
Chapter

Self-Supervised Contrastive
Representation Learning in
Computer Vision
Yalin Bastanlar and Semih Orhan

Abstract

Although its origins date a few decades back, contrastive learning has recently
gained popularity due to its achievements in self-supervised learning, especially in
computer vision. Supervised learning usually requires a decent amount of labeled
data, which is not easy to obtain for many applications. With self-supervised learning,
we can use inexpensive unlabeled data and achieve a training on a pretext task. Such a
training helps us to learn powerful representations. In most cases, for a downstream
task, self-supervised training is fine-tuned with the available amount of labeled data.
In this study, we review common pretext and downstream tasks in computer vision
and we present the latest self-supervised contrastive learning techniques, which are
implemented as Siamese neural networks. Lastly, we present a case study where self-
supervised contrastive learning was applied to learn representations of semantic
masks of images. Performance was evaluated on an image retrieval task and results
reveal that, in accordance with the findings in the literature, fine-tuning the self-
supervised training showed the best performance.

Keywords: self-supervised learning, contrastive learning, representation learning,
computer vision, deep learning, pattern recognition

1. Introduction

For an effective training, supervised learning requires a decent amount of labeled
data, which is expensive. Unlabeled and inexpensive data (e.g. text and images on the
Internet) is considerably more than the limited size datasets labeled by humans. We
can use unlabeled data and perform a training on a pretext task, which is a self-
supervised approach since we do not use the labels in our real task. Although the
task and the defined loss are not the ones in our actual objective, we can still learn
some representations that are valuable enough to be used for the final task. We
basically learn a parametric mapping from the input data to a feature vector or tensor.
In most cases, a smaller amount of labeled data is used to fine-tune the self-supervised
training.
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Although its origins date as back as 1990s [1, 2], contrastive learning has recently
gained popularity due to its achievements in self-supervised learning, especially in
computer vision. In contrastive learning, a representation is learned by comparing
among the input samples. The comparison can be based on the similarity between
positive pairs or dissimilarity of negative pairs. The goal is to learn such an embedding
space in which similar samples stay close to each other while dissimilar ones are far
apart. Contrastive learning can be applied to both supervised and unsupervised set-
tings. Let us consider image classification problem. In supervised setting, positive
pairs are different instances with the same label and negative samples are selected
from other labels (Figure 1). On the other hand, in unsupervised (or self-supervised)
setting, positive pairs are parts (or augmented versions) of the same instance and
negative samples are other instances with any label. Khosla et al. [3] provide a perfor-
mance comparison between supervised and self-supervised training for image classi-
fication problem. Also, a more comprehensive review of contrastive learning can be
found in [4].

Since a self-supervised model does not know the actual labels corresponding to the
inputs, its success depends on the design of the pretext tasks to generate the pseudo-
labels from part of the input data. With these pseudo-labels, training on pretext task is
performed with a ‘supervised’ loss function. Final performance on the pretext task is
not important, but we hope that the learned intermediate representations can capture
good information and be beneficial to a variety of downstream tasks.

Especially in computer vision and natural language processing (NLP), deep learn-
ing has become the most popular machine learning approach [5]. In parallel, self-
supervised learning studies in computer vision have employed CNNs. Figure 2 shows
the knowledge transfer from a self-supervised training to a supervised one in a deep
learning setting. We save convolutional layers which are assumed to produce learned
representations. We change/add fully connected layers, place a classifier head and
train with the limited amount of labeled data for a downstream task like image
classification or object detection.

The remainder of this chapter is structured as follows. Pretext tasks that are
common in literature are reviewed in Section 2. Section 3 has detailed information
about recent self-supervised learning models that use Siamese architectures. Section 4
provides our own experimental study where self-supervised contrastive learning is
employed to learn representations of semantic segmentation masks, which is followed
by the conclusions in Section 5.

