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Abstract

The essential oils normally had low physicochemical stability and low solubility in water. 
These facts limit their industrial applications in general and in food formulations particu-
larly. This chapter characterizes the physicochemical properties and the antioxidant and 
antimicrobial activities of three encapsulated essential oils – guava leaf, yarrow and black 
pepper essential oils – in hydroxypropyl-β-cyclodextrin (HPβCD).

Keywords: essential oils, cyclodextrins, food technology applications, pharmacological 
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1. CDs in food science and food technology

There is much interest in manipulating the complex-forming ability of cyclodextrins (CDs) 
with a view to developing applications [1–10]. In the last years, several reviews describing 

the use of CDs in food and flavor applications have been published [5, 6, 11–16]). CDs have 
been recommended for applications in food processing and as food additives with a variety of 

aims: (i) to protect lipophilic food components that are sensitive to oxygen and light- or heat-
induced degradation; (ii) to solubilize food colorings and vitamins; (iii) to stabilize fragrances, 
flavors, vitamins, and essential oils against unwanted changes; (iv) to suppress unpleasant 
odors or tastes and (v) to achieve a controlled release of certain food constituents.

Indeed, CDs form inclusion complexes with a variety of molecules including fats, flavors and 
colors. For instance, they are used for the removal and masking of undesirable components and 
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controlled release of desired food constituents [17]. Moreover, CDs are used in food formula-

tions for flavor protection or flavor delivery [18]. Most natural and artificial flavors are volatile 
oils or liquids, and complexation with CDs provides a promising alternative to the conventional 
encapsulation technologies for flavor protection. CDs act as molecular encapsulants, protect-
ing the flavor throughout many rigorous food-processing methods such as freezing, thawing 
and microwaving. β-CD as a molecular encapsulant allows the flavor quality and quantity to be 
preserved to a greater extent and longer period compared to other encapsulants and provides 

longevity to the food item [19]. In Japan, CDs have been approved as “modified starch” for food 
applications for more than two decades, serving to mask odors in fresh food and to stabilize fish 
oils. One or two European countries—for example, Hungary—have approved γ-CD for use in 
certain applications because of its low toxicity. It was proved that CDs may alter the sensory pro-

file of a food and the flavor release depends of the CD type [20], the temperature [21] and may 

depend the solvent nature that is, water, water/alcohol mixtures, etc. [22]. Their beneficial effects 
essentially derive from the ability to form stable inclusion complexes with sensitive lipophilic 

nutrients and constituents of flavor and taste, making easy to prepare powdered flavor materials 
[23–25] and even to release such flavors during cooking [26]. Toxicological data are examined 

and an assessment of CDs from the standpoint of safety for human consumption is made [27]. 

Regulations are covered, showing a general trend toward a wider acceptance of CDs as food 
additives. The growing health consciousness of consumers and expanding market for functional 

foods and nutraceutical products are opening up to CDs a promising future in food industry [11].

The complexation of CDs with sweetening agents such as aspartame stabilizes and improves 
the taste. It also eliminates the bitter aftertaste of other sweeteners such as stevioside, glycyr-

rhizin and rubusoside. CD itself is a promising new sweetener. Enhancement of flavor by CDs 
has been also claimed for alcoholic beverages such as whisky and beer [28]. The bitterness 
of citrus fruit juices is a major problem in the industry caused by the presence of limonoids 

(mainly limonin) and flavonoids (mainly naringin). Cross-linked CD polymers are useful to 
remove these bitter components by inclusion complexation [29]. CDs are also used to control 
bitterness in tannins, plant and fungal extracts; skim milk hydrolyses and overcooked tea and 
coffee [30]. They can also be used to keep the profile of oil volatiles in paste samples that were 
vacuum- or spray-dried [31, 32], due to their high encapsulation efficiency. The most preva-

lent use of CD in process aids is the removal of cholesterol from animal products such as eggs 
or dairy products, like cheese [33]. CD-treated material shows 80% removal of cholesterol. 
Free fatty acids can also be removed from fats using CDs, thus improving the frying property 
of fat (e.g., reduced smoke formation, less foaming, less browning and deposition of oil resi-
dues on surfaces) [30]. Fruits and vegetable juices are also treated with CD to remove phenolic 
compounds, which cause enzymatic browning. In juices, polyphenol oxidase converts the 

colorless polyphenols to colored compounds and addition of CDs removes polyphenoloxi-
dase from juices by complexation. Sojo et al. [34] studied the effect of CDs on the oxidation of 
o-diphenol by banana polyphenoloxidase and found that CDs act as activator as well as inhib-

itor. By combining 1–4% CD with chopped ginger root, Sung [35] established that it could 

be stored in vacuum at cold temperature for 4 weeks or longer without browning or rotting.

Other studies describes the development of a gas chromatography-mass spectrometry (GC-
MS) library to identify optically active compounds in the flavor and fragrance field using 
enantioselective GC with CD derivatives (CDs) as chiral selectors in combination with MS  
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[36, 37], but also olfactometry can be used for detection to have extra information about fla-

vors [38]. The ability to separate and quantitate enantiomers at low levels should be useful 

for detecting adulterated products, for evaluating fermentation processes and for the accurate 

characterization of enantiomeric flavor components, growth regulators, pesticides, and herbi-
cides as well as their chiral environmental degradation products and metabolites [39].

Flavonoids and terpenoids are good for human health because of their antioxidative and anti-

microbial properties but they cannot be utilized as foodstuff owing to their very low aqueous 
solubility and bitter taste. Sumiyoshi [40] discussed the improvement of the properties of 

these plant components (flavonoids and terpenoids) with CD complexation. CDs are used in 
preparation of foodstuffs in different ways. For example, highly branched CDs are used in 
flour-based items like noodles, pie dough, pizza sheets and rice cakes to impart elasticity and 
flexibility to dough [41]. They are also used in the preparation of antimicrobial food preser-

vatives containing trans-2-hexanalin in apple juice preparation [42] and in the processing of 

medicinal mushrooms for the preparation of crude drugs and health foods. CDs are used in 
the preparation of controlled release powdered flavors and confectionery items and are also 
used in chewing gum to retain its flavor for longer duration, a property highly valued by cus-

tomers [43]. CDs are also used in the detection of aflatoxin in food samples [44].

A large variety of commercial encapsulation practices are currently followed, however, those 

involving the formation of flavor/CD molecular-inclusion complexes offer great potential for 
protection of volatile and labile flavoring materials present in a multicomponent food sys-

tem throughout many rigorous food-processing methods (cooking, pasteurization, etc.) [14, 

45–47]. In the same way, CDs can eliminate some taste. In fact, a bitter taste is the main rea-

son for the rejection of various food products although exceptions to this rule are rooted in 

many cultures: in some foods and beverages, such as coffee, beer, and wine, a certain degree 
of bitterness is expected [2, 48–51]. Bitterness, however, has proved a major limitation in the 
acceptance of commercial citrus juices. A commercial process is needed that removes bitter 
components without adding anything to the juice, while still maintaining the expected fla-

vor and nutritional value of the product. CDs can be used for the removal or masking of 
undesirable components. Some foods have a peculiar smell, but, when CDs are added in their 
manufacture, these components form CD-inclusion complexes deodorizing the result product. 
For instance, this process is used for deodorizing soybean milk and soy protein, and also for 

removing the peculiar fish odors, seafood and meat products [52–54]. On the other hand, the 

formation of inclusion complexes with CDs can protect some lipophilic food components that 
are sensitive to oxygen and heat- or light-induced degradation [55]. In addition, CDs protected 
phenolic compounds from enzymatic oxidation by forming inclusion complexes [56–59].

2. Essential oils

Both in vitro and in vivo studies have demonstrated the important applications of essential 

oils, such an antioxidant or antibacterial activity, even antitumor or anti-inflammatory, with 
important technological applications in food science and pharmacology [60–64]. Indeed the 

presence of eugenol, carvacrol or thymol as main component of these oils guarantee their 

properties both antioxidants and antibiotics (Figure 1).

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

265



As example, in the present chapter we have selected some essential oils to characterize their 

inclusion complex in (hydroxypropyl-β-CD) (Figure 2). They were black pepper essential oil, 
guava essential oil and yarrow essential oil.

Black pepper (Piper nigrum L.) is considered the king of spices because of its pungent of pip-

erine [65]. It can be used for different purposes such as medicine, human dietaries, preserva-

tives and bio control agents [65–67]. It has been already reported that essential oil from black 

pepper possess antioxidant [68] and antimicrobial activities [69]. Black pepper oil is basically 

composed of terpenes, which have been found to be β-caryophyllene, limonene, δ-3-carene 
and pinene (Figure 3) [68, 70]. The major composition of black pepper oil was found to be 

β-caryophyllene [68, 70]. Nevertheless, some active compounds in essential oils are sensitive 

toward the chemical modification under effect of some external factors such as temperature, 
light, oxygen, etc. [71]. Besides, to apply in foods, an extremely low flavor threshold of essen-

tial oils can drastically change the sensory properties of foods, and highly water insoluble 

may have limited contact with pathogens [72].

Guava (Psidium guajava L.) has been used as a traditional medicine because of its biologi-
cal properties [73–75]. Essential oil from guava leaves contains several bioactive compounds, 

which are responsible for anti-proliferation, antioxidant and antimicrobial activities [76, 77]. 

