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1. Introduction

DC-DC switching converters are devices usually used to adapt primary energy sources to
the load requirements (Erickson & Macksimovic, 2001). These devices produce a regulated
output voltage despite changes in the feed voltage or in the load current. There are three
basic topologies of dc-dc converters, namely the buck, the boost and the buck-boost converter.
The buck converter is used to reduce output voltage, while the boost converter increase the
output voltage. In the buck-boost converter, the output voltage can be maintained either
higher or lower than the source but in the opposite polarity. These basic converters consist of
two reactive elements; namely, an inductor and a capacitor, besides a transistor and a diode
to perform the commutation, the size of reactive elements are chosen to guarantee a low level
of ripple and hence an averaged dynamical model behavior is a good approximation of the
switched behavior.
In order to maintain a regulated output and to have a damped enough response some control
loops are added to command the converter. The signal which drives the transistor used to be
a squared, constant-period and high frequency signal.
The design of the control loops is commonly based on linearized dynamic models around
equilibrium point of the converter (Erickson & Macksimovic, 2001). Nevertheless, commonly
the averaged dynamical models of these plants are nonlinear and their linearization is non
minimum phase. Therefore, using linear controllers can only ensures stability and dynamic
performances around equilibrium point, and hence, instabilities or bad performances may
appear when large signal perturbations occur. This fact has prompted several authors to apply
nonlinear control methods to regulate switching converters.
Some of the first researches on nonlinear controller design for dc-dc converters can be found
in the studies of (Sanders & Verghese, 1992) and (Kawasaki et al., 1995). These authors
propose non-linear strategies based on Lyapunov functions, which allows the converter to
ensure stability over a wide range of operating conditions. More recent studies are those
of (Leyva et al., 2006) and (He & Luo, 2006) which derive robust non-linear controller for
large-signal stability in dc-dc converters and present efficient implementations.
Furthermore, robust control approaches have been applied in dc-dc converters which take
into account nonlinearities and uncertainties (Olalla et al., 2009; 2010).
Another promising nonlinear technique for controlling power converters is the model-based
fuzzy control technique. The model-based fuzzy approaches begin by constructing the
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corresponding (T-S) Takagi−Sugeno fuzzy model representation of the nonlinear system
(Tanaka & Wang, 2001). This T-S fuzzy representation is described by fuzzy rules IF-THEN
which represent local linear input-output relations of the nonlinear plant. Once fuzzy rules
are obtained with linear submodels, the control design is based on the technique known
as Parallel Distributed Compensator (PDC), where each control rule is designed from the
corresponding rule of the T-S fuzzy model (Korba et al., 2003). The stability analysis is
carried out using Lyapunov functions on the closed-loop system. The Lyapunov functions are
formulated into linear matrix inequalities (LMIs). This approach is fundamentally different
from heuristics based fuzzy control (Tanaka & Wang, 2001) where the rules are based on
heuristic knowledge. A model-based fuzzy control for dc-dc converters have been described
in (Kuang et al., 2006), where the authors show a fuzzy law for the buck and ZVT buck
converters. Other authors who applied this technique in dc-dc converters are (Lan & Tan,
2009)
Nowadays, thanks to the powerful computational tools and optimization techniques, many
robust and fuzzy control designs based on LMIs can be readily solved. Matlab is a powerful
tool in this process. The LMI Toolbox of Matlab is an efficient software tool based on
interior point methods (Gahinet et al., 1995), which it can be used to numerically solve many
LMI control problems that otherwise could not be solved since they have not an analytical
solution. The main advantage of the LMI formulations is the ability to combine various design
constraints and objectives in a numerically tractable manner.
This chapter presents a synthesis of LMI fuzzy controllers for dc-dc converters. The chapter
describes in detail a compact control design methodology which takes into account constraints
such as: control effort and the decay rate of state variables. The chapter is organized as
follows: First, in section 2, we review the dynamics of a buck and a boost converter. In section
3, we introduce the T-S fuzzy representation of dc-dc converters, with their corresponding
uncertainties. Aspects of the LMI fuzzy control design are explained in section 4. In section
5, we present two design examples to illustrate the advantages of the procedure. The first
example shows the LMI controller of a buck converter, while in the second, we obtain an LMI
Fuzzy controller for a boost converter working at different operating point. Both examples
have been simulated with Matlab and the results are in perfect agreement with the design
specification. Finally, we summarize the main ideas in section 6.