Figure 1.
Self-supervised (left) vs. supervised (right) contrastive learning. Training results in an embedding space such that
similar sample pairs stay close to each other while dissimilar ones are far apart. Figure is reproduced based on [3].
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2. Pretext tasks for self-supervised learning

Image Distortion. We expect that when an image goes through a small amount of
distortion, its semantic meaning does not change. Dosovitskiy et al. [6] used this idea
to create a exemplar-based classification task, where a surrogate class is formed with
each dataset sample by applying a variety of transformations, namely translation,
scaling, rotation, contrast and color (Figure 3). When this approach is applied to
whole image instances, it can be called as ‘instance discrimination’ [7], where aug-
mented versions of the same image (positive pair) should have similar representations
and augmented versions of the different images (negative pair) should have different
representations.

This is not only one of the first pretext tasks but also a very popular one. We will
see in Section 3 that the mentioned type of augmentations have succeeded in learning
useful representations and have achieved state-of-the-art results in transfer learning
for downstream computer vision tasks.

Image Rotation. Each input image is first rotated by a multiple of 90° at random.
A model is trained to predict the amount of rotation applied [8]. In basic setting, it is a
4-class classification problem, but different versions can be conceived. To estimate the
amount of rotation, this pretext task forces the model learn semantic parts of objects,

Figure 2.
A model is first trained with a pretext task with unlabeled data, then fine-tuned on the downstream task with
limited amount of labeled data. Usually convolution layers, which are mostly responsible of learning
representations, are transferred. A few fully-connected layers towards the end are changed or retrained.

Figure 3.
Several random transformations applied to a patch from the unlabeled dataset to be used for self-supervised
learning. Original sample is in top-left. The idea was first used by [6] and the figure is from the original paper with
author’s permission.
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such as arms, legs, eyes. Thus, it would serve well for a downstream task like object
recognition (Figure 4).

Jig-saw Puzzle. Noroozi and Favaro [9] designed a jigsaw puzzle game, where a
CNN model is trained to place 9 shuffled patches back to the original locations. Each
patch is processed independently with shared weights and a probability vector esti-
mated per patch. Then, these estimations were merged to output a permutation.

Image Colorization. The task is to colorize gray-scale images into colorful images
[10]. A CNN is trained to predict the colorized version of the input (Figure 5).
Obtaining a training dataset is inexpensive since training pairs can be easily generated.
Model’s latent variables represent grayscale images and can be useful for a variety of
downstream tasks.

Image Inpainting. The pretext task is filling in a missing piece in the image (e.g.
Pathak et al. [11]). The model is trained with a combination of the reconstruction (L2)
loss and the adversarial loss. It has an encoder-decoder architecture and encoder part
can be considered as representation learning.

Last two pretext tasks (image colorization and inpainting) and some other GANs
(e.g. image super-resolution [12]) are generation-based methods, where a missing info
in the content is generated from available input. Whereas distortion, rotation and
jigsaw are context-based self-supervision methods. For more detailed literature on
pretext tasks, we refer the readers to the review in [13].

In our study, we concentrate on the context-based approach. Taking advantage of
contrastive learning, this approach nowadays achieves state-of-the-art performance

Figure 4.
Self-supervised representation learning by rotating input images, implemented in [8]. The model classifies the
rotation [0°, 90°, 180°, 270°].

Figure 5.
A model is trained to predict the colorized version of grayscale images (obtaining the dataset is inexpensive).
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[14–17]. We will go into details, especially the models with Siamese architecture, in
Section 3. The generation-based and context-based method distinction also exists for
video representation learning. In [18], an encoder network is used to learn video
representations. Then, a decoder uses the representations to predict future frames.
Differently, Qian et al. [19] employ contrastive learning with distortions (augmenta-
tions) to learn representations and to classify video clips.

