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Abstract

In this chapter, cosmological models and the processes accompanying the
propagation of the cosmic rays on cosmological scales are considered based on
particle dynamics, electrodynamics and general relativity (GR) developed from the
basic concepts of the ‘relativity with a preferred frame’. The ‘relativity with a
preferred frame’, designed to reconcile the relativity principle with the existence of
the cosmological preferred frame, incorporates the preferred frame at the funda-
mental level of special relativity (SR) while retaining the fundamental space-time
symmetry which, in the standard SR, manifests itself as Lorentz invariance. The
cosmological models based on the modified GR of the ‘relativity with a preferred
frame’ allow us to explain the SNIa observational data without introducing the dark
energy and also fit other observational data, in particular, the BAO data. Applying
the theory to the photo pion-production and pair-production processes, accompa-
nying the propagation of the Ultra-High Energy Cosmic Rays (UHECR) and gamma
rays through the universal diffuse background radiation, shows that the modified
particle dynamics, electrodynamics and GR lead to measurable signatures in the
observed cosmic rays spectra which can provide an interpretation of some puzzling
features found in the observational data. Other possible observational consequences
of the theory, such as the birefringence of light propagating in vacuo and disper-
sion, are discussed.

Keywords: general relativity, FRW models, late-time cosmic acceleration, dark
energy, UHECR, gamma rays, photo pion-production, pair-production

1. Introduction

Lorentz symmetry is arguably the most fundamental symmetry of physics, at
least in its modern conception. Physical laws are Lorentz-covariant among inertial
frames; namely, the form of a physical law is invariant under the Lorentz group of
space-time transformations. Therefore, the Lorentz symmetry sets a fundamental
constraint for physical theories. Nevertheless, modifications of special relativity
(SR) and possible violations of Lorentz invariance have recently obtained increased
attention. Although, the success of general relativity (GR) to describe all observed
gravitational phenomena proves the fundamental importance of Lorentz invariance
in our current understanding of gravitation, some of the modern theories (unifica-
tion theories, extensions of the standard model and so on) suggest a violation of
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special relativity. The aim of most of the Lorentz violating theories is to modify a
Lorentz invariant theory by introducing small phenomenological Lorentz-violating
terms into the basic relations of the theory (Lagrangian density, dispersion relation
and so on) and predict what can be expected from it. Reviews of the most popular
approaches [1–26] to parameterizing Lorentz violating physics in the context of
their relation to the ‘relativity with a preferred frame’ can be found in [27, 28].
Some of those studies are discussed in the following sections about the results
obtained in the present paper.

The theory termed ‘relativity with a preferred frame’ developed in [27–29]
represents a very special type of a Lorentz violating theory that is conceptually
different from others found in the literature. It is not even a preferred frame that
makes a difference—all violations of Lorentz invariance, made by distorting
Lorentz-invariant relations of the theory, imply the existence of a preferred frame
for the formulation of the physical laws, the one in which all the calculations need to
be carried out, since breaking relativistic invariance also invalidates the transfor-
mations that allow us to change reference frame. The first major difference of the
present analysis from the above-mentioned studies is that the Lorentz violation is
not introduced into the theory but it is a result of using freedom in formulation one
of two basic principles of special relativity, the principle of universality of the speed
of light. In other terms, Lorentz’s violation is ingrained into the framework of the
theory at some fundamental level. The second major difference is that the relativis-
tic invariance, in the sense that the form of a physical law is invariant under the
space-time transformations between inertial frames, is not violated—it is a Lorentz
violation without violation of relativistic invariance.

To outline the framework of the theory named ‘relativity with a preferred frame’
one has to start from the definition of the preferred frame. In the ‘relativity with a
preferred frame’, the preferred frame is defined as the only frame where propaga-
tion of light is isotropic, while it is anisotropic in all other frames moving relative to
the preferred one (it is a common definition in the studies investigating the funda-
mentals of special relativity and its potential breaking).‡ Discussing the anisotropy
of propagation of light one has to distinguish between the two-way speed of light,
i.e. the average speed from source to observer and back, and the one-way speed
which is a speed of light in one direction—either from source to observer or back. In
the ‘relativity with a preferred frame’, it is the one-way speed of light that is
assumed to be anisotropic in all the frames except the preferred frame, while the
two-way speed of light is isotropic and equal to c in all inertial frames.§ The analysis
is based on the invariance of the equation of (anisotropic) light propagation for the
space-time transformations between inertial frames and the group structure of the
transformations plays a central role in the analysis. Although, the existence of the
preferred frame seems to be in contradiction both with the basic principles of
special relativity and with the group property of the transformations, in the frame-
work of the ‘relativity with a preferred frame’, those principles are retained. The
crucial element, which allows retaining the relativistic invariance and the group

‡ It is worth noting that, although the anisotropy of speed of light is one of the central features of the

present analysis, this theory stands apart from the ample literature on the conventionality of simultaneity

and clock synchronization. A discussion of those issues in the context of the ‘relativity with a preferred

frame’ can be found in [29, 30].
§ In the modern versions of the experiments designed to test special relativity and the so-named ‘test

theories’ (e.g., [31, 32], see a discussion in [27, 29, 30]), the tests are meant to detect the anisotropy of the

two-way speed of light.
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property of the space-time transformations, is that the anisotropy parameter k,
figuring in the equation of the anisotropic light propagation, is treated as a variable
that takes part in the group transformations (for more details, see Section 2). Then
the preferred frame, in which k ¼ 0, enters the analysis on equal footing with other
frames since nothing distinguishes the transformations to/from that frame from the
transformations between two frames with k 6¼ 0. The space-time symmetry under-
lying the group of transformations between inertial frames, which in the standard
SR is expressed by the existence of the combination invariant under the transfor-
mations (interval), in the ‘relativity with a preferred frame’, reveals itself also in the
form of the invariant combination, a counterpart of the interval of the standard SR.
Such a ‘modified space-time symmetry’ paves the way to extensions of the kine-
matics of the ‘relativity with a preferred frame’ to free-particle dynamics, general
relativity and electromagnetic field theory.

The above-described generalization of special relativity cannot be validated by
experiments measuring the speed of light since only the two-way speed of light, the
same in all the frames, can be measured. For creating a physical theory, predictions
of which can be compared with observational data, it is needed to identify the
preferred frame of the present analysis, which is defined by the property of isotropy
of the one-way speed of light, with a frame possessing the property that velocity of
any other frame relative to it can be measured using some physical phenomena. In
the present analysis, that preferred frame is a comoving frame of cosmology or the
CMB frame (note that identifying the preferred frame with the CMB frame is a
common feature of practically all Lorentz-violating theories). It is the only frame
possessing the property, that motion of any other frame relative to it is distinguish-
able, and, in addition, this frame, like the preferred frame of the present analysis, is
defined based on the isotropy property. As a result of specifying the preferred
frame, all the relations of the ‘relativity with a preferred frame’, as well as of its
extensions, contain only one universal constant b which is a parameter to be
adjusted for fitting the results of the theory to observational data.

Identifying the preferred frame with the cosmological comoving frame implies
that the theory should be applied to phenomena on cosmological scales. Studying
different phenomena requires extensions of the modified SR kinematics to different
areas of physics. The purpose of this chapter is to present a unified view of the
extensions and their applications based on the concept of the modified space-time
symmetry. This includes extension to general relativity (Section 4.1) and
constructing cosmological models based on the modified general relativity (Section
4.2); extension to the dynamics of the free particles (Section 3.1) and its application
to the processes accompanying the Ultra High Energy Cosmic Rays (UHECR) and
the gamma-rays propagation (Sections 5.1 and 5.2); extension to electromagnetic
field (Section 3.2) and studying electromagnetic waves based on the modified
electrodynamics (Section 3.3) with application to the gamma-rays propagation
(Section 5.3).

2. Special relativity kinematics

Kinematics of the ‘relativity with a preferred frame’ will be only outlined in this
section, for a detailed presentation see [27–29].

The transformations between two arbitrary inertial reference frames S and S0,
with the coordinate systems X,Y,Z,Tf g and x, y, z, tf g in the standard configura-
tion (with the y- and z-axes parallel to the Y- and Z-axes and S0 moving relative to S
with the velocity v in the positive direction of the common x-axis), are considered.
In the subsequent analysis, the group property of the space-time transformations is
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used as a primary tool. Groups of transformations are sought using the condition of
invariance of the equation of anisotropic light propagation [30]

ds2 ¼ c2dt2 � 2kc dtdx� 1� k2
� �

dx2 � dy2 � dz2 ¼ 0 (1)

where k is the anisotropy parameter such that speeds of light in the positive and
negative x -directions are

c þð Þ ¼ c

1þ k
, c �ð Þ ¼ c

1� k
(2)

Eq. (1) incorporates both the anisotropy of the one-way speed of light as equa-
tion (2) shows and the universality of the two-way speed of light in the sense that it
is equal to c in all inertial frames (see, e.g., [33, 34]).║ The transformations involve
both the space and time coordinates x, y, z, tð Þ and the anisotropy parameter k so
that the equations of light propagation in the frames S and S0 are

c2dT2 � 2Kc dTdX � 1� K2
� �

dX2 � dY2 � dZ2 ¼ 0, (3)

c2dt2 � 2kc dtdx� 1� k2
� �

dx2 � dy2 � dz2 ¼ 0 (4)

where K and k are the values of the anisotropy parameter in the frames S and S0

respectively. The one-parameter (a) group of transformations of variables from
X,Y,Z,T,Kf g to x, y, z, t, kf g, which converts (3) into (4), is sought in the form

x ¼ f X,T,K; að Þ, t ¼ q X,T,K; að Þ;
y ¼ g Y,Z,K; að Þ, z ¼ h Y,Z,K; að Þ; k ¼ p K; að Þ (5)

where, based on the symmetry arguments, it is assumed that the transforma-
tions of the variables x and t do not involve the variables y and z and vice versa.
According to the Lie group method (see, e.g., [35, 36])., the infinitesimal
transformations corresponding to (5) are introduced, as follows

x≈ X þ ξ X,T,Kð Þa, t≈ T þ τ X,T,Kð Þa,
y≈ Y þ η Y,Z,Kð Þa, z≈ Z þ ζ Y,Z,Kð Þa, k≈ K þ κ Kð Þa (6)

