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Abstract

Circulating tumour cells (CTCs) refer to cells found in the peripheral blood, which are 
derived from the primary or secondary tumour. They serve as an alternative to study the 
biology of the primary tumour especially when tissue biopsy is not available. However, 
major challenges in CTC analysis are the rarity of these cells and the purity of the isolated 
population. The advancement in technologies allows detection and enrichment of suf-
ficiently pure CTCs at the single-cell level, facilitating downstream molecular charac-
terisation. Single CTC analysis allows detection of key mutations that may be critical to 
disease management and helps to address the intercellular differences among tumour 
cells. In this chapter, we discuss the technologies for CTC isolation and the use of CTCs in 
achieving early detection and prognosis of cancer, real-time monitoring of cancer therapy 
and tailoring of personalised treatments.

Keywords: cancer, CTC, single-cell analysis, liquid biopsy, personalised treatment

1. Introduction

Cancer is a leading cause of death in many countries [1]. According to World Health Organisation, 

approximately one in six deaths is attributable to cancer. The development of cancer is a multi-
stage process. Briefly, normal cells undergo transformation into tumour cells, which are defined 
by various hallmarks including the ability to sustain proliferative signals, evade growth sup-

pressors, promote replicative immortality, avoid cell death and immune destruction, induce

angiogenesis and activate invasion and metastasis [2]. This cellular transformation results in 
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uncontrolled proliferation and enables tumour cells to migrate from their primary organ to a 

distant organ, a process known as metastasis. In 90% of cancer patients, death occurs because of 

metastasis [3, 4].

According to Cancer Research UK, 46% of patients in England are diagnosed in the advance 

stages of disease, leading to less effective treatment outcomes. To reduce the number of deaths 
caused by cancer, detection at an early stage of disease development is critical so that clinical 

intervention can come in place to improve the chances of survival for cancer patients. The 

diagnosis of cancer involves multiple tests including tissue biopsy, liquid biopsy, imaging 

scans, genetic tests and an examination of medical history. Tissue biopsy is regarded as the 

gold standard for the clinical diagnosis of cancer [5, 6], despite the invasiveness and inconve-

nience of collecting the biopsy sample.

In recent years, liquid biopsy is increasing being used for the detection of cancer because it 

only requires a routine draw of blood and is less invasive compared to tissue biopsy, which 

may also not be repeatedly done safely or feasibly [7]. Liquid biopsy includes the analysis 

of circulating tumour cells (CTCs), circulating cell-free DNA (cfDNA) or exosomes present 

in the patient’s blood [8]. CTCs, in particular, have garnered much attention for its potential 
clinical utility. CTCs are cells disseminated from the primary or secondary tumour into the 

peripheral blood and are associated with the development of metastasis. They are precursors 

of secondary tumour formation and may carry key information relating to the mechanism 

of metastasis. They are approximately 12–25 μm [9] and present in extremely low numbers 

(typically 1–10 CTCs per 10 ml of blood or ~1–100 CTCs per 109 blood cells) [10–12]. The 

number of CTCs found in the blood varies with the type and stage of cancer and the treatment 

provided [13]. Typically, patients in the advanced stages of cancers have higher number of 

CTCs [14]. CTCs of different cellular morphology may exist in the blood and these include the 
epithelial CTCs, epithelial-to-mesenchymal (EMT) CTCs and mesenchymal CTCs. Moreover, 

the mutations found in CTCs are often concordant with the primary tumour [15–17], suggest-

ing that the genetic composition of CTCs is similar to the primary tumour. Thus, CTCs has the 

potential to be used as a ‘surrogate’ to study the biology of cancer cells.

In cancer treatment, drug resistance is a major concern. The failure of chemotherapeutic drugs to 

work in patients lies in the heterogeneity and complexity of cancer cells [18, 19]. Cancer stem cells 

are resistant to chemotherapy and contribute to the intra-tumoural heterogeneity [20]. Therefore, 

there is a need for molecular profiling of tumour cells at the single-cell level to better address the 
intra- and inter-cellular differences in cancer cells and enable clinicians to have a better picture of 
the disease complexity. While paired tumour/normal tissues is the gold standard for molecular 

analyses of tumour [21], CTCs may provide information on the dynamic changes in tumour cells 

when blood is extracted at different times, which cannot be achieved in tissue biopsy. In addi-
tion, where tissue is not easily accessible, CTCs may provide a diagnostic window.

However, the main challenges of CTC research are that these cells are extremely rare and the 

population of isolated CTCs may not be pure due to contamination with white blood cells 

(WBCs). Therefore, highly sensitive and specific technologies are required to isolate CTCs effi-

ciently. Over the past decade, microfluidics technology has greatly advanced the enrichment 
and isolation of CTCs from whole blood containing red blood cells (RBCs) and WBCs [22]. 

Microfluidics deals with the behaviour of fluid passing through the microchannels [23, 24]. It 

makes use of the laminar flow of fluid in the microchannels to manipulate the fluid to achieve 
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cell separation. Furthermore, because of the small space and short flow distance in the micro-

device, microfluidics-based technologies consume small amounts of reagents and greatly 
increase the speed and throughput of blood sample processing, allowing clinical adoption. 

The use of microfluidics facilitates the integration of downstream molecular characterisation 
of CTCs, which will enhance our understanding on the complexity of cancer development and 

enable clinicians to develop better therapeutic strategies to eradicate cancer cells and improve 
the overall survival of patients. In this chapter, we discuss the technologies for CTC isolation 

and the use of single-cell analysis in achieving early detection and prognosis of cancer, real-

time monitoring of cancer therapy and tailoring of personalised treatments.

2. Technologies for enrichment and isolation of CTCs

Many technologies have been developed to enrich and isolate CTCs from the peripheral 

blood. In most methods, CTCs are separated from the blood cells based on their biological 

properties and/or physical properties such as size, deformability, density and electric charge. 

Conventional CTC enrichment systems such as fluorescence activated cell sorters (FACs) 
have been used to separate CTCs from whole blood based on the expression of cell surface 

protein markers [25]. Technologies that isolate CTCs based on physical properties also exist. 

For instance, ISET and ScreenCell use a filtration system to separate the slightly larger CTCs 
(12–25 μm) from the smaller WBCs (7–15 μm) and RBCs (8 μm) [9]. CTCs and mononuclear 

cells have a density (<1.077 g/ml) lower than other blood cells (>1.077 g/ml), allowing layered 

separation of CTCs [6]. CTCs and blood cells exhibit differences in deformability, allowing 
them to be separated [26]. The dielectric properties of CTCs are different from normal blood 
cells, allowing separation of CTCs when the cells are subjected to a non-uniform electric field 
[6, 27]. However, these conventional CTC enrichment methods suffer from limited ability to 
process large volumes of blood, limited detection sensitivity, inherent losses and poor recovery 

of viable CTCs, low throughput and insufficient purity due to contamination with WBCs [6].

2.1. Use of microfluidics in CTC enrichment

To overcome these limitations, microfluidics technology offers an alternative platform for 
isolating CTCs with improved detection sensitivity, high recovery rate, high efficiency and 
throughput. Each microfluidics platform has its advantages and limitations (Table 1). In 2004, 

US Food and Drug Administration approved the clinical use of CellSearch system (Veridex) 

for CTC detection in epithelial cancer types such as breast [28], colorectal [29] and prostate 

cancer [30] for purposes of prognostication. This system uses immunomagnetic and fluores-

cence imaging technology to enrich and enumerate CTCs from 7.5 ml of whole blood based on 

the expression of specific proteins in CTCs [31, 32]. CTCs are first separated from other blood 
cells using magnetic iron nanoparticles coated with antibodies targeted against EpCAM (an 

epithelial cell adhesion molecule present on the cell surface of CTCs). Subsequently, cells are 

stained with antibodies targeted against cytokeratin (CK; a protein found in the cytoplasm 

of CTCs) and CD45 (a cell surface protein found exclusively on WBCs) to differentiate CTCs 
from contaminating WBCs. DAPI (4′,6-diamidino-2-phenylindole) is also used to stain the 
nuclei of CTCs and WBCs. Finally, a magnetic field is applied to collect the CTCs, which are 
identified by positive expression of EpCAM and CK and negative expression of CD45.
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System Separation principle Strengths Weaknesses References

Antibody-based capture

CellSearch Positive selection for 

EpCAM, CK8/CK18/

CK19 and negative 

selection for CD45

• Food and Drug adminis-

tration (FDA)-approved 

for clinical use

• Unable to capture 

tumour cells that 

lack EpCAM 

expression

• Only applicable 

to cancers with 

epithelial origin

• Cells are not viable 

after isolation

[28–30]

CTC-chip EpCAM-based • Sample does not require 

pre-processing

• Cells remain intact and 

viable after isolation

• Unable to capture 

tumour cells that 

lack EpCAM 

expression

• Only applicable 

to cancers with 

epithelial origin

• Unable to recover 

tumour cells with 

100% purity

[33]

CTC-ichip Size-based separation 

followed by negative 

depletion of white 

blood cells with CD45 

and CD66b magnetic 

beads

• Fast processing time 

(8 ml/h)

• Has the potential to 

capture CTCs from any 

cancer type.

