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Maria Shahgedanova

Key messages

 • The alpine cryosphere, including snow, glaciers and permafrost, is critical to water man-
agement in the Aral Sea Basin (ASB) and larger Central Asia (CA) under the changing 
climate, as it stores large amounts of water in its solid forms. Most cryospheric components 
in the Aral Sea Basin are close to melting point, and hence very vulnerable to a slight 
increase in air temperature with significant consequences to long-term water availability 
and to water resources variability and extremes.
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 • Current knowledge about different components of the cryosphere and their connection 
to climate in the Basin and in the entire Central Asia region varies. While it is advanced 
in the topics of snow and glaciers, knowledge on permafrost is rather limited.

 • Observed trends in runoff point in the direction of increasing water availability in July and 
August at least until mid-century and increasing possibility for water storage in reservoirs 
and aquifers. However, eventually this will change as glaciers waste away. Future runoff 
may change considerably after mid-century and start to decline if not compensated by 
increasing precipitation.

 • Cryosphere monitoring systems are the basis for sound estimates of water availability 
and water-related hazards associated with snow, glaciers and permafrost. They require a 
well-distributed observational network for all cryospheric variables. Such systems need to 
be re-established in the Basin after the breakup of the Soviet Union in the early 1990s. 
This process is slowly emerging in the region. Collaboration between local operational 
hydro-meteorological services and the academic sector, and with international research 
networks, may improve the observational capabilities in high-mountain regions of CA in 
general and in the ASB in particular.

Introduction

Water resources in arid continental regions like Central Asia (CA) depend strongly on cry-
osphere components: snow, glaciers and permafrost (Figure 8.1). Two of the world’s largest 
mountain systems, the Tien Shan (also: Tian Shan) and Pamir Mountains, serve as water towers 
for CA, of which the Aral Sea Basin (ASB) is a major part. The cryosphere components of these 
mountain systems store large amounts of water in a solid form and play a key role for current and 
future water availability and management under a changing climate. Several recent studies (Hagg  
et al. 2007; Hagg et al. 2013; Huss and Hock 2018; Kaser et al. 2010) indicate that a) in arid 
regions like CA, water release by snow and glaciers is fundamental to maintaining sufficient run-
off during the dry summer months and b) by the end of this century the water contribution of 
glaciers will be drastically reduced and some catchments may completely dry out. This may pose 
significant challenges to water resources management, energy production, the environment, 
disaster risk reduction, security and public health. High-quality baseline data on cryosphere 
components may help develop sound climate-based scenarios of future water availability.

Snow is temporally and spatially the most variable component of the cryosphere. It has 
a strong influence on the climate system but is also strongly controlled by climate. Recent 
observed trends derived from remote sensing (Adnan et al. 2017; Immerzeel et al. 2009; Peters  
et al. 2015), and ground measurements (e.g., Marty 2008; Serquet et al. 2013) indicate a sea-
sonally reduced duration of snow cover, as well as reduced extent of snow cover, especially at 
lower elevations. Such changes are important as snow has strong feedback processes, particu-
larly over its strong albedo difference in comparison to surfaces like water, vegetation, bedrock 
or sediments. While glaciers release most of their melt water during the hot summer months, 
water from snowmelt mostly comes in spring (April, May, June). Therefore, snow storage 
can be seen as a temporary water reservoir accumulating snow in winter and releasing water 
to rivers and streams in spring and early summer. The melt water from seasonal snow cover is 
vital for the environment, economic development and social security of CA (e.g., (Aizen et al. 
1995; Sorg et al. 2012; Unger-Shayesteh et al. 2013). Many ground-based stations measuring 
snow were abandoned after the breakup of the Soviet Union in the early 1990s, and a new 
observational network is only slowly evolving in the region.
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Glaciers today are the most well-known symbol of changing climate as they are at many 
places close to melting point and therefore highly sensitive to changes in air temperatures. 
Their response to warming trends is well-manifested by fast-retreating glacier tongues or even 
whole glaciers collapsing and decaying over very short time periods (Kääb et al. 2018; Paul and 
Mölg 2014; Zemp et al. 2006). These images have become icons of climate change (Haeberli 
2008). CA is especially vulnerable to glacier changes, because runoff during the dry summer 
months is mainly dependent on the vast glacierized areas in Tien Shan and Pamir. In the com-
ing decades, enhanced melting may lead to an increased runoff in spring and summer (Kaser  
et al. 2010) and cause glacier lake outburst floods (GLOF), debris flow and landslides, which 
can be very damaging to settlements and agriculture (Bolch et al. 2011; Erokhin et al. 2018; 
Kapitsa et al. 2017; Petrov et al. 2017; Stoffel and Huggel 2012). Towards the end of this cen-
tury, runoff during the dry summer months is likely to continuously decrease due to reduced 
ice volumes (Hagg et al. 2007; Hagg et al. 2013; Huss and Hock 2018; Kure et al. 2013). 
Similar to in situ measurements of snow, long-term monitoring programs in CA and the ASB 
collapsed after the break-up of the Soviet Union and are currently being re-established with 
great national and international efforts.