Proceeding by the usual Lie group technique (see [27–29] for details) one can
define the form of the transformations in x, y, z, t, kð Þ variables. Calculating invari-
ants of the group one can define a combination (a counterpart of the interval of the
standard relativity) that is invariant under the transformations, namely

des2 ¼ 1

λ kð Þ2
c2dt2 � 2kc dtdx� 1� k2

� �
dx2 � dy2 � dz2

� �
(7)

║ Although the form (1) seems to be attributed to the one-dimensional formulation, in the three-

dimensional case, the equation has the same form if the anisotropy vector k is directed along the x-axis

[30]. In the present analysis, the x-axis defines also the line of relative motion of the two frames but it

does not lead to any ambiguity. The assumption, that the anisotropy vector k is along the direction of

relative motion of the frames S0 and S, is justified by that one of the frames in a set of frames with

different values of k is a preferred frame. Since the anisotropy is attributed to the motion with respect to

the preferred frame, it is expected that the axis of anisotropy is either in the direction of motion or

opposite to it.
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where

λ kð Þ ¼ exp �
ðk

0

p

κ pð Þ dp
� �

(8)

with κ kð Þ being the group generator for the variable k að Þ, see equation (6).
Furthermore, introducing the new variables

et ¼ 1

cλ kð Þ ct� kxð Þ, ex ¼ 1

λ kð Þ x, ey ¼ 1

λ kð Þ y, ez ¼ 1

λ kð Þ z (9)

converts the invariant combination (7) into the Minkowski interval

des2 ¼ c2det2 � dex2 � dey2 � dez2 (10)

while the transformations take the form of rotations in the ex,et
� �

space (Lorentz
transformations). However, in the calculation of physical effects, the ‘true’ time and
space intervals in the ‘physical’ variables t, x, y, zð Þ, obtained from et,ex,ey,ez

� �
by the

transformation inverse to (9), are to be used.
The expression (7) for the modified interval and the transformations (9) contain

the function λ kð Þ which depends on the unspecified function κ kð Þ, the infinitesimal
group generator for the variable k. This uncertainty reflects the fact that, within the
above-developed framework, there is no possibility to determine the value of the
anisotropy parameter k or, in other terms, to determine which frame is the pre-
ferred one, since only the two-way speed of light, equal to c in all the frames, can be
measured. To specify the theory, such that its predictions could be compared with
observations, there should exist a possibility to measure the frame velocity relative
to a preferred frame using some other physical phenomena. Under the assumption
that it is possible, the argument, that anisotropy of the one-way speed of light in an
arbitrary inertial frame is due to its motion for a preferred frame, combined with
group properties of the transformations, leads to the conclusion that the anisotropy

parameter k in a frame moving relative to a preferred frame with velocity β ¼ �v=c
should be given by some universal function of that velocity, as follows

k ¼ F �βð Þ or �β ¼ f kð Þ (11)

where �β ¼ f kð Þ is a function inverse to F �βð Þ. Then the group generator κ kð Þ is
calculated by (see [27–29] for details)

κ kð Þ ¼ 1� f 2 kð Þ
f 0 kð Þ (12)

which allows to calculate the factor λ kð Þ from (8). Next, with the expression (11)
for k introduced into (8), the factor λ kð Þ becomes a function B �βð Þ of the frame
velocity �β relative to a preferred frame, as follows

λðk �βð Þ ) B �βð Þ ¼ exp �
ð�β

0

F mð Þ
1�m2

dm

" #
(13)

In the subsequent analysis, those general relations are specified using an
approximation for F �βð Þ based on the following argument. An expansion of the
function F �βð Þ in series in �β should not contain even powers of �β since it is expected
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that a direction of the anisotropy vector changes to the opposite if a direction of
motion for a preferred frame is reversed: F �βð Þ ¼ �F ��βð Þ. Thus, with accuracy up to
the third order in �β, the dependence of the anisotropy parameter on the velocity for
a preferred frame can be approximated by

k ¼ F �βð Þ≈ b�β, �β ¼ f kð Þ≈ k=b (14)

With this approximation, the group generator κ kð Þ calculated using (12) takes
the form

κ kð Þ ¼ b� k2

b
(15)

and, correspondingly, the factors λ kð Þ and B �βð Þ calculated from equations (8)
and (13) become

λ kð Þ ¼ 1� k2

b2

 !b=2

(16)

B �βð Þ ¼ 1� �β
2

� �b=2
(17)

Thus, after the specification, all the equations contain only one undefined
parameter, a universal constant b. It is worth reminding that, even though the
specified law (14) is linear in β, it does include the second-order term which is
identically zero. Therefore describing the anisotropy effects, which are of the order

of β2, by the above equations, is legitimate. In particular, the expression (17) for
B �βð Þ is valid up to the second-order in β and, with the same order of approximation,
it can be represented as

B �βð Þ ¼ 1� b

2
�β
2

(18)

3. Extensions to other areas of physics

3.1 Free particle dynamics

In this section, the free particle dynamics of the ‘relativity with a preferred
frame’ developed in [28] is presented in a shortened form. The modified dynamics
is developed based on the existence of the invariant combination des (a counterpart
of the interval of the standard SR) defined by equation (7). Then the action integral
for a free material particle is [37]

S ¼ �mc

ðb

a

d~s ¼
ðtb
ta

Ldt (19)

where the integral is along the world line between two given world points and L
represents the Lagrange function. The invariant des defined by (7) can be
represented in the form

des ¼ cdtQ k, βx, βð Þ
λ kð Þ (20)
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where

Q k, βx:βð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kβxð Þ2 � β2

q
; βx ¼

vx
c
, β2 ¼

v2x þ v2y þ v2z
c2

(21)

and

vx ¼
dx

dt
, vy ¼

dy

dt
, vz ¼

dz

dt
(22)

are components of the velocity vector. Then the Lagrange function is defined by

L ¼ �mc2
Q k, βx:βð Þ

λ kð Þ (23)

which is used to obtain expressions for the momentum P and energy E of a
particle, as follows

Px ¼
1

c

∂L

∂βx
¼ mc

kþ βx 1� k2
� �

λ kð ÞQ k, βx:βð Þ , Py ¼
1

c

∂L

∂βy
¼ mc

βy

λ kð ÞQ k, βx:βð Þ ,

Pz ¼
1

c

∂L

∂βz
¼ mc

βz

λ kð ÞQ k, βx:βð Þ

(24)

and

E ¼¼ Pxvx þ Pyvy þ Pzvz � L ¼ mc2
1� kβx

λ kð ÞQ k, βx:βð Þ (25)

Proceeding with the four-dimensional formulation, we will use the variables
et,ex,ey,ez
� �

defined by (9) which allows converting the invariant combination (7) into
the form (10) of the Minkowski interval. Introducing the four-dimensional
contrainvariant radius vector by

x0, x1, x2, x3
� �

¼ c~t, ~x,~y,~zð Þ ¼ 1

λ kð Þ ct� kx, x, y, zð Þ (26)

we define the contrainvariant four-velocity vector as

ui ¼ dxi

d~s
(27)

where the superscript i runs from 0 to 3. Using (26) and (20) in (27) yields

u0, u1, u2, u3
� �

¼ 1

Q k, βx:βð Þ 1� kβx, βx, βy, βz

� �
(28)

where Q k, βx:βð Þ is defined by (21). Correspondingly, covariant four-
dimensional radius-vector and velocity vector are defined by

x0, x1, x2, x3ð Þ ¼ c~t,�~x,�~y,�~zð Þ, (29)

u0, u1, u2, u3ð Þ ¼ 1

Q k, βx:βð Þ 1� kβx,�βx,�βy,�βz

� �
(30)
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and the following relations hold

dxidx
i ¼ d~s2 (31)

uiui ¼ 1 (32)

where a common rule of summation over repeated indexes is assumed.
Next, recalling that the momentum four-vector is defined by

pi ¼ � ∂S

∂xi
(33)

and using the principle of the least action [37] we find (see [28] for details) that

pi ¼ mcui (34)

while the contravariant components of the four-momentum vector are

pi ¼ mcui (35)

Then from the identity (32) we get

pip
i ¼ m2c2 (36)

Recalling that

Px ¼
∂S

∂x
, Py ¼

∂S

∂y
, Pz ¼

∂S

∂z
, E ¼ � ∂S

∂t
(37)

with allowance for (26) and (33), we have

Px ¼
1

λ kð Þ
∂S

∂x1
� k

∂S

∂x0

	 

¼ kp0 � p1

λ kð Þ , Py ¼
1

λ kð Þ
∂S

∂x2
¼ � p2

λ kð Þ ,

Pz ¼
1

λ kð Þ
∂S

∂x3
¼ � p3

λ kð Þ , E ¼ � c

λ kð Þ
∂S

∂x0
¼ cp0

λ kð Þ

(38)

which, upon using (34) and (30), yields the relations (24) and (25) for the
three-momentum and energy. Solving equations (38) for the components of the
four-momentum vector we get

p0 ¼ Eλ kð Þ
c

, p1 ¼ λ kð Þ kE

c
� Px

	 

, p2 ¼ �λ kð ÞPy, p3 ¼ �λ kð ÞPz (39)

Then using (39) in (36) yields a dispersion relation for a free particle which can
be represented in the form

E

c þð Þ � Px

	 

E

c �ð Þ þ Px

	 

¼ P2

y þ P2
z þ

m2c2

λ kð Þ2
(40)

where the speeds of light c þð Þ and c �ð Þ in the positive and negative x -directions
are defined by equation (2). It follows from (40) that for massless particles moving
along the x -axis in the positive x direction
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Px ¼
E

c þð Þ ¼
E 1þ kð Þ

c
(41)

while for massless particles moving in the negative x direction

Px ¼ � E

c �ð Þ ¼ �E 1� kð Þ
c

(42)

