The Effect of Different Interference Fit on Micromotions and Opening in a Cementless Femoral TKA Component

Esther Sanchez Garza¹, Christoph Schilling², Thomas Grupp², Nico Verdonschot^{1,3}, Dennis Janssen¹

1 Radboud university medical center, Orthopaedic Research lab, Nijmegen, The Netherlands . 2 Aesculap AG, R&D Biomechanical Research & Preclinical Evaluation, Tuttlingen, Germany. 3 University of Twente, Laboratory for Biomechanical Engineering, Enschede, The Netherlands.

Introduction

• The effect of interference fit on primary stability of a press-fit femoral total knee arthroplasty (TKA) is still not well understood.

Micromotions

 General Linear Models (GLMs) were defined with design, loading, and ROI as independent variables. Specimens were considered as a random factor.

- The primary stability is measured as the amount of relative displacement between the implant and the bone under physiological loads, also known as micromotions.
- < 50 μm bone ingrowth
- > 150 μm fibrous tissue formation
- A good primary stability can ensure a better long-term fixation and can reduce the risk of implant loosening.

Greater interference fit or thicker implant coating

Better fixation?

More bone damage?

Objective

Investigate the primary stability of a femoral TKA component with a standard coating of $350\mu m$, and compared it against a novel, thicker coating of $700\mu m$ in experiments in cadaver bones.

• During gait the highest micromotions were found in the posterior condyles (CM, MP), for squat the largest micromotions were in the anterior flange (ANT).

Digital Image Correlation (DIC)

- Six pairs of knees aged 47-60 years (average 55).
- Two cementless e.motion[®] femoral components (Aesculap, B. Braun, Tuttlingen, Germany) with the same design, but with a different coating thickness (350 vs 700 μm).

Opening/closing

- Opening was noticed anteriorly (MA, LA) for squat, while closing was presented distally (MD, LD) for gait.
- Experimental setup using a force-controlled load at 100N/s for two loading conditions

- The Regions of interest (ROIs) defined at the bone-implant interface are the anterior flange (ANT); the anterior, distal, and posterior region of the medial (MA, MD, MP) and lateral (LA, LD, LP) views; and the medial and lateral condyles (CM, CL)
- Micromotions are parallel to interface (white arrows), and opening/closing perpendicular (black arrows).

- No significant difference was found between the standard and novel coating implants for micromotions (P=0.374) nor opening/closing (P=0.9).
- A ticker coating had no influence on the primary stability of a press-fit femoral TKA component.
- Abrasion and damage of the underlying trabecular bone during implantation may

explain these findings.

 Results suggest that there is an interference threshold beyond which fixation does not further improve.

Conclusion

This study shows that an increased interference fit does not reduce implant-bone micromotions of femoral TKA components. A possible explanation for this findings may be an increase in bone damage during implantation with a thicker coating, which may be revealed in further analysis of the deformed bone surfaces.

Acknowledgements: prof. Alexander Giurea, Richard van Swam, Gerjon Hannink, Max Bakker, Justine Eerden.

Contact: Esther.SanchezGarza@radboudumc.nl

This study was funded by a research grant from Aesculap AG, Tuttlingen, Germany.

Radboudumc university medical center