Permafrost is defined by ground temperatures, which are continuously below 0°C over a 
period of at least one year. It mainly occurs in continental areas at high latitudes, but also in 
high mountains. Climate-induced changes in permafrost can lead to strong feedbacks with the 

Figure 8.1  Abramov glacier: one of the reference glaciers in Central Asia, where measurements were 
re-established in 2011 after a gap of 12 years

Source: Martin Hoelzle, August 2011
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climate system, for example, by releasing bound methane or carbon dioxide through thaw-
ing of permafrost soils, which in turn reinforces the greenhouse effect (Koven et al. 2011). 
In addition, ice melting in permafrost soils causes land subsidence due to the loss of its vol-
ume. Furthermore, on inclined topography and with an increasing active layer,1 erosion can 
intensify. Infrastructure can directly heat the permafrost in the ground, leading to local desta-
bilization with associated prevention and maintenance costs. In high-mountain regions, recent 
increases in air temperature cause rock falls, landslides, debris flows and increased creep rates 
in rock glaciers (Delaloye et al. 2010; Sorg et al. 2015), and increased runoff from permafrost 
zones with high ice contents (Bolch and Marchenko 2009; Mateo and Daniels 2018). CA and 
the Tibetan Plateau host the largest permafrost area outside the polar regions (Gruber 2012). It 
covers around 3.5×106 km2, which corresponds to about 15 per cent of the total areal extent of 
permafrost in the Northern Hemisphere. Permafrost research in high mountains only began in 
the late twentieth century, but since then considerable progress has been made in understand-
ing mountain permafrost processes (Haeberli et al., 2010).

The following sections examine each of the three cryosphere components in the ASB and 
larger CA in more detail.

Alpine snow cover

The ASB river flow during the vegetation period in summer months is dominated by snow-
melt, followed by glacier melt in late summer. Thus, high mountains of the ASB can be 
considered natural water towers of the region where winter precipitation is stored in the form 
of snow and melts during a warm period. The meltwater from seasonal snow cover is vital for 
the economic development and social security (e.g., Aizen et al. 1995; Sorg et al. 2012; Unger-
Shayesteh et al. 2013). Also, through the snow-albedo feedback, changes in seasonal snow 
cover may affect local and regional climate and reinforce surface warming in ASB headwaters 
(e.g., Aizen et al. 2000).

Despite the importance of snow, the snow-related data (snow depth, snow cover, snow 
water equivalent, snow density) are limited in the ASB. Snow depth and snow water equiva-
lent data are mainly available from the meteorological stations of national hydrometeorology 
services. In addition to station data, field survey and airborne snow data were collected during 
the Soviet era (Krenke 1998)2. Snow measurement surveys of this type were regularly carried 
out in CA, predominantly in Kyrgyzstan, Tajikistan and Uzbekistan, to assess snow storage and 
corresponding water availability during the vegetation period. Snow density and snow water 
equivalent were also recorded during these surveys. Unfortunately, the frequency of field and 
airborne snow surveys decreased dramatically after the breakup of the Soviet Union in 1991 
(Unger-Shayesteh et al. 2013). Uzbekistan and Tajikistan continued a few airborne surveys but 
there were no such surveys in Kyrgyzstan (Glazirin 2007).

There are few studies of the long-term trends and shorter-term variability in snow cover. 
Aizen et al. (1997) analyzed snow data from 110 stations for the time period from 1940 to 1991 
and found a decrease of mean annual snow depth of 8–14 cm at elevations below 2000 masl 
(meters above sea level) and of 6–19 cm at higher elevations. They also concluded that the 
number of days with snow cover decreased by nine days during this period. Glazirin (2006) 
analyzed snow cover duration at the Oigaing and Tashkent stations from the 1930s and reported 
slight negative trends, which were, however, not statistically significant. Tsarev (2006) analyzed 
snow depth, precipitation and temperature data to estimate how climate change impacts on the 
maximum snow storage in the mountains of Central Asia based on a temperature-precipitation 
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approach. According to his results, scenarios of a temperature increase of 2°C and a precipita-
tion decrease of 30 per cent would lead to about 30 per cent less snow storage in March when 
snow accumulation peaks. Merkushkin and Tsarev (2007) introduced an empirical relationship 
between snow parameters and elevation that can be used to estimate snow parameters for any 
basin and assess impacts of climate change scenarios.

