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Abstract

Photonic crystals (PCs) are periodic systems that consist of dielectrics with different
refractive indices. Photonic crystals have many potential technological applications.
These applications are mainly based on the photonic bang gap effect. However the band
gap is not only effect that follows from the periodic changing of the refractive index in
the photonic crystal. The periodic change of the photon-matter interaction in photonic
crystal medium gives rise to the fact that the mass of an electron in the photonic crystal
must differ from its mass in vacuum. Anisotropy of a photonic crystal results in the
dependence of the electromagnetic mass correction on the orientation of the electron
momentum in a photonic crystal. This orientation dependence in turn gives rise to the
significant correction to the transition frequencies in an atom placed in air voids of a
photonic crystal. These corrections are shown to be comparable to the atomic optical
frequencies. This effect allows one to control the structure of the atomic energy levels
and hence to control resonance processes. It can serve as the basis for new line spectrum
sources. The effect provides new ways of realization of quantum interference between
decay channels that can be important for quantum information science.

Keywords: photonic crystals, electron mass, anisotropic vacuum, electromagnetic
field, Lamb shift

1. Introduction

Photonic crystals (PCs) are a major field of research having many potential applications [1–15].

These applications are mainly based on the photonic bang gap effect in the photonic crystal. In

Ref. [16], it has been shown that a strong modification of the electromagnetic interaction in

photonic crystals results in the fact that the electron mass changes its value. Actually in this
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case, we deal with a quantum electrodynamical (QED) effect that does not manifest itself in the

free space. In fact, the interaction of an electron with its own radiation field gives rise to a

contribution to its physical mass mph known as the electromagnetic mass of the electron mem.

Nonrenormalizable ultraviolet divergences do not allow one to calculate the electron electro-

magnetic mass. However, fortunately, only physical mass mph is observable, and hence mem can

be included into it. On the other hand, the modification of the electromagnetic interaction in

PC medium gives rise to a correction to the electromagnetic mass mem. This correction δmpc

cannot be hidden in the physical mass of the electron and hence is an observable. Thus in PC

medium, the novel observable δmpc comes into play. A remarkable feature of δmpc is its

dependence on the orientation of the electron momentum in a PC, and this dependence gives

rise to significant corrections to the transition frequencies in an atom placed in air voids of a

photonic crystal, being comparable to the ordinary atomic frequencies. Such an effect is a

consequence of the fact that in the case of atoms in the PC medium, the most contribution

comes from the self-energy of electrons associated with mass correction m
pc
em rather than from

the self-energy of atoms associated with the Lamb shift being the QED corrections to the

nucleus-electrons coupling. In this chapter, we discuss the origins of the effect of the change

in the electron mass caused by the modification of the electromagnetic interaction in a PC and

its possible applications.

2. Lamb shift in hydrogen atom in the free space

The processes of the interaction of charged particles with their own radiation field play the

important role in the modern physics. These processes give rise to the fact that actually we deal

with the particles dressed by a cloud consisting of virtual particles (photons, electron-positron

pairs, and so on). In the case of electrons or muons bound to an atomic nucleus, the self-

interaction results in the Lamb shift of the atomic energy levels. The results of the recent

measurements of the Lamb shift in muonic hydrogen [17, 18] have allowed to determine the

value of the root-mean-square charge radius of the proton rp which is 4% smaller than the

radius determined by electron-proton experiments [19, 20] and precision spectroscopy of the

ordinary atomic hydrogen [21–27]. This discrepancy known as the “proton radius puzzle” has

not been explained yet. Solving the puzzle may require new insights into the problem of the

description of the self-energy of the electron and the Lamb shift.

Figure 1. The time-ordered diagrams describing the dominant contribution to the Lamb shift. The thick line denotes the

electron (positron) propagating in the Coulomb field; the wavy line denotes emission and reabsorption of a virtual

photon.
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The Lamb shift consists of the self-energy and vacuum polarization contributions. The modifi-

cation of the vacuum polarization contribution in the PC medium is negligible, and for this

reason, we will focus only on the self-energy one. At leading order self-energy of the electron,

which is bound in a hydrogen-like atom, is defined by the process in which a photon is emitted

and then is reabsorbed by the electron or positron. This process is described by the time-

ordered diagrams in Figure 1.