Limonene, β-caryophyllene, 1,8-cineole and α-pinene are the major constituents (Figure 4) 
[78, 79]. However, essential oils have some limitations for food applications. Their low solu-

bility in water limits contact with food pathogens in aqueous matrices [72]. Besides, some 

active compounds in essential oils are sensitive to chemical modifications under the effect of 
external factors such as temperature, light or oxygen [71].

Figure 1. Main components of essential oils [60].
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Figure 2. (2-Hydroxypropyl)-β-CD.

Figure 3. Main components of black pepper [68, 70].

Figure 4. Main components of guava [78, 79].
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Yarrow (Achillea millefolium L. s. l.) has a broad spectrum of pharmacological activities. It is 
widely used in folk medicine [80]. In Europe, it has been used as a remedy to treat digestive 

problems, diabetes, hepatic-biliary diseases, amenorrhea, and consumed for its antitumor 

and anti-inflammatory properties [81–83]. In addition, antimicrobial and antioxidant proper-

ties of yarrow have also been reported [84–86]. Chemical components of yarrow essential oil 
have been found to be carvacrol, linalool, 1,8-cineole, camphor and thymol was mostly found 

as a major component (Figure 5) [87]. However, some active chemical components of yarrow 
oil (such as carvacrol and thymol) are sensitive to environmental factors such as, light, oxygen 
and temperature. Encapsulation of yarrow essential oil could offer possible solutions for the 
limitation.

3. CDs and essential oils

The use of CDs for the essential oils encapsulation can protect the active compounds of essen-

tial oils from environmental conditions [13, 14] and improve the aqueous solubility of essential 

oils for increasing their capacity to functionalize the products in which it is used as addi-

tive [88]. As quote above, CDs are cyclic oligosaccharides consisting of glucopyranosyl units 
linked by α-(1,4) bonds [89]. The widely used natural CDs are α-, β- and γ-CD consisting of 
6, 7 and 8 glucopyranose units, respectively [90, 91]. These molecules have a unique structure 

with a hydrophobic cavity and a hydrophilic surface, which can form inclusion complex with 

a wide variety of guests. They can be used to enhance the solubility of insoluble compounds, 

Figure 5. Main components of yarrow [87].
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stabilize labile guests against oxidation, control volatility and sublimation, modify taste by 

masking off flavors, entrap odors and control the releasing of drugs and flavors [92]. Among 

those CDs, β-CD is the most widely applicable kind because of its suitable cavity size for 
common guests with molecular weights between 200 and 800 g/mol and its availability and 

reasonable price [93]. Although β-CD can be used with many guests, its solubility in water is 
low (1.8 g in 100 mL water at 25°C). In some cases, there is a need to enhance water solubility 
of β-CD by adding the hydroxyl-alkyl groups on the β-CD surface. A hydroxyl-alkylated or 
hydroxypropyl-β-CD derivative (HPβCD) is relatively high aqueous solubility (above 60 g in 
100 mL water at 25°C) with low toxicity and satisfactory inclusion ability [94].

On the other hand, encapsulation of essential oils or their chemical components with CDs 
or CD derivatives for improvement of biological properties have been observed [5, 95–98] or 

their antimicrobial activity [99].

Indeed, a large amount of contributions about technologic applications of CD-inclusion com-

plex of essential oils and their main components has been published in the last 10 years, some 

of them are included in Table 1.

Essential oil Guest References Essential oil 

component

Guest References

Black pepper 

essential oil

Hydroxypropyl-β-CD [100] Allyl isothiocyanate

Allyl isothiocyanate

α-CD [101]

Cinnamon 
essential oil

β-CD [99, 102, 

103]

β-CD [101, 104]

Citronella oil β-CD [105] Barbigerone Hydroxypropyl-β-CD [106]

Clove bod oil β-CD [99, 107] Carvacrol

Carvacrol

β-CD [108, 109]

Coriander 
essential oil

β-CD [71] Hydroxypropyl-β-CD [110]

Garlic oil β-CD [102, 111] Cinnamaldehyde β-CD [99, 103]

Guava leaf oil Hydroxypropyl-β-CD [112] Citronellal β-CD [105]

Lemon oil β-CD [113] Citronellol β-CD [105]

Olive leaf oil β-CD [114] Eugenol β-CD [99, 115–118]

Oregano 

essential oil

β-CD [107, 119] Limonene β-CD [120]

Thyme 

essential oil

β-CD [121, 122] 2-Nonanone β-CD [123]

Sweet basil 

essential oils

β-CD [124] Thymol β-CD [103, 109, 

121]

Yarrow 

essential oil

Hydroxypropyl-β-CD [125] Vanillin β-CD [126, 127]

Table 1. Contributions abut host-guest complex formation between CDs and CDs derivatives and essential oils.
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3.1. Encapsulation efficiency

As quoted above, we present the encapsulation efficiency of three essential oils (guava oil, 
yarrow oil and black pepper oil) in hydroxypropyl-β-CD (HPβCD).

In the case of yarrow oil and carvacrol (yarrow oil major component), there efficiency were 
45.05 and 86.59%, respectively [125] see Table 2. Black pepper [100] exhibit similar behav-

ior with efficiency of 50.55 and 85.30, respectively, for essential oil and its main component 
(β-caryophyllene). Finally, guava leaf oil encapsulation efficiency was 52.5%, while it reached 
91.8% for limonene, the major pure compound of guava leaf oil [112].

This difference in encapsulation efficiency of the pure compound and the essential oil results 
from the presence of other minority components. In the case of yarrow oil and carvacrol [125], 

the other components like 1,8 cineole, thymol, camphor and linalool have also high affinities 
for CD [6, 121, 128–132] that compete for inclusion complex formations. Kamimura et al. [110] 

reported that the encapsulation efficiency values of pure carvacrol in HPβCD prepared by 
kneading and freeze-drying methods were around 78 and 84%, respectively.

Similar explanation would justify the diferences in encapsulation efficiency of the pure com-

pound and the black pepper oil [100] because the presence of other components in the black 

pepper oil such as limonene, δ-3-carene and pinene [68] that also have high affinities for 
HPβCD. In the case of guava leaf oil [112], the large values found are due to minority com-

ponents, such as β-caryophyllene, 1,8-cineole and α-pinene, exhibit low affinity for the β-CD 
that are not easily encapsulated and the competition between the other host for the guest in 

not so important.

Similar observation has been reported for other authors in the literature [99] showing that 

encapsulation efficiencies of cinnamon oil and clove oil were 41.72 and 77.74%, respectively. 
The encapsulation efficiencies of major components including trans-cinnamaldehyde in cin-

namol oil and eugenol in clove oil were also examined and showed higher encapsulation 

efficiency of 84.70 and 90.15%, respectively. In addition, comparable values of encapsulation 
efficiency were found in other carriers such as alginate-chitosan system. In this case, the yar-

row oil components exhibited 82.4% efficiency of polyphenol encapsulation [133, 134].

Compound Encapsulation efficiency (%) Compound Encapsulation efficiency (%)

Black pepper oil 50.55 β-caryophyllene 85.30

Yarrow oil 45.05 Carvacrol 86.59

Guava leaf oil 52.50 Limonene 91.80

Cinnamon oil 41.72 Cinnamaldehyde 84.70

Clove oil 77.74 Eugenol 90.15

Table 2. Encapsulation efficiency value in HPβCD.
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3.2. Characterization of host-guest complex

3.2.1. Morphological examinations

It is well known that the inclusion complex formation would change the morphology of CDs 
[135]. Figure 6 presents the morphology of the encapsulated oils studied by SEM.

The particle shape and morphology of the encapsulated oil were similar to those of free 

HPβCD in the cases evaluated – guava, yarrow and black pepper – see Figure 7. It indicates 

the hydrogen bonding of the free HPβCD molecules interact with each other in solution pro-

ducing the cluster of HPβCD [136, 137]. This case not occurs in inclusion complex because 

inclusion complex formation also induces the conformation change of CD and obstructs the 
agglomeration among them. Similar observations have been previously reported that the dis-

tribution of inclusion complex of carvacrol and β-CD, and the gathering of free β-CD were 
also found [135].

By contrast, the free HPβCD particle sizes are much larger than those of the encapsulated 
products. These results are in agreement with Guimaraes et al. [135], who analyze carvacrol 

encapsulation with β-CD. Considering that HPβCD form clusters in solution through inter-

molecular hydrogen bonds [136, 137], it seems that the incorporation of different essential oils 
interferes in these interactions and reduces particle size.

Figure 6. SEM micrographs of free HPβCD at 500 times magnification.

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

271



3.2.2. Fourier-transform infrared spectroscopy (FT-IR)

FT-IR technique can be used to investigate the variation of shape, intensity and position of 

peaks [138].

FT-IR spectrum of black pepper oil consisted of the prominent absorption bands at 2954, 2923 

and 2865 cm−1 for C─H stretching vibration of methylene group, 1638 cm−1 for H─O─H bend-

ing, 1447 cm−1 for C─H scissoring vibration, 1369 cm−1 for symmetrical deformation vibration 

of CH
3
, 886 cm−1 for C─H deformation vibration and 789 cm−1 for S─C absorption. However, 

FT-IR spectrum of the encapsulated black pepper oil showed that no character similar to the 

free black pepper oil. All bands of black pepper oil spectrum were totally obscured by HPβCD 
bands it was possible that black pepper oil entered the cavity of HPβCD and inclusion com-

plex was formed.

