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Abstract

This chapter describes the determination of amplifying parameters in rare–earth–doped
optical fiber laser amplifiers. In the context of this review, the system will be analyzed
under both continuous–wave (CW) and pulse conditions. A comprehensive analysis has
been implemented using the set of coupled propagation rate equations based on the
atomic energy structure of dopant as well as the absorption and emission cross sections.

Regarding the spectral line broadening associated with a suitable amplification relation,
gain and saturation can be acquired for various pumping schemes including co– or coun‐
ter–propagation and the bidirectional modes.

It was shown that the gain and saturation properties are strongly dependent on the pump
power, dopant concentration, and fiber length mainly due to the dominant effect of the
overlapping factor of dual–clad fibers.

Keywords: Gain, Saturation, ASE parasitic noises, Broadening, Amplification relation,
Filling (overlapping) factor

1. Introduction

Recently, intense activities have been devoted to characterize rare–earth–doped double–clad
fiber laser amplifiers. Owing to their compactness, superb beam quality, great thermal control,
and high efficiency, they demonstrate to be important light sources in medicine, modern
telecommunication [1], and industries [2, 3]. Progress has been made in developing a fiber–
based source in which the mean power scales up to several kilowatts.

The purpose of the fiber amplifier is to intensify a less powerful optical beam, which propagates
either inside another fiber or in free space. In this way, the amplifier is “seeded” with a low–
power laser beam. As it is known from the main principles of laser physics, the laser oscillator
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is a device that contains an optical amplifier and puts inside a resonator to provide positive
feedback.

The fiber amplifiers are fundamentally divided into core–pumped and cladding–pumped [4]
according to the environment of the pump propagation. In the former classification, the
amplifying light propagates in the same volume where laser gain media is located, while in
the latter, the pump is coupled and propagates outside the core of the doped fiber. The same
classification is valid for fiber laser oscillators. Cladding–pumped amplification technique is
a hot topic in laser science and technology for high–power regimes, which is the focus of this
chapter.

After the invention of the dual–clad fibers, the output powers of the doped fiber lasers have
been lifted by several orders of magnitude, and immense activities have been devoted to
relevant topics. These systems demonstrate several inherent features including [5] non–
uniformly distributed population inversion due to end pumping as well as very high gain even
in single–pass amplification by a large ratio of gain length to cross–sectional area.

In addition, both neodymium (Nd) and ytterbium (Yb) are suitable doping elements for high–
power regime. Despite the fact that Nd has a relatively low laser threshold, Yb–doped double–
clad fiber amplifiers present the prospects for a number of interesting applications due to the
broad gain bandwidth with excellent beam quality, renowned as potential sources accessible
to high–pump absorption, leading to ultimate efficiency [5, 6]. Furthermore, the benefits from
efficient performance, small quantum defects, and superb spectroscopic characteristics as well
as free competition processes are competitive with other rare–earth dopants. Particularly, the
capability of generating high powers makes them very attractive wherein the output power
up to 10/50 kW at CW single–mode/multi–mode schemes has been recently reported.

Besides, a fiber amplifier is characterized by a couple of significant coefficients, i.e., the small
signal gain and the saturation quantity. In this chapter, a theoretical consideration of the CW
and pulsed fiber arrays is reviewed, followed by the derived main formulas that are important
for practical design. In Section 2, a brief description has been devoted to various types of laser
amplifiers, operating based on the stimulated emission and optical nonlinearities. An extensive
analysis is given in Section 3, regarding the set of coupled propagation rate equations accom‐
panied with the effect of amplified spontaneous emission (ASE) parasitic noises for various
pumping modes based on the atomic energy structure of dopants. The serious spectral line
broadening mechanisms of gain media is described in Section 4. Eventually, the main issue of
relevant amplification relation has been investigated in order to find the corresponding gain
saturation parameters.

2. Various types of fiber laser amplifiers

Different kinds of laser amplifiers operate based on the stimulated emission amplification
principle, or established upon optical nonlinearities, e.g., Raman or Brillouin amplifiers as well
as optical parametric amplifiers (OPAs).
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Raman–based fiber laser amplifier is one approach that has attracted several groups [7–13].
Here, the governed amplification process is the stimulated Raman scattering (SRS) in the fiber
which causes an energy transfer from the pump to the signal. In fact, the vibrational spectrum
of core material defines the Raman shift. If the wavelength of laser beam signal is known, then
the optimum wavelength for pump signal can be calculated.

