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Abstract

The automated detection of pavement distress from remote sensing imagery is a
promising but challenging task due to the complex structure of pavement surfaces,
in addition to the intensity of non-uniformity, and the presence of artifacts and
noise. Even though imaging and sensing systems such as high-resolution RGB
cameras, stereovision imaging, LiDAR and terrestrial laser scanning can now be
combined to collect pavement condition data, the data obtained by these sensors are
expensive and require specially equipped vehicles and processing. This hinders the
utilization of the potential efficiency and effectiveness of such sensor systems. This
chapter presents the potentials of the use of the Kinect v2.0 RGB-D sensor, as a low-
cost approach for the efficient and accurate pothole detection on asphalt pave-
ments. By using spatial fuzzy c-means (SFCM) clustering, so as to incorporate the
pothole neighborhood spatial information into the membership function for clus-
tering, the RGB data are segmented into pothole and non-pothole objects. The
results demonstrate the advantage of complementary processing of low-cost
multisensor data, through channeling data streams and linking data processing
according to the merits of the individual sensors, for autonomous cost-effective
assessment of road-surface conditions using remote sensing technology.

Keywords: Kinect RGB-D sensor, pothole detection, spatial fuzzy-c means
clustering (SFCM), sensor calibration

1. Introduction

Presently, two approaches are typically used to monitor the condition of pave-
ments: manual distress surveys and automated condition surveys using specially
equipped vehicles. Traditionally, in order to determine the serviceability of road
pavements, designated pavement officers perform on-site inspection, either by
walk-observe-record or by windshield (drive-by) inspection, so as to aggregate the
roughness, rutting and surface distresses [1, 2]. With the advancement of sensor
technology, numerous automatic pavement evaluation systems have been proposed
to aid in pavement condition inspection during the last two decades [3]. Currently,
there exist several off-the-shelf commercial systems, which are being widely used
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by some of the road maintenance agencies for detailed pavement distress evaluation
and exclusive crack analysis. Among which, the Fugro Roadware’s ARAN, CSIRO’s
RoadCrack and Ramböll OPQ’s PAVUE are of the world’s leading manufacturers
offering an integrated full-fledged pavement evaluation system equipped with
Global Positioning System (GPS)/Inertial Measurement Unit (IMU) sensors, Light
Detection And Ranging (LiDAR) system, high definition video camera, and special
lighting illumination systems [2]. Nonetheless, technology for the monitoring of
pavement condition does not appear to have kept pace with other technological
improvements over the past several years. Furthermore, these pavement monitor-
ing and evaluation approaches remain rather reactive than proactive in terms of
detecting distresses and damage, since they merely record the distress that has
already appeared, and most of these methods either require significant personnel
time or the use of costly equipment. Thus these systems and techniques can only be
used cost-effectively on a periodic and or localized basis, and may not allow for
continuous long-term monitoring and deployment at the network level, due limita-
tions in hardware and software development and costs.

For sustainable and cost-effective road infrastructure management, the road
agencies charged with the responsibility of road maintenance and repairs should be
able to continuously collect road condition data within their network, with the
objective of building and implementing pavement information and management
systems (PIMS) using non-destructive techniques. However, as already stated
above, data collection for a whole network such as an entire city or town is expen-
sive and time consuming, if pursued by traditional surveys. Developments in sensor
technology for digital image acquisition and computer technology for image data
storage and processing can allow the local agencies to use digital image processing
for pavement distress analyses. In order to overcome the cost limitations in pave-
ment data collection, this chapter presents a pervasive and ‘smart’ nature of the
low-cost consumer-grade devices, in the acquisition of roadway condition data. By
using such devices, no dedicated and expensive platforms and drivers are needed
for automated data collection, and are as such suitable in the long-term in terms of
costs, implementation and operations for road condition surveys.

Besides the data acquisition systems, in order to enhance the automation of
pavement condition monitoring, there have also been advancements in the data
collection techniques (e.g., [4–7]), and automated data processing techniques
[8–10]. Because of the irregularities in terms of noise and topographic structure of
pavement surfaces, more research is still ongoing on the accurate detection, classi-
fication and quantification of cracks and potholes. In addition, the computational
costs for automated pavement distress detections are expensive, and better
approaches are still necessary in the evaluation of the automated crack measure-
ment systems under the various conditions [11].

The commercially available state-of-the-art systems, which comprise of digital
camera and laser-illumination module, and laser road-imaging vehicles costs about
$150,000. On the other hand, the pavement-surface profiler laser sensors, which
are commonly used for measurement of road rutting-depth or surface-roughness,
cost in the range of $130,000–$150,000. Comparatively, mobile pavement imaging
techniques and manual inspection approaches respectively costs $88.5/mile and
$428.8/mile, and the cost of using multi-sensor hybrid systems can range from
$541/mile to $933/mile [2]. For fully automated pavement mapping systems, the
cost of the imaging sensors and operations defines the purchase pricing, which
averages at approximately $697,152 [12]. This chapter presents an approach for the
customization of a low-cost imaging system, Kinect v2.0 sensor, as a prototype for
cost-effective pavement imaging, and a data processing pipeline for pothole detec-
tion and extraction on asphalt pavements.
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2. Measurement principle of the Kinect v2.0 RGB-D sensor

The Kinect v2.0 is the successor of the Xtion Pro Live RGB-D camera, called the
Kinect v1.0. The version 2.0 Kinect RGB-D camera consists of a color (RGB)
camera, an IR illuminator or projector and IR camera (Figure 1(a)). While the RGB
camera records color information in high definition (HD), the IR projector emits an
infrared laser and the IR camera is the sensor for the infrared laser. The Kinect v2
field in the horizontal is 70.6° and 60° in the vertical as depicted in Figure 1(c). The
values in the z-direction (depth values), are calculated using the Time of Flight
(ToF) principle [16, 17], as shown in Eq. (1), and the x and y values are determined
by using the homogeneous image coordinates u and v, and calculated as in Eqs. (2)
and (3) [18]. The RGB and IR images acquired with the Kinect v2.0 partially
overlap, because the RGB color camera has a wider horizontal field of view (FOV),
and IR camera has a larger vertical FOV [15].

z ¼ h ¼
c � Δφ

4πf
(1)

x ¼
u� Cx

f x
(2)

y ¼
v� Cx

f y
(3)

where z is the depth measure in meters, Δφ is the phase shift, c is the speed of
light and f is the modulation frequency; x is the horizontal position, u is the vertical
image coordinate, Cx is optical center in the X-direction and f x is the focal length in
the X-direction, and y is the vertical position, v is the horizontal image coordinate,
Cy is optical center in the Y-direction and f y is the focal length in the Y-direction. In

Figure 1(b), P is the measured point on object surface, E is the IR emitter C is the IR
sensor, and h or z is the unknown distance of measured point from sensor origin.

