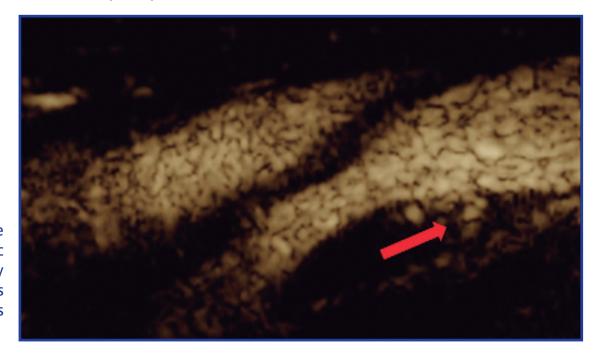
PLAQUE NEOVASCULARIZATION DETECTED WITH CONTRAST-ENHANCED ULTRASOUND IS ASSOCIATED WITH INFLAMMATION MEASURED WITH

18FLUORDEOXYGLUCOSE POSITRON-EMISSION TOMOGRAPHY IN PATIENTS WITH ISCHEMIC STROKE AND CAROTID ATHEROSCLEROSIS

Pol Camps-Renom¹, MD; Alejandro Fernández-León², MD, PhD; Luís Prats-Sánchez¹, MD; Francesca Casoni², MD, PhD; Rebeca Marín¹, NP; Elena Jiménez-Xarrié¹, PhD; Raquel Delgado-Mederos¹, MD, PhD; Alejandro Martínez-Domeño¹, MD; Daniel Guisado-Alonso¹, MD; Joan Martí-Fàbregas¹, MD, PhD


¹Department of Neurology. Biomedical Research Institute Sant Pau (IIB-Sant Pau). Hospital de la Santa Creu i Sant Pau. Barcelona. Spain. ²Department of Nuclear Medicine. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain. ³Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Neurology - Sleep Disorders Center. Milan. Italy. *Contact: pcamps@santpau.cat*

Background

Neovascularization is a hallmark of carotid plaque vulnerability and is closely related to inflammation. With Contrast-Enhanced Ultrasound (CEUS) it is possible to visualize plaque neovessels *in vivo*. We hypothesized that CEUS-detected neovascularization was associated with carotid plaque inflammation measured with ¹⁸Fluordeoxyglucose Positron-Emission-Tomography (¹⁸FDG PET-CT).

Methods

We conducted a prospective study of consecutive patients with an acute anterior circulation ischemic stroke and at least one atherosclerotic plaque in the internal carotid artery (ICA). All of our patients underwent a CEUS study and neovessels were identified as hyperechoic bubbles appearing within the plaque after a bolus of Sonovue® contrast (Figure 1). The patients underwent also an ¹8FDG PET-CT and we determined the maximum Standardized Uptake Value (SUV) from the symptomatic ICA (Figure 2). Comparison of the SUVs between neovascularized and non-neovascularized plaques was performed using the Student's t-test. A multivariate linear regression analysis was performed to study other predictors of plaque inflammation.

Figure 2: Example of a carotid ¹⁸-FDG PET-CT quantification. Following semi-automated co-registration of PET and CT images, carotid 18FDG activity in 10 regions of interest (ROI) defined relative to the slice of maximal stenosis was quantified using standardized uptake values (SUV g/mL = measured uptake (MBq/mL)/injected dose (MBq) per patient weight).

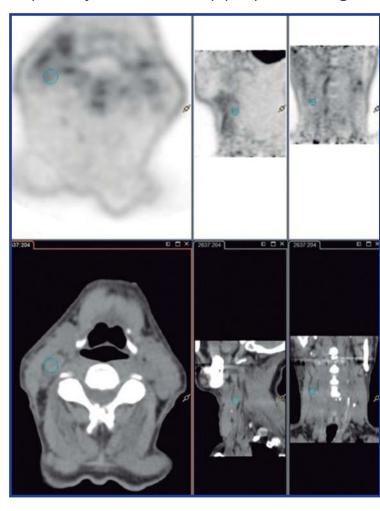


Figure 1: Example of a CEUS study. The image shows an eccentric atherosclerotic plaque from the internal carotid artery during the CEUS study. Plaque neovessels are identified as hyperechoic microbubbles (red arrow).

Results

We included 50 patients whose mean age was 74.3±10.4y and 74.4% were men. There were 17 (34.0%) patients with a low-grade stenosis (<50%). The remainder presented high-grade carotid plaques. The results of the CEUS were not interpretable in 8 (16%) of the patients, mainly due to calcium shadows. We detected neovascularization in 71.4% of the plaques. The presence of CEUS-detected neovessels was associated with higher plaque inflammation (SUV=2.84±0.56 vs SUV=2.35±0.36, p=0.007). In the multivariate linear regression analysis CEUS-detected neovessels persisted independently associated with inflammation even after adjusting by the degree of stenosis (Table 1).

Conclusion

CEUS-detected neovessels are associated with carotid plaque inflammation in patients with a recent ischemic stroke.

Table 1: Predictors of Internal Carotid Artery Inflammation

Univariate analysis	Beta Coefficient	95% CI	р
Age	0,005	(-0,009)-0,019	0,466
Sex (woman)	0,418	0,077-0,758	0,017
Current smoking	0,221	(-0,585)-0,143	0,228
Hypertension	0,197	(-0,242)-0,636	0,371
Diabetes	0,192	(-0,128)-0,512	0,234
Dyslipidemia	0,058	(-0,280)-0,396	0,731
Prior antiplatelet therapy	-0,268	(-0,583)-0,047	0,094
Prior use of statins	-0,072	(-0,403)-0,260	0,665
Hypoechoic plaque	0,256	(-0,094)-0,605	0,147
Severe carotid stenosis (<u>></u> 70%)	0,426	0,127-0,731	0,006
Plaque neovascularization	0,493	0,141-0,846	0,007
Multivariable analysis			
	Beta Coefficient	95% CI	р
Plaque neovascularization	0,455	0,123-0,787	0,009
Severe carotid stenosis (≥70%)	0,388	0,083-0,695	0,014