Remote sensing products have become an important source of snow data in mountainous 
areas of the ASB in the past three decades. Moderate-resolution imaging spectroradiometer 
(MODIS) and advanced very-high-resolution radiometer (AVHRR) data are among those 
that are widely used in the ASB to assess water availability. Yakovlev (2005) used the end-of-
March AVHRR snow cover data for runoff modeling in the Pyanj Basin in Tajikistan. Gafurov  
et al. (2013) assessed the quality of MODIS snow cover data against manual observations from 
stations in the ASB and reported about 93 per cent accuracy. However, cloud cover prevents 
the efficient use of optical remote sensing in hydrological studies. Gafurov and Bàrdossy (2009) 
developed a methodology for cloud removal and applied it in the Kokcha River Basin of the 
ASB. Zhou et al. (2013) used cloud-removed AVHRR snow cover data to understand snow 
characteristics in the ASB and reported that in the plain areas maximum snow coverage can 
reach up to 32 per cent of the total area and in the mountainous areas this value can exceed 80 
per cent. Dietz et al. (2014) used combined AVHRR and MODIS snow cover data to under-
stand the elevation-dependent snow cover characteristics and reported a snow cover duration 
rise of ~4 days per 100 m elevation. Gafurov et al. (2016) developed an all-in-one package 
MODSNOW-Tool, which includes all processing steps of raw MODIS data including cloud 
removal. This tool allows operational and automated monitoring of snow coverage at pre- 
defined river basins using the MODIS data. The MODSNOW-Tool is officially implemented 
in all five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and 
Uzbekistan) and is currently used to improve seasonal river flow forecasts based on snow cover 
information obtained from remote areas (Apel et al. 2018; Kalashnikova and Gafurov 2017). 
Besides MODIS and AVHRR optical remote sensing snow cover maps, LANDSAT snow 
cover maps with high spatial resolution (30 m) were used to reconstruct glacier mass balance 
in selected glaciers in the ASB (Barandun et al. 2018; Kronenberg et al. 2016). Satellite radar 
systems, e.g., Sentinel-1, are being tested for their capability to detect snow water equivalent 
(Conde et al. 2019). Overall, snow cover maps, obtained from remote sensing, can signifi-
cantly improve understanding of the hydrological processes in the ASB. Maps of mean monthly 
snow-covered area and snowmelt for the periods 1961–1990 and 2001–2010 for six major river 
basins in Asia, including the Amu Darya and the Syr Darya, are available at http://waterdata.
iwmi.org/Applications/Glacier_Snow_Asia/.

Alpine glaciers

The Tien Shan Mountains host almost 15,000 glaciers, covering a surface area of about 12,400 
km2 (RGI Consortium 2017; Sorg et al. 2012), while both reported glacier coverage and gla-
cier number in the Pamir (incl. Pamir Alay) Mountains are slightly higher according to the 
most recent inventory (~13,800 km2, No. ~17,000 (Mölg et al. 2018)). The mountain ranges 
are conventionally divided into Western/Northern Tien Shan (glacierized area: ~2,265 km2), 
Eastern Tien Shan (~2,210 km2), Central Tien Shan (~7,270 km2) and Jetisu (Dzhungarsky 
Alatau) (~520 km2), Pamir-Alay (~2,080 km2), Western Pamir (~9,470 km2) and Eastern Pamir 
(~2280 km2) (Aizen et al. 1995; Bolch et al. 2019; RGI Consortium 2017; Mölg et al. 2018). 
A significant part of this glacierized area is situated in the ASB (Figure 8.2). The median glacier 
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elevation is highest in the Eastern Pamir (>5000 masl), slightly less than 4900 masl in the 
Western Pamir, approximately 4200 masl in the Central Tien Shan, and lowest in the Western 
and Northern Tien Shan (3700 to 3900 masl) (Mölg et al. 2018; Sakai et al. 2015). Glaciers 
in the west receive more precipitation during winter, whereas summer accumulation regimes 
become predominant towards the east (Dyurgerov et al. 1994; Sakai et al. 2015) where a com-
bination of low temperature and summer precipitation maximum is more common (Kutuzov 
and Shahgedanova 2009).

Glacier mass balance

In the 1950s, an extensive system of cryospheric monitoring in Central Asia was launched 
under the auspices of the USSR Committee for the International Hydrological Decade and the 
measurements intensified during the following years (Dyurgerov 2002; Kuzmichenok 2006; 
WGMS 2017). Monitoring included extensive glacier mass balance measurements on sev-
eral glaciers (e.g., Central Tuyuksu, Golubin, Karabatkak, Abramov in the Soviet Union and 
Urumchi Glacier No. 1 in China, (WGMS 2017)). The majority of these in situ monitoring 
programs stopped in the early 1990s after the breakup of the USSR. Regular mass balance 
measurements continued only on Central Tuyuksu (Shahgedanova et al. 2018) and Urumchi 
Glacier No. 1 in China (WGMS 2017), neither of which, however, is in the ASB. Efforts to 
re-establish in situ glacier monitoring of the formerly monitored glaciers located in the ASB and 
nearby catchments have started since around 2010 through intensive international and national 
collaboration projects (Hoelzle et al. 2017). At present, mass balance is monitored on more 
than ten glaciers with longer measurement series. These glaciers are distributed throughout the 
mountain ranges of Central Asia, and Abramov, Barkrak, Batysh Sook and Glacier No. 354 are 
located in the ASB.

Figure 8.2  Overview map of the study region. The ASTER-derived geodetic mass change for each 
subregion of the Tien Shan and the Pamir derived in Barandun et al. (2019) are shown. 
The locations of all glaciers with continuous, long-term mass balance series are indicated red.

Source: Constructed by authors
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Despite this success, relative to the large number of glaciers located in this area, data 
remain sparse. To fill the gap in direct glaciological observations and to cover larger moun-
tain areas, glacier volume changes were assessed on different catchment scales from local (e.g., 
Aizen et al. 2007; Bolch et al. 2011; Goerlich et al. 2017; Holzer et al. 2015; Li et al. 2017; 
Pieczonka and Bolch 2015) to regional studies (e.g., Brun et al. 2017; Gardelle et al. 2013; 
Gardner et al. 2013; Lin et al. 2017; Wang et al. 2017) using remote sensing. Furthermore, 
several mass balance time series are available from modeling studies (Farinotti et al. 2015; Li  
et al. 2011; Liu and Liu 2016). However, detailed region-wide mass balance time series with 
a high temporal resolution are still lacking.