For the Kinect v1.0 RGB-D camera, the IR camera analyses a fixed speckle
pattern projected by the IR projector and computes depth values by triangulation.
This pattern analysis is referred to as the structured light (SL) approach, whereby a
memorized IR pattern stored in the RGB-D camera’s computer architecture is

Figure 1.
(a) Kinect sensor v2.0 cameras; (b) and (c) principle of Time of Flight (ToF) phase measurement in Kinect
v2.0, and (d) Kinect v2.0 and the field of view geometry [13, 14]. (e) Field of view (FoV) of Kinect v2.0 RGB
and IR cameras [15].
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projected onto the screen and compared with the current pattern on the screen [19].
If there are any obstacles in the way, the IR pattern changes shape from which the
depth values can be deciphered. The Kinect v2.0 however, uses ToF technique to
acquire depth values, where the sensor measures the time it takes for the modulated
laser pulses from the IR projector to reach the object and then back to the IR camera
[13]. The RGB resolution of the Kinect v2.0 is at 1920 � 1080 pixels, and the IR
camera has a resolution of 512 � 424 pixels, with corresponding pixel sizes of 3.1
and 10 μm respectively. The collection of the x; y; zð Þ points results into 3D point

(a)

Specifications Microsoft Kinect

v1.0

SoftKinetic

DS311

SoftKinetic

DS325

SwissRanger

SR4000

Range (short) N/A N/A 15 cm–1.5 m N/A

Range (long) 0.8–4 m 1.5–4.5 m N/A 0.8–8 m

Resolution (depth) QVGA (640 � 480) QVGA (320 �

240)

QVGA (160 �

120)

176 � 144

Field of view (H � V

� D)

57.5° � 43.5° � N/A 57.3° � 42° �

73.8°

74° � 58° � 87° 43° � 34° � N/A

Technology (depth

sensor)

Light coding Depth sense CAPD ToF Time of Flight

(ToF)

Frame rate (depth

sensor)

30 25–60 25–60 50

Resolution (RGB) 640 � 480 or 1280

� 960

640 � 480 1280 � 720

(HD)

N/A

Field of view (RGB) 57.3° � 42° � N/A 50° � 40° �

60°

63.2° � 49.3° �

75.2°

N/A

Frame rate (RGB) 30 <25 <25 N/A

Power/data

connection

USB 2.0 (1) USB 2.0 (1) USB 2.0 (1) Lumberg M8 Male

3-pin

Size (W � H � D) 27.94 � 7.62 �

7.62 cm

24 � 5.8 � 4 cm 10.5 � 3.1 �

2.7 cm

6.5 � 6.5 � 6.8 cm

Price $99 $299 $249 $4295

(b)

Parameter specification Kinect v1.0 Kinect v2.0

Resolution of RGB camera (pixel) 640 � 480 or 1280 � 960 1920 � 1080

Resolution of IR and depth camera (pixel) 640 � 480 512 � 424

Field of view (FOV) of color camera 62° � 48.6° 84.1° � 53.8°

Field of view (FOV) of IR and depth image 57.5° � 43.5° 70.6° � 60°

Tilt motor Yes No

Maximum skeletal tracking 2 6

Method of depth measurement Structured light Time-of-Flight (ToF)

Depth distance working range 0.8–4.0 m 0.5–4.5 m

USB 2.0 3.0

Price $99 $200

Table 1.
Comparative specifications of Kinect v1.0 and Kinect v2.0 and other low-cost sensors.
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cloud. This implies at the acquisition rate of 30 frames per second (fps), every
frame of the Kinect v2.0 outputs 217,088 colored 3D points. The advantage that the
Kinect v2.0 has over its predecessor Xtion Pro Live (Kinect v1.0), is that since it
uses the principle of the ToF instead of relying on projected IR patterns for com-
puting depth, the interference problem is greatly reduced as the sensor does not
have to compute distances between neighboring points on the pattern [13]. The
other advantage with the Kinect v2.0 over the Xtion, is that the camera has a built in
ambient-light rejection method, which makes it possible to use in an outdoor envi-
ronment with near infrared sources of interference [16]. Table 1(a) presents a
summary of the differences between the Microsoft Kinect sensor v1.0 and other
low-cost sensors, and Table 1(b) presents the fundamental characteristics of the
Kinect versions 1.0 and 2.0.

3. Low-cost hardware system design and set-up for pavement data
acquisition using Kinect v2.0

The establishment and design of an optimal low-cost imaging system, compris-
ing of the hardware platform and peripheral requirements, with interface for
Kinect-computer data acquisition, visualization and storage, in both static and
dynamic acquisition modes is illustrated in Figure 2, and is termed as integrated
Mobile Mapping Sensor System (iMMSS). For the implementation of the iMMSS,
two main sets of equipment are used: (i) the Kinect v2.0—for RGB, Infrared (IR)
and depth data capture, and (ii) a DC-AC power inverter—12 V DC to AC 220 V/
200W output. The power inverter is adaptable to the car charger port for powering
the Kinect sensor for static and continuous pavement data acquisition modes. The
iMMSS data acquisition system hardware-software set-up is as illustrated in the
photo in Figure 2. The three main criteria in the field experimentation using the
iMMSS comprise of: the shooting angle (vertical and oblique), shooting distance
from the pavement, and the overall target positioning. Figure 2 illustrates the
hardware layout and software data capture system. The sensing device is housed
within a sensor rack mounted onto the exterior of the wagon. To improve the
contrast of the Kinect’s laser pattern over the road surfaces, from the reflected IR
radiation from sunlight an umbrella was used to block the rays from the sun and to
create a shadow.

