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On a theorem of Erdős and Simonovits on
graphs not containing the cube

Abstract: The cube 𝑄 is the usual 8-vertex graph with 12 edges. Here we give a new
proof for a theoremof Erdős andSimonovits concerning theTuránnumber of the cube.
Namely, it is shown that 𝑒(𝐺) ≤ 𝑛8/5 + (2𝑛)3/2 holds for any 𝑛-vertex cube-free graph 𝐺.

Our aim is to give a self-contained exposition. We also point out the best known
results and supply bipartite versions.
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1 History of Turán type problems

As usual, we write |𝐺|, 𝑒(𝐺), deg𝐺(𝑥) for the number of vertices, number of edges, and
the degree of a vertex 𝑥 of a graph𝐺. Denote by𝑁𝐺(𝑥) (or just𝑁(𝑥)) the neighborhood
of 𝑥, note that 𝑥 ∉ 𝑁(𝑥). Let 𝐾𝑛 and 𝐾𝑎,𝑏 denote the complete graph on 𝑛 vertices and
the complete bipartite graph with bipartition classes of sizes 𝑎 and 𝑏.𝐾(𝐴, 𝐵) denotes
the complete bipartite graph with partite sets 𝐴 and 𝐵 (𝐴 ∩ 𝐵 = 0).

A graph 𝐺 not containing 𝐻 as a (not necessarily induced) subgraph is called𝐻-free. Let us denote by ex(𝑛,𝐻) the Turán number for𝐻, i.e. themaximumnumber of
edges of an𝐻-free graph on 𝑛 vertices. More generally, let ex(𝐺,𝐻) be the maximum
number of edges in an𝐻-free subgraph of 𝐺. Then ex(𝑛,𝐻) = ex(𝐾𝑛, 𝐻). We also use
the notation ex(𝑎, 𝑏,𝐻) for ex(𝐾𝑎,𝑏, 𝐻) and call it the bipartite version of Turán number.
Also, if 𝐹 ⊂ 𝐻 then ex(𝑛, 𝐹) ≤ ex(𝑛,𝐻).

Turán [29] determined ex(𝑛, 𝐾𝑝+1). The extremal graph is the almost equipartite
complete graphof𝑝 classes.Healsoproposed thegeneral question, ex(𝑛,𝐻), inpartic
ular the determination of the Turán number of the graphs obtained from the platonic
polyhedrons, the cube𝑄 = 𝑄8 (it is an8-vertex 3-regular graph), theoctahedron𝑂6 (six
vertices, 12 edges), the icosahedron 𝐼12 (12 vertices, 5-regular) and for the dodecahe
dron𝐷20 (20 vertices, 30 edges). Erdős and Simonovits [12] gave an implicit formula for
ex(𝑛, 𝑂6) (they reduced it to ex(𝑛, 𝐶4)) and Simonovits solved exactly ex(𝑛, 𝐷20) in [26]
and ex(𝑛, 𝐼12) in [27] (for 𝑛 > 𝑛0).

In fact, Turán’s real aimwasnot only these particular graphs but todiscover agen
eral theory. His questions, and the answers above, indeed lead to an asymptotic (the
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Erdős–Simonovits theorem [10]) and to the Simonovits stability theorem concerning
the extremal graphs [25] in the case when the sample graph𝐻 has chromatic number
at least three. For a survey and explanation see Simonovits [28] or the monograph of
Bollobás [5].

However, the bipartite case is different, see the recent survey [16]. Even the ex
tremal problem of the cube graph 𝑄, which was one of Turán’s [30] originally posed
problems, is still unsolved. Our aim here is to give a gentle introduction to this topic.
We survey the results and methods concerning ex(𝑛, 𝑄), give new or at least stream
lined proofs. We only use basic ideas of multilinear optimization (Lagrangian, con
vexity, etc.) and in most cases just high school algebra. We also consider the case of
bipartite host graph, i.e., ex(𝑎, 𝑏, 𝑄).

2 Walks

Let𝑊3 = 𝑊3(𝐺) denote the number of walks in 𝐺 of length 3, i.e., the number of se
quences of the form𝑥0𝑥1𝑥2𝑥3where𝑥𝑖−1𝑥𝑖 is an edgeof𝐺 (for 𝑖 = 1, 2, 3). Note that, e.g.,𝑥𝑦𝑥𝑦 is a walk (if 𝑥𝑦 ∈ 𝐸(𝐺)) and it differs from 𝑦𝑥𝑦𝑥. A 𝑑-regular graph has exactly𝑛𝑑3 3-walks.

