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Abstract

Doxorubicin (DOX) is one of the most effective antineoplastic drugs. However, its 
clinical use is largely limited by potential dose-dependent cardiotoxicity. To date, the 
mechanisms of DOX-induced cardiotoxicity remains incompletely understood. More 
importantly, no efficient therapeutic strategy is available to counteract DOX-induced 
cardiomyopathy, underscoring the importance of the prevention of this disease. In this 
chapter, we first describe the pathophysiology of DOX-induced cardiotoxicity. We then 
update the findings of molecular biology of DOX-induced cardiomyopathy including 
molecular mechanisms, established and putative biomarkers for early diagnosis, and 
potential genetic factors for prediction of susceptibility. Finally, we introduce a number 
of pharmaceutical measures and practical lifestyle modifications for the prevention of 
this disease.
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1. Introduction

Doxorubicin (DOX), an anthracycline antibiotic produced by the fungus Streptomyces peuce-
tius, has been proved to be one of the most effective drugs for the treatment of solid tumor and 
haemotological malignancies. However, the clinical use of DOX is limited by potential dose-
dependent cardiotoxicity. Incidences of progressive congestive heart failure were approxi-
mately 5, 16, 26 and 48% in patients who had received a cumulative dose of 400, 500, 550 
and 700 mg/m2 of DOX, respectively [1]. DOX-induced cardiotoxicity can be acute or chronic. 
Acute DOX cardiotoxicity occurs within several days after administration of the drug, while 
chronic DOX cardiotoxicity takes place months or even years after use of DOX [2]. However, 
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the biological mechanisms underlying DOX cardiotoxicity is not fully understood, although 
multiple factors have been suggested. As a consequence, no efficacious therapeutic strategies 
are available to cure DOX cardiotoxicity. Therefore, the prevention of DOX cardiotoxicity is 
crucial for cancer patients. Currently, several pharmaceutical strategies have been used or 
tested clinically to prevent DOX cardiotoxicity. In addition, a number of nonpharmacological 
strategies have shown promising results in preclinical studies. To accomplish more successful 
prevention or intervention of DOX cardiotoxicity, efforts should be exerted on identification 
of the susceptible population on the basis of genetic variants or early diagnosis of this disease 
taking advantage of biomarkers. In this chapter, we first describe morphological and func-
tional characteristics of the heart in DOX cardiotoxicity. We then update the findings regarding 
molecular biology of DOX cardiotoxicity. Finally, we introduce several promising pharmaco-
logical strategies and lifestyle modifications for the prevention of DOX cardiotoxicity.

2. Morphological and functional characterization

The earliest alteration of the heart in DOX cardiotoxicity is calpain-dependent degradation of 
a giant cardiac structural protein titin, which may predispose the heart to diastolic dysfunc-
tion [3]. Histological changes include cardiomyocyte vacuolar degeneration and myofibrillar 
disarray [4]. In addition, fibrosis is markedly increased in both interstitial area of myocardium 
and perivascular area in animal models of chronic DOX-induced cardiotoxicity [5]. At the 
ultrastructural level, DOX-induced cardiac damage is characterized by dilatation of sarcoplas-
mic reticulum, loss of the Z-band, myofibrillar dropout, marked accumulation of cytoplasmic 
vacuoles, damaged mitochondria, and increased numbers of autophagic vacuoles [6, 7]. These 
changes result in cardiomyocyte dysfunction and cell death via necrosis or apoptosis. Cell 
death and fibrosis lead to compromised cardiac function in DOX-induced cardiomyopathy. 
DOX cardiotoxicity can be diagnosed if the patients receiving DOX treatment show signs and 
symptoms of congestive heart failure. However, DOX cardiotoxicity is usually diagnosed on 
the basis of left ventricular cardiac function. Three types of criteria are widely used to diag-
nose DOX cardiotoxicity: (i) the left ventricular ejection fraction (LVEF) is reduced by 20% to 
a value >50%, (ii) the LVEF is reduced by 10% to a value <50%, and (iii) the LVEF is reduced 
by >10 points to a value <50% [8].

3. Cellular and molecular mechanisms

The cause of DOX cardiotoxicity is multifactorial, and the precise mechanisms remain to be 
elucidated. Here, we describe the major mechanisms that have been suggested to contribute 
to DOX cardiotoxicity. It should be pointed out that the mechanisms are not mutually exclu-
sive. As a matter of fact, most of the factors are interconnected with each other.

