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1. Introduction 

Voice is invaluable for our livelihood, as it takes place in humans everyday lives, like 
talking, laughing, crying, singing, screaming, shouting etc. Over the past 200 000 years, 
humans use the lung, larynx, tongue, and lips, to produce and modify the highly intricate 
arrays of voice (Titze, 2006) for realizing verbal communication and emotional expression. 
Among the participating tissues, the vocal folds within the human larynx have evolved to be 
a key organ in the creation of human voice. Their vibrations serve as origin of the primary 
voice signal. The process of voice production is called phonation (Titze, 2006), and is the 
preliminary stage for speech. 
In our knowledge-based societies, communication skills have become more and more 
important. Communication disorders became a socio economic factor: A study in the year 
2000 estimated losses within the Gross National Product of the USA being up to $186 billion 
annually (Ruben, 2000), on the basis that approx. 10% of the entire population suffers from 
communication disturbances. To increase the quality of life of the people concerned on one 
hand and to keep the economic costs under control on the other, appropriate technologies 
have to be developed to disclose all factors conducive to communication disorders. Also, 
analysis methods have to be applied to objectively quantify grades of disease, document 
therapy, and to guide surgical interventions. A high number of communication disorders 
are due to a disturbance in voice, i.e. disturbed vocal fold vibrations. 
Examination of vocal fold vibrations (100 Hz – 300 Hz) and the acoustic signal are the basic 
components of clinical voice assessment. It is widely held that vocal fold vibration 
irregularities lead to an impairment of the voice signal. Irregularities being present in vocal 
fold vibrations during sound production can be determined by direct (i.e. endoscopic 
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laryngeal imaging) or indirect (i.e. acoustic and aerodynamic) assessment techniques. 
However, detailed quantitative knowledge about interrelations between acoustic signal and 
vibrations of the voice generator is still in its infancies. 
Currently, videostroboscopy is a commonly used clinical laryngeal imaging tool to 
investigate the vocal fold vibratory dynamics. However, videostroboscopy is just suitable 
for periodic vocal fold vibrations since the image sensor captures only one frame per 
oscillation cycle and thus does not fulfil the Nyquist sampling theorem (Kendall et al., 2005; 
Svec et al., 2008). Hence, videostroboscopy has severe limitations when it comes to 
investigating pathological voices which frequently exhibit non-periodic vibrations. State-of-
the-art technology in investigating of vocal fold vibrations is high-speed digital imaging 
(HSI). Current systems are equipped with a 2D image sensor delivering images at frame 
rates up to 2,000-8,000 fps, which can capture the vibration patterns of vocal folds at their 
usual frequencies of up to 300 Hz along the entire visible glottal length (Schade & Mueller, 
2005; Hertegard, 2005; Bonilha & Deliyski, 2008; Deliyski, et al., 2008). Thus, HSI allows 
visualizing regular and irregular vibration patterns which are found in normal and 
pathological voices (Kendall et al., 2005; Doellinger, 2009), Fig. 1. 
 

 

Fig. 1. Schematic representation of performing endoscopic high-speed recordings. Left, the 
recording situation including camera and endoscope are shown. On the left, the recorded 
area (vocal folds and opening and closing glottis) can be seen. 

Even though high-speed videos deliver a novel insight into laryngeal vibrations, the 
investigation of vocal fold vibrations demands a sophisticated quantitative analysis of the 
video data (Doellinger, 2009). To reach this objective, different approaches have been 
developed to analyze vocal fold vibrations (Doellinger, 2009). Commonly, from the 
endoscopic HSI data the time varying opening between the vocal folds (i.e. glottis) is 
analyzed or trajectories are extracted at specific positions of the vocal folds (Braunschweig et 
al., 2008). To quantify the obtained motion data, several measures have been introduced 
describing the symmetry and regularity of vocal fold vibrations (Qiu et al., 2003, Yan et al., 
2005). Instabilities of fundamental frequencies, amplitude and phase asymmetries as well as 
regularity parameters were detected in pathological voices (Bonilha & Deliyski, 2008). Other 
approaches automatically adapt biomechanical models to vocal fold vibrations extracted 
from HSI videos applying parameter optimization strategies (Doellinger et al., 2002; 
Doellinger et al. 2003; Tokuda et al., 2007, Yang et al., 2010). These obtained parameters 
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represent the degree of laryngeal asymmetry and vibration stability (Schwarz et al., 2008; 
Wurzbacher et al., 2006; Wurzbacher et al., 2008). However, up to the present there is still no 
established feature extraction strategy describing the entire vibration patterns of vocal fold 
dynamics adequately. 
Recently, the novel Phonovibrogram (PVG) approach was suggested to quantify the entire 
visible vocal fold vibrations (Lohscheller et al., 2007; Lohscheller et al., 2008a) expanding 
formerly introduced spatio-temporal plots (Westphal & Childers, 1983; Neubauer et al., 
2001). In the PVG approach, contours of the oscillating vocal folds are segmented from 
video data and are transformed into a single colour coded PVG image. Depending on the 
underlying vocal fold vibrations, characteristic geometric patterns occur within a PVG 
which can be used for further clinical interpretation (Lohscheller & Eysholdt, 2008). PVG 
images can be regarded as fingerprints of vocal fold vibrations, enabling intuitional 
assessment of vocal fold vibrations (Eysholdt & Lohscheller, 2008). PVG analysis 
demonstrates that the complex two-dimensional vibratory patterns of vocal folds can 
robustly be described (Eysholdt & Lohscheller, 2008). It further establishes an objective basis 
for novel automatic analysis and classification approaches (Doellinger et al., 2009; 
Lohscheller et al. 2008b, Kunduk et al. 2010).  