Theorem 1. For every 𝑛-vertex graph𝐺 for the number of 3-walks one has

𝑊3 ≥ 𝑛(1𝑛 ∑
𝑥∈𝑉

deg(𝑥)3/2)2. (1)

The 𝑟-order power mean of the nonnegative sequence 𝑎1, . . . , 𝑎𝑚 is 𝑀𝑟(a) :=( 1
𝑚 ∑𝑎𝑟𝑖 )1/𝑟. Then for 1 ≤ 𝑟 ≤ 𝑠 ≤ ∞ one has

𝑎ave := 𝑀1(a) ≤ 𝑀𝑟(a) ≤ 𝑀𝑠(a) ≤ 𝑀∞(a) := max
𝑖

|𝑎𝑖|. (2)

We will frequently use it in the equivalent form

∑
1≤𝑖≤𝑚

𝑎𝑟𝑖 ≤ (∑𝑎𝑠𝑖 )𝑟/𝑠𝑚1−(𝑟/𝑠). (3)

This is just a special case of theHölder inequality, i.e., for any two nonnegative vectors
x, y ∈ 𝑅𝑚 and for reals 𝑝, 𝑞 ≥ 1 with 1

𝑝 + 1
𝑞 = 1 one has

∑
𝑖
𝑥𝑖𝑦𝑖 ≤ (∑

𝑖
𝑥𝑝
𝑖 )1/𝑝(∑

𝑖
𝑦𝑞
𝑖 )1/𝑞.

We get (3) by substituting here x = (𝑎𝑟𝑖 )1≤𝑖≤𝑚, y = (1, 1, . . . , 1), 1/𝑝 = 𝑟/𝑠 and 1/𝑞 =1 − (𝑟/𝑠).
Proof of Theorem 1. Considering the middle edge of the 3-walks one obtains that

𝑊3 = ∑
𝑥∈𝑉

∑
𝑦∈𝑁(𝑥)

deg(𝑥) deg(𝑦).
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Here we have 2𝑒 = 𝑛𝑑ave terms. We use for this sum the 2𝑒-dimensional Chauchy–
Schwartz inequality

(∑
𝑖
𝑎2𝑖 )(∑

𝑖
𝑏2𝑖 ) ≥ (∑

𝑖
𝑎𝑖𝑏𝑖)2

valid for any two vectors a, b ∈ 𝑅𝑚. Our aim is to separate the variables in the productsdeg(𝑥) deg(𝑦) so we take a = {√deg(𝑥) deg(𝑦)}𝑥∈𝑉, 𝑦∈𝑁(𝑥) and b = {√1/ deg(𝑥)}𝑥∈𝑉, 𝑦∈𝑁(𝑥).
One obtains that

𝑊3 𝑛 = ( ∑
𝑥∈𝑉

∑
𝑦∈𝑁(𝑥)

deg(𝑥) deg(𝑦))( ∑
𝑥∈𝑉

∑
𝑦∈𝑁(𝑥)

1deg(𝑥)) = (∑
𝑖
𝑎2𝑖 )(∑

𝑖
𝑏2𝑖 )

≥ (∑
𝑖
𝑎𝑖𝑏𝑖)2 = ( ∑

𝑥∈𝑉
∑

𝑦∈𝑁(𝑥)

√deg(𝑥) deg(𝑦)√deg(𝑥) )2 = ( ∑
𝑥∈𝑉

∑
𝑦∈𝑁(𝑥)

√deg(𝑦))2

= ( ∑
𝑦∈𝑉

deg(𝑦)3/2)2.

Historical remarks. One can rewrite Theorem 1 as

𝑊3 ≥ 𝑛𝑀3/2(d)3. (4)

Then the power mean inequality (2) with (𝑟, 𝑠) = (1, 3/2) gives that
𝑊3 ≥ 𝑛(𝑑ave)3 = 8𝑒3/𝑛2. (5)

This inequality 𝑊3 ≥ 𝑛(𝑑ave)3 is due to Mulholland and C. A. B. Smith [20] and was
generalized by Attkinson, Watterson and Moran [3] for𝑊𝑘 for every 𝑘 ≥ 3 in a form of
amatrix inequality. Then it was further generalized by Blakley and Roy [4] for all non
negative symmetric matrices. As far as the author knows the obvious consequence
of their works, 𝑊𝑘 ≥ 𝑛(𝑑ave)𝑘, was first explicitly stated in a paper of Erdős and Si
monovits [13]. For the interested reader we supply a direct proof for (5) using only high
school algebra in the Appendix (Section 8).

Theorem 1 is not really new. It is an easy consequence (of a special case) of a re
sult of Jagger, Št́ovíček, and Thomason [18], who while working on a conjecture of
Sidorenko [24] showed the inequality∑𝑥 𝑤(𝑥)1/2 ≥ ∑𝑥 deg(𝑥)3/2where𝑤(𝑥) is thenum
ber of 3-walks whose second vertex is 𝑥.
The exponent 3/2 is the best possible. Consider a complete bipartite graph 𝐾𝑎,𝑏,
we have 𝑊3 = 2𝑎2𝑏2. Then 𝑊3/𝑛𝑀𝑝(d)3 → 0 for any fixed 𝑝 > 3/2 whenever𝑏/𝑎 → ∞.

