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Main Topics You Can Find in This

“ICME-13 Topical Survey”

• Development of modelling discussion in German-speaking countries

• Brief analysis of different modelling cycles and perspectives of modelling

• Mathematical modelling as a competency in the educational standards

• Role of technology in teaching and learning modelling

• Empirical research results on mathematical modelling from German-speaking

countries.
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Teaching and Learning Mathematical

Modelling: Approaches and Developments

from German Speaking Countries

1 Introduction

Mathematical modelling is a world-renowned field of research in mathematics edu-

cation. The International Conference on the Teaching and Learning of Mathematical

Modelling and Applications (ICTMA), for example, presents the current state of the

international debate on mathematical modelling every two years. Contributions made

at these conferences are published in Springer’s International Perspectives on the

Teaching and Learning of Mathematical Modelling series. In addition, the ICMI

study Modelling and Applications in Mathematics Education (Blum et al. 2007)

shows the international development in this area. German-speaking researchers have

made important contributions in this field of research. The discussion of applications

and modelling in education has a long history in German-speaking countries. There

was a tradition of applied mathematics in German schools, which had a lasting

influence on the later development and still has an impact on current projects. Two

different approaches for different types of schools were brought together at the end of

the last century. The relevance of applications and modelling has developed further

since ICME 3, held in Karlsruhe in 1976.

In Germany, the focus on mathematical modelling has strongly intensified since

the 1980s. Different modelling cycles were developed and discussed in order to

describe modelling processes and goals as well as arguments for using applications

and modelling in mathematics teaching. After subject-matter didactics

(Stoffdidaktik1) affected mathematics education with pragmatic and specific

approaches in Germany, there was a change in the last quarter of the 20th century

towards a competence orientation, focusing on empirical studies and international

cooperation.

1German words for some concepts are introduced in parentheses.
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In 2006, Kaiser and Sriraman developed a classification of the historical and

more recent perspectives on mathematical modelling in school. Mandatory edu-

cational standards for mathematics were introduced in Germany in 2003.

Mathematical modelling is now one of the six general mathematical competencies.

There have been many efforts for implementing mathematical modelling into school

in Germany and modelling activities in mathematics teaching have changed in the

last years due to the existence of digital tools.

Many recent qualitative and quantitative research studies on modelling in school

focus on students; however, teachers also play an important role in implementing

mathematical modelling successfully into mathematic lessons and in fostering

students modelling competencies. In Germany there are now empirical studies on

teacher competencies in modelling and other important topics. Furthermore,

classroom settings play an important role. So apart from direct teacher behaviour,

there has been a focus in research on the design of single modelling lessons as well

as the whole modelling learning environment.

2 Survey on the State of the Art

2.1 Background of the German Modelling Discussion

The discussion of applications and modelling in education has played an important

role in Germany for more than 100 years. The background of the German mod-

elling discussion at the beginning of the 20th century differs between an approach

of practical arithmetic (Sachrechnen) at the public schools (Volksschule, primary

school and lower secondary school) and an approach supported by Klein and

Lietzmann in the higher secondary school (Gymnasium).

In this context, arithmetic education evolved in the Volksschule in a completely

different way than at the Gymnasium because there were initiatives requesting a

stronger connection between arithmetic and social studies at the Volksschule.

A book about teaching arithmetic at the Volksschule, Der Rechenunterricht in der

Volksschule, written by Goltzsch and Theel in 1859, for example, outlines the

importance of preparing students for their life after school. “Based on identical

[mathematical] education, children should be prepared for the upcoming aspects of

their life as well as for the manner in which numbers and fractions are widely

applicable” (Hartmann 1913, p. 104, translated2). However, not everyone agreed on

the importance of applications in mathematics education.

In the beginning of the 20th century, mathematics education was influenced by

the reform pedagogy movement. Johannes Kühnel (1869–1928) was one of the

representative figures in this movement. Kühnel demanded, that mathematics

teaching to be more objective and interdisciplinary. Thus, arithmetic was supposed

2Unless otherwise noted, all translations are by the authors.
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to become more useful and realistic. He considered the education of the 20th

century to be very unrealistic. Distribution calculation, for example, included tasks

where money had to be distributed in order to suit the specified circumstances.

A characteristic example he gives is an alligation alternate problem that deals with a

trader who has to deliver a certain amount of 60 % alcohol, but only has 40 and

70 % alcohol in stock. Students were asked to determine how many litres of each

type should be mixed:

To my great shame, I have to admit that in my whole life aside from school I never had to

apply a distribution calculation, let alone an alligation alternate! I have never had to mix

coffee or alcohol or gold or even calculate such a mixture, and hundreds of other teachers I

interviewed admitted the same. (Kühnel 1916, p. 178, translated)

Above all, he criticised problems that involve an irrelevant context and

demanded problems that were truly interesting for students. During these times,

applications were considered to be more important for the learning process. They

were used in order to help to visualise and motivate the students rather than prepare

them for real life (Winter 1981). Apart from exercises dealing with arithmetic

involving fractions and decimal fractions, there were commercial types of exercises

referring to applied mathematics, such as proportional relations, average calcula-

tion, and decimal arithmetic. Kühnel’s works were popular and widely accepted

until the 1950s.

In contrast to the practical arithmetic approach at the Volksschule, the formal

character of mathematics was in the centre of attention at the Gymnasium.

Applications of mathematics were mostly neglected. This conflict was represented

by two doctoral theses that were presented on the same day in Berlin. One was

written by Carl Runge, later Professor of Applied Mathematics in Göttingen, the

other one by Ferdinand Rudio, later Professor of Mathematics in Zürich (both cited

after Ahrens 1904, p. 188):

• The value of the mathematical discipline has to be valued with respect to the

applicability on empirical research (C. Runge, Doctoral thesis, Berlin June 23,

1880, translated).

• The value of the mathematical discipline cannot be measured with respect to the

applicability on empirical research. (F. Rudio, Doctoral thesis, Berlin, June 23,

1880, translated).

Whereas Kühnel and other educators (representing the reform pedagogy

movement) had a greater influence on the Volksschule, Klein started a reform

process in the Gymnasium. In the beginning of the 20th century, a better balance

between formal and material education was requested due to the impact of the

so-called reform of Merano. The main focus was on functional thinking. In the

context of the reform of Merano, a utilitarian principle was propagated “which was

supposed to enhance our capability of dealing with real life with a mathematical way

of thinking” (Klein 1907, p. 209, translated). Because of the industrial revolution,

more scientists and engineers were needed. This is why applied mathematics gained

in importance and real-life problems were used more often. Lietzmann (1919)
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makes important proposals for the implementation of Merano curricula and repre-

sents an implementation of applications in the classroom. Finally, the contents of the

Merano reform in 1925 were nevertheless included in the curricula of Prussian

secondary schools. The reform efforts were successful: “pragmatic objectives” were

placed in the foreground of the curriculum from 1938 (Blum and Törner 1983).

This trend continued until the 1950s. In the late 1950s, Lietzmann stressed

stronger inner-mathematical objectives (Kaiser-Meßmer 1986). After World War II,

some ideas that had evolved from the progressive education movement and the

reform of Merano were picked up again, but with applications losing importance.

More emphasis was again placed on an orientation to the subject classification

(Kaiser-Meßmer 1986).

New Math was a change in mathematics education during the 1960s and 1970s

that aimed to teach abstract structures in mathematics to a higher degree.

Surprisingly, applied mathematics did not vanish completely during these reforms,

but it was influenced in different ways. Firstly, the mathematical core of a question

was worked out more clearly, e.g., directly proportional and inversely proportional

relationships. Secondly, the content of applications was extended, for example, by

introducing probability at school, and, thirdly, methods were enhanced. For exam-

ple, different visualisations by means of charts were discussed (Winter 1981). In the

1960s and 1970s, Breidenbach (1969) focused on the content structure of applica-

tions. He distinguished different levels of difficulty by the structural complexity of a

question. Thus, he suggested ordering them accordingly. Comprehending the

structure of a problem independently of its context and using the structure as a tool

for students seems to be a convincing procedure. However, it is difficult for students

to understand the entire structure of a problem before beginning to work on it.

Studies show that students often switch between planning and processing while

solving a problem (Borromeo Ferri 2011; Greefrath 2004). Hence, planning and

implementation cannot be separated while dealing with complex problems.

Furthermore, there is a risk of formalising mathematics education too strongly and

thereby hindering students in finding their own creative ways to solve the problem

(Franke and Ruwisch 2010). From the approach to solving word problems

methodically, so-called arithmetical trees for students were developed, which

visualise the structure of the word problem as a tree. These arithmetical trees still can

be found in schoolbooks today. However, nowadays they serve the purpose of

illustrating the structure of a calculation rather than revealing the structure of a word

problem.