In quantum electrodynamics the corresponding contribution to the Lamb shift in hydrogen-

like atoms is given by the term that appears in the second-order perturbation theory and in the

Furry picture can be written as

ΔEL,n ¼ nh jHI

1

E
0ð Þ
n �HF

0

HI nj i, (1)

where HF
0 is the unperturbed Dirac-Coulomb Hamiltonian in the Furry picture

(HF
0 nj i ¼ E

0ð Þ
n nj i), |n〉 is an atomic state, and

H ¼ H0 þ

ð

d
3
xHI t ¼ 0; xð Þ, (2)

with HI(t, x) being the interaction Hamiltonian density:

HI t; xð Þ ¼
e

2
Aμ t; xð Þ Ψ t; xð Þ; γμ

Ψ t; xð Þ
� �

: (3)

HereΨ(x) is the Dirac field in the Furry picture. Usually the contributions to the Lamb shift (1)

are separated into the low and high energy parts. For the reasons explained bellow, we will

focus on the low-energy part of the shift [28]:

ΔE
<

L,n ¼
2πα

3m2
e

ð

Λ

0

d
3
k

2 kj j 2πð Þ3

X

m

nh jp mj ij j2

En � kj j � Em

, (4)

where p is the operator of the electron momentum and the cutoff Λ limits the energies of

virtual photons in the processes of their emission and reabsorption. The cutoff must be much

less than typical electron momenta but much larger than the atomic binding energies:

Zαð Þ2me << Λ << Zαð Þme: (5)

Here and below the natural unit system is used, where ℏ = c = ε0 = 1. This is the reason why one

can use the nonrelativistic Hamiltonian:

H ¼
1

2me

p� eA½ �2 (6)

instead of the Hamiltonian defined in Eqs. (2) and (3). Eq. (4) can be rewritten in the form:

Modification of the Electromagnetic Field in the Photonic Crystal Medium and New Ways of Applying…
http://dx.doi.org/10.5772/intechopen.71367

5



ΔEL,n ¼ �
Δm<

e

2m2
e

nh jp2 nj i þ ΔE<

L , (7)

where

Δm<

e ¼
α

p2π2

X

2

λ¼1

ð

Λ

0

d3k

2 kj j2
p � ελ kð Þj j2 (8)

is the low-energy electron mass correction caused by its self-interaction [29]. It should be noted

that ΔEL,n does not contain a term describing the electromagnetic correction to the electron mass.

This is the result of making use of the nonrelativistic Hamiltonian (6), and for this reason, the

mass correction is extracted from the first term on the right-hand part of Eq. (7) describing the

correction to the kinetic energy. Thus, in this case the electromagnetic mass correction is regarded

to be included into the physical mass of the electron. The first term on the right-hand part of

Eq. (7) must be also included into the physical mass. In this way we arrive at the ordinary

expression for the low-energy Lamb shift in hydrogen-like atoms:

ΔE<

L,m ¼
α

6π2m2
e

X

m

ð

Λ

0

d3k

2 kj j2
nh jp mj ij j2

En � kj j � Em
En � Emð Þ: (9)

Adding to ΔE<

L the high energy contribution [28]:

ΔE>

L ¼
4α

3

Zα

m2
Ψnlmj 0ð Þ
�

�

�

�

2
ln

me

2Λ
þ
11

24
�
1

5

� �

, (10)

where n, l, m, j, and Ψnlmj(x) being, respectively, the main quantum number, orbital quantum

number, magnetic quantum number, inner quantum number, and the wave function, we get

the expression to the total Lamb shift of the energies of the states of the hydrogen-like atoms.

In the S-state it reads

ΔEL,n ¼
4α Zαð Þ4

3πn2
ln

me

2E
þ
11

24
�
1

5

� �

me þ o Zαð Þ4, (11)

where E ¼ α
2me.

3. The Lamb shift in atoms placed in a PC

Investigation of the Lamb shift in hydrogen atom placed in a PC attracts much attention for a

long time since the Lamb shift is (historically and in practice) the most important phenomenon

of quantum electrodynamics. Interestingly, the calculation results obtained in different works

differed strongly in order of magnitude, and the significance of interaction with vacuum,

depending on which model of the dispersion of a photon in a photonic crystal, was used.
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The first attempt was made by John and Wang [4] by using the solution of the scalar wave

equation in one dimension. Thus, the photon dispersion relation was chosen to be isotropic

and satisfy the transcendental equation:

4n cos kLð Þ ¼ 1þ nð Þ2 cos 2naþ bð Þωk½ � � 1� nð Þ2 cos 2na� bð Þωk½ �: (12)

