

Modified Epoxy Matrix Resins for Reduced Dependence on Redundant Fasteners in Secondary-Bonded Composite Structures

Frank Palmieri¹, Tyler Hudson¹, Austin Smith¹, Yi Lin², Jin Ho Kang², Isaac Barnett³, Bryson Clifford³, Roberto Cano¹ & John Connell¹

NASA Langley Research Center, Hampton VA
 National Institute of Aerospace, Hampton, VA

3. NASA Internships Fellowships and Scholarships, Hampton, VA

ACS Spring 2020 National Meeting & Expo Philadelphia, PA March 23rd, 2020

The Challenge

Efficient Composite Airframes

Assembly of Composites

- Co-cure produces predictable components and joints but is limited by complexity
- Bonded/Co-bonded joints are susceptible to weak bonds
- Unpredictable bonds are a concern in primary structure
- A redundant load path is required to ensure structural integrity

Manufacturing Bottleneck

Airframes are assemblies of many parts

- Composites can be assembled rapidly with adhesives
- Redundant load path (bolts) is required for certification
- <u>Thousands of drilling and</u> <u>installation steps</u>

Composites should be replacing metals in aircraft but...

- Fastener installation is <u>too slow</u> causing a bottleneck
- Production rates can't meet demand

Fasteners in a Single-Aisle Composite Airframe

The AERoBOND Method

The **reliability** of **co-cure** in a **"bonded" assembly**

Adhesive Bondline vs. AERoBOND

Adhesive Bondline

AERoBOND Joint

 Cured matrix resin cannot mix with adhesive

Potential for weak bonds

• The AERoBOND joint is *indistinguishable* from the matrix resin of adherends

Quantifiable, certifiable resin properties

- AERoBOND eliminates the potential for weak bond failure mode
- Goal: AERoBOND mechanical properties similar to conventional co-cured laminates.

 Hardener groups (H) react with epoxy groups (E) to form polymer.

 Molecular weight is limited by applying an offset to the stoichiometry

hardener	••	moles H	r = 1: Equivalent Mixture
	= r =		r > 1: Hardener Rich (HR)
epoxy		moles E	<i>r</i> < 1 : Epoxy Rich (ER)

Offset, Molecular Weight, and Gelation

- Monomer functionalities, $f_e = 4$ and $g_e = 3.75$, for tetrafunctional hardener and a mixture of tetraand tri-functional epoxies
- For 100% conversion of the limiting monomer, gelation occurs for: 0.12 < r < 8.25

Macosko, Miller. Molecular Weights of Nonlinear Polymers. 9(2) 1976.

Resin Chemistry

- Kaneka API-60 Part A
 - ~65% tetrafunctional epoxy
 - ~20% trifunctional epoxy
 - ~15% proprietary toughener
 - Epoxy equivalent weight known!
 EEW = 131 g/mol
- Diethyltoluenediamine (DETDA)
 - Ethacure[®] 100 from Albemarle[®] Corp.
 - Mixture of isomers
 - Liquid at RT
 - Equivalent weight, EW = 44.6 g/mol

Resin Preparation

- API-60 Part A and DETDA stirred 1 2.5 h at 100 -110 °C
- Prepolymer diluted with 15 wt.% methyl ethyl ketone (MEK) prior to producing prepreg

Prepreg Tape Production

- Prepared prepreg tape using a custom tape machine at NASA Langley Research Center
 - Fiber: IM7G 12k, 14 to 16 tows, 75-100 mm wide tape
 - Better uniformity and larger batches compared to hand painted film
 - Process development is complex/challenging

Manufacturing Panels

- Offset prepreg on conventional prepreg
- Panels cured in autoclave

NASA

Preliminary Development and Testing

- Two-step fabrication process
 - 1. Fabricate "half-panels" with ER surfaces
 - 2. Join ER panels with HR "adhesive" ply
- Conventional material used in backer laminate
 - Hexcel[®] IM7/8552 prepreg
 - 190 g/m² fiber areal weight (FAW), 35% resin content
- Test Parameters
 - Resin formulation (*r*-value, degree of cure)
 - Ply thickness & resin content
 - Cure process (time and temperature)
 - Bagging scheme
- Rapid Screening with End-Notched Flexure (ENF) test
 - Mode II (Shear) Fracture Toughness
 - Simple specimen fabrication and testing