3.2 Electromagnetic field equations

The invariant action integral for a charged material particle in the electromag-
netic field is made up of two parts: the action for the free particle defined by (19)
and a term describing the interaction of the particle with the field. The invariance is
provided by using the combinations that are invariant in the Minkowskian variables
(26) so that the action integral takes the form [37]

S ¼
ðb

a

�mcd~s� e

c
Aidx

i
� �

(43)

where the coordinates xi are related to physical coordinates t, x, y, zð Þ by (26)
and Ai are components of the (covariant) four-potential vector expressed through

the contravariant components Ai by

A0,A1,A2,A3ð Þ ¼ A0,�A1,�A2,�A3
� �

(44)

Upon representing the four-potential as

A0,A1,A2,A3
� �

¼ ~ϕ, eA
� �

¼ eϕ, eAx, eAy, eAz

� �
(45)

where A0 ¼ eϕ is a scalar potential and the three-dimensional vector eA is the
vector potential of the field, the electromagnetic part of the action integral can be
written in the form

S ¼
ð~t2
~t1

e

c
~A � ~v� e~ϕ

� �
d~t (46)

Here and in what follows, ‘tilde’ indicates that variables and operations are in
Minkowskian space-time variables (26). Note that, while scalars and components of
three-dimensional vectors in the Minkowskian formulation appear with ‘tilde’,
four-dimensional Minkowskian variables are not supplied with ‘tilde’. It does not
lead to any confusion since the four-dimensional notation does not applicable to the
formulation in physical variables.

In the electrodynamics of the standard special relativity (which, in our case, is
electrodynamics in Minkowskian variables), the electric and magnetic field intensi-
ties are defined based on equations of motion of a charged particle obtained from
the Lagrange equations.

d

d~t

∂~L

∂~v

	 

¼ ∂~L

∂~r
(47)

where, in the Lagrange function ~L, a part related to the electromagnetic field is

given by the integrand of (46). Then the electric and magnetic field intensities eE
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and eH are introduced by separating the right-hand side of the vector equation of
motion (the force) into two parts, one of which does not depend on the velocity of
the particle and the second depends on the velocity, being proportional to the
velocity and perpendicular to it, as follows.

d~p

det ¼ eeEþ e

c
~v� eH (48)

where ep is the momentum vector. The electric and magnetic field intensities are
related to the potentials by

eE ¼ � 1

c

∂eA
∂~t

� ggrad ~ϕ; eH ¼ gcurl eA (49)

The same line of arguments is used to derive equations describing the electro-
magnetic field in physical variables t, x, y, zð Þ. The action integral is represented in
the form

S ¼
ðtb
ta

Ldt (50)

where t is the ‘physical’ time related to the Minkowskian variables via (26) and L
is the Lagrangian in physical variables. The free particle part of L is defined by
Eqs. (21)–(23). To obtain the electromagnetic field part of the Lagrangian, the right-
hand side of (46) is transformed to physical space-time variables and then the new
variables ϕ,Ax,Ay,Az

� �
(modified potentials) are introduced by the relations

A0 ¼ eϕ ¼ λ kð Þϕ, A1 ¼ eAx ¼ λ kð Þ Ax � kϕð Þ,
A2 ¼ eAy ¼ λ kð ÞAy, A3 ¼ eAz ¼ λ kð ÞAz

(51)

As the result, the Lagrangian function L in the action integral (50) takes the
form

L ¼ Lp þ
e

c
vxAx þ vyAy þ vzAz

� �
� eϕ (52)

where Lp is the free particle part of L defined by Eqs. (21)–(23). Substituting
(52) into the Lagrange equations

d

dt

∂L

∂v

	 

¼ ∂L

∂r
(53)

yields

dp

dt
¼ � e

c

∂A

∂t
� e grad ϕþ e

c
v� curl A (54)

Thus, upon using the modified potentials, equations of motion in physical variables
have the same form as in the standard relativity and the physical electric and magnetic
field intensities are expressed through the modified potentials by the relations

E ¼ � 1

c

∂A

∂t
� grad ϕ; H ¼ curl A (55)
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of the same form (49) as in the standard relativity.
It is evident that the first pair of the Maxwell equations in physical variables,

which is derived from Eq. (55), have the same form as in the standard relativity

curl E ¼ � 1

c

∂H

∂t
; div H ¼ 0 (56)

To obtain the second pair of Maxwell equations in physical variables let us
calculate the components of the electromagnetic field tensor Fik defined by

Fik ¼
∂Ak

∂xi
� ∂Ai

∂xk
(57)

Expressing Ai in the right-hand side of (57) through the modified potentials by
(51) and then transforming the result to physical space-time variables using (26),
with subsequent use of Eq. (55), yields the expressions for the components Fik of the
electromagnetic field tensor in terms of physical electric and magnetic field inten-
sities. The result can be written as a matrix in which the index i ¼ 0, 1, 2, 3 labels the
rows, and the index k the columns, as follows

Fik ¼ λ kð Þ2

0 Ex Ey Ez

�Ex 0 �Hz þ kEy Hy þ kEz

�Ey Hz � kEy 0 �Hx

�Ez �Hy � kEz Hx 0

0
BBBB@

1
CCCCA

(58)

while

Fik ¼ λ kð Þ2

0 �Ex �Ey �Ez

Ex 0 �Hz þ kEy Hy þ kEz

Ey Hz � kEy 0 �Hx

Ez �Hy � kEz Hx 0

0
BBB@

1
CCCA (59)

Note that the terms with k in the expressions (58) and (59) spoil the property,

that Fik ! Fik when E ! �E, of the standard relativity electrodynamics.
The electromagnetic field equations are obtained with the aid of the principle of

least action [37] in the form

∂Fik

∂xk
¼ 0 (60)

(only fields in a vacuum, that are relevant to the subject of this paper, are
considered). Substituting (59) into (60) and transforming the equations to physical
space-time variables, upon combining equations with different ‘i’ and using the first
pair of the Maxwell Eq. (56), yields the second pair of the Maxwell equations in the
three-dimensional form

div E ¼ � k

c

∂Ex

∂t
; curl H ¼ 1� k2

� � 1
c

∂E

∂t
� 2k

∂E

∂x
þ k grad Ex (61)

An important feature of Eq (61) is their linearity in E andH and hence in Ai. The
Lorentz-violating terms thereby avoid the complications of nonlinear modifications
to the Maxwell equations, which are known to occur in some physical situations
such as nonlinear optics or when vacuum polarization effects are included. Another
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feature is that the extra Lorentz-violating terms involve only the electric field, as
well as its derivatives.

Note the existence of an alternative way of the derivation of the modified
Maxwell Eqs. (56) and (61). Based on Eqs. (49), (51), and (55), the electric and

magnetic field intensities eE and eH in Minkowskian formulation can be related to the
physical electric and magnetic field intensities E and H, as follows

fEx ¼ λ kð Þ2Ex, eEy ¼ λ kð Þ2Ey, eEz ¼ λ kð Þ2Ez,

fHx ¼ λ kð Þ2Hx, fHy ¼ λ kð Þ2 Hy þ kEz
� �

, fHz ¼ λ kð Þ2 Hz � kEy

� � (62)

The same relations are seen in the expressions (58) for the components of the
electromagnetic field tensor. It is readily verified that substituting the relations (62)
into the Maxwell equations of the standard relativity

gcurl eE ¼ � 1

c

∂eH
∂et ,

fdiv eH ¼ 0, gcurl eH ¼ 1

c

∂eE
∂et ,

fdiv eE ¼ 0 (63)

as

fEx ~t, ~x,~y,~zð Þ ¼ λ kð Þ2Ex t ~t, ~xð Þ, x ~xð Þ, y ~yð Þ, z ~zð Þð Þ, … (64)

where

t ~t, ~xð Þ ¼ λ kð Þ ~tþ k

c
~x

	 

, x ~xð Þ ¼ λ kð Þ~x:, y ~yð Þ ¼ λ kð Þ~y, z ~zð Þ ¼ λ kð Þ~z (65)

yields the modified Maxwell Eqs. (56) and (61).

3.3 Electromagnetic waves

Like the electromagnetic wave equation of the standard relativity electrody-
namics, the equation describing electromagnetic waves in the electrodynamics of
the relativity with a preferred frame can be derived straight from the modified
Maxwell equations (reproduced below for convenience)

div H ¼ 0, curl E ¼ � 1

c

∂H

∂t
(66)

div E ¼ � k

c

∂Ex

∂t
; curl H ¼ 1� k2

� � 1
c

∂E

∂t
� 2k

∂E

∂x
þ k grad Ex (67)

EliminatingH by taking ‘curl’ from the second equation of (66) and substituting
curl H from the second equation of (67), with the subsequent use of differential conse-
quences of the first equation of (67) for eliminatingmixed space derivatives, yields

∂
2f

∂x2
þ ∂

2f

∂y2
þ ∂

2f

∂z2
� 1� k2
� � 1

c2
∂
2f

∂t2
þ 2k

1

c

∂
2f

∂t ∂x
¼ 0 (68)

where f t, x, y, zð Þ stands for any component of E. It is readily verified that the
wave equation for H obtained from the modified Maxwell equations in a similar
way has the same form (68).

Alternatively, the wave Eq. (68) can be derived from (60) expressed in terms of
the potentials using (57) while imposing the Lorentz gauge condition
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∂Ak

∂xk
¼ 0 (69)

Converting the derivatives in the resulting equation

∂
2Ak

∂xk ∂xk
¼ 0 (70)

into derivatives in physical space-time variables yields equations of the form

(68) with f being any component of Ak. Given the fact, that equations (51) and (55)

relating Ak to the modified potentials ϕ,Að Þ and then to E and H are linear, it is
evident that any of those variables obeys Eq. (68).

