Characterizing the Mechanical Effects of Bone Substitute Material and Far-Cortical Locking Techniques in Proximal Humerus Fracture Reconstructions: A Cadaveric Study

Michael W. Hast ${ }^{1}$, Matthew Chin ${ }^{1}$, Elaine C. Schmidt ${ }^{1}$, Jennifer Sanville ${ }^{1}$, G. Karl Van Osten ${ }^{2}$, Samir Mehta ${ }^{1}$

1) University of Pennsylvania, Philadelphia, PA 2) North Mississippi Medical Center, Tupelo, MS

Proximal humerus fractures: One of the most common fractures among the elderly

Projected number of emergency department humerus fractures in 2030

Purpose: Determine which fixation method is biomechanically more effective at reducing implant failure.
Experimental Groups ($\mathrm{n}=8$)

Biomechanical Comparison Between Groups

Stiffness During Cyclic Loading

Kaplan-Meier Survival Curve

Bone substitute material and far-cortical locking resulted in significantly different construct mechanics.

- Initial changes to construct mechanics degraded over time, as the four techniques provided similar long-term stiffnesses and implant fatigue life.

Pre- and Post-Test Screw Tracking

- Proximal screws rotated significantly more than associated locked screws.
- Stiffnesses of BSM and ALL groups could be improved with cannulated screws that are also locking.

Take-home messages:

- FCL and BSM techniques change the immediate post-operative mechanics of proximal humerus fracture repairs, however the impact of these changes on fatigue life remain unclear.
- Modulations of construct stiffness create an opportunity for orthopedic surgeons to optimize and personalize proximal humerus fracture fixation.

Contact uS © @biedermannlab
email: hast@pennmedicine.upenn.edu
url: www.med.upenn.edu/biedermann

Acknowledgments

[^0]
[^0]: This study was funded by Zimmer Biomet