3.1. Oxidative stress

Oxidative stress, caused by enhanced intracellular levels of reactive oxygen species (ROS), 
has long been believed to be the major mediator of DOX cardiotoxicity. The major types of 
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ROS include superoxide radical (O2−), hydrogen peroxide (H2O2), and hydroxyl free radical 
(HO) [9]. ROS is mainly generated through redox cycling in mitochondria [9]. However, ROS 
is also produced outside mitochondria by activation of pro-oxidant enzymes such as NADPH 
oxidase and xanthine oxidases [10]. Low level of ROS functions as signaling molecules and 
cell defense system. The cells have efficient antioxidant defense system to eliminate overpro-
duced ROS and maintain ROS to physiological levels [11]. However, if the balance between 
ROS production and antioxidant system is disrupted in favor of ROS production, then oxida-
tive stress occurs, which triggers a number of deleterious events including DNA damage, 
mitochondrial dysfunction, cell death, disrupted cellular calcium homeostasis, attenuated 
protein synthesis, defect in protein quality control, and mitochondrial quality control [12]. 
After DOX treatment, DOX is preferentially accumulated in mitochondria. As a potent elec-
tron acceptor, DOX promotes ROS generation and damages the activities of antioxidant 
enzymes, shifting the balance between pro-oxidant and antioxidant to the former, leading 
to elevated ROS levels. Excessive ROS is capable of damaging mitochondria, which in turn, 
produces more ROS, forming a vicious cycle called ROS-induced ROS release [13]. Given that 
the cardiomyoyctes are exceptionally rich in mitochondria, DOX is especially harmful to the 
heart. At the molecular level, the harmful effects of DOX-induced ROS are exerted primarily 
by its direct damage to mitochondrial genome, RNA, proteins and lipids [12]. In addition, 
enhanced ROS also participates in cellular signaling involved in detrimental events such as 
DNA damage and cell death [14].

3.2. Iron accumulation

Following DOX administration, DOX cardiotoxicity occurs through iron accumulation in 
mitochondria. Cardiac specific over-expression of ABCB8, a mitochondrial inner membrane 
protein involved in iron export, reduced iron accumulation in mitochondria and mitigated 
DOX cardiotoxicity [15]. Dexrazoxane, a drug approved by FDA to prevent DOX cardiotoxic-
ity, decreased iron accumulation and ameliorate DOX-induced cardiac injuries in mice. In 
addition, patients with DOX cardiotoxicity showed higher levels of mitochondrial iron com-
pared with patients with other types of cardiomyopathy or patients with normal cardiac func-
tion [15]. These studies provide convincing evidences demonstrating that iron accumulation 
is one of the major mechanisms involved in DOX cardiotoxicity. However, the underlying 
mechanisms that iron overload causes DOX cardiotoxicity remain to be clarified. Although 
several lines of evidences point to enhanced ROS generation by iron accumulation, a number 
of antioxidants fail to protect DOX cardiotoxicity in clinical settings, suggesting that other 
unidentified mechanisms are responsible for iron accumulation-mediated cardiac damage in 
DOX cardiotoxicity [16].

3.3. Topoisomerase IIβ

Type II topoisomerases (Top II) is an enzyme that generates DNA double-strand breaks, 
which is crucial to control the conformational changes of DNA and the entire chromosome. 
Mammalian cells consist of two types of Top II isoenzymes, Top IIα and Top IIβ. Top IIα is only 
expressed in proliferating cells, while Top-IIβ is ubiquitously expressed including postmitotic 
cells such as adult cardiomyocytes [17]. The antitumor activity of DOX is achieved through 
the formation of Top II-DOX-DNA ternary complex (also called the cleavage complex), which 
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increases Top II-DNA complexes and consequent DNA double-strand breaks [17]. In car-
diomyocyte, Top IIβ is targeted by DOX, and the increased Top IIβ DNA cleavage complex 
induces DNA damage, which in turn, leads to cell death. Cardiomyocyte-specific depletion 
of Top IIβ conferred protection against DOX-induced DNA double-strand breaks, transcrip-
tome changes, and heart failure [18, 19]. These data suggest that Top IIβ in cardiomyocytes 
plays a major role in mediating DOX-induced cardiotoxicity.