Using this dispersion relation, the authors predicted anomalous Lamb shift affecting the odd-

parity 2P1/2 state and not the even-parity 2S1/2. Magnitude of the effect makes it detectable

using microwave. The fact that the anomalous Lamb shift of the 2P1/2 state is larger than the

ordinary Lamb shift of the 2S1/2 state originates from the dimension of the phase space

occupied by band edge photons of vanishing group velocity. John and Wang overestimated

this phase space by assuming that dωk/dk vanishes over the entire sphere |k| = π/L. At the

same time for the case of real photonic crystals, the shift was expected to be comparable to the

ordinary Lamb shift of the 2S1/2 level.

The authors of work [30] noted that a real photonic crystal in general has an anisotropic

structure in momentum space and a three-dimensional dispersion relation is required because

the density of states (DOS) in isotropic or one-dimensional case has a singularity near band

edge. In this study the atomic transition frequency ω is assumed to be near the band edge ωc,

and the dispersion relation was approximated by the expression.

ωk ¼ ωс þ A k� k
i
0

�

�

�

�

2
, (13)

where A is a model-dependent constant and k
i
0 is a finite set of symmetrically placed points

leading to a three-dimensional band structure. Using this model the Schrödinger equation was

solved, and analytical expression for the Lamb shift was obtained. The value of the Lamb shift

turned out to be smaller than that for a hydrogen atom in an ordinary vacuum. Authors

explained this result by the fact that the DOS in the photonic crystals with three-dimensional

dispersion relations is much lower than that in the ordinary vacuum. This result is also very

different from that from the one-dimensional case where DOS has a singularity or from the

two-dimensional case where DOS has a sudden jump.

In paper [31] all previous approaches to calculate Lamb shift in photonic crystal were criti-

cized, because they are basically scalar. Authors of this work demonstrated the rigorous

solution of the problem of calculation of the Lamb shift in atomic hydrogen in a 3D photonic

crystal and showed that the presence of a photonic band gap (PBG) at optical wavelengths can

hardly change the Lamb shift. The correction to the energy of electronic state |m> was calcu-

lated in the second order of perturbation theory. The quantization of EM fields in a 3D

photonic crystal was made by expanding the EM fields in a set of eigenmodes (Bloch states).

These states can be solved numerically by means of a plane-wave expansion method. Finally, it

was given an expression for the energy shift containing the local density of states (LDOS):

ΔE ¼
e2ℏ

u20m
2
e

X

n

Enm pmn

�

�

�

�

2
ð

∞

0

dω
ρ ω; rð Þ

ω3 Enm þ ℏωð Þ
, (14)
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with ρ(ω, r) being LDOS:

ρ ω; rð Þ ¼
u20с

2

2ℏε0 2πð Þ3ε2 rð Þ

X

n

ð

BZ

d3k
∇�Hnk rð Þj j2

3ωnk
δ ω� ωnkð Þ, (15)

where u0 is dipole moment, ε(r) is dielectric constant function, and Hnk(r) is magnetic field

distribution of the Bloch states with energy ћωnk. The authors estimated the magnitude of the

Lamb shift and concluded that PBG at optical wavelengths will not cause an appreciable

variation to the energy-level shift induced by self-interaction for different atom positions and

different variations of the LDOS.

Vats with colleagues used the anisotropic band edge model and pseudogap model to calculate

the Lamb shift in an atom placed in photonic crystal [32]. In the first case near the band edge,

dispersion relation (13) was used and corresponding DOS derived. Calculated Lamb shift was

an order of magnitude larger than the free space Lamb shift. Then authors treated the case of a

pseudogap, for which the stop band does not extend over all propagation directions, thus

resulting in a suppression of the DOS rather than the formation of a full PBG:

N ωð Þ ¼ ω2 1� hexp �
ω� ω0ð Þ2

Γ
2

 !" #

: (16)

Here, h and Γ are parameters describing the depth and width of the pseudogap, respectively,

and ω0 is the central frequency of the pseudogap. Vats with coworkers concluded that for a

sufficiently strong pseudogap, the maximal value of Lamb shift may be on the order of 15% of

the free space value.