 Non-Precracked (NPC) vs Precracked (PC)

Process Development

est	Date	Half Panel 1	Half Panel 2	ER	Outcome
	1 april, 2019	IM7/8552(11- ply)+r=0.15(1- ply)	IM7/8552(11- ply)+r=6.7(1- ply)	r=0.0 APIE DD	0 more than 50% bonded, disbonded during machining
	2 april, 2019	IM7/8552(11- ply)+r=0.15(1- ply)	IM7/8552(11- ply)+r=0.15 (1- ply)	r=00 APE DO	About 40% bonded, disbonded during machining
	3 april, 2019	IM7/8552(11- ply)+r=0.15(1- ply)	IM7/8552(11- ply)+r=6.7(1- ply)	r=0.0 APIE DD	No Bond 90% bonded, partial disbond on water jet.
	29 2/6/2020	6"x12", fiber in 12" dimension, SGP196P/8552 PW(2-ply) + IM7/8552(7- ply) + r=0.15(2- 0 ply) TM390	6"x12", fiber in 12" dimension, SGP196P/8552 PW(2-ply) + IM7/8552(8- ply) + r=0.15(2- ply) TM390	AP DE r=0 13 @	
	30 10/17/2019	6"x12", fiber in 12" dimension, IM7/8552(9- ply)+r=0.15(2- 9 ply) TM388	6"x12", fiber in 12" dimension, IM7/8552(10- ply)+r=0.15(2- ply) TM388	AP DE r=0 90 @	Repeat 23 for DCB

- Completed testing on 30+ AERoBOND configurations using 18+ material systems
 - End-notched flexure
 - Failure locus, hardness
 - Chemical analysis

Each configuration spans 3+ weeks of effort

				Formulation	Formulation			Solvent	Resin
Run Number	r-value	Hardener	Ероху	Temperature	Time	Fiber	FAW (g/m ²)	Content (wt%)	Content (wt%)
TM376	0.8	DDS	API-60			IM7G UD 14 tows	74-131	4.7%	45 to 50%
TM377	0.15	DDS	API-60 Part A			IM7G UD 14 tows	81	5%	52%
TM378	6.7	DDS	API-60 Part A			IM7G UD 14 tows	155	7%	45-60%
TM379A	0.8	DDS	API-60			IM7G UD 14 tows	37-54	5 to 6%	45 to 60%
TM379B	6.7	DETDA	API-60 Part A			IM7G UD 14 tows	56	12%	20-24%
TM380	0.15	DETDA	API-60 Part A			IM7G UD 14 tows	58-62	5-6%	60-65%
TM381	6.7	DETDA	API-60 Part A			IM7G UD 14 tows	70-90	10%	16-38%
		DDS/DETDA							
TM382	6.7	(50/50)	API-60 Part A			IM7G UD 14 tows	70	13%	56%
TM383	0.15	DETDA	API-60 Part A	100 °C	1 h	IM7G UD 14 tows	72	3-4%	36
TM384A	0.15	DETDA	API-60 Part A	100 °C	1 h	IM7G UD 14 tows	66-74	5.7-6.6%	55-61%
TM384B	0.15	DETDA	API-60 Part A	100 °C	1 h	IM7G UD 14 tows	74-63	7.6-6.7%	62%
TM385	2.5	DETDA	API-60 Part A	100 °C	1 h	IM7G UD 14 tows	73-78	9%	43-60
TM386	0.15	DETDA	API-60 Part A	100 °C	90 min	IM7G UD 14 tows	70-78	5.6-6.8 %	57-62%
TM387	2.5	DETDA	API-60 Part A	100 °C	90 min	Carbon fabric	195	14.7-15.3%	45-48%
TM388	0.15	DETDA	API-60 Part A	100 °C	90 min	IM7G UD 16 tows	76-78	5-6.5%	62-69%
TM389	2.5	DETDA	API-60 Part A	100 °C	105 min	IM7G UD 16 tows	75-80	7.4-4.0%	68-76%
TM390	0.15	DETDA	API-60 Part A	100 °C	135 min	Carbon Fabric	195	8%	43-53%