In the 1980s, the so-called New Practical Arithmetic (Neues Sachrechnen)

evolved at all types of schools (Franke and Ruwisch 2010). The principles of the

reform pedagogy movement were put in focus again and schools started to use

applications in mathematics education more often. The New Practical Arithmetic

aimed to find authentic topics for students and to carry out long-term projects that

were supposed to be detached from the current mathematical topic and offer a

variety of solutions. New types of questions, e.g., Fermi problems (Herget and

Scholz 1998) were used accordingly. At the same time as the development of the
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New Practical Arithmetic, the term modelling became better known in mathematics

education (see Greefrath 2010). Initially, modelling was seen as a certain aspect of

applied mathematics, which, to some extent, can be seen as an independent process

within applications or as a perception of applications (Fischer and Malle 1985). In

the 1980s and 1990s, Blum and Kaiser gradually introduced the term modelling into

the German debate.

2.2 The Development from ICME 3 (1976) to ICME 13

(2016) in Germany

In 1976, Pollak gave a talk at ICME 3 in Karlsruhe, where he contributed to

defining the term modelling. He pointed out that at that time it was less known how

applications were used in mathematics teaching. To clarify the term, he distin-

guished four definitions of applied mathematics (Pollak 1977):

• Classical applied mathematics (classical branches of analysis, parts of analysis

that apply to physics)

• Mathematics with significant practical applications (statistics, linear algebra,

computer science, analysis)

• One-time modelling (the modelling cycle is only passed through once)

• Modelling (the modelling cycle is repeated several times).

There are distinct differences between these four definitions of applied mathe-

matics. The first two definitions refer to the content (classical or applicable math-

ematics), whereas the other two relate to the processing procedure. Therefore, the

term modelling focuses on the processing procedure. All four definitions are

illustrated in a figure by Pollak (Fig. 1).

Modelling then was considered to be a cycle between reality and mathematics,

which is repeated several times (Greefrath 2010).

To prepare the ICME-3 conference, Werner Blum, the coordinator for

Section “B6, The Interaction Between Mathematics and Other School Subjects

(Including Integrated Courses)”, undertook intensive research on the literature on

mathematical modelling. Two volumes of documentation of selected literature on

application-oriented mathematics instruction (Kaiser et al. 1982; Kaiser-Meßmer

et al. 1992) resulted from this work later on. They provided an excellent overview

of the national and international debate on applied mathematics education and also

took into account selected publications on modelling that were written up to the

beginning of the 20th century. The classification of works presented there incor-

porated ideas regarding goals, types of application, relation to reality, and

embedding of the curriculum and analysed selected publications on applied

mathematics teaching in more depth than ever before.

The classification system was presented at the First International Conference on

the Teaching of Mathematical Modelling in 1983 in Exeter and had a significant
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impact on a closer integration of German researchers, especially Werner Blum and

Gabriele Kaiser, into the international debate on modelling (Blum and Kaiser

1984).

Henn (1980) gave an example of using mathematical modelling at school. He

proposed the study of the theory of the rainbow as a piece of mathematics fraught

with relations. This contribution was a revised version of his lecture delivered in

1979 in Freiburg at the German mathematics education conference. Many aspects

of the rainbow were examined here and a mathematical model was presented. The

model used an incident light beam and rays of first to fourth order. In addition, a

detailed analytical model of a rainbow was developed. Thus, the occurring inten-

sities could be described in detail. Furthermore, a model illustrating the reflected

first-order ray was presented using dynamic geometry software. Thus it became

obvious that explanations written in schoolbooks often contain mistakes.

The article of Blum (1985) about application-oriented mathematics instruction

was very important in the modelling discussion in German-speaking countries. It

included a range of application examples with a variety of topics, e.g., allocation of

seats after elections, route mapping of motorway junctions, production of footballs,

and granting of loans. Furthermore, this article showed that the debate on appli-

cations and modelling increasingly gained in importance. The best-known illus-

tration of a modelling cycle in Germany (Fig. 2) can also be found in this

contribution.

For the first time the visualisation shown in Fig. 2 is called a modelling process,

which is based on the common concept at that time of models for mathematical

application (Blum 1985, p. 200). Blum not only distinguished between applications

and tasks, where the problem is wrapped into the context of another discipline or of

Fig. 1 Perspectives on applied mathematics by Pollak (1977, p. 256)
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everyday life, he furthermore delivered arguments and aims regarding applications

in mathematics teaching (i.e., objectives, arguments, and perspectives). In addition,

he summarised arguments against applications such as time problems or less suit-

able examples. For details see Kaiser (2015).

In 1991, the German ISTRON Group was founded by Werner Blum and

Gabriele Kaiser. This caused an intensified debate on modelling in Germany. The

idea of ISTRON was that—for many reasons—mathematics education should put a

greater focus on applications. Students should learn to understand environmental

and real-life situations by means of mathematics and develop general mathematical

skills (e.g., transfer between reality and mathematics) and attitudes such as

open-mindedness regarding new situations. They should thereby establish an

appropriate comprehension of mathematics including the actual use of mathematics.

Learning mathematics should be supported by using relation to real life (Blum

1993).

A new series established in 1993 and published by Springer since 2014 enables

the ISTRON Group, having already produced 20 volumes, to be present and visible

in mathematics teaching as well as in the academic community. These contributions

are intended to support teachers in dealing with real-life problems in school.

Teachers are considered to be experts in teaching; therefore, teaching proposals

should be modifiable so that teachers can adapt them to a specific situation. They

should suggest uncommon ways of teaching mathematics and support preparing

lessons (e.g., Bardy et al. 1996). In the following, some examples from the

ISTRON volumes are presented.

The first volume of the ISTRON series resulted from a competition that was

launched by the ISTRON Group at the end of 1991. They looked for contributions

referring to teaching and learning mathematics that were combined with real-life

applications, e.g., reports on teaching experience or new examples (see Blum

1993). The winning contribution of the international competition was also included

in this volume: an article by Böer (1993) about a realistic extreme value problem.

Böer explores the question of whether the packaging of one litre of milk with a

Fig. 2 Modelling cycle by Blum (Blum and Kirsch 1989, p. 134)
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square base, which was common at that time, was produced with a minimum of

packaging material. The worksheet presented there is even today often used in

mathematics education. Böer concluded that the optimal packaging of milk was

only half a percent different from the real packaging used at that time (Greefrath

et al. 2016).

The 14th International ICMI Study on Applications and Modelling in

Mathematics Education Conference took place in 2004 in Dortmund, Germany.

Werner Blum was the Chair of the IPC and Wolfgang Henn was the Chair of the

Local Organising Committee. The accompanying ICMI Study volume fully pre-

sents the state of the discussion on modelling and applications at a high level. It

became a standard reference work for the teaching and learning of applications and

modelling. In addition, two conferences in the ICTMA series were held in

Germany, the first in 1987 in Kassel (Blum et al. 1989) and the second in 2009 in

Hamburg (Kaiser et al. 2015).

Over the following years mathematical modelling was incorporated into the

curriculum and into the standards for mathematics education (see Sect. 2.8).

2.3 Mathematical Models

The debate about the term mathematical model plays an important role in the

research on mathematical modelling in Germany. The term modelling describes the

process of developing a model based on an application problem and using it to

solve the problem (Griesel 2005). Therefore, mathematical modelling always

originates from a real-life problem, which is then described by a mathematical

model and solved using this model. The entire process is then called modelling.

As the development of a mathematical model as such is crucial, the term

mathematical model shall be discussed in the following. A starting point for the

definition of this term can be found in the publications of Heinrich Hertz. In the

introduction of his book on the principles of mechanics, he described his consid-

erations about mathematical models from a physical point of view. However, Hertz

calls mathematical models “virtual images of physical Objects” (Hertz 1894, p. 1,

translated). He mentions three criteria that should be used to select the appropriate

mathematical model.

Different virtual images are possible and they can even differentiate from various directions.

Images not compatible with our commonly accepted rules of thinking should not be

accepted. Therefore, all virtual images should be logically compliant or at least acceptable

in the short term. Virtual images are false if their internal interdependencies are contra-

dictory to the interdependencies of the external objects: they should be true. However, even

two images both true and acceptable could differentiate in terms of expedience. Normally

an image would be preferable that reflects more interdependencies than another, i.e., that is

more concrete. If both images are equally compliant and concrete, the image of choice

would be the least complex one. (Hertz 1894, p. 2f, translated)
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Hertz mentions (logical) admissibility, accuracy, and expediency as criteria.

A mathematical model is admissible if it does not contradict the principles of logical

thinking. In this context, it is accurate if the relevant relations of a real-world

problem are shown in the model. Finally, a model is expedient if it describes the

matter by appropriate as well as relevant information. If a model proves to be

expedient, it can only be judged in comparison with the real-life problem. It can be

expressed by an economical model or in a different situation by the richness of

relations (Neunzert and Rosenberger 1991). A new problem might require a new

model, even if the object is the same. Furthermore, Hertz emphasises as conditio sine

qua non that the mathematical model has to match the real-life items (Hertz 1894).