In the Tien Shan, region-wide geodetic mass balance assessments agree on a glacier mass 
loss during the past two decades. Results of mass change estimates range from about −0.3 
m w.e. a-1 to −0.7 m w.e. a-1 (Brun et al., 2017; Farinotti et al., 2015; Gardner et al., 2013). 
Accelerated mass loss since the 1970s was reported for most regions (e.g., Farinotti et al., 
2015; Pieczonka et al. 2013; Sorg et al., 2012). No significant acceleration of glacier mass loss 
could be identified since the onset of the century through snowline-constrained mass balance 
modeling (Barandun 2019). However, an increase in inter-annual variability was observed, 
pointing toward a change in the mass balance regime from a more continental to a more mar-
itime setting, as described by Dyurgerov and Dwyer (2001). The highest geodetic mass loss 
was observed in the Eastern Tien Shan (not in the ASB). The lowest rates of mass loss were 
found in the Central Tien Shan (Figure 8.2). Comparison of the different geodetic assessments 
showed a good agreement for the Inner and Central Tien Shan (Brun et al. 2017; Farinotti  
et al. 2015; Gardner et al. 2013) and for the Northern/Western Tien Shan (Bolch 2015; Brun  et al. 
2017; Gardner et al. 2013). For the two aforementioned regions, an ASTER-derived average 
mass loss of approximately −0.5 m w.e. a-1 and −0.4 m w.e. a-1, respectively, was calculated 
from 2004 to 2012.

Published mass change assessments for the Pamir show quite large divergence and range 
from a close to balanced budget (+0.14 to −0.13 m w.e. a-1; Brun et al. 2017; Gardelle et al. 
2013; Gardner et al. 2013; Kääb et al. 2015) to strongly negative mass balances (−0.48 to 
−0.52 m w.e. a-1; Kääb et al. 2015; Pohl et al. 2017). There are still discrepancies between 
the assessments, leading to debates over the ambiguous mass balance regime and its change. 
Important methodological differences, input data quality, inconsistent study periods and spa-
tial divisions can explain the differences to some extent. A compilation and reassessment of 
the different published geodetic estimates revealed, on average, a mass loss of 0.26 m w.e. 
a-1 for Western Pamir and balanced budgets for the Eastern Pamir (−0.02 m w.e. a-1) for 
the period after 2000 (Bolch et al. 2019). This is in line with recent geodetic estimates by 
Barandun (2019), who reports −0.37 ± 0.42 m w.e. for the Western Pamir and +0.19 ± 1.47 
m w.e. for the Eastern Pamir.

The reanalyzed historical glaciological measurements, reconstructed mass balance data 
and re-initiated in situ measurements provide a comprehensive and complete mass balance 
time series for Abramov, Golubin, Batysh Sook and Glacier No. 354 (Barandun et al. 2018; 
Barandun et al. 2015; Kenzhebaev et al. 2017; Kronenberg et al. 2016). Modern direct meas-
urements revealed mass losses ranging from −0.25 to −0.51 m w.e. a-1 (2011–2016) and 
reconstructed mass balances confirmed the negative signal for the last decades for these 
glaciers (−0.30 to −0.43 m w.e. a-1 from 2000 to 2014; Barandun et al. 2018; Barandun et al. 
2015; Hoelzle et al. 2017; Kenzhebaev et al. 2017; Kronenberg et al. 2016). The first mass 
balance calculations reported moderate mass loss of −0.10 to −0.25 m w.e. a-1 for Barkrak 
Middle Glacier in Uzbekistan for 2017–2018 (unpublished results). For Abramov, geodetic 
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mass change of −0.36 ±0.07 m w.e. a-1 derived from aerial photographs and high-resolution 
optical satellite data for 1975 to 2015 also agreed with reanalyzed and reconstructed time 
series (Denzinger 2018). Unfortunately, meaningful comparison between the different stud-
ies was not always straightforward due to a very limited number of studies assessing the mass 
change of individual glaciers in the region and due to differences in study periods. New 
developments try to implement tools allowing for an optimal reconstruction of annual mass 
balance time series of a large amount of unmeasured and remote glaciers on mountain range 
scales based on a sophisticated combination of in situ and remote measurements coupled with 
different models. The resulting mass balance time series permit the determination of annual 
mass balance variability for a large number of glaciers in the Tien Shan and Pamir, with min-
imal cost and labor effort (Barandun 2019).