Some Vague Details

Material	<i>r</i> -value	FAW (g/m²)	RAW (g/m²)	Number of Plies	Primary Cure Cycle
ER Ply Ranges	0.15	37-90	60-125	1-2	1-3 h @ 177 °C
HR Ply Ranges	2.5-6.7	56-155	20-90	1-2	1-4 h @ 177 °C
Round 1 ER	0.15	77	150	2	1 h @ 177 °C
Round 1 HR	2.5 ^A	70	225 ^B	1	4 h @ 177 °C

- A. Stoichiometric offset to r = 2.5 does not prevent gelation, HR ply only sees 2^{nd} cure cycle
- B. Hand painted resin onto carrier scrim cloth to achieve higher resin loading

Key Preliminary Results

- Experiment 15 exceeded expectations (90% of baseline)
 - But successful results were difficult to repeat
 - Used hand painted resin film for HR ply
- Experiment 20 was also interesting (50% of baseline)
 - Also prepared from a *large batch* of hand painted film
- Used configuration from experiment 20 for Round 1 samples

Baseline Properties

- Measured properties for a series of laminates fabricated using:
 - AERoBOND materials (epoxy and hardener)
 - -r = 0.8 (conventional ratio)
 - Co-cure process
- Baseline properties used to set AERoBOND performance goals

End-Notched Flexure (ENF) Test

Mode-II Interlaminar Fracture Toughness

Large amount of data scatter due to multiple failure mechanisms but close to 50% goal.

G _{IIc} (J/m²)	Round 1 (50%)	Round 2 (80%)
Goals*	370	591
Measured	347±97 (47%)	

*Based on precracked value measured on IM7/8552

Baseline Properties

*Ave G_{IIc-PC} : 740 J/m ²		
*Std Dev:	50.4 J/m ²	
*Cof Var:	6.8 %	

Double Cantilever Beam (DCB) Test Mode I Fracture Toughness

term D			1 1 - 1 - - + 1		
2,4 3 mm	3 5.9	8 N	.0 0	00	-
Before Test			the sector of a se		
e the specimen is properly is r of the machine. Start button to start the te	nstalled in the tr st.	est machine.		B maria 18	
	anamaha	Clear Clear	aset" Soldtwil		00

Summary of Joint Properties

Strength	ILT ^{CB} (MPa)	ILT ^{FWT} (MPa)	ILS ^{SLS} (MPa)	ILS ^{DLS} (MPa)
Baseline	61.5	41.8	31.4	41.6
Round 1	23.5±2.2	37.5	25.7±2.2	9.85±1.5
% of Baseline	41%	59%	82%	24%

Interlaminar Tensile (ILT), Curved Beam (CB), Flatwise Tension (FWT), Single-Lap Shear (SLS), Double-Lap Shear (DLS)

Fracture Toughness	G _{lc_init} (J/m²)	G _{lc_ss} (J/m²)	G _{IIc_NPC} (J/m²)	G _{IIc_PC} (J/m²)
Test method	DCB	DCB	ENF	ENF
Baseline	180	203	1255	740*
Round 1	16±3.6	36±16	372±99	347±97
% of Baseline	9%	19%	27%	47%

Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Critical strain energy release rate for mode-I (G_{Ic}) initiation (init) and steady-state (ss), and mode-II (G_{IIc}) non-precracked (NPC), and precracked (PC) **IM7/8552 material property (not part of baseline dataset)*

Progress Since Round 1 (G_{IIc_NPC})

- Recent tests improved over Round 1 (27%) and even exceeded baseline toughness
 - Baseline ±σ indicated with red bar
 - 50% baseline indicated with orange line
- ER activated (blue bars) 111% of baseline
- HR activated (green bars) 64% of baseline

Ave: 7.379 in-lbf/in² %Baseline: **103%**

Progress Since Round 1 (G_{IIc PC})

*IM7/8552 material property (not part of baseline dataset)

Ave: 5.410 in-lbf/in² %Baseline* : 128% **Experiment A5 PC** Shear Fracture Toughness (in-lb/in²)