In terms of data acquisition in static and dynamic mode (Figure 2), the Kinect
sensor captures depth and color images simultaneously at a frame rate of up to 30
fps. The integration of depth and color data results in a colored point cloud that

Figure 2.
iMMSS hardware-software set-up for road pavement data capture, visualization and storage using the Kinect
sensor.
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contains about 300,000 points in every frame. By registering the consecutive depth
images it is possible to obtain an increased point density, and to create a complete
point cloud. To realize the full potential of the sensor for mapping applications an
analysis of the systematic and random errors of the data is necessary. The correction
of systematic errors is a prerequisite for the alignment of the depth and color data,
and relies on the identification of the mathematical model of depth measurement
and the calibration parameters involved. The characterization of random errors is
important and useful in further processing of the depth data, for example in
weighting the point pairs or planes in the registration algorithm [20].

1.Pothole detection and the bias field effect

Under perfect conditions, potholes tend to have two visual properties charac-
terized by: (i) low-intensity areas that are darker than nearby pavement because of
road surface irregularity [21], and (ii) the texture inside the potholes being coarser
than the nearby pavement [1, 22]. However, as illustrated in [8, 23], the pothole
area is not always darker than nearby pavement. Furthermore, the irregularity of
the road surface produces shadows at pothole boundaries, which is darker than
nearby pavement. These conditions results into the lower accuracy of pothole
detection using visual 2D techniques as was reported in [8]. In RGB imagery,
pothole detection is influenced by the spill-in and spill-out phenomenon [1, 8],
which is typically characterized by the similarities in the defect and non-defect
features and regions. These results in the corruption of the defect regions on the
pavement, with a smoothly varying intensity inhomogeneity called bias field. Bias is
inherent to pavement imaging, and is associated with the imaging equipment limi-
tations and also the pavement surface noise [1, 2].

Bias field in pothole detection can be modeled as a multiplicative component of
an observed image, and varies spatially because of inhomogeneities, and can be
modeled as in Eq. (4).

Y j ¼ BjXj þ n (4)

where Y j is the measured image at voxel j; Xj is the true image signal to be
restored; Bj is an unknown noise or bias field, and n is the additive zero-mean
Gaussian noise. Eq. (4) modeled as an additive component by applying a logarith-
mic transformation, it is possible to obtain a simplified form as:

yj ¼ xj þ bj (5)

where xj and yj are the true and observed log transformed intensities at the jth

voxel, respectively, and bj is the noise or bias field at the jth voxel.
Bias or noise can be corrected by using prospective and retrospective methods.

Prospective methods for noise minimization aim at avoiding the intensity inhomo-
geneities in the image acquisition process. Prospective methods are capable of
correcting intensity inhomogeneity induced by the imaging devices; they are not
able to remove object-induced effects. Retrospective methods in contrast, rely only
on the information in the acquired images, and can thus remove intensity inhomo-
geneities regardless of their sources. The obvious choice in noise minimization is
therefore the retrospective methods, which include filtering, surface fitting, histo-
gram, and segmentation. Among the retrospective methods, segmentation-based
approaches are particularly attractive, as they unify the tasks of segmentation and
bias correction into a single framework. When an observed pixel yj is defined as

noisy, the neighboring pixels can be used to correct it, since the pixel is expected to
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be similar to its surrounding pixel. That is, the data points with similar feature
vectors can be grouped into a single cluster and the data points with dissimilar
feature vectors are also grouped into different clusters. By using a pre-segmentation
clustering algorithm, the Euclidean distance between neighboring pixels is com-
puted and used for the a priori clustering. This means that pixels that produce the
lowest distance values to their neighbors are categorized as being nearly similar.
Two pixels with similar neighboring values are expected to be close to each other,
and hence the pixels can be clustered together. On way of minimizing noise through
clustering is by using the k-means clustering algorithm, whereby the distance mea-

sure between every point z
jð Þ

j , and the cluster vj is optimized by calculating the

Euclidean distance measure z
jð Þ

i � vj

�

�

�

�

�

�

2
. The value of this distance measure func-

tion is an indicator of the proximity of the n data points to their cluster prototypes.
Once the pre-clustering is carried out, a more robust segmentation approach can
then be applied, to cluster the smoothened pavement image.

Image segmentation can be performed using different techniques such as:
thresholding, clustering, transform and texture based methods [24]. Histogram-
based thresholding is the simplest and often used approach [25]. Many global and
local thresholding methods have been developed. While the global thresholds seg-
ment the entire image, with a single threshold using the gray-level histogram, the
local based thresholds partition the image into a number of sub-images and select a
threshold for each of the sub-image. The global thresholding methods select the
thresholding based on different criterion such as: Otsu’s method [24], minimum
error thresholding [26], and entropic method [27]. These one-dimensional (1D)
histogram thresholding methods work well when the two consecutive gray levels of
the images are distinct. Further, all the 1D thresholding techniques do not combine
the spatial information and the gray-level information of the pixels into the seg-
mentation process. The performance of the thresholding techniques will lead to
misclassifications in inherently correlated imagery, which are already corrupted by
noise and other artifacts.

Real-world images are often ambiguous, with indistinguishable histograms. As
such, it is complicated for the classical thresholding techniques to find criterion of
similarity or closeness for optimal thresholding. This ambiguity in image segmenta-
tion can be solved by using fuzzy set theory, as a probabilistic global image segmen-
tation approach. Using the conventional FCM formulation, each class is assumed to
have a uniform value as given by its centroid. Similarly, each data point is also
assumed to be independent of every other data point and spatial interaction between
data points is not considered. However, for image data, there is strong correlation
between neighboring pixels. In addition, due to the intensity non-uniformity arti-
facts, the data in a class no longer have a uniform value. Thus to realize meaningful
segmentation results, the conventional FCM algorithm has to be modified to take into
account both local spatial continuity between neighboring data and intensity non-
uniformity artifact compensation. This chapter illustrates the use of spatial fuzzy c-
means SFCMð Þ, so as to incorporate the spatial neighboring information into the
standard fuzzy c-means for pothole detection on pavement surfaces.