Glacier area changes

Several studies employed remote sensing techniques to map glacier area fluctuations (e.g., 
Bolch 2007; Khromova et al. 2003; Khromova et al. 2006; Narama et al. 2010; Ozmonov  
et al. 2013; Shangguan et al. 2006). Glacier retreat and reduction in glacier area are observed 
throughout the Tien Shan but rates of retreat vary (Sorg et al. 2012; Unger-Shayesteh et al. 
2013). In the Pamir, glacier change follows a more heterogeneous pattern (Knoche et al. 
2017). Generally, the highest loss of glacierized area is observed in the outer regions and at 
lower elevations, while in the inner regions, in the inter-mountain basins and in the higher- 
elevation regions of the Pamir and Tien Shan the observed glacier shrinkage is slower (Aizen 
et al. 2014; Narama et al. 2010; Sorg et al. 2012; Unger-Shayesteh et al. 2013). A comparison 
of glacier area change in the Pskem (the western part of the ASB, with a mean elevation of the 
glacierized area of 3000 masl), At Bashy and the southeastern Ferghana ranges (inner ranges in 
the southeastern part of the ASB with a mean elevation of 3500 masl) show that in the Pskem 
Basin glaciers lost 19 per cent and 5 per cent in the 1970–2000 and 2000–2007 periods, while 
in the At Bashy and Ferghana ranges they lost 12 per cent and 4 per cent, and 9 per cent and 0 
per cent in the same periods, respectively (Narama et al. 2010). For the Naryn Basin, Kriegel  
et al. (2013) reported a glacier area reduction of 23 per cent for the 1970s–mid-2000s period. 
In most basins (e.g., Pskem, At Bashy, Naryn) an acceleration in glacier shrinkage is reported 
in the twenty-first century, particularly in the catchments where small glaciers (which also 
tend to be located at lower elevations) prevail.

Climate considerations

The sensitivity of glaciers to increasing summer temperatures is assumed to be responsible 
for the long-term retreat (Glazirin et al. 2002); however, changes in precipitation should not 
be disregarded. In particular, a well-documented step reduction in precipitation observed in 
Central Asia in the 1970s, driven by changes in atmospheric circulation, led to a decrease in 
annual mass balance due to a reduction in accumulation (Cao 1998; Shahgedanova et al. 2018). 
More recent changes in precipitation are non-uniform across the region. Many studies report 
no statistically significant long-term trends in annual or seasonal precipitation while stress-
ing strong inter-annual variability (Chevallier et al. 2014; Finaev 2006; Kriegel et al. 2013; 
Narama et al. 2010; Shahgedanova et al. 2018). An increasing number of positive-degree days 
in the high-elevation regions suggests a growing frequency of days with liquid precipitation 
(Kriegel et al., 2013) which results in lower accumulation and further enhancement of glacier 
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melt through suppressing surface albedo. Some of the earlier studies, considering changes in 
precipitation in the 1970s–2000s, reported increasing trends (Unger-Shayesteh et al. 2013). 
Considering the negative mass budget of the glaciers in the ASB, these did not compensate for 
the increase in air temperature (Khromova et al. 2006).

Alpine permafrost

Tien Shan and Pamir permafrost distribution

Continuous permafrost exists above 3600 masl in the central-northern Tien Shan Mountains. 
The discontinuous zone extends from 3200 to 3600 masl, while the sporadic zone is present 
from 2700 to 3200 masl (Figure 8.3). Within these zones, permafrost spread may be strongly 
influenced by local topography and other ground conditions.

Since the end of the Little Ice Age, permafrost in the Tien Shan Mountains experienced 
a continuous warming until present (Marchenko et al. 2007). The first systematic permafrost 
temperature measurements in the Northern Tien Shan began in 1973 (Gorbunov and Nemov 
1978). Initial geothermal observations (1974–1977) in boreholes in the Northern Tien Shan 
showed that permafrost temperatures within loose deposits and bedrock at an altitude of 3300 

Figure 8.3  World Terrain Base map showing permafrost zonations, locations of boreholes and active-
layer monitoring sites in Central Asia (after Gruber 2012)

Source: Constructed by authors



The alpine cryosphere

109

masl vary from −0.3°C to −0.8°C (Gorbunov and Nemov 1978). Thickness of permafrost in 
this area varied from 15 to 90 m and the maximum active-layer thickness reached 3.5–4.0 m 
(Gorbunov and Nemov 1978). Permafrost investigations in the Inner Tien Shan were performed 
between 1985 and 1992. The results of these investigations included permafrost temperature 
records, active-layer thickness measurements, descriptions of the cryogenic structures of frozen 
ground maps, and charts of the distribution of permafrost, ground ice, and periglacial landforms. 
Ground temperature measurements were carried out in 20 boreholes in the Akshiirak massif 
(42°N, between 4000 and 4200 masl), and in more than 25 boreholes in the Kumtor Valley 
(between 3560 and 3790 masl). In the Akshiirak Mountain Range, at elevations of 4100–4200 
masl, the lowest measured ground temperature was −5°C in the bedrock (Paleozoic schist) and 
−6.7°C in the ice-rich Late Pleistocene moraines. The corresponding thickness of permafrost 
was 350–370 m and 250–270 m, respectively (Gorbunov et al. 1996). Thickness of the active 
layer on the western slope of the Akshiirak massif decreased from 2.5–3.5 to 0.5–0.7 m within 
3200–4000 masl. In the southwestern part of the Tien Shan (Chatyr-Kol and Aksai depressions, 
40°30’N), at an elevation of 3500–3600 masl, the thickness of permafrost in loose deposits was 
60–90 m and its temperatures were between −1.2 and −1.6°C. The geothermal gradient in the 
Tien Shan changes from 0.01°C m-1 at the mountain ridges and up to 0.02–0.03°C m-1 at the 
bottom of the valleys and within the mountain depressions (Schwarzman 1985).