3.4. Macroautophagy dysregulation

Macroautophagy (hereafter referred to as autophagy) is a conserved pathway delivering 
cytoplasmic contents to lysosome for degradation and recycling [20]. Basal level of autoph-
agy in the heart plays an essential role in the maintenance of cardiac structure and function 
by removing damaged protein and organelles such as mitochondria [21]. Autophagy can be 
either activated or suppressed in pathological conditions [22]. The significance of autoph-
agy activation can be either beneficial or detrimental depending upon pathological settings 
[22]. Recent studies have shown that autophagy is dysregulated after DOX treatment in ani-
mals. However, it is controversial whether autophagy is activated or suppressed. There are 
studies showing that DOX treatment activates autophagy in the heart or cardiomyocytes 
[23–26], while others have shown conflicting results [7, 27–30]. Moreover, the significance 
of autophagy in DOX cardiotoxicity is still on debate. Some data are in favor of beneficial 
effects of autophagy in DOX cardiotoxicity [23–26], while others argue against it [27–30]. 
The discrepancies may be caused by the difference in animal species, cell types, methods 
monitoring autophagy, means of drug administration, and dosage and duration of the 
drug used in these studies. More recently, we and others have shown that DOX treatment 
stimulated autophagy initiation, while suppressed multiple subsequent steps including 
autophagosome formation, autophagosome maturation and lysosomal degradation [7, 27, 
29, 30]. As a consequence, the autophagic flux was attenuated in DOX-induced cardiotoxic-
ity. Inhibition of autophagic flux using UVRAG-deficient mice exacerbated DOX-induced 
cardiotoxicity [30]. Conversely, enhancement of autophagic flux mitigated DOX cardio-
toxicity [27, 29, 30]. In addition, suppression of autophagy initiation using beclin 1+/− mice 

ameliorated DOX cardiotoxicity [7]. The regulation of autophagy in the heart and its sig-
nificance in cancer patients treated by DOX needs to be investigated. Moreover, the effects 
of autophagy modulation on cancer cells should be considered if autophagy is targeted for 
prevention of DOX cardiotoxicity.

3.5. Mitochondrial dysfunction

Mitochondria are the organelle that produces ATP, which plays an essential role in cell sur-
vival. Mitochondria are the major source of free radicals and as a consequence are vulnerable 
to damage caused by oxidative stress. It has been demonstrated that mitochondrial dysfunc-
tion is one of the mechanisms of DOX cardiotoxicity [12]. Under physiological conditions, 
mitochondrial quality is controlled by mitochondrial quality control system, which includes 
selective elimination of mitochondria by autophagy (also called mitophagy), mitochondrial 
biogenesis, and mitochondrial dynamics including mitochondrial fusion and fission [31].
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Pink1-Parkin-mediated mitophagy is the most well-studied mechanism for mitophagy. Pink 
1 is a serine/threonine kinase, which is normally localized in the inner membrane of mito-
chondria (IMM). However, in depolarized mitochondria, Pink 1 is unable to be translocated 
to IMM and is retained on the outer membrane of mitochondria (OMM), where Pink-1 under-
goes autophosphorylation and is activated. The activated Pink-1 then recruits parkin, a cyto-
solic E3 ligase to the OMM. Parkin ubiquitinates the substrate proteins localized on the OMM 
and facilitates degradation of mitochondria by autophagy [32, 33]. DOX treatment has been 
shown to suppress Pink 1 and Parkin expression [34]. In addition, DOX enhances p53 expres-
sion, which promotes its interaction with Parkin and prevents Parkin translocation from 
cytoplasm to mitochondria [35]. Moreover, as aforementioned, DOX inhibits autophagic flux 
in the heart at multiple steps, which also attenuates mitochondrial degradation [7, 27, 29, 30]. 
Therefore, DOX treatment suppresses Pink 1-Parkin-mediated autophagy in the heart and 
promotes accumulation of damaged mitochondria. In addition to Pink 1-Parkin-meidated 
mitophagy, other mitochondria-localized proteins such as Nix, Bnip3, FUNDC1, and cardio-
lipin have been shown to interact with LC3 or LC3 homologs to mediate mitophagy [33]. 
However, the significance of Parkin-independent mitophagy mediated by these molecules 
remains to be elucidated in DOX cardiotoxicity.