For𝐾𝑎,𝑏 wehave𝑊3 = 2𝑎2𝑏2, while the right-handsideof (1) is𝑎2𝑏2 (√𝑎+√𝑏)2
𝑎+𝑏 which is

between 𝑎2𝑏2 and 2𝑎2𝑏2. Using this observation one can show the following: Suppose
that 𝑑1, . . . , 𝑑𝑛 is the degree sequence of a graph 𝐺. There is a graph 𝐻 with degree
sequence 𝑑

𝑖 for which 𝑑
𝑖 ≥ 𝑑𝑖 and𝑊3(𝐻) ≤ 4𝑛(∑(𝑑

𝑖)3/2/𝑛)2 = 4𝑛𝑀3/2(d)3.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 16.10.19 15:50



116 | Zoltán Füredi

3 3-paths in bipartite graphs

Let𝑃3 = 𝑃3(𝐺) denote the number of 3-paths of𝐺. We have 2𝑃3 ≤ 𝑊3. Using themethod
of the previous section we show the following lower bound for 𝑃3.

Theorem 2. Let 𝐺(𝐴, 𝐵) be a bipartite graph with 𝑒 edges and with color classes𝐴 and𝐵, |𝐴| = 𝑎, |𝐵| = 𝑏. Suppose that every vertex has degree at least 2. Then for the number
of 3-paths one has

𝑃3 ≥ 𝑒(𝑒 − 𝑎)(𝑒 − 𝑏)𝑎𝑏 . (6)

Proof. Considering the middle edge of the 3-paths one obtains that

𝑃3 = ∑
𝑥∈𝐴

∑
𝑦∈𝑁(𝑥)

(deg(𝑥) − 1)(deg(𝑦) − 1).
Here we have 𝑒 terms. One obtains that

𝑎𝑃3 = 𝑎 ∑
𝑥∈𝐴

∑
𝑦∈𝑁(𝑥)

(deg(𝑥) − 1)(deg(𝑦) − 1)
= 𝑎 ∑

𝑥∈𝐴
∑

𝑦∈𝑁(𝑥)
−(deg(𝑦) − 1) + 𝑎 ∑

𝑥∈𝐴
∑

𝑦∈𝑁(𝑥)
deg(𝑥)(deg(𝑦) − 1)

= −𝑎 ∑
𝑦∈𝐵

deg(𝑦)(deg(𝑦) − 1) + (∑
𝑥∈𝐴

∑
𝑦∈𝑁(𝑥)

1deg(𝑥))(∑𝑥∈𝐴 ∑
𝑦∈𝑁(𝑥)

deg(𝑥)(deg(𝑦) − 1)).
Here the second term is at least

≥ ( ∑
𝑥∈𝐴

∑
𝑦∈𝑁(𝑥)

√deg(𝑥)(deg(𝑦) − 1)√deg(𝑥) )2 = ( ∑
𝑥∈𝐴

∑
𝑦∈𝑁(𝑥)

√deg(𝑦) − 1)2

= ( ∑
𝑦∈𝐵

deg(𝑦)√deg(𝑦) − 1)2.
Let 𝐹(𝑦1, 𝑦2, . . . , 𝑦𝑏) be a real function defined as

−𝑎 ∑
1≤𝑖≤𝑏

(𝑦2
𝑖 − 𝑦𝑖) + (∑

𝑖
𝑦𝑖√𝑦𝑖 − 1)2,

where 𝑦𝑖 ≥ 2 and ∑𝑦𝑖 ≥ 2𝑎. We obtained that 𝑎𝑃3 ≥ 𝐹(y) where y ∈ 𝑅𝑏 is the vector
with coordinates formed by the degrees {deg(𝑦) : 𝑦 ∈ 𝐵}. We will see that 𝐹 is con
vex in this region, hence all 𝑦𝑖 can be replaced with the average of the degrees, i.e.,∑𝑦∈𝐵 deg(𝑦)/𝑏 = 𝑒/𝑏. One obtains

𝑎𝑃3 ≥ −𝑎𝑏 𝑒𝑏( 𝑒𝑏 − 1) + (𝑏 𝑒𝑏√ 𝑒𝑏 − 1)
2.