The authors of work [33] using method of Green functions developed a general formalism for

calculating the Lamb shift in multilevel atoms. The radiative correction to the bound level l is

determined by the expression

ω� ωl ¼
X

j

αlj

2π
ω� ωj

� �

β r;ω� ωj

� �

, (17)

where

αlj ¼
e2 plj

�

�

�

�

�

�

2

3πm2
eε0ℏc

3
(18)

is the relative linewidth of the atomic radiation from the l state to the j state in vacuum

β r;ω� ωj

� �

¼ P

ð

mec
2=ℏ

0

dω0 g r;ω0ð Þ

ω� ωj � ω0
� �

ω0
: (19)

The function g(r, ω) is the local spectral response function (LSRF) proportional to the photon

LDOS:
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g r;ωð Þ ¼
с
3Vpc

2πω

X

n

ð

BZ

d3k Enk rð Þj j2δ ω� ωnkð Þ (20)

with Vpc being the PC volume and Enk(r) being the electromagnetic eigenmodes. Authors

revealed that in a 3D PC, real photons make a dominant contribution to the value of the Lamb

shift, while the contribution from interaction with virtual photons is small. This differs signif-

icantly from the free space case. It was shown that the PC structure can lead to a giant Lamb

shift, that is, up to two orders of magnitude larger than that for an ordinary vacuum [34]. The

Lamb shift is sensitive to both the position of an atom in PCs and the transition frequency of

the related excited level.

4. Photonic crystal medium corrections to the electron rest mass

For a long time in investigations of QED effects in the PCmedium, researches focused on study

of the Lamb shift in hydrogen atom placed in a PC. In all the listed studies, the subtraction of

the modified by PC medium self-energy of the free electron from the modified self-energy of

the bound electron was used. This procedure was correct, if this self-energy could be included

into the electron physical mass. However this is not the case, because the electromagnetic mass

of the electron in a PC differs from that in the free space and cannot be hidden in the physical

mass. In fact

m
pc
em ¼ mem þ δmpc (21)

and hence the total electron mass m
pc
e in a PC is

m
pc
e ¼ me þ δmpc: (22)

Thus, the modification of the interaction of the electron with its own radiation field in the PC

medium results in the change in its mass. Let us now determine the mass correction δmpc. For

this we have to generalize our analysis of the electron self-energy to the case where it is in the

PC medium. It is natural to start from determining of a quantized vector potential of electro-

magnetic field inside PC. It could be made by taking into account that photon states in periodic

dielectric media have Bloch structure. Photonic Bloch states |kn〉 can be obtained by means of

the plane-wave expansion method [35]. By introducing the operators baþkn and bakn that describe
the creation and annihilation of the photon in the state |kn〉, respectively (baknþ 0j i ¼ knj i and

bakn knj i ¼ 0j i), we can construct a modified vector potential:

Apc r; tð Þ ¼
X

kn

Akn rð Þbakne
�iωknt þA∗

kn rð Þbaþkne
iωknt

� �
, (23)

where Akn rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Vωkn

p
Ekn rð Þ with Ekn(r) being the Bloch eigenfunctions satisfying the

following orthonormality condition:
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ð

V

d3rε rð ÞEkn rð ÞE∗

k0n0 rð Þ ¼ Vδkk0δnn0 : (24)

Using vector potential (23) we can define nonrelativistic interaction Hamiltonian in the form

H
pc
I ¼ � e

me
p �Apc: (25)

The matrix element p0
;k; nh jHpc

I pj i of this Hamiltonian can be represented in the form

p0
;k; nh jHpc

I pj i ¼ � e

me

ð

d3rΨ∗
p0 rð Þ �i∇rAkn rð Þð ÞΨp rð Þ ¼ e

meV
3=2 ffiffiffiffiffiffiffiffi

ωkn
p

ð

d3re�ip0r i∇rEkn rð Þð Þeipr

(26)

with Ψp(r) being the normalized wave function of the electron state Ψp(r) = 〈r|p〉. Here we

have taken into account that Ψp ¼ eipr=
ffiffiffiffi

V
p

for r∈V and Ψp = 0 for r∉V. Taking also into

account that Ekn(r) can be expanded as

Ekn rð Þ ¼
X

G

Ekn Gð Þei kþGð Þ�r (27)

with G being the reciprocal lattice vector of the photonic crystal (G =N1b1 +N2b2 +N3b3 where

bi is the basis vector of a reciprocal lattice), for p0
;k; nh jHpc

I pj i we get

p0
;k; nh jHpc

I pj i ¼ � e

me

1
ffiffiffiffiffiffiffiffiffiffiffiffi

Vωkn

p
X

G

p � Ekn Gð Þδp,q (28)

with q =p
0
+k +G. For ph jHpc

I p0
;k; nj i we find

ph jHpc
I p0

;k; nj i ¼ � e

me

1
ffiffiffiffiffiffiffiffiffiffiffiffi

Vωkn

p
X

G

p � E∗

kn Gð Þδp,q: (29)

