

CUT UMBILICAL CORD MILKING IS AS EFFECTIVE AS INTACT UMBILICAL CORD MILKING FOR HEMODYNAMIC ADAPTATION IN TERM INFANTS DURING TRANSITION PERIOD

S. Orpak¹, H. Ergin², C. Çıralı², Ö. Özdemir², Ö. Koşar Can³, Ü. Çelik⁴

Pamukkale University Faculty of Medicine Department of Paediatrics¹, Division of Neonatology², Department of Obstetric and Gynecology⁴, Denizli, Turkey

⁴State Hospital Department of Paediatrics Division of Neonatology, Denizli, Turkey

Background and Aims

Delayed cord clamping may not provide adequate placental transfusion in depressed infants and in neonates delivered by cesarean^{1,2}. The aim of this study is to compare the effects of cut umbilical cord milking (C-UCM) and intact umbilical cord milking (I-UCM) which permit placental transfusion and resuscitation during transition period.

Method

Sixty-two healthy term infants not requiring respiratory support were randomized into C-UCM and I-UCM groups at birth. Approximately 25-30 cm length of cord was milked towards the baby 2-4 times within 20 seconds after birth in both C-UCM and I-UCM groups while the umbilical cord was cut in the former, and intact in the latter. Arterial oxygen saturation (SpO₂), cerebral regional oxygen saturation (crSO₂), heart rate (2nd -15th min), arterial blood pressure (within 15-30 min), hemoglobin values (at the 6th hour), and residual blood volume in the placenta (Fig. 1) were recorded during transition period after birth.

Results

There were no differences in terms of gestational age, birth weight, Apgar scores at 1st/5th min, first respiration timing, mode of delivery, sex, blood pressures, residual blood volume in placenta, and hematologic parameters at 6th h (Table 1), SpO2, crSO2, and cFOE values between two groups except for HR (p>0.05) (Fig. 2). Mean HRs were significantly higher in C-UCM group at 6th, 7th, 9th, 10th, 12th, and 14th min, but within normal range. HR and cFOE levels of two groups were the highest, SpO2 and crSO2 levels were the lowest at 2nd min, but within normal range. While HR decreased gradually, SpO2 increased continuously and reached >90% at 7th min, and 95% at 10th min in C-UCM and I-UCM groups, respectively. The times to reach plateau level were found 10th and 7th min for SpO2, and 6th and 6th min for crSO2 in C-UCM and I-UCM groups, respectively (Fig. 2).

Table 1. Characteristics of newborn infants					
Characteristics	C-UCM (n=31)		I-UCM (n=31)		р
	Mean±SD	Med. (min-max), (n %)	Mean±SD	Med. (min-max), (n %)	
Gestational age (week)	39±1.2	39 (37-41)	38.8±	39 (37-41)	0.629
Birth weight (g)	3351±254	3300 (2800-3800)	3256±285	3180 (2860-3960)	0.174
Cesarean delivery, n (%)		12 (41.9)		13 (45.2)	0.769
Female sex, n (%)	17 (54.8)	14 (45.2)	16 (51.6)	15 (48.4)	0.799
First respiration timing (sec)	5.42±3.87	5 (1-15)	5.74±4.13	5 (1-15)	0.848
Apgar score at 1 st min	8.8±0.3	9 (8-9)	8.9±0.3	9 (8-9)	0.691
Apgar score at 5 th min	10±0	10 (10-10)	10±0	10 (10-10)	1
Blood pressure (mmHg)					
Systolic	74.3±8.1	73 (58-92)	72.4±6.2	72 (60-89)	0.3
Diastolic	42.5±7.6	41 (31-58)	42.1±7.4	42 (24-53)	0.84
Mean arterial pressure	52.9±6.9	51 (42-67)	51.8±5.7	53 (39-61)	0.86
Residual blood volume in placenta					
ml	80.16±18	80 (40-110)	75.16±20.19	75 (45-135)	0.308
ml/kg	23.96±4.76	24.9 (12.2-33.5)	22.95±5.42	22.4 (15.3-40.4)	0.439
Hematological parameters at 6 th h					
Hb (g/dl)	17.7±1.8	17.7 (14.4-22.3)	18.4±1.4	18.6 (15.6-22.7)	0.111
Htc (%)	53.0±5.6	53.5 (44.8-65.5)	55.3±4.4	55 (45.5-69.2)	0.086