Within this work we propose a novel approach to achieve a fully automatic analysis of PVG 
images for detecting even slight alterations within underlying vocal fold vibrations: After 
segmenting the vocal fold vibrations from HSI and computing the appropriate PVG image 
matrix a set of novel PVG features will be introduced which describe the main 
characteristics of vocal fold dynamics. For investigating the sensitivity of the proposed PVG 
analysis approach the following physiological conditions were considered: 
Vocal fold vibrations show individual patterns for each subject and can thus be highly 
variable between different patients. However, during voice production for a single subject 
the vocal fold vibrations show at specific voice intensity and fundamental frequency a 
reproducible dynamical behaviour. Within a subject, alterations of the fundamental 
frequency and/or intensity result into slight changes within vocal fold vibrations (Rovirosa 
et al., 2008). To obtain clinically relevant information about the physiology of a subject’s 
voice the changes of vocal fold vibrations need to be traced. Accordingly, a computerized 
analysis procedure has to be sensitive enough to capture the individual changes within a 
subject. Hence, the validation of sensitivity of a computerized analysis approach needs to be 
performed within one single subject as changes of vocal fold vibrations between different 
subjects are not comparable. 
According to the fulfilments above the sensitivity of PVG analysis was investigated by 
applying the PVG approach extensively to data sets obtained from a single healthy female 
subject. For data acquisition the subject was instructed to phonate at nine specified 
combinations of fundamental frequencies (low, normal, and high) and voice intensities (soft, 
normal, and loud). For each of these nine phonatory tasks twelve different high-speed 
sequences were obtained. Totally, 108 HSI sequences from this single subject could be 
processed. To obtain reliable results it is further of great importance to examine a healthy 
subject with no signs of voice disorders. Only for a single healthy subject it can be 
assumed that during the repeated examinations of a phonatory task the vocal fold 
vibrations are reproducible and do not change. Hence, the presence of pathologically 
caused and thus arbitrarily induced alterations of vocal fold vibrations can be excluded 
between recordings.  
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For further validation, simultaneously to the video data the emitted acoustic signal was 
recorded. From the acoustic data clinically used acoustic quality measures like Jitter, 
Shimmer, HNR, and SNR (Murphy, 1999; Zhang & Jiang, 2008) were computed allowing 
indirect conclusions about the vibrational behavior of vocal folds.  
The results of this work will show that using PVG features in combination with a Support 
Vector Machine (SVM) even minor changes of vocal fold vibrations - caused by frequency 
and intensity alterations - can be highly robustly detected. Comparing the classification 
results gained by PVG features with results obtained from conventionally applied glottal as 
well as acoustic features will show the superiority of the novel PVG analysis approach. 

2. Methods 

2.1 Data collection 
The KAY Elemetrics, High–Speed Digital Video System, Model 97, was used for data 
collection. Recordings were performed at a 2,000 fps rate by using a specially designed, 
multi-port, super sensitive camera for eight seconds of recording. Gray scaled images were 
captured at 384Mb/sec into high-speed video RAM with a spatial resolution of 128 x 256 
pixels. Images were obtained with a rigid 70° endoscope (KAY Elemetrics, 9106) with a 300-
watt-coldlight source (Olympus CLV-U20). The rigid laryngoscope was coupled to the high-
speed digital camera head and endoscopy was performed as in conventional 
videostroboscopy. A microphone was placed 15 cm from the lips to obtain the acoustic 
signal. This signal was fed through the KAY Elemetrics System for simultaneous recording 
of the endoscopic and acoustic signals (50 KHz). KAY Elemetrics, Rhino-Laryngeal 
Stroboscope (RLS 9100 B) and its microphone was used to determine Fo and the volume of 
the voice signal. The visual display on the system directed the subject for the maintenance 
and consistency of the desired Fo and volume for each phonatory task. 

2.2 Subject and phonatory tasks 
One female subject’s voice was recorded with HSI for this study. The subject was non 
smoker and had no known history of neurological disease, laryngeal surgery, prior/or 
existing laryngeal disorders, voice problems at the time of data collection nor observed 
neither reported speech/language impairment. The HSI and acoustic recordings were 
simultaneously acquired while the subject was producing the vowel /i/ at the following 
fundamental frequency (F0) / intensity (I) combinations: 

• low F0 (F1) at soft (I1), normal (I2), and high (I3) intensity, 

• normal F0 (F2) at soft (I1), normal (I2), and high (I3) intensity, 

• high F0 (F3) at soft (I1), normal (I2), and high (I3) intensity, 

resulting in 9 different phonatory tasks. For all F0/I combinations four phonation trails were 
performed. Within each recorded trail three different intervals of phonation were present. 
Each interval contained a voice onset followed by sustained phonation of at least one second 
being divided by short periods of silence. Hence, for each F0/I combination 12 phonation 
sequences were available. For later analysis purposes the following class system is 
introduced (Få Frequency, IåIntensity): 
3 Frequency classes  

 CF1:={F1I1, F1I2, F1I3}; CF2:={F2I1, F2I2, F2I3}; CF3:={F3I1, F3I2, F3I3}. (1) 
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3 Intensity classes  

 CI1:={F1I1, F2I1, F3I1}; CI2:={F1I2, F2I2, F3I2}; CI3:={F1I3, F2I3, F3I3}. (2) 

9 Combined Frequency/Intensity classes 

 

{ } { } { }
{ } { } { }
{ } { } { }

CS1 : F1I1 ;  CS2 : F1I2 ;  CS3 : F1I3 ;

CS4 : F2I1 ;  CS5 : F2I2 ;  CS6 : F2I3 ;

CS7 : F3I1 ;  CS8 : F3I2 ;  CS9 : F3I3 .

= = =

= = =

= = =

 (3) 

2.3 Selection of sequences 
Within the acoustic signals the intervals of sustained phonation were identified by visual 
inspection. Within each interval a time section of 1 second was selected. The identical 
section was analyzed in high speed video data. The sequence length of one second time (> 
150 glottal cycles) was in accordance with previous studies who suggested approx. 130 - 190 
cycles (Karnell, 1991). Thus, altogether 108 pairs of high-speed and acoustic data sets were 
available (Tab. 1), reflecting isochronal information about vibratory characteristics of the 
voice generator (high-speed data) and the acoustic outcome (voice signal). Only in four 
cases the video data could not be further processed due to low image quality. To ensure, 
that possible occurring differences between recordings were only induced by the different 
phonation task, the recordings were performed within a day. As far as we know these data 
represent the most exhaustive examination of a single subject’s vocal fold dynamics using 
HSI. 
 