The rest of our chapter will consider works on image data. Before proceeding, let
us give a few examples where contrastive learning is used for image-text pairs.
Contrastive Language-Image Pre-training (CLIP, [20]) is a pretext task, where a text
encoder and an image encoder are jointly trained to match captions with images.
Training set consists of 400 million (image,text) pairs and an inter-modal
contrastive loss is defined such that image and text embeddings of same objects
will be closer to each other. Then, this pretraining is employed for a downstream
task of zero-shot class prediction from images. Li et al. [21] performed a similar task
for semantic segmentation. An image encoder is trained with a contrastive
objective to match pixel semantic embeddings to the text embeddings. Another
example presents contrastive learning of medical visual representations from paired
images and text [22].

3. Self-supervised contrastive learning models

The goal of contrastive learning is to learn such an embedding space in which
similar sample pairs stay close to each other while dissimilar ones are far apart.
Implemented using Siamese networks, recent approaches create two different aug-
mentations of samples and feed into the networks for contrastive learning. While
SimCLR [14] and MoCo [15] use the negative samples directly along with the positive
ones, BYOL [16] and SimSiam [17] achieved similar performance just with the posi-
tive samples. Differently, SwAV [23] forced consistency between cluster assignments
of augmentations, instead of comparing features directly. Shortly after, vision trans-
formers were included in self-supervised learning architectures [24, 25]. According to
the results, not only image classification, but also object detection and semantic
segmentation as downstream tasks benefit from self-supervised contrastive learning.
Let us briefly explain some of these main approaches.

3.1 SimCLR

Let us describe SimCLR [14] first, then we will describe other methods by com-
paring to previous ones. SimCLR uses both positive and negative samples, but being
positive or negative does not correspond to actual class labels. Augmented versions of
the anchor are taken as positives, whereas samples belong to different instances are
taken as negatives (Figure 6).

• Let T be the set of image transformation operations where t � T and t0 � T are
two different transformation operators independently sampled from x. These
transformations are random cropping and resizing, random Gaussian blur and
random color distortion. A ~xi, ~x j

� �

pair of query and key views is positive when
these two views are created by applying different transformations on the same
image x: ~xi ¼ t xð Þ and ~x j ¼ t0 xð Þ.
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• A base feature encoder f �ð Þ then extracts the representations from all the
augmented data samples hi ¼ f ~xið Þ, h j ¼ f ~x j

� �

. There is no restriction on the
choice of the encoder’s architecture but a ResNet-50 [26] model was preferred for
SimCLR due to its simplicity. The representation h in this case is the output of the
average pooling layer of ResNet-50.

• Each representation h is then fed into a projection head g �ð Þ to map
representations to the embedding space where the contrastive loss is applied.
zi ¼ g hið Þ, z j ¼ g h j

� �

. This projection head can be as simple as a one-layer multi-
layer perceptron (MLP) using a non-linear activation.

• A batch of zi, z j

� �

pairs representing the embeddings from two augmented
versions of the same image, are then fed into the contrastive loss function which
encourages the distance between embeddings from positive pairs to be small and
the distances of embeddings from negative pairs to be large.

SimCLR uses the contrastive loss given in Eq. (1). This is a categorical cross-
entropy loss to identify the positive sample among a set of negative samples (inspired
from InfoNCE [27]).

Lself ¼
X

i∈ I

L
self
i ¼ �

X

i∈ I

log
exp zi � z j=τ

� �

P

a∈A ið Þ exp zi � za=τð Þ
(1)

N images are randomly taken from the dataset. Thus, the training batch consists of
2N images to which data augmentations are randomly applied. Let i∈ I � 1:::2Nf g be
the index of an arbitrary augmented sample, then j is the index of the other

Figure 6.
SimCLR framework [14], where two separate data augmentations are sampled from a predefined family of
augmentations (crop, blur color jitter). An encoder network f �ð Þ and a projection head g �ð Þ are trained to
maximize the agreement between the embeddings of these two samples. When the self supervised learning is over,
projection head can be thrown away.
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augmentation of the same original image. τ∈Rþ is a scalar temperature parameter, �
represents the dot product, and A ið Þ � I � if g. We call index i the anchor, index j is
the positive, and the other 2 N � 1ð Þ indices as negatives. The denominator has a total
of 2N � 1 terms (one positive and 2N � 2 negatives).