3.1 Fuzzy c-means clustering with spatial constraints

FCM is an unsupervised fuzzy clustering algorithm. The conventional clustering
algorithms determine the “hard partition” of a given dataset based on certain
criteria that evaluates the goodness of partition, so that each datum belongs to
exactly one cluster of the partition. The soft clustering on the other hand finds the
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“soft partition” of a given dataset. And in “soft partition”, the datum can partially
belong to multiple clusters. Soft clustering algorithms do generate a soft partition
that also forms fuzzy partition. A type of soft clustering of special interest is one
that ensures membership degree of point xj in all clusters adding up to one
(Eq. (6)), and also satisfies the constrained soft partition condition.

X

i

μci xj
� �

¼ 1, ∀xj ∈X (6)

The fuzzy c-means is a clustering method which allows one piece of data to
belong to two or more clusters [28, 29]. The standard FCM algorithm considers the
clustering as an optimization problem where an objective function must be mini-

mized, and assigns pixels to each category by using fuzzy memberships. If I ¼

xj ∈Rd
� �

j¼1,…,N is a p�N data matrix, where, p represents the dimension of each xj

“feature” vector, and N represents the number of feature vectors (pixel numbers in
the image), then the FCM algorithm is an iterative optimization that iteratively
minimizes the objective function, with respect to fuzzy membership 0U0, and set of
cluster centroids, 0V 0as in Eq. (7).

JFCM ¼
X

N

j¼1

X

c

i¼1

umij � xj � vi
�

�

�

�

2
(7)

where uij represents the fuzzy membership of pixel xj in the ith cluster and u ¼

u1; u2;…; ucð Þ are the set of cluster centers; 0C0 is the number of clusters; viis the ith
cluster center; �k k is a Euclidean distance or the normmetric, andm is a constant for
fuzziness exponent. The parameter m controls the fuzziness of the resulting parti-
tion or the fuzziness of the consequential partition, and m ¼ 2 is used in this study.

The cost function is minimized when pixels close to the centroid of their clusters
are assigned high membership values, and low membership values are assigned to
pixels with data far from the centroid. The membership function represents the
probability that a pixel belongs to a specific cluster. In the FCM algorithm, the
probability is dependent solely on the distance between the pixel and each individ-
ual cluster center in the feature domain. By minimizing Eq. (7) using the first
derivatives with respect to uij and vi then setting them to zero using the Lagrange
method, the membership functions and cluster centers are updated by solutions of
uij and the fuzzy centers vi:

uij ¼
1

P

c

k¼1

xj�vik k
xj�vkk k

� �2= m�1ð Þ
(8)

and

vi ¼

P

N

j¼1
umij xj

P

N

j¼1
umij

(9)

Starting with an initial guess for each cluster center, the FCM converges to a
solution for vi representing the local minimum or a saddle point of the cost function.
Convergence can be detected by comparing the changes in the membership
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function or the cluster center at two successive iteration steps. In an image, as
illustrated in [1], the neighboring pixels are normally highly correlated. This is
because these neighboring pixels possess similar feature values, and the probability
that they belong to the same cluster is often high. The introduction of the spatial
information is an important cue in resolving the mixel problem within a pavement
pothole voxel. While this spatial relationship is important in clustering, it is not
utilized in a standard FCM algorithm. To overcome the effect of noise in the
segmentation process, [30] proposed spatial FCM algorithm in which spatial infor-
mation can be incorporated into fuzzy membership functions directly using a spa-
tial function. The spatial information is introduced while updating the membership
function uij in the repetitive FCM algorithm because the neighborhood pixels pos-
sess same properties as the center pixel. To exploit the spatial information, the
spatial function is defined by hij (Eq. (10)).

hij ¼
X

k∈NB xjð Þ

uik (10)

whereNB xj
� �

is a local square window centered on pixel xj in the spatial domain,
and in this illustration, a 5 � 5 window is used.

Like the membership function, the spatial function hij represents the probability
that pixel xj belongs to the ith cluster. The spatial function of a pixel for a cluster is
large if the majority of its neighborhood belongs to the same clusters. The spatial
function is used in updating the membership function again, and is incorporated
into membership function as follows as presented in Eq. (11) [30].

u
0

ij ¼
u
p
ijh

q
ij

P

c

k¼1

u
p
kjh

q
kj

(11)

where p and q are two parameters used to control the relative importance of both
the membership and spatial functions respectively.

In a homogenous region within an image, the spatial functions will strengthen
the original membership, and the clustering result remains unchanged. However,
for a noisy pixel, this formula reduces the weighting of a noisy cluster by the labels
of its neighboring pixels. As a result, misclassified pixels from noisy regions or
spurious blobs can easily be corrected. The spatial FCM with parameter p and q is
denoted SFCMp,q. For p ¼ 1 and q ¼ 0, the SFCM1,0 is identical to the conventional
or standard FCM. In the SFCMp,q, the objective function is not changed, instead the
membership function is updated twice. The first update is the same as in standard
FCM that calculates the membership function in the spectral domain. However in
the second phase, the membership information of each pixel is mapped to the
spatial domain, and the spatial function is computed from that. The spatial function
is defined as the sum of the membership values in spatial domain in the entire
neighborhood around the pixel under consideration. The FCM iteration proceeds
with the new membership that is incorporated with the spatial function. The itera-
tion is stopped when the maximum difference between two cluster centers at two
successive iterations is less than a threshold (=0.02). After the convergence,
defuzzification is applied to assign each pixel to a specific cluster for which the
membership is maximal. The SFCMp,q works well for high as well as low density
noise, and can be applied for single and multiple feature data. As compared to other
methods FCM based methods, SFCMp,q gives superior results without any bound-
ary leakage even at high density noise, when the q value is carefully selected [31].
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3.2 Depth image data smoothing and hole-filling