Mitochondria are highly dynamic organelle, which continuously undergo fusion and fission 
to organize interconnecting networks to fulfill its function. Mitochondrial fusion and fission 
are essential for the maintenance of mitochondrial number and quality under stress condi-
tions. Mitochondrial fusion allows the mixture of the contents from partially damaged mito-
chondria and healthy mitochondria to alleviate the stress. Mitochondrial fission separates 
mitochondria into two daughter mitochondria, which allows the biogenesis of new mitochon-
dria and the removal of the damaged mitochondria via mitophagy [31]. Mitochondrial fusion 
is controlled by GTPase Mitofusin1 (MFN1), Mitofusin2 (MFN2), and optic atrophy factor 1 
(OPA1). MFN1 and MFN2 are localized to the OMM, while OPA1 is an IMM protein. MFN1, 
MFN2, and OPA1 mediate the fusion of the OMM and IMM, respectively [31]. Mitochondrial 
fission is mainly regulated by Drp1, a large GTPase. Drp1 is recruited from cytoplasm to 
mitochondrial OMM during fission process. In mitochondrial OMM, Drp1 has four interact-
ing partners, FIS1, Mff, Mid55, and Mid49 [31, 36]. Mitochondrial fusion and fission are well 
balanced to maintain mitochondrial number and quality under physiological conditions. In 
animal models of DOX cardiotoxicity, DOX treatment induces changes in the expression of 
mitochondrial fusion and fission proteins, which alters mitochondrial dynamics and contrib-
utes to apoptosis [37].

Mitochondrial biogenesis is the process of expansion of existing mitochondria or generation 
of new mitochondria. Mitochondrial biogenesis is tightly regulated to coordinate mitophagy, 
mitochondrial fusion and fission for the maintenance of mitochondrial mass and remodeling 
of dynamic interconnected mitochondrial network. DOX treatment impairs cardiac mitochon-
drial biogenesis as manifested by reduced mitochondrial DNA copy number and expression 
of regulating factors for mitochondrial biogenesis such as peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, and 
estrogen-related receptor alpha, leading to suppression of mitochondrial metabolism and 
ATP synthesis [38, 39].
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3.6. Inflammation

A growing body of evidences has shown that cardiac inflammation contributes to DOX car-
diotoxicity. DOX treatment induces increased activity of NF-κB, a key component of innate 
immune system, leading to enhanced levels of pro-inflammatory cytokines including IL-1β, 
IL-6, and TNFα [40]. Toll-like receptors (TLRs) especially TLR2 has been considered as the 
major mediator to activate NF-κB [40]. DOX-induced oxidative stress and damage-associated 
molecular pattern molecules (DAMPs) such as HMGB-1 are responsible for the activation 
of TLR2 [41]. In addition to TLR2, TLR9 is capable of activating NF-κB and may be engaged 
in cardiac inflammation in DOX-induced cardiotoxicity [42]. It has been shown that mito-
chondrial DNA escaped from autophagy triggers cardiac inflammation through TLR9 acti-
vation during progression of pressure-overloaded heart failure [43]. Given that autophagic 
flux in the heart is impaired by therapeutic dose of DOX, it is likely that TLR-9 activation is 
involved in inflammatory response in DOX-induced cardiotoxicity. However, studies need to 
be designed to address this issue.

3.7. Abnormal intracellular calcium handling

Calcium is critical for cardiac systolic and diastolic function. Calcium regulates cardiac con-
traction through a process called cardiac excitation-contraction coupling (EC coupling). In 
this process, calcium enters cytoplasm through L-type calcium channel activates ryanodine 
(RyR) receptor localized on the sarcoplasmic reticulum (SR) membrane, resulting in calcium-
induced calcium release in the SR. The released calcium form SR stimulates cardiomyocytes 
to contract. Subsequently, the cytoplasmic calcium is taken up by the sarcoendoplasmic 
reticulum calcium transport ATPase (SERCA2) localized on the SR membrane, resulting in 
reduced cytoplasmic calcium concentration and cardiomyocyte relaxation [44]. DOX regu-
lates cytoplasmic calcium levels through several mechanisms. First, DOX is able to bind RYR2 
directly and enhances its open probability [45]. Second, DOX is capable of interacting with 
calsequestrin, a calcium binding protein localized in SR lumen, and promotes calcium release 
[46]. Third, DOX elevates intracellular calcium levels by binding to SERCA2A and modify its 
activity [47]. Fourth, DOX induces SR calcium leakage in a CAMK II-dependent manner, lead-
ing to impaired calcium handling in cardiomyocytes [48]. Finally, oxidative stress induced by 
DOX amplifies RYR opening and calcium release [49]. Thus, DOX regulates calcium release 
from SR through both oxidant-dependent and independent mechanisms, and the abnormal 
calcium handling contributes to DOX cardiomyopathy.