Much of the propagation behavior of the electromagnetic wave is encoded in its
dispersion relation, which provides spectral information for the modes. To find the
dispersion relation the ansatz in the form of monochromatic plane waves is used, as
follows

f t, x, y, zð Þ ¼ f a ω, q
� �

Þ exp i qxxþ qyyþ qzz� ωt
� �h i

(71)

where ω and q ¼ qx, qy, qz

� �
can be regarded as the frequency and wave vector

of the mode or as the associated energy and momentum (taking the real part is
understood, as usual). Substituting (71) into (68) yields the dispersion relation

c2q2 � 2ckqxω� 1� k2
� �

ω2 ¼ 0 where q2 ¼ q2x þ q2y þ q2z (72)

The dispersion relation (72) can be also represented in the form

ω

c þð Þ � qx

	 

ω

c �ð Þ þ qx

	 

¼ q2y þ q2z (73)

where c þð Þ and c �ð Þ are defined by (2). The form (73) adheres to the dispersion
relation (40) for free massless particles with E and P replaced by ω and q. In the
standard relativity, the polynomial (72) determining ω reduces to one with two
quadruply degenerate roots ω ¼ �cqwhich correspond to the opposite directions of
the group velocity. In the modified electrodynamics, the polynomial also has two
roots

ω ¼ c
�kqx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
� �

q2 þ k2q2x

q

1� k2
, ω ¼ c

�kqx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
� �

q2 þ k2q2x

q

1� k2
(74)

Like as in the standard relativity case, the two roots (74) are obtained from each
other by changing the sign of ω but, in the case of k 6¼ 0, it is accompanied by a
change of sign of the anisotropy parameter k.

More insight about the wave motion implied by Eq. (68) can be gained from the
modified Maxwell Eqs. (66) and (67). Eq. (66), which are unaffected by the mod-
ifications, reduce with the ansatz (71) to

q �H ¼ 0, ω H ¼ �q� E (75)

The first of these equations shows that the magnetic field remains transverse to q
despite the Lorentz violation. The second equation shows that the magnetic field H
is perpendicular to the electric field E. The first equation of (67) reduces to
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q � E ¼ ω
k

c
Ex (76)

Eq. (76) implies the existence of two modes.
The first one corresponds to the electric field with Ex ¼ 0. Then it follows from

(76) that the electric field is perpendicular to q. Further, the condition Ex ¼ 0
implies that the vector E lies in the plane y, zð Þ and so the vector q is directed along
the x -axis (the direction of the anisotropy vector k). Therefore Hx ¼ 0 and also,
based on rotational symmetry in the plane y, zð Þ, it can be set Hz ¼ 0 which implies
Ey ¼ 0. In such a case, the first equation of (66) shows that qy ¼ 0 and the first

equation of (66) shows that qz ¼ 0. Then the second equation of (66) and the
second equation of (67) reduce to the system of equations for the two nonzero
components of the electric and magnetic field intensities Ez and Hy while the
requirement of vanishing the determinant of the system yields the dispersion rela-
tion (72). Thus, the mode with Ex ¼ 0 represents a usual electromagnetic plane
wave with the magnetic and electric fields transverse to the direction of propagation
of the wave q and perpendicular to each other, which propagates along the direction
of the anisotropy vector (but with the modified dispersion relation).

The second mode corresponds to the case Ex 6¼ 0. Then it follows from (76) that
the electric field vector is not normal to q. Since, according to the second equation
of (75), H is normal to the plane of E and q, one can choose, without loosing
generality, the direction of H to be along the y -axis and the plane of the vectors q
and E to be the x, zð Þ -plane. Then the first equation of (75) gives qy ¼ 0 and it is

readily verified that the remaining equations of (66) and (67) can be satisfied only
if qz 6¼ 0 with ω, qx and qz obeying the dispersion relation (72) where it is set qy ¼ 0.

Note the particular case, when E is directed along the x -axis (Ez ¼ 0), in which the
dispersion relation degenerates to

ω ¼ cqx
k

, qz ¼ � qx
k

(77)

Thus, the second mode represents electromagnetic wave, in which the magnetic
field H is transverse to direction of propagation q and perpendicular to the electric
field E, like as in the regular wave, but, as distinct from the regular wave, the
electric field is not normal to q. Another characteristic feature of such a wave, that
distinguishes it from the first mode, is that the direction of propagation is not along
the anisotropy vector k and so not along with the velocity of relative motion of the
source and the observer. It implies that in the case when the relative motion velocity
is only the cosmological recession velocity, such a wave propagates not along a line
of sight.

It is worthwhile to note a distinguishing feature of the above analysis as com-
pared with other studies of electromagnetic waves in the presence of the Lorentz
violation. Typically, different modes arising due to the Lorentz violation correspond
to different roots of the modified dispersion relation (see, e.g., [6, 38–40]). The
present analysis provides an unusual example when two different modes corre-
spond to the same root of the dispersion relation (for the waves propagating to the
observer. it is the second root of (74)). The existence of two modes is revealed only
when one studies the corresponding solutions of the modified Maxwell equations. It
is worth also noting that the present analysis is performed solely in terms of field
intensities E and H while most studies of electromagnetic waves in the presence of

the Lorentz violation involve also the electromagnetic field potentials Ak which are
accompanied by extensive discussions of different gauge choices and their influence
on the results.
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4. Cosmology

4.1 General relativity

The basic principle of general relativity, the Equivalence Principle (see, e.g.
[41]), which asserts that at each point of spacetime it is possible to choose a ‘locally
inertial’ coordinate system where objects obey Newton’s first law, is valid indepen-
dently of the law of propagation of light assumed. In other terms, it can be applied
when the processes in the locally inertial frame are governed by the laws of ‘rela-
tivity with a preferred frame’. Based on that there exists the invariant combination
(7), which by the change of variables (9) is converted into the Minkowski interval,
one can state that the general relativity equations in arbitrary coordinates

x0, x1, x2, x3ð Þ are valid if the locally inertial coordinates ξ0, ξ1, ξ2, ξ3
� �

are

ξ0 ¼ c~t, ξ1 ¼ ~x, ξ2 ¼ ~y, ξ3 ¼ ~z (78)

where ~t, ~x, ~y and ~z are defined by (9). In these variables, the invariant spacetime

distance squared ds2 ¼ gikdx
idxk is equal to des2 ¼ ηikdξ

idξk (the notation ηik is used
for the Minkowski metric and the rule of summation over repeated indices is
implied). Thus, the apparatus of general relativity is applied in the coordinates
x0, x1, x2, x3ð Þ while, in the calculation of the ‘true’ time and space intervals, the
‘physical’ variables t ∗ , x ∗ , y ∗ , z ∗ð Þ (it is the new notation for what was before
t, x, y, zð Þ) are to be used. Eq. (9) relating the physical coordinates to the ‘locally
inertial’ coordinates, rewritten with allowance for (78) and (9), are

t ∗ ¼ 1

c
λ kð Þ ξ0 þ kξ1

� �
, x ∗ ¼ λ kð Þξ1, y ∗ ¼ λ kð Þξ2, z ∗ ¼ λ kð Þξ3 (79)

The ‘true’ time and space intervals can be determined using a procedure similar
to that described in [37]. Applying that procedure (see [27] for details) yields the
following relations for the ‘true’ proper time interval dt ∗ and the element dl ∗ of
‘the true’ spatial distance:

dt ∗ ¼ 1

c
λ kð Þ ffiffiffiffiffiffiffi

g00
p

dx0 (80)

dl ∗ ¼ λ kð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γαβdx

αdxβ
q

, γαβ ¼ �gαβ þ
g0αg0β
g00

(81)

where gik (i, k ¼ 0, 1, 2, 3) are components of the space-time metrical tensor and
γαβ (α, β ¼ 1, 2, 3) are components of the space metrical tensor. It is important to note,

that the expression for the proper velocity of a particle v ¼ dl ∗ =dt ∗ is not modified,
since the time and the distance intervals are modified by the same factor λ kð Þ.

4.2 Cosmological models

Modern cosmological models assume that, at each point of the universe, the
‘typical’ (freely falling) observer can define the (preferred) Lorentzian frame in
which the universe appears isotropic. The metric derived based on isotropy and
homogeneity (the Robertson-Walker metric) has the form [41, 42]

ds2 ¼ dt2 � a2 tð Þ dr2

1� Kcr2
þ r2dΩ

 !
, dΩ ¼ dθ2 þ sin 2θdϕ2 (82)
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where a comoving reference system, moving at each point of space along with
the matter located at that point, is used. This implies that the coordinates r, θ,ϕð Þ
are unchanged for each typical observer. In (82), and further throughout this
section, the system of units in which the speed of light is equal to unity, is used. The
time coordinate x0 ¼ t is the synchronous proper time at each point of space. The
constant Kc (this notation is used, instead of common k or K, to avoid confusion
with the symbols for the anisotropy parameter) by a suitable choice of units for r
can be chosen to have the value þ1, 0, or �1.