2. Modeling of DC-DC converters. A dynamical review

This section presents basic PWM converters and their state-space models which are used in
the following sections. Specifically, the section describes the dynamic behavior of buck and
boost converters.

2.1 Model of PWM buck converters

Fig.1 shows a dc-dc step-down (buck) converter, this power electronic stage reduces and
regulates the output voltage from a primary voltage source.
The converter switch alternates periodically between two positions. Fig. 2 shows the circuits
corresponding to on and o f f during intervals Ton and To f f , respectively. These positions are
driven by the binary signal u whose values are u = 1 during Ton and u = 0 during To f f . The
voltage reduction of this converter in steady state corresponds to the ratio Ton/Ts. We model
the converter dynamics at each position by using the Kirchhoff laws. Its dynamic expressions
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Fig. 1. Schematic circuit of a buck converter
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Fig. 2. Equivalent circuit during Ton (a) and To f f (b).

in state-space at each position correspond to

ẋ(t) = Aonx(t) + Buon during Ton

ẋ(t) = Ao f f x(t) + Buo f f
during To f f

(1)

being

Aon = Ao f f =

[

0 − 1
L

1
C − 1

RC

]

Buon =

⎡

⎣

Vg

L

0

⎤

⎦ Buo f f
=

[

0

0

]

(2)

and

x(t) =
[

iL(t) vC(t)
]T

where Vg is the feed voltage or primary source and vC is the output voltage. R models the
load, while L and C stand for inductance and capacitance values, respectively. The state vector
x(t) consists of the inductor current iL(t) and the capacitor voltage vC(t). Aon and Buon are
the transition matrix and input vector, respectively, during Ton and Ao f f and Buo f f

are the
transition matrix and input vector during To f f .
The binary signal u turn on and off the switch which is controlled by means of a pulse width
modulator (PWM), whose switching period Ts is equals to the sum of Ton and To f f . The PWM
duty cycle is noted as d.
The expressions (1) and (2) can be written compactly in terms of the binary signal u as follows

ẋ(t) = Ao f f x(t) + Bo f f +
(

Aon − Ao f f

)

xu +
(

Bon − Bo f f

)

u (3)

The converter operates in continuous conduction mode (CCM) when the inductor current iL

is ever greater than zero. We assume this operation mode then the switched model (3) can be
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approximated using state-space averaging method (Middlebrook & Cuk, 1976), replacing the
binary signal u by its respective duty cycle d and the state variables by their averaged values
during the switching period. The result of this averaging process can be written as

ẋ(t) = Ao f f x(t) + Bo f f +
(

Aon − Ao f f

)

xd +
(

Bon − Bo f f

)

d (4)

Thus, the averaged state vector x corresponds to x =
(

iL, vC

)T
; where iL and vC are the

averaged values of inductor current and capacitor voltage during a switching period.
Usually the bilinear model (4) is linearized around equilibrium point by considering that the
system variables consist of two components:

x(t) = X + x̂(t)

d(t) = D + d̂(t)
(5)

where X and D represent the equilibrium values and x̂ and d̂ are the perturbed values of the
state and duty cycle. Therefore, equation (4) can be written as follows

˙̂x =
[

Ao f f +
(

Aon − Ao f f

)

D
]

x̂ +
[(

Bon − Bo f f

)

+
(

Aon − Ao f f

)

X
]

d̂ (6)

The equilibrium state in the buck converter corresponds to

X =

⎡

⎣

Vg D
R

VgD

⎤

⎦ (7)

