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Preface

This book aims to provide a broad introduction to quantification issues of
risk management. The main function of the book is to present concepts
and techniques in the assessment of risk and the forms that the aggregate
risk may be distributed between business units. The book is the result of
our research projects and professional collaborations with the financial and
insurance sectors over last years. The textbook is intended to give a set of
technical tools to assist industry practitioners to take decisions in their pro-
fessional environments. We assume that the reader is familiarwith financial
and actuarial mathematics and statistics at graduate level.
This book is structured in twoparts to facilitate reading: (I) Risk assessment,
and (II) Capital allocation problems. Part (I) is dedicated to investigate risk
measures and the implicit risk attitude in the choice of a particular riskmea-
sure, from a quantitative point of view. Part (II) is devoted to provide an
overviewon capital allocation problems and to highlight quantitativemeth-
ods and techniques to deal with these problems. Illustrative examples of
quantitative analysis are developed in the programming language R. Exam-
ples are devised to reflect some real problems that practitioners must fre-
quently face in the financial or the insurance sectors. A collection of com-
plementarymaterial to the book is available in http://www.ub.edu/rfa/R/

Part (I) covers from Chapters 1 to 5. With respect to risk measures, it
seemed adequate to deepen in the advantages and pitfalls of most com-
monly used riskmeasures in the actuarial and financial sectors, because the
discussion could result attractive both to practitioners and supervisor au-
thorities. This perspective allows to list some of the additional proposals
that can be found in the academic literature and, even, to devise a family of
alternatives called GlueVaR. Chapters in this part are structured as follows:



Chapter 1 - Preliminary concepts on quantitative risk measurement

This chapter contains some preliminary comments, notations and defini-
tions related toquantitative risk assessment tokeep thebookas self-contain-
ed as possible.

Chapter 2 - Data on losses for risk evaluation

A descriptive statistical analysis of the dataset used to illustrate risk mea-
surement and allocation in each chapter of the book is here presented.

Chapter 3 - A family of distortion risk measures

A new family of riskmeasures, called GlueVaR, is defined within the class of
distortion risk measures. The relationship between GlueVaR, Value-at-Risk
(VaR) and Tail Value-at-Risk (TVaR) is explained. The property of subad-
ditivity is investigated for GlueVaR risk measures, and the concavity in an
interval of their associated distortion functions is analyzed.

Chapter 4 - GlueVaR and other new risk measures

This chapter is devoted to the estimation of GlueVaR risk values. Analytical
closed-form expressions of GlueVaR risk measures are shown for the most
frequently used distribution functions in financial and insurance applica-
tions, as well as Cornish-Fisher approximations for general skewed distribu-
tion functions. In addition, relationships between GlueVaR, Tail Distortion
risk measures and RVaR risk measures are shown to close this chapter.

Chapter 5 - Risk measure choice

Understanding the risk attitude that is implicit in a risk assessment is crucial
for decisionmakers. This chapter is intended to characterize the underlying
risk attitude involved in the choice of a risk measure, when it belongs to the
family of distortion risk measures. The concepts aggregate risk attitude and
local risk attitude are defined and, once in hand, used to discuss the ratio-
nale behind choosing one risk measure or another among a set of different
available GlueVaR risk measures in a particular example.

Part (II) covers from Chapters 6 to 8. Capital allocation problems fall on
the disaggregation side of risk management. These problems are associated
to a wide variety of periodical management tasks inside the entities. In an



insurance firm, for instance, risk capital allocation by business lines is a fun-
damental element for decision making from a risk management point of
view. A sound implementation of capital allocation techniques may help
insurance companies to improve their underwriting risk and to adjust the
pricing of their policies, so to increase the value of the firm. Chapters in this
part are structured as follows:

Chapter 6 - An overview on capital allocation problems

There is a strong relationship between risk measures and capital allocation
problems. Briefly speaking, most solutions to a capital allocation problem
are determined by selecting one allocation criterion and choosing a particu-
lar risk measure. This chapter is intended to detect additional key elements
involved in a solution to a capital allocation problem, in order to obtain a de-
tailed initial picture on risk capital allocation proposals that can be found
in the academic literature.
Personal notations and points of view are stated here and used from this
point forward. Additionally, some particular solutions of interest are com-
mented, trying to highlight both advantages and drawbacks of each one of
them.

Chapter 7 - Capital allocation based on GlueVaR

This chapter is devoted to show how GlueVaR risk measures can be used to
solve problems of proportional capital allocation through an example. Two
proportional capital allocation principles based on GlueVaR risk measures
are defined and an example is presented, in which allocation solutions with
particular GlueVaR risk measures are discussed and compared with the so-
lutions obtained when using the rest of alternatives.

Chapter 8 - Capital allocation principles as compositional data

In the last chapter, some connections between capital allocation problems
and aggregation functions are emphasized. The approach is based on func-
tions and operations defined in the standard simplex which, to the best of
our knowledge, remained an unexplored approach.
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1 Preliminary concepts on
quantitative risk measurement

This chapter is structured in two parts. The first one is intended to com-
pile a set of theoretical definitions that we consider useful and relevant for
quantitative riskmanagers. These definitions are related to the quantitative
risk assessment framework of unidimensional risk factors, so other key is-
sues like multivariate dependence are not covered herein. In our opinion,
the concepts addressed in this chapter are the building blocks of unidimen-
sional risk measurement which need to be helpful to practitioners. A care-
ful first reading of this part is not necessary if one is already familiar with
the fundamental ideas, because our aim is to leave it as a reference point
to which to go back whenever needed. The second part serves to introduce
ideas to bear in mind when moving from theory to practice. As before, this
selection is subjective and it relies on our judgment, and the reader could
consider the subjects in this selection too specific or too obvious. This is
also the reason why we close the chapter with some brief remarks, in which
we provide additional topics to be aware of and selected references in the
literature to become an expert on risk quantification.

1.1 Risk measurement - Theory

1.1.1 First definitions

Definition 1.1 (Probability space). A probability space is defined by three
elements (≠,A ,P ). The sample space ≠ is a set of all possible events of a
random experiment, A is a family of the set of all subsets of ≠ (denoted
as A 2 }(≠)) with a æ-algebra structure, and the probability P is a map-
ping from A to [0,1] such that P (≠) = 1, P (∅) = 0 and P satisfies the
æ-additivity property.



Some remarks regarding the previous definition. A has a æ-algebra struc-
ture if≠ 2A , if A 2A implies that≠‡A = Ac 2A and ifSn 1 An 2A for
any numerable set {An}n 1. Additionally, the æ-additivity property afore-
mentioned states that if {An}n 1 is a succession of pairwise disjoint sets be-
longing to A then

P

µ
+1[

n=1

An

∂
=

+1X

n=1

P (An).

A probability space is finite, i.e. ≠ = {$1,$2, . . . ,$n}, if the sample space
is finite. Then }(≠) is the æ-algebra, which is denoted as 2≠. In the rest
of this book, N instead of ≠ and m instead of $ are used when referring
to finite probability spaces. Hence, the notation is

°
N ,2N ,P

¢
, where N =

{m1,m2, . . . ,mn}.

Definition 1.2 (Random variable). Let (≠,A ,P ) be a probability space. A
random variable X is a mapping from ≠ to R such that X °1((°1, x]) :=

{$ 2≠ : X ($) … x} 2A , 8x 2R.

A random variable X is discrete if X (≠) is a finite set or a numerable set
without cumulative points.

Definition 1.3 (Distribution function of a random variable). Let X bea ran-
dom variable. The distribution function of X , denoted by FX , is defined by
FX (x) := P

°
X °1((°1, x])

¢
. The notation P (X … x) = P

°
X °1 ((°1, x])

¢

is commonly used, so expression FX (x) = P (X … x) is habitual. The distri-
bution function of a random variable is also known as the cumulative dis-
tribution function (cdf) of that random variable.

The distribution function FX is non-decreasing, right-continuous and satis-
fies that lim

x!°1
FX (x) = 0 and lim

x!+1
FX (x) = 1.

Definition 1.4 (Survival function of a random variable). Let X be a ran-
dom variable. The survival function of X , denoted by SX , is defined by
SX (x) := P

°
X °1

°
(x,+1)

¢¢
. The followingnotation is commonlyused,P (X

> x) = P
°
X °1

°
(x,+1)

¢¢
, so expression SX (x) = P (X > x) is habitual. So,

the survival functionSX canbe expressed asSX (x) = 1°FX (x), for all x 2R.

The survival functionSX is non-increasing, left-continuous and satisfies that
lim

x!°1
SX (x) = 1 and lim

x!+1
SX (x) = 0. Note that the domain of the distri-

bution function and the survival function is R even if X is a discrete ran-
domvariable. In otherwords, FX and SX are defined for X (≠) = {x1, x2, . . . ,

xn , . . .} but also for any x 2R.



Definition 1.5 (Density function). A function f defined from R to R is a
density function if f   0, if it is Riemann integrable in R and if the follow-
ing equality holds: Z+1

°1
f (t )d t = 1.

A random variable X is absolutely continuous with density fX if its distri-
bution function FX can be written as FX (x) =

Rx
°1 fX (t )d t for all x 2 R.

Let us remark that, in such a case, the derivative function of FX is fX , so
dFX (x) = fX (x).
If X is a discrete random variable such that X (≠) = {x1, x2, . . . , xn , . . .} then
for if x 2 {x1, x2, . . . , xn , . . .}, the density functionmay be defined by fX (x) =

P (X = xi ) and fX (x) = 0 if x › {x1, x2, . . . , xn , . . .}.
Apart from discrete and absolutely continuous random variables there are
random variables that are not discrete neither absolutely continuous but
belong to a more general class. These random variables are such that their
distribution function satisfies that

FX (x) = (1°p) ·F c
X (x)+p ·F d

X (x) (1.1)

for a certain p 2 (0,1), and where F c
X
is a distribution function linked to an

absolutely continuous randomvariable andF d
X
is a distribution function as-

sociated to a discrete randomvariable X d with X d (≠) = {x1, x2, . . . , xn , . . .}.