Introducing, instead of r, the radial coordinate χ by the relation r ¼ S χð Þ with

S χð Þ ¼
sin χ for Kc ¼ 1

sinh χ for Kc ¼ �1

χ for Kc ¼ 0

8
><
>:

(83)

and replacing the time t by the conformal time η defined by

dt ¼ a tð Þdη (84)

converts (82) into the form

ds2 ¼ a2 ηð Þ dη2 � dχ2 � S2 χð Þ dΩ
� �

(85)

The information about the scale factor a tð Þ in the Robertson-Walker metric can
be obtained from observations of shifts in the frequency of light emitted by distant
sources. The frequency shift can be calculated by considering the propagation of a
light ray in isotropic space with the metric (85) adopting a coordinate system in
which we are at the center of coordinates χ ¼ 0 and the source is at the point with a
coordinate χ ¼ χ1. A light ray propagating along the radial direction obeys the
equation dη2 � dχ2 ¼ 0. For a light ray coming toward the origin from the source,
that equation gives

χ1 ¼ �η1 þ η0 (86)

where η1 corresponds to the moment of emission t1 and η0 corresponds to the
moment of observation t0. The red-shift parameter z is defined by

z ¼ ν1

ν0
� 1 (87)

where ν0 is the observed frequency and ν1 is the frequency of the emitted light
which coincides with the frequency of a spectral line observed in terrestrial labora-
tories. Calculations within the framework of the relativity with a preferred frame
(see details in [27]) lead to the relation

z ¼ a η0ð Þ
a η0 � χ1ð ÞB �β1ð Þ � 1 (88)

The relation expressing the Luminosity Distance dL of a cosmological source in
terms of its redshift z is one of the fundamental relations in cosmology. It has been
exploited to get information about the time evolution of the expansion rate. In a
matter-dominated cosmological model of the universe (Friedman-Robertson-
Walker model) based on the standard GR, solving the gravitational field equations
yields the luminosity distance-redshift relation of the form
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dL ¼ H�1
0 zþ 1

2
1� q

Dð Þ
0

� �
z2 þ⋯

	 

(89)

where the deceleration parameter q Dð Þ
0 is positive for all three possible values of the

curvature parameter Kc which means that, in that model, the expansion of the
universe is decelerating. However, recent observations of Type Ia supernovae (SNIa),
fitted into the luminosity distance versus redshift relation of the form (89),

corresponding to the deceleration parameter q Dð Þ
0 <0 which indicates that the expan-

sion of the universe is accelerating. This result is interpreted as that the time evolution
of the expansion rate cannot be described by a matter-dominated cosmological model.
To explain the discrepancy within the context of general relativity and fit the theory to
the SNIa data, the dark energy, a new component of the energy density with strongly
negative pressure that makes the universe accelerate, is introduced (see, e.g., [42]).

In the relativity with a preferred frame, solving the modified GR equations for a
matter-dominated model lead to the luminosity distance-redshift relation of the
form, which allows fitting the results of observations with supernovae so that the
acceleration problem can be naturally resolved—there is no acceleration and so no
need in introducing the dark energy. Below, the calculations leading to the modified
luminosity distance-redshift relation are outlined (for more details see [27]).

In the relativity with a preferred frame, the expression for dL is obtained in the
form [27]

dL ¼ a η0ð Þ 1þ zð ÞS χ1ð Þ (90)

which coincides with a common form of the relation for dL [37, 42]. Neverthe-
less, even though it does not contain the factor B �β1ð Þ, the dependence of dL on z
obtained by eliminating χ1 from Eqs. (90) and (88) will differ from the common
one since the relation (88) for z does contain the factor B �β1ð Þ. To derive the
dependence dL zð Þ in a closed-form using Eqs. (90) and (88), the function a ηð Þ
determining the dynamics of the cosmological expansion it to be defined by solving
the gravitational field equations of Einstein which requires to make some tentative
assumptions about the cosmic energy density ρ and the form of equation of state
giving the pressure p as a function of the energy density. The energy density ρ tð Þ is
usually assumed to be a mixture of non-relativistic matter with equation of state
p ¼ 0 and dark energy with equation of state p ¼ wρ while ignoring the relativistic
matter (radiation). In the commonly accepted ΛCDM model, the dark energy obeys
the equation of state with w ¼ �1 (vacuum) which is equivalent to introducing into
Einstein’s equation a cosmological constant Λ. Then the fundamental Friedmann
equation, which is obtained as a consequence of the Einstein field equations, can be
written in the form (see, e.g., [42])

x0ð Þ2 ¼ H2
0x

2 ΩΛ þΩMx
�3 þΩKx

�2
� �

(91)

where

x tð Þ ¼ a tð Þ
a0

, a0 ¼ a t0ð Þ (92)

and the parameters ΩΛ, ΩM and ΩK are defined by

ΩΛ ¼ ρV0

ρc
, ΩM ¼ ρM0

ρc
; ρc ¼

3H2
0

8πG
, ΩK ¼ � Kc

a20H
2
0

(93)
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where G is Newton’s gravitational constant, ρV0 and ρM0 are the present energy
densities in the vacuum and non-relativistic matter and ρc is the critical energy
density. Being evaluated at t ¼ t0 Eq. (91) becomes

ΩΛ þΩM þΩK ¼ 1 (94)

The Friedmann Eq. (91) allows us to calculate the radial coordinate χ1 of an
object of a given redshift z. Eq. (86) defining χ1 can be represented in the form

χ1 ¼ η0 � η1 ¼
ðη0
η1

dη ¼
ðt0

t1

dt

a tð Þ ¼
1

a0

ð1

x1

dx

x0x
(95)

where x0 is a function of x defined by the Friedmann Eq. (91) and x1 ¼ a t1ð Þ=a0.
Then using Eq. (91) in (95) yields

χ1 ¼
ð1

x1

dx

a0H0x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þΩMx�3 þΩKx�2

p (96)

In the standard cosmology, Eq. (88) (with B �β1ð Þ ¼ 1) provides a simple relation

x1 ¼
1

1þ z
(97)

so that (96) becomes a closed-form relation for χ1 zð Þ. For a ‘concordance’model,
which is the flat space ΛCDM model, ΩK ¼ 0 and ΩΛ ¼ 1�ΩM, Eq. (96) can be
represented in the form

χc1m z1ð Þ ¼
ðz1

0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ΩM þΩM 1þ zð Þ3

q , χc1m ¼ χc1a0H0 (98)

Here and in what follows, quantities with a superscript “c” refer to the concor-
dance model, with the original notation secured for the corresponding quantities of
the present model. Then the luminosity distance is calculated as

dcL z1ð Þ ¼ 1

H0
1þ z1ð Þχc1m z1ð Þ (99)

In the framework of the present analysis, expressing χ1 as a function of z1 by
combining Eqs. (96) and (88) becomes more complicated in view of the fact that �β1,
and so the factor B �β1ð Þ, depend on χ1. We will outline the calculations for the case of
a flat universe, ΩK ¼ 0, which is also the assumption of the concordance model.¶

With that assumption and the presumption, that in the cosmology based on the
relativity with a preferred frame there is no need in introducing dark energy,

¶ In the present model, this assumption is not obligatory. It is worthwhile to note that, despite what is

frequently claimed, a flatness of the universe is not stated in modern cosmology. Given the fact, that

there is no direct measurement procedure of the curvature of space independent of the cosmological

model assumed, the flatness of the space is the result valid only within the framework of the ΛCDM

model.
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ΩΛ ¼ 0, the relation χ1 x1ð Þ is obtained from (96) in an analytical form, which allows
finding the dependence x1 χ1ð Þ by inverting the result, as follows

χ1m ¼ 2 1� ffiffiffiffiffi
x1

pð Þ ) x1 ¼ 1

4
χ1m � 2ð Þ2, χ1m ¼ a0H0χ1 (100)

The dependence B χ1ð Þ, with the accuracy up to third order in χ1, is given by [27]

B �β1 χ1ð Þð Þ ¼ 1� b

2
χ21m þΩMχ

3
1m

� �
(101)

Substituting (101) and (100) into (88) reduces the problem to a transcendental
equation for χ1m z1ð Þ, as follows

1

4
χ1m z1ð Þ � 2ð Þ2 z1 þ 1ð Þ 1� b

2
χ1m z1ð Þ2 þ χ1m z1ð Þ3
� �	 


¼ 1 (102)

Representing the solution of (102) as a series in z1 yields

χ1m z1ð Þ ¼ z1 þ
1

4
�3� 2bð Þz21 þ

1

8
5þ 4bþ 4b2
� �

z31 (103)

Then the relation dL z1ð Þ, calculated from (90) with S χ1ð Þ ¼ χ1, is

dL z1ð Þ ¼ 1

H0
z1 þ

1

4
1� 2bð Þz21 þ

1

8
4b2 � 1
� �

z31

	 

(104)

To compare the results produced by the model with those, obtained from an
analysis of type Ia supernova (SNIa) observations, one needs some fitting formulas
for the dependence dL zð Þ derived from the observational data. It is now common, in
an analysis of the SNIa data, to fit the Hubble diagram of supernovae measurements
to the ΛCDMmodel (mostly, to the concordance model) and represent the results as
constraints on the model parameters (see, e.g. [43]). Therefore, in what follows, a
comparison of the results with the SNIa data is made by comparing the dependence
dL zð Þ produced by the present model with dcL zð Þ for the concordance model while
using constraints on the parameter Ωc

M from the SNIa data analysis. It is found that,
for every value of Ωc

M from the interval, defined by fitting the SNIa data to the
concordance model, the parameter b can be chosen such that the dependence dL zð Þ
coincided with dcL zð Þ with a quite high accuracy (were graphically undistin-
guishable). An example is given in Figure 1 where the dependence dL zð Þ for ΩM ¼ 1
(flat universe), defined by Eq. (104), is plotted for three different values of b
together with dcL zð Þ of the concordance model. It demonstrates that there exists a
value of b (in the present case it is b ¼ 0:672) for which the deviation is negligible.
As it was mentioned above, in the present model the assumption of the flat universe
is not obligatory. Calculations for other values of ΩM (remind that ΩK ¼ 1�ΩM)
show that for every value of ΩM >0 there exists the value of b, for which the
deviation dL zð Þ from dcL zð Þ is negligible. It is worth clarifying again that the above is
intended to be a comparison of the dependence dL zð Þ yielded by the present model
with that derived from the SNIa observations so that the dependence dcL zð Þ for the
‘concordance’ model plays a role of a fitting formula for the SNIa data.