Intensity/F0 Low(F1) Normal(F2) High(F3) CI1-CI3 

Soft(I1) 4(12) 4(12) 4(12) 12(36) 

Normal(I2) 4(9) 4(11) 4(12) 12(32) 

Loud(I3) 4(12) 4(12) 4(12) 12(36) 

CF1-CF3 12(33) 12(35) 12(36) 36(104) 

Table 1. Applied Data. Overview of the performed 36 recordings which equals 108 
sequences. From these sequences 104 could be analysed for acoustic and dynamical data. 

2.4 PVG parameters describing vocal fold dynamics  
2.4.1 Image processing  
The vibrating edges of both vocal folds were extracted alongside their entire glottal length to 
analyze the laryngeal vibrations during phonation (Lohscheller et al., 2007). Information at 
each specific position of vocal folds is required to obtain detailed information about the 
vibration characteristics at dorsal, medial and ventral parts of vocal folds. For this purpose 
an extensively evaluated image segmentation procedure was applied (Lohscheller et al., 
2007). The procedure delivers the left/right vocal fold edge contours cL/R(t), the glottal area 
a(t), the location of anterior/posterior glottal ending A(t) and P(t) as well as the glottal main 
axis l(t). A typical result of a segmented high-speed image is shown in Fig. 2.  
Since the segmentation accuracy highly affects the following analysis, the quality of the 
results was visually monitored. For this purpose, within a movie viewer the segmented 
vocal fold contours were displayed. Further, for identifying potential faulty segmented 

www.intechopen.com



 Advances in Vibration Analysis Research 

 

440 

images (outliers) the glottal area a(t) was displayed within a diagram, see Fig. 2. Thus, in 
case of imprecise results, a re-segmentation of the high speed videos could be performed. 
 

 

Fig. 2. Glottal area function. Left: Segmented image of a high-speed video. The extracted 
vocal fold edges are superimposed and are used to verify visually the accuracy of the 
segmentation results. Right: The glottal area waveform a(t) is monitored to detect faulty 
segmented images within a segmented video sequence. 

In this study, the image processing procedure was applied only when the glottal length was 
fully visible during one second. From all 108 data sets 104 sequences each containing 2,000 
consecutive images were successfully processed resulting in 208,000 segmented images. In 
all cases satisfactory segmentation accuracy were obtained, which are comparable to the 
example shown in Fig. 3. 

2.4.2 Generation of phonovibrograms 
For visualizing the entire vibration characteristics of both vocal folds the Phonovibrogram 
(PVG) was applied which was described in detail before (Lohscheller et al., 2008a). The 
principles of PVG computation are shortly summarized in Fig. 3. For each image of a high-
speed video, the segmented glottal axis is longitudinally split and the left vocal fold contour 
is turned 180° around the posterior end. Following, the distances dL,R(y,t) between the glottal 
axis and the vocal fold contours are computed; y ∈  [1,…,Y] with Y=256 denotes the spatial 
sampling of glottal axis. The distance values are stored as column entries of a vector and 
become color coded. The distance magnitudes are represented by the pixel intensities and 
two different colors. If vocal fold edges cross the glottal axis during an oscillation cycle the 
pixel is encoded by the color blue, otherwise the color red was used to indicate the distance 
from the glottal axis. A grayscale representation (black: vocal fold edges are at the glottal 
midline, white vocal fold edges have a distance to the glottal midline) of the originally 
colored PVG is given in Fig. 3. The entire vibration characteristics of both vocal folds are 
captured within one single PVG image by iterating the described procedure for an entire 
sequence and consecutively arranging the obtained vectors to a two-dimensional matrix. 
The left vocal fold is represented in the upper and the right vocal fold in the lower 
horizontal plane of the PVG, respectively. The PVG enables at the same time an assessment 
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of the individual vibration characteristics for each vocal fold and gives evidence about 
left/right and posterior/anterior vibration asymmetries as well as predications about the 
temporal stability of the vibration pattern. 
 

 

Fig. 3. PVG generation. 1) Segmentation of HS video. 2) Transformation of extracted vocal 
fold contours and computation of the distance values dL,R(y,t) which represent the distances 
from the vocal fold edges to the glottal midline. 3) Color coding of distance values for an 
entire high-speed video result into a PVG image comprising the entire vibration dynamics 
of both vocal folds in a single image (PVG is shown as grayscale image). 

2.4.3 Analysis of vocal fold vibrations 
PVG pre-processing: Phonovibrograms obtained from high speed sequences contain 
multiple reoccurring geometric patterns representing consecutive oscillation cycles of vocal 
folds. In order to describe the vibratory characteristics of vocal folds objectively, the 104 
PVGs were pre-processed as follows: Firstly, for the left and right vocal fold unilateral PVGs 
are computed, denoted as uPVGL/R which are in the following regarded as two-dimensional 
functions vL(k,y) and vR(k,y) with k∈ {1,…,K} and K=2,000 representing the number of frames 
within a sequence. From the unilateral PVGs the Glottovibrogram (GVG) is derived vG(k,y)= 
vL(k,y) + vR(k,y) which represents the glottal width (distances between the vocal folds) at 
each vocal fold position y over time, Fig. 4. In a subsequent step, the uPVGs and the GVG are 
automatically subdivided into a set of single PVG/GVG cycles, Fig. 4 right. A frequency 
analysis and peak picking strategy in the image domain is performed for the cycle 
identification (Lohscheller et al., 2008a). 
Finally, the obtained single cycle PVGs are normalized to a constant width and height which 
are denoted sPVGLi, sPVGRi, sGVGi, with i∈ {1,…,IL,R,G} and IL,R,G  representing the number of 
cycles within the corresponding Phonovibrogram. Hence, vocal fold vibrations can be 
described by a set of the three functions 

 ( , ) :L L
i id t y sPVG= , ( , ) :R R

i id t y sPVG= , ( , ) :i ig t y sGVG=  (4) 

with t∈ {1,…,T} where T=256 represents the normalized cycle length. In the following, the 
index α:={L,R}  is introduced to distinguish the functions dαi(t,y)  representing the left and 

www.intechopen.com



 Advances in Vibration Analysis Research 

 

442 

right vocal fold. Both, the unilateral as well as the normalized PVGs form the basis for the 
following analysis to obtain detailed information about vocal fold dynamics. 
 

