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Abstract

The problem of choosing the number of PCs to retain is analyzed in the context
of model selection, using so-called model selection criteria (MSCs). For a prespecified
set of models, indexed by k ¼ 1, 2, … ,K, these model selection criteria (MSCs) take
the form MSCk ¼ nLLk þ anmk, where, for model k, LLk is the maximum log
likelihood, mk is the number of independent parameters, and the constant an is an ¼
ln n for BIC and an ¼ 2 for AIC. The maximum log likelihood LLk is achieved by
using the maximum likelihood estimates (MLEs) of the parameters. In Gaussian
models, LLk involves the logarithm of the mean squared error (MSE). The main
contribution of this chapter is to show how to best use BIC to choose the number of
PCs, and to compare these results to ad hoc procedures that have been used. Findings
include the following. These are stated as they apply to the eigenvalues of the
correlation matrix, which are between 0 and p and have an average of 1. For
considering an additional PCk + 1, with AIC, inclusion of the additional PCk + 1 is
justified if the corresponding eigenvalue λkþ1 is greater than exp �2=nð Þ: For BIC,
the inclusion of an additional PCk + 1 is justified if λkþ1 > n1=n, which tends to 1
for large n: Therefore, this is in approximate agreement with the average
eigenvalue rule for correlation matrices, stating that one should retain dimensions
with eigenvalues larger than 1.

Keywords: reduction of dimensionality, principal components, model selection
criteria, information criteria, AIC, BIC

1. Introduction and background

1.1 Introduction

Sometimes, researchers know how many principal components (PCs) they need.
For example, to construct an optimal scatterplot, the scores of the sample on the first
two principal components will be used to obtain an optimal plot. For an optimal three-
dimensional scatterplot, the scores on the first three principal components will be
used. In many applications, however, the researchers will question how many princi-
pal components they need. This chapter discusses the application of various methods
to the problem of reduction of dimensionality, in the sense of choosing an adequate
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number of principal components to retain to represent a dataset. The methods
discussed include ad hoc methods, likelihood-based methods, and model selection
criteria (MSCs), especially Akaike’s information criterion (AIC) and Bayesian infor-
mation criterion (BIC). This chapter applies the concepts of [1, 2] to this particular
problem.

1.2 Background

To begin the discussion here, we first give a short review of some general back-
ground on the relevant portions of multivariate statistical analysis, which may be
obtained from textbooks such as [3] or [4].

1.3 Sample quantities

Let x1,x2, … , xn denote a sample of n p-dimensional random vectors

xi ¼ x1i, x2i, … : xpi
� �0

, i ¼ 1, 2, … , n: (1)

Here, the transpose (0) means that the vectors are being considered as column
vectors. The sample mean vector is

x ¼
X

n

i¼1

xi=n: (2)

The p� p sample covariance matrix is denoted by

S ¼
X

n

i¼1

xi � xð Þ xi � xð Þ0= n� 1ð Þ: (3)

1.4 Population quantitites

The sample covariance matrix S estimates the true covariance matrix Σ of the
random variables

X1,X2, … ,Xp:

The true covariance matrix is

X

¼ σu,v½ �u,v¼1,2,… ,p, (4)

where

σuv ¼ C Xu,Xv½ �, (5)

the covariance of Xu and Xv, for u 6¼ v, u, v ¼ 1, 2, … , p: For u ¼ v, we have
C Xv,Xv½ � ¼ V Xv½ �, the variance of Xv.
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1.5 Principal components

The principal components of Σ are defined as uncorrelated linear combinations of
maximal variance. Let us elaborate on this brief definition. First, a linear combination,
say LC, of the p variables can be expressed as the vector product a0x of two vectors a
and x, that is,

LC ¼ a0x ¼ a1x1 þ a2x2 þ⋯þ apxp: (6)

Here, the vector a is a vector of scalars a1, a2, … , ap :

a0 ¼ a1 a2 … ap
� �

: (7)

These a j are the coefficients in the linear combination. Such linear combinations
are called variates. Principal components are also called latent variables.