The Baryon Acoustic Oscillations (BAO) data are commonly considered as
confirming the accelerated expansion and imposing constraints on the dark energy
parameters. Applying the cosmological models based on the ‘relativity with a pre-
ferred frame’ to the interpretation of the BAO data provides an alternative view on
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the role of the BAO observations in cosmology. Comparing the predictions of the
present model with the recently released galaxy clustering data set of the Baryon
Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey III
(SDSS III), shows that the BAO data can be well fit to the present cosmological
model. The BAO data include two independent sets of data: the BAO scales in
transverse and line-of-sight directions which can be interpreted to yield the
comoving angular diameter distance DM zð Þ and the Hubble parameter H zð Þ respec-
tively. In [44], the results of several studies studying the sample provided by the
BOSS data with a variety of methods are combined into a set of the final consensus
constraints on DM zð Þ and H zð Þ that optimally capture all of the information. It is
found (see [27] for details) that the results yielded by the present model are consis-
tent with the consensus constraints of [44] on both DM zð Þ and H zð Þ. The two
regions in the plane ΩM, bð Þ defined by constraints on these two sets are overlapped
such that the overlapping area corresponds to the values of the model parameters
for which the results on H zð Þ and DM zð Þ are consistent both with the BAO data and
with each other. And what can be considered as a very convincing proof of the
robustness of the present model is that a line in the plane ΩM:bð Þ, on which the
results produced by the present model fit also the SNIa observational data, passes
inside that quite narrow overlapping region defined by the BAO data. Thus, the
results produced by the present model fit three different sets of data by adjusting
(together with the matter density parameter ΩM) only one universal parameter b. It
is worth noting again that, as distinct from the concordance model to which the
SNIa and BAO data are commonly fitted by adjusting the dark energy parameters,
the present model fits well all the data without introducing dark energy.

5. Propagation of cosmic rays

5.1 Attenuation of the UHECR due to the pion photoproduction process

In this section, the application of the theory to the description of the effects due to
the interactions of the Ultra-High Energy Cosmic Rays (UHECR) with universal
diffuse background radiation in the course of the propagation of cosmic rays from
their sources to Earth over long distances (see, e.g., review articles [45–47]) is con-
sidered. The interactions of the UHECR with the CMB photons are characterized by a

Figure 1.
Dependence of the luminosity distance dL on the red-shift z: thin solid line for the concordance model with
Ωc

M ¼ 0:31; short-dashed for the present model with ΩM ¼ 1, b ¼ �1:2; long-dashed for the present model
with ΩM ¼ 1, b ¼ �0:672; thick solid for the present model with ΩM ¼ 1, b ¼ �0:2.
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well-defined energy threshold for the energy suppression due to pion
photoproduction by UHECR protons—the Greisen-Zatsepin-Kuzmin (GZK) cutoff
[48, 49]. The fluxes of cosmic ray protons with energies above this threshold would
be strongly attenuated over distances of a few tens of Mpc so that the cosmic ray
protons from the sources at a larger distance, even if they were accelerated to energies
higher than the threshold, would not be able to survive the propagation. The energy
position of the GZK cutoff can be predicted based on special relativity as a theoretical
upper limit (‘GZK limit’) on the energy of UHECR set by pion photoproduction in
the interactions of cosmic ray particles with the microwave background radiation.
Calculating the GZK limit based on the particle dynamics of the special relativity with
a preferred frame developed in Section 3.1 (see [28] for details) yields

Eth

Est
¼ 1� z2
� ��b

; Est ¼ επ 2εp þ επ
� �

4E γð Þ (105)

where Eth is the threshold value of the UHECR protons energy calculated using
equations of the relativity with a preferred frame, Est is the standard value of the
GZK threshold calculated using equations of the standard relativity, εp ¼ mpc

2 and

επ ¼ mπc
2 are the proton and pion rest energies and E γð Þ is the CMB photon energy.

It is seen that the expression (105) for the threshold energy of the proton differs

from the common one by the factor 1� z2ð Þ�b
. The universal constant b is negative,

both as it is expected from intuitive arguments and as it is found by fitting the
cosmological model developed in the framework of the ‘relativity with a preferred
frame’ to the observational data (Section 4.2). Therefore the threshold energy
decreases as the distance to the source of the particles (the redshift z) increases
(Figure 2, left panel).

This effect may contribute to the interpretation of the data on the mass compo-
sition of UHECR which is a key observable in the context of the physics of UHECR
as it fixes few fundamental characteristics of the sources. The mass composition of
UHECR became a matter of active debate after that the Pierre Auger Collaboration
(Auger) reported on its recent observations [50, 51]. The observations of Auger, far
the largest experiment set-up devoted to the detection of UHECR, have shown that
the UHECR mass composition is dominated by protons only at energies around and
below 1018 eV and then the fraction of protons is progressively decreasing up to

Figure 2.
Left panel: dependence of the correction factor to the GZK threshold on the source redshift z for different values
of the parameter b: shot-dashed for b ¼ �0:4; long-dashed for b ¼ �0:7; solid for b ¼ �1. Right panel:
Number of sources ns (in arbitrary units), that may contribute to the observed flux of protons at the energy Ep,

versus Ep
Est, where Est is the standard GZK threshold value, for different values of b: shot-dashed for b ¼ �0:4;

long-dashed for b ¼ �0:7; solid for b ¼ �1.
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energies of 1019:6 eV. It seemed to be not consistent with the general consensus, that
UHECRs are mostly protons and that sources should accelerate them to > 1020 eV.
At the same time, the Telescope Array (TA) experiment, even if with 1/10 of the
Auger statistics, collected data seemed to confirm the pre-Auger scenario [52]. A
common effort of the Auger and TA collaborations allowed to reconcile the inter-
pretations of the Auger and TA observations so that the evidence for a composition
becoming gradually heavier towards higher energies is now considered to be well
established. It implies that the primary UHECR flux at the sources includes both
protons and heavy nuclei which are to be accelerated with very high maximum
injection energies. This imposes severe constraints on the parameters of the accel-
eration models and has served as a stimulus to build new acceleration models or
reanimate the previously developed models that can potentially explain the phe-
nomenology of the UHECR mass composition data. The models are characterized
by a complex scenario and/or include some exotic assumptions.

The complexity of the scenario and the severe constraints on themodel parameters,
required in the case of a compositionwith heavy nuclei, are not present in the case if the
UHECRmass composition is dominated by protons. In the latter case, the scenario is
much simpler, only protons are accelerated with very high maximum injection ener-
gies. The view that theUHECR aremostly protons is, theoretically, a natural possibility.
Proton is themost abundant element in the universe and several different astrophysical
objects, at present and past cosmological epochs could provide efficient acceleration
even if it requires very high luminosities andmaximum acceleration energies. The
models of interaction of UHECRwith the astrophysical background are also much
simpler if the UHECR are mostly protons. In this case, the only relevant astrophysical
background is the CMB [53, 54]. This fact makes the propagation of UHE protons free
from the uncertainties related to the background, being the CMB exactly known as a
pure black body spectrum that evolves with red-shift through its temperature.

The results of the present study allow reconciling (at least, partially) the view, that,
the primary UHECR flux at the sources is dominated by protons accelerated with very
high maximum injection energies, with the observational evidence that the fraction of
protons in the UHECR is decreasing towards higher energies. The apparent contradic-
tion can be resolved by taking into account the effect, predicted by the present
analysis, that the number of sources, which may contribute to the observed flux of
protons at a given energy, is progressively decreasing with the energy increases. This
effect is a consequence of the threshold condition (105) which implies that, among
protons produced by a source at some z, only those having the energies lower than the
threshold energy for that z, can reach the Earth. In other terms, for a given value Ep of
the proton energy, there exists a value zth of the redshift (distance Dth) such that, for
the UHECR sources with D>Dth, the GZK threshold Eth is less than Ep and so the
protons with the energy Ep injected by the sources at the distances D>Dth cannot
reach the Earth. Thus, the sources, that may contribute to the observed flux at the
energy Ep, are confined within the sphere of the radiusDth, with Dth decreasing when
the proton energy Ep is increasing. If the distribution of the sources in space is more or
less uniform, the number of sourcesNs, that may contribute to the observed flux at the
energy Ep, decreases with Ep (Figure 2, right panel). Thus, reducing the fraction of
protons in the observed UHECR flux towards the higher energies can be considered as
the result of reducing the number of sources contributing to the flux.

5.2 Attenuation due to the pair-production process

Gamma rays (γ) propagating from distant sources to Earth interact with the
photons of the extragalactic background light (γb) being able to produce eþe�

through the process of pair production
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γ þ γb ! eþ þ e� (106)

which has the effect of a significant energy attenuation in the flux of high-
energy gamma rays. Such interaction takes place for gamma rays with energies (Eγ)
above the threshold of pair production. The existence of a threshold can be also

expressed as the minimum energy (Eth
γb
) that a γb needs to produce a eþe�.

The following assumptions should be made if we intend to calculate the thresh-
old value of the energy of the gamma-rays photons:

i. It is needed to take the lowest energy the high-energy photon can have to
react with the background photon to yield the two particles which
correspond to the situation when they both are produced at rest in their
center of mass frame after the collision.

ii. To maximize the energy available from the collision, the initial momenta of
the two particles in the lab frame should be pointing in opposite directions.

Let us equate the square of the total 4—momentum p Lð Þ ¼ p γð Þ þ p γbð Þ in the lab
frame before the collision with the square of the total 4—the momentum of the

outgoing particles p CMð Þ ¼ p þð Þ þ p �ð Þ in their center of mass frame after the
collision

p γð Þ þ p γbð Þ
� �2

¼ p þð Þ þ p �ð Þ
� �2

(107)

The right-hand side of (107) is calculated, as follows

p þð Þ þ pðÞ
� �2

¼ p
þð Þ
0 þ p

�ð Þ
0

� �2
� p

þð Þ
1 þ p

�ð Þ
1

� �2
� p

þð Þ
2 þ p

ðÞ
2

� �2
� p

þð Þ
3 þ p

�ð Þ
3

� �2

(108)

where Eq. (39) are to be substituted into (108), with the three-momentum and
energy defined by equations (24), (25) and (21) in which it is set βx ¼ βy ¼ βz ¼ 0

for both particles. As the result, we obtain the following expression for the square of
the total 4—momentum of outgoing particles

p þð Þ þ p �ð Þ
� �2

¼ c2 me þmeð Þ2 (109)

Note that, although Px does not vanish for βx ¼ βy ¼ βz ¼ 0, the component p1
of the four-momentum does vanish since, in the expression (39) for p1, the first
term compensates the non-vanishing part of Px.