It is important to note that the 3D topography of the mountains strongly controls the heat 
flow direction. In steep mountainous topography the heat flow in the area of mountain peaks 
in the Northern Hemisphere is in general not vertical but more horizontal from the warm 
southern side to the cold northern side (Magnin et al. 2015; Magnin et al. 2017; Noetzli and 
Gruber 2009; Noetzli et al. 2007). This is particularly important when interpreting temper-
ature measurements in deep boreholes as the temperature profiles are heavily impacted by 
the topography (Gruber et al. 2004). Relict Pleistocene permafrost was found in the Aksai 
depression (40°55’N, 76°25’E) at an elevation of 3160 masl. A 400-meter-deep borehole 
revealed a two-layered permafrost structure with a lower layer of frozen clay at a depth 
between 214 and 252 m (Aubekerov and Gorbunov 1999). The thickness of the modern 
upper layer of permafrost is 90–110 m. This is the one single observation of relic permafrost 
in the Tien Shan Mountains.

Permafrost temperature observations during 1974–1977 and 1990–2009 indicate that the 
ground has warmed in the Kazakh part of Tien Shan Mountains over the past 35 years. The 
increase from 1974 to 2009 varies from 0.38°C to 0.68°C at depths of 14–25 m. Based on 
interpolation of borehole temperature data, the active layer increased in thickness from 3.2 
to 3.4 m in the 1970s to a maximum of 5.2 m in 1992 and to 5.0 m in 2001 and 2004. The 
average active-layer thickness for all measured sites increased by 23 per cent in comparison to 
the early 1970s (Marchenko et al. 2007).

In the Pamir, knowledge on permafrost distribution, properties and impacts is limited. 
Müllebner (2010), using datasets provided by the Tajik hydro-meteorological service, 
derived an elevation of 3300 masl for the 0°C isotherm. This elevation was interpreted 
as the approximate lower boundary (without considering surface offsets) for permafrost in 
Tajikistan. That constitutes approximately 44.3 per cent of the total area of Tajikistan as 
potential permafrost area and up to 84.1 per cent of the eastern Pamir (Gruber and Mergili 
2013; Mergili et al. 2012).

The few thickness measurements in the Karakul lake area suggest relatively thin and une-
venly distributed permafrost. Reported thicknesses range from 21–22 m near the eastern coast 
of Lake Karakul (elevation approximately 3900 masl), while approximately 1 km to the east 
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of this site a permafrost thickness of 120–140 m has been reported from drill sites (Gorbunov  
et al. 1996). Further south, in the Rangul depression, the permafrost thickness is just 15 m at 
an altitude of 3800 masl, while at the elevation range from 4050–4150 masl it varies from 25 
to 110 m (Gorbunov 1978).

Permafrost and changing climate

Overall, very little progress has been made so far in quantifying changes of permafrost under 
future climate in CA. Mean annual air temperature is the primary climate control on permafrost 
extent, further modified by surface–atmosphere interactions (mainly snow cover thickness and 
duration) controlled by topography and surface cover. Clear increasing trends in mean temper-
ature have been observed throughout the CA region (Figure 8.4) with the possible exception of 
the central Pamir region, which may be affected by the so-called Karakoram anomaly (Forsythe 
et al. 2017). These trends are expected to continue in the future, as projected by all scenarios 
from the most recent Coupled Model Intercomparison Project- Phase 5 (CMIP5) and hence 
widespread permafrost degradation in CA may be expected.

As mountain permafrost slopes warm, they tend to destabilize, primarily through reduced 
mechanical strength, potentially leading to various types of mass movements such as debris 
flows, rock avalanches, or, in the case of ice-cored moraine dams, glacial lake outburst floods 
(GLOFS). Mass movements are complex phenomena and while climate-induced perma-
frost degradation (observed at GTNP3 sites in Tien Shan, e.g., Marchenko et al. 2007) can 
be a key driver of such events, it is not straightforward to disentangle the climate signal 
from normal erosional processes in mountain regions. However, there is increasing evi-
dence that increased incidence of thermally induced slope instabilities should be expected as 
high-mountain regions warm. Due to the high potential energy inherent in steep environ-
ments and the possibility of compound events that entrain moisture sources (glacier ice, snow 
or water), the consequences of mass movements can be far-reaching and affect communities 
many kilometers downstream.

Figure 8.4  Observed and projected climate change in Central Asia as reported by ERA-Interim 
reanalysis for climate normals: (A) and current anomaly (B) and GCM multimodal means 
(Hempel et al. 2013) for RCP2.6 (C) and RCP8.5 (D) (projected changes 2081–2099). 
Cooling of up to 1oC is shown in white in panel (B) and corresponds to the so-called 
‘Karakoram anomaly’. Note all temperature scales are in oC, precipitation normal is in mm 
whereas precipitation anomalies are in % change

Source: Constructed by authors
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Permafrost as a potential water resource

Central Asia is a relatively arid region where permafrost ice could be a significant contributor 
to the hydrological cycle as compared to more humid regions, e.g., the European Alps, particu-
larly in the latter half of the twenty-first century, when glacial contributions are projected to be 
sharply reduced (Huss and Hock 2018). According to Gorbunov et al. (1996) the total volume 
of ground ice in the Northern Tien Shan is 56 km3, which equals 62 per cent of the surface ice 
volume for the same territory, underscoring its potential value as a water resource (Bolch and 
Marchenko 2009). Furthermore, it has been estimated that the ratio of rock glacier to surface 
ice in CA is several times higher than in the European Alps. Permafrost responds more slowly 
to climate due to the insulating effect of the overlying active layer together with ventilation 
effects, mainly caused by coarse blocky surface material. Permafrost-based water resources are 
therefore likely to be available long after surface ice is heavily depleted.