Rearranging one gets (6).
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Proof of convexity. Let 𝐹𝑖𝑗, 𝐹𝑖𝑖 denote the partial derivatives,H the Hessian of 𝐹. Then
for 𝑖 ≠ 𝑗 one has

𝐹𝑖𝑗 = 12 3𝑦𝑖 − 2√𝑦𝑖 − 1
3𝑦𝑗 − 2
√𝑦𝑗 − 1 ,

and

𝐹𝑖𝑖 = −2𝑎 + 𝐺(y) 12 (3𝑦𝑖 − 2)2𝑦𝑖 − 1 + 𝐺(y) 3𝑦𝑖 − 12(𝑦𝑖 − 1)√𝑦𝑖 − 1
≥ −2𝑎 + (𝐺(y) − 1)12 (3𝑦𝑖 − 2)2𝑦𝑖 − 1 + 12 3𝑦𝑖 − 2√𝑦𝑖 − 1

3𝑦𝑖 − 2√𝑦𝑖 − 1 ,
where𝐺(y) = ∑𝑦𝑖√𝑦𝑖 − 1. Since (3𝑦−2)2/2(𝑦−1) ≥ 6 for𝑦 > 1 and𝐺(y) ≥ ∑𝑦𝑖 = 𝑒 ≥ 2𝑎
we can write H as a sum of a positive semidefinite matrices, namely 1/2 times the
tensor product of the vector { 3𝑦

𝑖
−2

√𝑦
𝑖
−1 } with itself, and a diagonal matrix with diagonal

entries exceeding −2𝑎 +6(𝐺(y) −1), again a positive definite matrix. ThusH is positive
definite and then 𝐹 is convex in the region.

The above theorem is a slightly improved version of a result of Sidorenko [23]
which states𝑃3 ≥ 𝑒3/𝑎𝑏−𝛥𝑒, where𝛥 is themaximumdegree of𝐺. Concerning general
(non-bipartite) graphs, Theorem 1 implies that 𝑃3 ≥ 1

2𝑛(𝑑ave)3 − 3
2𝑛𝛥𝑑ave. This inequal

ity may also be deduced from a Moore-type bound, established by Alon, Hoory and
Linial [2].

4 Graphs without 𝐶6
Theorem 3. Let 𝐺(𝐴, 𝐵) be a bipartite graph with 𝑒 edges and with color classes𝐴 and𝐵, |𝐴| = 𝑎, |𝐵| = 𝑏. Suppose that𝐺 has girth eight. Then for the number edges one has

𝑒 ≤ (𝑎𝑏)2/3 + 𝑎 + 𝑏. (7)

Proof. We use induction on the number of vertices if there is any isolated vertex, or a
vertex of degree 1. Otherwise, observe, that every pair 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 is connected by at
most one path of length 3. Thus 𝑃3 ≤ 𝑎𝑏. Comparing this to the lower bound for 𝑃3 in
(6) and rearranging we get the Theorem.

D. de Caen and Székely [7] showed that 𝑒(𝐺) = 𝑂((𝑎𝑏)2/3) assuming 𝑎 = 𝑂(𝑏2) and𝑏 = 𝑂(𝑎2). Later they showed [8] that if 𝐺 has girth eight and every vertex has degree
at least two, then 𝑒 ≤ 21/3(𝑎𝑏)2/3 and here the coefficient 21/3 is the best possible by
exhibiting a graph with 𝑎 = 2𝑠, 𝑏 = 𝑠2 and 𝑒 = 2𝑠2. (Note that this does not contradict
our result (7) since here 𝑏 = 𝑒/2).

Győri [17] observed that in a 𝐶6-free graph 𝐺 the maximal complete bipartite
graphs 𝐾𝛼,𝛽’s with 𝛼, 𝛽 ≥ 2 are edge disjoint (indeed, these are 𝐾2,𝛽’s). Thus one can
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118 | Zoltán Füredi

remove edges from 𝐺 such that the resulting graph 𝐺0 is 𝐶4-free and 𝑒(𝐺0) ≥ 1
2 𝑒(𝐺).

Thus Győri’s result combined with Theorem 3 gives that

Corollary 4. If 𝐺 is a 𝐶6-free bipartite graph with parts of sizes 𝑎 and 𝑏 then 𝑒(𝐺) ≤2(𝑎𝑏)2/3 + 2𝑎 + 2𝑏.
More is true. In [14] it was proved that for such a graph

𝑒(𝐺) < 21/3(𝑎𝑏)2/3 + 16(𝑎 + 𝑏) (8)

holds. Moreover infinitely many examples show that the coefficient 21/3 in the best
possible for large 𝑎 and 𝑏 with 𝑏 = 2𝑎.

Concerning general (not necessarily bipartite) graphs, itwasproved byBondy and
Simonovits [6] in 1974 that a graph on 𝑛 vertices with at least 100𝑘𝑛1+1/𝑘 edges con
tains 𝐶2𝑘, a cycle of length 2𝑘. This was extended into bipartite graphs with parts of
sizes of 𝑎 and 𝑏 by G. N. Sárközy [22] who showed that such a graph withmax{90𝑘(𝑎 +𝑏), 20𝑘(𝑎𝑏)1+1/𝑘} edges contains a𝐶2𝑘. Our Corollary 4 gives these for𝐶6, even a slightly
better statement, using the following important reduction theorem.