Commonly, Raman fiber lasers and amplifiers are not considered as ways for generating high–
power narrow–linewidth lasers. For high–efficient operations, typically hundreds of meters
of fiber are necessary to provide enough gain.

On the contrary, the optical gain is obtained by stimulated Brillouin scattering (SBS) in the
Brillouin fiber amplifiers. It is also pumped optically, and a part of the pump power is
transmitted to the signal through SBS. Physically, each pump photon creates a signal photon,
and the remaining energy is used to excite an acoustic phonon [14]. Classically, the pump beam
gets scattered from an acoustic wave moving through the medium at the speed of sound.

Moreover, the fiber–based OPA is a well–known technique offering a wide gain bandwidth
using only a few hundred meters of fiber [15]. This phenomenon is strictly operated based on
four–wave mixing (FWM) and phase–matching nonlinearities [16] in which a couple of
interacting photons over two wavelength bands, also called pump and idler, usually travel
collinearly through a nonlinear optical crystal, creating signal and idler output photons.
During this phenomenon, pump light beam becomes weaker and amplifies the idler wave.

For birefringent nonlinear crystals, the collinear incident beams may non–collinearly scatter
outside the crystal. Non–collinear OPAs were developed to have additional degree of freedom
for central wavelength selection, allowing constant gain up to second order in wavelength.

3. Theory

3.1. Absorption and emission cross sections

All rare–earth–doped fiber amplifiers intensify the seed signal light through stimulated
emission. The local rate equations describe the dynamics of the emission and absorption
processes of doping ions within its host material by making use of its atomic energy structure
as well as spectroscopic properties [17]. The relation between the emission and absorption
cross sections for two energy–level gain media is determined using McCumber theory, which
satisfies the following formula [18]:
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where σa and σe are the absorption and emission cross sections, h , ν, KB,  and T  depict the
Planck constant, frequency of light, Boltzmann constant, and the absolute temperature in
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Kelvin, respectively. Moreover, ε(T ) shows the mean transition energy between two manifolds
at temperature T . This quantity, which depends on the temperature but not on the optical
frequency, can be calculated from the energies of the single Stark levels. Otherwise, one can
obtain an estimation regarding the assumption that the energy levels within each Stark
manifold are equidistant [19]. Alternatively, ε(T ) can be calibrated, e.g., using the reciprocity
method or the Füchtbauer–Ladenburg equation. On the contrary,

( ) 1 2 1

B 2 B

exp exp
T Z E E

K T Z K T
eæ ö æ ö-

=ç ÷ ç ÷ç ÷ç ÷ è øè ø
(2)

where Z1 and Z2 are the partition functions, and E1 (E2) is the first (second) energy level. For
Yb–doped gain mediums, ε(T ) is often close to the photon energy of the zero–phonon
transition, i.e., the transition between the lowest sublevels of both manifolds. Furthermore, at
λ =975 nm, ε(T )=hν becomes equal to 1.27 eV, which leads to σe =σa. An additional formula is
provided by the McCumber analysis, linking the radiative lifetime and the emission cross
section as follows:
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1 8 n d
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Here, τ indicates the lifetime of the excited state level of atoms, n is the refractive index of the
gain media, and C denotes the speed of light in vacuum. As an example, Figure 1 demon‐
strates a model for the Yb3+ ions energy–level structure, consisting of two manifolds: a ground
state 2F7/2 (with four Stark levels labeled L0, L1, L2, and L3) and a well–separated excited state 2F5/2

(with three Stark levels labeled U0, U1,  and U2), which is seated ~10000 cm−1 above the ground
level. This is the reason why there is no excited state absorption (ESA) at either the pump or
laser wavelengths [6]. This large energy gap also precludes the concentration quenching and
the nonradiative decay via multiphonon emission from 2F5/2 even in a host of high phonon energy
such as silica. The energy band diagram for the lasing material is a quasi–three–level system [20].