The term mathematical model has been described in the German literature in

many ways. Models are simplified representations of the reality, i.e., only reflecting

aspects being to some extent objective (Henn and Maaß 2003). For this purpose, the

observed part of reality is isolated and its relations are controlled. The subsystems

of these selected parts are substituted by known structures without destroying the

overall structure (Ebenhöh 1990). Mathematical models are a special representation

of the real world enabling the application of mathematical methods. If mathematical

methods are used, mathematical models that just represent the real world can even

deliver a mathematical result (Zais and Grund 1991). Thus, a mathematical model is

a representation of the real world, which—although simplified—matches the

original and allows the application of mathematics. However, the processing of a

real problem with mathematical methods is limited, as the complexity of reality

cannot be transferred completely into a mathematical model. This is usually not

even desired. Another reason for generating models is the possibility of processing

real data in a manageable way. Thus, only a selected part of reality will be trans-

ferred into mathematics through modelling (Henn 2002).

As it is often possible to simplify in different ways, models are not distinct.

Because there are different types of models (see Fig. 3), it is even harder to describe

the modelling process accurately. Prescriptive models are called normative models.

Furthermore, models can be used as afterimages. These are called descriptive

models (Freudenthal 1978). Characteristics of descriptive models are predictions

and descriptions (Henn 2002).

Mathematical 

models

Descriptive

Models

Deterministic ProbabilisticExplanatory
Only 

descriptive

Normative 

Models

Fig. 3 Descriptive and normative models
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Descriptive models aim to simulate and represent real life. This can happen in a

descriptive or even explanatory way (Winter 1994, 2004). Therefore, one kind of

descriptive model does not intend only to describe a selected part of reality but to

help understanding the inner coherence. Furthermore, it is possible to distinguish

between models aiming for understanding and models predicting a future devel-

opment (Burscheid 1980). These predictions might be completely determined as

well as to some extent probable. To summarise, there are descriptive models that are

just descriptive in character, others that have additional explanations for something

(explicative descriptive models), and, finally, those that even predict a development

(deterministic and probabilistic models).

Tasks on descriptive and normative mathematical models can be quite different.

Whereas descriptive models are used to describe and finally solve real-life prob-

lems, normative models aim to create mathematical rules as help in decision making

in certain situations.

For example, to distribute the cost of heating in a house with several apartments,

a normative model is needed. Actually, this is a real problem that students at the

junior secondary level are able to understand and solve. Maaß (2007) offered a

lesson plan regarding this problem, helping students to learn that different models

can equally be a correct solution for the same problem. In this example, the reality

was only created after deciding on a certain mathematical model, e.g., distribution

of costs with respect to area, number of people, or consumption.

As modelling is characterised as a procedure for processing a problem, it can be

seen as a difference between a conscious and an unconscious process. Reflection of

the proceeding not being considered as a criterion for implementing mathematical

modelling is called general perception. According to this general perception, a

modelling process even occurs if it happens unconsciously (Fischer and Malle

1985). In the framework of this perception of modelling, students working on

real-life problems without consciously simplifying the situation on a higher

mathematical level are performing modelling.

2.4 Modelling Cycle

The entire modelling process is often represented as a cycle. The following is an

easy example of outlining the modelling cycle. In order to calculate the volume of

sand in a container, the problem must first be simplified by, for instance, assuming

the sand is evenly distributed in the container, with the fill level roughly matching

the loading sill. The material thickness of the container also need not be included,

thus allowing the outer and the inner dimensions of the container to be equal. It is

also reasonable to assume that the container has no bumps or other irregularities. In

order to transfer the filled part of the container into mathematics, it can be identified

with a trapezoidal prism. Using this model, the respective calculations will provide

a mathematical solution. This solution can be interpreted as the volume of the sand

(see Fig. 4).
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The problem involving the volume of the sand in the container is a real-world

problem. The first simplifications on a factual level lead to what is called a

real-world model. Afterwards this is transferred to a mathematical model, which is

used to calculate a mathematical solution. The result is then applied to the real-life

problem.

It is also possible to idealise the solution process in other ways. For example,

collecting the data could be shown separately or steps in developing the mathe-

matical model could be omitted. Hence, different representations of the modelling

cycle can be found in the literature. We present different descriptions of modelling

processes in the following ordered by the complexity of steps in developing a

mathematical model.

Single mathematising

If only one step is used to transfer a real-life problem to a model, this model of a

modelling cycle is called single mathematising. In particular, the representation of

the generally accepted model by Schupp (1988) is as clear as concrete. In one

dimension, it divides mathematics and reality, which is common for models of

mathematical modelling, while in the other dimension, the problem and solution are

equally distinguished (see Fig. 5).

The modelling cycle need not always be fully completed or be repeated several

times. Büchter and Leuders (2005) described the repeated modelling cycle as a

spiral, i.e., emphasizing the evolution of experience over the modelling process.

Fig. 4 Ideal problem-solving process of a problem shown as modelling cycle
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After each run, experience with regard to solving the problem is gained. Büchter

and Leuders also distinguished between real and mathematical models. However,

specifying the problem is separated as an individual step between reality and model.

There are also particular modelling cycles that include a simple mathematizing step.

The best-known modelling cycle in Germany was created by Blum (1985 see

Fig. 2). It specified an additional step in building the mathematical model.

Simplifying reality or, in other words, creating a real model was seen as an indi-

vidual step (This has been used to solve the container problem shown in Fig. 4). This

model was developed together with Kaiser-Meßmer (1986) and has been enhanced

by many authors (e.g., Henn 1995; Humenberger and Reichel 1995; Maaß 2002;

Borromeo Ferri 2004). In addition, Maaß (2005) as well as Kaiser and Stender

(2013) added the interpreted solution as a step between mathematical solution and

reality (see Figs. 6 and 7). This highlights interpreting and validating as different

processes in the second half of the modelling cycle (see Greefrath 2010).

Fig. 5 Modelling cycle by Schupp (1989, p. 43)
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Complex mathematising

A newer model by Blum and Leiß (2005) and adapted by Borromeo Ferri (2006),

was developed from a cognitive aspect (see Fig. 8). Blum’s original model from

1985 was extended by the addition of a situation model, which showed more detail

in considering how a mathematical model is generated. The role of the individual

creating the model was also described in a more detailed way. The situation model

outlined the individual’s mental representation of the situation.

The model by Fischer and Malle (1985) described how to transfer a real-life

situation to a mathematical model in detail. Interestingly enough, the process of

collecting data was added to this model, which was specifically helpful in

Fig. 6 Modelling cycle of Maaß (2006, p. 115)

Fig. 7 Modelling cycle of Kaiser and Stender (2013, p. 279)
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specifying the simplification step. This description of the modelling process is

especially suitable for Fermi problems, because most of the data have to be

estimated.

Depending on target group, research topic, and research interest, the described

models focus on different aspects. Often they also have a different purpose.

Normative and descriptive models should especially be distinguished. For example,

a certain model could be used to describe student activities within an empirical

study. For this purpose, even very complex models are suitable (see Fig. 8). In a

normative way, modelling cycles such as those shown in Fig. 5 could support

students working on modelling problems in classes (see Greefrath 2010).

2.5 Goals, Arguments, and Perspectives

2.5.1 Goals

Different goals at various levels are pursued while using applications and modelling

in mathematics teaching. Due to the link between mathematics and reality, math-

ematical modelling offers the unique opportunity to get interesting impressions in

the subject of mathematics as well as in real life. Lietzmann (1919) already men-

tioned the goals for mathematics in this context, but also pointed out difficulties:

“The application of mathematical facts to real life is of equal importance to the even

heavier challenge of identifying mathematical problems in reality.” However, he

did not use the term modelling.

In what follows, content-related, process-oriented, and general goals of mod-

elling are distinguished in order to underline the importance of mathematical

Fig. 8 Modelling cycle of Blum and Leiß (2005) (cited after Blum and Leiß 2007, p. 225)
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modelling at different levels (see Blum 1996; Greefrath 2010; Kaiser-Meßmer

1986; as well as the overview by Niss et al. 2007).

Content-related goals

Content-related goals incorporate the pragmatic assumption that students working

on modelling problems challenge their environment and are able to explore it by

means of mathematics. The goal is—as it is for word problems related to modelling

as a didactical direction—the ability to be aware of and understand phenomena of

the real world. This corresponds to the first of three of what Winter (1996) called

the fundamental experiences, which every student should get to know.

Process-oriented goals

In particular, interaction with applications in mathematics education requires gen-

eral mathematical skills such as problem-solving capabilities. Essential heuristic

strategies for problem solving, e.g., working with analogies or working with reverse

calculation, can be used and encouraged in working on modelling problems. In

addition, modelling problems particularly encourage communicating and arguing.

This formal justification of modelling corresponds to Winter’s third fundamental

experience for a general mathematics education: “Mathematics education is fun-

damental because problem-solving capabilities far beyond mathematical tasks are

learned.” (1996, p. 37, translated). The goals of learning psychology also refer to

the learning process. They focus on understanding and remembering mathematics

by dealing with modelling. In the context of modelling, increasing motivation as

well as general interest in mathematics is often named as a main goal.