To correctly analyze and potentially combine the RGB image with the depth
data, the spatial alignment of the RGB and the depth camera outputs is necessary.
Additionally, the raw depth data are very noisy and many pixels in the image may
have no depth due to multiple reflections, transparent objects or scattering in
certain nearby surfaces. As such the inaccurate and or missing depth data (holes)
need to be recovered prior to data processing. The recovery is conducted through
application-specific camera recalibration and or depth data filtering. In this section
we deal with the depth data filtering first, and in the next subsection, the camera
calibration is discussed. By enhancing the depth image using color image, the
following issues are addressed: (i) due to various environmental reasons, specular
reflections, or simply the device range, there are regions of missing data in the
depth map; (ii) the accuracy of the pixels values in the depth image is low, and the
noise level is high. This is true mostly along depth edges and object boundaries,
which is exactly where such information is most valuable; (iii) despite the calibra-
tion, the depth and color images are still not aligned well enough. They are acquired
by two close, but not similar, sensors and may also have differences in their internal
camera properties (e.g., focal length). This misalignment leads to small projection
differences, even, again, these small errors are more noticeable especially along
edges, and (iv) usually the depth image has lower resolution than the color image,
and therefore it should be up-sampled in a consistent manner.

Because of the limitations in the depth measuring principle and object surface
properties, the depth image from Kinect inevitably contains optical noise and
unmatched edges, together with holes or invalid pixels, which makes it unsuitable
for direct application [32]. In order to remove noise from the depth image, the joint
bilateral filter is preferred. This is because the joint bilateral filter has the advantage
of preserving edges while removing noises, analyzing through every image pixel
and replacing every image pixel-by-pixel with the median of the pixels in the
corresponding filter region R. This process can be expressed according to Eq. (12).

I0 u; vð Þ ! median I uþ i; vþ jð Þ i; jð Þ∈Rj gf (12)

where, u; vð Þ is the position of the image pixel and i; jð Þ is the neighborhood size
of the image region and these are specified as a two element numeric vector of
positive integers. By using median filtering, each output pixel contains the
median value in the i � j neighborhood around the corresponding pixel in the
input image.

In filling holes in depth images: (i) [33] used bilateral filter and median filter in
the temporal domain; (ii) [34] proposed joint bilateral filter and Kalman filter for
depth map smoothing, and to reduce the random fluctuations in the time domain.
Jung [35] proposed a modified version of the joint trilateral filter (JTF) by using
both depth and color pixels to estimate a filter kernel and by assuming the presence
of no holes. Liu et al. [36] employed an energy minimization method with a regu-
larization term to fill the depth-holes and remove the noise in depth images. The
linear regression model utilized was based on both depth values and pixel colors.
From the above studies, it is noted that the methods are primarily based on different
types of filters to smooth noise in depth images and to fill holes by using color
images to guide the process.

Introduced by [37], the bilateral filter is a robust edge-preserving filter with two
filter kernels: a spatial filter kernel and a range filter kernel, which are traditionally
based on a Gaussian distribution, for measuring the spatial and range distance
between the center pixel and its neighbors, respectively [38].
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By letting IX be the color at pixel x, and IIX be the filtered value, it is desired for

IIX to be:

IIX ¼

P

y∈N xð Þf S x; yð Þ � f R Ix; Iy
� �

� Iy
P

y∈N xð Þf S x; yð Þ � f R Ix; Iy
� � (13)

where y is a pixel in the neighborhood N(x) of pixel x, where f S x; yð Þ ¼

exp �
x�yk k

2

2σ2
S

� �

and, f R Ix; Iy
� �

¼ exp �
Ix�Iyk k

2

2σ2
R

� �

are the spatial and range filter

kernels measuring the spatial and range/color similarities. The parameter σS defines
the size of the spatial neighborhood used to filter a pixel, and σR controls how much
an adjacent pixel is down-weighted because of the color difference.

The limitation of the conventional bilateral filter is that it can interpret impulse
noise spikes as forming an edge. A joint or cross bilateral filter [39, 40] is similar to
the conventional bilateral filter except that in the case of the joint bilateral filter, the
range filter kernel f R �ð Þ is computed from another image called the guidance image.
The guide image J indicates where similar pixels are located in each neighborhood.
With J as the guidance image, then the joint bilateral filtered value at pixel x is
determined as in Eq. (14).

IJX ¼

P

y∈N xð Þ f S x; yð Þ f R Jx; Jy

	 


Iy
P

y∈N xð Þ f S x; yð Þ f R Jx; Jy

	 
 (14)

It is important to note that the joint bilateral filter ensures the texture of the

filtered image IJ to follow the texture of the guidance image J. In the implementa-
tion this paper, the image intensity was normalized such that it ranges from [0, 1],
and image coordinates were also normalized so that x and y also reside in [0, 1].

With this depth hole filling based on the bilateral filter, the depth value at each
pixel in an image is replaced by a weighted average of depth values from nearby
pixels. While the joint bilateral filter has been demonstrated to be very effective for
color image upsampling, if it is directly applied to a depth image with a registered
RGB color image as the guidance image, the texture of the guidance image (that is
independent of the depth information) is likely to be introduced to the upsampled
depth image, and the upsampling errors mainly reside in the texture transferring
property of the joint bilateral filter [38]. Meanwhile, the median filtering operation
minimizes the sum of the absolute error of the given data [41], and is much more
robust to outliers than the bilateral filter. A possible solution to the “hole-filling”
problem in depth imagery is to focus on the combination of the median operation
with the bilateral filter so that the texture influence can be better suppressed while
maintaining the edge-preserving property [42].

3.3 Calibration of RGB and IR Kinect cameras

Despite the fact that the Kinect, like other off-the-shelf sensors, has been cali-
brated during manufacturing, and the camera parameters are stored in the device’s
memory, this calibration information not accurate enough for reconstructing 3D
information, from which a highly precise cloud of 3D points should be obtained.
Furthermore, the manufacturer’s calibration does not correct the depth distortion,
and is thus incapable of recovering the missing depth [43]. Using a 9 � 8
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checkerboard, with 30 mm square fields, a set of close-up RGB/IR images of the
checkerboard placed in different positions and orientations (Figure 3(a)), can be
collected and used for calibration. The Bouguet’s Camera Calibration Toolbox [44]
in MATLAB can be used for the identification of RGB and IR camera parameters,
utilizing the two versions of Herrera’s method [45]. IR camera calibration, the IR
emitter should be disabled during imaging so as to achieve appropriate light condi-
tions. The output matrices for the intrinsic, distortion and extrinsic calibration
parameters are presented in Table 2.