Taking into account (2), we can model the buck converter as

˙̂x(t) =

[

0 − 1
L

1
C − 1

RC

]

x̂(t) +

[

Vg

L
0

]

d̂(t) (8)

The model can be augmented to ensure zero steady-state error of vC by introducing a new
state variable x3 corresponding to

x3(t) =
∫

(

vC(t)− Vre f

)

dt (9)

where Vre f is the voltage reference.
Thus, the augmented model can be written as

˙̂x(t) = Ax̂(t) + Bu d̂(t) (10)

where

A =

⎡

⎢

⎢

⎣

0 − 1
L 0

1
C − 1

RC 0

0 1 0

⎤

⎥

⎥

⎦

Bu =

⎡

⎣

Vg

L
0
0

⎤

⎦ (11)

In the next subsection, we develop the same procedure for the boost converter.
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Fig. 3. Schematic circuit of a boost converter

2.2 Model of PWM boost converters

The Fig.3 shows the well-known boost converter (Erickson & Macksimovic, 2001), which is
capable of regulating a dc output voltage when it is higher than the dc feed voltage.
The dynamic behavior of boost converter during Ton and To f f shown in the Fig. 4 can be
written as

Aon =

[

0 0

0 − 1
RC

]

Ao f f =

[

0 − 1
L

1
C − 1

RC

]

Buon = Buo f f
=

[

Vg

L
0

]

(12)

x(t) =
[

iL(t) vC(t)
]T

where x(t) is the state-space vector composed of iL, which represents the inductor current,
and vC, which represents the capacitor voltage. These variables are measurable and available
for feedback purposes.
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Fig. 4. Equivalent circuit of boost converter for Ton (a) and To f f (b).

Therefore, according to (12), the equilibrium state in the boost converter corresponds to

X =

[

Vg

RD′2

Vg

D′

]

(13)

where D′ = 1 − D is the complementary steady-state duty-cycle.
Since Aon �= Ao f f , the average model of the boost converter is bilinear, which can be written
as:

˙̂x = Ax̂ + Bu(x̂)d̂ (14)

being

A =

⎡

⎣

0 − D′

L 0
D′

C − 1
RC

0 1 0

⎤

⎦ Bu(x̂) =

⎡

⎢

⎣

Vg

D′L +
v̂C(t)

L

−
Vg

(D′2 R)C
−

îL(t)
C

0

⎤

⎥

⎦
(15)

In next section, we describes the T-S fuzzy modeling method for the DC-DC converters.
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3. Takagi-Sugeno fuzzy representation of DC-DC converters

There exist several approaches to fuzzy representation of dynamic systems, between them the
most common are the Mamdani fuzzy representation (Driankov et al., 1993) and the T-S fuzzy
representation (Tanaka & Wang, 2001). In the first representation, it is assumed that there is
no model of the plant, while the second representation is always based on a dynamical model
of the plant.
This T-S representation describes the dynamic system by means of an interpolation of linear
submodels. The performance requirements of a linear model may be expressed by means of
LMI.
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Fig. 5. Final structure of the Takagi-Sugeno fuzzy model

Figure 5 shows the model of the nonlinear plant as a group of linear models, which locally
represent the relationship input-output system (Takagi & Sugeno, 1985), described of the
form:

Ri : I f δ1 is Mi1 and . . . and δj is Mji then

ẋi(t) = Aix(t) + Biu(t) i = 1, 2, . . . r (16)

Where r is the number of submodels, Ai is the system matrix of the i-th linear submodel, Bi

is the input matrix, x(t) is the global state-space vector, u(t) is the input vector, Mji are fuzzy
sets, and δj is the scheduling vector (Korba et al., 2003).