• Cells remain intact and 

viable after isolation

• Unable to capture 

tumour cells that 

are smaller or 

similar in size to 

blood cells.

• Unable to recover 

tumour cells with 

100% purity

[51, 52]

IsoFlux EpCAM-based • Higher sensitivity of 

detecting CTCs than 

CellSearch system

• Unable to capture 

tumour cells that 

lack EpCAM 

expression

• Only applicable 

to cancers with 

epithelial origin

[53]

Magnetic Sifter EpCAM-based • Allows rapid imaging of 

captured cells on a small 

area

• Cells remain intact and 

viable after isolation

• Reduces sample 

losses with minimal 

pre-processing

• Unable to capture 

tumour cells that 

lack EpCAM 

expression

• Only applicable 

to cancers with 

epithelial origin

[54]

GEDI 

microdevice

Prostate-specific 
membrane antigen 

(PSMA)/HER2-based

• Higher sensitivity of 

detecting CTCs than 

CellSearch system

• Device geometry reduces 

capture of WBCs

• Only applicable 

to prostate cancer, 

breast cancer, 

gastric cancer

• Unable to recover 

tumour cells with 

100% purity

[43, 55, 56]
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System Separation principle Strengths Weaknesses References

Label-free capture

ClearCell FX

(spiral chip)

Size-based • Fast processing time 

(3 ml/h)

• Cells remain intact and 

viable after isolation

• Cost-effective

• Has the potential to cap-

ture CTCs from various 

cancer types.

• Unable to capture 

tumour cells that 

are smaller or 

similar in size to 

blood cells.

• Unable to recover 

tumour cells with 

100% purity

[11, 40]

Microfluidic 
biochip

Size-based • Fast processing time 

(7.5 ml of blood in 3 h)

• Allows single-cell 

isolation

• Able to isolate viable 

CTCs with 100% purity

• Has the potential to cap-

ture CTCs from various 

cancer types.

• Limited number of 

cell chambers for 

imaging

• Unable to capture 

tumour cells that 

are smaller or 

similar in size to 

blood cells.

[16, 17]

Vortex Size-based • Fast processing time 

(7.5 ml of blood in 20 min)

• Cells remain intact and 

viable after isolation

• Has the potential to cap-

ture CTCs from various 

cancer types.

• Unable to recover 

tumour cells with 

100% purity

• Low CTC capture 

efficiency

• Unable to capture 

tumour cells that 

are smaller or 

similar in size to 

blood cells.

[57]

Microfluidic 
device for 

deformability-

based cell 

classification

Size and 

deformability-based

• Cells remain intact and 

viable after isolation

• Cost-effective

• Has the potential to cap-

ture CTCs from various 

cancer types.

• Unable to recover 

tumour cells with 

100% purity

[35]

DEPArray Electric charge-based • Allows single-cell 

isolation

• Able to isolate viable 

CTCs with 100% purity

• Has the potential to cap-

ture CTCs from various 

cancer types.

• Limited throughput

• Large amount of 

sample loses

[58, 59]

Abbreviations used are: CTC, circulating tumour cell; EpCAM, epithelial cell adhesion molecule; CK, cytokeratin 

proteins.

Table 1. Comparison of selected microfluidics systems used for enriching CTCs.
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In 2007, a microfluidics chip developed for CTC enrichment and isolation, known as CTC-chip, 
was introduced [33]. In this system, CTCs are captured as blood flows through the microchan-

nel containing EpCAM antibody-coated microposts [33]. CTCs are captured with ~50% purity 

and sample processing takes 1–2 ml/h. Following CTC-chip, a broad range of microfluidic 
devices were generated to isolate CTCs based on physical size, density, deformability [34–41] 

or antibody-mediated CTC capture in surface functionalised microchannels [33, 42–47].

Although the affinity binding methods (e.g. CellSearch, CTC-chip) may isolate CTCs of better 
purity than the physical methods, the strong antibody-antigen interaction in the microdevice 

may affect the recovery of viable CTCs [11, 48] and hinder subsequent downstream analy-

sis. Additionally, affinity binding methods will lose out on the subpopulation of CTCs that 
have down-regulated expression of epithelial markers (e.g. EpCAM) such as the mesenchy-

mal CTCs, resulting in an underrepresentation of the actual CTC count in the blood [11, 49]. 

Therefore, the limitations imposed by affinity binding methods prompt the development of 
label-free microfluidic devices that can isolate CTCs with increased purity and viability.

To efficiently separate CTCs from the large pool of RBCs and WBCs, a spiral microfluid-

ics chip was introduced in 2013 [11, 50]. The spiral microchannel (500 μm width × 160 μm 

height) consists of two inlets and two outlets over a length of ~10 cm. Blood (diluted 2–2.5×) is 

pumped into the outer inlet while sheath fluid is pumped through the inner inlet. The addi-
tional sheath fluid in the spiral chip facilitates the Dean migration of large volume of RBCs in 
a well-controlled manner, thus allowing high haematocrit samples (20–25%) to be processed. 

In spiral microchannel, CTCs and other blood cells experience Dean drag forces in addition 

to inertial lift forces and the combined effects cause hydrodynamic focusing of the cells to 
specific region of the microchannel. The larger CTCs are focused near the inner wall of the 
channel while smaller WBCs and RBCs are focused along the outer wall, leading to efficient 
size-based isolation of CTCs [50]. Furthermore, the spiral chip is able to recover >85% spiked 

cancer cells and deplete almost 100% of WBCs from the blood sample [11, 50]. Trypan blue 

staining showed that most of the recovered cells (>98%) are viable [11]. Therefore, the spiral 

chip allows continuous isolation of CTCs in a single step with high sensitivity, recovery and 

throughput (3 ml of blood can be processed in an hour) [11]. The spiral chip is also designed 

to have large microchannel dimensions and high flow rate to prevent non-specific binding of 
CTCs to the walls and eliminate any potential clogging issues [11].

2.2. Microfluidics and single CTC isolation

Most microfluidics systems isolate CTCs in bulk rather than individually. The bulk analysis 
of CTCs may mask the presence of key mutations that are critical to disease progression, 

indicating the need for single-cell analysis. To isolate and study CTCs at the single-cell level, 

approaches such as micropipette aspiration [60, 61] and laser microdissection [62] have been 

used to manually select the individual CTCs. However, these methods are laborious and suf-

fer from low throughput, making them less suitable for clinical use. Commercial platforms 

such as DEPArray (Silicon Biosystems), which rely on the dielectric properties of CTC for 

single-cell isolation, suffer from large amount of sample losses [58].

To address these limitations, Yeo et al. developed a microfluidics device capable of perform-

ing high throughput, selective isolation of individual viable CTCs with 100% purity amidst a 
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large population of WBCs [17]. The separation efficiency is high because as few as 1 CTC in 
20,000 WBCs can be recovered. Prior to starting the run, the cell suspension is stained with 

specific fluorophore-conjugated antibodies such as CK or CD45 to facilitate the differentiation 
of CTCs from WBCs. The device works on the principle of hydrodynamic focusing to restrict 

cells to flow in a single stream and hold them passively in active control cell chambers that 
are positioned along the outer curvature of the channel. CTCs and other blood cells flowing 
through the channel will experience a slight centrifugal force that facilitates their entry into 

the cell chambers. Because the microfluidics biochip is integrated into a microscope, the cell 
sitting in the chambers can be observed under the microscope to determine whether it is a 
CTC or WBC based on size or staining outcome. Each chamber holds 1 cell at a time and each 

is connected to a control line that can be activated to eject the selected cell back into the main 

channel and into the collection well. In this manner, the cells isolated in the chambers can be 

ejected sequentially so that each cell can be recovered individually. To maximise the recovery 

of rare CTCs, the effluent of each run is recycled back into the device for three times. The 
device is able to process 7.5–8 ml of blood in 3 h [16], facilitating the enumeration of CTCs 

in clinical blood samples in a short period of time. This method also allows the collection of 

single CTCs for downstream molecular profiling.