In the case of yarrow oil, its FT-IR spectrum of yarrow oil shows prominent absorption 

bands at 2956 cm−1 for ═CH
2
 symmetrical stretching vibration, 2926 cm−1 for C─H stretching 

vibration of methylene group, 2869 cm−1 for ─CH stretching, 1652 cm−1 for H─O─H bend-

ing, 1626 cm−1 for C═C stretching vibration of the allyl group, 1446 cm−1 for C─H scissoring 
vibration, 1380 cm−1 for symmetrical deformation vibration of ─CH

3
, 1366 cm−1 for symmet-

rical deformation vibration of ─CH
3
, 1240 cm−1 and 1103 cm−1 for P─O and P═O, 1022 cm−1 

for C─O─C stretching vibration, 916 cm−1 for C─S─C stretching vibration, 875 cm−1 and 

865 cm−1 for C─H bending of aromatic ring. The spectrum of HPβCD shows prominent 
absorption bands at 3406 cm−1 for O─H stretching vibration, 2970 cm−1 for ═CH

2
 symmet-

rical stretching vibration, 2930 cm−1 for C─H stretching vibration, 1646 cm−1 for H─O─H 
bending vibration, 1157 cm−1 for C─O─C asymmetrical stretching vibration, 1083 cm−1 and 

1033 cm−1 for symmetric C─O─C stretching vibration [139]. FT-IR spectrum of inclusion 

complex was identical to HPβCD and no feature similar to yarrow oil. The results indicated 
that HPβCD covered all the absorption bands of yarrow oil in the spectrum of inclusion 
complex indicating the entering to the cavity of HPβCD and the formation of inclusion 
complex.

Figure 7. SEM micrographs of encapsulated essential oils at 500 times magnification.
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Finally, FT-IR spectrum of guava leaf oil showed prominent absorption bands at 2921 cm−1 

for C─H stretching vibration of methylene group, 1642 cm−1 for H─O─H bending, 1447 cm−1 

for C─H scissoring vibration, 1376 cm−1 for symmetrical deformation vibration of CH3, 
886 cm−1 for C─H deformation vibration and 789 cm−1 for S─C absorption. FT-IR spectrum 
of encapsulated guava leaf oil shows no feature similar to the free guava oil. The bands of 

guava leaf oil spectrum were almost completely concealed by very intense and broad bands 

of HPβCD. However, the absorption band at 608 cm−1 of HPβCD disappeared in encapsu-

lated guava leaf oil. This change may be related to the interaction between guava leaf oil and 

HPβCD in the inclusion complex.

The inclusion complex formation of β-CD was also investigated by Liu et al. [140] using FT-IR 

analysis. The absorption bands of β-caryophyllene were not detected in the spectrum of inclu-

sion complex. The changes were related to the inclusion complex formation of β-CD and the 
guests which whole of guest could be contained in the CD cavity. Wang et al. [139] have 

reported similar results. In their study, the inclusion complex formation of soybean lecithin 

and β-CD was determined by FT-IR. All the absorption bands of soybean lecithin encapsu-

lated in β-CD were obscured by β-CD spectrum showing that inclusion complex of β-CD and 
soybean lecithin was formed. However, Gomes et al. [141] reported that the absorption band 

at 1738 cm−1 of the red bell pepper pigments was observed after encapsulation in β-CD indicat-
ing that some region of the encapsulated molecules was not contained in the cavity of β-CD.

3.2.3. Ultraviolet-visible spectrophotometry (UV-Vis)

Essential oils contain various bioactive chemicals, which adsorb ultraviolet (UV) or visible 
light (Vis) at different wavelengths. CD host-guest complex formation would alter UV-Vis 
absorption spectra [142]. Otherwise, the spectra of the guests appear in line of CD [140]. 

Therefore, UV-Vis spectrophotometry, evaluated the inclusion complex formation of HPβCD 
and the three essential oils. The UV absorption spectra of guava leaf oil, limonene and their 
inclusion complexes were compared. Indeed, maximum absorption value of guava leaf oil 

was at 214.5 nm, which was mainly attributed to limonene. The absorption peak at 205 nm 
corresponds to β-caryophyllene and/or pinene. The peak at 275 nm of guava leaf oil was 
ascribed to 1,8-cineole.

The spectra of the physical mixture of HPβCD with guava leaf oil and with limonene before 
complexation were consistent with that of guava leaf oil or pure compound. The absorption 

spectra of the physical mixture of HPβCD with guava leaf oil and with limonene were in 
accordance to with the spectra of guava leaf oil and pure limonene, respectively. When the 
active compounds in essential oil or the pure compound were encapsulated into the cavity 

of HPβCD, the absorption peaks of each compound disappeared in the spectra of the inclu-

sion complexes. To recover active compounds encapsulated in the HPβCD cavity, the active 
compounds were extracted from HPβCD by dissolving the inclusion complexes in 95% ace-

tonitrile. The encapsulated compounds were released from the cavity of HPβCD and HPβCD 
was separated from guava leaf essential oil or limonene in solution by centrifugation. The 

solution was diluted 100 times with acetonitrile and the absorbance was measured by UV 
spectrophotometer.
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After extraction from the inclusion complexes, the absorption peaks of encapsulated com-

pounds in guava leaf oil could be observed. In this line, besides limonene, the absorption 

peaks at 205 and 275 nm suggested the presence of β-caryophyllene and 1,8-cineole, respec-

tively. The results indicated that the active compounds in guava leaf oil had formed inclusion 

complex with HPβCD. Therefore, the chemical components of guava leaf oil were success-

fully encapsulated in the HPβCD.

UV spectrum of yarrow oil shows peaks at 270–275 nm indicated the presence of carvacrol, 
1,8-cineole, thymol and camphor. A minor peak at 243 nm attributed to linalool. The spectra 
of the physical mixture of HPβCD with yarrow oil and with pure compound (carvacrol) con-

formed to UV spectra of yarrow oil and pure carvacrol, respectively. When the active com-

pounds in yarrow oil or carvacrol were entrapped with HPβCD, the absorption peaks of each 
compound also disappeared in the spectrum of the inclusion complexes.

After extraction from the inclusion complex, the absorption peaks of entrapped compounds 

in yarrow oil appeared at 270–275 nm implying carvacrol and also are 1,8-cineole, thymol, 

camphor and linalool. In this study, the chemical components of yarrow oil were successfully 

entrapped in the HPβCD, as in the previous case. However, the encapsulation efficiency of 
yarrow oil was much lower than those of its pure compound. This was likely because the 

competition of major active compound among other components in essential oil has occurred 

during inclusion complex formation.

Finally, the absorption spectrum of black pepper oil was recorded with absorption peaks at 200, 

205 and 214.5 nm for δ-3-carene, β-caryophyllene and limonene, respectively [140]. The maximum 

absorption peak at 205 nm was ascribed to β-caryophyllene. The spectra of the physical mixture 
of HPβCD with black pepper oil and with β-caryophyllene accorded with UV spectra of black 
pepper oil and pure β-caryophyllene, respectively. When the active compounds in black pep-

per oil or the pure compound (β-caryophyllene) were entrapped into the cavity of HPβCD, the 
absorption peaks of the compounds also disappeared in the spectrum of the inclusion complex.

After extraction from the complex, the observable peaks of entrapped compounds in black 

pepper oil could be seen. The spectrum of encapsulated compounds from black pepper oil 

show absorption peaks at 205 and 214.5 nm indicating β-caryophyllene and limonene, respec-

tively. The UV spectrum indicated that the chemical components of black pepper oil were 
successfully entrapped in the HPβCD. As in the previous cases, the encapsulation efficiency 
of active compounds of black pepper oil was much lower than those of its pure compound. 

This was likely because the competition of major active compound among other components 

in black pepper oil has occurred during inclusion complex formation.

3.2.4. Phase solubility

Phase solubility study is generally performed to evaluate the stability and to classify the inclu-

sion complex when they are in the solution. The phase solubility profiles can be obtained from 
the interaction between the guests (encapsulated compounds) and the hosts (CDs or deriva-

tives) in the solution. In solution, a fundamental parameter such as stability constant (K
s
) of 

inclusion complex formation can be used to evaluate the stability of the inclusion complex 

[143] – see Table 3.
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In the case of black pepper, A linear relationship between the amount of dissolved essential oil 

or β-caryophyllene and the concentrations of HPβCD in this study with slope ˂1 was classi-

fied as a typical A
L
-type (type A reveals an inclusion complex formation where the amount of 

encapsulated compounds increase as the HPβCD concentration increases, subscript L indicates 
a 1:1 molecular ratio formation of soluble complexes) [144]. As the majority of encapsulated 

compounds are mono- and sesquiterpenoids and phenylpropane derivatives of an average 

molecular weight of 120–160 g/mol, a 1:1 complex formation is observed [16]. The molar ratio 

of host to guest molecules is usually 1:1 for inclusion complexes formed in solution, except for 

complexes with long-chain or bifunctional guest molecules (e.g. guest molecules having two 
aromatic rings on opposite sides of a small central molecule segment). In aqueous system, black 
pepper oil and β-caryophyllene show difference in stability of complex form with the K

s
 of 

104.5 and 132.8 L/mol at 25°C, respectively. This might be because of the other components in 
black pepper oil might compete to HPβCD form complex with β-caryophyllene. The decreases 
in K

s
 values with increasing temperatures were expected for exothermic processes [99].