Lemma 5 (Erdős [9]). Let𝐺beanarbitrary graph. Then there existsa bipartite subgraph𝐺0 with deg𝐺
0

(𝑥) ≥ 1
2 deg𝐺(𝑥) for all vertices. Especially, 𝑒(𝐺0) ≥ 1

2 𝑒(𝐺).
Corollary 6. If𝐺 is a 𝐶6-free graph on 𝑛 vertices then 𝑒(𝐺) ≤ 22/3𝑛4/3 + 4𝑛.

It is known that there are 𝐶6-free graphs with at least ( 12 +𝑜(1))𝑛4/3 edges [19], and
the best known lower and upper bounds can be found in [14], (namely 0.533𝑛4/3 <
ex(𝑛, 𝐶6) < 0.628𝑛4/3 for 𝑛 > 𝑛0). Yuansheng and Rowlinson [31] determined ex(𝑛, 𝐶6)
and all extremal graphs for 𝑛 ≤ 26.

5 Cube-free graphs

Theorem 7 (Erdős and Simonovits [11]). Let𝑄 denote the 8-vertex graph formed by the12 edges of a cube. Then ex(𝑛, 𝑄) ≤ 𝑂(𝑛8/5).
The original proof of this is rather complicated. It applies a remarkable regulariza

tion process for non-dense bipartite graphs. A somewhat simpler proof was found by
Pinchasi andSharir [21],whowere interested in certain geometric incidenceproblems,
and who also extended it to a bipartite version

𝑒(𝐺(𝐴, 𝐵)) ≤ 𝑂((𝑎𝑏)4/5 + 𝑎𝑏1/2 + 𝑎1/2𝑏). (9)

Here we give an even simpler proof which also gives the bipartite version, see (10)
below.We only use Theorem 2, Corollary 4 and the power mean inequality (3), but the
main ideas are the same as in [11].

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 16.10.19 15:50



On a theorem of Erdős and Simonovits on graphs not containing the cube | 119

Proof of Theorem 7. Let 𝐺 be an 𝑛-vertex𝑄-free graph. First, applying Erdős’ Lemma 5
we choose a large bipartite subgraph 𝐺(𝐴, 𝐵) of 𝐺, 𝑒(𝐺) ≤ 2𝑒(𝐺(𝐴,𝐵)).

We say that a hexagon 𝑧1𝑧2 . . . 𝑧6 lies between the vertices 𝑥 and 𝑦 if 𝑧1, 𝑧3, 𝑧5 are
neighbors of 𝑥 and the other vertices of the hexagon are neighbors of 𝑦, i.e., 𝑧1, 𝑧3, 𝑧5 ∈𝑁(𝑥) and 𝑧2, 𝑧4, 𝑧6 ∈ 𝑁(𝑦) and {𝑥, 𝑦} ∩ {𝑧1, . . . , 𝑧6} = 0. The crucial observation is that𝑥 and 𝑦 together with the 6 vertices of a hexagon between them contain a cube 𝑄. So
there is no such hexagon in a 𝑄-free graph. Thus we can apply the upper bound for
the Turán numbers of 𝐶6, i.e., Theorem 4 and obtain an upper bound for the number
of edges 𝑢𝑣, 𝑢 ∈ 𝑁(𝑥), 𝑣 ∈ 𝑁(𝑦). This gives an upper bound for the number of paths
with end vertices 𝑥 and 𝑦. For given 𝑥 and 𝑦 we have

#𝑥𝑢𝑣𝑦 paths = |{𝑢𝑣 ∈ 𝐸(𝐺(𝐴, 𝐵)) : 𝑢 ∈ 𝑁(𝑥) \ {𝑦}, 𝑣 ∈ 𝑁(𝑦) \ {𝑥}}
≤ 2|𝑁(𝑥)|2/3 |𝑁(𝑦)|2/3 + 2|𝑁(𝑥)| + 2|𝑁(𝑦)|.

Add this up for every 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. Let 𝑒 := 𝑒(𝐺[𝐴,𝐵]) and use (3) with (𝑟, 𝑠) = (1, 3/2).
We have

𝑃3(𝐺(𝐴, 𝐵)) ≤ ∑
𝑥∈𝐴

∑
𝑦∈𝐵

2 deg(𝑥)2/3 deg(𝑦)2/3 + 2 deg(𝑥) + 2 deg(𝑦)
= 2( ∑

𝑥∈𝐴
deg(𝑥)2/3)( ∑

𝑦∈𝐵
deg(𝑦)2/3) + 2𝑏𝑒 + 2𝑎𝑒

≤ 2 × 𝑒2/3𝑎1/3 × 𝑒2/3𝑏1/3 + 2(𝑎 + 𝑏)𝑒.
Comparing this to the lower bound in Theorem 2 one obtains that

(𝑒 − 𝑎)(𝑒 − 𝑏) ≤ 2𝑒1/3(𝑎𝑏)4/3 + 2(𝑎 + 𝑏)𝑎𝑏.
This implies that 𝑒 ≤ 23/5(𝑎𝑏)4/5 + 2𝑎𝑏1/2 + 2𝑎1/2𝑏. (10)

Using 𝑒(𝐺) ≤ 2𝑒we obtain 𝑒(𝐺) ≤ 𝑛8/5 + (2𝑛)3/2 (11)

finishing the proof.