The variance V of a linear combination LC is

V LC½ � ¼ V a0X½ � ¼ a0Σa: (8)

This is estimated as a0Sa: This is to be maximized over a: The derivative with
respect to the vector a is

∂a0Sa=∂a ¼ Sa: (9)

The solution is not unique: If a is a solution to this set of equations, so is ca, where c
is any scalar constant. Therefore, a constraint is required to obtain a meaningful
solution. A reasonable such constraint is the condition a0a ¼ 1, that is, the squared
length of the vector a equals 1. This is of course equivalent to the length of a, the

quantity
ffiffiffiffiffiffiffi

a0a
p

, being equal to 1.
A function incorporating the constraint, the Lagrangian function, is

L S, a; λð Þ ¼ a0Saþ λ 1� a0að Þ: (10)

The partial derivatives of the function L with respect to a and λ are

∂L=∂a ¼ 2Sa� 2λa (11)

and

∂L=∂λ ¼ ∂λ 1� a0að Þ=∂λ ¼ 1� a0a: (12)

Setting these partial derivatives equal to zero gives the simultaneous linear
equations

Sa ¼ λa, (13)

and the equation

a0a ¼ 1: (14)

The simultaneous linear equations can be written as
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Sa� λa ¼ 0, (15)

where 0 is the zero vector, the vector whose elements are all zeroes. Factoring out
a on the right, we obtain

S� λIð Þa ¼ 0: (16)

For nontrivial solutions, the determinant of the coefficient matrix S� λI must be
zero, that is, we must have det S� λIð Þ ¼ 0: This condition is a polynomial equation of
degree p in λ. Denote the p roots by λ1 ≥ λ2 ≥ ⋯ ≥ λp: These roots are the eigenvalues
(also called latent values). Their sum is the trace of S; their product is the determinant
of S:

The corresponding Eigen equations are

Sa j ¼ λ ja j, j ¼ 1, 2, … , p: (17)

1.5.1 Values of PCs in terms of Xs

The jth principal component (PC), C j, is the linear combination of the form

C j ¼ a0jx ¼ a1jx1 þ a2jx2 þ⋯þ apjxp, (18)

where a0j ¼ a1j, a2j, … , apj
� �

: That is to say, for j ¼ 1, 2, … , p, the value of the jth

PC for Individual i is cji ¼ a0jxi, i ¼ 1, 2, … , n:.

The equation for the jth PC in terms of the vector x ¼ x1x2 … xp
� �0

is c j ¼
a0jx, j ¼ 1, 2, … , p: Let c be the p-vector of values of the p PCs. Then, c ¼ A0x, where

A ¼ a1 a2 … ap
� �

is the p� p matrix whose columns are the eigenvectors.

1.5.2 Values of Xs in terms of PCs

The inverse relation is

x ¼ A0�1
c ¼ Bc, (19)

where

B ¼ A0�1
, (20)

where B is the matrix of loadings of the Xv on the PCs C j: Actually, A is an
orthonormal matrix (meaning that its columns are of length one and are pairwise

orthogonal), so A�1 ¼ A0: Thus, B ¼ A: Therefore,

x ¼ A0�1
c ¼ Ac: (21)

Letting a vð Þ0 be the vth row of the matrix A, that is,

a vð Þ0 ¼ av1, av2, … , avp
� �

, (22)
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we have, for v ¼ 1, 2, … , p, the representation of each variable Xv in terms of the
variables C1,C2, … ,Cp that are the principal components,

Xv ¼ av1C1 þ av2C2 þ⋯þ avpCp: (23)

In terms of the first k PCs, this is

Xv ¼ av1C1 þ av2C2 þ⋯þ avkCk þ εv, ∗ð Þ (24)

where the error εv is

εv ¼ avkþ1Ckþ1 þ avkþ2Ckþ2 þ⋯þ avpCp: (25)

The covariance matrix can be represented in terms of its principal idempotents a ja0j as

S ¼
X

p

j¼1

λ ja ja
0
j: (26)

It follows as a result of this representation that the best approximation of rank k to
S is the eigenvalue weighted sum of the first k principal idempotents,

S kð Þ ¼
X

k

j¼1

λ ja ja
0
j: (27)

The weights are all non-negative, recalling that, for a symmetric matrix, such as a
covariance matrix, the eigenvalues are non-negative.