Equivalent results were observed for yarrow oil host-guest complex, as we can observe in 

Table 3. In agreement with the results reported in Table 3 – for black pepper essential oil 

and yarrow essential oil – similar Hill et al. [99] and Kamimura et al. [110] have reported 

observations. The water solubility of trans-cinnamaldehyde, eugenol, cinnamon bark extracts 

and clove bud extract samples increased with increasing temperatures while the K
s
 value of 

the samples decreased with increasing temperature [99]. Kamimura et al. [110] reported that 

water solubility of the pure carvacrol increased and the K
s
 value decreased with increasing 

temperatures.

Regarding to guava leaf essential oil – see Table 3, low K
s
 value were obtained for guava 

leaf oil than for limonene. They were in the order of those for β-CD complexes according to 
Connors [145]. This might be due to the competence of the other components in guava leaf oil 

with limonene to form HPβCD complexes. In addition, the decrease in K
s
 values with increas-

ing temperature reflects that complex formation is an exothermic process [99]. However, 
these results reflect that the aqueous solubility of guava leaf oil can be increased with increas-

ing HPβCD concentration. Considering that very labile complexes (K
s
 < 100 L/mol) result in 

premature release of the guests because of the weak interaction between hosts and guests 

[92], the very labile encapsulated guava leaf oil could be useful for fast release systems such 

as pharmaceutical applications.

Inclusion complex T/°C K
s
/M−1 Inclusion complex T/°C K

s
/M−1

Black pepper oil-HPβCD 25 104.5 β-caryophyllene-HPβCD 25 132.8

Black pepper oil-HPβCD 35 100.0 β-caryophyllene-HPβCD 35 114.0

Guava leaf oil-HPβCD 25 25.0 Limonene-HPβCD 25 628.0

Guava leaf oil-HPβCD 35 33.8 Limonene-HPβCD 35 605.9

Yarrow oil-HPβCD 25 106.6 Carvacrol-HPβCD 25 360.9

Yarrow oil-HPβCD 35 92.0 Carvacrol-HPβCD 35 309.7

Table 3. Phase solubility parameters and stability constants (K
s
) of encapsulated essential oil and their main component.
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3.3. Evaluation of antioxidant activity of host-guest complex

Antioxidant activity was evaluated in terms of DPPH scavenging capacity (%) of free and 
encapsulated guava leaf oil compared to a synthetic chemical antioxidant (BHT) at concentra-

tions ranged from 5 to 50 μg/mL.

It was established that the components responsible for the antioxidant activity of guava leaf 

oil are limonene, α-pinene and β-caryophyllene [146]. While limonene has a moderate anti-
oxidant activity [147], β-caryophyllene and α-pinene show weak and moderate DPPH scav-

enging activity, respectively [146, 147]. Unfortunately, the encapsulated guava leaf oil gave 
slightly lower DPPH scavenging activity than that of the free guava leaf oil. This could be 
because HPβCD blocks the functional groups of the active compounds that react with DPPH 
radicals [110].

In the case of yarrow oil carvacrol as a major component shows strong antioxidant activity 

(72% DPPH scavenging at 50 μg/mL). The most effective antioxidants usually contain aro-

matic or phenolic rings, which interrupt the free radical chain reaction by donating H• to the 
free radicals [148]. The encapsulated yarrow oil gave slightly lower antioxidant activity than 

the activity of the free yarrow oil. It was a result of the HPβCD was blocking the functional 
groups of active compounds during reacting with DPPH radicals [110]. However, the encap-

sulation has been reported to increase the stability of the essential oils [13, 14].

Black pepper oil shows antioxidant activity with 54% DPPH scavenging (50 μg/mL black 
pepper oil) (Figure 5). It was established that the components responsible for the antioxidant 
activity are β-caryophyllene, limonene and α-pinene [146]. β-caryophyllene, a major compo-

nent of black pepper oil, was found to give a weak DPPH scavenging activity [146]. Limonene, 

a minor composition, has been reported to give a moderate antioxidant activity and another 

component, α-pinene, also possesses a moderate antioxidant property [147]. It should be 

noted that free HPβCD did not show antioxidant activity.

However, the inclusion complexes have been reported to increase the stability of the essential 
oils [13, 14]. After exposure to sunlight, the DPPH scavenging of free guava leaf oil drastically 
decreased around 43–54% at all tested concentrations (5–50 μg/mL), which was likely due to 
limonene and pinene sensitive to sunlight [149]. Then, the inclusion complexation of guava 

leaf oil with HPβCD could protect the active components against the effect of light. In effect, 
after sunlight exposure, the DPPH radical scavenging capacity of the encapsulated guava leaf 
oil was more stable than the free guava leaf oil by 26–38%.

Similar results were found for yarrow essential oil, where DPPH radical scavenging (with 
concentration range from 5 to 35 μg/mL of essential oil) decreased around 41–51% after expo-

sure to sunlight for 12 h. The yarrow oil with higher concentration range (40–50 μg/mL) exhib-

ited lower loss of DPPH radical scavenging (36–37%). Obviously, as in the previous case, the 
encapsulation of yarrow oil in HPβCD could protect the active components against the effect 
of sunlight. The complexation with HPβCD improved the stability of yarrow oil by 27–30% in 
a similar range that guava leaf oil (26–38% -vide supra-).

The DPPH radical scavenging capacity of black pepper oil drastically decreased after 12 h 
exposure to sunlight (Figure 4). At the sample concentration range of 5–25 μg/mL, the DPPH 
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scavenging capacity decreased around 42–48%, while the decreasing of 30–39% was found 
at higher concentration range (30–50 μg/mL). The stability of encapsulated black pepper oil 
was improved from the free black pepper oil by 18–24%. This effect is lower that observed for 
guava and yarrow essential oils (26–38 and 27–30%, respectively).

3.4. Evaluation of antibacterial activity of host-guest complex

Table 4 shows minimum inhibitory concentration (MIC) and minimum bactericidal concen-

tration (MBC) values of essential oil for Staphylococcus aureus and Escherichia coli.

Guava leaf oil displayed antibacterial activity against both bacteria with MIC value of 500 μg/
mL, that could be attributed to guava leaf oil monoterpenes (such as limonene) which have 
been found to play efficient role in antimicrobial activity via membrane structures increasing 
membrane fluidity and permeability [150]. Pure limonene was reported to give antimicrobial 
activity against S. aureus and E. coli with MIC values of 8.0 and 10.0 μg/mL, respectively [151].

The antibacterial activity of guava leaf oil was improved after encapsulation in HPβCD by 
4 and 2 times against S. aureus and E. coli, respectively. It has been reported that inclusion 

complexes with HPβCD could increase aqueous solubility of the encapsulated guests, thus 
improving the antimicrobial efficiency of essential oils at lower concentrations [99] due to a 

better accessibility of the active compounds to cells [111].

Yarrow oil exhibited antibacterial activity against S. aureus and E. coli with the MIC values 
of 250 μg/mL and 500 μg/mL, respectively. The antimicrobial activity of yarrow essential oil 

might be because its oxygenated phenolic compounds, such as carvacrol and thymol, have 

been reported to give strong antimicrobial activity. These compounds were found to increase 

membrane permeability and membrane disruption of microbial cells (Pseudomonas aeruginosa 

and S. aureus) [152]. Antimicrobial potential of oxygenated phenolic compounds, were also 

reported in the literature [153–157]. In addition, S. aureus, a representative for Gram-positive 
bacteria, was more sensitive to tested samples than E. coli. This was because the external sur-

face of outer membrane of E. coli that composes of lipopolysaccharides and proteins is more 

Antimicrobial compound S. aureus E. coli

MIC (μg/mL) MBC (μg/mL) MIC (μg/mL) MBC (μg/mL)

Free guava leaf oil 500 1000 500 1000

Encapsulated guava leaf oil* 125 250 250 500

Yarrow oil 250 500 500 1000

Encapsulated yarrow oil* 62.5 125 62.5 125

Black pepper oil 1000 2000 2000 >2000

Black pepper oil-HPβCD complex* 250 500 500 1000

*Values were based on the actual concentrations of essential oil encapsulated in the HPβCD (calculated from 
encapsulation efficiency).

Table 4. Minimum inhibitory and bactericidal concentration (MIC, MBC) against Staphylococcus aureus and Escherichia 

coli for both free and encapsulated essential oil.
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tolerate to the tested samples, and the O-side chains of the lipopolysaccharides of E. coli has a 

hydrophilic surface protecting the hydrophobic molecules to enter the bilayer [146].

The antibacterial efficacy of yarrow oil was much improved after encapsulated in HPβCD by 4 
and 8 times against S. aureus and E. coli, respectively, while antibacterial activity of black pepper 

oil was improved by 4 times against both S. aureus and E. coli. As quote above, inclusion complex 

formation with HPβCD could increase aqueous solubility and improve antimicrobial efficacy at 
lower concentrations of encapsulated compounds [99]. As the primitive sites for antimicrobial 

action were found at the cell membrane and inside the cytoplasm, HPβCD may enhance the 
accession of essential oils to these regions by improving water solubility of essential oils [111].

4. Conclusions

Microencapsulation of essential oils in HPβCD was achieved proving that the host-guest com-

plex formation implies different physicochemical characteristics from free essential oil. As 
advantage, the DPPH radical scavenging capacity of the encapsulated oil was more stable 
than for the free oil indicating that the inclusion complex with HPβCD could protect the 
active components of oil against the effect of sunlight. As well, encapsulation also increased 
the antibacterial activity of essential oils against both S. aureus and E. coli the observed behav-

ior implies an important increase.

Acknowledgements

The Graduate School of Prince of Songkla University and Thai Government under Grant 
No.AGR560387S financially supported this work.