A common protocol to evaluate self-supervised model efficiency is to place a
linear classifier on top of (frozen) layers learnt by self-supervised training and train it
for the downstream task with the labeled data. If the performance gap between this
self-supervised encoder + linear classifier and a fully-supervised model is small,
then the self-supervised training considered as efficient. An alternative evaluation
protocol uses semi-supervised learning, i.e. pretrained network is re-trained as a whole
with a certain percentage of available labels. Experiments reveal that re-training with
only 10% of the labeled data achieves a performance (92.8%) very close to fully-
supervised training performance on the whole dataset (94.2%) as reported in [14]
(performances are top-5 classification accuracy on ImageNet dataset for ResNet-50).

3.2 Momentum contrast (MoCo)

Contrastive methods based on InfoNCE loss tend to work better with high number
of negative examples since negative examples may represent underlying distribution
more efficiently. SimCLR requires large batches (4096 samples) to ensure that there is
enough negatives which demands high computation power (8 V100 GPUs in their
study). To alleviate this need, MoCo [15] uses a dictionary of negative representations
that is structured as a FIFO queue. This queue-based dictionary enables us to reuse
representations of immediately preceding mini-batches of data. Thus, the main
advantage of MoCo compared to SimCLR is that MoCo decouples the batch size from
the number of negatives. SimCLR requires a large batch size and suffers performance
drops when the batch size is reduced.

Given a query sample xq, we get a query representation through our online encoder
q ¼ f q xqð Þ. A list of key representations {k0,k1,k2,...} coming from the dictionary and

are encoded by a different encoder ki ¼ f k xki
� �

as shown in Figure 7. Naming two

Figure 7.
MoCo framework [15]. The encoder that takes negative samples (from a FIFO queue) is not updated by
backpropagation but with the other encoder’s parameters with a momentum coefficient. That’s why it is called the
momentum encoder.
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compared representations as query and key is new, but one can think of them as the
two augmentations of the same sample in SimCLR (Figure 6).

Let us assume that there is a single positive key, kþ, in the dictionary that
matches q. Then, the contrastive loss with one positive and N � 1 negative samples
becomes:

LMoCo ¼ � log
exp q � kþ=τð Þ

PN
1 exp q � ki=τð Þ

(2)

From the two encoders defined above, for f k we can not apply backpropagation
since it works on the queue. Copying online encoder’s ( f q) weights to f k could be a
solution, however MoCo proposed to use a momentum-based update with a momen-
tum coefficient:

θk  mθk þ 1�mð Þθq (3)

where m∈ 0, 1½ � is the momentum coefficient and θq and θk are parameters of f q and
f k respectively (Figure 7).

Later on, two design choices in SimCLR, namely MLP projection head and
more stronger data augmentation were integrated into the approach resulting in
MoCo-v2 [28].

3.3 Bootstrap your own latent (BYOL)

Different from the approaches above, BYOL [16] achieves similar representation
performance without using negative samples. It relies on two different neural net-
works (in contrast to SimCLR but similar to MoCo), referred to as online and target
networks that interact. Online network has a predictor head. Target network has the
same network architecture with the online network except for the predictor head
(Figure 8). Parameters of the target network are not updated with back-propagation,
but with a moving average of online network’s weights just as MoCo did for the
momentum encoder.

It is curious that how the model escapes from collapsing (i.e. a trivial solution of
fixed vector for each sample) when no negative samples are used. Authors of BYOL
thought it is due to the momentum update, but later (with SimSiam [17]) it was
discovered that using stop-gradient and predictor head is enough.