3.8. Cell death

Numerous studies have shown that DOX induces apoptosis, which contributes to cardiotoxic-
ity. DOX stimulates ROS generation and produces oxidative stress, which activates p53. In 
addition, DOX itself promotes p53 activity in the heart. p53-mediated signaling stimulates 
apoptotic cell death of cardiomyocytes [50, 51]. Moreover, multiple lines of evidences have 
suggested that mitochondrial calcium is overloaded and contributes to apoptotic cell death 
of cardiomyocytes in DOX cardiotoxicity. As aforementioned, DOX promotes calcium release 

Cardiotoxicity52



from SR. Mitochondria, which are physically close to SR calcium release sites, uptake a por-
tion of calcium released from SR, leading to rise in mitochondrial calcium levels. Calcium 
overload triggers loss of mitochondrial membrane potential, swelling of mitochondria, and 
ultimately rupture of OMM and leakage of cytochrome C, resulting in apoptosis of cardio-
myocytes [52].

Necrotic cardiomyocyte death is also increased in DOX cardiotoxicity. Oxidative stress 
induced by DOX is considered as the major cause for necrosis. Oxidative stress enhances 
calcium release from SR and raises calcium levels in mitochondria, which induces loss of 
mitochondrial membrane potential, mitochondrial swelling, and ultimately mitochondrial 
outer membrane rupture, leading to ATP depletion [53]. In addition, oxidative stress induces 
mitochondrial DNA damage and mitochondrial lipid peroxidation, leading to disruption 
of integrity of mitochondrial structure, mitochondrial dysfunction, and ATP depletion [54]. 
Recently, Bnip3 has been shown to disrupt interaction of COXI and UCP3, leading to defec-
tive mitochondrial respiratory chain and cardiomyocyte necrosis in DOX cardiotoxicity [55].

4. Biomarkers and genetic factors

Currently, no effective therapy is available to cure DOX-induced cardiotoxicity. Thus, preven-
tion become more important and should be primarily directed. Early detection is crucial for 
the prevention of irreversible cardiac damage. Traditional technology such as echocardiog-
raphy, electrocardiogram, and angiography are not efficient for early detection of cardiac 
damage since cardiac dysfunction already occurs when diagnosis is made by means of afore-
mentioned technology. Biochemical biomarkers are sensitive and ideal for early detection of 
cardiac damage. Two types of biomarkers, i.e., troponins and natriuretic peptides, have been 
established and are currently used in clinic for early diagnosis of DOX cardiotoxicity. In addi-
tion, other promising putative biomarkers have been tested.

4.1. Cardiac troponins and B-type natriuretic peptide

Cardiac troponins are a complex consisting of three regulatory proteins, i.e., troponin T 
(cTnT), troponin C (cTnC), and troponin I (cTnI) in cardiac muscle. cTnT and cTnI are well-
established sensitive and specific biomarkers to detect myocardial damage caused by dif-
ferential insults [56]. Both cTnI and cTnT have also been utilized in clinic to detect and predict 
cardiac damage caused by DOX [57, 58].

B-type natriuretic peptide (BNP) is a peptide prohormone, which is primarily produced 
in ventricles and brain. BNP is synthesized as pre-pro-BNP, which is cleaved to generate 
pro-BNP. Pro-BNP is further cleaved into a C-terminal biologically active form of BNP and 
N-terminal inactive form of NT-pro-NPs. Both NT-pro-NPs and BNP are secreted into serum 
and serve as sensitive biomarkers predictive of congestive heart failure [59–61]. Currently, 
NT-pro-NPs and BNP are used in clinic as indicators of early cardiac damage caused by 
DOX [62, 63].
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4.2. MicroRNAs