Author details

Jaruporn Rakmai1, Benjamas Cheirsilp1, Antonio Cid2,3, Ana Torrado-Agrasar4,  

Juan Carlos Mejuto3 and Jesus Simal-Gandara4*

*Address all correspondence to: jsimal@uvigo.es

1 Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla 
University, Hat Yai, Thailand

2 UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnología, 
Universidade NOVA de Lisboa, Caparica, Portugal

3 Department of Physical Chemistry, Faculty of Science, University of Vigo, Ourense, Spain

4 Department of Analytical Chemistry and Food Science, Faculty of Science, University of 
Vigo, Ourense, Spain

Cyclodextrin - A Versatile Ingredient278



References

[1] Szejtli J, Osa T. Comprehensive Supramolecular Chemistry. Vol. 3. Cyclodextrins. 
New York: Pergamont; 1996

[2] Singh M, Sharma R, Banerjee UC. Biotechnological applications of cyclodextrins. Bio-
technology Advances. 2002;20:341-359

[3] Arias-Estevez M, García-Río L, Mejuto JC, Rodríguez-Dafonte P, Simal-Gandara J. 
Influence of micelles on the basic degradation of carbofuran. Journal of Agricultural and 
Food Chemistry. 2005;53(18):7172-7178

[4] Arias-Estevez M, García-Falcón MS, García-Río L, Mejuto JC, Rial-Otero R, Simal-
Gandara J. Binding constants of oxytetracycline to animal feed divalent cations. Journal 
of Food Engineering. 2007;78(1):69-73

[5] Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gandara J. A review on 
the use of cyclodextrins in foods. Food Hydrocolloids. 2009;3:1931-1640. DOI: 10.1016/j.
foodhyd.2009.01.001

[6] Astray G, Mejuto JC, Morales J, Rial-Otero R, Simal-Gandara J. Factors controlling fla-

vors binding constants to cyclodextrins and their applications in foods. Food Research 

International. 2010;43(4):1212-1218

[7] Gonzalez-Barreiro C, Rial-Otero R, Simal-Gandara J, Astray G, Cid A, Mejuto JC, Manso 
JA, Morales J. Chapter 8: In starch-based polymeric materials and nanocomposites. 
Chemistry, processing, and applications. In: Starch-Derived Cyclodextrins and Their 
Future in the Food Biopolymer Industry. Boca Ratón: CRC Press; 2012. pp. 167-182. 
ISBN: 978-1-4398-5117-3

[8] Cid A, Mejuto JC, Orellana PG, López-Fernández O, Rial-Otero R, Simal-Gandara J. 
Effects of ascorbic acid on the microstructure and properties of SDS micellar aggregates 
for potential food applications. Food Research International. 2013;50(1):143-148

[9] Cid A, Morales J, Mejuto JC, Briz-Cid N, Rial-Otero R, Simal-Gandara J. Thermodynamics 
of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use 

in fruits postharvest. Food Chemistry. 2014;151:358-363

[10] Cid A, Morales J, Dieguez-Perez M, Rial-Otero R, Mejuto JC, Simal-Gandara J. Chapter 
X: In cyclodextrines: propriétés, chimie et applications: Application des cyclodextrines 

comme catalyseurs dans les médias micro-hétérogènes. Besançon: Presses Universitaires 
de Franche-Comté; 2014. ISBN: 978-2-84867-520-6

[11] Cravotto G, Binello A, Baranelli E, Carraro P, Trotta F. Cyclodextrins as food additives 
and in food processing. Current Nutrition Food Science. 2006;2(4):343-350

[12] Hedges AR, McBride CU. Of b-cyclodextrin in food. Cereal Foods World. 1999;44(10): 
700-704

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

279



[13] Hedges AR, Shieh WJ, Sikorski CT. Use of cyclodextrins for encapsulation in the use 
and treatment of food products. In: Risch SJ, Reineccius GA, editors. Encapsulation and 
Controlled Release of Food Ingredients. Vol. 590. ACS Symposium Series. Washington 
DC: ACS; 1995. pp. 60-71

[14] Qi ZH, Hedges AR. Use of cyclodextrins for flavours. In: Ho CT, Tan CT, Tong CH, edi-
tors. Flavour Technology: Physical Chemistry, Modification and Process. Vol. 610. ACS 
Symposium Series. Washington DC: ACS; 1995. pp. 231-243

[15] Samant SK, Pai JSC. New versatile food additive. Indian Food Packer. 1991;45(3):55-65

[16] Szente L, Szejtli J. Cyclodextrins as food ingredients. Trends in Food Science and 
Technology. 2004;15:137-142

[17] Prasad N, Strauss D, Reichart G. Cyclodextrins inclusion for food, cosmetics and phar-

maceuticals. European Patent 1084625. 1999

[18] Kant A, Linforth RST, Hort J, Taylor AJ. Effect of β-cyclodextrin on aroma release and 
flavor perception. Journal of Agricultural and Food Chemistry. 2004;52:2028-2035

[19] Muñoz-Botella S, del Castillo B, Martín MA. Cyclodextrin properties and applications of 
inclusion complex formation. Ars Pharmaceutica. 1995;36:187-198

[20] Reineccius TA, Reineccius GA, Peppard TL. Encapsulation of flavors using cyclodex-

trins: Comparison of flavor retention in alpha, beta, and gamma types. Journal of Food 
Science. 2002;67(9):3271-3279

[21] Reineccius TA, Reineccius GA, Peppard TL. Flavor release from cyclodextrin complexes: 
Comparison of alpha, beta, and gamma types. Journal of Food Science. 2003;68(4): 
1234-1239

[22] Reineccius TA, Reineccius GA, Peppard TL. The effect of solvent interactions on α-, β-, 
and γ-cyclodextrin/flavor molecular inclusion complexes. Journal of Agricultural and 
Food Chemistry. 2005;53:388-392

[23] Liu X-D, Furuta T, Yoshii H, Linko P, Coumans WJ. Cyclodextrin encapsulation to pre-

vent the loss of l-menthol and its retention during drying. Bioscience, Biotechnology, 

and Biochemistry. 2000;64(8):1608-1613

[24] Tobitsuka K, Miura M, Kobayashi S. Interaction of cyclodextrins with aliphatic acetate 

esters and aroma components of La France pear. Journal of Agricultural and Food 

Chemistry. 2005;53:5402-5406

[25] Tobitsuka K, Miura M, Kobayashi S. Retention of a European pear aroma model mix-

ture using different types of saccharides. Journal of Agricultural and Food Chemistry. 
2006;54:5069-5076

[26] Shiga H, Yoshii H, Taguchi R, Nishiyama T, Furuta T, Linko P. Release characteristics of 
flavor from spray-dried powder in boiling water and during rice cooking. Bioscience, 
Biotechnology, and Biochemistry. 2003;67(2):426-428

Cyclodextrin - A Versatile Ingredient280



[27] Munro IC, Newberne PM, Young VR, Bär A. Safety assessment of γ-cyclodextrin. 
Regulatory Toxicology and Pharmacology. 2004;39:S3-S13

[28] Parrish MA. Cyclodextrins – A Review. Newcastle-Upon-Tyne, England: Sterling 
Organics; 1988

[29] Szejtli J, Szente L. Elimination of bitter, disgusting tastes of drugs and foods by cyclodex-

trins. European Journal of Pharmaceutics and Biopharmaceutics. 2005;1:115-125

[30] Hedges AR. Industrial applications of cyclodextrins. Chemical Reviews. 1998;98:2035-2044

[31] Bhandari BR, D’Arcy BR, Padukka I. Encapsulation of lemon oil by paste method 
using β-cyclodextrin: Encapsulation efficiency and profile of oil volatiles. Journal of 
Agricultural and Food Chemistry. 1999;47:5194-5197

[32] Shiga H, Yoshii H, Ohe H, Yasuda M, Furuta T, Kuwahara H, Ohkawara M, Linko P. 
Encapsulation of shiitake (Lenthinus edodes) flavors by spray drying. Bioscience, Bio-
technology, and Biochemistry. 2004;68(1):66-71

[33] Kwak HS, Jung CS, Shim SY, Ahn J. Removal of cholesterol from cheddar cheese by 
β-cyclodextrin. Journal of Agricultural and Food Chemistry. 2002;50:7293-7298

[34] Sojo MM, Nuñez-Delicado E, Garcia-Carmona F, Sanchez-Ferrer A. Cyclodextrins as 
activator and inhibitor of latent banana pulp polyphenol oxidase. Journal of Agricultural 

and Food Chemistry. 1999;47:518-523

[35] Sung H. Composition for ginger preservation. Repub Korea KR 9707148. 1997

[36] Bicchi C, Liberto E, Cagliero C, Cordero C, Sgorbini B, Rubiolo P. Conventional and 
narrow bore short capillary columns with cyclodextrin derivatives as chiral selectors to 

speed-up enantioselective gas chromatography and enantioselective gas chromatogra-

phy-mass spectrometry analyses. Journal of Chromatography A. 2008;1212:114-123

[37] Liberto E, Cagliero C, Sgorbini B, Bicchi C, Sciarrone D, D’Acampora-Zellner B, 
Mondello L, Rubiolo P. Enantiomer identification in the flavour and fragrance fields 
by “interactive” combination of linear retention indices from enantioselective gas chro-

matography and mass spectrometry. Journal of Chromatography A. 2008;1195:117-126

[38] Wüst M, Mosandl A. Important chiral monoterpenoid ethers in flavours and essential 
oils -enantioselective analysis and biogenesis. European Food Research and Technology. 