The first transition between two Yb manifolds is the absorption and emission of the pump.
Afterward, the spontaneous decay from the 2F5/2 manifold, as well as the absorption, and
stimulated emission of the signal simultaneously appear.

Absorption and stimulated emission cross sections of Yb–doped silica glass optical fibers are
shown in the spectroscopic diagram in Figure 2. The absorption or fluorescence peak at 975
nm (A) represents the zero–line transition between the lowest energy levels of the ground state
(L0) and the excited state (U0) in the manifold. The laser operation at 975 nm is a three–level
process because the emission is due to a transition to the lowest Stark level. The absorption
peak at shorter wavelength (B) corresponds to a transition from the ground level L0 to either
of the excited level U1 and U2. The absorption peak at longer wavelength (C) is attributed to
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the transition from level L1 which can produce reabsorption and leads to higher thresholds in
the Yb3+ laser systems working around 1 μm.

Figure 2. Typical absorption and emission spectra of Yb3+ ions in germanosilicate host [21]

In addition, the emission spectrum peak (D) corresponds to the energy transfer from level U0

to the levels L1, L2,  and L3, while that at (E) belongs to the transition from level U1, generating
weak emissions around 900 nm. The broad absorption spectrum of Yb3+ ions enables the easy
configuration of the pump wavelength. Depending on the requirement of the laser system, the
laser signal wavelength can be configured in the range from 970 nm to 1200 nm due to the
wide emission spectrum of Yb.

Figure 1. Energy–level diagram of Yb:silica glass
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3.2. Rate equations

Amplifier characteristics, comprising the operating wavelength and the gain bandwidth, are
determined by the dopants rather than by the host medium. However, because of the tight
confinement of light provided by guided modes, fiber amplifiers can provide high optical gains
at moderate pump intensity levels over relatively large spectral bandwidths, making them
suitable for many telecommunications and signal–processing applications [22].

Currently, the rate equations are known as the most powerful tools to foresee the laser
amplifier features associated with the non–uniform pumping along the laser length [23–31].
Here, the rate equations for the quasi–three–energy–level structures are typically introduced
with the definition of the relevant parameters. Using the fourth–order Runge–Kutta method,
the effect of ASE parasitic noises and gain can be considered to assess the efficiency. The
performance of amplifiers also depends on the rates of radiative and nonradiative decays
caused by several mechanisms related to lattice vibrations, ion–ion interactions, and cooper‐
ative up–conversion to higher levels [32].

In the case of fiber amplifier as a single–pass array without reflectors, the backward signal
intensity, I −(z, t , λ), is equal to zero. Therefore, the set of coupled propagation rate equations
accompanied with ASE in the pulsed regime can be organized as follows [33–35]:
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where the superscripts “±” describe the traveling directions of the light waves along the fiber
propagation axis (z). Furthermore, p, s, and A subscript indexes define the parameters at the
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pump, laser, and ASE wavelengths. The notation I  denotes the intensity of the pump, lasing,
or ASE radiations, and I tot(z, t , λ), which stands for the total intensity, is the summation of
forward, I +(z, t , λ), and backward, I −(z, t , λ), beams. Hence, some pumping modes are
considered, including co–propagation, since both the signal and pump intensities are injected
at z =0 and propagate in the same direction or counter–propagation since the pump intensity
is entered at z = L  (the signal and pump propagate in the opposite directions). When the pump
injects in both fiber ends, it results in the bidirectional configuration.

Furthermore, N1(z, t , λ) and N2(z, t , λ) represent the population of the ground state as well as
the upper lasing level of atoms, accordingly. N (z, t , λ)=N1(z, t , λ) + N2(z, t , λ) describes the
dopant concentration per unit volume, σ tot is equal to (σa + σe), and λ is the wavelength of the
light. The absorption of excited state level at the pump wavelength is indicated by σ24 which
is independent on the population of the upper level of laser.

In order to solve these equations, the cooperative up–conversion coefficient (Cup) must be
known. According to the model mentioned in [36], it can be expressed as

6
0

up 3
4
3
RC
R

p
t

= (8)

where R shows the average separation between various uniformly distributed ions, R0

demonstrates a critical interaction distance, and τ =1 / A21. Neglecting the formation of ion pairs,
we can approximately consider

up6
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On the contrary, the local intensity per unit wavelength, I0(λ)≅2mh C 2(1 / Acore)Δλs /λs
3 [37], is

a constant parameter accounting for the contribution of the spontaneous emission into the
propagating single transverse laser mode with the spectral bandwidth Δλ, where the factor
two arises from a couple of orthogonal polarization directions. The parameter m exhibits the
number of transverse modes inside the fiber which is unity for monomode fibers.