Fuzzy sets Mji have associated membership functions η′s which characterize the degree
of membership (Takagi & Sugeno, 1985). The nonlinearities of the plant will determine
the variables of the scheduling vector δi used in the antecedent, i.e., a correct election
of scheduling variables will capture all the nonlinearities of the plant, in the case of the
dc-dc converters the scheduling variables are function of the state variables δ(t) = δ(x(t))
(Korba et al., 2003; Tanaka & Wang, 2001). The entire fuzzy model of the plant corresponds
to a fuzzy weighting of the locally valid linear submodel associated to each implications Ri

(Korba et al., 2003), i.e.,

ẋ(t) =
∑

r
i=1 wi(δ(t)) [Aix(t) + Biu(t)]

∑
r
i=1 wi(δ(t))

(17)

Weights wi(δ(t)) are zero or positive time-variant values and the sum of all the weights is
positive.
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r

∑
i=1

wi(δ(t)) > 0, wi(δ(t)) ≥ 0 ∀ i = 1, 2, . . . , r

We use the next normalized weight function hi(δ(t)) replacing wi(δ(t)),

hi(δ(t)) =
wi(δ(t))

∑
r
i=1 wi(δ(t))

that fulfill with

0 ≤ hi(δ(t)) ≤ 1,
r

∑
i=1

hi(δ(t)) = 1 (18)

Therefore the fuzzy model (17) can be rewritten as

ẋ(t) =
r

∑
i=1

hi(δ(t)) [Aix(t) + Biu(t)] (19)

The T-S fuzzy model of the buck converter is expressed by only one rule given that it is
linear. The T-S fuzzy models of other topologies require several rules given that their dynamic
behaviour is bilinear. The boost converter case is shown in the next subsection.

3.1 Takagi-Sugeno model of a boost converter

We propose the next boost converter fuzzy model consisting of the following four rules.

• R1:

If îL is ismall and v̂C is vsmall then

˙̂x1(t) = A1x̂(t) + B1d̂(t) (20)

• R2:

If îL is ibig and v̂C is vsmall then

˙̂x2(t) = A2x̂(t) + B2d̂(t) (21)

• R3:

If îL is ismall and v̂C is vbig then

˙̂x3(t) = A3x̂(t) + B3d̂(t) (22)

• R4:

If îL is ibig and v̂C is vbig then

˙̂x4(t) = A4x̂(t) + B4d̂(t) (23)

where

A1 = A2 = A3 = A4 = A =

⎡

⎣

0 − D′

L 0
D′

C − 1
RC

0 1 0

⎤

⎦
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B1 =

⎡

⎢

⎣

Vg

D′L + vmin
L

−
Vg

(D′2 R)C
− imin

C

0

⎤

⎥

⎦
B2 =

⎡

⎢

⎣

Vg

D′L + vmin
L

−
Vg

(D′2R)C
− imax

C

0

⎤

⎥

⎦

B3 =

⎡

⎢

⎣

Vg

D′L + vmax
L

−
Vg

(D′2 R)C
− imin

C

0

⎤

⎥

⎦
B4 =

⎡

⎢

⎣

Vg

D′L + vmax
L

−
Vg

(D′2R)C
− imax

C

0

⎤

⎥

⎦

(24)

being the membership function of the fuzzy sets ismall, ibig, vsmall and vbig the following ones,

ηismall
(îL) =

imax−îL
imax−imin

ηibig
(îL) = 1 − ηismall

(îL)

ηvsmall
(v̂C) =

vmax−v̂C
vmax−vmin

ηvbig
(v̂C) = 1 − ηvsmall

(v̂C)

(25)

Note that (20) correspond to the dynamic behavior around (imin, vmin) values, and (21)-(23)
describe the local behavior around the other interval bounds. Thus, the normalized weight
functions are

h1(îL, v̂C) = ηismall
.ηvsmall

h2(îL, v̂C) = ηibig
.ηvsmall

h3(îL, v̂C) = ηismall
.ηvbig

h4(îL, v̂C) = ηibig
.ηvbig

(26)

therefore the entire fuzzy converter model corresponds to

˙̂x(t) =
r

∑
i=1

hi

(

îL, v̂C

)