1999;209:3-11

[39] Armstrong DW, Chang C-D, Li WY. Relevance of enantiomeric separations in food and 
beverage analyses. Journal of Agricultural and Food Chemistry. 1990;38:1674-1677

[40] Sumiyoshi H. Utilisation of inclusion complexes with plant components for foods. 
Nippon Shokuhin Shinsozai Kenkyukaishi. 1999;2:109-114

[41] Fujishima N, Kusaka K, Umino T, Urushinata T, Terumi K. Flour based foods containing 
highly branched cyclodextrins. Japanese Patent JP 136898. 2001

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

281



[42] Takeshita K, Urata T. Antimicrobial food preservatives containing cyclodextrin inclusion 
complexes. Japanese Patent JP 29054. 2001

[43] Mabuchi N, Ngoa M. Controlled release powdered flavour preparations and confection-

eries containing preparations. Japanese Patent JP 128638. 2001

[44] Chiavaro E, Dallasta C, Galaverna G, Biancardi A, Gambarelli E, Dossena A, et al. 
New reversed-phase liquid chromatographic method to detect aflatoxins in food and 
feed with cyclodextrins as fluorescence enhancers added to the eluent. Journal of 
Chromatography. A. 2001;937:31-40

[45] Jouquand C, Ducruet V, Giampaoli P. Partition coefficients of aroma compounds in 
polysaccharide solutions by the phase ratio variation method. Food Chemistry. 2004;85: 
467-474

[46] Pagington JS. Beta-cyclodextrin – The success of molecular inclusion. Chemistry in 
Britain. 1987;23:455-458

[47] Bhandari B, D’Arcy B, Young G. Flavour retention during high temperature short 
time extrusion cooking process: A review. International Journal of Food Science and 

Technology. 2001;36:453-461

[48] Suzuki J. Japan Kokai, JP 7569100. 1975

[49] Shaw PE, Tatum JH, Wilson CW Improved flavor of navel orange and grapefruit juices 
by removal of bitter components with β-cyclodextrin polymer. Journal of Agricultural 
and Food Chemistry. 1984;32:832-836

[50] Binello A, Cravotto G, Nano GM, Spagliardi P. Synthesis of chitosan-cyclodextrin 
adducts and evaluation of their bitter-masking properties. Flavour and Fragrance 
Journal. 2004;19(5):394-400

[51] Binello A, Robaldo B, Barge A, Cavalli R, Cravotto G. Synthesis of cyclodextrin-based 
polymers and their use as debittering agents. Journal Applied Polymer Science. 2008; 
107:2549-2557

[52] Sakakibara S, Sugisawa K, Matsui F, Sengoku K. Japan Patent JP 851248075. 1985

[53] Takeda Chem. Ind. Ltd. Japan Kokai JP 81127058. 1981

[54] Kuwabara N, Takaku H, Oku S, Kopure Y. Japan Kokai JP 88267246. 1988

[55] Del Valle EMM. Cyclodextrins and their uses. Process Biochemistry. 2004;39:1033-1046

[56] López-Nicolas JM, Nuñez-Delicado E, Sánchez-Ferrer A, García-Carmona F. Kinetic 
model of apple juice enzymatic browning in the presence of cyclodextrins: The use of 

maltosyl-beta-cyclodextrin as secondary antioxidant. Food Chemistry. 2007;101:1164-1171

[57] López-Nicolas JM, Pérez-López AJ, Carbonell-Barrachina A, García-Carmona F. Use of 
natural and modified cyclodextrins as inhibiting agents of peach juice enzymatic brown-

ing. Journal of Agricultural and Food Chemistry. 2007;55:5312-5319

Cyclodextrin - A Versatile Ingredient282



[58] López-Nicolas JM, Pérez-López AJ, Carbonell-Barrachina A, García-Carmona F. Kinetic 
study of the activation of banana juice enzymatic browning by the addition of malto-

syl-beta-cyclodextrin. Journal of Agricultural and Food Chemistry. 2007;55:9655-9662

[59] López-Nicolas JM, García-Carmona F. Use of cyclodextrins as secondary antioxidants 
to improve the color of fresh pear juice. Journal of Agricultural and Food Chemistry. 
2007;55:6330-6338

[60] Burt S. Essential oils: Their antibacterial properties and potential applications in foods – 

A review. International Journal of Food Microbiology. 2004;94:223-253

[61] Valero M, Salmerón M. Antibacterial activity of 11 essential oils against Bacillus cereus 

in tyndallized carrot broth. International Journal of Food Microbiology. 2003;85:73-81

[62] Dorman HJD, Surain P, Deans SG. Vitro antioxidant activity of a number of plant essen-

tial oils and phytoconstituents. Journal of Essential Oil Research. 2000;12:241-248

[63] Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ. Char-
acterization of the action of essential oil components on Gram-negative bacteria. Journal 
of Agricultural and Food Chemistry. 1998;46:3590-3595

[64] Calo JR, Crandall PG, O’Brian CA, Ricke SC. Essential oils as antimicrobials in food sys-

tems – A review. Food Control. 2015;54:111-119

[65] Srinivasan K. Black pepper and its pungent principle-piperine. A review of diverse 

physiological effects. Critical Reviews in Food Science and Nutrition. 2007;47:735-748

[66] Awen BZ, Ganapati S, Chandu BR. Influence of sapindus mukorossi on the permeability 
of ethyl cellulose free film for transedermal use. Research Journal of Pharmaceutical, 
Biological and Chemical Sciences. 2010;1:35-38

[67] Hussain A, Naz S, Nazir H, Shinwari ZK. Tissue culture of black pepper (Piper nigrum L.) 
in Pakistan. Pakistan Journal of Botany. 2011;43:1069-1078

[68] Singh G, Marimuthu P, Catalan C, de Lampasona MP. Chemical, antioxidant and anti-
fungal activities of volatile oil of black pepper and its acetone extract. Journal of the 

Science of Food and Agriculture. 2004;84:1878-1884

[69] Dorman HJD, Deans SG. Antimicrobial agents from plants: Antibacterial activity of 
plant volatile oils. Journal of Applied Microbiology. 2000;88:308-316

[70] Menon AN, Padmakumari KP, Jayalekshmy A. Essential oil composition of four 
major cultivars of black pepper (Piper nigrum L.) III. Journal of Essential Oil Research. 
2003;15:155-157

[71] Dima C, Cotarlet M, Tiberius B, Bahrim G, Alexe P, Dima S. Encapsulation of coriander 
essential oil in beta-cyclodextrin: Antioxidant and antimicrobial properties evaluation. 

Romanian Biotechnological Letters. 2014;19:9128-9140

[72] Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Current 
Medical Chemistry. 2003;10:813-829

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

283



[73] Jaiarj P, Khoohaswan P, Wongkrajang Y. Anticough and antimicrobial activities of 
Psidium guajava Linn. leaf extract. Journal of Ethnopharmacology. 1999;67:203-212

[74] Lozoya X, Reyes-Morales H, Chávez-Soto MA, Martínez-García MC, Soto-González Y, 
Doubova SV. Intestinal anti-spasmodic effect of a phytodrug of Psidium guajava folia in 

the treatment of acute diarrheic disease. Journal of Ethnopharmacology. 2002;83:19-24

[75] Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H. Antidiabetic effects of extracts from 
Psidium guajava. Journal of Ethnopharmacology. 2005;96:411-415

[76] Sacchetti G, Maietti S, Muzzoli MV, Scaglianti M, Manfredini S, Radice M, Bruni R. 
Comparative evaluation of 11 essential oils of different originas functional antioxidants, 
antiradicals and antimicrobials in foods. Food Chemistry. 2005;91:621-632

[77] Manosroi J, Dhumtanom P, Manosroi A. Anti-proliferative activity of essential oil extracted 
from Thai medicinal plants on KB and P388 cell lines. Cancer Letters. 2006;235:114-120

[78] Hsin-Chun C, Ming-Jen S, Li-Yun L, Chung-May W. Chemical composition of the 
leaf essential oil of Psidium guajava L. from Taiwan. Journal of Essential Oil Research. 

2007;19:345-347

[79] Ogunwande IA, Olawore NO, Adeleke KA, Ekundayo O, Koenig WA. Chemical com-

position of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour and 

Fragrance Journal. 2003;18:136-138

[80] Wichtl, M. Teedrogen und phytopharmaka. Stuttgart: Wissenschaftl Verlagsges. mbH; 
1997. pp. 395-399

[81] Cavalcanti AM, Baggio CH, Freitas CS, Rieck L, Sousa RS, Santos JES. Safety and antiul-
cer efficacy studies of Achillea millefolium L. after chronic treatment in Wistar rats. Journal 
of Ethnopharmacology. 2006;107:277-284. DOI: 10.1016/j.jep.2006.03.011

[82] Jonsdottir G, Omarsdottird S, Vikingssona A, Hardardottirc I, Freysdottir J. Aqueous 
extracts from Menyanthes trifoliate and Achillea millefolium affect maturation of human 
dendritic cells and their activation of allogeneic CD4+ T cells in vitro. Journal of Ethno-
pharmacology. 2011;136:88-93

[83] Baretta IP, Felizardo RA, Bimbato VF, Santos MGJ, Kassuya CAL, Junior AG. Anxiolytic-
like effects of acute and chronic treatment with Achillea millefolium L. extract. Journal of 

Ethnopharmacology. 2012;140:46-54. DOI: 10.1016/j.jep.2011.11.047

[84] Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sokmenc A, Akpulat HAA. 
Antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium 

ssp. millefolium Afan (Asteraceae). Journal of Ethnopharmacology. 2003;87:215-220. 