Definition 1.6 (Mathematical expectation). Three different cases are con-
sidered in this definition.

Discrete case

Let X be a discrete random variable with X (≠) = {x1, x2, . . . , xn , . . .}. X has
finite expectation ifP+1

i=1 |xi |·P (X = xi ) <+1. If this condition is satisfied
then the mathematical expectation of X is E(X ) 2R, where E(X ) is defined
by

E(X ) =
+1X

i=1

xi ·P (X = xi ) =
+1X

i=1

xi · fX (xi ).

Absolutely continuous case

Let X be an absolutely continuous random variable with density function
fX . X has finite expectation if

R+1
°1 |x| · fX (x)d x <+1. If this condition is



Type of r.v. Name of r.v. Distribution function

Discrete Binomial,
X ª B(m, q)

FX (x) =
X

k…x

√
m

k

!
·qk

· (1°q)m°k

Absolutely
continuous

Normal,
X ª N (µ,æ2)

FX (x) =Zx

°1

1

æ
p

2º
·exp

Ω
°

1

2æ2
· (t °µ)2

æ
d t

Mixed Mixed
exponential

FX (x) =8
>><
>>:

0 if x < 0

1° (1°p) ·exp{°∏ · x} if x   0

The probability of {X = 0} is equal to p 2 (0,1), the
probability of {X < 0} is zero and strictly positive values
have assigned a probability of and exponential r.v. of
parameter ∏> 0, additionally multiplied by 1°p .

satisfied then the mathematical expectation of X is E(X ) 2 R, where E(X )

is defined by

E(X ) =

Z+1

°1
|x| · fX (x)d x <+1.

General case

Let X be a random variable with distribution function of the form (1.1), and
such that

8
>><
>>:

p ·F d
X

(x) =
X

xi…x

µ
FX (xi )° lim

t!xi , t<xi

FX (t )

∂
=

X

xi…x

P (X = xi ),

(1°p) ·F c
X

(x) = FX (x)°p ·F d
X

(x) =

Zx

°1
f c

X (t )d t ,

where {x1, x2, . . . , xn , . . .} is the set of discontinuity points ofFX . In this case,
if the random variables linked to F d

X
and F c

X
respectively have finite expec-



m = 100 q = 5% µ= 0 σ= 1 p = 70% λ= 0.02

tation then

E(X ) =
+1X

i=1

xi ·P (X = xi )+

Z+1

°1
x · f c

X (x)d x.

Note that the differential function of a distribution function FX , which will
be denoted dFX and is usually known as probability density function (pdf),
may be defined by

dFx (x) =

(
P (X = xi ) if x 2 {x1, x2, . . . , xn , . . .},

f c
X

(x) if x › {x1, x2, . . . , xn , . . .},
(1.2)

Taking advantage of this notation, if the random variables involved have fi-
nite expectation then the mathematical expectation in the discrete, the ab-



solutely continuous or the general cases can always be written as

E(X ) =

Z+1

°1
x ·dFX (x).

This expression unifies the ones used in Definition 1.6 and makes further
reading easier than more complicated notation.
The following result will be really helpful in several parts of this book, al-
though comments on its usefulness cannot be provided at this stage. The
result shows how to interpret the mathematical expectation of a random
variable in terms of its survival function.

Proposition 1.1. Let X be a random variable with finite expectation. The fol-
lowing equality holds:

E(X ) =

Z0

°1
(SX (t )°1)d t +

Z+1

0
SX (t )d t . (1.3)

Proof. Each summand in (1.3) is treated separately, despite the idea behind
the proof is basically the same. First of all, consider

a =

Z0

°1
(SX (t )°1)d t and b =

Z+1

0
SX (t )d t .

With this notation, E(X ) = a+b has to be proved. In order to prove that, let
us recall that E(X ) =

R+1
°1 x ·dFX (x) and rewrite this last expression as

E(X ) =

Z0

°1
x ·dFX (x)+

Z+1

0
x ·dFX (x) = a0

+b0.

Using Fubini’s theorem in (§):

b0
=

Z+1

0
x ·dFX (x) =

Z+1

0

µZx

t=0
d t

∂
dFX (x)

(§)
=

Z+1

t=0

µZ+1

x=t
dFX (x)

∂
d t =

Z+1

t=0
(FX (+1)°FX (t ))d t

=

Z+1

t=0
(1°FX (t ))d t =

Z+1

0
SX (t )d t

= b.



a0
=

Z0

°1
x ·dFX (x) =

Z0

x=°1

µZx

t=0
d t

∂
dFX (x)

(§)
=

Z0

t=°1

µZt

x=°1
(°dFX (x))

∂
d t =

Z0

t=°1

µZt

x=°1
(dSX (x))

∂
d t

=

Z0

t=°1
(SX (t )°SX (°1))d t

=

Z0

t=°1
(SX (t )°1)d t

= a. ‰

The proposition has been proved, using that FX (+1) = lim
x!+1

FX (x) = 1,
SX (°1) = lim

x!°1
SX (x) = lim

x!°1
(1° FX (x)) = 1° lim

x!°1
FX (x) = 1 and

dSX (x) = d [1°FX (x)] =°dFX (x).

Definition 1.7 (Risk measure). Let ° be the set of all random variables de-
fined for a given probability space (≠,A ,P ). A riskmeasure is a mapping Ω
from ° to R, so Ω(X ) is a real value for each X 2 °.

Frequently, the set ° is considered to be the set of p-measurable functions
defined on the probability space, p   0. In other words, frequently ° =

L
p {(≠,A ,P )}. For more details see, for instance, Rüschendorf [2013] and

the references therein.
The most frequently used, or well known, risk measures in the insurance
and financial industry are listed in next paragraph. It has to be noted that
insurance and financial perspectives may differ in some aspects. Detailed
comments on these differences are provided in Section 1.2. Our perspective
is the actuarial one and, hence, the following definitions are aligned with
this point of view. In fact, these definitions are basically taken from Denuit
et al. [2005]. The reason of including these definitions is to avoid possible
misunderstandings due to differences in names given to certain risk mea-
sures.

Definition 1.8 (Value at Risk). Let us consider Æ 2 (0,1). The function

VaRÆ : °°! R

X 7°! VaRÆ(X ) = inf{x | FX (x)  Æ}

is a riskmeasure calledValueatRiskat confidence levelÆ. IfFX is continuous
and strictly increasing thenVaRÆ(X ) = F°1

X (X ), where F°1
X is the inverse of

the distribution function of random variable X .



Definition 1.9 (Tail Value at Risk). Let us consider Æ 2 (0,1). The function

TVaRÆ : °°! R

X 7°! TVaRÆ(X ) =
1

1°Æ

Z1

Æ
VaR∏(X )d∏

is a risk measure called Tail Value at Risk at confidence level Æ.

Definition 1.10 (Conditional Tail Expectation). Let us consider Æ 2 (0,1).
The function

CTEÆ : ° °!R

X 7°! CTEÆ(X ) = E [X | X > VaRÆ(X )]

is a risk measure called Conditional Tail Expectation at confidence level Æ.

Definition 1.11 (Conditional Value at Risk). Let us consider Æ 2 (0,1). The
function

CVaRÆ : °°! R

X 7°! CVaRÆ(X ) = E [X °VaRÆ(X ) | X > VaRÆ(X )]

= CTEÆ(X )°VaRÆ(X )

is a risk measure called Conditional Value at Risk at confidence level Æ.

Definition 1.12 (Expected Shortfall). Let be Æ 2 (0,1). The function

ESÆ : °°! R

X 7°! ESÆ(X ) = E
£
(X °VaRÆ(X ))+

§

is a risk measure called Expected Shortfall at confidence level Æ. Notation
(t )+ is used to refer to the function that returns 0 if t … 0 and t otherwise.

The following relationships between previous risk measures hold, as stated
in Section 2.4 of Denuit et al. [2005]:

TVaRÆ(X ) = VaRÆ(X )+
1

1°Æ
·ESÆ(X ), (1.4)

CTEÆ(X ) = VaRÆ(X )+
1

SX (VaRÆ(X ))
·ESÆ(X ), (1.5)

CVaRÆ(X ) =
ESÆ(X )

SX (VaRÆ(X ))
. (1.6)



Note that relationships (1.4) and (1.5) imply that, if the distribution func-
tion of random variable X is continuous and strictly increasing thenTVaRÆ

(X ) = CTEÆ(X ) because

SX (VaRÆ(X )) = 1°FX (VaRÆ(X )) = 1°FX

°
F°1

X (Æ)
¢
= 1°Æ.

This is the reason of finding expressions like: ‘roughly speaking, the TVaR is
understood as the mathematical expectation beyond VaR’ in this book.

Example 1.1 (Illustrative exercise). Let us consider the following random
variable X , that measures a loss, i.e. an economic value that can be lost
with a certain probability,

xi °100 0 50 200 500

pi = P (X = xi ) 0.2 0.5 0.25 0.04 0.01

a) Calculate VaRÆ(X ), TVaRÆ(X ) and CTEÆ(X ) for Æ = 90% and for Æ =

99%.

b) Explain if a loss X which is distributed like in the table presented here
can produce a TVaR at the 90% level that is equal to 180.

c) Find the value that must substitute 200 so that the results exactly corre-
spond to ES90%(X ) = 13, for a confidence level equal to 90%. Verify also
that if we replace value 200 by 250 and value 500 by 550, thenwe obtain
again the same results for a confidence level equal to 90%.

d) Based on the ideas in step c), explain why the value of the risk measures
do not determine in a unique way the distribution of a random loss.

Solution a) In order to make calculations easier, we complete the initial
table with two additional rows. One corresponds to the distribution func-
tion (cdf) of random variable X and the other is the corresponding survival
function.

xi °100 0 50 200 500

pi = P (X = xi ) 0.2 0.5 0.25 0.04 0.01

FX (xi ) 0.2 0.7 0.95 0.99 1

SX (xi ) 0.8 0.3 0.05 0.01 0



We calculate the values of VaR90%(X ) and VaR99%(X ) using Definition 1.8
VaRÆ(X )and the information displayed on the table. So,

VaR90%(X ) = inf{x | FX (x)   90%} = 50,

VaR99%(X ) = inf{x | FX (x)   99%} = 200.