 

Fig. 4. Pre-Processing. From a raw PVG (left) so-called unilateral PVGs are computed 
(middle) which are further subdivided into a set of normalized single cycle PVGs (right). 

Extraction of symmetry features: In order to describe the overall behavior of vocal fold 
dynamics the PVGs are analyzed as follows. At each glottal position y the 1D-power 
spectrum  

 ( , ) : | { ( , )}|f y FFT v k y yα α= ∀P  (5) 

is calculated by Fast Fourier Transform algorithm (FFT). Due to settings, corresponding 
frequency resolution of the spectral components were 1 Hz. Fundamental frequencies 0

αf  are 
estimated by identifying the maxima within the discrete power spectra 

 0 : arg max ( , ) .
f

P f y yα α= ∀f  (6) 

By defining the feature vector 

 0

0

: ( ) :
L

R
y yθ= = ∀

fθ
f

 (7) 

frequency differences between the left and right vocal fold as well as differences alongside 
the glottal axis are captured. If lateral (i.e. left/right) fundamental frequencies are identical 
the feature vector  

 0 0: ( ) : { ( , )} { ( , )}L L R Ry y y yυ ϕ ϕ= = − ∀υ P f P f  (8) 

describes the phase delays between the left and right vocal fold. 

The left/right vibration asymmetry is further described by introducing the mean relative 
amplitude ratios ( )a y  which are computed as follows. Within the sPVGL,R the points in time  

 max
, : arg max ( , ) , ,iy i

t

d t y y iα α α= ∀T  (9) 
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along the vocal fold length are identified when the maximum vocal fold deflections occur. 
By identifying the time points of minimal vocal fold deflection  

 min
, : arg min ( , ) , ,iy i

t

d t y y iα α α= ∀T  (10) 

the relative peak-to-peak amplitudes  

 
max min

, , ,: ( , ) ( , ) , ,y i i iy i y id y d y y iα αα α α α= − ∀Α T T  (11) 

can be defined which are independent from the absolute position of the glottal axis. The 
mean relative amplitude ratios 

 
,

,

: ( )
L
y i

R
y i

a y y
⎛ ⎞
⎜ ⎟= = ∀
⎜ ⎟
⎝ ⎠

A
a

A
 (12) 

and corresponding standard deviations a:=a(y) serve as features to describe left/right 
asymmetries as well as the stability of vibrations at each position of the vocal folds. The 
obtained parameters are merged to the symmetry feature vector s (Eqs. (7),(8),(12)): 

 : [ , , , ].= as θ υ a σ  (13) 

Extraction of glottal features g: In order to capture characteristics of the glottal dynamics 
within the oscillation cycles, the following parameters are extracted from the normalized 
GVG matrices gi(t,y). Firstly, the maximum glottal area of each oscillation cycle i is 
determined as 

 
1

max ( , ) , .
Y

i i
t y

g t y t i
=

= ∀∑ρ  (14) 

The feature 

 ( )iVarρσ = ρ  (15) 

describes the stability of the glottal vibratory cycles over time. Subsequently, the open 
quotients OQy,i  are defined for each glottal position i as duration of open phase divided by 
duration of complete glottal cycle and are computed as 

 , ˆ ( , ) / , ;y i i
t

g t y T y i
⎛ ⎞

= ∀⎜ ⎟
⎝ ⎠
∑OQ   (16) 

with  

 
1 ( , ) 0 .

ˆ
0 .

i
i

g t y t
g

otherwise

> ∀⎧
= ⎨
⎩

 (17) 

The mean values  
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 ,

1 I

y i
i

y
I

= ∀∑oq OQ  (18) 

and standard deviations 

 ,( )oq y iVar y= ∀σ OQ  (19) 

are used as features describing the stability of the glottal opening behavior at each position 
alongside the glottal axis (Var symbolizes the variance). Analogously, the mean speed 
quotients sq  and the corresponding standard deviations sq are computed describing the 
mean glottal vibratory shape and its stability over time (Jiang et al., 1998).  
Finally, the glottal closure insufficiencies 

 

ˆmin ( , )

, .

Y

i
t y

i

h t y

t i
Y

= ∀
∑

gci  (20) 

are derived using  

 
1 ( , ) 0 .ˆ
0 .

i
i

g t y y
h

otherwise

> ∀⎧
= ⎨
⎩

 (21) 

which are identifiable for each oscillation cycle i. The supplemental features gci  and 

gciσ describe the mean glottal closure insufficiency and its stability for the entire high-speed 
sequence. The glottal parameters are merged to the glottal feature vector (Eqs. (15),(18),(19)): 

 : [ , , , , , , ].oq sq gcigci σρσ=g oq σ sq σ  (22) 

Extraction of geometric PVG feature ω: Besides the conventional symmetry and glottal 

parameters we propose a novel way for describing vocal fold vibrations by quantifying the 

geometric structure within sPVGα images. The main vibration characteristics of a vocal fold 

can be described by extracting representative contour lines from the sPVGα images. This is 

done by determining the oscillatory states n during the opening ( max
,y it α< T ) and closing 

( max
,y it α> T ) phases where vocal folds reach a certain percentage of relative deflection  

 ,, : , [0,100].
100

n
y iy i

n
nα α= ∈Α Α  (23) 

Hence, the set of vectors 

 max
, ,: arg( ( , ) ), with , , .n n

iy i y i i
x

d x y t y iα α αα α= = < ∀O Α t  (24) 

 max
, ,: arg( ( , ) ), with , , .n n

iy i y i i
x

d x y t y iα α αα α= = > ∀C Α t  (25) 

describe temporal and spatial propagation of each vocal fold at different oscillation states 

during glottal opening ,
n

y i
αO  and closing ,

n
y i
αC . In order to get a comprehensive 
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understanding of the entire vibration cycle, multiple contour lines are extracted at different 

oscillation states. Fig. 5 shows exemplarily extracted contour lines at n=(30,60,90) for the left 

and right vocal fold during a single oscillation cycle.  
The functional characteristics 