In low–power communication fiber amplifiers, the core and cladding structures are centro‐
symmetric having circular cross sections. In order to remove this power limitation, an
intelligent solution was proposed in 1988 by Snitzer and coworkers, namely double–clad
fibers. At this model, the fiber core is off–centered or the inner cladding form is triangular,
rectangular, hexagonal, elliptical, D–shaped, and so on, where the rays scatter in many
accessible directions [25, 38, 39]. Hereupon, the pump light helically propagates through the
clad and interacts with the active core. The pump overlapping factor (Γp) states that how much
of the pump mode intensity actually coupled to the gain media. Assuming a spatially uniform
pump distribution over the inner clad cross section, Γp can be estimated approximately by
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where a stands for the core radius of active fiber and Acore and Aclad for the mode field area of
the core and the multimode first cladding, respectively. On the contrary, the signal filling factor
provides a figure of interaction between the optical modes at the signal radiation and the
dopant ions profile. The spatial overlap integral due to the signal indicates that [25, 40, 41]
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For single–clad fibers, the dimensionless coefficient Γs(λ) is equal to unity, while it is smaller
than unity (0.6–0.86) in double–clad fibers. Apparently, Γs is a function of the pump intensity
which approaches a saturated value at high pumping rates [42]. Furthermore, I core and I clad

are defined as the intensity confined in the core and inner cladding, respectively [25], which
can be theoretically expressed as follows [41]:
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Here, ψ(r , φ, λ) shows the normalized transverse envelope of the modal field intensity, and
J (K ) demonstrates the Bessel function (modified Bessel function) inside (outside) the fiber core.
Parameters U  and W  are determined by the characteristic equations that satisfy the boundary
conditions at r =a, namely [43]:

2 2 2
core 0U a n k b= - (14)

2 2 2
clad 0W a n kb= - (15)

where ncore and nclad denote the refractive indices of the fiber core and inner cladding, respec‐
tively. The propagation constant β of any mode of fiber is limited within the interval
ncorek0≥β ≥ncladk0 which can be defined as β =neffk0. In this equation, neff is the effective refractive
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index and k0 =2π /λ0 is the wave number in free space. The intensity profile |ψ(r , φ, λ)| 2

resembles the linearly polarized L Plm modes. In terms of normalized electromagnetic field
distribution of the fiber [44], we find that

( ) ( ) ( )
2 2

*
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, , , ˆ, , , .  1r rdrd Re E r H r z rdrd
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ò ò ò ò (16)

where E and H depict the electric and magnet fields of the propagation mode, respectively,
and the versor of the z propagation direction is indicated by ẑ. In the case of a Gaussian
envelope approximation [45], the distribution of signal overlapping factor is as follows:
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where b shows the radius of doped area, and ωs(λ) is 1 / e 2 of the intensity profile radius at the
given wavelength calculated from the polynomial form [46]:

( ) ( ) ( )1.5 6
s 1 2 3/ /a A A V A Vw l l lé ù= + +ë û (18)

On the one hand, the normalized frequency is defined as V =2πa.NA /λs, where NA represents
the corresponding numerical aperture. For single–mode fibers, V  could be smaller than 2.405
which hints that the core supports only the fundamental transverse L P01 mode.

On the other hand, along with the signal, the spontaneous emission is also intensified. In fact,
the parasitic ASE noises cause the degradation of the signal–to–noise ratio (SNR) [47–49]. It is
due to the lack of reflectors such as fiber Bragg gratins (FBGs) or dichroic mirrors in the
amplifier stage, while the selective wavelength oscillates in the oscillator. The evolution
formula for the ASE intensities propagating in a given direction is written according to Eq.
(7). The total ASE noise at point z along the fiber is the consequence of the intensity of ASE
from the previous sections of the fiber accompanying the local intensity I0(λ) due to sponta‐
neous emission. The modified population inversion deals with the ASE terms too.