3. Clinical applications of CTCs

Given the convenience and ease of obtaining blood samples from cancer patients, CTCs are 

currently being adopted for clinical practice. This is especially the case when tissue biopsy 

samples are not readily available. With current technologies, CTCs can be isolated in bulk or 

individually for studies on disease progression and therapeutic treatment. Single-cell analysis 

offers several advantages over pooled cell analysis. First, single-cell analysis is able to detect 
critical driver mutations for drug response that are present in low frequency, which may be 

masked in pooled cell analysis since the mutations may only be present in a subset of clones. 

For instance, in stage IV non-small cell lung cancer (NSCLC) patients who developed resistance 

after tyrosine kinase inhibitor (TKI) treatment, sequencing of single CTC revealed the presence 

of epidermal growth factor receptor (EGFR) mutation T790 M that confers resistance in a sub-

set of CTCs isolated from each patient (0–3 CTCs carry the mutation among <10 CTCs isolated 

per patient) [17]. Determining the mutation status of EGFR in NSCLC patients is important 

for patient stratification and treatment (see Section 3.4). Second, single-cell analysis reveals the 
heterogeneity in gene mutations and chromosomal copy number aberrations (CNA) among 

tumour cells while bulk cell analysis would have average out the signals. In metastatic breast 

cancer, a sequencing analysis of 40 single CTCs from five patients demonstrated heteroge-

neous mutations in four genes, phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA), 

tumour protein P53 (TP53), oestrogen receptor 1 (ESR1) and KRAS [63]. Within the same meta-

static breast cancer patient, not all CTCs harbour the particular mutation and different patients 
harbour different gene mutations [63]. In small cell lung cancer (SCLC) patients, chromosomal 

CNA profiling of individual CTCs obtained at pre-treatment can predict whether the patient 
is sensitive or refractory to subsequent chemotherapy at an accuracy of 83.3% [64], facilitating 

clinical decision-making. Third, single-cell analysis facilitates the study of clonal diversity and 

mutation evolution over the course of chemotherapy, which is difficult to achieve in bulk cell 

Profiling Circulating Tumour Cells for Clinical Applications
http://dx.doi.org/10.5772/intechopen.79228

19



analysis [65, 66]. In triple negative breast cancer (TNBC) patients, single-cell DNA sequencing 

revealed that chemoresistant patients carry pre-existing mutations and CNA that were adap-

tively selected in response to chemotherapy [65]. Single-cell RNA sequencing also found that 

chemotherapy induces transcriptional reprogramming to favour the resistant phenotype in 

TNBC patients who develop chemoresistance [65]. Thus, single-cell analysis provides a better 
resolution of the tumour profile than pooled sample analysis. More importantly, single-cell 
analysis of CTC can address the heterogeneous profile of cancer cells at the DNA, RNA and 
protein level and provide insights in the mechanism of metastasis and drug resistance. Here, 

we discuss the applications of CTCs that aid in the management of cancer and how single CTC 

analysis can contribute to achieving personalised medicine in the future.

3.1. Biomarker for early detection of cancer

The presence of CTCs in the peripheral blood acts as a biomarker for the early detection of 

cancer. Thus, the enumeration of CTC is important for cancer screening, especially in patients 

who at a higher risk of developing cancer due to genetic predisposition or disease state. The 

effective use of CTC enumeration in the detection of early-stage cancer has been demonstrated 
in patients with chronic obstructive pulmonary disease (COPD), who are at a high risk of 

developing lung cancer [5, 67]. Because of the risk, COPD patients are monitored annually for 

the development of lung cancer using computed tomography (CT) scan. In a subset of COPD 

patients without cancer diagnosis, CTCs were found in the peripheral blood. After 1–4 years 

of CTC detection, lung nodules were indeed detected by CT scan, leading to the diagnosis of 

early-stage lung cancer. Large-scale clinical studies are being done to further validate the use 

of CTCs as a diagnostic tool for the early detection of cancer [5]. Therefore, CTC can serve as 

a potential biomarker for the early detection of cancer so that prompt treatment intervention 

can come in place to improve the overall health of patients.

3.2. Prognostic marker for overall survival and metastasis

The number of CTCs found in the blood can indicate the state of the disease. Patients in later 

stages of cancer (e.g. metastatic cancer patients) have higher number of CTCs as compared to 

patients in the early stages of cancer [14, 68, 69]. Furthermore, the number of CTCs can vary 

with chemotherapy treatment, allowing clinicians to use CTC counts to determine the treatment 

efficacy and estimate the overall survival and risk of metastatic relapse. A study on early breast 
cancer patients [70] measured the number of CTCs before and after adjuvant chemotherapy 

demonstrated that the persistent presence of CTCs after chemotherapy is associated with poor 

disease-free survival and overall survival. Moreover, prognosis was worst in patients with >5 

CTCs per 30 ml of blood [70]. Similarly, studies in lung cancer patients also showed that higher 

number of CTCs was significantly correlated to shorter survival [32, 71–73]. Specifically, the 
presence of >8 CTCs per 7.5 ml of blood after treatment strongly correlated with worse survival 

in small cell lung cancer patients [74]. In prostate cancer, therapeutic treatment resulting in 

CTC level dropping from >5 to <5 in 7.5 ml of blood is indicative of better overall survival [55]. 

Thus, the prognostic cut-off value for CTC is dependent on the type of cancer.

Additionally, CTC enumeration can be used for predicting the risk of metastasis. In non-

metastatic colorectal cancer patients, those with >5 CTCs per 2 ml of blood were more likely 
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to develop distant metastasis than those with <5 CTCs [69]. The strong correlation between 

CTC count and metastasis relapse have been shown in other types of cancers as well includ-

ing bladder cancer [75, 76], liver cancer [77] and oesophageal cancer [78]. Thus, these patients 

may benefit more from early treatment.

3.3. Monitoring treatment response and disease progression

Sequential tracking of CTC number during treatment may inform on treatment response and 

disease progression, providing important information to clinicians on whether the treatment is 

suitable for the cancer patient. In advanced NSCLC patients, a significant decrease in CTC count 
after the second cycle of chemotherapy strongly correlated with better overall survival and 
progression-free survival [32, 79, 80]. However, a lack of decline in the number of CTCs after 

chemotherapy may suggest that the patient has developed resistance against the specific drug. 
Therefore, alternative treatment strategies have to be adopted to curb disease progression and 

improve patient survival. Another potential application may be the detection of early relapse 

with regular monitoring of the CTC count in post-surgical cancer patients. This may allow early 

detection and timely clinical intervention to treat the disease when the disease burden is less.

3.4. Identification of therapeutic targets and drug resistance

Given the continuous improvement in microfluidics technology, Khoo et al. demonstrated 
that patient-derived CTCs could be cultured into CTC clusters in vitro using a microfluidic 
culture device [81]. Prior enrichment of CTCs and supplements of growth factors are not 

required, thereby shortening the processing time. Using blood samples from the same patient, 

CTCs are co-cultured with immune cells in specially formulated microwells to promote the 

formation of CTC cluster within 2 weeks. The success rate of CTC cluster formation is approx-

imately 50%. With the development of this platform, drug screening can be readily conducted 

and this can facilitate the discovery and testing of novel drugs that are more efficacious in the 
treatment of cancer. Furthermore, drug responses can be monitored with varying doses of 

drug to determine the optimal dose for individual patient.

With the advent of next-generation sequencing, the molecular profile of single CTCs can be 
obtained at the DNA, RNA and protein level. The genomic profile of single CTCs can be 
compared to normal or non-malignant cells to identify genes that are differentially expressed, 
which may mediate the process of metastasis and become potential therapeutic targets. The 

whole genome sequencing of individual CTCs can reveal genetic alterations such as muta-

tions, copy number variations and single nucleotide polymorphisms that may confer selective 

advantage to tumour cells [82]. The presence of specific gene mutations in CTCs confers drug 
resistance and determines the type of treatment to be given to patients. This information is 

particularly useful when the mutation profile of CTC is concordant with the primary tumour. 
For example, the CTCs of NSCLC patients harbouring the EGFR T790 M mutation confer 

resistance to TKI treatment (e.g. gefitinib) [83]. Tracking changes in the CTC count and muta-

tion frequency over the course of treatment allows real-time monitoring of treatment sensitiv-

ity and resistance. The early detection of these mutations may provide alternative treatment 

strategies for NSCLC patients and optimise disease management, leading to improved clini-

cal outcomes [17]. Thus, determining the mutation status of EGFR is crucial since it allows 
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clinicians to select patients who will benefit from TKI treatment. Furthermore, understanding 
the key mutations behind drug resistance may help to decipher the mechanism and signalling 

pathways involved in resistance.