Both for the calculation of TVaR and CTE, we need to obtain the value of
ES beforehand. Let us remind the definition of the latter for a loss random
variable X and a confidence level Æ 2 (0,1):

ESÆ(X ) = E [(X °VaRÆ(X ))+] .

Note that we need to consider ZX ,Æ = (X °VaRÆ(X ))+, which is equal to
zero when xi °VaRÆ(X ) … 0 and which is equal to xi °VaRÆ(X ) when the
difference is positive. Let us add two more lines to the table that has been
used in this exercise, corresponding to values ZX ,90% and ZX ,99%:

xi °100 0 50 200 500

pi = P (X = xi ) 0.2 0.5 0.25 0.04 0.01

FX (xi ) 0.2 0.7 0.95 0.99 1

SX (xi ) 0.8 0.3 0.05 0.01 0

(xi °50)+ 0 0 0 150 450

(xi °200)+ 0 0 0 0 300

Therefore,

ES90%(X ) =
5X

i=1

(xi °50)+ ·pi = 150 ·0.04+450 ·0.01 = 6+4.5 = 10.5,

ES99%(X ) =
5X

i=1

(xi °200)+ ·pi = 300 ·0.01 = 3.

Once the values for ES are obtained, then we can calculate TVaR and CTE

using the following expressions:

TVaRÆ(X ) = VaRÆ(X )+
1

1°Æ
·ESÆ(X )

and

CTEÆ(X ) = VaRÆ(X )+
1

SX (VaRÆ(X ))
·ESÆ(X ).



TVaR90%(X ) = 50+ (1/0.1)10.5 = 155,

TVaR99%(X ) = 200+ (1/0.01)3 = 500; and

CTE90%(X ) = 50+ (1/0.05)10.5 = 260,

CTE99%(X ) = 200+ (1/0.01)3 = 500.

b) The random loss X that is considered in this exercise cannot correspond
to another loss if some values of the risk measures at the confidence level of
90% are different to the risk measures obtained for the loss. For example, if
the TVaR at the 90% level is 180 while we just saw that TVaR at the confi-
dence level of 90% is 155 for the loss in this exercise, then the two random
variables differ in their distribution.
c) Let us fix the level of confidence to 90%. Let us note in that case that
the source of the difference between the risk measures TVaR and CTE in
two cases is in the value of ES90%(X ). For instance if the value is 13, while
it is 10.5 in section a) of the current exercise. Then, when looking at the
calculation of ES90%(X ), what needs to be done is to look at the following
equation:

(x4 °50) ·0.04+450 ·0.01 = 13, with x4   50.

Then, solving the previous equation, we obtain

x4 = 25 · [13°4.5+2] = 25 · [10.5] = 262.5.

Furthermore, if we change x4 = 200by x4 = 262.5weobtain the results that
we were aiming at, namely,

VaR90%(X ) = 50, ES90%(X ) = 13, CVaR90%(X ) = 260,

TVaR90%(X ) = 180, and CTE90%(X ) = 310.

The variant proposed here is to consider now that x4 equals 250 and x5

equals 550, and leaving all other xi as they were initially set. So, the value of
ES90%(X ) is calculated as

(250°50)+ ·0.04+ (550°50)+ ·0.01 = 200 ·0.04+500 ·0.01

= 8+5 = 13.



Therefore, with this change, we obtain

VaR90%(X ) = 50, ES90%(X ) = 13, CVaR90%(X ) = 260,

TVaR90%(X ) = 180 and CTE90%(X ) = 310.

d) In the previous paragraph, we deduce that at least, there are two random
losses that have the same values for

VaR90%(X ), ES90%(X ), CVaR90%(X ),

TVaR90%(X ) and CTE90%(X ).

As a consequence, we have just seen that the values of the risk measures do
not determine in a unique fashion the cumulative probability function for a
random variable.

1.1.2 Properties for risk measures
A list of properties that a risk measure may or may not satisfy is presented
herein. Most of these properties have an economic interpretation or, at
least, a relationship with some features that practitioners (the ones who
want to quantify risk) demand to the risk measure (the instrument to quan-
tify risk). In order to summarize the properties and their interpretation, Ta-
ble 1.2 is provided.

Property Idea behind the property
Translation
invariance
Ω(X + c) = Ω(X )+ c ,
8c 2R

If a positive non random quantity c is added to
random loss X then it is required to the riskmea-
sure that the risk value of the new loss should be
increased by the same quantity. Otherwise, if the
quantity c is negative (so a protection buffer has
been added to the original random loss X ) then
the riskmeasure should reflect this buffer as a net
effect on the original risk value.

Subadditivity
Ω(X1 +X2) …
Ω(X1)+Ω(X2)

If a risk measure satisfies this property then it is
able to quantitatively reflect the idea that diver-
sification is a strategy that does not increase risk.

Continued on next page



Table 1.2: continued from previous page
Property Idea behind the property
Monotonicity
P (X1 … X2) = 1 )
Ω(X1) … Ω(X2)

If losses of a position are almost surelyworse than
losses of another position, then the risk value of
the former should be greater than the risk value
of the latter.

Positive
homogeneity
Ω(c ·X ) = c ·Ω(X ),
8c > 0

If losses to which the risk manager is exposed are
multiples of a particular loss, then it is required
that the riskmeasure of the overall risk should be
the samemultiple of the risk value of that partic-
ular loss.

Comonotonic
additivity
X1 and X2

comonotonic)
Ω(X1 +X2) =

Ω(X1)+Ω(X2)

Informally, two random variables are comono-
tonic if they are linked to another random vari-
able that drives their behavior. This property
is intended to identify those risk measures that
take into account this underlying relationship be-
tween comonotonic random variables and, as a
consequence, they do not assign quantitative di-
versification benefits when considering the sum
of those random variables.

Convexity
Ω(∏ ·X1+(1°∏) ·X2)

…∏ ·Ω(X1)+

(1°∏) ·Ω(X2),
8∏ 2 (0,1)

This is a sort of generalization of the subaddi-
tivity property. If the risk figure of any linear
combination of two random variables is smaller
than the associated linear combination of risk fig-
ures, then the risk measure captures diversifica-
tion benefits in a continuous way. Note that if
the risk measure is convex and positively homo-
geneous and considering X 0

i
= 2·Xi and∏= 1/2,

then the subadditivity property for X 0
i
, i = 1, 2 is

obtained.
Continued on next page



Table 1.2: continued from previous page
Property Idea behind the property
Law invariance
(objectivity)
If P (X1 … x) =

P (X2 … x), 8x 2R

then Ω(X1) = Ω(X2)

If two random variables have identical distribu-
tion functions then it is required to the risk mea-
sure that their risk values should be identical too.

Relevance
If X   0 and X 6= 0

then Ω(X ) > 0

If a random loss is not zero then its risk value
should be strictly positive.

Strictness
Ω(X )   E(X )

This property is intended to detect those risk
measures that are conservative enough tobeused
as amanagement tool, in other words, risk values
based in risk measures that satisfy this property
are always greater that the expected loss.

For any random variables X1, X2, X 2 °.

Financial and actuarial literature are plenty of interesting proposals of risk
measures. Details on some of these proposals are provided in Chapters 3
and 4 and, in addition, several other references are pointed out therein.

1.2 Risk measurement - Practice
Let us start this section with Table 1.3, in which closed-form expressions are
provided for VaR and TVaRwhere randomvariable X is distributed as aNor-
mal (N ), a Lognormal (L N ) and aGeneralized Pareto (GP ) distribution.
Notation conventions are used. Namely,¡ and© stand for the standardNor-
mal pdf and cdf, respectively. The standard Normal distribution Æ-quantile
is denoted as qÆ = ©

°1(Æ). For the GP distribution, the definition pro-
vided in Hosking andWallis [1987] is considered, where the scale parameter
is denoted by æ and k is the shape parameter. The GP distribution con-
tains the Uniform (k = 1), the Exponential (k = 0), the Pareto (k < 0) and
the type II Pareto (k > 0) distributions as special cases. Table 1.3 is basically
taken from Sandström [2011].



Random variable Risk
measure Expression

Normal distribution
N (µ,æ2)

VaRÆ µ+æ ·qÆ

TVaRÆ
µ+æ ·

¡(qÆ)

1°Æ

Lognormal
distribution
L N (µ,æ2)

VaRÆ exp(µ+æ ·qÆ)

TVaRÆ exp

µ
µ+

æ2

2

∂
·
©(æ°qÆ)

1°Æ

Generalized Pareto
distribution
GP D(0,æ)

VaRÆ °æ · ln(1°Æ)

TVaRÆ æ · [1° ln(1°Æ)]

(Exponential distribution)

Generalized Pareto
distribution
GP D(k,æ) with
k < 0

VaRÆ
æ

k

£
1° (1°Æ)k

§

TVaRÆ

8
>>>>><
>>>>>:

+1 if k …°1

æ

k

£
1° (1°Æ)k

§
+
æ

k

"
k · (1°Æ)k

k +1

#

if k 2 (°1,0)

1.2.1 ‘Liability side’ versus ‘asset side’ perspectives
No matter if you come from the insurance or from the financial industry:
in both cases you agree on thinking on risk in terms of random losses. Dif-
ferences arise when quantifying risk in practice, because usually an actuary
works with random variables in which positive values identify losses and,
therefore, she is worried about what happens in the right tail of the dis-
tributions. Nonetheless, a practitioner from the financial industry usually
works with random variables where positive values identify gains or profits,
so she is mainly worried about the behavior of the left tail of the distribu-
tions. Therefore, depending onwhere you come from, youwould be used to
look at risk quantification from different perspectives. More precisely, we
should talk about ‘liability side’ practitioners and ‘asset side’ practitioners



instead of ‘insurance’ and ‘financial’ practitioners. For instance, an example
of financial practitioners that take (whatwehave called) a ‘liability side’ per-
spective when quantifying risk are those in charge of assessing credit risk.
On the other side, as we will discuss later, the perspective used in European
insurance regulation to quantify solvency capital requirements is an ‘asset
side’ perspective andnot a ‘liability side’ perspective (as it could be expected
because of the nature of this industry’s business).
Although moving from one perspective to the other is not a big issue, few
guidelines to reach this goal are outlined. It is our opinion that these are the
kind of helpful indications that bridge the gap between theory and prac-
tice, and between insurance (‘liability side’) and financial (‘asset side’) prac-
titioners. The following guidelines are summarized in Table 1.4, in order to
provide a fast and visual reference when needed.

Concept Liability side
perspective

Asset side
perspective

Notation for risk
measures used in
this Table

Ω r

Target random
variable X a random loss X a random profit

Monotonicity P (X1 … X2) = 1 )
Ω(X1) … Ω(X2)

P (X1 … X2) = 1 )
r(X1)   r(X2)

From the liability side perspective, smaller losses should
have associated smaller risk measurements. On the as-
set side perspective, the higher the gain the lesser its risk
value.

Translation
invariance

Ω(X + c) = Ω(X )+ c ,
8c 2R

r(X + c) = r(X )° c ,
8c 2R

Continued on next page



Table 1.4: continued from previous page

Concept Liability side
perspective

Asset side
perspective

A positive amount of money from the liability side per-
spective may be considered as a loss, while from the as-
set side perspective it is exactly the opposite. Therefore,
if the risk measure satisfies the translation invariance
property, a positive amount of money must increase risk
from the liability side perspectivewhile the samepositive
amount of money must decrease risk from the asset side
perspective.

Relevance
X   0 and X 6= 0 )

Ω(X ) > 0

X … 0 and X 6= 0 )
r(X ) > 0

Strictness Ω(X )   E(X ) r(X )  °E(X )

Recalling that X represents a random loss from the
liability side perspective and a gain from the asset
side perspective.

Subadditivity,
Positive
homogeneity,
Comonotonic
additivity,
Convexity, Law
invariance

Formal expressions from both perspectives remain
as they aredisplayed inTable 1.2, except for replacing
Ω by r.

For any random variables X1, X2, X 2 °.

Additional comments with respect to differences among the ‘liability side’
and the ‘asset side’ perspective for risk quantification may be found, for in-
stance, in Rüschendorf [2013]. As an example, Definition 1.8 has been intro-
duced from a ‘liability side’ perspective, so positive values of random vari-
able X are considered losses. Considering expressions in Definition 1.8 and



adopting an ‘asset side’ perspective, if one is interested in obtaining the VaR
atÆ confidence level for a continuous random variable Z with positive val-
ues representing profits, then the correct risk figure would be obtained as

‘VaR of Z at confidence level Æ 2 (0,1)’
=°VaR1°Æ(Z ) following Definition 1.8. (1.7)

The perspective taken in the following chapters of this book is the one that
we have called ‘liability side’ perspective.

1.2.2 Somemisunderstandings to be avoided in practice
Risk measures versus their estimates

It is quite frequent to confuse a risk measure with the procedures used to
estimate it. These two concepts are different and their identification can
lead tomisunderstandings. Fortunately, the spread of knowledge about risk
measurement makes these kind of doubts less frequent than they were be-
fore. But when having first contact with risk measurement (for instance, if
you are an undergraduate student interested in this topic or a recently hired
practitioner without previous experience in the insurance industry or the
financial sector) this is one of the most common mistakes. Diagram in Fig-
ure 1.2 may help to clarify concepts.

Theory Assumptions°°°°°°°°! Practice

Risk measure (Ω)
Ω To bΩ°°°°! Risk figure est. bΩ( bX )

x??

Random variable (X )
X To bX°°°°! R.v. estimation ( bX )

(1.8)

Figure 1.2 is intended to depict a schematic situation faced when trying to
quantify risk. On the one hand, theoretical aspects related to the risk mea-
sure (the instrument to summarize risk) and the target randomvariable (the
source of risk) must be taken into account. These theoretical aspects are
represented on the left hand side of the diagram, and should correspond
to answers to questions such as the following: Is the selected risk measure
adequate? Is the target random variable observable?…On the other hand,
figures are basic in practice. As long as the final objective is to obtain an



estimate of the incurred risk (framed box in Figure 1.2) assumptions have to
be in place to move from theory to practice. So, the assumptions made to
estimate both the riskmeasure and the target random variable become cru-
cial. They are so relevant that, from our point of view, they can lead to the
confusion that we are highlighting here. This is because, in daily practice,
one could deliver risk figures estimations (right hand side of the diagram)
without worrying about theoretical aspects (left hand side). As mentioned
before, let us put some examples.
Example 1.2 (Historical VaR). Measuring risk in practice using the histor-
ical VaR methodology has been relatively common because it has an easy
implementation. Properly speaking, it is not a unique methodology as we
try to justify hereinafter. From the point of view provided by the diagram in
Figure 1.2, on the theoretical side thismethodology takes into account as risk
measure Ω theVaRwith some confidence levelÆ 2 (0,1) and considers that
the target randomvariable X is observable. Moreover, it is assumed that ob-
servations of that random variable from past periods can be obtained. The
assumptions for moving from theory to practice are as follows: with respect
to the estimation of the target random variable bX , it is assumed that future
realizations will be exactly the same as past realizations, so past observa-
tions that have been obtained are going to be considered future observa-
tions too. Andwith respect to the estimation bΩ of VaR, there is not a unique
feasible assumption (and this is why we consider the ‘historical VaR’ a set
of methodologies and not just one). For instance, a feasible assumption is
to consider the data set of observations of bX as it represents the discrete
random variable X which only takes those particular values and no more.
Consequently, VaR should be estimated as the empirical Æ-quantile of that
set. But, if the data set of observations of bX is considered just a sample of X ,
then any Æ-quantile approximation1 of data set bX could be used to obtain
the final risk figure estimation bΩ( bX ) of Ω(X ).

Example 1.3 (Normal VaR). Bearing inmind diagram in Figure 1.2, this me-
thodology takes as theoretical risk measure Ω the VaR at some confidence
level Æ 2 (0,1), and considers as target random variable X one which is as-
sumed to be normally distributed. Assumptions to move from the theoreti-
cal side to the practical one are as follows: with respect to X , it is assumed

1 For instance, quantile function in software R hasmore than 10 different ways to approxi-
mate theÆ-quantile, where the one coded by 0 is whatwe have called the empirical quan-
tile. Even MS Excel has implemented functions INC.PERCENTILE and EXC.PERCENTILE
which return different approximations of the Æ-quantile.



that X ª N (µ,æ2) for someµ 2R andæ> 0, and that thepractitioner is able
to estimateµ andæ in someway (maybe fromdata or fromexpert judgment,
for instance), so it is feasible to obtain bµ and bæ estimates ofµ andæ, respec-
tively. With respect to the risk measure, the assumption made on the ran-
dom variable implicitly provides a closed-form expression for VaR, because
if X ª N (µ,æ2) then VaRÆ(X ) =µ+æ ·qÆ, where qÆ is theÆ-quantile of a
standard normal distribution (as it has been shown in Table 1.3). As it hap-
pened with the historical VaR methodology, the Normal VaR methodology
may be understood as a set of methodologies depending on the particular
chosen way for estimating the parameters of the distribution. In the end,
Ω(X ) is estimated by bµ+ bæ ·qÆ.
Note that the Normal VaR methodology is frequently used for sums of nor-
mally distributed randomvariables. On the theoretical side, ifn > 1 random
variables Xi ª N (µi ,æ2

i
), i = 1, . . . ,n, are consideredand§= (Ωi j )i , j2{1,...,n}

is the correlationmatrix for pairs of those randomvariables, then it is known
that

X =

nX

i=1

Xi ª N

√
nX

i=1

µi ,æ2

!
,

where æ2 =~µ
0 ·§ ·~µ and~µ is an n-dimensional vector whose components

areµi , i = 1, . . . ,n. So, the situation is just the one described in the previous
paragraph, taking as µ =

Pn
i=1

µi and as æ =
p
~µ0 ·§ ·~µ. In this case, the

process to obtain parameter estimates bµ and bæmust take into account that
correlation coefficients Ωi j should also be estimated. In other words,

bæ=

q
b~µ0
· b§ · b~µ.

Example 1.4 (Cornish-Fisher VaR). As in the previous examples, different
methodologies are embracedunder this name. They share the following ele-
ments: on the onehand, the theoretical riskmeasureΩ is theVaRwith some
confidence level Æ 2 (0,1) and no hypothesis about the distribution func-
tion of the target random variable is made. Nonetheless, it is assumed that
some higher ordermoments of X exist and are finite. On the other hand, as-
sumptions formoving from the theoretical side to the practical side are that,
in order to obtain an estimation bΩ( bX ), a closed-form approximation simi-
lar to the one valid for normally distributed random variables is achievable.
For that purpose, modifiedÆ-quantiles are devised taking into account esti-
mations of finite order moments of X . Differences between Cornish-Fisher
VaRmethodologies come from themaximumorder ofmoments considered
in the quantile estimations. For instance, in Chapter 4 we have used third



order Cornish-Fisher VaR approximations, but is is usual to find fourth order
Cornish-Fisher VaR approximations in financial applications.