The left-hand side of Eq. (107) is to be expressed in terms of the high-energy and
background photons energies using the relations between the particle’s momentum
and energies obtained from the dispersion relation (40). The high-energy photons
move to the observer, in the direction opposite to the direction the velocity of the lab
frame relative to the observer (relative to the preferred frame) which is chosen to be
a positive direction of the x-axis. So, the high-energy photon moves along the x-axis
in the negative x direction while the background photon moves, according to the
threshold assumption (ii), in the positive x direction. Thus, the momenta of the
photons are related to their energies using Eq. (41), as follows

P γð Þ
x ¼ �Eγ 1� kð Þ

c
, P γbð Þ

x ¼ Eγb
1þ kð Þ
c

(110)

23

Cosmology and Cosmic Rays Propagation in the Relativity with a Preferred Frame
DOI: http://dx.doi.org/10.5772/intechopen.101032



where k is the anisotropy parameter in the lab frame. Then the left-hand side of
(107) is calculated as follows (head-on collision)

p γð Þ þ p γbð Þ
� �2

¼ p
γð Þ
0 þ p

γbð Þ
0

� �2
� p

γð Þ
1 þ p

γbð Þ
1

� �2

¼ Eγλ kð Þ
c

þ Eγb
λ kð Þ
c

	 
2

� λ kð Þ kEγ

c
� P γð Þ

x

	 

þ λ kð Þ kEγb

c
� P γbð Þ

x

	 
	 
2

(111)

Substituting (110) for P γð Þ
x and P γbð Þ

x into (111) yields

p γð Þ þ p γbð Þ
� �2

¼ 4λ kð Þ2 EγEγb

c2
(112)

Then using Eqs. (112) and (109) in (107) and solving the resulting equation for
Eγ one obtains the expression for the threshold energy of the high-energy photon

Eth
γ ¼ m2

e c
4

λ kð Þ2Eγb

(113)

or the expression for the threshold energy of the background photon (minimum
energy to produce eþe�)

Eth
γb
¼ m2

ec
4

λ kð Þ2Eγ

(114)

The factor λ kð Þ can be represented as a function B �βð Þ of the frame velocity �β

relative to a preferred frame which, with an accuracy up to �βð Þ3, is given by the
expression (see (17))

B �βð Þ ¼ 1� �β
2

� �b=2
(115)

In a cosmological context, where �β is a recession velocity of a source, �β depends
on the cosmological redshift of an object z. Although the expansion of �β zð Þ in series,
besides the leading term z, includes terms of the order z2 and higher, they do not

contribute to the expression for �β
2
up to the terms of the order z3 and so, with the

accuracy of the expression (115), �β
2
can be replaced by z2. Then the threshold

equation takes the form

Eth
γb

ESth
γb

¼ 1� z2
� ��b

; ESth
γb

¼ m2
e c

4

Eγ

(116)

where Eth
γb
is the modified value of the threshold and ESth

γb
is the standard value of

the threshold. It is seen that the expression (116) for the threshold energy of the

background photon differs from the standard one by the factor 1� z2ð Þ�b
. The

universal constant b is negative, both as it is expected from intuitive arguments and
as it is found by fitting the cosmological model developed in the framework of the
‘relativity with a preferred frame’ to the observational data [27]. Thus, the threshold
energy of the background photon decreases with the distance to the source (the
redshift z).
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Attenuation of gamma rays with the energy Eγ from the source at redshift zs due

to the pair production process is characterized by the optical depth τγ Eγ, zs
� �

. For zs
not too large one typically has τγ E0, zsð Þ< 1 so that the Universe is optically thin
along the line of sight of the source and if it happens that τγ E0, zsð Þ> 1 the Universe
becomes optically thick at some point along the line of sight. The value zh such that
τγ E0, zsð Þ ¼ 1 defines the γ-ray horizon for a given E0, and sources beyond the
horizon tend to become progressively invisible as zs further increases. The optical
depth is evaluated by

τγ Eγ, zs
� �

¼
ðls zsð Þ

0
dl Kγγb

Eγ, l zð Þ
� �

(117)

where Kγγb
Eγ, l zð Þ
� �

is the γ-ray absorption coefficient, which represents the
probability per unit path length, l, that a γ-ray will be destroyed by the pair-
production process. The absorption coefficient is calculated by convolving the
spectral number density nb Eγb

, z
� �

of background photons at a redshift z with the

cross section of the pair production process σ Eγ,Eγb
, θ, z

� ��
(θ is the angle between

the direction of propagation of both photons) for fixed values of Eγb
and θ and next

integrating over these variables [55], as follows

Kγγb
Eγ, z
� �

¼
ð1

�1
d cos θð Þ 1� cos θ

2

ð
∞

Eth
γb

dEγb
nb Eγb

, z
� �

σ Eγ,Eγb
, θ, z

� ��
(118)

Then the integral over distance l in (117) is represented as an integral over z to
arrive at the expression for the optical depth in the form

τγ Eγ, zs
� �

¼
ðzs

0
dz

dl zð Þ
dz

Kγγb
Eγ, z
� �

(119)

The threshold energy of background photons Eth
γb
taking part in the expressions

(118) and (119) is corrected according to (116) such that Eth
γb
decreases with the

distance to the source (the redshift z). The cumulative outcome of this phenomenon
may result in measurable variations in the expected attenuation of the gamma rays
flux reducing the expected flux.

The preferred frame effects may influence the optical depth also via the cosmo-
logical part of the expression (119). In the Robertson-Walker metric (82) (or (85)),
the distance element dl is defined as dl ¼ a tð Þdχ where a tð Þ is the scale factor and χ

is the radial distance element defined by (83). These quantities are calculated based
on the GR equations (more specifically, Friedman equations) which leads to the
expression (96) for the radial distance χ where the parameters are to be specified

according to the cosmological model accepted. Commonly the quantity dl zð Þ
dz is

calculated within the standard ‘concordance’ ΛCDM cosmological model, where the
expression (96) is specified to ΩK ¼ 0, ΩΛ ¼ 1�ΩM and x1 given by (97), which
yields

dl zð Þ
dz

¼ 1

H0

1

zþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ΩM þΩM 1þ zð Þ3

q (120)

In the cosmology of the relativity with a preferred frame, ΩΛ ¼ 0 and ΩK ¼
1�ΩM and, upon using these values in (96), one has for dl zð Þ

dz the following
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dl zð Þ
dz

¼ 1

H0

a tð Þ
a t0ð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ΩM þΩM 1þ zð Þ

p (121)

where the quantity a tð Þ
a t0ð Þ is to be calculated using several other equations as it is

done (for the particular case ΩM ¼ 1) in equations from (100) to (104). Similar

calculations for the general case ΩM 6¼ 1 lead to the expression for dl zð Þ
dz represented

as series in z, as follows

dl zð Þ
dz

¼ 1

H0
1þ �2� b�ΩM

2

	 

zþ 3þ 3bþ 3b2

2
þΩM þ 3Ω2

M

8

 !
z2

 

þ �3� 4b� 5b2

2
�ΩM � 3Ω2

M

8

 !
z3

! (122)

In the concordance model relation (120), the value ΩM ¼ 0:31. obtained from
the observational data (see [27] for references), is used. In the present model, there
is an interval of allowed values of ΩM and the corresponding values of b, within
which the results fit both the SNIa and BAO data [27]. The curvature Kc in the
present model is not obligatory zero but the value of ΩM ¼ 1 corresponding to the
flat universe is within the interval of allowed values of ΩM. Although Eqs. (120) and

(122) defining dependence dl zð Þ
dz on z in the concordance model and in the present

model look completely different, the corresponding dependencies practically coin-
cide as it is seen from Figure 3. Thus, the preferred frame effects influence τγ Eγ, zs

� �

only via the threshold value Eth
γb
in (118), like in other Lorentz-violating theories

(see, e.g., [56–58]).

5.3 Astrophysical tests for vacuum dispersion and vacuum birefringence

In the literature on Lorentz violation, as major features of the behavior of
electromagnetic waves in vacuum in the presence of Lorentz violation, vacuum
dispersion and vacuum birefringence are considered. Astrophysical tests for vac-
uum dispersion of light from astrophysical sources seek differences in the velocity
of light at different wavelengths due to Lorentz violation which should result in
observed arrival-time differences. For differences in the arrival times of different
wavelengths to be interpreted as caused by differences in the light velocities,
explosive or pulsed sources of radiation that produce light over a wide range of
wavelengths in a short period, such as gamma-ray bursts, pulsars, or blazars, are to
be used. All those are point sources, which have the disadvantage (to impose
constraints on Lorentz violation) that a single line of sight is involved, which pro-
vides sensitivity to only a restricted portion of space for free coefficients of the
Lorentz violating models.

The same is valid for the present theory leading to the dispersion relation (72). In
the case of the waves propagating along the x-axis (aligned with the anisotropy
vector k), when qy ¼ qz ¼ 0 and qx ¼ q, the two routes (74) become

ω ¼ � c

1� k
q (123)

which corresponds to the waves propagating in the opposite directions. For a
wave propagating to the observer from a cosmological source, with the x-axis
directed from the observer to the source, the group velocity is
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∂ω

∂q
¼ � c

1� k
(124)

It does not depend on q and so there is no place for vacuum dispersion.
Another test, that is commonly used for setting constraints on the parameters of

the Lorentz-violating theories in electrodynamics, is the vacuum birefringence test.
In birefringent scenarios, the two eigenmodes propagate at slightly different veloc-
ities. This implies that the superposition of the modes is altered as light propagates
in free space. Since the two modes differ in polarization, the change in superposi-
tion causes a change in the net polarization of the radiation. However, it does not
apply to the present theory leading to the dispersion relation (72). The two roots
of the dispersion relation correspond to the waves propagating in different
directions. Thus, no two eigenmodes are propagating in the same direction and so
there is no possibility for vacuum birefringence. Thus, neither tests for vacuum
dispersion nor tests for vacuum birefringence can impose restrictions, additional
to those imposed by cosmological data, on the values of the only parameter of the
theory b.