 , ,: ( , ) : ( , ) , ,
nn

ii

n n
i iy i y id t y d t y y iαα

α αα α α= = ∀
co

ΡO ΡC  (26) 

of sPVGα  at positions ,
n

y i
αO  and ,

n
y i
αC  of the contour lines give precise information on actual 

deflection of the vocal folds. As features which describe the average vibratory pattern of 

vocal folds, the means for the contour lines n=(30,60,90), the deflection characteristics and 

their time indices 

 

n

iy

α
,

O , ,
n

y i
αPO  ,

 

n

iy

α
,

C , ,
n

y i
αPC , (27) 

are computed for all cycles i. The vibration stability is captured by the corresponding 
standard deviations 

 ,( )n
y i
ασ O , ,( )n

y i
ασ ΡO , ,( )n

y i
ασ C  , ,( )n

y i
ασ ΡC . (28) 

The Euclidian-Norm 2 between the mean positions of the contour lines 

 
nN

nR

iy

nL

iy

n

CO ∀−=
2

,,,
OO

 
(29) 

describes deviations between the mean left and right vocal fold vibration patterns. Finally, 
all parameters (Eqs. (27),(28),(29)) are merged to the PVG feature vector 

 ,, , , , , , , ,: [ , , , , ( ), ( ), ( ), ( ), ].n n n n n n n n n
O Cy i y i y i y i y i y i y i y i Nα α α α α α α α=ω O PO C PC σ O σ PO σ C σ PC  (30) 

The entire vocal fold dynamics extracted from one high speed sequence can be described by 
merging the introduced features for left-right symmetry, glottal and PVG characteristics 
(Eqs. (13),(22),(30)) to the feature vector  

 ].,,[: ωgsβ =  
(31) 

The feature vector β represents vocal fold dynamics at each position y along the glottal axis 
with y∈ {1,…,Y}. In order to reduce the dimensionality of the parameter space for further 
analysis, the feature vector is reduced to y∈ {1,…,12} by computing average values. Hence, 
for an effective vocal fold length of 1 cm the feature vector represents the average oscillation 
dynamics within 0.9 mm sections of the vocal length which constitutes sufficient accuracy.  
Acoustic voice quality measures: For the nine frequency/intensity phonatory tasks also 
the acoustic voice signals were analyzed. The selected acoustic sequences correspond to 
the time intervals of the analyzed video data. From the selected intervals 10 voice quality 
measures were derived using Dr.Speech-Tiger-Electronics/Voice-Assessment-3.2 software 
(www.drspeech.com). The computed parameters describe temporal voice properties as cycle 
duration stability (Jitter, STD F0, STD Period, F0 tremor), amplitude stability (Shimmer, STD 
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Ampl., Amp. Tremor), harmonic to noise ratio (HNR), signal to noise ratio (SNR), and 
normalized noise energy (NNE). The nine different frequency/intensity classes are given by 
the measured sound pressure level (SPL[dB]) and mean fundamental frequency (Mean 
F0[Hz]), Tab. 2. 
 

 

Fig. 5. The contour lines O (opening phase) and C (closing phase) describe the main 
characteristics of sPVGα geometry. The contours represent the spatio-temporal positions of 
vocal fold edges at the oscillation states n=(30,60,90) for the left and right vocal fold. The n 
value corresponds to the percentage of open and closed positions. 

 

 CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 
No.Sequ. 12 9 12 12 11 12 12 12 12 
SPL(dB) 59,0 

±0,8 
63,3 
±0,5 

72,5 
±1,7 

58 
±0 

63 
±0 

75 
±0 

58,3 
±0,5 

64,3 
±1,4 

71 
±0,9 

Mean F0 
(Hz) 

153 
±3 

160 
±4 

201 
±2 

182 
±4 

193 
±4 

231 
±8 

318 
±5 

328 
±8 

328 
±5 

Table 2. Mean values and standard deviations for the different fundamental frequencies 
[mean F0] and voice intensities [sound pressure level (SPL[dB])] representing the nine 
different phonatory tasks CS1-CS9. 

Classification of different phonation conditions: Due to the high number of PVG 
parameters conventional statistics and correlation analysis is not appropriate to identify 
potential parameter changes between the different phonation conditions. Thus, to explore 
the influence of intensity and frequency alterations within the parameter sets a nonlinear 
classification approach was applied (Hild et al., 2006; Selvan & Ramakrishnan, 2007; Lin, 
2008). 
The following hypothesis was investigated: if a classifier is capable of distinguishing 
between different phonatory classes it can be concluded that intensity and frequency 
variations are actually present within the observed vocal fold dynamics represented by the 
introduced feature sets. 
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For classification of the PVG features, a nonlinear support vector machine (SVM) was used 
(Duchesne et al., 2008; Kumar & Zhang, 2006). For the SVM, a Gaussian radial basis function 
kernel (RBF) was chosen (Vapnik, 1995). Appropriate SVM parameters were determined by 
an evolutionary strategy optimization procedure (Beyer & Schwefel, 2002). The parameter 
space of SVM, cost parameter and the width of the RBF kernel was automatically searched 
in order to obtain best classification results (Hsu et al., 2003). The models' classification 
accuracy was evaluated via 10-fold cross-validation with stratification (Kohavi, 1995). 
In order to compare PVG result with conventionally used measures the classifier was also 
applied to traditional glottal and symmetry parameters as well as to the ten acoustic voice 
quality measures.  

3. Results 

3.1 Validation of data acquisition  
For a reliable interpretation of the later classification results it is essential to verify that the 
data acquisition representing the nine different phonatory tasks effectively succeeded. Tab. 
2 shows the means and standard deviations for the different sound pressure levels (SPL) 
and fundamental frequencies (mean F0) for all nine phonatory tasks. Already the very small 
standard deviations of the SPL and mean F0 within the classes CS1-CS9 prove the high 
consistency of the data acquisition which included the repeated recording of the different 
phonatory tasks. Applying statistical analysis (Kolmogorov-Smirnov-Tests following t-Tests 
or Mann-Whitney-U-Tests) it could be shown that for frequency classes LOW (CF1), 
NORMAL (CF2), and HIGH (CF3) (Eq. (1)) the fundamental frequencies were significantly 
(p<0.05) different. Also for intensity classes SOFT (CI1), NORMAL (CI2), and LOUD (CI3) 
(see Eq. (2)) the intensity values were computed significantly (p<0.05) different. 