3.3.1 Initialization of intrinsic and extrinsic calibration

For the color camera, the initial estimation of Ic and T ið Þ
c for all calibration images

is carried out as described in Bouguet’s toolbox. The intrinsic parameters for the

depth camera are defined as I
0

d ¼ fd; cd; kd; c0; c1f g, since the depth distortion terms
are not considered. They are initialized using preset values, which are publicly

Figure 3.
Checkerboard RGB (top) images and the corresponding IR (bottom) calibration images. From the case study
roads, a database of 10,540 color and depth test image frames has been acquired and being processed.

Intrinsic calibration matrix

536.782668 0.000000 319.133028

0.000000 536.889190 258.356500

0.000000 0.000000 1.000000

Distortion calibration matrix

0.243645 �0.572745 �0.008210 0.000119

Extrinsic calibration matrix

0.999987 �0.004894 �0.001283 110.506445

�0.004661 �0.989735 0.142836 �133.830468

�0.001969 �0.142828 �0.989746 867.124291

0.000000 0.000000 0.000000 1.000000

Table 2.
Intrinsic, distortion and extrinsic calibration matrix parameters.
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available for the Kinect, online. For each input disparity map i, the plane corners
are extracted, defining a polygon. For each point xd inside the polygon, the
corresponding disparity d is used for computing a depth value zd using z ¼ 1

c1duþc0
,

where d ¼ du since the measured disparities are used, and c0 and c1 are part of the
depth camera’s intrinsics. The correspondences xd; yd; zd

� �

are used for computing

3D Xc points originating a 3D point cloud. To each 3D point cloud, a plane is fitted
using a standard total least squares algorithm.

3.4 Pothole search engine

As a pre-processing step and prior to the segmentation and clustering of the RGB
and depth data, pothole search engine (PSE) is necessary. It is then possible to
extract potholes-only images for further autonomous processing. This can be
accomplished by using a 2-class k-means clustering of the candidate RGB image
frames, and is confirmed using ellipsoidal fitting on the classified binary image
frame.

3.4.1 k-means clustering and edge ellipse fitting for pothole search

Since the data collected comprises of pothole and non-pothole pavement defect
image frames, the first preprocessing step after the calibration is to eliminate the
non-pothole images from the database. Using unsupervised classification on the
acquired RGB data frames, images with potential potholes are selected based on k-
means clustering [46], and adaptive median filtering. From the candidate potholes
images, edge lines are estimated and the corresponding ellipse(s) are fitted using
least squares optimization. This algorithm is applied in a batch processing mode,
and the efficiency of the approach is then confirmed by using visual inspection and
comparison.

3.4.2 Horizontal and vertical integral projection (HVIP)

Integral projection (IP) has the discriminative to accumulate and resolve the
pixel histograms into pothole and non-potholes pixels, by analyzing the horizontal
and vertical (HV) pixel distributions within an image, represented by horizontal
and vertical projections. Given a grayscale image I(x, y), the horizontal and vertical
IPs are defined as follows in Eqs. (15) and (16).

HP yð Þ ¼
X

i∈ xy

I i; jð Þ (15)

VP xð Þ ¼
X

j∈ yx

I i; yð Þ (16)

where HP and VP are the horizontal and vertical IP, respectively. xy and yx
denote the set of horizontal pixels at the vertical pixel y and the set of vertical pixels
at the horizontal pixel x, respectively.

3.4.3 Database search for candidate pothole image frames using ellipse fitting and HVIP

With a visual comparison of 99% efficiency for the pothole database search,
Table 3 shows the results using the pothole search engine (PSE). The ellipse detec-
tion indicates the presence of defect or no-defect within the image, and also defines
the orientation of the pothole with respect to the longitudinal profile of the road.

13

On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial…
DOI: http://dx.doi.org/10.5772/intechopen.88877



T
es
t

d
at
a

P
av

em
en

t
R
G
B

im
ag

e
fr
am

e

2-
cl
as
s
k
-m

ea
n
s
cl
as
si
fi
ca
ti
o
n
an

d

ad
ap

ti
v
e
m
ed

ia
n
-f
il
te
ri
n
g

F
it
te
d
ed

g
e
o
n
ca
n
d
id
at
e

p
o
th
o
le

im
ag

e

E
ll
ip
se
-f
it
ti
n
g
in

P
S
E
fo
r
p
o
th
o
le

p
re
se
n
ce

d
et
ec
ti
o
n

H
o
ri
zo

n
ta
l
an

d
v
er
ti
ca
l
in
te
g
ra
l

p
ro
je
ct
io
n
(H

V
IP
)
p
lo
ts

#
1

#
2

#
3

#
4

T
a
b
le

3
.

P
SE

a
n
d
H
V
-i
n
te
gr
a
l
p
ro
je
ct
io
n
se
a
rc
h
fo
r
p
ot
h
ol
e
a
n
d
n
on
-p
ot
h
ol
e
fr
a
m
es

fr
om

R
G
B
te
st
d
a
ta
.

14

Geographic Information Systems in Geospatial Intelligence



The results of horizontal and vertical IP (HVIP) analysis for several pavement
images with varied sized pixels are presented in Table 3. As observed from the test
results, a structurally healthy pavement image with non-potholes (e.g., test image
#2) is generally characterized by recognizably stable signals of both horizontal and
vertical integral projections. On the other hand, the integral projections of images
containing potholes (e.g., test images #1, #3 and #4), has peak(s) in either the
vertical or horizontal or both IPs, depending on the strength or the severity of the
pothole and lighting conditions. Where both the horizontal and vertical signals are
strong, the locations of the two peaks tend to be relatively close to each other. Thus
in addition to the ellipsoidal fitting, HVIP can effectively be used in the extraction
of pothole and non-pothole image frames in a pothole database search engine
system. In the PSE search system, data acquired under varied illumination condi-
tions were tested, to ensure the effectiveness of the system with data of different
resolutions.