MicroRNAs can become ideal clinical biomarkers due to their characteristics such as high sta-
bility, tissue specificity, and presence in body fluids [64]. Emerging evidences have indicated 
that alteration of certain microRNAs is associated with DOX cardiotoxicity and may be served 
as biomarkers. An in vitro study using human pluripotent stem cell-derived cardiomyocytes 
showed that a number of microRNAs, including miR-34a, miR-34b, miR-187, miR-199a, miR-
199b, miR-146a, miR-15b, miR-130a, miR-214, and miR-424, were differentially expressed 
during and after DOX treatment [65]. However, the expression pattern of these microRNAs 
in animal models and patients receiving DOX treatment remains to be investigated. A study 
using a mouse model of DOX cardiotoxicity explored whether microRNAs including miR-
208a, miR-133b, miR-146a, miR423-5p and miR-1 are suitable to predict cardiac damage in 
patients receiving DOX treatment. The results showed that miR-208a and miR-208b were 
not useful biomarkers for DOX cardiotoxicity since they were undetectable in the serum. 
MiR-133b, miR-146a, and miR423-5p were not appropriate biomarkers either since although 
detectable, no significant alterations were observed in cardiotoxic-patients compared with 
noncardiotoxic-patients. miR-1 was upregulated in patients suffering from cardiotoxicity 
compared with noncardiotoxic patients. Moreover, miR-1 expression levels were associated 
with changes of left ventricular ejection fraction. Therefore, miR-1 is a promising circulating 
biomarker for early detection of cardiac injury caused by DOX [66]. However, further studies 
should be developed to validate the putative diagnostic marker.

4.3. Genetic risk factors

The susceptibility to DOX cardiotoxicity is apparently patient dependent, suggestive of a 
role of genetic factors. To date, a number of gene polymorphisms associated with DOX car-
diotoxicity have been identified. A German non-Hodgkin lymphoma study including 1697 
enrolled patients has suggested that polymorphisms of the NAD(P)H oxidase were associ-
ated with DOX cardiotoxicity. Specifically, the 212A→G variant of NAD(P)H oxidase subunit 
NCF4 was associated with chronic DOX cardiotoxicity. The His72Tyr polymorphism in the 
p22phox subunit and the variant 7508T→A of the RAC2 subunit of NAD(P)H oxidase were 
associated with acute DOX cardiotoxicity [67]. Consistent with these findings, mice deficient 
for NAD(P)H oxidase activity were resistant to chronic doxorubicin treatment [67]. In the 
same study, Gly671Val variant of the doxorubicin efflux transporter multidrug resistance 
protein 1 (MRP1) and the Val1188Glu-Cys1515Tyr haplotype of MRP2 have been shown to 
be associated with acute DOX cardiotoxicity [67]. Polymorphisms of other genes that have 
been reported to be potentially associated with cardiotoxicity caused by DOX or DOX-based 
treatment include CBR3, CAT, ABCB1, ABCC1, ABBCC2, RAC2, GSTP1, CYBA, ABCC5, 
CASP3, MSH2, SLCO1A2, SLC28A3, FMO2, SPG7, SLC10A2, UGT1A6, ABCB4, SULT2B1, 
HFE, POR, HAS3, HNMT, SLC22A7, SLC22A17, RARG, and NOS3 [68]. Most of the candi-
date genes are related to cellular transport of DOX, oxidative stress, DOX metabolism, and 
DNA repair and replication. In a recent study involving a relatively small number of patients 
treated with DOX for breast cancer, 18 SNPs in nine genes in the HLA region (NFKBIL1, 
TNF-α, ATP6V1G2-DDX39B, MSH5, MICA, LTA, BAT1, and NOTCH4) and in the psoriasis 
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susceptibility region of HLA-C were identified to be potentially associated with DOX cardio-
toxicity, implicating an important role of dysregulation of genes involved in inflammatory 
disease and autoimmune disorders in DOX cardiotoxicity [69]. Polymorphisms of RAAS 
genes, which are useful for the prediction of congestive heart failure, were not significantly 
associated with DOX-induced cardiotoxicity [67]. Additional studies are required to identify 
and functionally validate genetic variants in DOX cardiotoxicity.