The vacuum birefringence and vacuum dispersion are widely discussed in the
literature as astrophysical tests of Lorentz violation in the pure photon sector of the
standard-model extension (e.g., [6, 38, 59–62]). Therefore it is of interest, in that
context, to compare the Lorentz-violating terms, appearing in the Lagrangian due
to the preferred frame effects in the present study, with those introduced as a
formal SME extension. Extracted from the SME, the Lorentz-violating electrody-
namics can be written in terms of the usual field strength Fik defined by (57) and the

potentials Ak, as follows

L ¼ � 1

4
FikF

ik � 1

4
kFð ÞnmikF

nmFik þ 1

2
kAFð ÞnεnmikA

mFik (125)

In what follows, we calculate the Lagrangian of the electrodynamics with a
preferred frame and compare the Lorentz violating terms in that Lagrangian with

those in (125). Calculating L ¼ � 1
4 FikF

ik using equations (58) and (59) yields

Figure 3.

The dependence of dl zð Þ
dz (multiplied by H0) on z for the concordance model with ΩM ¼ 0:31 (solid) and for the

cosmological model, based on ‘relativity with a preferred frame’ [27], with ΩM ¼ 1, b ¼ �0:672 (dashed) and
ΩM ¼ 0:5, b ¼ �0:495 (dotted) where the values of the parameters ΩM and b are chosen from those consistent
with both the SNIa and BAO data (see [27]).
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L ¼ λ kð Þ4 1

2
E2 �H2
� �

þ k EyHz � EzHy

� �
� k2

1

2
E2
y þ E2

z

� �	 

(126)

It is seen that the form (126) is in a sense more general than (125) because of the

Lorentz violating multiplier λ kð Þ4
� �

. However, since the multiplier does not depend

on the field variables and so does not influence the form of the field equations, it
can be disregarded. Then the Lorentz-violating terms in (126) can be written based
on (59) in terms of the field strength, as follows

Ladd ¼ k F02F12 þ F13F03
� �

� 1

2
k2 F02F02 þ F03F03
� �

(127)

which fits the form (125) with the coefficients

kFð Þ0212 ¼ �4k, kFð Þ0313 ¼ �4k, kFð Þ0202 ¼ 2k2, kFð Þ0303 ¼ 2k2 (128)

while other kFð Þnmik as well as all kAF are zeros. The second term on the right-
hand side of (125), not contributing to the Lagrangian of the present theory, could
be disregarded from the beginning because it has theoretical difficulties associated
with negative contributions to the energy [6, 38]. The Lagrangian defined by (127)
(or (128)) provides an example of the Lorentz-violating SME (in a pure photon
sector) which leads to equations of the electromagnetic wave propagation not
exhibiting the vacuum birefringence and vacuum dispersion effects.

6. Discussion

The ‘relativity with a preferred frame’ incorporates the existence of the cosmo-
logical preferred frame into the framework of the theory while preserving funda-
mental principles of the SR: the principle of relativity and the principle of
universality of the light propagation. The relativistic invariance is preserved in the
sense, that the physical laws are covariant (their form does not change) under the
group of transformations between inertial frames, and the relativistic symmetry is
preserved (although modified) in the sense that there exists a combination, a
counterpart of the interval of the standard relativity theory, which is invariant
under the transformations. The existence of the modified symmetry provides an
extension of the theory to general relativity such that the general covariance is also
preserved. Thus, the ‘relativity with a preferred frame’ is a relativity theory, both in
the special relativity and in the general relativity parts. Except for identifying the
preferred frame with a comoving frame of cosmology, the theory does not include
any assumptions. No approximations are involved besides approximating the uni-
versal function k ¼ F �βð Þ, defining dependence of the anisotropy parameter on the
frame velocity relative to the preferred frame, by the expression F �βð Þ ¼ b�β valid up
to the third order in �β. As the result, all the relations of the theory include only one
universal parameter b.

The problem of defining allowed values of b is to be considered in the context of
verification of the theory by observations since nothing in the theory itself imposes
constraints on the values of b. Discussing the results of the application of the theory
to natural phenomena, one can separate the conceptual and quantitative aspects. In
the conceptual aspect, the cosmological models, developed using the modified gen-
eral relativity, are of the most importance. First, it is related to the interpretation of
the luminosity distance versus redshift relation deduced from the SNIa data, which
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has played a revolutionary role in the development of modern cosmology concepts.
That relation, corresponding to the negative deceleration parameter, cannot be
explained using cosmological matter-dominated models (Friedman-Robertson-
Walker models) based on the standard general relativity. To explain the data, in
modern cosmology, dark energy, a new type of energy with a peculiar equation of
state corresponding to negative pressure, is introduced. In the cosmology of the
‘relativity with a preferred frame’, the luminosity distance versus redshift relation
for the matter-dominated cosmological model contains corrections, such that the
effective deceleration parameter can be negative. As the result, neither the acceler-
ation of the universe expansion nor the dark energy providing the acceleration is
needed. The consistency of the cosmological models, based on the ‘relativity with a
preferred frame’, is supported by that, for any reasonable value of the parameter
ΩM, there exists a value of b such that the luminosity distance versus redshift
relation fits with high accuracy the SNIa data.

In the applications of the theory to the BAO data, the conceptual and quantitative
aspects go together. The BAO observations provide two different sets of data: BAO
scales in transverse and line-of-sight directions. Measurements of the angular distri-
bution of galaxies yield the quantity DM zð Þ which is the comoving angular diameter
distance. Measurements of the redshift distribution of galaxies yield the value of the
Hubble parameter H zð Þ. The fact that the two regions in the plane ΩM, bð Þ, within
which the predictions of the present theory fit the DM data and the H zð Þ data, are
overlapped, both provides a support for the theory and places quite tight constraints
on the values of the parametersΩM and b since they should be confined within a quite
narrow overlapping region. An additional (and quite strong) argument in favor of
both consistency of the theory and estimates for the parameter b is that the line in the
plane (ΩM, b), on which the results of the present model fit the SNIa data, lies within
that narrow region. Thus, the results fit well three different sets of observational data
with the values of the theory parameter b confined within a quite narrow interval
(approximately from b ¼ �0:4 to b ¼ �0:8).

Next, it might be expected that some constraints on allowed values of b could
arise as the result of applying the theory to the cosmic rays data. In the propagation
of the Ultra-High Energy Cosmic Rays from distant sources to Earth, the most
remarkable effect is the attenuation due to pion photoproduction by UHECR pro-
tons which is characterized by the GZK threshold. Applying the ‘relativity with a
preferred frame’ to the calculation of the energy threshold for the attenuation
process results in the correction factor to the GZK limit. Although a comparison of
that prediction of the theory with the data on the UHECR flux does not straightfor-
wardly lead to constraints on the values of b, another issue, namely the data on the
mass composition of UHECR, provides indirect confirmation of the theory. Those
data, showing that the UHECR mass composition is dominated by protons only at
energies around and below 1018 eV and then the fraction of protons is progressively

decreasing up to energies of 1019:6 eV, contradict the previous consensus that
UHECRs are mostly protons accelerated in the sources to > 1020 eV. The prediction
of the ‘relativity with a preferred frame’, that the GZK threshold energy decreases
with the distance to the source of the particles (with the values of the parameter b
defined by the cosmological data) allows to resolve, at least, partially, the contra-
diction between the view, that the primary UHECR flux is mostly protons acceler-
ated to very high energies, and the observational data showing that the fraction of
protons in the UHECR is decreasing towards higher energies. The explanation lies in
that, because of decreasing the energy threshold with the distance to the source, the
number of sources, contributing to the observed flux of protons at a given energy,
should be progressively decreasing with the energy increasing.
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Applying the modified particle dynamics to the pair-production process, which
is responsible for attenuation of the gamma-rays flux, does not provide quantitative
constraints on the values of the parameter b or indirect confirmations of the theory.
At the same time, the results of applying the modified electromagnetic field
dynamics to the behavior of electromagnetic waves in a vacuummaybe counted as a
kind of indirect confirmation of the theory. The vacuum birefringence and vacuum
dispersions are the features present in the popular Lorentz-violating theories (e.g.,
[6, 38, 59–62]) and the fact, that no indications of the existence of those phenomena
are found in observations, imposes constraints on the values of numerous parame-
ters of those theories. On the contrary, the electromagnetic field equations and
based on them the electromagnetic wave equation of the present theory, although
modified such that the Lorentz invariance is violated, does not predict such features
as the vacuum birefringence and vacuum dispersion. Thus the absence of observa-
tional evidence for the existence of those phenomena may be considered as an
argument in favor of the theory.

In general, the fact, that applying the theory containing only one universal
parameter to several different phenomena does not lead to any contradictions,
proves a consistency of its basic principles. The presence of only one parameter in
the theory is a consequence of the fact that, as distinct from the popular Lorentz-
violating theories, where Lorenz violation is introduced phenomenologically by
adding Lorentz-violating terms to the Lorentz invariant relations, the ‘relativity
with a preferred frame’ starts from the physically reasonable modification of the
basic postulates of the SR. The generalized relativistic invariance, and so the
Lorentz invariance violation, are ingrained in the theory at the most fundamental
level being imbedded into the metric. It is also worth to emphasize that the con-
ceptual basis of the theory has been developed without having in mind possible
applications. It is aimed at designing the framework which would allow to incorpo-
rate the preferred frame into special relativity while retaining the relativity princi-
ple and the fundamental space-time symmetry. Nevertheless, the theory provides
explanations of some observational data, that were regarded as puzzling after their
discovery (like the SNIa luminosity distance-redshift relation indicating the accel-
eration of the universe and the absence of high energy protons in the UHECR flux).
As the result, the concepts (among which dark energy is the most striking one),
introduced to explain those puzzling features, become redundant. All the above
justifies treating the ‘relativity with a preferred frame’ as an alternative to some
currently accepted theories.
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