4. Pothole metrology data parametrization

Figure 4 illustrates the conceptual approximation of a pothole with dimensional
parameters that define the pothole metrology as: width, depth, surface area and
volume. Assuming the potholes have the shape of a circular paraboloid, then in 2D
they can be represented by the function f x; yð Þ ¼ x2 þ y2.

4.1 Pothole depth determination using depth image

The depth-image plane (Figure 4) is one of the noise factors, whereby the plane
is not necessarily parallel to the pavement surface. The noise points, which are the
non-defect points between the pavement-pothole plane and the camera, have to be
filtered out for the accurate depth detection and the subsequent 2D-pothole detec-
tion from the depth image. The general principle of removing the outlier points
(noise), is by determining the local minimum of each column and then subtracting
from the column itself in order to extract the pothole from the rest of data [47]. The
minimum of each column defines the depth below which the pothole starts on the
road pavement surface, and is referred to as the depth-image plane. Using this
approach, the depths di including the maximum depth dimax can be quantified, and

the mean depth di for a given pothole is also computed.

Figure 4.
Representation and approximation of pothole metrology elements: depth, width, surface area and volume.
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4.2 Pothole width measurement

The width of a pothole can be defined by the semi-major a and semi-minor b
axes, on the assumption that an ellipse, based on the major path elliptic regression,
is used pothole shape extraction [48]. To determine the lateral width of the pothole,
it can be estimated using a circular paraboloid, which is an elliptical paraboloid.
And, an elliptical paraboloid is a surface with parabolic cross-sections in
2-orthogonal directions and 1-elliptical cross-section in the other orthogonal
direction. Using an edge detection algorithm, the near-true shape of the pothole is
first derived using the proposed SFCM, and then an elliptical fit is used to approx-
imate the shape, from which the axes are defined for the calculation of the surface
area and volume of the pothole.

4.3 Pothole surface area determination

In order to determine the surface area of the pothole, the optimally detected
edge is used to fit the shape of the pothole as either elliptic paraboloid or circular
paraboloid. While the former is defined by the dimensions of semi-major axis a and
semi-minor axis b, the latter is defined by the estimated radius r. The surface area is
then computed by using the surface integrals of either of the paraboloids [49], as
respectively shown in Eqs. (17) and (18) for the elliptic and circular paraboloids.

ð17Þ

Ar ¼
π

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4r2ð Þ3
q

(18)

If pixels counts are used, then Eq. (19) can be implemented, [8]. Whereby in
Eq. (19), l is the pixel size and Ip is the binary value of pixel at coordinate position
(x,y). The area Ap is estimated on the basis of the average of a 2 � 2 window.

Ap ¼ l2 �
X

x

X

y

Ip x; yð Þ (19)

4.4 Pothole volume estimation

According to [50], if T is a closed region bounded by a surface S, and F is a
vector field defined at each point of T and on its boundary surface, then

Ð Ð Ð

TFdv is
the volume integral of F through the bounded region T. As in case for the surface
area of a pothole, the area is either estimated by an elliptic paraboloid or a circular
paraboloid. The volume of the elliptic paraboloid V can be estimated according to
Eq. (20), and the volume Vr 0f the pothole is estimated using a circular paraboloid
as in Eq. (21).

V ¼
4

3
πabdmax (20)

Vr ¼
πr4

2
(21)

Since the depth for each pixel di is obtainable from the depth image, the inte-
gration of all small volumes represented by each pixel leads to the total volume of
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area within the frame [51]. Therefore the estimated volume Vd in terms of the pixel
depth is given by Eq. (22)

Vd ¼ l2p �
X

y

X

x

Id x; yð Þ � Ip x; yð Þ (22)

where Vd is the total pothole volume, and Id x; yð Þ is depth of pixel p at location
x; yð Þ.

4.5 Prototype implementation strategy for pothole detection
using low-cost sensor

Figure 5 illustrates the processing steps in implementing the detection, and
visualization potholes and related metrological parameters from the Kinect v2.0
RGB-D, based on the experimental iMMSS data capture system. In summary the
processing system should comprise of data acquisition and geometric transforma-
tion; preprocessing for noise minimization; cascaded pothole detection approach
from fused RGB-D data using dual-clustering approach comprising of k-means and
spatial fuzzy c-means, and a parallel processing system for pothole area and volume
detection from RGB and depth imagery.

Figure 5.
Processing pipelines for pothole detection based on cascaded dual-clustering and pothole metrology
quantification and visualization from multimodal iMMSS low-cost RGB-D sensor system.
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5. Some experimental results and analysis

5.1 Pothole detection using SFCM segmentation

The results for the clustering of the RGB imagery using FCM and SFCM are
comparatively presented. Where there is low spectral heterogeneity, the first Prin-
cipal Components Transform image (PCT-band 1) is used in the FCM and SFCM
clustering. The results in Table 4 shows that the inclusion of the spatial neighbor-
hood information using the SFCM, results in a more compact detection of the
potholes, by segmenting the potholes from the non-potholes and ensuring homoge-
neity within the pothole itself, hence taking the spatial cues in clustering. Further-
more, the SFCM performs much better than FCM especially under different lighting
conditions.

5.2 Pothole depth imagery representation

Defects on pavements are defined as surface deformations that are greater than a
threshold as illustrated in Figure 6(b). Since the captured depth data is corrupted
with noise, the depth-image plane as illustrated in Figure 4 (Figures 6(b) and 6
(c)), is not necessarily parallel to the surface that is under inspection. This is solved
by fitting a plane to the points in the depth image (Figure 6(b)), that are not
farther than a threshold from the IR camera (Figure 6(c)). By using the random
sample consensus (RANSAC) algorithm [52], the plane is fitted to the points, and
the depth image is subtracted from the fitted plane, with the results in Figure 6(d).
To discriminate between the depressions (potholes) and the flat regions (non-
potholes), the Otsu’s thresholding algorithm is used. Sample results of the depth-
image segmentation are sequentially presented in Figure 6.