The positive scattering parameter αRS(λ)=B /λ 4 includes the losses due to Rayleigh scattering.
The Rayleigh scattering coefficient B of pure silica is found to be ~0.63 dBμm4/km, and S
denotes the capture fraction by the fiber, such that a fraction S .αRS(λ)=1.3×10−7m−1 [50] is
recaptured by the fiber. The capture fraction is defined as the proportion of the total energy
scattered at z which is recaptured by the fiber in the return direction that increases with (NA)2

[48, 51, 52].
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In addition, ΓA is defined as ASE filling factor which arises from the interaction between ASE
modes and core dopant concentration, and αA displays the ASE scattering loss. For simplicity,
ΓA and αA for various ASE peaks presume to be identical to the main signal in the vicinity of
λs. The ASE spectrum is divided into several channels with spectral width Δλ, whereas the
signal channel width Δλs is much smaller than the former, i.e., Δλs≪Δλ. The ASE intensities

IA
±(z, t , λj) actually propagate in the positive and the negative z –directions, both in co– and

counter-propagation with the signal. Hence, the total ASE parasitic noise is stated by intro‐
ducing forward and backward ASE components at any point of the fiber, namely

( ) ( ) ( )tot
A j A A j, , , , , ,jI z t I z t I z tl l l+ -= + (19)

It is worth noting that the boundary conditions for the ASE channels are given by
IA

+(0)= IA
−(L )=0.

Furthermore, Rayleigh backscattering (RBS) is another important issue that affects the
performance of the signal source, unless the optical isolators are well employed [48, 49, 53].
When ASE and RBS are intense enough, these may restrict the amplifier gain leading to a drop
in the efficiency in many applications. In the case of strongly pumped condition, RBS at the
ASE wavelengths can be ignored mainly due to the reduction of ASE to get significantly weaker
than the signal [54]. Here, we assume that
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Thus, the rate equations at signal wavelength can be simplified as follows:
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However, in the case of CW fiber amplifiers, disregarding ESA and cooperative up–conversion,
the set of first–order coupled nonlinear time–independent steady–state (∂/∂t →  0) differential
equations of an end–pumped configuration is realized by [28, 34, 37]
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It is worth mentioning that there are no significant nonlinear optical effects such as SBS and
SRS as well as thermal damages up to 50 W–CW single–mode pump powers [5]. In addition,
the dipole–dipole interaction, clustering, and quenching are serious only in highly doping
elements.

3.3. Gain saturation

Tremendous efforts were made to develop the fiber amplifiers during the recent decade.
Indeed, the amplifier is characterized by very important and unique gain and saturation
parameters [55–60] that are often used to analyze and compare different gain mediums in
certain applications.
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The advantages of operating in the gain saturation regime are mainly summarized as follows [4]:

1. Small fluctuations in the input signal do not reflect the same extent in the output amplified
signal.

2. The fiber amplifier, which has multiple spectrally close input signals with varied intensity,
may work as a gain equalizer because smaller input signal powers have higher gain
(through less saturation), and higher input powers have lower gain (due to a higher degree
of saturation).

3. A saturated optical amplifier demonstrates a high–energy extraction efficiency; therefore,
the overall efficiency of the system is high.

According to theoretical analysis, high–input optical fluence does not increase indefinitely in
an amplifier but rather saturates, leading to amplifier gain reduction. Obviously, even from
the general consideration of energy conservation, the gain of the amplifier has to saturate,
because one cannot extract more power from the amplifier than it was excited (pumped) with.

The emission and absorption cross sections are used to introduce the gain coefficient. Accord‐
ing to Eq. (28), the gain for signal radiation after simplification can be defined as follows:

( ) ( ) ( )s s es 2 as 1z N z N zg s sé ù= G -ë û (30)

In a fiber amplifier, it depends on the distance z from its input end. By substituting Eq. (26)
into Eq. (30) and ignoring ASE noises, the gain is rearranged in the following formalism:

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1 tot
core s p p ap es ep as p s as

s 1 1tot tot tot
core p p p p core s s s s1

hCA N P z N
z

hCA P z hCA P z

l t s s s s s
g

l ts l ts

-

- - +

G G - - G
=

G + + G
(31)