3.2 SVM classification of vocal fold vibrations 
Exemplarily, Tab. 3 shows SVM classification results obtained for frequency classes CF1-
CF3. The Class Precision reflects the percentage of the correct allocation: 30 out of 104 
sequences were predicted as low (CF1). From these 30, three sequences were wrongly 
assigned to the class low (being actually in class CF2) resulting in 90% Class Precision. In 
contrast, the Class Recall reflects the percentage of how many members of the class were 
allocated towards the class. Here, 35 out of 38 normal sequences were correctly assigned to 
class CF2 whereas three sequences were predicted to class CF1. This results in a Class Recall 
accuracy of 92.1%. The Overall Accuracy for all classes is 94.18% ±6.53% which represents the 
mean performance of the classifier which is in the following used for interpretation purpose. 
 

 True Low True Normal True High Class Precision 

Low (CF1) 27 3 0 90.0% 

Normal (CF2) 3 35 0 92.1 

High (CF3) 0 0 36 100.0% 
Class Recall 90.0% 92.1% 100.0%  

Table 3. Classification result of the SMV of the intensity class problem CF1-CF3 using the 
entire feature vector from eq. (31). The overall classification accuracy amounts approx. 94%. 

Using the parameters captured within the feature vector β:=[s,g,ω] (Eq. (31)) the SVM 
reached a classification accuracy of 95.1%±6.7% for the frequency class problem (CF1-3), 
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97.3%±4.2% for the intensity class problem (CI1-3), and 94.2%±9.1% for the nine class 
problem (CS1-CS9). This very high classification accuracy was obtained just by parameters 
describing vocal fold dynamics extracted from the high speed videos. 
In order to investigate which parameters can be made responsible for the high performance 
of the classifier, the SVM was individually applied to components [s], [g] and [ω] as well as 
to the combinations [s,g], [g,ω], [s,ω]. The results are summarized in Fig. 6. The conventional 
symmetry [s] and glottal parameters [g] achieved classification accuracy of only 15.5%±4.9% 
and 40.5%±10.5% for the nine class problem. Likewise, the classification accuracies for the 
frequency and intensity class problems were significantly reduced. Contrarily, very high 

classification accuracy was obtained using the new introduced PVG features [ω]. Applying 
exclusively the PVG features [ω] a classification accuracy of 85.5%±7.7% for the nine class 
problem, 96.2%±4.7% for the frequency class problem, and 91.6%±7.6% for the intensity class 
problem was obtained.  
 

 

Fig. 6. Mean classification accuracies and standard deviations achieved by applying 
conventional symmetry [s], glottal [g] and PVG [ω] parameters using a support vector 
machine (SVM) classification approach with stratified 10-fold cross-validation. The highest 
classification accuracy is obtained by the new introduced PVG features [ω].  

As the PVG feature vector contains information derived from different oscillation states 

( ,
n

y i
αO , ,

n
y i
αC ) it was further investigated which oscillation state delivers the most valuable 

information needed for classifying vocal fold vibrations. For this purpose, the SVM was 

applied to different oscillation parts n={30,60,90} of the feature vector [ω]. Fig. 7 summarizes 

the achieved classification accuracies obtained by n={[30,60],[60,90],[30,60,90]}. Using the 

single oscillation states n={[30],[60],[90]}, already a mean classification accuracy of 

58.2%±9.9% could be obtained for the nine class problem which exceeds considerably the 
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classification rates obtained by the conventional symmetry [s] and glottal [g] parameters as 

shown in Fig. 6. The classification accuracies by applying combined oscillation states 

n={[30,60],[60,90] ,[30,60,90]} are significantly improved. 
 

 

Fig. 7. Mean SVM classification accuracies and standard deviations achieved by applying 
part of the PVG features vector [ω] representing different oscillation states n={30,60,90}. 
Highest classification accuracy is obtained by a combination of the different oscillation 
states. 

In a final step it was investigated which PVG components contribute most to the 
classification accuracy. For this purpose the feature vector [ω] (eq. (30)) was divided into 

parameter groups representing the average vibration type [ω1] : , ,(  )n n
y i y i
α α= O C , the average 

deflection characteristics [ω2] := (
,
n

y i
αPO ,

n
y i
αPC ), the average lateral vibration symmetry 

[ω3]:=(
,

n
O CN ), and the average temporal stability of vocal fold vibrations 

[ω4]:=( ,( )n
y i
ασ O , ,( )n

y i
ασ ΡO , ,( )n

y i
ασ C  , ,( )n

y i
ασ ΡC ). Figure 8 shows the classification accuracies 

obtained by the different parts of the feature vector [ω].  
The isolated consideration of the average vibration type [ω1] results into the highest 
classification accuracy of 52.8%±6.8% for the nine class problem and a mean accuracy of 
85.1%±10.58% for the frequency and intensity class problems. By comparing the results in 
Fig. 6 and Fig. 8, it can be seen, that information about the mean vibration type (Fig. 8) 
already gives better classification results than information about the conventional 
parameters as speed quotient, open quotient, glottal closure insufficiency (Fig. 6). 
Information about vocal fold deflection amplitudes [ω2], left/right discrepancies [ω3] and 
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vibration instabilities [ω4] do not reach the same level of classification accuracy. However, 
combining all PVG features increases considerably the classification accuracy of up to 
96.2%±4.7% for the frequency class problem.  
 

 

Fig. 8. Results show the comparison between the different features within the PVG 
parameters. The PVG parameters are split into groups representing the spatio-temporal 
vibration type, information about vibration amplitudes and symmetry as well as vibration 

instabilities. Fusing all information ω1-ω4 to a common feature vector results highest 
classification performance (i.e. frequency classes). The performance of the different 
classification results shows that the more precisely the vocal fold dynamics is described 
using a combination of several PVG features the better the dynamical changes of vocal fold 
dynamics can be captured. 