If we use (8) instead of Corollary 4 then the above calculation gives

Theorem 8.

ex(𝑎, 𝑏, 𝑄) ≤ 21/5(𝑎𝑏)4/5 + 9(𝑎𝑏1/2 + 𝑎1/2𝑏) (12)

and

ex(𝑛, 𝑄) ≤ 2−2/5𝑛8/5 + 13𝑛3/2. (13)
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6 A lower bound on the number of 𝐶4’s
Let 𝑁(𝐺, 𝐻) denote the number of subgraphs of 𝐺 isomorphic to 𝐻. This function is
even more important than the original Turán problem. Here we consider only one of
the simplest cases,𝐻 = 𝐶4.

It was observed and used many times that for sufficiently large 𝑒 the graph 𝐺 con
tains at least𝛺(𝑒4/𝑛4) copies of 𝐶4. This result goes back to Erdős (1962) and was pub
lished, e.g., in Erdős and Simonovits [11] in an asymptotic form (𝑁(𝐺, 𝐶4) > (1/3)𝑒4/𝑛4
for𝑛 > 𝐶𝑛3/2). The followingsimple formhas the advantage that it is valid for arbitrary𝑛 and 𝑒.
Lemma 9 (see [15]). Let 𝐺 be a graph with 𝑒 edges and 𝑛 vertices. Then

𝑁(𝐺, 𝐶4) ≥ 2𝑒3(𝑒 − 𝑛)𝑛4 − 𝑒22𝑛 ≥ 2 𝑒4𝑛4 − 34𝑒𝑛. (14)

Allen, Keevash, Sudakov, and Verstraëte [1] gave a bipartite version of Lemma 9.
Herewe state their result in a slightly stronger form (it is valid for all values of 𝑎, 𝑏 and𝑒). Note that the formula is not symmetric in 𝐴 and 𝐵.
Lemma 10. Let 𝐺 be a bipartite graph with parts𝐴 and 𝐵 of sizes 𝑎 and 𝑏 and 𝑒 edges.
Then the number of 4-cycles in 𝐺 is at least

𝑒2(𝑒 − 𝑏)2 − 𝑒(𝑒 − 𝑏)𝑏𝑎(𝑎 − 1)4𝑏2𝑎(𝑎 − 1) . (15)

For completeness we present the proofs of the above Lemmas (below and in the
Appendix). But we will need a slightly stronger and more technical version.

Lemma 11. Let 𝐺 be a bipartite graph with parts 𝐴 and 𝐵 of sizes 𝑎 and 𝑏 and 𝑒 edges.
Let𝐷(𝑥) denote∑𝑦∈𝑁(𝑥)(deg(𝑦) − 1). Then the number of 4-cycles in𝐺 is at least

14(𝑎 − 1)( ∑
𝑥∈𝐴

𝐷(𝑥)2) − 14( ∑
𝑥∈𝐴

𝐷(𝑥)). (16)

Proof. We have

𝑁(𝐺, 𝐶4) = ∑
{𝑥,𝑥}⊂𝐴

(𝑑(𝑥, 𝑥)2 ) = 12 ∑
𝑥∈𝐴

( ∑
𝑥∈𝐴\𝑥

(𝑑(𝑥, 𝑥)2 ))
= 12 ∑

𝑥∈𝐴
(𝑎 − 1)(∑𝑥∈𝐴\𝑥 𝑑(𝑥, 𝑥)/(𝑎 − 1)2 )

= 𝑎 − 12 ∑
𝑥∈𝐴

(𝐷(𝑥)/(𝑎 − 1)2 )
= 14(𝑎 − 1) (∑

𝑥∈𝐴
𝐷(𝑥)2) − 14 (∑

𝑥∈𝐴
𝐷(𝑥)) .
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Note that Lemma 11 easily implies Lemma 10. Indeed, observe that for 𝑒(𝑒 − 𝑏) <𝑏𝑎(𝑎 − 1) the right-hand side of (15) is negative, so we may suppose that (𝑒2/𝑏) − 𝑒 ≥𝑎(𝑎 − 1). Use Chauchy–Schwartz for∑𝑥∈𝐴 𝐷(𝑥). We obtain