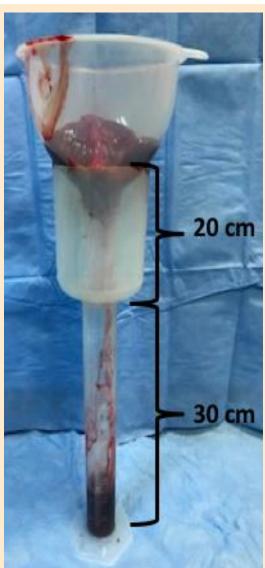
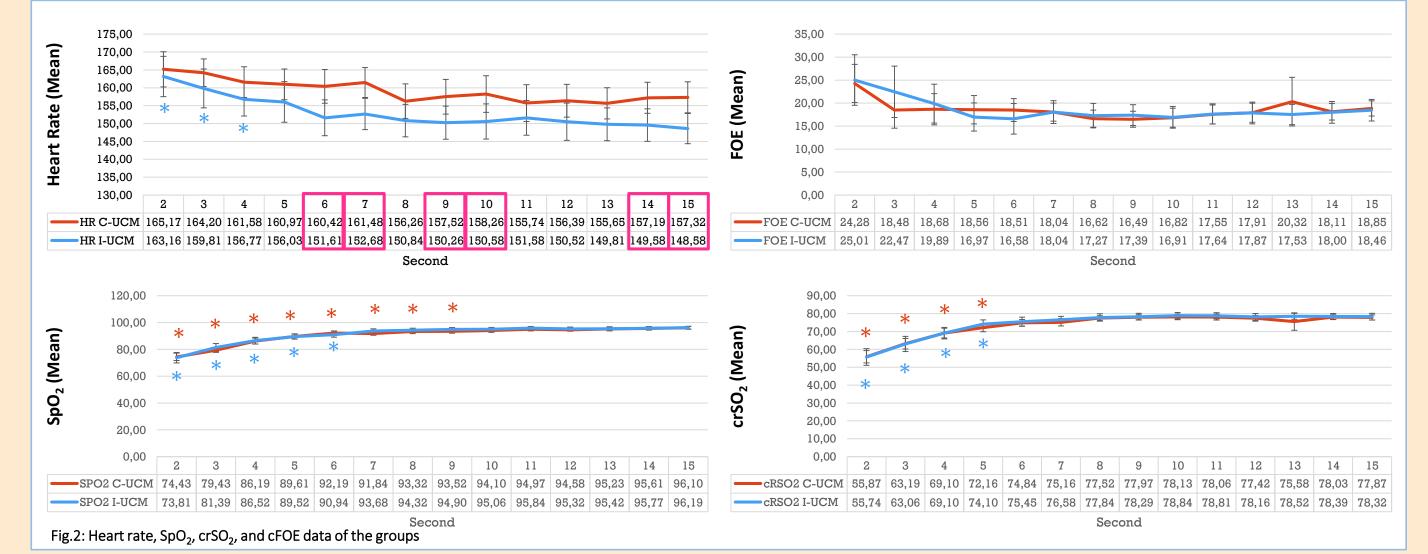



Fig. 1: Assembly prepared for measuring residual blood volume in placenta.

Conclusion This study showed that C-UCM is as effective as I-UCM at hemodynamic adaptation of healthy term infants during transition period. In light of these results, we suggest that C-UCM can provide placental transfusion in neonates requiring resuscitation and born by cesarean.