DOI: 10.1016/S0378-8741(03)00149-1

[85] Potrich FB, Allemand A, Silva LM, Santos AC, Baggio CH, Freitas CS, Mendes DAGB, 
Andre E, Werner MFP, Marques MCA. Antiulcerogenic activity of hydroalcoholic 
extract of Achillea millefolium L.: Involvement of the antioxidant system. Journal of 

Ethnopharmacology. 2010;130:85-92. DOI: 10.1016/j.jep.2010.04.014

Cyclodextrin - A Versatile Ingredient284



[86] Trumbeckaite S, Benetis R, Bumblauskiene L, Burdulis D, Janulis V, Toleikis A. Achillea 

millefolium L. s. l. herb extract: Antioxidant activity and effect on the rat heart mitochon-

drial functions. Food Chemistry. 2011;127:1540-1548

[87] Alfatemi SMH, Rad JS, Rad MS, Mohsenzadeh S, da Silva JAT. Chemical composition, 
antioxidant activity and in vitro antibacterial activity of Achilleab wilhelmsii C. Koch 
essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus 

spp. 3. Biotechnology. 2014;5:39-44. DOI: 10.1007/s13205-014-0197-x

[88] Helena M, Cabral M. A review on cyclodextrin encapsulation of essential oils and vola-

tiles. Flavour and Fragrance Journal. 2010;25:313-326

[89] Schmann HJ, Schollmeyer E. Applications of cyclodextrins in cosmetic products: A 
review. Journal of Cosmetic Science. 2002;53:185-191

[90] Bender ML, Komiyama M. Cyclodextrin Chemistry. Berlin: Springer; 1978

[91] Saenger W. Cyclodextrin inclusion compounds in research and industry. Angewandte 
Chemie. 1980;19:344-362

[92] Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. 
Flavour and Fragrance Journal. 2010;25:313-326

[93] Waleczek KJ, Marques HMC, Hempel B, Schmidt PC. Phase solubility studies of pure 
(−)-alpha-bisabolol and camomile essential oil with beta-cyclodextrin. European Journal 
of Pharmaceutics and Biopharmaceutics. 2003;55:247-251

[94] Garnero C, Zoppi A, Genovese D, Longhi M. Studies on trimethoprim: Hydroxypropyl-
β-cyclodextrin: Aggregate and complex formation. Carbohydrate Research. 2010;345: 
2550-2556

[95] Chandler RF, Hooper SN, Harvey NJ. Ethnobotany and phytochemistry of yarrow Achillea 

millefolium compositae. Economic Botany. 1982;36:203-215. DOI: 10.1007/BF02858720

[96] Benedek B, Geisz N, Jager W, Thalhammer T, Kopp B. Choleretic effects of yarrow 
(Achillea millefolium L.) in the isolated perfused rat liver. Phytomedicine. 2006;13:702-

706. DOI: 10.1016/j.phymed.2005.10.005

[97] Keser S, Celik S, Turkoglu S, Yilmaz O, Turkoglu I. Determination of antioxidant prop-

erties of ethanol and water extracts of Achillea millefolium L. (Yarrow). Asian Journal of 
Chemistry. 2011;23:3172-3176

[98] Keser S, Celik S, Turkoglu S, Yilmaz O, Turkoglu I. Antioxidant activity, total phenolic 
and flavonoid content of water and ethanol extracts from Achillea millefolium L. Turkish 

Journal of Pharmaceutical Sciences. 2013;10:385-392

[99] Hill LE, Gomes C, Taylor TM. Characterization of beta-cyclodextrin inclusion complexes 
containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud 
extracts) for antimicrobial delivery applications. LWT – Food Science and Technology. 
2013;51:86-93

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

285



[100] Rakmai J, Cheirsilp B, Torrado-Agrasar A, Mejuto JC, Simal-Gandara J. Physico-
chemical characterization and evaluation of bio-efficacies of black pepper essential oil 
encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids. 2017;65:157-164

[101] Li X, Jin Z, Wang J. Complexation of allyl isothiocyanate by α- and β-cyclodextrin and 
its controlled release characteristics. Food Chemistry. 2007;103:461-466

[102] Ayala-Zavala JF, Soto-Valdez H, Gonzalez-Leon A, Alvarez-Parrilla E, Martin-Belloso 
O, Gonzalez-Agular GA. Microencapsulation of cinnamon leaf (Cinnamonum zeylani-

cum) and garlic (Allium sativum) oils in β-cyclodextrin. Journal of Inclusion Phenomena 
and Macrocyclic Chemistry. 2008;60:359-368

[103] Ponce-Cevallos PA, Buera MP, Elizalde BE. Encapsulation of cinnamon and thyme 
essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of 
interactions with water on complex stability. Journal of Food Engineering. 2010;99:70-75

[104] Piercey MJ, Mazzanti G, Budge SM, Delaquis PJ, Paulson AT, Hansen LT. Antimicrobial 
activity of cyclodextrin entrapped allyl isothiocyanate in a model system and packaged 

fresh-cut onions. Food Microbiology. 2012;30:213-218

[105] Songkro S, Hayook N, Jaisawang J, Maneenuan D, Chuchome T, Kaewnoppart N. 
Investigation of inclusion complexes of citronella oil, citronellal and citronellol with 

β-cyclodextrin for mosquito repellent. Journal of Inclusion Phenomena and Macrocyclic 
Chemistry. 2012;72:339-355

[106] Qiu N, Cheng X, Wang G, Wang W, Wen J, Zhang Y, Chen L. Inclusion complex of 
barbigerone with hydroxypropyl-cyclodextrin: Preparation and in vitro evaluation. 
Carbohydrate Polymers. 2014;101:623-630

[107] Anaya-Castro MA, Ayala-Zavala JF, Muñoz-Castellanos L, Hernández-Ochoa L, 
Peydecastaing J, Durrieu V. β-Cyclodextrin inclusion complexes containing clove (Eugenia 

caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: Preparation, physico-

chemical and antimicrobial characterization. Food Packaging and Shelf Life. 2017;14:96-

101. DOI: 10.1016/j.fpsl.2017.09.002

[108] Santos EH, Kamimura JA, Hill LE, Gomes CL. Characterization of carvacrol beta-cyclo-

dextrin inclusion complexes as delivery systems for antibacterial and antioxidant appli-

cations. LWT Food Science and Technology. 2015;60:583-592

[109] Miguel MG, Dandlen SA, Figueiredo AC, Pedro LG, Barroso JG, Marques MH. 
Comparative evaluation of the antioxidant activities of thymol and carvacrol and the 
corresponding beta cylodextrin complexes. Acta Horticulturae. 2009;853:363-368

[110] Kamimura JA, Santos EH, Hill LE, Gomes CL. Antimicrobial and antioxidant activi-
ties of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. LWT – Food 
Science and Technology. 2014;57:701-709

[111] Wang J, Cao Y, Sun B, Wang C. Physicochemical and release characterisation of garlic 
oil-β-cyclodextrin inclusion complex. Food Chemistry. 2011;127:1680-1685

[112] Rakmai J, Cheirsilp B, Mejuto JC, Simal-Gandara J, Torrado-Agrasar A. Antioxidant 
and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-

cyclodextrin. Industrial Crops and Products. 2018;111:219-225

Cyclodextrin - A Versatile Ingredient286



[113] Bhandari BR, D’Arcy BR, Bich LLT. Lemon oil to β-cyclodextrin ratio effect on the 
inclusion efficiency of β-cyclodextrin and the retention of oil volatiles in the complex. 
Journal of Agricultural and Food Chemistry. 1998;46:1494-1499

[114] Mourtzinos I, Salta F, Yannakopoulou K, Chiou A, Karathaos VT. Encapsulation of 
olive leaf extract in beta cyclodextrin. Journal of Agricultural and Food Chemistry. 
2007;55:8088-8094

[115] Gong L, Li T, Chen F, Duan X, Yuan Y, Zhang D, Jiang Y. An inclusion complex of euge-

nol into β-cyclodextrin: Preparation, and physicochemical and antifungal characteriza-

tion. Food Chemistry. 2016;196:324-330

[116] Chun JY, You SK, Lee MY, Choi MJ, Min SG. Characterization of β-cyclodextrin self-
aggregates for eugenol encapsulation. International Journal of Food Engineering. 

2012;8:1-19

[117] Wang T, Li B, Si H, Chen L. Release characteristics and antibacterial activity of solid-
state eugenol/β-cyclodextrin inclusion complex. Journal of Inclusion Phenomena and 
Macrocyclic Chemistry. 2011;71:207-213

[118] Seo JE, Min SG, Choi MJ. Release characteristics of freeze-dried eugenol encapsulated 
with β-cyclodextrin by molecular inclusion method. Journal of Microencapsulation. 
2010;27:496-505

[119] Kotronia M, Kavetsou E, Loupassaki S, Kikionis S, Vouyiouka S, Detsi A. Encapsulation 
of oregano (Origanum onites L.) essential oil in β-cyclodextrin (β-CD): Synthesis and 
characterization of the inclusion complexes. Bioengineering. 2017;4:74-89

[120] Fang Z, Comino P, Bandari B. Effect of encapsulation of d-limonene on the mois-

ture adsorption property of β-cyclodextrin. LWT – Food Science and Technology. 
2013;51:164-169

[121] Tao F, Hill LE, Peng Y, Gomes CL. Synthesis and characterization of β-cyclodextrin 
inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. 