∑
𝑥∈𝐴

𝐷(𝑥) = ∑
𝑥∈𝐴

( ∑
𝑦∈𝐵,𝑥𝑦∈𝐸(𝐺)

(deg(𝑦) − 1)) = ∑
𝑦∈𝐵

deg(𝑦)2 − ∑
𝑦∈𝐵

deg(𝑦) ≥ 𝑒2𝑏 − 𝑒.
Use Chauchy–Schwartz again for∑𝐷(𝑥)2. We have

∑
𝑥∈𝐴

𝐷(𝑥)2 ≥ 1𝑎( ∑
𝑥∈𝐴

𝐷(𝑥))2.
Now Lemma 11 gives that𝑁(𝐺, 𝐶4) ≥ (𝑁2/4𝑎(𝑎 − 1)) − (𝑁/4) for𝑁 := ∑𝑥∈𝐴 𝐷(𝑥). Since𝑁 ≥ (𝑒2/𝑏) − 𝑒 ≥ 𝑎(𝑎 − 1) the polynomial 𝑝(𝑁) := 𝑁2/𝑎(𝑎 − 1) − 𝑁 is increasing and we
get𝑁(𝐺, 𝐶4) ≥ 𝑝(𝑁) ≥ 𝑝(𝑒(𝑒 − 𝑏)/𝑏)).

7 Cubes with a diagonal

Theorem 12 (Erdős and Simonovits [11]). Let 𝑄+ denote the 8-vertex graph formed by

the 12 edges of a cube with a long diagonal. Then ex(𝑛, 𝑄+) ≤ 𝑂(𝑛8/5).
Here we give a simpler proof which also gives a stronger bipartite version.

Theorem 13. ex(𝑎, 𝑏, 𝑄+) ≤ 23/5(𝑎𝑏)4/5 + 𝑂(𝑎𝑏1/2 + 𝑎1/2𝑏).
Using again Erdős’ Lemma 5 and 𝑎 + 𝑏 = 𝑛 we get

ex(𝑛, 𝑄+) ≤ 𝑛8/5 + 𝑂(𝑛3/2). (17)

Proof of Theorem 13. Let 𝐺 be an 𝑛-vertex 𝑄+-free bipartite graph with classes 𝐴 and𝐵. The main idea is the same as in [11] and in the proof of Theorem 7. The crucial ob
servation is that an edge 𝑥𝑦 ∈ 𝐸(𝐺) together with the 6 vertices of a hexagon between
them form a 𝑄+. So there is no such hexagon in a 𝑄+-free graph between the neigh
borhoods of two connected vertices. Thuswe can apply the upper bound for the Turán
numbers of 𝐶6, i.e., Theorem 4 and obtain an upper bound for the number of edges𝑥𝑦, 𝑦 ∈ 𝑁(𝑥), 𝑥 ∈ 𝑁(𝑦) for 𝑥𝑦 ∈ 𝐸(𝐺). This gives an upper bound for the number of
four cycles containing the edge 𝑥𝑦.

#𝑥𝑦𝑥𝑦 four cycles = |{𝑥𝑦 ∈ 𝐸(𝐺(𝐴, 𝐵)) : 𝑦 ∈ 𝑁(𝑥) \ {𝑦}, 𝑥 ∈ 𝑁(𝑦) \ {𝑥}}
≤ 2(|𝑁(𝑥)| − 1)2/3(|𝑁(𝑦)| − 1)2/3 + 2|𝑁(𝑥)| + 2|𝑁(𝑦)| − 2.
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Add this up for every 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑥𝑦 ∈ 𝐸(𝐺) and apply (3) for ∑𝑥𝑦∈𝐸(deg(𝑦) − 1)2/3
with (𝑟, 𝑠) = (1, 3/2) for every 𝑥. We obtain

4𝑁(𝐺, 𝐶4) ≤ ∑
𝑥∈𝐴

∑
𝑦∈𝑁(𝑥)

2(deg(𝑥) − 1)2/3(deg(𝑦) − 1)2/3 + 2 deg(𝑥) + 2 deg(𝑦) − 2
= 2( ∑

𝑥∈𝐴
(deg(𝑥) − 1)2/3 deg(𝑥)1/3𝐷(𝑥)2/3) + 2( ∑

𝑦∈𝐵
𝐷(𝑦)) + 2( ∑

𝑥∈𝐴
𝐷(𝑥)).