The transcriptome of single CTCs also provides information on the identification of thera-

peutic targets and drug resistance. In prostate cancer, analysis of the mRNA profile in CTCs 
is required to determine drug sensitivity or resistance. Specifically, the expression of Arv7 
mRNA, a truncated form of androgen receptor that remains constitutively active, in CTCs 

is predictive of anti-androgen therapy failure with enzalutamide and abiraterone [84, 85]. In 

prostate cancer patients with Arv7 expression, alternative drugs such as taxanes are used for 

treatment [86–89]. Additionally, RNA-seq of CTCs can reveal miRNAs that are dysregulated 

in cancers, making these miRNAs potential targets for cancer therapy.

The expression profile of proteins in single CTCs also plays a role in determining the anti-
cancer treatment. For example, oestrogen receptor (ER) is a primary target in the treatment 

of breast cancer patients. Thus, primary tumours of breast cancer patients are stratified 
as ER+ or ER- and hormonal therapy is given based on the status of ER expression in the 

primary tumour. However, breast cancer patients with ER+ primary tumours can harbour 

ER- CTCs in the blood, which may escape the hormonal therapy [90]. Similarly, metastatic 

breast cancer patients with HER2+ primary tumours can carry HER2- CTCs in the blood 

[91–93]. Because of this discordance, HER2-targeted therapies may only be effective against 
the primary tumour but not the CTCs. Thus, cancer cells will not be fully eradicated and this 

may lead to metastatic cancer relapse. In this situation, additional treatment strategies have 

to be adopted to target the CTCs, on top of the primary tumour. Therefore, the monitoring 

of genetic aberrations is important in identifying acquired mutations that confer resistance 

to drug therapy.

The expression status of programmed death ligand 1 (PD-L1) in CTCs aids in identifying the 

groups of patients who are likely to benefit from the immunotherapy as well as predicting 
the response to the immunotherapy. Tumour cells express PD-L1 that binds to PD-1 receptor 

found on the surface of activated T cells and B cells to induce an immunosuppressive effect 
by reducing cytokine production and immune cells proliferation [94, 95]. It was previously 

shown that metastatic tumour cells have higher PD-L1 expression than primary tumour 

cells [96]. In breast cancer, the detection of CTCs expressing PD-L1 indicates that patients 

carry metastatic cells that have the potential to evade immune destruction [94]. Breast cancer 

patients with a high frequency of PD-L1(+) CTCs are more likely to benefit from anti-PD-
L1 immunotherapy than patients with PD-L1(−) CTCs [94]. In a study on NSCLC patients, 

PD-L1 expression on CTCs was monitored throughout the course of immunotherapy [97]. 

After 6 months of therapy, patients with PD-L1 expression in CTCs had poor prognosis while 

patients without PD-L1 expression in CTCs benefitted from the therapy [97].

Given the intra-tumoural and inter-tumoural heterogeneity and dynamic nature of cancer, 

single-cell analysis of CTC in circulation may provide information on the evolution of tumour 

and how they evade drug therapy and immune response (Figure 1). This enables clinicians 

to have a more holistic view of the disease complexity and more efficient targeting of cancer 
cells, moving towards the development of personalised therapy for individual patients.
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3.5. Comparing CTC with cell-free DNA and exosome

Apart from CTCs, other liquid biopsy markers that confer diagnostic and prognostic rel-

evance include the cell-free DNA (cfDNA) and exosomes. Each marker has its own strengths 

and weaknesses (Table 2). cfDNA refers to DNA released from necrotic and apoptotic cells 

and they can be found in blood plasma. Cancer patients usually have higher concentration 

of cfDNA compared to healthy individuals [98, 99]. Most cfDNAs in the blood plasma are 

around 70–200 bp long [100, 101]. cfDNA includes the circulating tumour cell DNA (ctDNA), 

which are released from CTCs. The fraction of ctDNA contributing to cfDNA is small although 

usually higher in late stage cancer patients (>5–10%) than patients in the early stages of cancer 

Figure 1. A proposed scheme of how single-cell analysis of CTCs may address tumour heterogeneity. Heterogeneous 

tumour cells are colour-coded. Heterogeneity stems from genetic or epigenetic changes that confer selective advantage 

to the tumour cells. Several strategies of single-cell analysis can be adopted to dissect the heterogeneity of tumour cells. 

Sequential analyses of individual CTCs aids in the monitoring of therapeutic response, tumour evolution and detection 

of treatment-resistant cells.
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(<1%) [98, 102, 103]. A large fraction of cfDNA comes from non-malignant cells that contain 

wild type DNA. Because of this issue, highly specific and sensitive technologies are required 
to isolate cfDNA that originates from tumour cells.

The isolated cfDNAs are subjected to sequencing analysis using next-generation sequencing 

platforms to identify tumour-associated genetic mutations or epigenetic changes. For example, 

in a large-scale study of NSCLC patients on gefitinib treatment, cfDNA was used as a surrogate 
of tissue biopsy to identify the EGFR mutations, demonstrating its clinical utility [100, 104].  

A comparison on the frequency of mutation detection between cfDNA and CTC revealed 

that cfDNA showed a higher frequency of the mutation from the same patient [100, 102],  

suggesting that cfDNA is more effective in detecting these genetic changes. Another advan-

tage that cfDNAs have over CTCs is that cfDNAs can be obtained from bio-banked fluids such 
as frozen plasma whereas CTCs can only be obtained from peripheral blood [100]. However, 

the use of cfDNAs as a liquid biopsy marker also poses several limitations. First, because 

cfDNA can originate from any cell type including normal cells and tumour cells, there will be 

a high background of wild type DNA and thus isolating a pure population of the rare tumour-

derived cfDNA is technically challenging. The abundance of wild type DNA may mask the 

detection of low copy genetic mutations that could be important for early detection of cancer 

or drug resistance. Second, molecular profiling of cfDNAs is restricted to the DNA level as the 
characterisation of the transcriptome and proteome is not possible [100].

Liquid biopsy Strengths Weaknesses

Circulating 

tumour cell (CTC)

• Allows downstream molecular analysis 

and in vivo or in vitro functional studies

• Able to evaluate the DNA, RNA and 

protein profile of tumour cells

• Able to study the cellular phenotype, 

morphology and protein localisation

• Extremely rare and challenging to isolate

• Heterogeneous population of CTCs may lead to 

false positive and false negative results

Cell-free DNA 

(cfDNA)

• High sensitivity in detecting genetic 

aberrations

• Challenging to isolate pure population of 

cfDNAs

• Molecular characterisation is limited to genomic 

DNA and unable to evaluate the RNA and 

protein profile

• Unable to perform phenotypic and functional 

studies

Exosome • Abundant in the plasma

• Allows downstream molecular analysis 

and functional studies

• Able to evaluate the DNA, RNA and 

protein profile of tumour cells

• Allows analysis of inflammatory, 
stromal and other systemic changes

• Challenging to isolate pure populations of 

tumour-derived exosomes

• Unable to perform phenotypic studies

Table 2. Comparison of the liquid biopsy markers.
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Exosomes are membrane-bound microvesicles derived from multivesicular bodies (MVBs) and 

secreted into the extracellular environment through fusion of MVB to the plasma membrane [8, 100].  

They mediate cell-cell communication by transferring biomolecules such as DNA, RNA, proteins 

and lipids from the donor cell to the recipient cell [105]. Exosomes can originate from many cell 

types including tumour cells, epithelial cells, fibroblasts, neuronal cells, haematopoietic cells and 
adipocytes [8, 106]. Most exosomes are around 30–200 nm and are present in large quantities in 

biological fluids including serum, plasma, urine and saliva [8, 100]. Tumour cells release tens of 

thousands of exosomes in a day, resulting in hundreds of billions of exosomes per ml of plasma 

[100, 107]. Since exosomes are abundant, they are easier to isolate compared to CTCs and cfDNAs. 

However, there is a lack of efficient tumour exosome enrichment method [108] because the isola-

tion of exosomes is largely based on exosome-specific surface markers [100, 109], which do not 

distinguish between exosomes derived from tumour cells and normal cells.

Because exosomes carry the DNA, RNA and protein content from tumour cells (i.e. cell of 

origin), they are useful diagnostic and prognostic tools of cancer. Similar to CTCs and cfDNAs, 

exosomes can be subjected to DNA analysis to determine the genetic aberrations and muta-

tional landscape of tumour cells. Additionally, the RNA and protein profiles of tumour exo-

somes can be characterised to provide insights into the biology of tumour cells. For example, 

analysis of exosomal mRNA and proteins allows real-time monitoring of therapeutic response 

and drug resistance in glioblastoma patients [110, 111]. The up-regulated expression of a panel 

of serum-derived exosomal miRNAs (miR-1246, miR-4644, miR-3976, miR-4306) serves as 

a biomarker for the diagnosis of pancreatic cancer [112]. The down-regulated expression of 

miR-92a is associated with high risk of cancer relapse in hepatocellular carcinoma patients 

[113]. Furthermore, previous reports showed that tumour exosomes play a role in suppressing 

immune response, promoting tumour cell growth, angiogenesis and metastasis [100, 114–116]. 