Using these matrix elements, we can determine the mass correction δmpc as a difference of the

electromagnetic masses in PC and free space:

δmpc ¼ � 2e2

p2V

X

G

X

kn

1

ωkn

p � Ekn Gð Þj j2
p2

2me
� p�k�Gð Þ2

2me
� ωkn

�
X

k

X

2

λ¼1

1

2 kj j
p � ελ kð Þj j2

p2

2me
� p�kð Þ2

2me
� kj j

1

A:

0

@ (30)

It should be noted that this expression has a natural cutoff because dielectric constant vanishes

at higher optical energies. Taking into account that electron momentum is much higher that

photon momentum, Eq. (30) can be rewritten in the form

δmpc ¼
2e2

p2V

X

G

X

kn

p � Ekn Gð Þj j2
ω2

kn

�
X

k

X

2

λ¼1

p � ελ kð Þj j2

2k2

!

:

 

(31)
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Now in the expression of δmpc, we can replace the discreet sums by integrals:
ð
d3k
X

kn
!

V

2πð Þ3

X
n

ð
d3k,

X
k
!

V

2πð Þ3

ð
d3k: (32)

In this way we get

δmpc ¼
α

π2

X

n

ð

FBZ

d3k

ω2
kn

X

G

p

pj j
� Ekn Gð Þ

����
����
2

�

ð
d3k

2k2

X2

λ¼1

p

pj j
� ελ kð Þ

����
����
2

2
4

3
5: (33)

Accounting for the effect under study for the energy of an electron in the PC medium, we get

Ep ¼ me þ δme
dp= pj j


 �
þ

p2

2me
δmpc

dp= pj j

 �

þ o
pj j4

m4
e

 !
me: (34)

In dealing with an atomic electron, we have also to take into account that its momentum

should be described by the momentum operator bp and hence δmpc should be described by the

corresponding operator δmpc
dp= pj j


 �
. In this way we arrive at the following expression for the

mass correction ΔEmc
i to energies of the states of a hydrogen-like atom:

ΔEmc
i ¼ i δme

dp= pj j

 ����

���i
D E

þ i
pj j2

2me
δme

dp= pj j

 ������

�����i
* +

þ o ⋯ð Þme: (35)

In the ground S-state |S〉, the mean value of the operator δmpc
dp= pj j


 �
is

δmpc

� 
S
¼

4α

3π

ð
dω

N ωð Þ � ω
2

ω2
, (36)

where N(ω) =NDOS(ω)D(ω) and NDOS(ω) is the photon density of states

NDOS ωð Þ ¼
1

4π

X

n

ð

FBZ

d3kδ ω� ωknð Þ (37)

and

D ωð Þ ¼
X

G

Ekn Gð Þj j2
ωkn¼ω:j (38)

The function N(ω) is closely associated with DOS of the PC. The exact calculation of this

function is challenging for 3D PC; therefore we will use a model having the form

N ωð Þ ¼ ω
2n3eff 1� hexp �

ω� ω0ð Þ2

σ2

 !" #
F ωð Þ, (39)
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where the factor F ωð Þ ¼ n�3
eff þ 1� n�3

eff


 �

= exp ω� μ
� �

=τ
� �

þ 1
� �

with neff �
ffiffiffi

ε
p

. ε ¼ ε � fþ
1� fð Þ is an average dielectric constant with ε being the dielectric constant of the host material

and f being the dielectric fraction in the PC. This model can recapture the existence of photonic

band gap, optical density of dielectric host of PC sample, and the fact that at high enough

photon energies, N(ω) must approach the free space DOS (Figure 2). For the parameters which

were used in Figure 2, our calculations have given 〈δmpc〉S = 2.4 � 10�6me.