VaR versus Mean-VaR

Anapparently harmless sentence like ‘most financial credit riskmodels used
inpractice toquantify risk arebasedonVaRat someconfidence level’, which
most practitioners and researchers in this field may subscribe, can have un-
desired consequences if it is misunderstood. The main concern with the
previous sentence is that nothing is said about the randomvariable towhich
the VaR is applied to: even considering the same confidence level and the
same input data, different figures can be obtained depending on the under-
lying random variable under inspection. For instance, a large number of
banks use internal models to simulate losses generated by credit events af-
fecting their loans. Let us focus on one bank and let us denote its aggregate
simulated losses by X . Therefore, the amount of money needed to cover
unexpected losses (its economic capital) is probably computed as

EC = VaR99.9%(X °E(X ))

in order to take into account its simulated values andalso regulatory require-
ments (Basel II/III). Note that in this case, although the random variable
simulated is X , the one used to quantify risk (i.e., to obtain the economic
capital) isU = X °E(X ), in fact. The VaR is a risk measure that satisfies the
translation invariance property shown in Table 1.2 and, therefore,

EC = VaR99.9%(U ) = VaR99.9%(X )°E(X ). (1.9)

This last expression for the EC is certainly more familiar to financial practi-
tioners. Moreover, sometimesΩ(X ) = VaR99.9%(X )°E(X ) is considered the
value that another risk measure Ω named ‘Mean Value at Risk’(Mean-VaR)
returns when applied to random loss X . Expression (1.9) has been inten-
tionally displayed in second place in order to stress the following idea. Let
us imagine now an European insurance company calculating its Solvency
Capital Requirement (SCR) under the Solvency II regulatory framework and
by using an internal model. Let us suppose that within the model a set of
stochastic basic own funds of the company for the next year is simulated.
In such a case, if Y denotes the ‘basic own funds for the next year’ random
variable, then taking into account expression (1.7) it seems reasonable that
the following expression

SCR = VaR99.5%(°Y ) =°VaR0.5%(Y ) (1.10)



would be used to compute the SCR, because it perfectly fits the regulatory
requirements2. But what it is relevant here is that it makes no sense to re-
quire the company to set aside, as a cushion against insolvency, the follow-
ing amount of money

SCR = VaR99.5%(°Y )°E(°Y ) = VaR99.5%(°Y )+E(Y ). (1.11)

Due to misunderstanding of expression (1.9) for the EC, and transposing it
for the SCR expression simply replacing X by °Y , figures with non eco-
nomic sense are attained. Why? Basically because X and°Y are essentially
different. Random variable X is a pure loss while °Y contains both losses
and gains. In fact, hopefully E(°Y ) ø 0 (the insurance company expects
substantial gains) and reasonablyE(X ) > 0 (the expectation of a set of losses
is also a loss). In words, when computing the EC the focus is set on random
variable U = X °E(X ) because it is assumed that the quantity E(X ) is al-
ready accounted for on the liability side of the balance sheet (which is not
entirely simulated by the credit risk model) tomitigate credit losses. On the
other hand, the model for the SCR of the insurance company is simulating
the whole balance sheet. Therefore °Y is not comparable with X because
losses associated to°Y are those that have exceeded all themitigation tools
and strategies that the company has in place, while X losses are computed
gross of any mitigation effect.

Example 1.5. A toy example can help us to illustrate the impact of such a
misunderstanding. Imagine two insurance companies c1 and c2, one with
Y1,t = 100 monetary units (m.u.) of present basic own funds and the other
with Y2,t = 1 m.u. Both use the same model to project next year basic own
funds (let us say Y1,t+1 and Y2,t+1) and the same methodology to compute
VaR at the 99.5% confidence level. To simplify things, let us assume that
E(Yi ,t+1) = Yi ,t for i = 1, 2, so the expectationof projectedbasic owns funds
for the next year is nothing but the value of the actual basic own funds of
each company. Imagine that the risk figures that these companies obtain
are VaR99.5%(°Y1,t+1) = 5 and VaR99.5%(°Y2,t+1) = 0.5. They may be in-
terpreted in the following way: c1 is going to suffer a minimum loss of a 5%

of its present basic own funds in a 0.5% of the future scenarios considered,
while c2 is going to suffer a minimum loss of a 50% of its present basic own
funds in a 0.5% of the future scenarios considered. Interpreted in that way,

2 As it is shown with this expression, the core of the European insurance regulation uses
what we have called an ‘asset side’ perspective when talking about risk quantification.



c2 seems highly riskier than c1. And this would properly be reflected us-
ing expression (1.10), because their respective solvency capital requirements
will be SCR(c1) = 5 m.u. and SCR(c2) = 0.5 m.u. which, in terms of their
present basic own funds, represent reasonable risk proportions. But note
that if misunderstandings are in place and expression (1.11) is used instead
of expression (1.10) to compute their SCR, then SCR(c1) = 5+ 100 = 105

m.u. and SCR(c2) = 0.5+1 = 1.5 m.u. are obtained. These figures are far
from representing neither the risk faced by the companies nor their relative
riskiness.

Somebody could think that the previous examples overweight the impor-
tance of items on the right hand side of Figure 1.2. These examples have
been chosen because they correspond to common risk quantification issues
found in practice and researchers must bear them in mind. Nevertheless, it
is also our intention to aware that practitioners should spend some time on
thinking of questions related to the left hand side of that Figure, this is, on
theoretical aspects related to apractical risk quantification in a regular basis.
Some of these questions are listed below, although it is neither an extensive
list nor a prioritized one:

• Have several risk measures been considered before the final selection is
made?

• Do these risk measures satisfy properties that we consider necessary?
• Are these risk measures or their confidence levels regulatory driven?
• Have we an idea about the implicit risk attitude behind using those par-
ticular risk measures?

• What are we looking for as the final result of this risk quantification pro-
cess?

• Arewe aware about our capability (in terms of time, resources and knowl-
edge) to transform ideas into numbers? In other words, for every consid-
ered risk measure and every target random variable, do we know how to
move from the theoretical side to the practical side?

• Have we properly defined our target random variable?
• Does the target randomvariable dependonother randomvariables easier
to measure or identify?

• How precise do we need to be in our estimations?



Hopefully, useful ideas about how to answer some of these questionmay be
found in this book or in the references therein. We would like to close this
chapterwith some last remarks. As it has already been said,main references
used to build this chapter are books Denuit et al. [2005] and Rüschendorf
[2013]. Note that the CTE riskmeasure introduced inDefinition 1.10 is called
Expected Shortfall (ES) in McNeil et al. [2005] and, therefore, there is also
a difference with the Definition 1.12 of ES provided in this book. Moreover,
names for several riskmeasures in Section 1.1 do notmatch the ones used for
equivalent riskmeasures in Rüschendorf [2013]. This remarkmakes evident
that there is yet no common consensus in risk measures naming.
For an interestingway to study basic riskmeasures butwithout a parametric
model assumption, the work by Alemany et al. [2013] shows how to imple-
ment kernel estimation of the probability density function and how to de-
rive the risk measure from there. Kernel estimation is specially useful when
the number of observations is large. Bolancé et al. [2003]; Buch-Larsen et al.
[2005]; Bolancé et al. [2008] explain how to address heavy-tailed or skewed
distributions. The interested reader can find several contributions using
othermodels andnon-parametric approaches inBolance etal. [2008];Guillen
et al. [2011, 2013]. Bolancé et al. [2012, 2013] provide data-driven examples
with R and SAS code in the context of operational risk problems. Multivari-
ate risk quantification is addressed by Bolancé et al. [2014]; Bahraoui et al.
[2014].
With respect to a deeper analysis of issues of Solvency II for practitioners
and regarding theoretical aspects behindCornish-Fisher expansions, the in-
terested reader is referred to Sandström [2011]. Last but not least, one topic
not covered by this book that has to be taken into account in risk quantifi-
cation is the model risk. Aggarwal et al. [2016] provides a wide variety of
approaches to deal with this real challenge and may be an interesting de-
parture point to anyone interested in this topic.

1.3 Exercises
1. Consider the following empirical distribution

13, 15, 26, 26, 26, 37, 37, 100

Determine the VaR85%(X ) and TVaR85%(X ).

2. Consider the following distribution function F (x) =
x2

9
for 0 < x … 3.

Find the VaR85%(X ) and TVaR85%(X ).



3. Given that

VaR90%(X ) = 50, ES90%(X ) = 13 and CVaR90%(X ) = 260.

a) Calculate TVaR90%(X ), SX (VaR90%(X )) and CTE90%(X ).
b) Discuss if it is possible that loss X would be an absolutely continuous

random variable.

4. Show that the TVaR of a random variable X distributed by the Normal

distribution N (µ,æ2) is equal to TVaRÆ = µ+æ ·
¡

°
©

°1(Æ)
¢

1°Æ
, where

¡ and©
°1 stand for the standard Normal pdf and quantile function, re-

spectively.

a) Demonstrate that theproperties ofTranslation invariance, Positiveho-
mogeneity and Strictness are satisfied in this case.

b) Repeat the exercise for the CVaRÆ.

5. Analyze if the properties of Translation invariance, Positive homogeneity
and Strictness are satisfied by the VaR and TVaR when:

a) the random variable X is distributed by the Lognormal distribution
L N (µ,æ2).

b) the random variable X is distributed by the Generalized Pareto dis-
tribution GP D(0,æ).





2 Data on losses for risk
evaluation

Historical loss data is of key importance for risk management and model-
ing of losses. This statistical information must be carefully analyzed and
understood in order to extract the best possible knowledge. Therefore, it is
important to collect details on the data sources, such as framework, time of
collection, definitions, exceptions and so on.
Insurance companies have always been collecting data for riskmanagement
purposes, but in the past information was rather aggregate whereas nowa-
days, there is much more detailed knowledge on individual policy holders,
events, claims handling and loss compensations. Nevertheless, data quality
still remains a challenge for many insurers and the lack of robustness of sta-
tistical informationmay sometimes pose huge problems to the undertaking
of ambitious risk management initiatives.
This chapter presents examples of loss data,whichareused throughout some
parts of this book. They are intended to be helpful to understand concepts.
They do not intend to represent any particular insurance company.
Thereafter, we continuebydiscussing several characteristics of the loss sever-
ity information that has been specially created for this book and their aggre-
gationbymeans of their sum. This analysis involves statistical description in
this chapter and, in the following chapters, we address the implementation
of risk measurement and capital allocation. Having a good understanding
of amounts of losses is important not only for modeling purposes, but also
to identify effective management and mitigating actions.