Due to high signal power, which saturates the gain, the first term of the dominator is small
enough with respect to others. Assuming σas≪σes in the numerator, γs(z) is given by [5, 26]
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p ap p s p s s as

s sat
s s

/ /

1 /

N P z P z N
z

P z P z

s l l s
g

+

é ùG - Gë û=
+

(32)

where the signal saturation power is introduced as follows:

( ) ( )
sat core

s
s s as es

hCAP z
l s s t

=
G + (33)

It decreases the small–signal gain by a factor of one–half equivalent to a 3 dB reduction in gain
[49]. It is worth mentioning that not only Ps

sat(z) relies on the photon energy of the seed signal,
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the mode field area, the upper state lifetime, the absorption, and stimulated emission cross
sections of the gain media, but it also strongly correlates to the signal overlapping factor.
Combining Eqs (11) and (33), we imply that Ps

sat(z) is a linear function of pump and signal
powers in CW regime, namely

( ) ( )
core clad

sat core
s core

s as es

hCA P PP z
Pl s s t
+

=
+

(34)

From another point of view, the gain coefficient in the steady–state condition can be explained
by

( ) ( )
( ) ( )

0
s sat

s s1 /
z

z
P z P z

g
g

+
=

+
(35)

where γ0(z) is the small–signal gain. The role of the term Ps
+(z) / Ps

sat(z) is to reduce the gain as
signal power increases in the fiber. This phenomenon is common to all amplifiers and is
referred to as gain saturation. If the amplifier operates at power levels such that
Ps

+(z) / Ps
sat(z)≪1 for all z, the amplifier is said to operate in the unsaturated regime. Moreover,

by comparing Eqs (32) and (35), the theoretical term for the maximum value of the gain at
distance z is given by [5, 26]

( ) ( ) ( ) ( )tot sat
0 p ap p s p s s as/ /z N P z P z Ng s l l sé ù= G - Gë û (36)

Let us assume a doped dual–clad fiber amplifier with length L ,  such that pumping light is
injected into the inner clad, and the laser seed is transmitted into the active medium. In strongly
pumped single–pass fiber amplifier, N2(z) is presumed to be much smaller than N  over a
significant part of the cavity length, such that Eq. (27) becomes analytically integrable to yield
the axial backward and forward propagation pump powers along the fiber core according to
the Lambert–Beer (L–B) law:

( ) ( ) ( ) ( ) ( ) ( )tot
p p p p p0 z LzP z P z P z P e P L eaa -+ - + - -= + = + (37)

where Pp
+(0) and Pp

−(L ) are the pump powers injected in both fiber ends at z =0 and z = L ,
respectively. In fact, the total attenuation α includes the scattering and pump absorption losses,
namely

p p apNa a s= + G (38)
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Here, αp depicts the absorption coefficient of the core at the pump wavelength due to scattering
loss. Taking average over the fiber length, the effective small–signal gain coefficient per unit
length is written in terms of α consequently [56]:

( )0 0
0

1 L

z dz
L

g g= ò (39)

Hence

( )( ) ( ) ( ) ( )p p p
0 p s s assat

s

0
1 / / 1 1 L P P L
L e N

P
a

a
g l l s

a

+ -
-

æ öæ ö +
ç ÷= - - - Gç ÷ç ÷ ç ÷è ø è ø

(40)

In the general case of the varied inversion along the gain fiber, the absolute gain factor should
be integrated along the entire fiber length [4]:

( )0
0

exp
L

g z dzg
æ ö

= ç ÷ç ÷
è ø
ò (41)

Accordingly, the gain and saturation properties are strongly dependent on the pump power,
dopant concentration, fiber length, as well as the pumping modes (co–/counter–propagation
and bidirectional pumping) mainly due to the dominant effect of the filling factors [26, 61, 62].