Similar to CTCs, molecular profiling of exosomes provides insights into the mechanism of 
metastasis and drug resistance.

3.6. Barriers to adoption of CTC as a clinical test

Although CTCs have numerous potential clinical applications, the incorporation of CTCs into 

routine clinical practice still faces several challenges. First, there is a lack of reproducibility in 

CTC enumeration when different measurements were taken from the same patient [117]. This 

variation is likely caused by the extremely low frequency of CTCs in peripheral blood, where 

>90% of patients with localised diseases and up to 30–40% of patients with metastatic disease 

do not have >5 CTCs per 7.5 ml of blood [117, 118]. A difference of 1 CTC may lead to different 
stratification and prognostic outcome [117]. A possible solution to improve the CTC yield is 

to process larger volume of blood sample from cancer patients [117, 119]. Second, there is a 

lack of standardisation across the myriad of CTC detection platforms in defining and isolating 
CTCs [120, 121], resulting in variability of CTC count. Studies comparing EpCAM-dependent 

and EpCAM-independent CTC enrichment methods using blood samples from the same 

patient showed that EpCAM-independent methods generate a higher CTC count compared 

to the CellSearch system [117]. Thus, a universal quality control system is required for detect-

ing and isolating CTCs across the various platforms so as to benchmark the reliability of these 

methods [117, 120]. Cross-validation studies on CTC enumeration from different laboratories 
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will also minimise the inter-observer variation [117]. Lastly, the current CTC isolation tech-

nologies have limited sensitivity and are not applicable to all types of cancer [117]. Therefore, 

before CTCs can be fully adopted for routine clinical use, well-designed appropriately pow-

ered validation studies are required.

4. Conclusion

Late clinical diagnosis and chemotherapy resistance are the main factors leading to reduced 

chances of survival for cancer patients. To combat cancer, CTCs provide invaluable informa-

tion on the status of the disease and the likely outcome of chemotherapeutic treatment. The 

enumeration of CTCs allows early detection of cancer, prognosis and real-time monitoring of 

chemotherapy treatment. The single-cell analysis of CTCs provides a wealth of genetic infor-

mation that enables better understanding of the disease complexity for individual patients 
and provides the opportunity for the development of personalised treatment. To aid in deliv-

ering better therapeutic medicine, current technologies allow CTCs to be cultured in vitro 

for the identification of novel therapeutic targets and optimal drug dosage for individual 
patients. Therefore, the molecular characterisation of CTCs is important for improving the 

clinical outcomes in cancer patients.

Author details

Kah Yee Goh1 and Wan-Teck Lim1,2,3*

*Address all correspondence to: dmolwt@nccs.com.sg

1 Division of Medical Oncology, National Cancer Centre Singapore, Singapore

2 Duke-NUS Medical School, Singapore

3 Institute of Molecular and Cell Biology, A*Star, Singapore

References

[1] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: A 

Cancer Journal for Clinicians. 2011;61(2):69-90. DOI: 10.3322/caac.20107

[2] Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5): 

646-674. DOI: 10.1016/j.cell.2011.02.013

[3] Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science (New York, 
N.Y.). 2011;331(6024):1559-1564. DOI: 10.1126/science.1203543

[4] Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Critical Reviews in 

Oncogenesis. 2013;18(1-2):43-73

Liquid Biopsy26



[5] Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, et al. “Sentinel” circu-

lating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive 

pulmonary disease. PLoS One. 2014;9(10):e111597. DOI: 10.1371/journal.pone.0111597

[6] Zhang J, Chen K, Fan ZH. Circulating tumor cell isolation and analysis. Advances in 

Clinical Chemistry. 2016;75:1-31. DOI: 10.1016/bs.acc.2016.03.003

[7] Ilie M, Hofman P. Pros: Can tissue biopsy be replaced by liquid biopsy? Translational 

Lung Cancer Research. 2016;5(4):420-423. DOI: 10.21037/tlcr.2016.08.06

[8] Zhang W, Xia W, Lv Z, Ni C, Xin Y, Yang L. Liquid biopsy for cancer: Circulating tumor cells, 

circulating free DNA or exosomes? Cellular Physiology and Biochemistry: International 

Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 2017;41(2): 

755-768. DOI: 10.1159/000458736

[9] Gkountela S, Szczerba B, Donato C, Aceto N. Recent advances in the biology of human 

circulating tumour cells and metastasis. ESMO Open. 2016;1(4):e000078. DOI: 10.1136/

esmoopen-2016-000078

[10] Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research. Nature 

Reviews Cancer. 2014;14(9):623-631. DOI: 10.1038/nrc3820

[11] Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS, et al. Isolation and retrieval of cir-

culating tumor cells using centrifugal forces. Scientific Reports. 2013;3:1259. DOI: 10.1038/

srep01259

[12] Williams SC. Circulating tumor cells. Proceedings of the National Academy of Sciences 

of the United States of America. 2013;110(13):4861. DOI: 10.1073/pnas.1304186110

[13] Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circu-

late in the peripheral blood of all major carcinomas but not in healthy subjects or patients 

with nonmalignant diseases. Clinical cancer research: An official journal of the American 
Association for Cancer Research. 2004;10(20):6897-6904. DOI: 10.1158/1078-0432.ccr-04-0378

[14] Fan T, Zhao Q, Chen JJ, Chen WT, Pearl ML. Clinical significance of circulating tumor 
cells detected by an invasion assay in peripheral blood of patients with ovarian cancer. 

Gynecologic Oncology. 2009;112(1):185-191. DOI: 10.1016/j.ygyno.2008.09.021

[15] Kalinsky K, Mayer JA, Xu X, Pham T, Wong KL, Villarin E, et al. Correlation of hor-

mone receptor status between circulating tumor cells, primary tumor, and metastasis 

in breast cancer patients. Clinical & Translational Oncology: Official Publication of the 
Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 

2015;17(7):539-546. DOI: 10.1007/s12094-015-1275-1

[16] Tan SJ, Yeo T, Sukhatme SA, Kong SL, Lim WT, Lim CT. Personalized treatment through 

detection and monitoring of genetic aberrations in single circulating tumor cells. 

Advances in Experimental Medicine and Biology. 2017;994:255-273. DOI: 10.1007/978-3- 

319-55947-6_14

[17] Yeo T, Tan SJ, Lim CL, Lau DP, Chua YW, Krisna SS, et al. Microfluidic enrichment for 
the single cell analysis of circulating tumor cells. Scientific Reports. 2016;6:22076. DOI: 

10.1038/srep22076

Profiling Circulating Tumour Cells for Clinical Applications
http://dx.doi.org/10.5772/intechopen.79228

27



[18] Janku F. Tumor heterogeneity in the clinic: Is it a real problem? Therapeutic Advances in 

Medical Oncology. 2014;6(2):43-51. DOI: 10.1177/1758834013517414

[19] McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: Past, present, 

and the future. Cell. 2017;168(4):613-628. DOI: 10.1016/j.cell.2017.01.018

[20] Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspec-

tive. Molecular Cancer. 2017;16(1):41. DOI: 10.1186/s12943-017-0600-4

[21] Krishnamurthy N, Spencer E, Torkamani A, Nicholson L. Liquid biopsies for cancer: 

Coming to a patient near you. Journal of Clinical Medicine. 2017;6(1):3. DOI: 10.3390/jcm 

6010003

[22] Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang C, Pierceall WE, et al. Microfluidics 
and circulating tumor cells. The Journal of Molecular Diagnostics. 2013;15(2):149-157. 

DOI: 10.1016/j.jmoldx.2012.09.004

[23] Autebert J, Coudert B, Bidard FC, Pierga JY, Descroix S, Malaquin L, et al. Microfluidic: 
An innovative tool for efficient cell sorting. Methods (San Diego, Calif). 2012;57(3): 

297-307. DOI: 10.1016/j.ymeth.2012.07.002

[24] Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101): 

368-373. DOI: 10.1038/nature05058

[25] Moreno JG, O’Hara SM, Gross S, Doyle G, Fritsche H, Gomella LG, et al. Changes in cir-

culating carcinoma cells in patients with metastatic prostate cancer correlate with disease 

status. Urology. 2001;58(3):386-392

[26] Shaw Bagnall J, Byun S, Begum S, Miyamoto DT, Hecht VC, Maheswaran S, et al. De 

formability of tumor cells versus. Blood Cells. Scientific Reports. 2015;5:18542. DOI: 

10.1038/srep18542

[27] Gascoyne PR, Shim S. Isolation of circulating tumor cells by dielectrophoresis. Cancer. 

