Proton therapy for craniospinal radiochemotherapy reduces myelotoxicity and improves chemotherapy completion in adult medulloblastoma

Connor Lynch^a, Katarina Petras^a, William Hartsell^b, John HC Chang^c, Rimas Lukas^a, Priya Kumthekar^a, Ryan Merrell^d, John A Kalapurakal^a, Jeffrey Gross^a, Vinai Gondi^b Introduction

> Combined radiochemotherapy for adult medulloblastoma (aMB) improves survival compared to radiation alone¹ > Current chemoradiation regimens are associated with high rates of myelotoxicity and toxicity-related treatment termination > Photon craniospinal irradiation (CSI) carries an inherent risk of myelotoxicity due to the exit dose to vertebral body marrow while

Figure 1. Example Plan

- proton CSI can be delivered via a marrow-sparing approach
- \gg We therefore hypothesized that proton chemo-CSI could reduce rates of myelotoxicity and toxicity-related treatment termination relative to photon-based treatment
- > Published results from the NOA-07 trial were used for comparison²

Methods

- > Patient population
 - Age ≥15
 - Received vertebral-body-sparing proton chemo-CSI for newlydiagnosed aMB
 - Planned to receive \geq 4 cycles of chemotherapy
- ➤ Treatment: CSI dose of 23.4 or 36 CGE with boost to 55.8 CGE
- > Myelotoxicity was evaluated using the NCI's CTCAE v3.0 to match grading scheme in NOA-07
- > Correlations with toxicity were assessed using chi-square analysis; survival by Kaplan Meier

Results

>Patients

- 13 male, 11 female
- Median age: 28 years (range 18–58)
- 54% were average-risk
- 50% received a CSI dose of 23.4 CGE
- > Of 21 patients with available hematologic data: 95% received cisplatin, 76% vincristine, 67% CCNU, and 62% cyclophosphamide
- ► Median follow-up time: 2.4 years
- Survival: 2-year PFS: 88% | 2-year OS: 100%
- >Adjuvant-phase cyclophosphamide was significantly associated with grade ≥ 3 leukopenia (p<0.01) and neutropenia (p=0.01).

Table 1. Adjuvant Chemotherapy Completion

# Cycles	NOA-07	Proton chemo-CSI
4	70.0%	87.5%
5	70.0%	83.3%
6	63.3%	78.3%
7	43.3%	53.3%
8	33.3%	46.7%

Table 2. Myelotoxicity Results

Grade 3/4 Toxicity	Concomitant Phase		Adjuvant Phase		
	NOA-07	Proton chemo-CSI	NOA-07	Proton chemo-CSI	Proton chemo-CSI w/o cyclophosphamide
Leukopenia	36.7%	16.7%	66.7%	66.7%	25.0%
Thrombocytopenia	3.3%	8.3%	36.7%	42.9%	25.0%
Anemia	13.3%	12.5%	20.0%	42.9%	12.5%

Conclusions

>Proton chemo-CSI for aMB increases rates of adjuvant chemotherapy completion and reduces rates of concomitant-phase leukopenia.

>In patients not receiving cyclophosphamide (an agent not included in the NOA-07 regimen) proton chemo-CSI lowers rates of adjuvant-phase myelotoxicity compared to contemporaneous photon-CSI control.

References

1. Kocakaya S, Beier CP, Beier D. *Neuro-Oncology*. March 2016;18(3):408-416. 2. Beier D, Proescholdt M, Reinert C, et al. *Neuro-Oncology*. August 2018;20(3):400-410.

- ^a Northwestern University Feinberg School of Medicine, Chicago, USA
- ^b Northwestern Medicine Chicago Proton Center, Chicago, USA
- ^c Vanderbilt University Medical Center, Nashville, USA
- ^d Northshore University Health System, Chicago, USA