Improving permafrost monitoring

While much research activity has focused on permafrost of the Northern Tien Shan (Bolch and 
Gorbunov 2014; Bolch and Marchenko 2009; Gorbunov and Titkov 1992; Marchenko et al. 
2007; Sorg et al. 2015), to date there is a paucity of information throughout the Pamir region. 
The region has a total of two permafrost boreholes listed in the GTNP database.4 Continuous 
in situ measurements and monitoring in remote mountain areas of CA are challenging due to 
difficult access, complex topography, financial and logistic constraints, political instability, as 
well as lack of appropriate infrastructure (Hoelzle et al. 2017; Unger-Shayesteh et al. 2013). 
There are very few datasets above 3000 masl and virtually none above 5000 masl. If mete-
orological stations are present at all, they are usually located at lower elevations where most 
of the population lives. Remote sensing data as well as model-assimilated observations (from 
reanalysis data) are used to fill the observational gap. However, the relatively short time series 
and coarse resolution do not allow for robust assessments of changes in mountain areas with 
complex topography (Prein et al. 2015). This makes the case for denser observational networks 
in remote mountain areas ever more urgent.

Runoff trends and water-related hazards in headwater catchments

While a decline in the streamflow of the Amu Darya and Syr Darya are well documented 
(Micklin 2007), changes in discharge of their tributaries, particularly in the headwater catch-
ments, have received less attention (Chevallier et al. 2014). Existing studies suggest that 
long-term (50–60 years) trends in streamflow in the unmodified headwater catchments (where 
cryosphere components are present) annually or during the melt season are either insignificant 
or inconsistent. Contrasting runoff trends were reported by Khan and Holko (2009), who 
analyzed the reconstructed natural flow time series for the gauges Chinaz (close to the border 
between Uzbekistan and Kazakhstan, taken as representative for the upper Syr Darya Basin) and 
Kerki (near the border between Afghanistan and Turkmenistan, representing the upper Amu 
Darya Basin). Kriegel et al. (2013) examined the long-term time series of monthly streamflow 
in the headwaters of the Big Naryn and the Small Naryn, concluding that August is a month 
in which glacier melt is expected to make the most prominent contribution to discharge. 
According to these observations, streamflow declined by 20 per cent and increased by 21 per 
cent in the Small Naryn and Big Naryn respectively, but there were no significant trends in 
summer streamflow of either river between 1960 and 2007.
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Studies analyzing trends in streamflow over shorter time periods show an increase in stream-
flow; for example, Finaev (2006) reported positive trends at several gauges in the Pamir for 
the 1990–2005 period but acknowledges that poor data quality may have affected the results. 
Although few, the existing analyses of discharge in the headwater catchments of the ASB 
and some neighboring basins (Shahgedanova et al. 2018; Duethmann et al. 2015; Krysanova 
et al. 2015; Kundzewicz et al. 2015) show that, to date, summer streamflow has not declined. 
However, the relative contributions of glacier, snow and permafrost may need more insights.

The current observed trends in streamflow and runoff point in the direction of increased 
water availability in July and August at least until mid-century and increased possibility for 
water storage in reservoirs and aquifers. However, eventually this will change as glaciers waste 
away; runoff patterns may change considerably after mid-century (Sorg et al. 2014). In a global 
effort to model runoff changes of more than 50 glacierized basins worldwide, Huss and Hock 
(2018) found that annual glacier runoff from about half of the basins will continue to increase 
until peak water is reached, and will start to decline afterwards (Figure 8.5).

Peak water will occur later in areas with a higher glacierized fraction and a higher altitu-
dinal distribution of the ice masses. Seasonal runoff is expected to increase in early summer 
but decrease in late summer. Depending on the climate scenarios employed, peak water will 
occur in 2030 ± 2 (RCP2.6, mitigation scenario), and 2044 ± 15 (RCP8.5, business-as-usual 
scenario) in the ASB. Correspondingly, their model predicts an annual runoff increase for the 
ASB until peak water of 37 per cent (RCP2.6) and 53 per cent (RCP8.5). The increasing rate 
of evapotranspiration in a warmer climate combined with reduced water flow once peak water 
has been reached might further intensify challenges for water availability and management 
(Cretaux et al. 2013). However, studies focusing on predicting peak water on a smaller scale 
(individual catchments) are still lacking for the region and they are necessary in order to better 
assess the vulnerability of the local populations in the coming decades.

Changes in water resources are to be understood also in terms of changes in the frequency 
and distribution of water-related hazards, such as river floods, glacier lake outburst floods 
(GLOFs) and rain-on-snow events (rapid melting of snow combined with intense precipita-
tion). Recent studies have reported that the number and extent of glacier lakes is increasing 
around the world as a consequence of increased temperatures in high-mountain areas (Carrivick 
and Tweed 2013; Tweed and Carrivick 2015; Wang and Zhang 2013) and that this trend will 
continue into the future (Kapitsa et al. 2017). The formation of ice- and moraine-dammed 
lakes from increased glacier melt has the potential to generate glacier lake outburst floods 
(GLOFs) hazards. The Dasht event in 2002 in the Shakhdara Valley (southwestern Tajik Pamir) 
is a stark reminder of the destructive power of such events. During the event 250,000 m3 of 
water was released. The flow of water and entrained debris travelled about 10 km downstream 
to Dasht village. Large sections of the village were destroyed and the event claimed the life of 
more than 20 people (Komatsu and Watanabe 2014). Another more recent GLOF event in 
the Teztor Valley (Ala-Archa River catchment in the Tien Shan) in northern Kyrgyzstan in 
2012 entrained a debris flow that caused minor disruption to the capital Bishkek (Erokhin et al. 
2018). The event was preceded by intense precipitation and rapid rise in temperature, which 
are believed to have been the cause (Erokhin et al. 2018).