2.1 An example on three dimensional data
Historical loss information is the main source of knowledge for the specific
experience and history of the organization. Sources of information on loss



events that occurred in comparable companies can sometimes be helpful to
understand their positionwith respect to exposure and their corresponding
risk. It is sometimes also useful to compare lines of business or business
units within a single company.
Throughout most chapters of this book the same data set will be examined.
The data consist of three sources of loss and the sum of them. Wemake use
of an artificial sample to provide with a guided path to implementation. Be-
cause of the loss amounts have been artificially generated they do not have
monetary dimension other than ‘monetary units’. Nevertheless, in several
parts of the book we consider that these loss amounts are the cost of claims
in thousands of euros for three types of damage, let us say property damage,
bodily injuries andmedical expenses. Table 2.1 and Table 2.2 show some sta-
tistical characteristics of the sample, and Figure 2.1 presents a visual view of
the three variables and their sum.
There are some interesting features about the example data that are pre-
sented in this chapter. All the variables are asymmetric with a few large
values and many small values. The maximum values for both X1 and X2

are much higher than the average. The minimum values are always strictly
positive. We also note that the minimum of the sum is not the sum of the
minimum and this is due to the fact that the data are paired, and the min-
imum of each marginal does not necessarily correspond to the minimum
observed value of the other marginal.
When comparing the data on Figure 2.1, we note that the size of the losses
and the shape of the histograms are similar between sources X1 and X2 but
not between them and source X3. Additionally, we cannot see the depen-
dence patterns between the sources unless we look into the bivariate plots.
The joint behavior is presented in Figure 2.2.

Data Mean Median Std. Deviation Maximum
X1 0.707 0.033 3.778 49.812

X2 0.450 0.033 3.369 52.129

X3 0.268 0.105 0.361 1.775

X1 +X2 +X3 1.426 0.221 5.6797 103.716

There are 350 losses for each variable



Data Minimum Variance Skewness Kurtosis
X1 0.001 14.273 8.875 94.353

X2 0.001 11.350 12.401 171.107

X3 0.003 0.130 2.119 4.296

X1 +X2 +X3 0.026 46.199 11.354 153.368

There are 350 losses for each variable

X1 X2 X3

2.2 Basic graphical analysis of the loss severity
distributions

Wecanmeasure risk becausedifferent outcomesoccurwithdifferent proba-
bilities. Loss Distribution Analysis (LDA) is a method used to calculate and
evaluate the risk that is induced by losses that occur randomly. Historical
data can be helpful to predict future behavior, and so it is important to ana-
lyze its density shape.
Modeling the severity of losses usually involves analysis of parametric dis-
tributions such as the Normal distribution and all other distributions that



X1 X2 X3

have been mentioned in the previous chapter. However, it is very difficult
to find a parametric distribution that fits all sizes of loss: (i) low severities
occur frequently, (ii) high severities occur much less often, and (iii) catas-
trophic losses only occur very rarely. They are usually referred as rare losses
or rare events.
This section presents the analysis of one parametric distribution that can
be used to fit the behavior observed in the sample data. Some other basic
parametric distributions for severity not considered here were presented in
the previous chapter.
We have estimated the Normal densities using maximum likelihood in all
variables, X1, X2, X3 and the sum of the three. Some results are shown in
Figures 2.3 to 2.5. In there, we present the parametric Normal pdf estimate
and the original data, the former appearing as dashed lines. On the left, the
plots show the lower values of the observed sample and on the right the
higher observed values are presented. Low and high values are split in order
to see the parts of the densities where data are scarce. Only a simple para-
metric density estimate is presented in this chapter, but practitioners often
use more sophisticated distributions. The empirical distribution function
obtained for the sample data is also a possibility, and in this case it is not
necessary to fit any distribution in particular.
Figures 2.3 to 2.5 show the maximum likelihood estimation of the Normal
densities for the data. The right hand side tail is presented. The density
may still be too low for large losses.



X1

X2

X3

2.3 Quantile estimation
Quantile estimation for the parametric distribution presented in the previ-
ous section, other distributions or the empirical distribution functions can
be performed using the inverse of the distribution function evaluated at the
maximum likelihood parameter estimates. This is one of themost basic risk
assessment tools that will be used throughout this book and, if one think
about Figure 1.2, this is the sort of tools necessary to move from theory to
practice.

2.4 Examples
Illustrative examples of quantitative analysis are developed in the program-
ming language R. The dataset used in this Chapter (exampleERM) is avail-



able at http://www.ub.edu/rfa/ERM.

1. Download and save the data in an appropriate directory. Prepare the
data:
example<° read.table(”exampleERM.txt”,header=TRUE)
riskloss<° as.matrix(example)

2. Descriptive analysis in R. The number of observations and a set of de-
scriptives can be computed as follows:
n<° nrow(riskloss)
summary(riskloss)
E.di<° colMeans(val.di)
Cov.di<° var(val.di)

library(moments)
skewness(riskloss[ ,”X1”])
kurtosis(riskloss[ ,”X1”])

3. Graphical analysis in R. Compute the histogram of X1 and scatterplots as
follows:
hist(riskloss[,”X1”], 20)
lines(density(riskloss[,”X1”]),lwd=3)

plot(riskloss[ ,”X1”], type=”l”, ylim=c(0,10))
lines(riskloss[ ,”X2”], lty=2)
lines(riskloss[ ,”X3”], lty=3)

4. Compute the VaR90%(X 1) and CTE90%(X 1)

risk1<° riskloss[,1]
Erisk1<°mean(risk1)
Vrisk1<° var(risk1)

VaR90<° quantile(risk1,0.90)
CTE90<°mean(risk1[risk1>VaR90])



3 A family of distortion risk
measures

Value at Risk (VaR) has been adopted as a standard tool to assess the risk and
to calculate capital requirements in the insurance industry. As it has been
shown in Chapter 1, VaR at level Æ is the Æ-quantile of a random variable X

(which is often called loss). Recalling Definition 1.8

VaRÆ(X ) = inf{x | FX (x)  Æ} = F°1
X (Æ) ,

whereFX is the cumulativedistribution function (cdf) of X andÆ is the con-
fidence or the tolerance level 0 …Æ… 1. However, VaR is known to present
a number of pitfalls when applied in practice. A disadvantage when using
VaR in the insurance or financial contexts is that the capital requirements
for catastrophic losses basedon thismeasure canbeunderestimated, i.e. the
necessary reserves in adverse scenariosmaywell be less than they should be.
The underestimation of capital requirements may be aggravated when fat-
tailed losses are incorrectly modeled by mild-tailed distributions, such as
the Normal distribution. There are attempts to overcome this kind ofmodel
risk when using VaR or, at least, to quantify the risk related to themodelling
[Alexander and Sarabia, 2012]. But, in addition, a second drawback is that
the VaR may fail the subadditivity property. As it has been shown in Ta-
ble 1.2 of Chapter 1, a risk measure is subadditive when the aggregated risk
is less than or equal to the sum of individual risks. Subadditvity is an ap-
pealing property when aggregating risks in order to preserve the benefits of
diversification. VaR is subadditive for elliptically distributed losses [McNeil
et al., 2005]. However, the subadditivity of VaR is not granted, as indicated
in Artzner et al. [1999] and Acerbi and Tasche [2002].
Remember now Definition 1.9 from Chapter 1. In there Tail Value at Risk
(TVaR) has been defined as

TVaRÆ(X ) =
1

1°Æ

Z1

Æ
VaR∏(X )d∏.



95% 95%

VaR95% TVaR95%

Empirical 47.6 125.5

Normal 87.0 105.9

Lognormal 48.9 119.1

* Cost of claims in thousands of Euro

Roughly speaking, the TVaR is understood as themathematical expectation
beyond VaR. The TVaR risk measure does not suffer the two drawbacks dis-
cussed above for VaR and, as such, would appear to be amore powerfulmea-
sure for assessing the actual risks faced by insurance companies and finan-
cial institutions. However, TVaRhas not beenwidely acceptedbypractition-
ers in the financial and insurance industry. VaR is currently the riskmeasure
contemplated in the European solvency regulation for the insurance sector
(Solvency II), and this is also the case of solvency regulation for the bank-
ing sector (Basel accords1). The TVaR measures average losses in the most
adverse cases rather than just the minimum adverse loss, as the VaR does.
Therefore, capital reserves basedon theTVaRhave tobe considerably higher
than those based on VaR and significant differences in the size of capital re-
serves can be obtained depending on which risk measure is adopted.
An illustration of the risk value obtained for the VaR95% and TVaR95% con-
sidering three alternative distributions is provided in Table 3.1. Note that
huge differences in risk amounts can be obtained.
This chapter is motivated by the following question. Can a risk measure be
devised that would provide a risk assessment that lies somewhere between
those offered by the VaR and the TVaR? To this end, a new family of risk
measures (GlueVaR) is proposed, which forms part of a wider class referred
to as distortion risk measures.
GlueVaR risk measures are defined by means of a four-parameter function.
By calibrating the parameters, GlueVaR risk measures can be matched to a
wide variety of contexts. Specifically, once a confidence level has been fixed,
the new family contains risk measures that lie between those of VaR and

1 Although it seems that changing VaR by TVaR with a lower confidence level is something
that is really under consideration for regulatory capital requirements in the Banking sec-
tor.



TVaR and which may adequately reflect the risk of mild-tailed distributed
losses without having to resort to VaR. In certain situations, however, even
more conservative risk measures than TVaR may be preferred. It is shown
that these highly conservative risk measures can also be defined by means
of the GlueVaR family. In order to preserve the benefits of diversification
when aggregating risks, subadditivity is an appealing property of a riskmea-
sure. As it has been shown in Chapter 1, the subadditivity property ensures
that the risk measure value of the aggregated risk is lower than or equal to
the sum of individual risk measure values. In this chapter the subadditivity
property of GlueVaR risk measures is investigated.