3.3 SVM classification of the acoustic signal 
To give an overview of the acoustic measures, Tab. 4 shows the means and standard 
deviations for all 10 computed acoustic voice quality parameters used for classification. 
Table 5 summarizes the classification results for acoustic parameters. The best classification 
performance (93.45%) was achieved for the frequency class problem (CF1-CF3). The 
accuracy for the three class intensity problem (85.64%) was just slightly higher than accuracy 
for the combined nine class problem (83.73%). In contrast to the classification results 
obtained using the PVG parameters the acoustic parameters reached lower classification 
accuracies. Nevertheless, for the nine class problem still a classification accuracy of more 
than 80% could be achieved. It proves that even for a single subject frequency and intensity 
changes of the voice signal influence voice quality outcome measures. 
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 CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 

Jitter  
(%) 

0,30 
±0,06 

0,13 
±0,02 

0,12 
±0,03 

0,21 
±0,04 

0,21 
±0,08 

0,10 
±0,03 

0,21 
±0,05 

0,11 
±0,02 

0,12 
±0,05 

Shimmer 
(%) 

2,17 
±0,44 

1,07 
±0,17 

0,98 
±0,35 

1,69 
±0,36 

1,48 
±0,25 

0,88 
±0,45 

1,68 
±0,42 

0,85 
±0,22 

0,84 
±0,11 

HNR 
(%) 

23,4 
±1,6 

30,2 
±1,0 

33,2 
±1,7 

27,6 
±1,9 

28,8 
±1,3 

32,4 
±3,0 

28,6 
±2,2 

34,6 
±1,7 

28,4 
±1,6 

SNR  
(%) 

23,4 
±1,6 

30,2 
±1,0 

33,2 
±1,7 

27,6 
±1,9 

28,8 
±1,3 

32,4 
±3,0 

28,7 
±2,2 

34,6 
±1,7 

28,4 
±1,6 

NNE  
(%) 

-3,0 
±1,5 

-13,6 
±1,9 

-17,1 
±2,7 

-8,6 
±4,0 

-11,1 
±2,9 

-21,2 
±1,1 

-9,3 
±2,6 

-13,1 
±2,5 

-21,5 
±2,3 

STD F0  
(Hz) 

1,4 
±0,5 

1,0 
±0,3 

1,4 
±0,5 

1,4 
±0,4 

1,5 
±0,7 

1,5 
±0,4 

2,8 
±1,5 

2,3 
±0,6 

1,6 
±0,3 

STD Period 
(ms) 

0,06 
±0,02 

0,04 
±0,01 

0,04 
±0,01 

0,04 
±0,01 

0,04 
±0,02 

0,03 
±0,01 

0,03 
±0,01 

0,02 
±0,01 

0,02 
±0,01 

Mean Amp 
(%) 

86 
±4,8 

92 
±2,1 

91 
±3,1 

86 
±4,1 

90 
±3,1 

90 
±3,1 

85 
±5,5 

88 
±4,3 

93 
±2,3 

STD Amp. 
(%) 

5,9 
±1,7 

3,5 
±1,3 

4,4 
±1,5 

6,1 
±1,5 

5,4 
±2,1 

4,8 
±1,8 

6,2 
±2,1 

5,1 
±1,5 

2,7 
±0,9 

F0 Tremor 
(Hz) 

4,0 
±2,6 

2,6 
±1,2 

2,8 
±1,3 

3,3 
±1,3 

2,7 
±1,3 

2,1 
±0,8 

2,8 
±1,5 

2,5 
±1,8 

1,8 
±0,7 

Amp. 
Tremor (Hz) 

2,5 
±1,3 

2,1 
±1,2 

2,4 
±1,5 

2,6 
±1,0 

3,0 
±1,3 

2,2 
±1,1 

2,6 
±1,4 

2,4 
±1,2 

4,9 
±3,8 

Table 4. Mean values and standard deviations of the 10 acoustic measured parameters 
(Dr.Speech 3.2) grouped for the nine paradigms. The vertical grey shadings correspond to 
the frequency classes. 
 

SVM accuracy for acoustic parameters 

 Intensity Frequency Frequency/Intensity 

Accuracy (%) 85.64 93.45 83.73 

STD (%) 6.14 8.25 8.60 

Table 5. Overall accuracy of the acoustic SVM classification results. 

4. Discussion 

The endoscopic imaging of vocal fold vibrations is an essential part of clinical examination 
of voice disorders. Digital high-speed videolaryngoscopy is the state-of-the-art technology 
for investigation of asymmetric and irregular vocal fold vibrations (Doellinger, 2009). 
Similar to stroboscopy, high-speed videos are frequently evaluated by visual inspection 
relying on the experience of the investigator. There is still no objective or standardized 
procedure for describing the entire vibration patterns of vocal folds. Besides the description 
of vocal fold vibrations, the acoustic analysis of the voice signal gives valuable information 
for describing the severity of voice disorders. However, in most of the applied methods the 
acoustic properties and the laryngeal vibrations are separately examined. Thus, there is still 
little knowledge about the direct relation between the acoustic voice signal and the vibration 
pattern of vocal folds.  
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In this work, we presented a novel approach, called Phonovibrography, allowing an 
objective analysis of the visible vocal fold dynamics. Here, quantitative features are derived 
from PVG images which describe precisely the entire characteristics of vocal fold dynamics. 
For validation purpose Phonovibrography was applied to 108 high-speed sequences 
recorded from a single healthy female subject with normal voice. The female subject was 
instructed to produce 9 different phonatory tasks, i.e. phonation at different frequency and 
intensity combinations. A sequence length of one second time (> 150 glottal cycles) was 
chosen. The simultaneously recorded acoustic signals were analyzed using established voice 
quality measures (www.drspeech.com). Thus, besides evaluating the PVG analysis 
approach the effect of different phonation conditions on both the laryngeal vibrations and 
the acoustic voice signal could be studied.  
Choosing just a single subject for validating the accuracy of the proposed PVG approach is 
mandatory as only within a healthy subject the phonatory tasks related changes of vocal 
fold vibration patterns can be interpreted in a correct way. For a single subject the extensive 
data acquisition comprising the recording of 108 repeated phonatory tasks is very time-
consuming and potentially incriminating for the subject. Thus, collecting such a full data set 
from several subjects is difficult to achieve. As far as we know this examination presents the 
worldwide most detailed analysis of vocal fold vibrations within a single subject. Besides 
evaluating the performance of novel analysis approaches, the data set can further be used to 
investigate very precisely the fundamental principles of voice production in normal voice. 
In the present study we applied methods from the field of machine learning towards 
recognition of different phonatory tasks within vocal fold dynamics as well as within the 
simultaneously recorded acoustic signals. Even though endoscopic and voice data represent 
different physical properties describing voice production (tissue vibrations vs. acoustic 
sound pressure), both modalities could be used to individually classify the nine different 
phonatory tasks within normal voice of one female.  