5. Preventive strategy

5.1. Doxorubicin dosage and administration

Given that DOX-induced cardiotoxicity is cumulative dose-dependent, the most straight-
forward way to prevent DOX cardiotoxicity is to reduce the dosage utilized for patients. 
However, lower dosage is associated with less therapeutic efficacy [70]. Thus, alternative 
approaches of drug administration such as continuous infusion and liposome DOX versus 
bolus injection are used to prevent cardiac toxicity. Continuous infusion of DOX causes 
significantly less injury to the heart compared to bolus doses without compromising can-
cer treatment efficacy. The mechanisms are due to the changes in the distribution of DOX 
with reducing drug concentration in the heart and no impact on drug doses in tumor tissues 
[71–73]. It should be pointed out that continuous infusion does not confer cardiac protec-
tion in children with acute lymphoblastic leukemia [74]. Administration of DOX by liposome 
encapsulation is another effective strategy to reduce cardiotoxicity. Liposomal DOX formula-
tion is not capable of crossing the tight gap junction of endothelial cells of blood vessels in 
the heart. However, in tumor tissues, the vasculature is irregular and leaky, which allows the 
diffusion of liposomal DOX formulation [75]. In addition, the diffused DOX accumulates in 
the tumor tissue due to poor lymph drainage. Both lead to selective accumulation of DOX in 
tumor tissues. This phenomenon is known as “enhanced permeability and retention effect,” 
which characterizes solid tumors and is used to target tumor cells [76]. Moreover, the liposo-
mal DOX formulations diffused into tumor tissues are prone to destabilization due to more 
acidic extracellular pH, release of necrotic tumor cell lipases, and inflammatory cell oxidizing 
agents in tumor microenvironment [76]. A number of preclinical and clinical studies have 
demonstrated that liposomal DOX formulation delivers relatively larger amount of DOX to 
tumor tissues and much less doses to the heart tissues compared to conventional DOX. Thus, 
the liposomal DOX formulations are more active and safer. Currently, two types of liposomal 
DOX formulations, i.e., pegylated (Caelyx® in Europe and Doxil® in the USA) or nonpegylated 
(Myocet®), have been approved as a first-line treatment for defined group of cancer patients 
[77]. In recent years, nanoparticle DOX delivery systems have attracted much attention due to 
potential increased bioavailability in tumor tissues and minimum cardiac toxicity, which hold 
promise as an efficient approach for the prevention of DOX cardiotoxicity [78].

DOX treatment combining with cardioprotective agents is an alternative strategy to prevent 
cardiotoxicity. Dexrazoxane (Zinecard, ICRF-187, ADR-529, NSC-169780), a cyclic derivative 
of edetic acid, is a cardioprotective agent approved by FDA to prevent DOX cardiotoxicity in 
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the clinic [79]. The molecular mechanisms that Dexrazoxane confers cardioprotection have 
previously been attributed to its iron chelating capability. However, other iron chelators fail 
to exert preventive effects for DOX cardiotoxicity, suggesting that iron chelation is not the 
major molecular basis for dexrazoxane cardioprotection. It turns out that dexrazoxane inter-
feres with Top IIβ either through promoting Top IIβ proteasomal degradation or preventing 
the formation of Top IIβ-DNA cleavage complex in cardiomyocytes [79]. It should be noted 
that coadministration of dexrazoxane may trigger secondary malignancies in cancer patients 
[80]. However, this issue is still controversial and requires further investigation.

5.2. Antioxidant reagents

Considering oxidative stress has been believed to be the major mediator of DOX-induced 
cardiotoxicity, it is reasonable to expect that coadministration of antioxidants is capable of 
preventing or mitigating DOX cardiotoxicity. The antioxidants reduce intracellular ROS lev-
els through reducing ROS generation, scavenging ROS themselves, chelating irons to inhibit 
HO. formation or eliminating other active molecules generated in response to ROS reaction 
such as lipid peroxide [81]. Although antioxidants are effective in the treatment of acute DOX 
cardiotoxicity in animal models, Clinically relevant animal experiments and clinical trials 
have suggested that among a variety of antioxidant reagents, only dexrazoxane has shown 
definitive effect on DOX cardiotoxicity [79]. As mentioned above, dexrazoxane ameliorates 
DOX cardiotoxicity likely through mechanisms independent of ROS elimination [79]. Thus, 
it still remains unclear whether antioxidants should be given to cancer patients during or 
after DOX treatment to prevent cardiotoxicity. In addition, ROS generation could be the 
mechanism that DOX is toxic to cancer cells, antioxidant may reduce response rate for DOX in 
patients, although DOX may cause cytotoxicity in cancer cells through both ROS-dependent 
and independent mechanisms. Further study should be conducted to address these issues.