(

Ai x̂(t) + Bi d̂(t)
)

(27)

since ∑
r
i=0 hi = 1 and Ai = A then

˙̂x(t) = Ax̂(t) +

(

r

∑
i=1

hi(îL, v̂C)Bi

)

d̂(t) (28)

and it is worth to remark that (28) corresponds with the bilinear model (14) inside the polytope
region

[

îmin, îmax
]

× [v̂min, v̂max]. This operating space is depicted in Fig. (6).

v̂max

v̂min
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(δ2(x̂2))
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Fig. 6. T-S Fuzzy representation of the boost converter consisting of the 4 rules
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The approach shown here can be easily adapted for the buck-boost converter, such as shown
in (Torres-Pinzón & Leyva, 2009).
In next section, we explain a control strategy where the law consist of a normalized weight
sum of linear feedback gains at each interval limit, which takes into account constraints such
as: control effort and the decay rate of state variables.

4. LMI performance requeriments

This section presents the concept and basic procedure of the parallel distributed compensation
(PDC) technique and the definitions and LMI constraints used in the synthesis of control. First,
we introduce the basic concept of Lyapunov-based stability. Then, we discuss on stability
concepts for fuzzy systems in form of LMI. These concepts will be applied in Section 5 to find
a LMI fuzzy controller for the buck and boost converters. It can be observed that since the
buck converter dynamics is linear, we obtain a linear control law for this converter that is a
fuzzy controller with only one rule.

4.1 Quadratic stability conditions

Given the linear dynamic system
ẋ(t) = Ax(t) (29)

the existence of a quadratic function of the form

V (x(t)) = x(t)TPx(t) (30)

that satisfies V̇ (x(t)) < 0, is a necessary and sufficient condition to ensure that the system is
asymptotically stable, i.e., all trajectories converge to zero. Where P is a symmetric positive
definite matrix ∈ R

n×n. Since the expression V̇ (x(t)) < 0 has form quadratic, this condition
is referred as quadratic stability, and it can be rewritten as follows

V̇ (x(t)) = x(t)T
(

ATP + PA
)

x(t) (31)

Thus, the system is asymptotically stable if and only if there exist a symmetric matrix P such
that

ATP + PA < 0 (32)

The main interest of the quadratic stability condition is that by means of a convex envelope
and numerically simple test, it is possible to conclude about the overall stability of a dynamics
system.
For an in-deep explanation on quadratic stability see (Boyd et al., 1994).
Based on the results (32), the following subsection present some basic results on the stability
of fuzzy control systems.

4.2 Performance constraints

In this subsection, we review in detail the Parallel Distributed Compensation (PDC) technique
(Tanaka & Wang, 2001). In such fuzzy technique, each control rule is associated with the
corresponding rule of the fuzzy model, thus the controller rules are as follows,

Ri : If δ1 is Mi1 and . . . and δj is Mji Then

u(t) = −Fix(t) i = 1, . . . , r (33)
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where Fi are lineal feedback gain vectors associate with each rule. And the overall fuzzy
controller is represented as

u(t) = −
∑

r
i=1 wiFix(t)

∑
r
i=1 wi

= −
r

∑
i=1

hiFix(t) (34)

Substituting the control law (34) in the fuzzy model (19), the closed loop system dynamics is
given by

ẋ(t) =
r

∑
i=1

r

∑
j=1

hihj

(

Ai − BiFj

)

x(t) (35)

In order to select the suitable feedback gain vectors Fi, we impose Lyapunov stability
constraints and performance constraints on decay rate and control effort in form of LMIs.
Therefore, the sufficient conditions for the stability of the open-loop fuzzy system (19) and
closed-loop one (35) are obtained using quadratic stability condition of the equation (32).
These conditions, derived from (Tanaka & Wang, 2001), it can be expressed by means of the
next propositions.