3.1 Overview on risk measures
Two main groups of axiom-based risk measures are coherent risk measures,
as stated by Artzner et al. [1999], and distortion riskmeasures, as introduced
by Wang [1996]. Concavity of the distortion function is the key element to
define risk measures that belong to both groups [Wang and Dhaene, 1998].
Suggestions on new desirable properties for distortion risk measures are
proposed in Balbás et al. [2009], while generalizations of this kind of risk
measures can be found, among others, in Hürlimann [2006] and Wu and
Zhou [2006]. As shown in Goovaerts et al. [2012], it is possible to link dis-
tortion risk measures with other interesting families of risk measures devel-
oped in the literature.
Theaxiomatic setting for riskmeasureshas extensively beendeveloped since
seminal papers oncoherent riskmeasures anddistortion riskmeasures. Each
set of axioms for risk measures corresponds to a particular behavior of deci-
sionmakers under risk, as it has been shown, for instance, in Bleichrodt and
Eeckhoudt [2006] and Denuit et al. [2006]. Most often, articles on axiom-
based risk measurement present the link to a theoretical foundation of hu-
man behavior explicitly. For example, Wang [1996] shows the connection
between distortion risk measures and Yaari’s dual theory of choice under
risk; Goovaerts et al. [2010] investigate the additivity of risk measures in
Quiggin’s rank-dependentutility theory; andKaluszka andKrzeszowiec [2012]
introduce the generalized Choquet integral premium principle and relate it
to Kahneman and Tversky’s cumulative prospect theory.
Many articles have appeared in recent years that pay attention to risk mea-
sures based on distortion functions or on generalizations of the quantiles.
An example of the first group is Zhu and Li [2012]. Bellini and Gianin [2012]
andBellini etal. [2014] fit to secondgroup. An interplaybetweenbothgroups



is found in Dhaene et al. [2012a] and Goovaerts et al. [2012].

3.2 Distortion risk measures
Distortion risk measures were introduced by Wang [Wang, 1995, 1996] and
they are closely related to the distortion expectation theory [Yaari, 1987]. A
review on how risk measures can be interpreted from several perspectives
is provided in Tsanakas andDesli [2005], and a clarifying explanation of the
relationship between distortion risk measures and distortion expectation
theory is included. A detailed literature review of distortion risk measures
is available in [Denuit et al., 2005; Balbás et al., 2009]. There are two key
elements to define a distortion risk measure: first, the associated distortion
function; and, second, the concept of the Choquet [Choquet, 1954] Integral.
The distortion function, Choquet Integral and the distortion risk measure
concepts can be defined as follows:

• Distortion function. Let g : [0,1] ! [0,1] be a function such that g (0) =

0, g (1) = 1 and g is injective and non-decreasing. Then g is called a dis-
tortion function.

• Choquet Integral. The (asymmetric) Choquet Integral with respect to
a set function µ of a µ-measurable function X : ≠ ! R is denoted asZ

X dµ and is equal to
Z

X dµ=

Z0

°1

£
Sµ,X (x)°µ(≠)

§
d x +

Z+1

0
Sµ,X (x)d x,

if µ(≠) <1, where Sµ,X (x) = µ({X > x}) denotes the survival function
of X with respect to µ. Note that≠ denotes a set, which in financial and
insurance applications is the sample space of a probability space. A set
functionµ in this context is a function defined from 2≠ (the set of all sub-
sets of≠) toR. Aµ-measurable function X is, widely speaking, a function
defined on ≠ such that expressions like µ({X > x}) or µ({X … x}) make
sense. See Denneberg [1994] for more details.

• Distortion risk measure. Let g be a distortion function. Consider a ran-
dom variable X and its survival function SX (x) = P (X > x). Then, func-
tion Ωg defined by Ωg (X ) =

R0
°1

£
g (SX (x))°1

§
d x +

R+1
0 g (SX (x))d x

is called a distortion risk measure.

From the previous definitions, it is straightforward to see that for any ran-
dom variable X , Ωg (X ) is the Choquet Integral of X with respect to the set



function µ= g ±P , where P is the probability function associated with the
probability space in which X is defined.
Themathematical expectation is a distortion riskmeasurewhose distortion
function is the identity function [Denuit et al., 2005], this is, Ωid(X ) = E(X ).
Therefore, a straightforward way to interpret a distortion risk measure is
as follows: first, the survival function of the random variable is distorted
(g ±SX ); second, themathematical expectation of the random variable with
respect to this distorted probability is computed. From a theoretical point
of view, note that this interpretation fits the discussion that risk may be de-
fined as an expected value in many situations [Aven, 2012].
VaR and TVaRmeasures are in fact distortion risk measures. The associated
distortion functions of these risk measures are shown in Table 3.2.

Risk measure Distortion function

VaR √Æ(u) =

8
><
>:

0 if 0 … u < 1°Æ

1 if 1°Æ… u … 1,

TVaR ∞Æ(u) =

8
><
>:

u

1°Æ
if 0 … u < 1°Æ

1 if 1°Æ… u … 1

For a confidence level Æ 2 (0,1).

Based on the distortion functions shown in Table 3.2, once Æ is fixed it can
be proved that VaRÆ(X ) … TVaRÆ(X )for any random variable X .

Remark 3.1. Let g and g§ be two distortion functions and let Ωg and Ωg§

be their respective distortion risk measures. Suppose that g (u) … g§(u) for
all u 2 [0,1]. Then Ωg (X ) … Ωg§(X ) for any random variable X .
This result follows immediately from the definition of distortion risk mea-
sures, because

Ωg (X ) =

Z0

°1
[g (SX (x))°1]d x +

Z+1

0
g (SX (x))d x

…
Z0

°1
[g§(SX (x))°1]d x +

Z+1

0
g§(SX (x))d x

= Ωg§(X ).



Many articles have recently examined risk measures based on either distor-
tion functions [Zhu and Li, 2012; Belles-Sampera et al., 2013a, 2014a, 2016b;
Guillen et al., 2016; Tsanakas and Millossovich, 2016] or generalizations of
the quantiles [Bellini and Gianin, 2012; Bellini et al., 2014]. The interplay be-
tweenbothof these twogroupsof riskmeasureshasbeenexamined [Dhaene
et al., 2012a; Goovaerts et al., 2012].

3.3 A new family of risk measures: GlueVaR
A new family of distortion risk measures, named GlueVaR, is here defined.
Originally, we introduced this family in Belles-Sampera et al. [2014a]. The
main reason for defining these GlueVaR risk measures is a response to the
concerns expressed by risk managers regarding the choice of risk measures
in the case of regulatory capital requirements. However, as it has been al-
ready mentioned, an axiomatic approach to define or represent risk mea-
sures is more frequent in the literature [Artzner et al., 1999; Föllmer and
Schied, 2002; Frittelli and Rosazza Gianin, 2002; Denuit et al., 2006; Song
andYan, 2009;Cerreia-Vioglio etal., 2011; Ekeland etal., 2012;Goovaerts etal.,
2012; Grechuk et al., 2012].
Any GlueVaR riskmeasure can be described bymeans of its distortion func-
tion. Given a confidence level Æ, the distortion function for GlueVaR is:

∑
h1,h2

Ø,Æ
(u) =

8
>>>><
>>>>:

h1

1°Ø
·u if 0 … u < 1°Ø

h1 +
h2 °h1

Ø°Æ
· [u ° (1°Ø)] if 1°Ø… u < 1°Æ

1 if 1°Æ… u … 1

(3.1)

where Æ, Ø 2 [0,1] such that Æ… Ø, h1 2 [0,1] and h2 2 [h1,1]. Parameter
Ø is the additional confidence level besides Æ. The shape of the GlueVaR
distortion function is determined by the distorted survival probabilities h1

and h2 at levels 1°Ø and 1°Æ, respectively. We call parameters h1 and h2

the heights of the distortion function.
A wide range of risk measures may be defined under this framework. Note
thatVaRÆ andTVaRÆ areparticular cases of this new family of riskmeasures.
Namely, VaRÆ and TVaRÆ correspond to distortion functions∑0,0

Æ,Æ and∑1,1
Æ,Æ,

respectively. By establishing suitable conditions on the heights h1 and h2,
the GlueVaR family is very flexible. For example, risk managers might like
to select Æ, Ø, h1 and h2 so that

VaRÆ(X ) … GlueVaR
h1,h2

Ø,Æ
(X ) … TVaRÆ(X ).



This can be achieved by selecting a set of parameters for their associated
distortion functions to ensure that √Æ(u) … ∑

h1,h2

Ø,Æ
(u) … ∞Æ(u) for any u 2

[0,1], following remark 3.1, i.e. by forcing conditionh1 …
1°Ø

1°Æ
. An example

of such a case is shown in Figure 3.1 (left-hand side).
The GlueVaR family also allows us to define a highly conservative risk mea-
sure GlueVaRh1,h2

Ø,Æ
, such that

TVaRÆ(X ) … GlueVaR
h1,h2

Ø,Æ
(X ) … TVaRØ(X )

for any X and that the associated distortion function ∑
h1,h2

Ø,Æ
is concave in

[0,1]. In this case, 1°Ø

1°Æ
… h1 and h2 = 1 must be fulfilled, as occurs in the

example shown in Figure 3.1 (right-hand side).