5.3. Neurohormone blockers

Neurohormone blockers such as angiotensin II-converting enzyme inhibitors and angiotensin 
receptor blockers have been widely utilized in clinics to treat heart failure including DOX-
induced heart failure. Angiotensin receptor blockers have been shown to prevent decline of 
cardiac function induced by DOX in cancer patients. The preventive effect may be related to 
decreased generation of oxidative stress and reduced apoptosis of cardiomyocytes [82, 83].  
Thus, neurohormone blockers may be used in combination with DOX to prevent cardiac 
toxicity.

5.4. Exercise

In addition to pharmaceutical measure, lifestyle modifications are promising alternative 
strategies to counteract DOX-induced cardiomyopathy since it is practical to be introduced 
to patients. Several types of exercise such as chronic resistance exercise [84], chronic swim-
ming [85], voluntary exercise [86, 87], and treadmill running [88–91] have been shown to 
exert beneficial effect on mitigation of cardiac structural damage and preservation of cardiac 
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performance in animal models of DOX cardiotoxicity. Moreover, acute exercise prior to DOX 
treatment protects cardiac function of breast cancer patients [92]. The protective effects of 
exercise on DOX-induced cardiac injury may be attributed to increased antioxidant ability, 
increased expression of heat shock proteins and antiapoptotic proteins, improved mitochon-
drial quality control, maintenance of calcium handling, and altered delivery of DOX to myo-
cardium [90, 91, 93]. Importantly, exercise training has no effect on antitumor efficacy of DOX 
[94]. However, these preclinical and clinical findings need to be verified by studies involving 
a large cohort of patients.

5.5. Calorie restriction and fasting

Calorie restriction is beneficial for several types of cardiovascular diseases including DOX 
cardiotoxicity [95, 96]. However, calorie restriction is hard to sustain in the long term. 
Although calorie restriction mimetics are more practical in terms of sustainability, they are 
less accessible and cost ineffective. Fasting has been shown to exert beneficial effects on cer-
tain forms of cardiovascular diseases including age-related cardiac hypertrophy, myocardial 
ischemic injury, and coronary heart disease risk factors through diverse mechanisms includ-
ing remodeling of mitochondrial networks, improvement of energy metabolism, reduction 
in signaling pathways related to survival such as insulin and insulin-like growth factor-1 
signaling, decrease in mitochondrial oxidative stress, and enhancement of autophagic flux 
[97, 98]. Recent studies suggest that fasting also conferred cardioprotection against DOX 
cardiotoxicity. In animal models, short-term fasting ameliorates cardiac damage and car-
diac dysfunction caused by DOX [98]. Alternate-day fasting, a type of intermittent fasting, is 
capable of mitigating DOX cardiotoxicity in mouse models of both acute and chronic DOX 
cardiotoxicity [30]. More importantly, intermittent fasting and multiple fasting cycles have 
recently been shown to suppress tumor growth and sensitize various tumors to chemother-
apy [99, 100]. Therefore, intermittent fasting could be considered as a potential preventive 
or therapeutic strategy for cardiotoxicity induced by DOX. However, given that long-term 
fasting is harmful to health especially for cancer patients due to malnutrition problem, the 
procedure of intermittent fasting should be optimized under clinical supervision to improve 
its efficacy while minimizing side effects.

6. Conclusions

DOX is one of the most effective chemotherapeutic agents. However, potential acute or 
chronic irreversible cumulative cardiotoxicity limits its clinical application. It is encouraging 
that accumulating evidences from basic research, preclinical experiments and clinical trials 
provide insight into the pathophysiology and molecular mechanisms of this disease, which 
potentially leads to identification of novel biomarkers for early detection and establishment 
of preventive strategies. Moreover, emerging evidences have associated DOX cardiotoxicity 
with genetic risk factors. Findings in this direction will be helpful to predict tumor sensitivity 
to DOX treatment and susceptibility to DOX-induced cardiotoxicity of the population. As 
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a consequence, precise strategies may be developed and applied to individuals to achieve 
maximal efficacy for cancer treatment and meanwhile minimal side effects on the basis of 
patient-specific genetic variants.
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