General goals

Cultural arguments in particular have been mentioned as the most important general

goals. Mathematics education should provide a balanced picture of mathematics as

a science. The use of mathematics in the environment is crucial for the development

of mathematics science and for democratic society. This also includes educating

students to become responsible members of society who are able to critically judge

models that are used daily, e.g., tax models. Social skills can also be taught by

co-working on modelling problems (Greefrath et al. 2013).

2.5.2 Arguments

In the argumentation for applications there were originally only three goals for

applied mathematics education. Blum (1985) divided them into four: Firstly,

pragmatical arguments (i.e., mathematics as vehicle for special applications) should

contribute to a better understanding of and coping with relevant extra-mathematical

situations. Secondly, the use of applications for promoting general skills and atti-

tudes, which cannot be helpful immediately for special relevant situations, was

mentioned (called formal arguments). This new category was differentiated further:

Methodological qualifications (meta-knowledge and general skills for applying
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mathematics) should be promoted. This can be done by getting to know general

strategies for dealing with real situations by using examples. Especially in the

translation between reality and mathematics, reflecting about applications and

estimating the possibilities as well as the limits of applications in mathematics

should be discussed. Furthermore, Blum subsumed the support of other general

skills under these formal arguments. This entails the competence for arguing and

problem solving as well as general attitudes towards openness to problem situa-

tions, which today is called general skills. Thirdly, Blum described the use of

applications for giving the students an overall image of mathematics (arguments on

the philosophy of science). In accordance with the third goal, applications are used

for conveying a balanced impression of mathematics as a cultural and social phe-

nomenon (Blum 1978). Fourthly, applications were seen as a help for learning

mathematics (arguments on the psychology of learning). These corresponded to the

second level of Blum (1978) and are divided into content-related aids (i.e., a local

and a global structure of the content) and student-related support, which are

intended to help improve understanding of mathematics and long-term retention of

information as well as provide a better attitude towards mathematics (Blum 1985).

In addition, to differentiating the four arguments, which relate to modelling and

application and contrast with the utilitarian view (this view aims to teach only the

mathematics that is necessary for applications and modelling and the mathematical

models that are bound to specific situations), the debate on mathematical modelling

has been promoted significantly by emphasising meta-knowledge and general

skills. For details, see Kaiser (2015).

2.5.3 Perspectives

Based on the analysis of the historical and current development of applications and

modelling in mathematics education, different theoretical perspectives can be

identified in the national and international debate on modelling. In her extensive

analysis, Kaiser-Meßmer (1986) used three dimensions: a concept-related dimen-

sion referring to the importance of applications within the goals of mathematics

education, a curricular dimension focussing on the role of applications in class, and

a situational dimension taking the degree of reality of applications into account. At

the beginning of the 21st century in the light of this analysis, Kaiser and Sriraman

(2006) developed a classification of the historical and more recent perspectives on

mathematical modelling in school. Different tendencies in the historical and current

debate on applications and modelling can be distinguished, which are further dif-

ferentiated in newer works on perspectives of modelling. In the German-speaking

area, the following perspectives are particularly important.

Realistic and applied modelling

This tendency pursues content-related goals: solving realistic problems, under-

standing the real world, and encouraging modelling skills. It focuses on real and—

above all—authentic problems in industry and science, which are only marginally
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simplified. Modelling is seen as act where authentic problems are solved. The

modelling process is not carried out in parts but as a whole. Real modelling pro-

cesses, which are conducted by applied mathematicians, serve as role models. The

theoretical background of this tendency is closely related to applied mathematics

and historically relates to pragmatic approaches to modelling, which have been

developed by Pollak (1968), among others, in the beginning of the newer modelling

debate (see Kaiser 2005 as an example).

Pedagogical modelling

The purpose of this tendency includes process-related and content-related goals. It

can be distinguished further into didactical and conceptual modelling.

Didactical modelling includes on the one hand encouraging the learning process

of modelling and on the other hand dealing with modelling examples to introduce

and practise new mathematical methods. Thus, modelling is completely incorpo-

rated into mathematics teaching.

The intent of conceptual modelling is to enhance students’ development and

understanding of terminology within mathematics and with regard to modelling

processes. This also includes teaching meta-knowledge of modelling cycles and

judging the appropriateness of the used models. The problems used for pedagogical

modelling are developed for mathematics teaching in particular and are therefore

simplified significantly (see Blum and Niss 1991; Maaß 2004 as examples).

Socio-critical modelling

Pedagogical goals and a critical understanding of the world are aimed at in order to

critically examine the role of mathematical models and mathematics in general in

society. The basic focus is not on the modelling process itself and its visualisation.

Emancipatory perspectives on and socio-critical approaches to mathematics edu-

cation are the background (see Gellert et al. 2001; Maaß 2007 as examples).

Cognitive modelling

This approach is seen as a kind of meta-perspective because it focuses on scientific

goals. It is about analysing and understanding the cognitive procedures that happen

in modelling problems. Hence, different descriptive models of modelling processes

are developed, such as individual modelling paths for individual students.

Psychological goals, e.g., supporting mathematical thinking in the light of cognitive

psychology, also play a role. See Blum and Leiß (2005) and Borromeo Ferri (2011)

as examples for this perspective (Greefrath et al. 2013).

2.6 Classification of Modelling Problems

Modelling processes can be specifically encouraged at school by means of adequate

modelling problems. There is a broad range between short, less realistic questions

that only focus on a partial competency and authentic modelling problems, which
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are worked on during a longer period of time (see Sect. 2.8). Modelling problems

can be distinguished into a range of different problem categories (see for example

Blum and Kaiser 1984; Greefrath 2010; Maaß 2010). The level of reality can be

described more precisely using the categories authenticity, relevance to everyday

life, realism, and relevance to students. Furthermore, assumptions in reality and in

the task itself can be distinguished (Blum and Kaiser 1984). In their comprehensive

documentation of relevant examples, Kaiser et al. (1982) distinguish the level of

application: routine use of mathematical methods, reasonable application of

mathematical methods depending on the situation and, furthermore, mathematisa-

tion of a situation and developing the terms and methods that are adequate for a

model. In addition, both the level of reality (i.e., realistic versus consciously

alienating reality) as well as the intention of a problem (i.e., mathematics helping to

solve the problem versus using the problem to motivate and illustrate mathematical

content) are analysed (see Kaiser et al. 1982; Blum and Kaiser 1984). In a

comprehensive classification scheme, Maaß (2010) also takes into account which

modelling activity supports the problem, which parts of the modelling process have

to be done, what the type of context is, what the relation to reality is, what the level

of openness in the question is, and what the cognitive requirements are.

2.7 Modelling as a Competency and the German

Educational Standards

Based on results of the Danish KOM project (Niss 2003) and accompanied by

international comparative studies, mandatory educational standards for mathematics

were introduced in Germany beginning in 2003 (first in middle schools).

Mathematical modelling is now one of the six general mathematical competencies

that the education standards for mathematics rate as obligatory for intermediate

school graduation. It can also be found in the education standards for primary

school as well as for upper secondary school.

By means of different mathematical content, students are to acquire the ability to

translate between reality and mathematics in both directions. In works of Blum (see

Blum et al. 2007), modelling skills are described in a more detailed way as the

ability to adequately perform the necessary steps in the process of changing back

and forth between reality and mathematics as well as analysing and evaluating

models in comparison.

The discussion of the different complex modelling cycles (see Sect. 2.2) showed

that there exist various descriptions of modelling. These modelling cycles describe

the different sub-processes of modelling with a different level of detail and

emphasis. The ability to perform such a sub-process can be seen as a partial

competence of modelling (Kaiser 2007; Maaß 2004). Looking at the modelling

cycle in Fig. 8, these partial competences could be characterised as presented in

Table 1. By means of detailed descriptions, also called indicators, the definition of
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partial competences becomes obvious. Thus, an extensive list of partial modelling

skills can be obtained. Working mathematically (students work with mathematical

methods in the mathematical model and get mathematical solutions) is not listed as

a partial competency, because it is not specific to the modelling process. By using

different modelling cycles, other partial competences emphasising other aspects of

modelling could occur.

It is possible to consciously divide modelling into partial processes to reduce the

complexity for teachers and students and to create suitable exercises. This view of

modelling especially enables training of individual partial competencies and

establishing a comprehensive modelling competency in the long term. For more

information on modelling competencies, refer to the comprehensive overview by

Kaiser and Brand (2015).

The German educational standards for mathematics at the secondary level of

2003—as well as the educational standards at the primary level of 2004 and for

higher education entrance qualification of 2012—describe mathematical modelling

as a competency. The educational standards for the general higher education

entrance qualification, for example, display the requirements regarding the mod-

elling competency in the three following areas:

Requirement area I: Students can:

• Apply familiar and directly apparent models

• Transfer real situations directly into mathematical models

• Validate mathematical results with regard to the real situation.

Requirement area II: Students can:

• Carry out modelling processes consisting out of several steps and with few and

not clearly formulated restrictions

• Interpret results of such modelling processes

• Adjust mathematical models to varying facts.