4.1 Classification of vocal fold vibrations  
The results given in Fig. 6 clearly show that a very high SVM classification accuracy (up to 
96%) could be obtained using the new introduced PVG features. Even the classification of 
the nine class problem showed a very high performance of 85.5% which is in the same range 
as the results obtained using the acoustic measures, Tab. 5. It can be concluded from the 
results that the investigated frequency and intensity variations can be quantitatively traced 
back to alterations of the laryngeal dynamics. Furthermore, changes of vocal folds dynamics 
induce alterations of the acoustic signal as shown in Tabs. 4 and 5. To our knowledge, this is 
the first time that vocal fold vibrations could be quantitatively described so precisely during 
different phonation tasks and that the different phonatory task could automatically be 
classified at the vocal fold level. 
The results obtained by the PVG parameters were further compared to symmetry/glottal 
parameters (Eqs. (13) and (22): [s], [g]) which are frequently used to describe vocal fold 
vibrations. Fig. 6 shows, that using the conventionally used glottal and symmetry 
parameters the performance of the classification is highly reduced. Using the feature vector 
[s] only a classification accuracy of approx. 15% for the nine class problem could be 
obtained. The glottal features [g] show a better performance with approx. 40% but are still 
far worse than the classification accuracy (94%) obtained using PVG parameters ω. The low 
classification results obtained by the glottal parameters show, that the reduction of the 
complex 2D vocal fold vibration pattern to a few parameters based on 1D glottal area 
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waveform signal is not sufficient for analyzing the laryngeal vibrations completely. 
Likewise, putting the focus only onto specific features as vocal fold symmetry (amplitude, 
phase, frequency) – which is frequently evaluated within the subjective assessment of 
stroboscopic or high speed movies - is not sufficient to fully describe vocal fold vibrations.  
Having a closer look at PVG features at different oscillation states n={30,60,90}, similar 
results were found for n=30 and n=60 state (Fig. 7). While the three class problems could still 
be classified with a high accuracy, for the nice class problem a classification accuracy of only 
approx. 60% was obtained. For n=90 the classification results show a similar behavior with a 
slightly reduced performance. However, when fusing all information obtained from the 
three oscillation states, the highest classification results were obtained. The increase of the 
performance documents that a precise analysis of vocal fold dynamics demands to describe 
the entire vibration pattern very comprehensively as it is done by PVG parameters which 
describe the temporal and spatial propagation of vocal fold vibrations.  
Splitting up PVG parameters in different features ([ω1]: vibration type, [ω2]: deflection 
information, ω3: symmetry, and ω4: instabilities) further proves the benefit of including all 
extracted parameters together. Considering the parameter features separately (Fig. 8) the 
classification accuracy is reduced. Nevertheless, despite the feature reduction the 
classification accuracy using PVG parameters ω1 - which comprises only information about 
the mean spatio-temporal vibration propagation of vocal folds - still shows a better 
performance than glottal [g] and symmetry [s] parameters together. Combining all features 
together results into highest classification accuracy of up to 96%. This again suggests the 
necessity of considering a combination of all features types as deflections, discrepancy, and 
instability.  

4.2 Comparison of acoustics and vocal fold vibration classification 
The highly consistent results obtained from acoustic and motion data show that within a 
subject vocal fold vibrations as well as the acoustic voice signal obtained from different trials 
can only be compared if they are recorded at similar intensity levels and similar 
fundamental frequencies. Recordings at significantly different intensity levels or frequencies 
will definitely cause different perturbations measures (e.g. Jitter, Shimmer, HNR, SNR, 
NNE) as well as changes within the laryngeal vibrations (Rovirosa et al., 2008). The results 
suggest that in clinical practice the repeated examination of a subject’s voice needs to be 
performed at a comparable phonatory condition. Otherwise, the clinical value of 
measurements as objective and representative voice quality measures is highly limited. 
In this work it could be shown that PVG analysis is a sufficiently sensitive approach to 
successfully identify even subtle changes in vocal fold vibratory characteristics induced by 
different phonatory tasks. As the sensitivity of the PVG approach could successfully be 
demonstrated, it can be used in ongoing studies to investigate vocal fold vibrations in 
presence of voice disorders. For studying pathologically induced alterations of vocal fold 
dynamics within a subject it must be considered that the examinations should be done 
under similar phonation conditions to exclude examination dependent influences.  

5. Conclusion 

Digital high-speed videolaryngoscopy is the state-of-the-art technology for investigating 
normal and pathological vocal fold vibrations. However, without adequate image analysis 
there is hardly an additional benefit comparing to the currently used stroboscopy technique 
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in sense of evidenced based medicine. The Phonovibrogram (PVG) has the potential to 
overcome the subjective or semi-automatic assessment of high-speed videos (Kunduk et al., 
2010). Within this study it was proven that PVG image analysis has the necessary sensitivity 
to capture even minor alterations within vocal fold vibrations induced just by frequency and 
intensity variations. It was further shown that alterations of vocal fold vibrations are also 
detectable within acoustic perturbation measures. The high accordance between the results 
further proves that changes within the acoustic signal can directly be traced back to 
alterations of vocal fold vibrations. In respect to future clinical application, PVG analysis 
may be a useful tool to standardize the description of healthy and abnormal vocal fold 
vibrations. Objective Phonovibrography can directly be applied after examination and the 
obtained PVG images can easily be documented and stored on a hard-disc-drive using a 
lossless image data format which is essential for evidenced based medicine. An objective 
endoscopic image analysis tool, such as PVG, describing the vocal fold dynamics, could not 
only enhance voice assessment techniques but also help to objectively determine the 
outcome following an intervention in voice disorders (Voigt et al., 2010).  
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