2. Some ad hoc arithmetic procedures for determining an appropriate
number of PCs

2.1 Procedure based on the average of the eigenvalues

The mean λ of the eigenvalues is the sum over the number

λ ¼
X

p

j¼1

λ j=p: (28)

The sum of the eigenvalues turns out to be equal to the trace of the covariance
matrix; therefore, the mean eigenvalue is equal to the trace divided by p:

One procedure for deciding on the number of PCs to retain is to retain those for

which the eigenvalues are greater than average, that is, greater than λ: When working
in terms of the correlation matrix, this average value is 1. To see this, recall that the
correlation matrix is a special case of the covariance matrix, namely, the correlation
matrix is the covariance matrix of the standardized variables. It is often preferable to
work in terms of the correlation matrix rather than the covariance matrix, to control
the effects of different units of measurement and different variances. If a variable has
high variance relative to the other variables, the PC will be pulled in the direction of
the variable with large variance.
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When S is taken to be the sample correlation matrix, the trace of the matrix is

simply p, and therefore, the mean λ of the eigenvalues is 1.

2.2 An ad hoc arithmetic procedure based on retaining a prescribed proportion of
the total variance

Another ad hoc procedure is to retain a number of PCs sufficient to account for a
prescribed proportion, say, 90% of the total variance, that total variance being trace

S ¼
Pp

j¼1 λ j: The Figure 90% is of course somewhat arbitrary, so it might be good to

have some somewhat more objective criteria based on the pattern of the eigenvalues.

2.3 Procedure based on the decrease of the eigenvalues

Another procedure—a graphical procedure—is to plot λ1, λ2, … , λp against
1, 2, … , p: The λs are in decreasing order, so one then looks for a dropoff—an elbow—

in the curve and retains a number of PCs corresponding to the point before the
leveling off of the curve, if it does indeed take an elbow shape. Such a plot, of the
eigenvalues versus 1, 2, … , p, is called a scree plot, “scree” being the debris at the foot
of a glacier (or, more generally, a collection of broken rock fragments at the base of
crags, mountain cliffs, volcanoes, or valley shoulders).

3. Model selection criteria AIC and BIC for the number of PCs

Let us now delve a bit further into mathematical statistics and consider some more
objective, numerical criteria, in particular, the information criteria AIC and BIC. Let
us see what a Gaussian model would imply about AIC and BIC. The maximum log
likelihood for the model (*) approximating the p variables in terms of k PCs is

2πð Þ�np=2
∣̂Σk

�

�

�

�n=2
C n, p, kð Þ, where C n, p, kð Þ is a constant depending upon the sample

size, n, the number of variables, p, and k, the Model k being considered, k ¼
1, 2, … ,K, and ∣Σk∣ denotes the determinant of the residual covarance matrix Σk:

The determinant of the covariance matrix is the product of the eigenvalues,

∣Σ∣ ¼
Yp

j¼1
λ j: (29)

For a model based on the first k PCs, the determinant of the residual covariance

matrix is the product of the remaining, smaller eigenvalues, Π
p
j¼kþ1λ j:

The model selection criterion AIC—Akaike’s information criterion [5–7]—is based
on an estimate of the logarithm of the cross-entropy of the K proposed models with a
null model. That is, for alternative models indexed by k ¼ 1, 2, … ,K, AICk is an
estimate of the log cross-entropy of the proposed Model k with the null model. The
cross-entropy of the distribution with the probability density function q xð Þ relative to
a distribution with the probability density function p xð Þ is defined as H p, qð Þ ¼
�Ep ln q Xð Þ½ � ¼ �

Ð

ln q xð Þp xð Þ dx:
The Bayesian information criterion (BIC) [8] is based on a large-sample estimate

of the posterior probability ppk of Model k, k ¼ 1, 2, … ,K: More precisely, BICk is an
approximation to �2 ln ppk:
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Formulated in this way, these model selection criteria (MSCs) are, thus, smaller-is-
better criteria and take the form