%Baseline*: 113%

Unit conversion: 1 in-lb/in² = 175 J/m^2

Optical Inspection of Interface

26

No Visible Discontinuity

Conclusions

- AERoBOND approach:
 - Achieve predictability of co-cured joints with the manufacturing simplicity of secondary bonding
 - AERoBOND joint should be indistinguishable from interlaminar joint and similar in properties
- Microscopic inspection indicates good mixing at AERoBOND interface
- Several tests indicate we have reached our preliminary goal of 50% baseline properties
 - Interlaminar shear (SLS) and tensile (FWT, CB) strengths
 - Shear fracture toughness (ENF) is close to goal
- Recent results (ENF) indicate AERoBOND process can match co-cure properties

Acknowledgements

- Glenn Research Center:
 - Mechanical testing: Jon Salem & Mike Pereira
- Langley Research Center:
 - Engineering: James Ratcliffe
 - Laminate fabrication: Sean Britton, Hoa Luong, & Kelvin Boston
 - Machining: Mike Oliver & Thomas Hall

Thank You! (frankl.palmieri@nasa.gov)

Start Extra Material

Mechanical Test Methods 1

ASTM D5528 (DCB) & D7905 (ENF) for mode I & mode II interlaminar fracture toughness

ASTM D3165 (SLS) & D3528(DLS): Apparent shear strength

ASTM D6415 (CB):

Curved Beam (CB) Interlaminar tensile strength

32

Mechanical Test Methods 2

 ASTM D7291:Interlaminar Tensile Strength Flatwise Tension (FWT)

 ASTM D7136 (BVID) and ASTM D7137 (CAI): Damage tolerance Barely Visible Impact Damage (BVID) & Compression After Impact (CAI)

NASA

Prepreger Details

2) EDS Map of Interface

F and S atoms diffuse across interface

2) Interdiffusion at Interface

Variation in Curved Beam Test Data

• X-Ray Computed Tomography Inspection

Double Cantilever Beam (DCB) Test

Mode-I Interlaminar Fracture Toughness

G _{Ic} (J/m²)	Round 1 (50%)	Round 2 (80%)
Goals	102	161
Measured	39±16 (19%)	

Short of goal. AERoBOND resins are not toughened like commercial systems

Baseline Properties

Statistics for $\Delta a > 0.6$ in. (steady state)

Test setup

Single-Lap Shear (SLS) Test

Interlaminar Shear Strength

Specimens often failed away from AERoBOND interface due to stress concentrations at different depths in cross-section.

ILS (MPa)	Round 1 (50%)	Round 2 (80%)
Goals	15.7	25.1
Measured	25.7±2.2 (82%)	

Baseline Properties

Ave ILS: **31.4** MPa Std Dev: 1.6 MPa Cof Var: 4.35 %

Double-Lap Shear (DLS) Test

Interlaminar Shear Strength

Lower than expected properties that may be related to complexity of fabrication.

ILS (MPa)	Round 1 (50%)	Round 2 (80%)
Goals	20.8	33.3
Measured	9.8±1.5 (24%)	

Baseline Properties

Ave ILS: 41.6 MPa

Std Dev: 2.2 MPa

Cof Var: 5.17 %

Curved Beam (CB) Test

Interlaminar Tensile Strength

Properties are near 50% goal and surprisingly good based on complexity of build. No matched tooling was available to make matched "L" shaped parts.

Baseline Properties	
Ave ILT: 57.5 MPa	
Std Dev: 9.5 MPa	
Cof Var: 17 %	

ILT (MPa)	Round 1 (50%)	Round 2 (80%)
Goals	28.8	46.0
Measured	24.6±2.2 (43%)	

Flatwise Tension (FWT) Test

Interlaminar Tensile Strength

Panels failed at the AERoBOND joint near the ER-to-HR interface in most cases. Failure locus is away from machined surface indicating an accurate measurement.

ILT (MPa)	Round 1 (50%)	Round 2 (80%)
Goals	32.1	33.4
Measured	37.5 (59%)	

Baseline Properties		
Ave ILT: 64.1 MPa		
Std Dev: 6.4 MPa		

Preliminary Impact Testing

Pre-Impact C-Scan Image

Post-Impact Inspection

(Impact energy: 5.5 J)

Damage too close to clamped region at edge of panel. Re-evaluating impact energy.