Figure 8.
Comparison of some Siamese architectures: SimCLR, BYOL and SimSiam. Dashed lines indicate back-
propagation. Components colored in red are no more needed in SimSiam. Figure is reproduced based on [17].
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3.4 Simple Siamese (SimSiam)

BYOL needs to maintain two copies of weights for the two separate networks
which can be resource demanding. SimSiam [17] solves this problem with parameter
sharing between the networks (with and w/o predictor head). The encoder f �ð Þ shares
weights while processing two views. A prediction MLP head, denoted as g �ð Þ
transforms the output of only one view. Thus, two augmented views (x1 and x2)
results in two outputs: p1 ¼ g f x1ð Þð Þ and z2 ¼ f x2ð Þ. Their negative cosine similarity is
denoted as D p1, stopgrad z2ð Þ

� �

, where stopgrad operation is an important component.
It implements that z2 is treated as a constant term and encoder receives no gradients
from z2. Gradient only flows back to the encoder through the prediction head.

Finally, negative cosine similarity based total loss is computed in a symmetric
fashion:

LSimSiam ¼
1
2
D p1, stopgrad z2ð Þ
� �

þ
1
2
D p2, stopgrad z1ð Þ
� �

(4)

Figure 8 compares SimSiam with SimCLR and BYOL. SimSiam [17] does not use
negative samples as SimCLR and MoCo did. Success with SimSiam also shows that
momentum encoder (or any sort of moving average update of weights) is not needed.
Stop-gradient operation and including predictor head are enough to prevent the
model from collapsing.

SimSiam also presents transfer learning results for object detection and semantic
segmentation downstream tasks. Results reveal that starting with a self-supervised
pre-training on ImageNet outperforms image classification pre-training on ImageNet.

3.5 Self-supervised vision transformers

Caron et al. [24] proposed another Siamese architecture where one of the network’s
parameters are updated with a moving average of other’s parameters. More interest-
ingly, they replaced encoder CNNs with vision transformers and reported increasing
success for various downstream tasks. Shortly after, Li et al. [25] proposed a more
efficient vision transformer architecture together with a new pre-training task which
is based on region matching.

4. Case study: semantic mask representation learning

As a case study, we employ self-supervised contrastive learning to learn represen-
tations of semantically segmented images, i.e. semantic masks. This learning task is
especially useful when two scenes are compared according to their semantic content.
A use case would be image retrieval based localization, where standard approach
extract features from RGB images and compare them to find the most similar image in
the database [29, 30]. Recently, several studies showed that checking semantic
resemblance between query and database images and using this similarity score while
retrieving images improves localization accuracy [31–33]. The reason of improvement
is that there is appearance difference between images taken at different times (query-
database) due to illumination differences, viewpoint variations, seasonal changes.
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Although RGB image features are directly affected by those changes, semantic labels
are stable most of the time (Figure 9).

Given a semantic mask, obtaining the most similar result among the alternatives is
not a trivial task. SIFT-like features do not exist to match. Moreover, two masks of the
same scene are far from being identical not only because of changing content but also
due to camera position and viewpoint variations. Thus, instead of employing a pixel-
by-pixel label comparison score, a trainable semantic feature extractor is preferable.

Measuring semantic similarity to distinguish if two images belong to the same
scene or not is a task especially suitable for self-supervised learning. Because datasets
has to be prepared such that query and database are the same scene but different
images (preferably long-term difference) is not easy. However, large amount of
semantic masks can easily be obtained for a self-supervised training. We do not need
groundtruth masks, since a successful estimation is enough to compute semantic
similarity.

4.1 Dataset and self-supervised contrastive training

Our unsupervised learning dataset composed of 3484 images randomly taken from
UCF dataset [34]. These are perspective images obtained from Google Street View
panoramas which where taken in Pittsburgh, PA before 2014. Our supervised training
and test datasets have query-database image pairs. Query images were also taken from
UCF dataset (not coinciding with the 3484 images mentioned above). Database
images were collected again from Google Street View panoramas at the same locations
of query images but in 2019. This time gap results in seasonal changes and
illumination variances. Also, a wide camera baseline between the database and
query images conforms better to the long-term localization scenario [35]. Top row
in Figure 9 shows an example of query-database image pair with time difference.