2014;6(1):545-579. DOI: 10.3390/cancers6010545

[28] Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating 

tumor cells, disease progression, and survival in metastatic breast cancer. The New 

England Journal of Medicine. 2004;351(8):781-791. DOI: 10.1056/NEJMoa040766

[29] Negin BP, Cohen SJ. Circulating tumor cells in colorectal cancer: Past, present, and 

future challenges. Current Treatment Options in Oncology. 2010;11(1-2):1-13. DOI: 

10.1007/s11864-010-0115-3

[30] Resel Folkersma L, Olivier Gomez C, San Jose Manso L, Veganzones de Castro S, 

Galante Romo I, Vidaurreta Lazaro M, et al. Immunomagnetic quantification of circulat-
ing tumoral cells in patients with prostate cancer: Clinical and pathological correlation. 

Archivos Espanoles De Urologia. 2010;63(1):23-31

[31] Millner LM, Strotman LN. The future of precision medicine in oncology. Clinics in 

Laboratory Medicine. 2016;36(3):557-573. DOI: 10.1016/j.cll.2016.05.003

[32] Truini A, Alama A, Dal Bello MG, Coco S, Vanni I, Rijavec E, et al. Clinical applica-

tions of circulating tumor cells in lung cancer patients by CellSearch system. Frontiers in 

Oncology. 2014;4:242. DOI: 10.3389/fonc.2014.00242

Liquid Biopsy28



[33] Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of 

rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007; 

450(7173):1235-1239. DOI: 10.1038/nature06385

[34] Gertler R, Rosenberg R, Fuehrer K, Dahm M, Nekarda H, Siewert JR. Detection of circu-

lating tumor cells in blood using an optimized density gradient centrifugation. Recent 

Results in Cancer Research Fortschritte der Krebsforschung Progres dans les recherches 
sur le cancer. 2003;162:149-155

[35] Hur SC, Henderson-MacLennan NK, McCabe ER, Di Carlo D. Deformability-based cell 

classification and enrichment using inertial microfluidics. Lab on a Chip. 2011;11(5): 

912-920. DOI: 10.1039/c0lc00595a

[36] Hyun KA, Kwon K, Han H, Kim SI, Jung HI. Microfluidic flow fractionation device 
for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients. 

Biosensors & Bioelectronics. 2013;40(1):206-212. DOI: 10.1016/j.bios.2012.07.021

[37] Mohamed H, Murray M, Turner JN, Caggana M. Isolation of tumor cells using size and 

deformation. Journal of Chromatography A. 2009;1216(47):8289-8295. DOI: 10.1016/j.

chroma.2009.05.036

[38] Tan SJ, Lakshmi RL, Chen P, Lim WT, Yobas L, Lim CT. Versatile label free biochip 

for the detection of circulating tumor cells from peripheral blood in cancer patients. 

Biosensors & Bioelectronics. 2010;26(4):1701-1705. DOI: 10.1016/j.bios.2010.07.054

[39] Tan SJ, Yobas L, Lee GY, Ong CN, Lim CT. Microdevice for the isolation and enumeration 

of cancer cells from blood. Biomedical Microdevices. 2009;11(4):883-892. DOI: 10.1007/

s10544-009-9305-9

[40] Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AA, Chaudhuri PK, et al. Slanted 

spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab 
on a Chip. 2014;14(1):128-137. DOI: 10.1039/c3lc50617g

[41] Zheng S, Lin H, Liu JQ, Balic M, Datar R, Cote RJ, et al. Membrane microfilter device for 
selective capture, electrolysis and genomic analysis of human circulating tumor cells. 

Journal of Chromatography A. 2007;1162(2):154-161. DOI: 10.1016/j.chroma.2007.05.064

[42] Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Gottert J, et al. Highly effi-

cient circulating tumor cell isolation from whole blood and label-free enumeration using 

polymer-based microfluidics with an integrated conductivity sensor. Journal of the 
American Chemical Society. 2008;130(27):8633-8641. DOI: 10.1021/ja8015022

[43] Gleghorn JP, Pratt ED, Denning D, Liu H, Bander NH, Tagawa ST, et al. Capture of 
circulating tumor cells from whole blood of prostate cancer patients using geometrically 

enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab on a 
Chip. 2010;10(1):27-29. DOI: 10.1039/b917959c

[44] Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, et al. Microfluidic sorting 
and multimodal typing of cancer cells in self-assembled magnetic arrays. Proceedings 

of the National Academy of Sciences of the United States of America. 2010;107(33): 

14524-14529. DOI: 10.1073/pnas.1001515107

Profiling Circulating Tumour Cells for Clinical Applications
http://dx.doi.org/10.5772/intechopen.79228

29



[45] Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C, et al. Capture, release and 

culture of circulating tumor cells from pancreatic cancer patients using an enhanced 

mixing chip. Lab on a Chip. 2014;14(1):89-98. DOI: 10.1039/c3lc51017d

[46] Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of 
circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings 

of the National Academy of Sciences of the United States of America. 2010;107(43): 

18392-18397. DOI: 10.1073/pnas.1012539107

[47] Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W. Aptamer-based microfluidic device for enrich-

ment, sorting, and detection of multiple cancer cells. Analytical Chemistry. 2009;81(17): 

7436-7442. DOI: 10.1021/ac9012072

[48] Spizzo G, Went P, Dirnhofer S, Obrist P, Simon R, Spichtin H, et al. High Ep-CAM expres-

sion is associated with poor prognosis in node-positive breast cancer. Breast Cancer 

Research and Treatment. 2004;86(3):207-213. DOI: 10.1023/b:brea.0000036787.59816.01

[49] Pecot CV, Bischoff FZ, Mayer JA, Wong KL, Pham T, Bottsford-Miller J, et al. A novel 
platform for detection of CK+ and CK− CTCs. Cancer Discovery. 2011;1(7):580-586. DOI: 

10.1158/2159-8290.cd-11-0215

[50] Warkiani ME, Khoo BL, Wu L, Tay AK, Bhagat AA, Han J, et al. Ultra-fast, label-free iso-

lation of circulating tumor cells from blood using spiral microfluidics. Nature Protocols. 
2016;11(1):134-148. DOI: 10.1038/nprot.2016.003

[51] Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, et al. Microfluidic, 
marker-free isolation of circulating tumor cells from blood samples. Nature Protocols. 

2014;9(3):694-710. DOI: 10.1038/nprot.2014.044

[52] Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, et al. Inertial 

focusing for tumor antigen-dependent and -independent sorting of rare circulating 

tumor cells. Science Translational Medicine. 2013;5(179):179ra47. DOI: 10.1126/scitransl 

med.3005616

[53] Harb W, Fan A, Tran T, Danila DC, Keys D, Schwartz M, et al. Mutational analysis of circulat-
ing tumor cells using a novel microfluidic collection device and qPCR assay. Translational 
Oncology. 2013;6(5):528-538

[54] Earhart CM, Hughes CE, Gaster RS, Ooi CC, Wilson RJ, Zhou LY, et al. Isolation and 

mutational analysis of circulating tumor cells from lung cancer patients with magnetic 

sifters and biochips. Lab on a Chip. 2014;14(1):78-88. DOI: 10.1039/c3lc50580d

[55] Galletti G, Portella L, Tagawa ST, Kirby BJ, Giannakakou P, Nanus DM. Circulating 
tumor cells in prostate cancer diagnosis and monitoring: An appraisal of clinical poten-

tial. Molecular Diagnosis & Therapy. 2014;18(4):389-402. DOI: 10.1007/s40291-014-0101-8

[56] Kirby BJ, Jodari M, Loftus MS, Gakhar G, Pratt ED, Chanel-Vos C, et al. Functional char-

acterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. 
PLoS One. 2012;7(4):e35976. DOI: 10.1371/journal.pone.0035976

[57] Sollier E, Go DE, Che J, Gossett DR, O’Byrne S, Weaver WM, et al. Size-selective collec-

tion of circulating tumor cells using Vortex technology. Lab on a Chip. 2014;14(1):63-77. 

DOI: 10.1039/c3lc50689d

Liquid Biopsy30



[58] Peeters DJ, De Laere B, Van den Eynden GG, Van Laere SJ, Rothe F, Ignatiadis M, et al. 

Semiautomated isolation and molecular characterisation of single or highly purified 
tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sort-

ing. British Journal of Cancer. 2013;108(6):1358-1367. DOI: 10.1038/bjc.2013.92

[59] Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, et al. Molecular profiling of 
single circulating tumor cells with diagnostic intention. EMBO Molecular Medicine. 2014; 

6(11):1371-1386. DOI: 10.15252/emmm.201404033

[60] Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and 

transcriptome sequencing of the same cell. Nature Biotechnology. 2015;33(3):285-289. 

DOI: 10.1038/nbt.3129

[61] Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C, et al. Direct genetic 

analysis of single disseminated cancer cells for prediction of outcome and therapy selec-

tion in esophageal cancer. Cancer Cell. 2008;13(5):441-453. DOI: 10.1016/j.ccr.2008.04.005

[62] Kehr J. Single cell technology. Current Opinion in Plant Biology. 2003;6(6):617-621

[63] Shaw JA, Guttery DS, Hills A, Fernandez-Garcia D, Page K, Rosales BM, et al. Mutation 
analysis of cell-free DNA and single circulating tumor cells in metastatic breast can-

cer patients with high circulating tumor cell counts. Clinical Cancer Research: An 

Official Journal of the American Association for Cancer Research. 2017;23(1):88-96. DOI: 

10.1158/1078-0432.ccr-16-0825

[64] Carter L, Rothwell DG, Mesquita B, Smowton C, Leong HS, Fernandez-Gutierrez F, et al. 

Molecular analysis of circulating tumor cells identifies distinct copy-number profiles 
in patients with chemosensitive and chemorefractory small-cell lung cancer. Nature 

Medicine. 2017;23(1):114-119. DOI: 10.1038/nm.4239

[65] Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, et al. Chemoresistance evolution in 

triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173(4):879-

93.e13. DOI: 10.1016/j.cell.2018.03.041

[66] Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, et al. Clonal evolution in breast 

cancer revealed by single nucleus genome sequencing. Nature. 2014;512(7513):155-160. 

DOI: 10.1038/nature13600

[67] Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulat-

ing tumor DNA as liquid biopsy. Cancer Discovery. 2016;6(5):479-491. DOI: 10.1158/2159-

8290.cd-15-1483

[68] Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, Matsumoto S, et al. Circulating 

tumor cell as a diagnostic marker in primary lung cancer. Clinical Cancer Research: An 

Official Journal of the American Association for Cancer Research. 2009;15(22):6980-6986. 

DOI: 10.1158/1078-0432.ccr-09-1095

[69] Tsai WS, Chen JS, Shao HJ, Wu JC, Lai JM, Lu SH, et al. Circulating tumor cell count corre-

lates with colorectal neoplasm progression and is a prognostic marker for distant metas-

tasis in non-metastatic patients. Scientific Reports. 2016;6:24517. DOI: 10.1038/srep24517

Profiling Circulating Tumour Cells for Clinical Applications
http://dx.doi.org/10.5772/intechopen.79228

31



[70] Rack B, Schindlbeck C, Juckstock J, Andergassen U, Hepp P, Zwingers T, et al. Circulating 

tumor cells predict survival in early average-to-high risk breast cancer patients. Journal 

of the National Cancer Institute. 2014;106(5):dju066. DOI: 10.1093/jnci/dju066

[71] Hiltermann TJ, Pore MM, van den Berg A, Timens W, Boezen HM, Liesker JJ, et al. 

Circulating tumor cells in small-cell lung cancer: A predictive and prognostic factor. 

Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2012; 
23(11):2937-2942. DOI: 10.1093/annonc/mds138

[72] Hou JM, Greystoke A, Lancashire L, Cummings J, Ward T, Board R, et al. Evaluation of 

circulating tumor cells and serological cell death biomarkers in small cell lung cancer 

patients undergoing chemotherapy. The American Journal of Pathology. 2009;175(2): 

808-816. DOI: 10.2353/ajpath.2009.090078

[73] Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, et al. Evaluation and 

prognostic significance of circulating tumor cells in patients with non-small-cell lung 
cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical 
Oncology. 2011;29(12):1556-1563. DOI: 10.1200/jco.2010.28.7045

[74] Naito T, Tanaka F, Ono A, Yoneda K, Takahashi T, Murakami H, et al. Prognostic impact 

of circulating tumor cells in patients with small cell lung cancer. Journal of Thoracic 

Oncology: Official Publication of the International Association for the Study of Lung 
Cancer. 2012;7(3):512-519. DOI: 10.1097/JTO.0b013e31823f125d

[75] Gazzaniga P, De Berardinis E, Raimondi C, Gradilone A, Busetto GM, De Falco E, et al. 
Circulating tumor cells detection has independent prognostic impact in high-risk non-

muscle invasive bladder cancer. International Journal of Cancer. 2014;135(8):1978-1982. 

DOI: 10.1002/ijc.28830

[76] Rink M, Chun FK, Dahlem R, Soave A, Minner S, Hansen J, et al. Prognostic role and 

HER2 expression of circulating tumor cells in peripheral blood of patients prior to radical 

cystectomy: A prospective study. European Urology. 2012;61(4):810-817. DOI: 10.1016/j.

eururo.2012.01.017

[77] Schulze K, Gasch C, Staufer K, Nashan B, Lohse AW, Pantel K, et al. Presence of EpCAM-

positive circulating tumor cells as biomarker for systemic disease strongly correlates 

to survival in patients with hepatocellular carcinoma. International Journal of Cancer. 

2013;133(9):2165-2171. DOI: 10.1002/ijc.28230

[78] Vashist YK, Effenberger KE, Vettorazzi E, Riethdorf S, Yekebas EF, Izbicki JR, et al. 
Disseminated tumor cells in bone marrow and the natural course of resected esophageal 

cancer. Annals of Surgery. 2012;255(6):1105-1112. DOI: 10.1097/SLA.0b013e3182565b0b

[79] Muinelo-Romay L, Vieito M, Abalo A, Nocelo MA, Baron F, Anido U, et al. Evaluation 

of circulating tumor cells and related events as prognostic factors and surrogate bio-

markers in advanced NSCLC patients receiving first-line systemic treatment. Cancer. 
2014;6(1):153-165. DOI: 10.3390/cancers6010153

[80] Punnoose EA, Atwal S, Liu W, Raja R, Fine BM, Hughes BG, et al. Evaluation of circulat-

ing tumor cells and circulating tumor DNA in non-small cell lung cancer: Association 

Liquid Biopsy32



with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clinical 

Cancer Research: An Official Journal of the American Association for Cancer Research. 
2012;18(8):2391-2401. DOI: 10.1158/1078-0432.ccr-11-3148

[81] Khoo BL, Grenci G, Lim YB, Lee SC, Han J, Lim CT. Expansion of patient-derived circu-

lating tumor cells from liquid biopsies using a CTC microfluidic culture device. Nature 
Protocols. 2018;13(1):34-58. DOI: 10.1038/nprot.2017.125

[82] Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, et al. Reproducible copy number variation 

patterns among single circulating tumor cells of lung cancer patients. Proceedings of 
the National Academy of Sciences of the United States of America. 2013;110(52):21083-

21088. DOI: 10.1073/pnas.1320659110

[83] Sequist LV, Joshi VA, Janne PA, Muzikansky A, Fidias P, Meyerson M, et al. Response to 

treatment and survival of patients with non-small cell lung cancer undergoing somatic 

EGFR mutation testing. The Oncologist. 2007;12(1):90-98

[84] Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and 

resistance to enzalutamide and abiraterone in prostate cancer. The New England Journal 

of Medicine. 2014;371(11):1028-1038. DOI: 10.1056/NEJMoa1315815

[85] Steinestel J, Luedeke M, Arndt A, Schnoeller T, Lennerz JK, Maier C, et al. Detecting 

predictive androgen receptor modifications in circulating prostate cancer cells. Journal 
of Clinical Oncology. 2015;33(15_suppl):5067. DOI: 10.1200/jco.2015.33.15_suppl.5067

[86] Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen receptor 

splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castra-

tion-resistant prostate cancer. JAMA Oncology. 2015;1(5):582-591. DOI: 10.1001/jamaon 

col.2015.1341

[87] Nakazawa M, Lu C, Chen Y, Paller CJ, Carducci MA, Eisenberger MA, et al. Serial blood-

based analysis of AR-V7 in men with advanced prostate cancer. Annals of Oncology: 

Official Journal of the European Society for Medical Oncology. 2015;26(9):1859-1865. DOI: 

10.1093/annonc/mdv282

[88] Onstenk W, Sieuwerts AM, Kraan J, Van M, Nieuweboer AJ, Mathijssen RH, et al. 

Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the pres-

ence of AR-V7 in circulating tumor cells. European Urology. 2015;68(6):939-945. DOI: 

10.1016/j.eururo.2015.07.007

[89] Thadani-Mulero M, Portella L, Sun S, Sung M, Matov A, Vessella RL, et al. Androgen 

receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Research. 

2014;74(8):2270-2282. DOI: 10.1158/0008-5472.can-13-2876

[90] Babayan A, Hannemann J, Spotter J, Muller V, Pantel K, Joosse SA. Heterogeneity of estro-

gen receptor expression in circulating tumor cells from metastatic breast cancer patients. 

PLoS One. 2013;8(9):e75038. DOI: 10.1371/journal.pone.0075038

[91] Fehm T, Muller V, Aktas B, Janni W, Schneeweiss A, Stickeler E, et al. HER2 status of 

circulating tumor cells in patients with metastatic breast cancer: A prospective, multi-

center trial. Breast Cancer Research and Treatment. 2010;124(2):403-412. DOI: 10.1007/

s10549-010-1163-x

Profiling Circulating Tumour Cells for Clinical Applications
http://dx.doi.org/10.5772/intechopen.79228

33



[92] Ignatiadis M, Rothe F, Chaboteaux C, Durbecq V, Rouas G, Criscitiello C, et al. HER2-

positive circulating tumor cells in breast cancer. PLoS One. 2011;6(1):e15624. DOI: 

10.1371/journal.pone.0015624

[93] Riethdorf S, Muller V, Zhang L, Rau T, Loibl S, Komor M, et al. Detection and HER2 

expression of circulating tumor cells: Prospective monitoring in breast cancer patients 

treated in the neoadjuvant GeparQuattro trial. Clinical Cancer Research: An Official 
Journal of the American Association for Cancer Research. 2010;16(9):2634-2645. DOI: 

10.1158/1078-0432.ccr-09-2042

[94] Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, et al. Frequent 

expression of PD-L1 on circulating breast cancer cells. Molecular Oncology. 

2015;9(9):1773-1782. DOI: 10.1016/j.molonc.2015.05.009

[95] Swaika A, Hammond WA, Joseph RW. Current state of anti-PD-L1 and anti-PD-1 agents 

in cancer therapy. Molecular Immunology. 2015;67(2 Pt A):4-17. DOI: 10.1016/j.molimm. 

2015.02.009

[96] Jilaveanu LB, Shuch B, Zito CR, Parisi F, Barr M, Kluger Y, et al. PD-L1 expression in 

clear cell renal cell carcinoma: An analysis of nephrectomy and sites of metastases. 

Journal of Cancer. 2014;5(3):166-172. DOI: 10.7150/jca.8167

[97] Nicolazzo C, Raimondi C, Mancini M, Caponnetto S, Gradilone A, Gandini O, et al. 
Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients 

treated with the PD-1 inhibitor Nivolumab. Scientific Reports. 2016;6:31726. DOI: 10.1038/ 

srep31726

[98] Pantel K, Alix-Panabieres C. Liquid biopsy in 2016: Circulating tumour cells and cell-

free DNA in gastrointestinal cancer. Nature Reviews Gastroenterology & Hepatology. 

2017;14(2):73-74. DOI: 10.1038/nrgastro.2016.198

[99] Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer 

patients. Nature Reviews Cancer. 2011;11(6):426-437. DOI: 10.1038/nrc3066

[100] Brock G, Castellanos-Rizaldos E, Hu L, Coticchia C, Skog J. Liquid biopsy for cancer 

screening, patient stratification and monitoring. Translational Cancer Research. 2015;4(3): 

280-290

[101] Jiang P, Chan CW, Chan KC, Cheng SH, Wong J, Wong VW, et al. Lengthening and short-

ening of plasma DNA in hepatocellular carcinoma patients. Proceedings of the National 

Academy of Sciences of the United States of America. 2015;112(11):E1317-E1325. DOI: 

10.1073/pnas.1500076112

[102] Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of cir-

culating tumor DNA in early- and late-stage human malignancies. Science Translational 

Medicine. 2014;6(224):224ra24. DOI: 10.1126/scitranslmed.3007094

[103] Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasen-

sitive method for quantitating circulating tumor DNA with broad patient coverage. 

Nature Medicine. 2014;20(5):548-554. DOI: 10.1038/nm.3519

Liquid Biopsy34



[104] Douillard JY, Ostoros G, Cobo M, Ciuleanu T, Cole R, McWalter G, et al. Gefitinib treat-
ment in EGFR mutated caucasian NSCLC: Circulating-free tumor DNA as a surrogate 

for determination of EGFR status. Journal of Thoracic Oncology: Official Publication of 
the International Association for the Study of Lung Cancer. 2014;9(9):1345-1353. DOI: 

10.1097/jto.0000000000000263

[105] Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancer. 2017;9(1):8.   

DOI: 10.3390/cancers9010008

[106] van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, 
and clinical relevance of extracellular vesicles. Pharmacological Reviews. 2012;64(3): 

676-705. DOI: 10.1124/pr.112.005983

[107] Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, et al. Tumour microves-

icles contain retrotransposon elements and amplified oncogene sequences. Nature 
Communications. 2011;2:180. DOI: 10.1038/ncomms1180

[108] Wang J, Chang S, Li G, Sun Y. Application of liquid biopsy in precision medicine: 

Opportunities and challenges. Frontiers of Medicine. 2017;11(4):522-527. DOI: 10.1007/

s11684-017-0526-7

[109] He M, Crow J, Roth M, Zeng Y, Godwin AK. Integrated immunoisolation and protein 

analysis of circulating exosomes using microfluidic technology. Lab on a Chip. 2014; 
14(19):3773-3780. DOI: 10.1039/c4lc00662c

[110] Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of 

circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nature 

Medicine. 2012;18(12):1835-1840. DOI: 10.1038/nm.2994

[111] Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, et al. Chip-based analysis of exosomal 

mRNA mediating drug resistance in glioblastoma. Nature Communications. 2015;6: 

6999. DOI: 10.1038/ncomms7999

[112] Madhavan B, Yue S, Galli U, Rana S, Gross W, Muller M, et al. Combined evaluation of 

a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diag-

nosis increases sensitivity and specificity. International Journal of Cancer. 2015;136(11): 

2616-2627. DOI: 10.1002/ijc.29324

[113] Masyuk AI, Masyuk TV, Larusso NF. Exosomes in the pathogenesis, diagnostics and 

therapeutics of liver diseases. Journal of Hepatology. 2013;59(3):621-625. DOI: 10.1016/j.

jhep.2013.03.028

[114] Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic can-

cer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology. 

2015;17(6):816-826. DOI: 10.1038/ncb3169

[115] Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. 

Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic 

phenotype through MET. Nature Medicine. 2012;18(6):883-891. DOI: 10.1038/nm.2753

Profiling Circulating Tumour Cells for Clinical Applications
http://dx.doi.org/10.5772/intechopen.79228

35



[116] Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glio-

blastoma microvesicles transport RNA and proteins that promote tumour growth 

and provide diagnostic biomarkers. Nature Cell Biology. 2008;10(12):1470-1476. DOI: 

10.1038/ncb1800

[117] Leon-Mateos L, Vieito M, Anido U, Lopez Lopez R, Muinelo Romay L. Clinical applica-

tion of circulating tumour cells in prostate cancer: From bench to bedside and back. 

International Journal of Molecular Sciences. 2016;17(9):1580. DOI: 10.3390/ijms17091580

[118] Maestro LM, Sastre J, Rafael SB, Veganzones SB, Vidaurreta M, Martin M, et al. 

Circulating tumor cells in solid tumor in metastatic and localized stages. Anticancer 

Research. 2009;29(11):4839-4843

[119] Lalmahomed ZS, Kraan J, Gratama JW, Mostert B, Sleijfer S, Verhoef C. Circulating tumor 

cells and sample size: The more, the better. Journal of Clinical Oncology: Official Journal 
of the American Society of Clinical Oncology. 2010;28(17):e288-e289 (author reply e90). 

DOI: 10.1200/jco.2010.28.2764

[120] Lianidou ES. Circulating tumor cells--new challenges ahead. Clinical Chemistry. 2012;58(5): 

805-807. DOI: 10.1373/clinchem.2011.180646

[121] Lianidou ES, Mavroudis D, Georgoulias V. Clinical challenges in the molecular charac-

terization of circulating tumour cells in breast cancer. British Journal of Cancer. 2013; 

108(12):2426-2432. DOI: 10.1038/bjc.2013.265

Liquid Biopsy36


	Chapter 2
Profiling Circulating Tumour Cells for Clinical Applications