MSCk ¼ �2 ln max Lk þ anmk, k ¼ 1, 2, … ,K, (30)

where Lk is the likelihood for Model k, an ¼ ln n for BICk, an ¼ 2 (not depending
upon n) for AICk, and mk is the number of independent parameters in Model k: The
first term is a lack-of-fit (LOF) term, and the second term is a penalty term based on
the number of parameters used. With AIC, the penalty is two units per parameter;
with BIC, the penalty is ln n units per parameter. For n≥ 8, In n exceeds 2: for sample
sizes greater than 7, the penalty per parameter with BIC exceeds that for AIC. There-
fore, relative to AIC, BIC tends to favor more parsimonious models—models with a
smaller number of parameters.

Note that

ppk ≈C exp �BICk=2ð Þ, (31)

where C is a constant. Thus, BIC values can be converted to values on a scale of
0–1. This is done by exponentiating –BICk=2, summing the values, and dividing by
the sum. That is,

ppk ≈ exp �BICk=2ð Þ=
X

K

j¼1

exp �BIC j=2
� �

: (32)

To relate the maximum likehood to the eigenvalues, note that for the PC model,

�2 ln max Lk ¼ n ln Π
p
j¼kþ1 λk ¼ n

X

p

j¼kþ1

ln λk: (33)

The model selection criteria can be written as

MSCk ¼ Deviancek þ Penaltyk, (34)

where Deviancek ¼ n In max Lk is a measure of lack of fit and Penaltyk ¼ anmk.
Inclusion of an additional PC is justified if the criterion value decreases, that is, if
MSCkþ1 <MSCk: For PCs, this is

n
X

p

j¼kþ2

ln λ j þ kþ 1ð Þan < n
X

p

j¼kþ1

ln λ j þ kan: (35)

This is

an < n ln λkþ1 ¼ ln λ
n
kþ1

� �

, (36)

or

exp an½ �< λ
n
kþ1, (37)

or
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λkþ1 > exp an=n½ � (38)

or

λkþ1 > exp �an=n½ �: (39)

Thus, for AIC, the inclusion of the additional PCkþ1 is justified if λkþ1 is greater
than exp �2=nð Þ:

For BIC, the inclusion of an additional PCkþ1 is justified if

λkþ1 > exp ln n=nð Þ ¼ exp ln nð Þ½ �1=n ¼ n1=n: (40)

The quantity n1=n tends to 1 for large n: Therefore, this procedure is in approximate
agreement with the average eigenvalue rule for correlation matrices, stating that one
should retain dimensions with eigenvalues larger than 1.

4. Examples

4.1 An artifical example

The synthesis/analysis paradigm can be useful for understanding a problem. This
means synthesizing (simulating) a dataset, so that you know the model and parameter
values, and then applying your analysis method to see how well it performs. In the
present context, it is interesting to simulate a dataset of measurements of rectangles,
with variables length (L) and width (W) and also some functions of those such as
perimeter = 2 L + 2W and difference = L–W. In one synthesis, we took L to be Normal
with a mean of 10 and a variance of 1, W was Normal with a mean of 10 and a
variance of 1, PERI = 2 L + 2 W plus N(0,1) error, and DIFF = L–W plus N(0,1) error.
The eigensystem was computed, and as expected, it is noted that there are two large
eigenvalues, with subsequent ones dropping off a lot in value and being close to zero.
The eigenvalues of the correlation matrix were 1.91, 1.83, 0.21, and 0.05.

4.2 A real example

Next, we consider the principal component analysis of a sample from the Los
Angeles (LA) Heart Study. This was a long-term study, 1947–1972. It was a study
among Civil Servants of Los Angeles county. LA civil servants, 2252, randomly
selected, ages 21–70, received a battery of examinations for “routine” cardiovascular
disease (CVD) risk factors.