Proposition 4.1. The equilibrium of the continuous fuzzy system (19) with u(t) = 0 is asymptotically
stable if there exists a common positive definite matrix P such that

AT
i P + PAi < 0, i=1,. . . ,r

P > 0
(36)

that is, a common P has to exist for all subsystems

where Ai are system matrices of the linear submodels defined in the previous section.

Proposition 4.2. The equilibrium of the continuous fuzzy control system described by (35) is
asymptotically stable if there exists a common positive definite matrix P such that

(

Ai − BiFj

)T
P + P

(

Ai − BiFj

)

< 0, j > i

P > 0
(37)

Note that the condition (37) is not linear because involves the multiplication of the variables
P and F′

js. Thus, in order to rewrite (37) in a linear manner, we multiply the inequality (37) on

the left and right by P−1, and we define a new variable W = P−1, then proposition 4.2 can be
rewritten as follows.

Proposition 4.3. The continuous fuzzy system (35) is quadratically stable for some feedback gain Fi

if there exists a common positive definite matrix W such that

AiW + WAT
i − BiYi − YT

i BT
i < 0, i = 1, . . . r

AiW + WAT
i + AjW + WAT

j − BiYj − YT
j BT

i − BjYi − YT
i BT

j ≤ 0, i < j ≤ r
(38)

being Yi = FiW so that for W > 0, we have Fi = YiW
−1
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Using these LMI conditions, we establish the first controller design constraint, next we
describe the second design restriction.
As dc-dc converter control signal corresponds to the incremental duty cycle, then the control
signal is bounded in the interval [−D, 1 − D]. In order to satisfy with this limitation, we
constrain the control signal by the next proposition.
The satisfaction of the next proposition will assure that control signal d(t) is inside the interval
[−D, 1 − D] from starting condition x(0) to the equilibrium point.

Proposition 4.4. Assume that initial condition x(0) is known. The constraint ‖d(t)‖2≤ µ is enforced
at all times t ≥ 0 if the LMIs (39) hold

[

1 x(0)T

x(0) W

]

≥ 0,
[

W YT
i

Yi µ2I

]

≥ 0
(39)

where W = P−1 and Yi = FiW.

Also, it will be desirable a suitable transient performances of the closed loop system. The
entire fuzzy system transient performances depends on the localizations of the poles of its
linear systems corresponding to each rule. In our case, this poles are expressed in terms
of decay rate introduced via exponential stability, which it can be seen as a special case of
pole-placement on the closed-loop system.
Consequently, we impose that this poles must be inside a predetermined region as the one
pictured in Fig. 7. Therefore, the design process will add the next proposition, adapted from
(Tanaka & Wang, 2001).

α

S(α)

Fig. 7. S (α) region

Proposition 4.5. The eigenvalues of
(

Ai − BiFj

)

in each linear fuzzy system are inside the region

S(α) if there exist a common positive definite matrix W such that

AiW + WAT
i − BiYi − YT

i BT
i + 2αW < 0, i = 1, . . . r

AiW + WAT
i + AjW + WAT

j − BiYj − YT
j BT

i − BjYi − YT
i BT

j + 4αW ≤ 0, i < j ≤ r
(40)

being Fi = YiW
−1.
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Between all the feasible set of feedback gains, the proposed algorithm finds the largest possible
decay rate (α) of the state variables, satisfying the previous LMIs. Hence, the design procedure
of the LMI Fuzzy control can be formulated by the following optimization algorithm.

max α subject to
W, Yi

i = 1, . . . , r (39), and (40)
(41)

The solution of this optimization program with its corresponding LMIs will provide the set of
feedback gains FLMI−Fuzzy = {F1, F2, F3, F4}. The solution of this algorithm can be carried out
by means of GEVP function in MATLAB LMI toolbox.