5.3 Feature based RGB-D data fusion for enhanced pothole segmentation

In this section, an illustration on the potential of fusion of the depth and color
image at the object or feature level is demonstrated. A possible two-way fusion
approach comprising of either: (i) pre-pothole detection fusion involving the
enhancement of the color image with the depth image, or (ii) post-pothole detec-
tion fusion of the pothole defect features as independently determined from the
RGB and depth images respectively is proposed and conceptually represented in
Figure 7. The first approach presents a joint segmentation approach, which is
similar to extracting consistent layers from the image where each layer segment in
terms of both color and depth. It is common for real scene object, like pavement
pothole surfaces, to be characterized by different intensities and a small range of
depths. The incorporation of the depth information into the segmentation process,
allows for the detection of real pothole object boundaries instead of just coherent
color regions, and the objective is to enhance the application relevant features in the
resultant fused image product.

The potential and significance of fusion of RGB and depth imagery is illustrated
in Figures 8 and 9, using the pothole edge identification from the RGB and depth
image data. Figure 8 shows an RGB and depth (RGB-D) single frame pavement
data acquired Kinect experimental setup. The RGB is smoothened (left frame) using
the median filter, while hole-filling using the joint bilateral filter is applied to the
depth image (right frame). It is observed that the two images complement each
other. Comparing the corrected image datasets, it is observed that the depth image
clearly defines the pothole edges as compared to the fuzzy representation of the
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edges by the color image (Figure 9). This implies that it is possible to improve the
pothole detection from RGB imagery through fusion of the RGB and depth image
datasets (feature fusion) or through post-segmentation fusion (object fusion). For
this chapter, only a discussion and potential illustration is presented.

5.4 Evaluation of results and quantification of pothole metrology parameters

An evaluation of the low-cost pavement pothole detection system is carried out
using 55 depth image frames comprising of 35 images with potholes and 20 defect-
free frames were evaluated. The results of the illustrative evaluation are presented
in Tables 5 and 6, respectively in terms of the confusion matrix and the overall
performance indices: TP, TN, FP, and FN which respectively represent the true
positive, true negative, false positive and false negative. In Table 6, accuracy is
defined as the proportion of the true classifications in the test dataset, while preci-
sion is the proportion of true positive classifications against all positive

Figure 6.
(a) Pothole depth image. (b) Corresponding depth data to RGB image in (a). (c) Plane fitting using
RANSAC [52]. (c) Relative depth obtained from subtracting the depth values from the fitted plane.
(d) Rotated gray-scale representation of the relative depth values. (e) Detected pothole defect obtained from
binarizing image (d) using the Otsu’s thresholding. (f) Depth map of the detected pothole with dimensions in
millimeters (cm).
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classifications. The overall results show that the detection rate for potholes was at
82.8% degree of accuracy.

In terms of the pothole metrology measurements, Table 7 presents a sample
summary of the results for the metrologic data quantification as characterized by:
length and width, mean depth, mean surface area and volume of the potholes
within image frames, and the resulting relative errors. From the results in Table 7,
it is observed that while for some pothole defects the estimated dimensions are close
to the ground-truth manual measurements, in few cases i.e., less 25% of the images,
the relative error is more than 20%. This observed error magnitude in the pothole-
detection system was attributed to the shape and edge complexity of the potholes,
which are mathematically complex to represent and estimate appropriately and
accurately as demonstrated in Figure 6.

Figure 7.
Conceptual framework for the RGB-D pothole defect detection based on pre-detection image feature fusion and
post-detection object fusion.

Figure 8.
Comparing RGB imagery (a) and filtered depth map for pothole and non-pothole mapping on asphalt
pavement.
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Figure 9.
Illustration of the significance of depth in pothole edge mapping in relation to pothole data fusion and improved
detection. (i) RGB image. (ii) Depth map.

Prediction Ground truth

Classified Defective Defect-free

Defective (potholes) TP = 40 FP = 5

Defect-free (non-potholes) FN = 15 TN = 50

Table 5.
Confusion matrix of the evaluated pothole-defect detection system.

Index Accuracy (%) Precision (%) Recall (%)

Value 82.8 88.8 72.7

Table 6.
Overall performance of the pothole-defect detection system.
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6. Conclusions

This chapter presents a robust approach for cost-effect detection of potholes on
asphalt pavements. By first proposing a system for pavement surface mapping using
Kinect v2.o and based on the iMMSS hardware-software system, the implementa-
tion first incorporates k-means clustering and horizontal-vertical integration as data
search or filtering algorithms, followed with spatial fuzzy c-means (SPCM) seg-
mentation for pothole and non-pothole detection. The results of the processing
illustrates the potential of using RGB and depth image in the detection of potholes
based on low-cost consumer grade sensors, and shows the potential of fusing
RGB + depth data for improved pothole detection.

From the experimental analysis, it is conclusive that using a single Kinect may
not only limit the maximum traveling speed for data collection, but does not also
cover the whole width of a traffic lane. This means that the field of view (FOV) can
be increased by determining and using an array of Kinect sensors so that the lateral
data collection extent can be increased. Further, the development of suitable depth
and RGB fusion should be investigated both at object and at feature fusion levels.

In summary, it is demonstrated that low-cost and high-performance vision and
depth sensors are capable of providing new possibilities for achieving autonomous
inspection of pavement structures, and are suitable for overcoming the spatial and
temporal limitations associated with both the manual human-based inspection and
the expensive techniques. Overall, the findings of the study are significant, in terms
of the new data and their processing challenges and results.
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Defect

ID#

Ground-truth Proposed

method

Relative error Proposed iMMSS method

Length

(cm)

Width

(cm)

Length

(cm)

Width

(cm)

Length

(%)

Width

(%)

Mean

depth

(cm)

Mean

area

(cm2)

Volume

(cm3)

1 53.5 48.8 52.2 45.4 2.43 7.00 4.4 21.38 94.072

6 26.1 17.8 29.1 13.9 11.49 28.26 5.6 27.21 152.376

11 64.4 60.1 60.9 63.4 5.43 5.49 3.8 18.46 70.148

27 45.9 47.7 42.0 46.3 8.50 2.94 .59 28.66 169.094

Table 7.
Sample comparison of detected pothole metrological parameters with ground-truth measurements.
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