Let us now consider the effect of the change in the electron mass on the energies of the atomic

states and the transition frequencies. Here we will restrict ourselves to the hydrogen-like

atoms. In the free space, the energy of the atoms in the state |a〉 = |n, j, l,m〉 is the sum of the

energy derived from the solution of the Dirac equation ED =meRnj and the Lamb shift of the

energy in this state:

Enjl ¼ meRnj þ ΔEL,a, (40)

where

Rnj ¼ 1þ Zα

n� jþ 1=2ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jþ 1=2ð Þ2 � α2

q

0

B

@

1

C

A

22

6

4

3

7

5

�1=2

(41)

and ΔEL, a is the Lamb shift of the energy of the state |a〉. The transition frequency between this

state and the state |b〉 = |n', j', l',m〉 is given by

Figure 2. The model N(ω) determined by the Eq. (39) with neff = 3, h = 0.96, σ = 0.07 eV, μ = 15 eV, τ = 0.01 eV, and ω0 = 1 eV.

Dashed line denotes the free space DOS.
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ωab ¼ me Rnj � Rn0j0


 �
þ ΔEL,a � ΔEL,bð Þ: (42)

When the atom is placed in the void of a PC, the transition frequencies ω
PC
ab are modified as

follows:

ω
PC
ab ¼ me þ a δmPC

e
dp= pj j


 ����
���a

D E
 �
Rnj þ ΔEPC

L,a � me þ b δmPC
e

dp= pj j

 ����

���b
D E
 �

Rn0j0 � ΔEPC
L,b: (43)

In the case when the atom is light, Eq. (43) is reduced to the following expression:

ω
PC
ab ¼ a δmPC

e
dp= pj j


 ����
���a

D E
1�

Z2
α
2

2n2

� �
� b δmPC

e
dp= pj j


 ����
���b

D E2
1�

Z2
α
2

2n2

� �

þ
meZα

2

2

1

n2
�

1

n0ð Þ2

 !
þ ΔEPC

L,a � ΔEPC
L,b ¼

meZα
2

2

1

n2
�

1

n0ð Þ2

 !
þ Δω

PC
ab þ o Z2

α
4

� �
me,

(44)

where ΔωPC
ab is the correction to the transition frequency in the PC medium given by

Δω
PC
ab ¼ a δmPC

e
dp= pj j


 ����
���a

D E
� b δmPC

e
dp= pj j


 ����
���b

D E
: (45)

As we have shown, the values of the mass corrections i δmPC
dp= pj j


 ����
���i

D E
may be of order

10�6me, and hence the corrections to the transition frequencies are comparable to the atomic

optical frequencies.

5. Experimental observation

Since spectra remain discrete when the PCmedium affects interaction between atoms and their

own emission fields, it would be logical to conduct an experiment in which we could observe

this effect. This could be accomplished by observing the classical spectra of the atoms in the

gas phase, pumped into PC cavities. From a theoretical point of view, it would be best to

conduct the experiment with hydrogen atoms, since they are the simplest physical system.

However, the handling of atomic hydrogen creates a number of technical difficulties; from a

practical point of view, the best candidates for the role of such atoms are those of the noble

gases, for example, helium. With respect to the requirements for a PC sample, it is first of all

obvious that it should have cavities that are sufficiently interconnected to ensure the possibility

of pumping gas. Second, the material of the PC sample should have the largest possible

refractive index in the widest possible range of energies, since the effect depends strongly on

the optical contrast [36]. Finally, the larger the amount of material filling the PC volume, the

greater the effect. At the same time, the cavities must remain large enough to meet the

condition that the atoms are free to move. It should be noted that an increase in the relative

shift of the lines δω/ω, along with an increase in the main quantum number n, is unequivocal

confirmation of the effect, since the predicted shift of the lines does not depend on it.
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As a simple and natural way to confirm the considered effect, we propose to use a modified

experiment to measure Lamb shift in hydrogen atom placed in the voids of photonic crystal

(Figure 3). In the experiment the hydrogen atoms are exposed to electromagnetic radiation of a

certain frequency, and if this frequency corresponds to the difference between the 2S1/2 and

2P1/2 energy levels (~1058 MHz without PC medium), no excited atoms will reach the detector.

However taking into account the influence of the photonic crystal on the energy levels of atoms

the Lamb shift will differ from 1058 MHz, the excited atoms will appear on the detector which

will confirm the effect. Then we can measure new Lamb shift by adjusting the frequency of

electromagnetic radiation.