Apply Hölder inequality with 1/𝑝 = 2/3 and 1/𝑞 = 1/3 in the first term. We obtain it is
at most

≤ 2( ∑
𝑥∈𝐴

(deg(𝑥) − 1) deg(𝑥)1/2)2/3( ∑
𝑥∈𝐴

𝐷(𝑥)2)1/3. (18)

From now on, to save time and energy, and to better emphasize the main steps of
calculation we only sketch the proof. Compare the obvious leading terms in the lower
and upper bounds (16) and (18) for𝑁(𝐺, 𝐶4), we have

1𝑎 − 1( ∑
𝑥∈𝐴

𝐷(𝑥)2) ≪ 4𝑁(𝐺, 𝐶4) ≪ 2( ∑
𝑥∈𝐴

(deg(𝑥) − 1) deg(𝑥)1/2)2/3( ∑
𝑥∈𝐴

𝐷(𝑥)2)1/3

yielding

( ∑
𝑥∈𝐴

𝐷(𝑥)2) ≪ (2(𝑎 − 1))3/2( ∑
𝑥∈𝐴

(deg(𝑥) − 1) deg(𝑥)1/2). (19)

On the left-hand side we can use Cauchy–Schwartz and on the right-hand side we ap
ply (3) with (𝑟, 𝑠) = (3/2, 2). We obtain

1𝑎( ∑
𝑥∈𝐴

𝐷(𝑥))2 ≪ (2(𝑎 − 1))3/2𝑎1/4( ∑
𝑥∈𝐴

(deg(𝑥) − 1)𝑑(𝑥))3/4.
Rearranging we have

( ∑
𝑥∈𝐴

𝐷(𝑥))2 ≪ 23/2𝑎11/4( ∑
𝑦∈𝐵

𝐷(𝑦))3/4. (20)

Exchange the role of 𝐴 and 𝐵, we get
( ∑

𝑦∈𝐵
𝐷(𝑦))2 ≪ 23/2𝑏11/4( ∑

𝑥∈𝐴
𝐷(𝑥))3/4.

Multiply the above two inequalities, take 4𝑡ℎ power, we get
212(𝑎𝑏)11 ≫ ( ∑

𝑥∈𝐴
𝐷(𝑥))5( ∑

𝑦∈𝐵
𝐷(𝑦))5 ≥ (𝑒2𝑎 − 𝑒)5(𝑒2𝑏 − 𝑒)5

leading to 212(𝑎𝑏)16 ≫ 𝑒20.
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8 Appendix

(1) A direct proof of the Mulholland–Smith inequality (5) concerning the number of

3-walks using only high school algebra.

Considering the middle edge of the 3-walks one obtains that

𝑊3 = ∑
𝑥∈𝑉

∑
𝑦∈𝑁(𝑥)

deg(𝑥) deg(𝑦).
Here we have 2𝑒 = 𝑛𝑑ave terms. Our aim is to separate the variables in the prod
ucts deg(𝑥) deg(𝑦) so next we use first that the 2𝑒-dimensional quadratic inequality
(quadratic mean is greater than or equal the arithmetic mean), second we use (for 2
variables) that the arithmetic mean is greater than or equal the harmonic mean, then
third time we use again (this time for 2𝑒 variables) that arithmetic ≥ harmonic. One
obtains that

√ 𝑊3𝑛𝑑ave
= √∑𝑥∈𝑉 ∑𝑦∈𝑁(𝑥) deg(𝑥) deg(𝑦)2𝑒
≥ ∑𝑥∈𝑉 ∑𝑦∈𝑁(𝑥) √deg(𝑥) deg(𝑦)2𝑒
≥ 12𝑒( ∑

𝑥∈𝑉
∑

𝑦∈𝑁(𝑥)

2
1

deg(𝑥) + 1
deg(𝑦)

)
≥ 2𝑒( ∑

𝑥∈𝑉
∑

𝑦∈𝑁(𝑥)

1
deg(𝑥) + 1

deg(𝑦)2 )−1 = 2𝑒∑𝑥∈𝑉 1 = 2𝑒𝑛 = 𝑑ave .

(2) Proof of Lemma 9 concerning the number of 𝐶4’s.

Denote the number of 𝑥, 𝑦-paths of length two by 𝑑(𝑥, 𝑦). We have

𝑑 := (𝑛2)
−1 ∑

𝑥,𝑦∈𝑉(𝐺)
𝑑(𝑥, 𝑦) = (𝑛2)

−1 ∑
𝑥∈𝑉(𝐺)

(deg(𝑥)2 ) ≥ (𝑛2)
−1𝑛(2𝑒/𝑛2 ). (21)

Therefore, 𝑑 ≥ 2𝑒(2𝑒−𝑛)
𝑛2 (𝑛−1) . Moreover

𝑁(𝐺, 𝐶4) = 12 ∑
𝑥,𝑦∈𝑉(𝐺)

(𝑑(𝑥, 𝑦)2 ) ≥ 12(𝑛2)(𝑑2). (22)

We may suppose that the middle term in (14) is positive, which implies that 2𝑒(2𝑒−𝑛)
𝑛2 (𝑛−1) ≥1/2. The paraboloid (𝑥2) is increasing for𝑥 ≥ 1/2. Sowemay substitute the lower bound

of 𝑑 from (21) into (22) and a little algebra gives (14).
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