Figure 9.
The image on top-left was taken in 2008 and the image on top-right was taken in 2019 (source: Google street view)
which respectively represent query and database for image retrieval. Observe illumination differences, viewpoint
variations and changing objects. Bottom row shows their semantic segmentation results. Semantic similarity can
help to verify/deny the localization result.

10

Pattern Recognition - New Insights



Since our aim to learn representations for semantic masks, we first
automatically generated a semantic mask for each image in our dataset using a well-
performing CNN model [36]. The CNN model we employed trained on Cityscapes
[37], which is an urban scene understanding dataset consists of 30 visual classes.
Examples are in Figure 9 (bottom row). After this point, we only have semantic
masks in our dataset.

We used SimCLR [14] as our contrastive learning model and trained a ResNet-18
as the encoder. Encoder network (Figure 10) produces h ¼ Enc xð Þ∈R512 features,
whereas projection network produces z ¼ Proj hð Þ∈R512 features. We set batch size as
85 and resized semantic mask to 64� 80 resolution (due to GPU memory limitation)
and used two different data augmentation methods during the training: random
resized crop and random rotation. We set maximum rotation parameter as 3°, since
severe rotations are not expected between query and database images. Crop parame-
ter, however, is important to represent the variation in our dataset. Results for varying
crop parameter values will be discussed in Section 4.2. Augmentation of semantic
masks is visualized in Figure 10. Other augmentations (such as color jitter, horizontal
flip, brightness and contrast distortions), which are common for image classification
and object detection downstream tasks are not included since they are not expected
distortions for semantic masks. We used AMSGrad optimizer which is a variant of
Adam.

CNN model, trained as explained above, is now ready to produce a similarity score
when two semantic masks (one query and one database) are given. After self-
supervised training, same network can be fine-tuned with a labeled dataset (query
and database segmentation masks for the same scene). For this purpose, we prepared
a dataset of 368 query images with their corresponding database images and extracted
their semantic masks. Figure 9 shows an example of this preparation. Not surpris-
ingly, this paired dataset is much smaller than the self-supervised training dataset.
Here, common practice in literature is that the projection head (Figure 10) is removed

Figure 10.
Illustration of training a CNN model with self-supervised contrastive loss on a dataset that consists of semantically
segmented masks. A positive pair is created from two randomly augmented views of the same mask, while negative
pairs are created from views of other masks. All masks are encoded by the a shared encoder and projection heads
before the representations are evaluated by the contrastive loss function.
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after pretraining and a classifier head is added and trained with labeled data for the
downstream task. However, our pretext and downstream tasks are the same. We learn
semantic representations by treating each sample as its own class (exemplar-CNN [6],
instance discrimination [7]). Thus, we do not place a classifier head, but we retrain the
network (partially or full).

4.2 Experimental results

To be able to measure the capability of representing semantic masks, we conduct
experiments that compare the retrieval accuracies of three training schemes. First is
the CNN model which is trained with the supervised training set (368 query-database
pairs). This is the baseline model that does not exploit self-supervised training at all.
Second is the CNN model that is trained in a self-supervised fashion with 3484
individual semantic masks (no matching pairs). Lastly, the model with self-supervised
training is retrained with the supervised training set. Two versions exist: i) only
replacing dense layers and training them, ii) retraining all layers.

Trained models are tested on a test set which consists of 120 query-database pairs
(different from 368 pairs used in training). Performances are compared with
Recall@N metric. According to this metric, for a query image, the retrieval is consid-
ered successful if any of top-N retrieved database images is a correct match. In other
words, Recall@1 is the recall when only the top-most retrieval is checked.

We observe in Table 1 that, only supervised training is not very successful. In fact,
for certain N values self-supervised training managed to outperform supervised
training alone. This shows the power of self-supervised learning when a large dataset
is provided. Our unlabeled dataset is much larger than the labeled dataset (3484 ≫

368). Regarding the two fine-tuning schemes, replacing dense layers and training
them from scratch improved self-supervised training but not for all N values. On the
other hand, fine-tuning all layers worked best by a considerable margin. Since our
pretext and downstream tasks are the same (i.e. we do not train a classification head
etc.), it is not surprising that replacing dense layers did not help much. Figure 11
shows several examples where supervised training fails but the proposed self-
supervised approach (after fine-tuning) succeeds.

