have been compared with

experiments in order to make sure that simulated effects are observable in physical systems.
Unfortunately due to space constraints, some effects not exclusive to complex plasmas were

left out (such as lane formation) as well as some of those not extensively simulated (such as

coupling of vertical and horizontal modes in monolayers). The authors hope that their choice

of dynamic effects well illustrates the beauty and complexity of complex plasmas.
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