In return, if optical pulses are amplified, the gain coefficient associates with the elapsed time
t due to N2(z, t). Therefore, the gain can be expressed as follows:

( ) ( )
( ) ( )

0
s sat

s s1 /
z

z
I z I z
g

g
+

=
+

(42)

where Is+(z) is the amplified light intensity, and Issat(z) is the so–called gain saturation param‐
eter, defined as an intensity of the amplifying beam in active medium at which the small–signal
(unsaturated) gain coefficient is reduced by 50% (i.e., half). In turn, the gain saturation
parameter with good approximation can be clarified as the following general formula:

( ) ( )
sat
s

s s as es

hCI z
l s s t

=
G + (43)

4. The spectral line broadening

The nature of spectral line broadening plays a very important role in the performance of the
fiber laser amplifiers. The stimulated emission cross section is conventionally rewritten by
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( ) ( )
2

e 28
g

n
ls n n
p t

= (44)

where g(ν) indicates the spectral line shape. Using Eqs (33), (40), and (43), one can realize that
the amplifying parameters, i.e., the small–signal gain and the saturation intensity/power are
believed to be correlated to the line shape and the consequent broadened linewidth.

The spectral line broadening at room temperature (300 K) smooths the overall line shape, which
becomes resolved only at low temperatures [4]. With a temperature decrease, Stark level
structure becomes more and more evident and determines the line shape characteristic profile.

In the case of rare–earth–doped fiber oscillator and amplifier, different types of broadenings
exist. These include strong homogeneous as well as the inhomogeneous broadenings [56, 63].
The designation of whether the transition line shape is homogeneously or inhomogeneously
broadened is based on whether the lines are from the same type of centers or from different
sorts.

Usually, a homogeneous broadening is explained by the random perturbation of a similar type
of optical centers, while that from different kinds is responsible for inhomogeneously broad‐
ened lines [4]. Such kinds of interaction result in the shortening of the excited state lifetime of
the optical center.

Therefore, the homogeneous broadening is inherent to each atom in a medium as depicted in
Figure 3(a). It can be spontaneous broadening, Stark broadening, collision broadening, thermal
and dipolar, and so on. The spontaneous broadening is a primary broadening yielded from
the lifetime of a pumping level and the frequency uncertainty. The Stark broadening is due to
the degeneration of energy level caused by external electric field, making the lifetime very
short and the spectral width very large. Moreover, the collision broadening is dominant for
gas lasers as excimer lasers operate with high gas pressure discharge.
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Figure 3. (a) Homogeneous and (b) inhomogeneous broadenings

Conversely, the inhomogeneous broadening of the optical center’s line shape during a
transition between energy levels originates from a local site–to–site variation in the optical
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center’s surrounding field in the lattice environment. The strength and symmetry of the field
around the rare–earth ion determine the spectral properties of the optical transitions, as well
as the transition strength. According to Figure 3(b), in the case of inhomogeneous broadening,
the overall shape of the spectral line is a superposition of all individual, homogeneously
broadened lines corresponding to different types of the optical centers. Hence, this is a
phenomenon that various frequencies are generated by a variety of influences, and the
spectrum is broadened.

The inhomogeneous broadening can be a strain caused by lattice defect or inhomogeneity of
magnetic or electric field (crystalline field) for solid–state lasers and Doppler broadening for
gas lasers.

In a crystal of solid–state laser, the crystalline field is not uniform since the crystal is imperfect.
As a result, a large inhomogeneous broadening is yielded. In a glass doped with rare–earth
ions, the inhomogeneous width is relatively largely broadened compared with the crystalline
solid–state laser. The amorphous nature of the glass, random distribution of dopants, and host
material imperfection lead to site–to–site variations of the local electric field, producing a
degree of inhomogeneous broadening in the system which results in spectral hole burning
(SHB).

Indeed, the optical transition line shape in the case of homogeneous broadening is described
by a Lorentzian function given by

( )
( )

h
L 2 2 2

h 0 h

( / 2)1 
2 ( / 2)

g n
n

p n n n

D
=

- + D
(45)

where ν0 is the central frequency of the optical transition, and Δνh represents the transition

spectral line full width at half maximum (FWHM) as well as ∫
−∞

+∞

gL(ν, ν0)dν =1. Figure 4 shows

Lorentzian/Gaussian function in the case of homogeneous/inhomogeneous broadening.