The variables include age, systolic blood pressure (SYS), diastolic blood pressure
(DIAS), weight (WT), height (HT), and coronary incident, a binary variable indicat-
ing whether the individual had a coronary incident during the course of the study.
Blood pressure is reported as a bivariate variable, (SYS, DIAS). SYS is the pressure
when the heart pumps, and DIAS is the pressure when the heart relaxes.

In the textbook [9], data for a sample of n ¼ 100 men were studied. (Data on the
same variables for another sample of 100 men are also given in [9]. Results can be
compared and contrasted between the two samples.) Although, of course, the empha-
sis in the Heart Study was on explaining and predicting the coronary incident variable,
here, we focus on the first five variables, their representation in terms of a smaller
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number of PCs, and the interpretations of the PCs. we did the PC analysis; it was not
in the LA Heart Study or the textbook.

We used Minitab statistical software for the analysis. Aspects of the analysis are
shown as follows.

The lower-triangular portion of the correlation matrix for the five variables is
shown in Table 1. The highest correlation is 0.835, between SYS and DIAS. The next
highest correlation, 0.426, is between HT and WT.

4.3 Principal component analysis in the example

Note that an eigenvector can be multiplied by �1, changing the signs of all its
elements. In the following, this is done with PC1 so that SYS and DIAS have positive
loadings. Our interpretations, related to the scientific/medical context of the study,
are BPtotal, SIZE, AGE, OVERWT, and BPdiff and are written below the eigenvec-
tors. The interpretations are based on which loadings are large and which are small,
that is, on the relative sizes of the loadings. Taking 0.6 as a cutoff point, in PC1, SYS
and DIAS have loadings above this, while the other variables have loadings less than
this (in fact, less than 0.4), so PC1 can be interpreted as an index of total BP. In PC2,
the variables WT and HT have large loadings with the same sign, so PC2 can be
interpreted as SIZE (Tables 2 and 3).

AGE SYS DIAS WT

SYS 0.342

DIAS 0.354 0.835 <= NOTE highest r of 0.835 is btw SYS and DIAS

WT �0.009 0.261 0.308

HT �0.332 �0.088 �0.099 0.426 <= NOTE next highest r of 0.426 is btw HT and WT

Correlations: AGE, SYS, DIAS, WT, HT.
Cell Contents: Pearson correlation.

Table 1.
Correlation matrix of five variables—LA heart data.

Eigenanalysis of the correlation matrix

Eigenvalue 2.1894 1.5382 0.6617 0.4485 0.1621

Proportion 0.438 0.308 0.132 0.090 0.032

Cumulative 0.438 0.746 0.878 0.968 1.000

Variable PC1 PC2 PC3 PC4 PC5

AGE �0.394 �0.365 0.800 �0.269 0.005

SYS �0.615 0.050 �0.342 �0.174 0.687

DIAS �0.624 0.063 �0.291 �0.049 �0.721

WT �0.252 0.616 0.373 0.642 0.078

HT 0.117 0.694 0.141 �0.695 �0.051

Principal component analysis: AGE, SYS, DIAS, WT, HT.

Table 2.
PCs of heart data.
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As above, denote the eigensystem in terms of the eigenpairs

λv, avð Þ, v ¼ 1, 2, … , p: (41)

Then, the eigensystem equations are

S av ¼ λv av, v ¼ 1, 2, … , p: (42)

Here, S is taken to be the correlation matrix. Let 10v ¼ 0 0⋯ 1⋯ 0⋯ð Þ, the
vector with 1 in the vth position and zeroes elsewhere. The covariance between a
variable Xv and a PC Cu is C Xv,Cu½ � ¼ C 10vX, a0u X