5. Design examples

This section shows two examples of LMI-based control applied to dc-dc converters. The first
case presents the control design of a step-down converter working around equilibrium point.
This example takes into account the same LMIs constraints of the algorithm (41). The second
example proposes an LMI Fuzzy control for a step-up converter, allowing working at different
operating point. Both examples are tested during a start-up and under load disturbances.

5.1 LMI control of a Buck converter

In this first example, we presents an LMI control approach applied to the problem of
regulating the output voltage of the buck converter. The values of the converter parameter
set are shown in Table 1. The nominal load of the converter is equal to 10 Ω, while
supply voltage equal to 48 V. Consequently, the equilibrium point satisfying (7) is equal
to [ iL vC ] =[ 4.8 24 ]T. The simulation prototype is designed to process less than 60 W
corresponding to a load resistance R = 10 Ω. The inductance and capacitance values and
switching frequency have been selected to ensure low ripple level. In order to limit the control
signal in the range [−D, 1 − D], µ is set to 1500, since simulations show no saturation of the
duty-cycle.

Vg 48V

vC(Vre f ) 24V

L 200 µH
C 200 µF

R 10 Ω

D′ 0.5 Ω

Ts 10 µ s

Table 1. Buck converter parameters

Once the parameters values of the converter and controller have been defined, the next step
is to obtain the feedback gain vector. Thus, solving the optimization algorithm (41) for the
system (11), by means of the LMI toolbox of MATLAB (Gahinet et al., 1995), the state-feedback
controller obtained for the buck converter is

FBuck =
[

0.0963 0.1133 −319.8021
]

with a decay rate of α = 3254, which assures a maximum constant time of 1/3254, and
consequently a maximum settling time of 4 ∗ (1/3254). In order to verify the behavior of
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the buck converter under the control law described above, numerical simulations have been
carried out in MATLAB/Simulink, as shown in Fig.8.
Fig. 9 shows the transient simulation of the state variables and duty-cycle during start-up, in
fact, represents a large signal perturbation around the equilibrium point of the state variables.
It is remark that the settling time is smaller than 1.2 ms, and agrees with the decay rate
obtained.

(a) (b)

Fig. 8. Simulink diagram of a buck converter with state-feedback regulation. (a)
Implementation diagram in MATLAB/Simulink. (b) Simulink model of the buck converter.
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Fig. 9. Simulated response of the dc-dc buck converter during start-up. (a) Inductor current
iL(t) and capacitor voltage vC(t). (b) Steady-state error x3(t) and duty-cycle d(t).
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Fig. 10 illustrates the system responses for step changes in the load current from 2.4 A to 4.4
A at 2ms and then returns to 2.4 A at 8ms. It can be observed that the controller regulates the
output voltage vC smoothly at 24 V after a short transient period. It can also be observed that
the duty-cycle does not exceed the limits of interval [−D, 1 − D]. In the next subsection, the
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Fig. 10. Simulated response of the buck converter under a load step transient of 2 A.
(a) Inductor current iL(t) and capacitor voltage vC(t). (b) Steady-state error x3(t), duty-cycle
d(t) and load current iR.

LMI Fuzzy controller design for a boost converter is described.

5.2 LMI Fuzyy control of a boost converter

In this subsection, we present the results of the design of the LMI Fuzzy controller applied to
fuzzy model of the boost converter shown in subsection 3.1, whose parameter set is shown in
Table 2. Consequently, the equilibrium state is given by [ iL vC ] =[ 4.8 24 ]T.

The design of the control law consists of solving the optimization algorithm (41) for the

Vg 12V

vC(Vre f ) 24V

L 300 µH

C 300 µF
R 10 Ω

D′ 0.5 Ω

Ts 20 µ s

Table 2. Boost converter parameters

four linear submodels of the fuzzy model. This submodels correspond to the vertices of the
polytopic model of the boost converter in the region defined in Fig 6. Therefore, in order to
ensure stability within the polytopic region during a start-up transition and disturbance, the
polytopic region should be

[

îmin = 0, îmax = 20
]