Subsequently, the line shape of the inhomogeneously broadened optical transition corre‐
sponds to the Gaussian line profile, which can be expressed as the following function of
frequency:

( )
( )

2

inh 0 h
G 2 2

inh inh 0 h

( / 2)2 ln2 exp ln2
/ 2 ( / 2)

g n n n
n

n p n n n n

é ùæ ö- Dê ú= - ç ÷ç ÷ê úD D - + Dè øë û
(46)

where Δνinh is the FWHM of the inhomogeneously broadened line. Concluded by the optical
center surrounding fields, the inhomogeneous linewidth is insensitive to the temperature of
the host material.
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5. Amplification relations

The state–of–the–art fiber amplifiers are significantly related to the determination of amplify‐
ing parameters (gain and saturation) which are not explicitly introduced into the rate equa‐
tions; however, these can be obtained by using a suitable amplification relation. It is applicable
for the homogeneous line broadening in Yb:silica fiber amplifiers [63] as well as the Er–doped
silica fiber lasers with inhomogeneous line broadening.

In general, the laser amplification consists of a couple of distinct transient (short pulse) and
steady–state (long pulse) regimes. The gain and saturation values can be estimated by
numerically solving the amplification relations performing the best fitting based on least
square method (LSM).

5.1. Pulsed regime

In the transient form of the amplification relation, the input pulse is considerably shorter than
the fluorescence lifetime of the medium, such as Q–switched or mode–locked pulses with
inhomogeneous gain media. The propagation rate equations are the best procedure to simulate
the amplified signal energy released from the stimulated emission. This process depends on
the energy stored in the upper laser level prior to the synchronization situation of the pumped
atoms and incident seed signal. Furthermore, the time–dependent photon transport equation
can be utilized to evaluate how an inverted population affects the distribution of a pulse
traversing through the amplifier. Hopf [65] and Frontz–Nodvik [66] solved the nonlinear
equations for various types of input pulse shapes to obtain the inverted electron population
and the photon flux, while the input signal to the amplifier was taken as a square pulse of
duration τ. Finally, the transient amplification relation is given by

Figure 4. Lorentzian–shaped and Gaussian–shaped spectra [64]
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(47)

where Ein and Eout denote the input and output signal energy and Es
sat the saturation energy

derived from the instantaneous rate equations of the optical pulse, respectively.

For the pulses whose shapes are sufficiently near the eigen–function for the propagation in the
amplifying medium, the change in the average temporal width of the pulse can be reasonably
expected to be negligible. In such cases, the approximation En =τ × In is justified where n can
be designated as input, output, or saturation. With this substitution, Eq. (47) can be rewritten
as [59]

( )in
0sat
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ln 1 exp 1 expI L
I

g
ì üé ùæ öï ï= + -ê úç ÷í ýç ÷ê úï ïè øë ûî þ

sat
out sI I (48)

where Issat , is the effective saturation intensity:

sat2
s2

t I
t

=sat
sI (49)

Here, t2 is the upper level lifetime of the transition.

5.2. CW regime

For the seed signal, which is long compared to the fluorescent time including the free running
oscillator or the CW seed laser [5, 67, 68] under homogeneous line broadening, a Hargrove [69]
steady–state gain characterizes the amplification mechanism as follows [5, 6]:

( ) out in
out in 0sat

s

ln /
P PP P L
P

g
-

- = - (50)

Here, Pin (Pout) represents the input (output) signal power to the amplifier. This equation can
be simplified using mathematical derivations such that [70]
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where W  shows the Lambert W  –Function to be defined by the series expansion [71]:

( ) ( )
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-
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-å (52)

In addition, in the limiting cases

( ) sat
out in 0 in sexpP P L P Pg= = (53)

sat sat
out in s 0 in sP P P L P Pg= + ? (54)

These relations indicate that for low–input powers, the overall gain (G =Pout / Pin) is nonlinearly
proportional to gain–length product, and the gain coefficient becomes equal to the small–signal
gain. In contrast, the gain reduces to the saturated value for the high–input signals.

A straightforward integration shows that the CW gain of the amplifier is considered by

( ) ( )
0

exp ,
L

G g z dzn n
é ù

= ê ú
ê úë û
ò (55)

The origin of gain saturation lies in the power dependence of the gain coefficient. Since g(z, ν)

is diminished when Pin becomes comparable to Ps
sat, the amplification factor G is also expected

to decrease.
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