� �

¼ 10Σ au ¼ 10v λu au ¼ λuauv,

where auv is the vth element of the vector au: The coefficient of correlation is

Corr Xv,Cu½ � ¼ C Xv,Cu½ �=SD Xv½ � SD Cu½ � ¼ λuauv=σv
ffiffiffiffiffi

λu

p
¼

ffiffiffiffiffi

λu

p
auv=σv: When the

covariance matrix used is the correlation matrix, each standard deviation σv ¼ 1, and

therefore, this correlation is
ffiffiffiffiffi

λu

p
auv: A correlation of size greater than 0.6 corre-

sponds to more than 0:62 � 100% ¼ 36% of variance explained. The variable Xv has a
correlation higher than 0.6 with the component Cu if its loading in Cu, the value auv,

is greater than 0.6 /
ffiffiffiffiffi

λu

p
: These values are appended to Table 4. Loadings larger than

Variable PC1 PC2 PC3 PC4 PC5

AGE 0.394 �0.365 0.800 �0.269 0.005

SYS 0.615 0.050 �0.342 �0.174 0.687

DIAS 0.624 0.063 �0.291 �0.049 �0.721

WT 0.252 0.616 0.373 0.642 0.078

HT �0.117 0.694 0.141 �0.695 �0.051

Interpretations (edited in to the computer output):

BPtotal SIZE AGEindex OVERWT BPdiff

Table 3.
PC1 is multiplied by �1.

Variable PC1 PC2 PC3 PC4 PC5

AGE 0.394 �0.365 0.800 �0.269 0.005

SYS 0.615 0.050 �0.342 �0.174 0.687

DIAS 0.624 0.063 �0.291 �0.049 �0.721

WT 0.252 0.616 0.373 0.642 0.078

HT �0.117 0.694 0.141 �0.695 �0.051

Eigenvalue, λ 2.1894 1.5382 0.6617 0.4485 0.1621

Square root,
ffiffiffi

λ
p

1.48 1.24 0 .81 0.67 0.40

0:6=
ffiffiffi

λ
p

0.40 0 .48 0.74 0.90 1.50

Interpretations BPtotal SIZE AGE OVERWT BPdiff

Table 4.
Loadings corresponding to correlations > 0:6 are boldface.
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this cutoff value are in boldface. (The cutoff point of 0.6 is somewhat arbitrary; one
might use, for example, a cutoff of 0.5.)

One can also focus on the pattern of loadings within the different PCs for the
interpretation of the PCs. To reiterate this process and the interpretations, we have the
following:

PC1: SYS and DIAS have large loadings with the same sign; we interpret PC1 as
BPindex, or BPtotal.

PC2: WT and HT have large loadings with the same sign; we interpret PC2 as the
man’s SIZE.

PC3: Only AGE has a large loading, so we interpret PC3 simply as AGE.
PC4: WT and HT have large loadings with opposite signs; we interpret PC4 as

OVERWEIGHT.
PC5: SYS andDIAShave large loadingswith opposite signs;we interpret PC5 asBPdrop.
We continue to marvel at how readily interpretable the PCs are. This simplicity is

attained even without using a factor analysis model and using rotation to simplify the
pattern of the loadings.

4.4 Employing the criteria in the example

To compare and contrast the methods, Table 5 shows the eigenvalues and the
results according to the various criteria for deciding on the adequate number of PCs.
According to the rule based on the average eigenvalue, the dimension is retained if its
eigenvalue is greater than 1 (when working in terms of the correlation matrix). For
BIC, the kth PC is retained if

n ln λk > � an, (43)

where an ¼ ln n: Here, n ¼ 100 and ln n ¼ ln 100, approximately 4.61. For AIC,
the kth PC is retained if n ln λk > � 2: In this example, the methods agree on retaining
k ¼ 2 PCs.

We feel thatwe should remark that, though it is the case that twoPCs are suggested, the
fourth and fifth PCs do have simple and interesting interpretations. It is just that they do
not improve the fit verymuch. The third PC is essentially a single variable, age.

5. Discussion

The focus here has been on determining the number of dimensions needed to
represent a complex of variables adequately. The algebraic solution devolves upon the

No. of PCs, k λk λk > 1? ln λk N ln λk for BIC: N ln λk > � 4:61? for AIC: N ln λk > � 2?

1 2.19 Yes 0.78 78.36 Yes Yes

2 1.54 Yes 0.43 43.06 Yes Yes

3 0.66 No �0.41 �41.29 No No

4 0.45 No �0.80 �80.18 No No

5 0.16 No �1.82 �181.95 No No

Table 5.
Estimating the number of PCs by various methods.
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analysis of properties of the covariance matrix of the variables, especially through its
eigensystem.