Table 2 presents the effect of minimum crop ratio parameter used in data aug-
mentation module. Since it is an important parameter to represent the variation in our
semantic masks, we compare the performance for minimum crop ratio from 0.9 to
0.1. Apart from individual Recall@N values, we also compute and plot mean recall
(mean of all N values) in Table 2 last column and in Figure 12. We observe that it is

Training methods Retrieval accuracy (Recall@N)

N = 1 N = 2 N = 3 N = 4 N = 5

Only supervised training 0.500 0.608 0.767 0.808 0.817

Only self-supervised training 0.567 0.692 0.733 0.775 0.800

Dense layers were replaced and trained 0.542 0.675 0.767 0.825 0.850

All layers were fine-tuned 0.633 0.758 0.808 0.858 0.867

Table 1.
Only supervised training is compared with self-supervised training and fine-tuned versions of it.
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Figure 11.
Each row shows a retrieval result for a given query (left column). Examples show the cases where only supervised
training (middle column) fails at Recall@1, but utilizing self-supervised training and then fine-tuning on the
labeled dataset (query-database pairs) correctly retrieves (last column).

Crop ratio Retrieval accuracy (Recall@N)

N = 1 N = 2 N = 3 N = 4 N = 5 mean

0.90 0.608 0.708 0.758 0.817 0.858 0.750

0.80 0.617 0.733 0.800 0.848 0.867 0.773

0.70 0.617 0.742 0.817 0.858 0.875 0.782

0.60 0.633 0.758 0.808 0.858 0.867 0.785

0.50 0.617 0.700 0.767 0.808 0.833 0.745

0.40 0.575 0.692 0.717 0.783 0.825 0.718

0.30 0.567 0.675 0.742 0.767 0.808 0.712

0.20 0.542 0.633 0.717 0.767 0.783 0.688

0.10 0.525 0.608 0.675 0.742 0.783 0.667

Table 2.
Effect of the minimum crop ratio parameter in data augmentation at the stage of retraining of the self-supervised
model.
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highest around 0.6 and 0.7. Performance gradually drops as we increase or decrease
the minimum crop ratio. A minimum random crop parameter of 0.6 means that
cropped mask covers at least 60% area of the original mask. Since query and database
masks in our training and test datasets have a considerable overlap ratio, it is reason-
able that 0.6 or higher overlaps serve best. This result is also in accordance with the
finding in [38] that there is a reverse U-shape relationship between the performance
and the mutual information within augmented views. When crops are close to each
other (high mutual information, e.g. crop ratio = 0.9) the model does not benefit from
them much. On the other hand, for low crop ratios (low mutual information) model
can not learn well since views look quite different from each other. Peak performance
stays somewhere in between.

5. Conclusions

In this chapter, we presented the main concepts in self-supervised contrastive
learning and reviewed the approaches that attracted attention due to their success in
computer vision. Contrastive learning that aims to end up in an embedding space
where similar samples stay close to each other was implemented successfully with
Siamese neural networks. Necessity on huge computation power was also alleviated
with the most recent models. Currently, for common downstream tasks of computer
vision such as object detection and semantic segmentation, self-supervised pre-
training is a better alternative than using a model trained on ImageNet for image
classification.

We also presented a case study where self-supervised contrastive learning is
applied to learn representations of semantic masks of images. Performance was eval-
uated on an image retrieval task where the most similar semantic mask is retrieved
from the database for a given query. In compliance with the results on other vision
tasks in the literature, fine-tuning the self-supervised model with available labeled
data gave better results than the supervised training alone.

Figure 12.
Mean Recall@N values for varying min. Crop ratio parameter. Observe the reverse U-shape with a peak at 0.6.
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