× [v̂min = 0, v̂max = 10]. To demonstrate the
advantage of this Fuzzy approach, we will compare the LMI Fuzzy control with a LMI linear
Control.
As in the previous subsection, the simulation prototype is designed to process less than 60
W, as well as the inductance and capacitance values and switching frequency are selected to
ensure low ripple level. To maintain the control signal under the threshold limit value, µ is set
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to 350, for the two control designs. So, according to the optimization algorithm (41), the fuzzy
state-feedback gains obtained via LMI Toolbox of Matlab are given follows:

F1 =
[

0.1737 0.1019 −183.4507
]

F2 =
[

0.2737 0.1871 −313.9974
]

F3 =
[

0.1814 0.1157 −199.8689
]

F4 =
[

0.1877 0.1149 −202.6875
]

The decay rate value obtained is 878, which assures a maximum settling time of 4 ∗ (1/878).
As mentioned above, to contrast the performance and robustness of the proposed control,
we compare the LMI Fuzzy control law with a LMI linear law, which it presents the same
optimization criteria (41). The resulting controller gain vector is

FBoost =
[

0.0895 0.1018 −159.9759
]

with a decay rate of 1950, that assures a maximum settling time of 4 ∗ (1/1950).
It can be observed that there exist differences between the decay rate obtained above. Next, we
will show its properties during a start-up and in presence of load disturbances. Fig. 11 shows
the simulation schematic of the boost converter with the LMI Fuzzy controller implemented
in MATLAB/Simulink. Note that the MATLAB Function block is used to run the LMI Fuzzy

Fig. 11. Simulink implementation diagram of a boost converter with LMI Fuzzy regulation.

control on Simulink, which it is written by means of a code in the MATLAB Editor.
Fig. 12 illustrates the transient simulation of the boost converter during start-up. The
waveforms depicted in the figure are the inductor current iL, capacitor voltage vC, steady-state
error x3 and duty-cycle d(t). The response of the LMI linear contoller corresponds to dashed
line, while the waveform of the LMI Fuzzy controller has been drawn with solid line. In
Fig. 13, the converter reacts to large load disturbances. In this simulation the load current is
initially 2.4 A. At t = 2 ms, the current changes to 6.4 A, and at t = 8 ms, it returns to its initial
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Fig. 12. Simulated responses of the dc-dc boost converter during start-up linearly controlled
(dished) and fuzzy controlled (solid). (a) Inductor current iL(t) and capacitor voltage vC(t).
(b) Steady-state error x3(t) and duty-cycle d(t).
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Fig. 13. Simulated responses of the boost converter under a load step transient of 4 A linearly
controlled (dished) and fuzzy controlled (solid).
(a) Inductor current iL(t) and capacitor voltage vC(t). (b) Steady-state error x3(t), duty-cycle
d(t) and load current iR.

value. It is worth noting that state variables and duty-cycle are better with the LMI Fuzzy
controller (dashed line), since it maintains its stability properties under large disturbances,
and despite that it is slower. The main advantage of this controller, is that it ensures robust
stability in broad range of operation.

6. Conclusions

This chapter presents a LMI fuzzy controller design for dc-dc converters using MATLAB.
The design methodology has been applied to a buck converter and to a boost converter
where the control optimizes the decay rate of the state variables subject to a bound in
the control effort. The methodology allows us to take into account the bilinear nature of
the boost converter dynamics. We express the control objective and the bound as LMIs.
The set of LMIs, which is solved by means of LMI Toolbox, provides the feedback gains.
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The dynamical performances of LMI fuzzy controlled boost converter have been compared
those of a linear-controlled boost considering the same design constraint. We have verified
the closed-loop dynamic behavior using Simulink/MATLAB. The plots exhibit a perfect
agreement with the design specifications. This design procedure ensures the stability of the
converter in a wide region. On the contrary, a linear-controlled converter deteriorates its
performances out of the operating point. The approach can be extended to more complex
converters or other types of bilinear plants.
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