Characterizing the Mechanical Effects of Bone Substitute Material and Far-Cortical Locking Techniques in Proximal Humerus Fracture Reconstructions: A Cadaveric Study

Biedermann Lob for ORTHOPAEDIC RESEARCH UNIVERSITY of PENNSYLVANIA

Michael W. Hast¹, Matthew Chin¹, Elaine C. Schmidt¹, Jennifer Sanville¹, G. Karl Van Osten², Samir Mehta¹

1) University of Pennsylvania, Philadelphia, PA 2) North Mississippi Medical Center, Tupelo, MS

Proximal humerus fractures: One of the most common fractures among the elderly

Projected number of emergency department humerus fractures in 2030

Biomechanical Comparison Between Groups

Stiffness During Cyclic Loading

Purpose: Determine which fixation method is biomechanically more effective at reducing implant failure.

- Bone substitute material and far-cortical locking resulted in significantly different construct mechanics.
- Initial changes to construct mechanics degraded over time, as the four techniques provided similar long-term stiffnesses and implant fatigue life.

Pre- and Post-Test Screw Tracking

- Proximal screws rotated significantly more than associated locked screws.
- Stiffnesses of BSM and ALL groups could be improved

Non-destructive Testing

Cyclic Testing to Failure

with cannulated screws that are also locking.

Take-home messages:

- FCL and BSM techniques change the immediate post-operative mechanics of proximal humerus fracture repairs, however the impact of these changes on fatigue life remain unclear.

Contact US 2@biedermannlab

email: hast@pennmedicine.upenn.edu url: www.med.upenn.edu/biedermann

This study was funded by Zimmer Biomet.