More than 1500 lakes extending across Tajikistan, Kyrgyzstan and Afghanistan have been 
identified through satellite remote sensing (Mergili et al. 2013). Kyrgyzstan alone counts about 
2000 glacial lakes in its territory, of which 20 per cent are considered at potential risk of out-
burst due to unstable dams and frequent overflows (Janský et al. 2008). A new glacier lake 
inventory for the Uzbekistan territory (Petrov et al. 2017) identified 242 in the four Uzbekistan 
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mountain regions, with more than half (131) located in the Tashkent region. Forty per cent of 
these (97 lakes) were classified to have a high outburst potential.

The increase in number and extent of glacier lakes does not appear to be accompanied by 
an increase in glacial floods (Harrison et al. 2018). Conversely, some studies have suggested a 
global decline in glacier floods since the 1990s, possibly associated on the one side with delayed 
response of glacier flood activities with glacier retreat (Harrison et al. 2018), and on the other 
side with the capacity of successive floods to give rise to river channels, which are better suited 
to accommodate subsequent flood events (Carrivick and Tweed 2016).

Global and regional climate models point in the direction of future increase in the inten-
sity and frequency of extreme precipitation (Seneviratne et al. 2016). At high altitude and/
or latitude, extreme precipitation and higher temperature might exacerbate the frequency of 
rain-on-snow flood events, which are responsible for the most damaging floods in mountain 
areas (Würzer et al. 2016). Furthermore, precipitation extremes combined with reduced snow 
and ice might be responsible for increased sediment transport and subsequent deterioration of 
water quality, infiltration in hydropower reservoirs and damage to infrastructure and agricul-
ture (Huss et al. 2017). A wide knowledge gap exists on the future evolution of extreme events 
and their impacts on people, infrastructure and livelihoods in Central Asia (Unger-Shayesteh  
et al. 2013; Xenarios et al. 2019).

Conclusions

With its two large mountain ranges, Tien Shan and Pamir, Central Asia contains a large part of the 
worldwide alpine cryosphere, which has a fundamental function as a water storage reservoir with 
very different temporal scales, as described in this chapter. The state of current knowledge about the 
different cryospheric components, their processes, and their connection to climate in the Central 
Asian mountains and in the ASB catchment in particular varies. In the areas of snow and glacier 
research, knowledge in CA is quite advanced, whereas in permafrost research it is still marginal. 
Considerable work has been undertaken since the 1990s to address existing research gaps. One 
basic prerequisite for sound future estimates of cryospheric changes in the Central Asian mountains 
is the re-establishment of high-quality monitoring sites and capacity building, i.e., the education of 
young local scientists being able to continue the existing as well as new monitoring programs and 
to independently build up local research capacities. Currently such capacities and innovations are 
strongly supported through international projects such as the Central Asia Water project (CaWA5), 
an international consortium of German and Central Asian institutions, the Capacity Building and 
Twinning Climate Observing System and Cryospheric Climate Services for Improved Adaptation 
of the Swiss Agency for Development and Cooperation (CATCOS6 and CICADA7), and the 
Central Asia Hydrometeorology Modernization Project (CAHMP8) of the World Bank, and many 
projects supported by the UK Newton Fund and Global Challenges Research Fund.

The modern alpine cryospheric network of Switzerland can serve as a role model for 
the mountainous countries in Central Asia. Swiss cryospheric monitoring networks (such 
as PERMOS, GLAMOS, or the snow monitoring network) are mainly funded by the 
Swiss government and are implemented primarily by researchers of different universities 
and research institutions. This is a reliable model that has extended operational monitoring 
capabilities beyond regions traditionally serviced by standard operational centers. A focus on 
collaboration between traditional operational hydro-meteorological services with academic 
sectors and the international networks they leverage could also be a model for improving the 
observing capabilities in high-mountain regions of CA in general, and the ASB in particular.
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Notes

1 Active layer corresponds to the layer of ground that is subject to annual thawing and freezing in areas 
underlain by permafrost.

2 Data from National Snow and Ice Data Center, Central Asian snow cover from hydrometeorological 
surveys, 1932–1990, https://nsidc.org/data/g01171.

3 Global Terrestrial Network for Permafrost mandated by Global Climate Observing System/WMO.
4 http://gtnpdatabase.org/boreholes.
5 http://cawater-info.net/.
6 www.meteoschweiz.admin.ch/home/forschung-und-zusammenarbeit/projekte.subpage.html/de/

data/projects/2011/catcos.html.
7 www.unifr.ch/geoscience/geographie/en/research/integrated-themes/international-cooperation- 

capacity-building.
8 http://projects.worldbank.org/P120788/central-asia-hydrometeorology-modernization-project?lang=en.
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