There are a number of technical issues which need to be resolved. First, all exposed atoms must

be within the photonic crystal, that is, electromagnetic radiation should be concentrated in a

relatively small volume of a photonic crystal using antennas or waveguides. Second, as

already noted, there are many requirements to the sample of photonic crystal, including the

quality of the structure and possibility of free passage of hydrogen atoms through the PC

medium. To solve the last one, we propose to use photonic crystals with inverted opal struc-

ture [37], the volume fraction of air voids which is approximately 74%. Such structures are

fabricated from synthetic opals by filling voids between spherical particles with any desired

material. After that initial particles are removed leaving a framework with spherical air voids.

However, the resulting structures have a large number of defects and have significant limita-

tions in linear dimensions.

6. Prospects of applications of the effect

The most surprising feature of the effect under study is that the electromagnetic mass of the

electron comes into play when an atom is placed in the voids of a PC. There are no analogs of

such QED effect in the free space. The correction to the electromagnetic mass caused by the

modification of the electromagnetic interaction strongly changes the character of processes of

the spontaneous emission and the absorption of atoms placed in the PC medium, and this can

open up new possibilities for applying PCs. For the first time, one can change the transitions

on the value comparable to the ordinary atomic transition frequencies. This effect becomes

possible due to the dependence of the electromagnetic mass correction on the orientation of the

Figure 3. Scheme of modified Lamb shift experiment.
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electron momentum in the PC medium. This provides a way to control the structure of the

atomic energy levels. In this way, in particular, light sources with the line spectrum of a new

type could be developed.

The line spectrum sources such as He-Ne laser play an important role in physics and technol-

ogies. However, the corresponding transition frequencies in the optical range are limited. The

mass-change effect under study opens possibilities to tune the energy levels of He and Ne

and, as a consequence, to increase the slope efficiency. It allows one to create the new He-Ne-

like lasers.

One of the most perspective applications of the effect is a realization of quantum interference.

Quantum interference among different decay channels caused by the anisotropic vacuum

is the major field of research. Several ways have been proposed to create the anisotropy and to

provide interference between atomic levels in such materials as negative-index materials [38–43],

metasurfaces [44], hyperbolic metamaterials [45], metallic nanostructures [46, 47], topological

insulators [48], and external fields [49–51]. The possibility for making use of anisotropy in the

PC medium for these purposes has been investigated in Refs. [52–55]. The authors of the listed

papers based themselves on the idea voiced by Agarwal [56] who pointed that the anisotropy

of the vacuum can cause the quantum interference between nearest energy levels (e.g.,

Zeeman sublevels) having orthogonal dipole moments. The effect of the change in the electron

mass in a PC provides new possibilities to create conditions at which quantum interference

becomes possible via nonradiative transitions between atomic levels with breaking the strict

selection rules.

7. Conclusion

The QED effects on which we focused play an important role in the physics of PCs. The Lamb

shift in atoms that is one of the most important phenomena of the QED becomes larger in the

case when the atom is placed in the air voids of PCs. But what is especially important is that in

the case where an atom is placed in the artificial PC medium, we face a phenomenon that does

not manifest itself in vacuum. This phenomenon consists in the fact that the part of the

electromagnetic mass mem of the electron that together with the bare mass m0 constitutes the

physical mass mph =m0 +mem becomes observable. In vacuum only mph is observable. This

fact is used in the renormalization theory that is of the central importance in QED. The

renormalization procedure implies that the terms describing the self-energy of the free electron

should be removed from any expressions describing the processes in which the electron takes

place. This is an explanation of the fact that for long time, this subtraction procedure was used

in describing the Lamb shift in atoms placed in PCs despite that the electromagnetic interac-

tion in the PC medium is significantly modified. The correction δmpc ¼ m
pc
em �mem to the

electromagnetic mass of the electron caused by this modification cannot be hidden in the

physical mass of the electron and for this reason is observable. Thus, in the case of the artificial

PC medium, the electromagnetic mass (more precisely its part δmpc) comes into play. In

contrast to the Lamb shift that is relatively small correction to the atomic energy levels, the
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electromagnetic mass correction δmpc can have a significant effect not only on the energy levels

of atoms placed in the PC medium but also on the physical processes in these atoms. The key

point is that δmpc depends on the orientation of the electron momentum in a PC and actually is

an operator δmpc
dp= pj j


 �
whose diagonal matrix elements determine the corrections to the

transition frequencies that are comparable to the atomic frequencies in the free space. The

nondiagonal matrix elements determine nonradiative transitions between the states with

breaking the strict selection rules. These transitions give rise to the quantum interference

between the different decay channels. The possibility of controlling these quantum-

interference processes can be important for quantum information science.
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