Table 1 Sub-competencies involved in modelling (see Greefrath et al. 2013, p. 19; Greefrath

2015)

Sub-competency Indicator

Constructing Students construct their own mental model from a given problem and thus

formulate an understanding of their problem

Simplifying Students identify relevant and irrelevant information from a real problem

Mathematising Students translate specific, simplified real situations into mathematical

models (e.g., terms, equations, figures, diagrams, and functions)

Interpreting Students relate results obtained from manipulation within the model to the

real situation and thus obtain real results

Validating Students judge the real results obtained in terms of plausibility

Exposing Students relate the results obtained in the situational model to the real

situation, and thus obtain an answer to the problem
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Requirement area III: Students can:

• Model complex real situations whereby variables and conditions have to be

determined

• Check, compare, and evaluate mathematical models considering the real situa-

tion (KMK 2012, p. 17, translated).

Since 2006, an overall strategy regarding educational monitoring in Germany

has been pursued by the Standing Conference of the Ministers of Education and

Cultural Affairs. It aims to strengthen competence orientation within the educational

system. The general competency in modelling plays an important role in mathe-

matics. In addition to international school achievement studies (PISA, TIMSS),

there are national achievement studies as well as comparative studies (VERA).

These tests are carried out in classes in Grades 3 and 8 in all general education

schools in order to investigate which competencies students have achieved at a

particular point of time. The comparative studies aim to give teachers individual

feedback on the educational standards requirements that students can handle.

Beginning in 2017, a pool with audit tasks for the Abitur examination will be

provided for Germany from which all states can take audit tasks for the Abitur. This

will be an important step in improving the quality of audit tasks and gradually

adjusting the level of requirements in all states. Tasks are developed based on the

educational standards; thus, by default some of the tasks for the Abitur include

modelling as a competency.

2.8 Implementing Modelling in School

There have been many efforts to implement mathematical modelling into school in

German-speaking countries: Besides collections of tasks [for example, the ISTRON

series discussed in Sect. 2.2 and the collection of tasks by MUED (www.mued.de)],

teaching unit for different goals (e.g., for fostering students modelling competencies

as a whole, tasks with the same mathematical content, etc.) have been created in

different projects aimed at fostering students modelling competencies in different

ways. In addition, theoretical concepts for improving students’ modelling compe-

tencies systematically and permanently have been developed by Böhm (2013).

Due to the high number of smaller and larger projects, we cannot present all of

them. Therefore, we will focus on a special way of implementing modelling that has

been initiated by several universities in various parts of Germany: modelling weeks

or modelling days.

Modelling weeks or days were originally developed at the University of

Kaiserslautern by the working group of Helmut Neunzert, have been carried out at

the University of Hamburg for more than a decade, and have been adopted by

universities such as Darmstadt, Munich, and Kassel. The structure of all modelling

weeks or days is similar to those in Kaiserslautern or Hamburg. During modelling
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days and weeks, students of different ages (depending on the special project) are

asked to work on a highly complex task for whole school days. Modelling weeks

usually last one week and take place outside school (usually at a university or a

youth hostel) while modelling days only last two or three days and take place in a

school.

A central feature of these projects has been the use of highly complex modelling

problems, often coming from research or industry. They have been simplified only

slightly and normally introduced by a short presentation. Some of the problems that

have been tackled so far have been:

• Pricing for Internet booking of flights

• Optimal automated irrigation of a garden

• Chlorination of a swimming pool

• Optimal distribution of bus stops.

Participating students have been asked to choose one of the offered tasks.

Afterwards they were divided into different groups according to their interest.

The main purpose of modelling weeks and days has been to enable students to

carry out modelling problems independently. Therefore, they have been supervised

by tutors. In some cases, university teachers have supervised the students. In other

cases, such as in Hamburg and Kassel, university students were trained to

supervise.

The evaluation of modelling weeks and days has regularly shown great approval

and learning outcome in various types of competencies (for more details see Kaiser

and Schwarz 2010; Kaiser et al. 2013; Vorhölter et al. 2014).

2.9 Modelling and Digital Tools

Possible modelling activities in mathematics teaching have changed in the last years

mainly due to the existence of digital tools. Especially when dealing with realistic

problems, a computer or an adequately equipped graphical calculator can be a

useful tool to support teachers and students. Henn (1998), for example, suggested

this early on and proposed to implement digital tools, e.g., notebooks with algebra

software, because this would enable the introduction of complex applications and

modelling into daily teaching (see also Henn 2007).

Currently, digital tools are often used to work on such problems, e.g., to process

models with complex function terms or to reduce the calculation effort. Digital tools

can perform a range of tasks in teaching applications and modelling. One possibility

for using these tools is experimenting and exploring (see Hischer 2002). For

example, a real situation can be transferred to a geometrical model or it can be

experimented on within this model by means of dynamic geometry software or a

spreadsheet analysis. Very similar to experimenting is simulating. Simulations,

which are experiments that use models, are intended to provide insights into the real
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system presented in the model or into the model itself (Greefrath and Weigand

2012). Predictions on the population of a certain animal species with different

environmental conditions, for example, are possible by means of a simulation.

Applied mathematics simulations done by computer can be understood as a part of

a modelling cycle in which a numerical model that was developed from the

mathematical model is tested and validated by comparing it with measurement

results (Sonar 2001). Deterministic simulations with fixed problem data and

stochastic simulations taking random effects into account are distinguished

(Ziegenbalg et al. 2010).

A common use of digital tools, especially computer algebra systems, is calcu-

lating or estimating numerical or algebraic solutions (see Hischer 2002); without

these tools students would not be able to make these estimations, at least within a

reasonable time frame. A computer can also be used to do calculations to find

algebraic representations from the information given. In addition, digital tools can

perform a visualisation of a subject being taught in school (Barzel et al. 2005;

Hischer 2002; Weigand and Weth 2002). For example, the data given can be

represented in a coordinate system by means of a computer algebra system or a

statistics application. This can be a starting point to develop mathematical models.

Digital tools also play a useful role in controlling and verifying (Barzel et al. 2005).

Therefore, digital tools can help with control processes for discrete functional

models, for example. If computers with internet connection are provided for

mathematics teaching, they can be used to do investigations (Barzel et al. 2005),

e.g., in context with applications. In this way, real problems can be understood in

the first place and simplified afterwards.

A computer’s different capacities can be used in mathematics education for a

range of steps in the modelling cycle. Control processes, for example, are usually

the last step of the modelling cycle. Calculations are done by means of the gen-

erated mathematical model, which in analysis, for example, is often represented by

a function. Some possibilities for using digital tools during the modelling process

are represented in the modelling cycle in Fig. 9, which is modified from Blum and

Leiß’s modelling cycle (see Fig. 8). Digital tools can be usefully applied in every

step of the modelling cycle.

If the steps in calculating with digital tools are looked at more precisely, working

on modelling problems with digital tools requires two translation processes. First,

the modelling question has to be understood, simplified, and translated into

mathematics. The digital tool, however, can only be used after the mathematical

terms have been translated into the computer’s language. The results calculated by

the computer then have to be transformed back again into mathematical language.

Finally, the original problem can be solved when the mathematical results are

applied to the real situation. These translation processes can be represented in an

extended modelling cycle (see Fig. 10), which in addition to the rest of the world

and mathematics also includes technology (see Greefrath and Mühlenfeld 2007;

Savelsbergh et al. 2008; Greefrath 2011). Current studies, however, show that

actual modelling activity that includes a computer can be better described by the

integrated view.
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Currently, there exists little empirically established knowledge about the pos-

sibilities of teaching modelling and the limits of working with digital tools in

mathematics teaching, as there have been case studies rather than large-scale

implementation studies. Open research questions can be found in the works of Niss

et al. (2007). These include the following questions: How are digital tools supposed

to be used in different grades to support modelling processes? What is the effect of

digital tools on the spectrum of modelling problems to be worked on? How is

teaching culture influenced by the existence of digital tools? When do digital tools

enhance or hinder learning opportunities in the modelling process?

Additional empirical research is required to clarify the questions named above,

especially considering the extended modelling cycle and the necessary translation

Fig. 9 Possible use of digital tools for modelling (Greefrath 2011, p. 303)

Fig. 10 Extended modelling cycle (Greefrath 2011, p. 302)
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processes. The case studies by Greefrath et al. (2011) and Geiger (2011) point out

though that digital tools could be useful for every step of the modelling process.

This is particularly true for interpreting and validating.

2.10 Empirical Results Concerning Mathematical

Modelling in Classrooms

In the last decades, research on modelling and application in German-speaking

countries has evolved from merely qualitative case studies to larger research pro-

jects with bigger samples, also including case studies. The main focus was on the

factors that influence modelling processes, on aspects that have to be considered

while trying to implement modelling into mathematics lessons, and on possible

ways to optimally improve students modelling competence. The studies therefore

incorporated the actors of modelling processes: students of different ages and

teachers, modelling problems, and learning settings. In the following, central

research results from German-speaking countries from the last decades are pre-

sented. Although many of them are related to two or three of these aspects, they are

ordered following the distinction mentioned above.

2.10.1 The Role of Students in Modelling Processes

As most studies deal with modelling in school, students are in the focus of several

qualitative and quantitative research projects. It was clearly shown by Borromeo

Ferri (2011) that when working on modelling problems, students normally do not

follow the steps of a modelling cycle in the given order. Rather they pass some

phases repeatedly and omit others. Often they skip between single phases, which

are called “mini-loops” by Borromeo Ferri. Similar results concerning individuals

dealing with modelling problems can be found in Leiß (2007) and Greefrath (2004).

The results of the early study of Maaß (2006) clearly showed “that modelling

competencies include more competencies than just running through the steps of a

modelling process.” (Maaß 2006, p. 139). Thus, one of the important aspects is the

connection between pure modelling competencies on the one hand and different

kinds of competencies on the other hand. Working successfully and being goal

oriented on modelling problems requires various competencies such as mathe-

matical competencies, reading competencies, and metacognitive competencies. The

influence of these competencies on the modelling process has been investigated in

several projects. Furthermore, the interplay between different students’ beliefs and

preferences and students’ modelling capabilities has been analysed. Selected results

will be outlined in the following.

As one of the main influencing competencies, various studies have focused on

mathematical competency as an indispensable competency in working on
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mathematical models. In different qualitative and quantitative studies, a strong

relation between this sub-competence and modelling competence as a whole was

verified. Important results concerning this relation can be found in Main Study 2 of

the DISUM Project. In this classical intervention study with 21 classes in Grade 9,

students’ achievement and attitudes during a 10-lesson teaching unit were tested

with the help of various tests and questionnaires. A correlation between mathe-

matical competence and modelling competence was exposed (Leiß et al. 2010).

Also within the framework of Main Study 2 of the DISUM Project, compre-

hensive reading competency (i.e., reading texts as well as capturing tables and

graphics) was identified as an important influencing factor. In order to analyse the

connection between reading competence and modelling competence, two different

kinds of reading tests were used: A general reading test and a mathematical reading

test. The results showed that both reading tests measure the same theoretical con-

struct. Furthermore, on the basis of the results of the study, mathematical reading

competence was identified as a prerequisite for successful work on modelling tasks

(Leiß et al. 2010).

Metacognitive competencies have been identified as a third influential factor on

solving modelling problems. Both nationally and internationally, research on

metacognition has evolved in educational psychology, general education, and

mathematics education. In doing so, declarative meta-knowledge has been distin-

guished from procedural meta-knowledge (often called metacognitive strategies)

(for further descriptions, see Vorhölter and Kaiser 2016). Qualitative and quanti-

tative research in the last decades has focused on both aspects. For example, in her

qualitative study, Maaß (2006) identified a relation between declarative

meta-knowledge about the modelling process and modelling tasks on the one hand

and modelling competencies on the other hand. Furthermore, she identified

single weaknesses in modelling that match with certain misconceptions in

meta-knowledge (Maaß 2006).

In a quantitatively oriented study, 86 ninth graders from 10 different classes were

asked to report on their use of learning strategies and metacognitive strategies while

solving modelling problems. In addition, their modelling competencies were tested.

No significant correlation between cognitive and metacognitive self-reported

strategies (in general or task orientated) on the one hand and mathematical mod-

elling competence on the other hand were found. As one reason for this result, the

measurement of metacognitive strategies was identified (Schukajlow and Leiß

2011). Therefore, Blum summarises: “One of the problems in these empirical

studies is how to measure strategy knowledge, on the one hand, and strategy use, on

the other hand, and another problem is how to reliably link students’ activities to

their strategies.” (Blum 2015, p. 88).

In addition to these results on competencies, students’ characteristics have been

identified as another influencing factor on student performance while working on

modelling problems. In the following, some of the main studies are briefly

presented.

In a case study with 35 students, Maaß (2006) reconstructed four types of

modellers on the basis of their attitude towards context and mathematics:
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(1) reality-distant modeller, (2) mathematics-distant modeller, (3) reflecting mod-

eller, and (4) uninterested modeller (see Fig. 11).

While reality-distant modellers are described as overwhelmingly positive

towards mathematics without reference to the context, mathematics-distant mod-

ellers are characterised as preferring the context and being rather opposed to

mathematics. According to this classification, reality-distant modellers have

weaknesses in stages that require consulting reality. Mathematics-distant modellers

on the other hand have deficits in working mathematically. Combinations of these

two types are the reflecting modeller and the uninterested modeller. Whereas the

uninterested modeller is interested neither in the context nor in mathematics, the

reflecting modeller has a positive attitude both to the context and to mathematics.

Thus, the reflecting modeller shows an appropriate performance while working on

the problem, whereas the uninterested modeller shows deficits in all steps of the

modelling process (Maaß 2006).

With the help of this classification, Maaß worked out the impact of attitudes on

the development of modelling competencies: A negative attitude towards modelling

tasks (i.e., uninterested modeller and reality-distant modeller) appeared to hinder

the development of modelling performance, especially the development of

sub-competencies necessary for setting up a real model and validating the solution.

Those students performing well in mathematics were for the most part able to

overcome existing weaknesses in the phases of setting up a real model and vali-

dating. On the contrary, students not performing well in mathematics were not able

to doing so (Maaß 2006).

In a case study with 35 students, Borromeo Ferri (2010), referring to work by

Burton (2004), identified mathematical thinking style as another influencing factor

on student performance while working on modelling problems. Students with an

analytic thinking style tend to switch very fast from the real situation to mathe-

matics and focus on these mathematical phases. Students with a visual thinking
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Fig. 11 Types of modellers (Maaß 2006, p. 138)
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style on the contrary merely begin to work on a problem by verbalising their mental

model and building a real model. For students with an integrated thinking style, no

typical procedure could be reconstructed (Borromeo Ferri 2010).

In a case study with 8 students aged 16–17, Busse (2005) reconstructed four

types of dealing with the contextual aspects of a modelling problem. Two extremes,

a reality-bound and a mathematics-bound type were distinguished: Students of the

first type try to solve a task only by using non-mathematical concepts and methods.

Students who are mathematics bound on the contrary perceive the context of a task

merely as decoration. They translate necessary contextual information into math-

ematics at once and do not use further personal knowledge. As a combination of

these two types, Busse identified an integrating type who uses the given information

as well as personal knowledge in order to mathematise and solve the task and

validate the solution. These students apply mathematical methods to solve the task.

In contrast, representatives of the ambivalent type (which is a combination of the

reality-bound and the mathematical-bound types) internally prefer contextually

accentuated reasoning. Externally, they prefer a mathematical reasoning. Different

from the integrating type, in the ambivalent type both ways do not complement

each other but coexist (Busse 2005) (Fig. 12).

All these studies show that students’ competencies and characteristics have a

great influence on students’ work on modelling problems. Some of the factors are

necessary for solving modelling tasks successfully and influencing the individual

approach, while some are obstructive. For promoting modelling competencies

effectively, Blum therefore summarises: “It is important to care for a parallel

development of competencies and appropriate beliefs and attitudes. Taking into

account the remarkable stability of beliefs and attitudes, this also requires long-term

learning processes” (Blum 2015, p. 86).

To summarise, students are no “blank pages” when starting to work on a

modelling problem. On the contrary, different competencies, characteristics, and

ambivalent 

integrating 

mathematics 

bound 

reality 

bound 

Fig. 12 Different kinds of dealing with context (Busse 2005, p. 356)
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beliefs influence the modelling process enormously. However, these considerations

should not hinder teachers in implementing modelling in their mathematics lessons,

because many studies in the last decades have indicated that working on modelling

problems leads to an increase in modelling competences (for example,

Kaiser-Meßmer 1986; Kreckler 2015). Independent work on modelling problems

and stimulating students’ own activities are important for fostering students mod-

elling competence. The supporting role of teachers is part of the next chapter.

2.10.2 The Role of Teachers in Modelling Processes

Implementing modelling into mathematics involves teachers as one of the focal

points. They do not only have to be convinced of the usefulness of mathematical

modelling; rather, they have to overcome suspected obstacles. Furthermore, their

attitude can influence their way of supporting students and their decision as to

which detail of the modelling process they select as the subject of discussion.

Moreover, they have to know how to support students’ working process best. In

order to do so, special competencies are necessary. In the following, research results

concerning the role of teachers in and their influence on modelling processes are

presented.

Suspected obstacles are one reason for teachers not to implement mathematical

modelling in their lessons. Blum (1996) differentiated these obstacles into four

categories: organizational obstacles (especially shortage of time), student-related

obstacles (modelling is assumed to be too difficult for students), teacher-related

obstacles (not enough time for adapting tasks and preparing them in detail, lack of

required skills), and material-related obstacles (knowledge of only a few modelling

problems suitable for their lessons). However, these categories did not come out of

empirical analysis. In 2008, Schmidt (2011) conducted a study with 101 teachers

from primary and secondary school to find out whether the obstacles Blum cate-

gorised could be identified empirically (or had changed during time). The teachers

named three main obstacles: lack of time, complexity of performance assessment,

and lack of material. The first obstacle, lack of time, could be differentiated into

lack of time necessary for working on modelling problems in the classroom and

lack of time for preparation of modelling lessons. Teachers often expressed a desire

not to waste time by working on modelling problems, but needed to fulfil the

curriculum. This is astonishing, because modelling has been part of the curriculum

in every German state for nearly a decade then (see Sect. 2.7). Concerning the last

obstacle, lack of material, modelling problems for students in Grades 8–13 espe-

cially were mentioned. Whereas in the above study this obstacle could be overcome

by presenting modelling problems to the teachers, the other two obstacles seemed to

be more resistant. The teacher training that took place within the framework of the

study did not change teachers’ attitudes towards the other two obstacles: Even after

the teacher training, teachers still found it difficult to assess modelling problems.
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As stated above, students’ beliefs and thinking styles can influence their mod-

elling process. Similar findings about teachers’ beliefs and thinking styles were

identified: Teachers emphasised different features of the modelling process in ref-

erence to their mathematical thinking style or preferred way of representation. By

analysing videotaped lessons of three different teachers, Borromeo Ferri (2011)

found three different types of teachers. Some of the teachers underlined formal

aspects while supporting students during their modelling process and discussions

about solutions of modelling problems, whereas others emphasised reality-related

aspects in order to validate the results and help students. A third type considered

both formal mathematical aspects as well as real-world aspects. It is important to

note that teachers are often not conscious of their own behaviour concerning this

aspect. However, they certainly influenced the students’ handling of modelling

problems (Borromeo Ferri 2011; Borromeo Ferri and Blum 2013).

Not only teachers’ priorities concerning modelling but also their behaviour in

classes has an effect on students’ modelling performance. Their interventions can

hinder as well as support students’ independent work on modelling problems. For

independent work on modelling problems it is crucial to guide students as much as

necessary and as little as possible (principle of minimal help, Aebli 1997).

A well-known distinction between different kinds of interventions is the Zech’s

(2002) taxonomy of assistance. This method differentiates motivational, feedback,

general-strategic, content-oriented strategic, and content-oriented assistance. The

intensity of the intervention increases gradually from motivational assistance to

content-oriented assistance. For complex problems such as modelling problems, the

answer to the question of whether an intervention is appropriate or not is not that

easy. Based on Zech’s categorisation, Leiß created a descriptive analysis of adap-

tive teacher intervention in the modelling process. Here the analysed interventions

were classified by trigger, level, and intention (see Leiß 2007).

Among others, the main results of Leiß’s study illustrated that strategic inter-

ventions were included in the intervention repertoire of the observed teachers only

very marginally and that teachers often chose indirect advice in situations where

students had to find only one step by themselves in order to overcome the difficulty.

Furthermore, only very few could be classified as adaptive and diagnosis based

(Tropper et al. 2015). However, further studies (such as Link 2011; Stender and

Kaiser 2015) did not confirm these results. In contrast, these studies provided

evidence that specifically strategic interventions also have the potential of being

adaptive and leading to metacognitive activities (see Link 2011).

Nevertheless, there is very little empirical knowledge about the effectiveness of

single interventions. Stender (2016) investigated which kinds of scaffolding and

intervention activities are adequate to promote independent students’ modelling

activities. In the framework of modelling days in Hamburg (see Sect. 2.9), the

interventions of 10 future teachers supporting 45 students were analysed. Students

worked on a complex, realistic, authentic modelling problem over three days. The

pre-service teachers were trained to support the students merely by strategic

interventions beforehand. The whole working processes were videotaped. On the

basis of the analysis of 238 interventions, Stender and Kaiser emphasised the
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potential of interventions that are introduced ad hoc and asked the students to

explain the state of work: On the one hand, students’ answers gave possibilities for

the teachers to diagnose possible difficulties. On the other hand, the students

themselves structured their work while explaining and sometimes overcoming the

difficulty without further help from the teachers (Stender and Kaiser 2015).

A different kind of support is feedback. The influence of different kinds of

feedback on students’ achievement and motivational variables was investigated in

the framework of the Co2Ca Project (Besser et al. 2015). The aim of this study was

to determine a way for student performance to be assessed and reported that would

enable teachers to analyse students’ outcomes appropriately. The instrument for

giving feedback needed to be both manageable for teachers and understandable for

students. The investigation phase was divided into several parts: First, items were

developed for the specific content areas and their related competencies. In addition,

during piloting the tasks, types of feedback were first empirically tested and anal-

ysed. Second, a laboratory experiment followed in which different types of

skill-based feedback on student performance were tested. In a third step, the

experiences of the laboratory study were used in an empirical field study. Finally, a

transfer study was carried out in which the influence of teacher training on the

development of teachers’ assessment competency was investigated. These studies

showed that verbal feedback combined with various teacher- and mark-centred

forms of assessment dominated as the most common forms of teacher feedback.

Forms of self- or peer-evaluation were rare, but they were comparatively common

among teachers who were well acquainted with diagnostic questions. In multi-level

models, relationships between motivation and performance of students were iden-

tified: teacher- and mark-centred assessment practices were accompanied by lower

motivation, whereas an ipsative reference standard orientation of the teacher was

accompanied by increased motivation. Thus, the teachers’ diagnostic skills were

connected with better test scores of students. As expected, different types of

feedback (process-related feedback, social-comparative feedback, and criteria-based

feedback were used in the study) resulted in different effects on student motivation

and on the attribution of test results. The criteria-based feedback had comparatively

positive effects. Overall, on a quantitative level no significant improvements in

performance were identified. Furthermore, first results of the teacher training study

indicate that teachers who took part in the teacher training outperformed those who

had not been trained in formative assessment (Klieme et al. 2010; Besser et al.

2015).

Mathematical modelling is not compulsory content in teacher education pro-

grammes at universities in German-speaking countries. Only at some universities

(e.g., Hamburg and Kassel) are courses offered regularly. Often, these courses are

linked to practices such as the above mentioned modelling days (see Sect. 2.9).

If future teachers need be enabled to implement mathematical modelling in their

future teaching, the conceptions of such seminars have to be based on considera-

tions about necessary teacher competencies for modelling. Borromeo Ferri and

Blum (2010) distinguish between five different categories of teacher competencies

for modelling:
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(1) Theory-oriented competency (contains necessary knowledge about theoretical

aspects of modelling such as knowledge about modelling cycles, goals and

perspectives for modelling, types of modelling tasks, and theoretical consid-

erations about modelling competencies).

(2) Task-related competency (contains ability to solve a modelling problem, to

analyse possible barriers and necessary competencies, and to create modelling

tasks on their own).

(3) Teaching competency (contains micro- and macro-scaffolding abilities such as

the ability to plan and perform modelling lessons and knowledge of appro-

priate adaptive interventions to enable students to work as independently as

possible)

(4) Diagnostic competency (contains the ability to identify phases in students’

modelling processes and to diagnose students’ difficulties during such pro-

cesses in order to support students during their work and to select modelling

problems).

(5) Assessment competency (contains the ability to construct appropriate tasks

and tests for assessing students’ modelling competencies as well as assessing

students’ work on modelling problems).

The fifth dimension is not considered to be reasonable for teacher education at

university due to time restrictions and students’ experience. An example of such

seminars as well as the evaluation can be found in Borromeo Ferri and Blum

(2010).

Due to the fact that mathematics teachers often do not know how to implement

mathematical modelling in their classroom and often assume that there are obstacles

as mentioned above, courses for practicing teachers are necessary. One example of

such a course is the teacher training course developed in the framework of the

international project LEMA (Learning and Education in and through Modelling and

Applications). On the basis of a requirement analyses as well as on theoretical

considerations, five key modules were developed, implemented, and evaluated. The

evaluation shows that the course had strong positive effects on the teachers’ ped-

agogical content knowledge and self-efficacy in terms of modelling, but no positive

effects on the teachers’ biases (Maaß and Gurlitt 2011).

As shown above, teachers have a great influence on students’ modelling pro-

cesses, although they are often unaware of their impact. It has also become clear

that many competencies are necessary in order to support students as appropriately

as possible and in order to implement modelling activities adequate for mathematics

lessons. In the discussion of scaffolding, these interactions that can foster or hinder

students’ independent work on modelling problems are part of micro-scaffolding.

All aspects that can be arranged and planned before are called macro-scaffolds

(Hammond and Gibbons 2005). Results concerning aspects of macro-scaffolding

are presented in the next chapter.
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2.10.3 Classroom Settings

As shown above, teachers play an important role in implementing mathematical

modelling successfully into mathematic lessons and in fostering students’ mod-

elling competencies. Furthermore, classroom settings (which can surely be estab-

lished by teachers as well) play an important role. So apart from direct teacher

behaviour, the design of single modelling lessons as well as the whole modelling

teaching unit (both of which are typically arranged by teachers) have been in the

focus of research as well.

In the DISUM project, a directive teaching approach (i.e., teacher-centred) was

contrasted with an operative-strategic teaching approach (i.e., more student-cen-

tred) during a 10-lesson learning unit. The study was carried out in 18 classes of

Grade 9. The results clearly indicate the advantages of operative-strategic teaching

in terms of the increase in students’ modelling competence as well as their

self-regulation (Schukajlow et al. 2012). However, working completely indepen-

dently in groups on modelling problems—the third evaluated teaching approach—

did not allow students to tackle the modelling problem successfully (Schukajlow

and Messner 2007). This outcome underlines the important role of teachers in

fostering students’ modelling competence and the necessity of directive phases in

operative-strategic teaching.

In the framework of the same project, the influence of class sizes that were taught

in an operative-strategic way was investigated as well. Seven classes were of

“normal” size for German standards (*26 students per class) and five were “small”

classes (*16 students per class). The results show that modelling competence can

be fostered in smaller classes significantly better than in classes of standard German

size smaller ones, but in both classes, student modelling competences increased

during the 10-lesson teaching unit (Schukajlow and Blum 2011).

Again in the DISUM framework, a third factor was tested that may influence the

students’ work on modelling problems and give them support in solving modelling

problems independently. During a two-day intervention in six classes of Grade 9, a

solution plan was introduced as a scaffold (Blum 2011). This plan was comprised of

four stages: understanding the task, establishing the model, using mathematics, and

explaining the results. Each stage was explained to students with two explicative

bullet points. This plan was a variation of the four-step modelling cycle and

included some hints about what to do in the different steps. It was not meant as

schema for solving modelling problems but as an aid. The results show the potential

of the solution plan as guideline: The students using the solution plan while

working on the modelling problem reported that they used strategies more fre-

quently than those of the control group. Furthermore, students using the solution

plan showed higher achievement than those in the other group (Schukajlow et al.

2010, 2015a, b).

Supporting students’ modelling processes most effectively can be a great chal-

lenge for teachers. In order to have enough time to support students individually,

measures of support that can be prepared beforehand are of high interest.
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2.10.4 Design of Modelling Problems

The design of a modelling problem plays an important role in the modelling process

and can influence students’ work on the problem. As shown in the example above,

the context of a modelling problem has a great influence on the students’ working

process.

The results of research into the design of modelling problems can be distin-

guished between results concerning the characteristics (and thus impact) of single

problems and results concerning those of a set of problems. Furthermore, one can

distinguish between impact on students’ working behaviour and students’ mod-

elling competence.

Kaiser’s (1995) study on modelling problems in general described theoretically

different potential impacts that modelling problems could have. One potential

impact is the possibility of developing a personal meaning for mathematics. In an

empirical study with 15 students in Grade 10, Vorhölter analysed the role of

modelling problems in constructing a personal meaning for mathematics. In gen-

eral, 12 different personal meanings emerged from the interviews, which were

grouped into five areas: (1) as a tool for life, (2) for getting social appreciation,

(3) for getting satisfaction, (4) consideration about mathematics lessons, and

(5) concerning mathematical knowledge. The most important personal meanings for

the students were those of mathematics as a tool for life and for satisfaction. Often,

however, it was not possible for the students to realise those personal meanings, i.e.,

they were not told and were not able to determine for themselves how they could

use the mathematics they had learnt as a tool. Lessons involving modelling,

however, helped students realise these two important personal meanings more

often. It was not only the context of the modelling tasks that helped the students to

realise their personal meaning, however; other characteristics of modelling tasks

(such as openness and the challenge to develop one’s own approach) as well the

setting (for example, group work or different teacher behaviour) helped the students

achieve their own personal meaning (Vorhölter 2009).

Kaiser (1995) also showed that modelling problems also have the potential to

motivate students. This hypothesis was reassessed in the STRATUM Project.

Within the projects’ framework, 13 teaching units were developed for under-

achieving students. The 959 participating students and 54 participating teachers

were divided into two intervention groups and one control group. In terms of

various variables, students’ motivation was measured before and after the teaching

unit. The results of the study partly confirmed Kaiser’s hypothesis: Students’

motivation did not increase, but the decrease of learning motivation could be

blocked in the intervention groups (Maaß and Mischo 2012). Kreckler (2015)

confirmed this result in a certain way: The majority of the 332 participating students

of her study wished to work on modelling problems during mathematics lessons

more often, irrespective of gender, mathematical competence, and mathematical

theme. Moreover, the four-lesson teaching unit in the framework of Kreckler’s

project resulted in a sustainable increase in modelling competence.
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As indicated above, in the last years several studies have been carried out with

the intention of determining how to optimally promote students’ modelling com-

petencies. The projects focused on different groups of students as well as different

activities. In all these studies, sets of modelling problems were developed.

One of the teaching approaches developed especially for novice modellers is the

computer-based learning environment KOMMA. The learning environment com-

prises four heuristic worked-out examples. In these examples, two fictional char-

acters solved a modelling problem and explained their ideas, heuristic strategies, and

heuristic tools. All the examples being worked out were structured using a 3-step

modelling cycle. The modelling competence of the 316 participating eighth grade

students were tested before, just after, and four months after the intervention. The

results indicated a significant increase in modelling competence just after the

implementation of the learning environment and lesser long-term effects.

Underachieving students in particular benefited from the approach (Zöttl et al. 2010).

In another study, the examples being worked out were used as scaffolds. The

interactions of four ninth grade students and their imitation of demonstrated beha-

viour in the examples were examined. The study points out that the number of

imitations per student was quite different and that some elements were not imitated at

all. Altogether, the examples’ potential for helping students to work on modelling

problems on their own became obvious. In contrast to the potential support of a

teacher, examples can only provide solutions at a strategic level (Tropper et al. 2015).

In addition to the KOMMA Project, the ERMO Project focuses on novice stu-

dent modellers and the fostering of their modelling competence as target. The

effectiveness of two different approaches (a holistic as well as an atomistic

approach; see Blomhøj and Jensen 2003) was tested against each other in the

following way: The participating 15 ninth grade classes were divided into two

groups. Each group was assigned five modelling problems that had the same

context, but students’ work on the problems differed: Whereas the students of the

atomistic group only had to work on one step of the modelling cycle, the students of

the holistic group had to go through the whole modelling process for every prob-

lem. The students’ modelling competence was tested before and after the inter-

vention unit as well as a half year after. The results indicated the strengths and

weaknesses of both approaches, whereas both approaches are reasonably effective

at fostering students’ modelling competencies. However, the holistic approach was

proven to be more effective for students with weaker performance in mathematics

(Kaiser and Brand 2015).

In the framework of the MultiMa Project, the influence of demanding multiple

solutions for one modelling problem was tested. Two groups of 144 ninth graders in

six classes were compared. One of the groups was asked to work on a problem

without having to make assumptions in order to solve the problem. In the other

group, different assumptions were requested and students had to develop at least

two different ones. Before and after the teaching unit, students were asked to

self-report on their planning and monitoring strategies. The results of this study

showed a positive influence on students’ planning and monitoring in the group that

were asked to develop multiple solutions (Schukajlow and Krug 2013).
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Furthermore, prompting students to develop multiple solutions had no direct

influence on their direct performance, but increased the number of developed

solutions (Schukajlow et al. 2015a, b).

Overall, an appropriate complexity of tasks increasing within a set of modelling

tasks is recommended (Maaß 2006; Blum 2011). Furthermore, a broad variation of

contexts as well as mathematical domains is needed in order to guide students to

transfer modelling strategies from one task to another (Blum 2011, 2015).

3 Summary and Looking Ahead

As presented above, modelling and applications were and still are an important part

of German research on mathematics education. In the last century, the German

discussion on modelling focused on conceptual aspects and exemplarily modelling

problems. This was an important step in clarifying the content of the concept

mathematical model. During this time, a discussion on different types of models and

modelling examples in the light of a long German tradition of applications in school

mathematics took place. An important step in bringing research and school practice

closer together and integrating modelling examples into the classroom was the

establishment of the German-speaking ISTRON group 25 years ago. A new

development in integrating applications and modelling in all types of schools

started in the last decades of the 20th century. A much-debated question is the

adaptation of a particular modelling cycle for a particular research question. This

development led to a greater internationalisation of German research on modelling

and integration of modelling as a competency into the curriculum at the beginning

of this millennium. Nowadays, modelling is part of the German national curricu-

lum. However, as in most countries, applications and modelling play only a small

role in everyday teaching. The presented empirical results show the main foci of the

research on modelling in application in the last years. Currently, the effective

promotion of students’ modelling competencies is the core of research.

Concurrently, instruments for helping students to work on modelling problems

independently (and relieving teachers in some way) are being developed and

analysed.

• The long tradition of applications in school mathematics in German-speaking

countries is discussed.

• Approaches for the integration of modelling problems in school practice are

described.

• The integration of modelling as a competency in the current educational stan-

dards is described.

• The influence of digital tools on school practice and research projects on

mathematical modelling is described.

• New empirical research projects on mathematical modelling in German-

speaking countries on the role of students and teachers, classroom settings, and

design of modelling problems are put forward.
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