5.1 Regression on principal components

Next, we consider applying principal component analysis in the context ofmultiple
regression. In this context, there is, of course, a response variable Y and explanatory
variables X1,X2, … ,Xp: One may transform the Xs to their principal components, as
this may aid in the interpretation of the results of the regression. In addition, the
number of significant regression coefficients may be decreased. In such regression on
principal components (see, e.g., [10]), however, one should not necessarily eliminate
the principal components with small eigenvalues, as they may still be strongly related
to the response variable.

The value of the Bayesian information criterion for Model k is

BICk ¼ �2LLk þmk ln n, (44)

for alternative models indexed by k ¼ 1, 2, … ,K, where LLk is the maximum log
likelihood for Model k, that is, LLk ¼ max lnLk and mk is the number of independent
parameters in Model k: For linear regression models with Gaussian-distributed errors,
�2LLk ¼ Const:þ n lnMSEk and so BIC takes the form

BICk ¼ n lnMSEk þmk ln n, (45)

where here MSEk is the maximum likelihood estimate (MLE) of the mean squared
error (MSE) of Model k, with divisor n, of the error variance.

The total number of subsets of p things is 2p: Therefore, with p explanatory
variables, there are 2p alternative models—“subset regressions”—(including the
model where no explanatory variables are used and the fitted value of Y is simply yÞ:
For example, if there are three Xs, the eight subsets are X1 alone, X2 alone, X3 alone,
(X1, X2Þ, X1,X3ð Þ, X2,X3ð Þ, X1,X2,X3ð Þ, and the empty set. It would usually seem to
be expedient to evaluate all 2p regression models—regressions on all 2p subsets of
principal components, using adjusted R-square, AIC, and/or BIC rather than reducing
the number of models considered by regressing on only a few principal components.
That is, in the context of regression on principal components, it is probably wise not to
reduce the number of principal components, for, as stated above, it is conceivable that
some principal components with small eigenvalues may nevertheless be important in
explaining and predicting the response variable.

5.2 Some related recent literature

Other researchers have considered the problem of the choice of the number of
principal components. For example, Bai et al. [11] examined the asymptotic consis-
tency of AIC and BIC for determining the number of significant principal components
in high-dimensional problems. The focus in this chapter has not necessarily been on
high-dimensional problems.

Some various applications from recent literature involving choosing the number of
principal components include the following. The method presented here could
possibly be applied in these applications.
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For example, a good book on the topic of model selection and testing, covering
many aspects, is [12]. In recent years, various econometricians have examined the
problems of diagnostic testing, specification testing, semiparametric estimation, and
model selection. In addition, various researchers have considered whether to use
model testing and model selection procedures to decide upon the models that best fit a
particular dataset. This book explores both the issues with application to various
regression models, including models for arbitrage pricing theory. Along the
lines of model selection criteria, the book references, e.g., [8], the foundational paper
for BIC.

Next, we mention some recent papers, which show applications of model selection
in various research areas.

One such paper is [13], an application of principal component analysis and other
methods to water quality assessment in a lake basin in China.

Another is [14], on feature selection for classification using principal component
analysis.

As mentioned, a particularly interesting application of principal component anal-
ysis is in regression and logistic regression. We have mentioned the paper [10] on
using principal component analysis in regression, taking several principal components
to replace the set of explanatory variables. Another interesting application is in [15],
on using principal components in logistic regression.

6. Conclusions

The problem of choice of the number of principal components to use to represent a
complex of variables—a multivariate sample—has been considered in this chapter.

In addition to some ad hoc arithmetic criteria, Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC) have been applied here to the choice of
the number of principal components to represent a dataset. The results have been
compared and contrasted with ad hoc criteria such as retaining those principal com-
ponents that explain more than an average amount of the total variance. The use of
BIC is seen to correspond rather closely to the rule of retaining PCs whose eigenvalues
are larger than average.
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