LWT – Food Science and Technology. 2014;59:247-255. DOI: 10.1016/j.lwt.2014.05.037

[122] Del Toro-Sanchez CL, Ayala-Zavala JF, Machi L, Santacruz H, Villegas-Ochoa MA, 
Alvarez-Parrilla E, Aguilar G. Controlled release of antifungal volatiles of thyme essen-

tial oil from β-cyclodextrin capsules. Journal of Inclusion Phenomena and Macrocyclic 
Chemistry. 2010;67:431-441

[123] Albarca R, Rodríguez FJ, Guarda A, Galotto MJ, Burna JE. Characterization of beta-
cyclodextrin inclusion complexes containing and essential oil component. Food Chem-
istry. 2016;196:968-975

[124] Lawtrakul L, Inthajak K, Toochinda P. Molecular calculations on β-cyclodextrin inclu-

sion complexes with five essential oil compounds from Ocimun basilicum (sweet basil). 
Science Asia. 2014;40:145-151

[125] Rakmai J, Cheirsilp B, Torrado-Agrasar A, Simal-Gandara J, Mejuto JC. Encapsulation 
of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: Physiochemical character-

ization and evaluation of bio-efficacies. CyTA Journal of Food. 2004;15:409-417

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

287



[126] Zeng Z, Fang Y, Ji H. Side chain influencing the interaction between β-cyclodextrin and 
vanillin. Flavour and Fragrance Journal. 2012;27:378-385

[127] Karathanos VT, Mourtzinos I, Yannakopoulou K, Andrikopoulos NK. Study of the solu-

bility, antioxidant activity, and structure of inclusion complex of vanillin with beta-

cyclodextrin. Food Chemistry. 2007;101:652-658

[128] Numanoǧlu U, Şen T, Tarimci N, Kartal M, Koo OMY, Önyüksel H. Use of cyclodex-

trins as a cosmetic delivery system for fragance materials: Linalool and benzyl acetate. 

AAPS PharmSciTech. 2007;8:34-42

[129] Haiyee ZA, Saim N, Said M, Illias RM, Mustapha WAW, Hassan O. Characterization 
of cyclodextrin complexes with turmeric oleoresin. Food Chemistry. 2009;114:459-465. 

DOI: 10.1016/j.foodchem.2008.09.072

[130] Kfoury M, Landy D, Ruellan S, Auezova L, Greige-Gerges H, Fourmentin S. Deter-
mination of formation constants and structural characterization of cyclodextrin inclu-

sion complexes with two phenolic isomers: Carvacrol and thymol. Beilstein Journal of 
Organic Chemistry. 2016;12:29-42. DOI: 10.3762/bjoc.12.5

[131] Kfoury M, Auezova L, Fourmentin S, Greige-Gerges H. Investigation of monoterpenes 
complexation with hydrosypropyl-β-cyclodextrin. Journal of Inclusion Phenomena 
and Macrocyclic Chemistry. 2014;80:51-60. DOI: 10.1007/s10847-014-0385-7

[132] Jiang ZT, Tan J, Tan J, Li R. Chemical components and molecular microcapsules of 
folium Artemisia essential oil with β-cyclodextrin derivatives. Journal of Essential Oil-
Bearing Plants. 2016;19:1155-1169. DOI: 10.1080/0972060X.2016.1185973

[133] Belscak-Cvitanovic A, Stojanovic R, Manojlovic V, Komes D, Cindric IJ, Nedovic V, 
Bugarski B. Encapsulation of polyphenolic antioxidants from medicinal plant extracts 

in alginate-chitosan system enhanced with ascorbic acid by electrostatic extrusion. 

Food Research International. 2011;44:1094-1101

[134] Dordevic V, Balanc B, Belscak-Cvitanovic A, Levic S, Trifkovic K, Kalusevic A, Kostic I, 
Komes D, Bugarski B, Nedovic V. Trends in encapsulation technologies for delivery of 
food bioactive compounds. Food Engineering Reviews. 2015;7:452-490. DOI: 10.1007/
s12393-014-9106-7

[135] Guimaraes AG, Oliveira MA, Alves RS, Menezes PP, Serafini MR, Araujo AAS, Bezerra 
DP, Junior LJQ. Encapsulation of carvacrol, a monoterpene present in the essential oil 
of oregano, with β-cyclodextrin, improves the pharmacological response on cancer 
pain experimental. Chemico-Biological Interactions. 2015;227:69-76

[136] Le Bas D, Rysanek N. Structural aspect of cyclodextrins. In: Duchene D, editor. Cyclo-
dextrins and their Industrial Uses. Vol. 105-211. Paris: Editions de Sante; 1987. pp. 351-393

[137] Batzdorf T, Muller-Goymann CC. Release of ketoprofen from aqueous systems in the 
presence of hydrophilic β-cyclodextrin derivatives. Indian Journal of Pharmaceutical 
Sciences. 1993;55:857-860

Cyclodextrin - A Versatile Ingredient288



[138] Szente L. Analytical methods for cyclodextrins, cyclodextrin derivatives and cyclodex-

trin complexes. Supramolecular Chemistry. 1996;3:78-253

[139] Wang X, Luo Z, Xiao Z. Preparation, characterization, and thermal stability of 
β-cyclodextrin/soybean lecithin inclusion complex. Carbohydrate Polymer. 2014;101: 
1027-1032

[140] Liu H, Yang G, Tang Y, Cao D, Qi T, Qi Y, Fan G. Physicochemical characterization 
and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion com-

plex. International Journal of Pharmaceutics. 2013;450:304-310. DOI: 10.1016/j.ijpharm. 
2013.04.013

[141] Gomes LMM, Petito N, Costa VG, Falcao DQ, Araujo KGL. Inclusion complexes of red 
bell pepper pigments with β-cyclodextrin: Preparation, characterisation and applica-

tion as natural colorant in yogurt. Food Chemistry. 2014;148:428-436

[142] Szejtli J. Cyclodextrins and their Inclusion Complexes. Budapest: Akademiai Kiado; 
1982. pp. 115-122

[143] Yuan C, Jin Z, Li X. Evaluation of complex forming ability of hydroxypropyl-beta-
cyclodextrins. Food Chemistry. 2008;106:50-55

[144] Higuchi T, Connors KA. Phase solubility techniques. Advances in Analytical Chemistry 
and Instrumentation. 1965;4:117-122

[145] Connors KA. The stability of cyclodextrin complexes in solution. Chemical Reviews. 
1997;5:1325-1357

[146] Zengin H, Baysal AH. Antibacterial and antioxidant activity of essential oil terpenes 
against pathogenic and spoilage-forming bacteria and cell structure-activity relation-

ships evaluated by SEM microscopy. Molecules. 2014;19:17773-17798

[147] Dai J, Zhu L, Yang L, Qiu J. Chemical composition, antioxidant and antimicrobial activi-
ties of essential oil from Wedelia prostrata. EXCLI Journal. 2013;12:479-490

[148] Nawar WF. Lipids. In: Fennema O, editors. Food Chemistry. New York: Marcel Dekker, 
Inc.; 1996. pp. 225-320

[149] Misharina TA, Polshkov AN, Ruchkina EL, Medvedeva IB. Changes in the composition 
of the essential oil of marjoram during storage. Applied Biochemistry and Microbiology. 

2003;39:311-316

[150] Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, 
Mazzanti G, Bisignano G. Mechanisms of antibacterial action of three monoterpenes. 
Antimicrobial Agents and Chemotherapy. 2005;49:2474-2478

[151] Soković M, Glamočlija J, Marin PD, Brkić D, Van Griensven LJLD. Antibacterial effects 
of the essential oils of commonly consumed medicinal herbs using an in vitro model. 

Molecules. 2010;15:7532-7546

Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
http://dx.doi.org/10.5772/intechopen.73589

289



[152] Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE. A study of the minimum inhibitory 
concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal 

of Applied Microbiology. 2001;91:453-462. DOI: 10.1046/j.1365-2672.2001.01428.x

[153] Soković M, Tzakou O, Pitarokili D, Couladis M. Antifungal activities of selected aro-

matic plants growing wild in Greece. Nahrung. 2002;46:317-320

[154] Couladis M, Tzakou O, Kujundzić S, Soković M, Mimica-Dukić N. Chemical analysis 
and antifungal activity of Thymus striatus. Phytotherapy Research. 2004;18:40-42. DOI: 
10.1002/ptr.1353

[155] Soković M, Grubišić D, Ristić M. Chemical composition and antifungal activity of 
the essential oils from leaves, calyx and corolla of Salvia brachyodon Vandas. Journal of 

Essential Oil Research. 2005;17:227-229. DOI: 10.1080/10412905.2005.9698884

[156] Šiler B, Živković S, Banjanac T, Cvetković J, Živković JN, Ćirić A, Soković M, Mišić 
D. Centauries as underestimated food additives: Antioxidant and antimicrobial poten-

tial. Food Chemistry. 2014;147:367-376. DOI: 10.1016/j.foodchem.2013.10.007

[157] Soković M, van Griensven LJLD. Antimicrobial activity of essential oils and their 
components against the three major pathogens of the cultivated button mushroom, 
Agaricus bisporus. European Journal of Plant Pathology. 2006;116:211-224. DOI: 10. 
1007/s10658-006-9053-0

Cyclodextrin - A Versatile Ingredient290


	Chapter 11
Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation

