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Introduction

Accelerated Warming

Nature 564, 30-32 (2018)
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ΔHr = -144 kJ/mol (R=H)
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State of the Art in Heterogeneous Catalyst

Current Heterogeneous System

ACS Catalysis 2012 2 (1), 180-183 ACS Appl. Mater. Interfaces, 2018, 10 (1), 733–744
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Imidazolinium-based Covalent Organic Polymer (COP)-222

Novel Imidazolinium-based COP-222

Figure 1. Synthesis and imidazolinium characterization of COP-222 (A) One-step, one-pot synthesis from commercially available

substrates. (B) Elemental analysis (C,N,H,O) with expected imidazolinium structure (C) Experimental 13C-NMR. (D) 15N-NMR with 15N-

enriched COP-222. (E) XPS (N-1s) data.
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Figure 2. Physicochemical characterization of COP-222 (A) XRD pattern reflects amorphous nature. (B) N2 adsorption-desorption isotherm at

77K indicates non-porous architecture. Inset displays scanning electron microscopy image of COP-222 (C) CO2 adsorption isotherm at

different temperature: 273, 298, and 323K. (D) Isosteric heat of adsorption (Qst) data of COP-222 using Clausius-Clapeyron equation.

Temperature programmed desorption profiles of COP-222 (E) CO2-TPD curve (F) NH3-TPD curve.

Physicochemical Property of COP-222
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Figure 3. Optimization of catalyst activity (A) Cycloaddition of CO2 to epichlorohydrin was used to optimize catalytic activity. (B) Screening of

catalyst loading. (C) Screening of temperature.(D) Conversion with respect to time. (E) Screening of control structures for the cycloaddition

reaction. Reaction conditions: catalyst, epichlorohydrin (5mmol), and CO2 (1atm).Conversions were determined by using 1H NMR.
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Substrate Scope and Recyclability

 Wide substrate scope

Figure 4. (A) Cycloaddition reaction of CO2 with various epoxides catalyzed by COP-222. Conversion yields for the corresponding catalytic

reactions are given in percentages. The selectivities are reported in parentheses (B) Recyclability of COP-222 for 15 cycles. Each cycle was set

up using the recovered catalyst and epichlorohydrine. aReaction conditions: substrate (5 mmol), COP-222 (30 mg), CO2 (1atm) and temperature

(100oC). bDetermined by using 1H-NMR.
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ND-ERO Reaction Mechanism

Nucleophillic attack-driven Epoxide Ring Opening (ND-ERO) Mechanism

Figure 5. The Nucleophilic Attack-Driven Epoxide Ring Opening (ND-ERO) Reaction Mechanism Reaction mechanism for the 

COP-222 catalyst derived from quantum mechanics, including free energy reaction barriers.
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Scalability and Cost

137oC80oC25oCPreparation 150oC

141$ / kg 
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128.6g

Figure 6. Scale-up for COP-222 synthesis with terephthalaldehyde (200g) and ammonium chloride (320g) in dimethylformamide (1.5L)
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Conclusions

The imidazolinium catalyst that we developed herein addresses all 7 qualities

and offers rapid implementation for CO2 reclamation.

(1) be free of metals; (2) be free of co-catalysts; (3) be free of high
pressure requirements; (4) provide quantitative selectivity to cyclic

carbonate (5) provide a wide substrate scope, including very hard

substrates; (6) provide reusability; and (7) be inexpensive.
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