[0, 1°α) α(X ) … h1,h2

β,α
(X ) …

α(X ) X

[0, 1] α(X ) …
h1,h2

β,α
(X ) … β(X ) X

3.4 Linear combination of risk measures
Given a randomvariable X and for fixed tolerance levelsÆ andØ so thatÆ<

Ø, GlueVaRh1,h2

Ø,Æ
(X ) can be expressed as a linear combination of TVaRØ(X ),



TVaRÆ(X ) and VaRÆ(X ). This result allows us to translate the graphical-
based construction of GlueVaR riskmeasures into an algebraic construction
based on standard risk measures.
If the following notation is used,

8
>>>><
>>>>:

!1 = h1 °
(h2 °h1) · (1°Ø)

Ø°Æ

!2 =
h2 °h1

Ø°Æ
· (1°Æ)

!3 = 1°!1 °!2 = 1°h2,

(3.2)

then the distortion function ∑
h1,h2

Ø,Æ
(u) in (3.1) may be rewritten as (details

can be found in Section A.1 of the Appendix):

∑
h1,h2

Ø,Æ
(u) =!1 ·∞Ø(u)+!2 ·∞Æ(u)+!3 ·√Æ(u) (3.3)

where ∞Ø, ∞Æ, √Æ are the distortion functions of TVaR at confidence lev-
els Ø and Æ and of VaR at confidence level Æ, respectively (see Table 3.2).
Therefore GlueVaR is a risk measure that can be expressed as a linear com-
bination of three risk measures: TVaR at confidence levels Ø andÆ and VaR
at confidence level Æ,

GlueVaR
h1,h2

Ø,Æ
(X ) =!1 ·TVaRØ(X )+!2 ·TVaRÆ(X )+!3 ·VaRÆ(X ). (3.4)

Given this relationship, an alternative notation for GlueVaRh1,h2

Ø,Æ
(X ) and its

related distortion function can be used. The notation GlueVaR!1,!2

Ø,Æ
(X ) or

∑
!1,!2

Ø,Æ
(u) may, on occasions, be preferred to that based on heights h1 and

h2. The bijective relationship between pairs (h1,h2) and (!1,!2) is also
shown in Section A.2 of the Appendix.
Specifically, in order to simplify the statement of Proposition 4.1, the expres-
sion of ∑!1,!2

Ø,Æ
(u) is

∑
!1,!2

Ø,Æ
(u) =

8
>>><
>>>:

∑
!1

1°Ø
+

!2

1°Æ

∏
·u if 0 … u < 1°Ø

!1 +
!2

1°Æ
·u if 1°Ø… u < 1°Æ

1 if 1°Æ… u … 1

(3.5)

An interesting interpretation of (3.4) in the context of decision making and
risk management is that GlueVaR risk measures arise as a linear combina-
tion of three possible scenarios. So, two levels of severity tolerance can be



fixed, namely Æ and Ø, with Æ < Ø. Then, the risk can be measured in the
highly conservative scenario with TVaR at level Ø; in the conservative sce-
nario with TVaR at levelÆ; and in the less conservative scenario with VaR at
level Æ.
Each combination of these risk scenarios reflects a concrete risk attitude.
Therefore, it can be said that the combination of these risk scenarios in this
context is something that is directly identified by an explicit GlueVaR risk
measure. To some extent, these risk attitudes could be related to risk ap-
petite [Aven, 2013].
From the practitioner’s point of view, four parameters must be fixed in or-
der to define the GlueVaR risk measure. The Æ and Ø values correspond to
the confidence levels used for bad and very bad scenarios, respectively. For
instance, Æ = 95% and Ø = 99.5% could be selected, which are equivalent
to one bad event every twenty years or one bad event every two hundred,
respectively. The other two parameters are directly related to the weights
given to these scenarios. For instance, it could be said that the three com-
ponents of GlueVaR in expression (3.4) are equally important. This would
imply !1 = !2 = !3 = 1/3, so the corresponding h1 and h2 parameters
could be found. When!1 =!2 =!3 = 1/3 andÆ= 95%, Ø= 99.5%, these
parameters are h1 = 11/30 and h2 = 2/3.

3.5 Subadditivity
In a seminal article [Artzner et al., 1999] the following set of axioms that a
risk measure should satisfy was established: positive homogeneity, trans-
lation invariance, monotonicity and subadditivity. Authors referred to such
riskmeasures as coherent riskmeasures. Distortion riskmeasures always sat-
isfy the first three properties, but subadditivity is only guaranteed when the
distortion function is concave [Denneberg, 1994; Wang and Dhaene, 1998;
Wirch and Hardy, 2002]. Therefore, VaR, unlike TVaR, is not coherent. In
some situations, coherence of risk measures is a requirement [Cox, 2012]
but, nonetheless, some criticisms can be found [Dhaene et al., 2008]. Addi-
tional properties for distortion risk measures are provided in [Jiang, 2008;
Balbás et al., 2009], which may complement the list of properties for risk
measures shown in Tables 1.2 and 1.4 of Chapter 1. In this section we focus
on the subadditivity property.
In order to preserve the benefits of diversification when aggregating risks,
subadditivity is an appealing property of a risk measure. As it has been
shown in Chapter 1, the subadditivity property ensures that the risk mea-



sure value of the aggregated risk is lower than or equal to the sum of indi-
vidual risk measure values. For distortion risk measures, subadditivity may
be defined as follows.

Definition 3.1. Given a confidence levelÆ 2 [0,1], a distortion riskmeasure
Ωg is subadditive if, for any pair X , Y ,

Z
(X +Y )d(g ±P ) …

Z
X d(g ±P )+

Z
Y d(g ±P ),

where the integral symbol stands for Choquet Integrals with respect to the
set function g ±P .

The Choquet integral condition used in the definition can be rewritten, in
terms of survival functions and Lebesgue integrals, as

Z+1

0
g (SX+Y (z))d z …

Z+1

0
g (SX (x))d x +

Z+1

0
g

°
SY (y)

¢
d y .

As shown, GlueVaR risk measures may be interpreted as a linear combina-
tion of VaR and TVaR risk measures. Therefore, a GlueVaR risk measure is
coherent when the weight assigned to VaR is zero and the weights of the
TVaRÆ and TVaRØ are non-negative. In terms of the parameters of the dis-
tortion function, GlueVaR is subadditive (and thus coherent) if h2 = 1 and
1°Ø

1°Æ
… h1. More generally, any property satisfied by TVaR but not by VaR

will be inherited by GlueVaR if!1   0 and!3 = 0 in expression (3.2).
Subaddtitivity in the whole domain is a strong condition. When dealing
with fat tail losses (i.e. low-frequency and large-loss events), risk managers
are especially interested in the tail region. Fat right-tails have been exten-
sively studied in insurance and finance [Wang, 1998; Embrechts etal., 2009a,b;
Degen et al., 2010; Nam et al., 2011; Chen et al., 2012] and the behavior of ag-
gregate risks in the tail region has received huge attention by researchers in
last years [Cheung, 2009; Song and Yan, 2009; Hua and Joe, 2012]. To the
best of our knowledge, however, previous studies of the subadditivity of risk
measures in the tail region are scarce [Danielsson et al., 2005; Hua and Joe,
2012].

3.6 Concavity of the distortion function
The subadditivity characteristic in the whole domain is in general not sat-
isfied by GlueVaR risk measures. It was showed that GlueVaR risk measures



can be interpreted as a linear combination of a highly conservative scenario,
a conservative scenario and a less conservative scenario. We argued that a
particular risk attitude is reflected depending on how these scenarios are
weighted.
Given Æ and Ø, the other two parameters are directly related to the weights
given to these scenarios. The shaded areas in Figure 3.2 delimit feasible
weights (!1,!2) for GlueVaR!1,!2

Ø,Æ
. For instance, it could be said that the

three components ofGlueVaR in expression (3.4) are equally important, that
is,!1 =!2 =!3 = 1/3. Thepoint (1/3,1/3) in Figure 3.2 corresponds to the
balanced risk attitude on the part of risk managers when faced by the three
components shown in (3.4). The corresponding distortion function ∑

!1,!2

Ø,Æ
is concave on [0,1°Æ) in the lightly shaded area. Yet, the distortion func-
tion is not concave on [0,1°Æ) in the darkly shaded area. The distortion
function is concave in [0,1] in the boldest continuous segment and, thus,
the associated GlueVaR risk measure is subadditive.
Note that any pair of weights (!1,!2) on the boldest line in Figure 3.2 leads
to !3 = 0. This means that a zero weight is allocated to the least conserva-
tive scenario, i.e. the one associated with the VaRÆ(X ). This is indicative
of the decision makers’ conservative approach. Nonetheless, differences in
just how restrictive this conservative attitude is can be found among the
weights lying on this line: the nearer to (!1,!2) =

µ
Ø°1

Ø°Æ
,

1°Æ

Ø°Æ

∂
, the less

restrictive it is, while the nearer to (!1,!2) = (1,0), the more conservative
it is.
If !1 < 0, risk managers are optimistic regarding the impossibility of the
occurrence of the worst case scenario, and so attach a negative weight to it.

3.7 Example of risk measurement with GlueVaR
Data for the cost of claims involving three type of damages described in
the previous chapter are used to illustrate the application of GlueVaR risk
measures in risk measurement. The sample consists of n = 350 observa-
tions of the cost of individual claims in thousands of euros. In Table 3.3 a
set of quantile-based risk measures including three different GlueVaR are
displayed. The table displays the corresponding risk figures for the cost of
claims for property damage (X1), the cost of claims of bodily injuries (X2),
the cost of claims of medical expenses (X3) and the aggregate cost of claims
(X1 +X2 +X3).
The selection of the three GlueVaR risk measures included in Table 3.3 de-



α β (ω1,ω2)
ω1,ω2

β,α

serves further explanation. The two confidence levels considered are Æ =

95% andØ= 99.5%. The heights (h1,h2) are (11/30,2/3), (0,1) and (1/20,

1/8) respectively. Different attitudes in front of the three scenarios of risk as-
sessment are represented. GlueVaR11/30,2/3

99.5%,95%
corresponds to a balanced at-

titude because the three quantile-based risk measures TVaR99.5%, TVaR95%

and VaR95% are equally important, i.e. !1 =!2 =!3 = 1/3. A different atti-
tude is symbolizedbyGlueVaR0,1

99.5%,95%
with associatedweights!1 =°1/9,

!2 = 10/9 and !3 = 0. It corresponds to a scenario in which the manager
overweights TVaR95% and allocates the lowest feasible weight to TVaR99.5%

given that a zero weight is allocated to VaR95%. Finally, GlueVaR1/20,1/8
99.5%,95%

reflects a risk measurement attitude just a bit more conservative than the
one represented by using VaR95%, assigning low weights to TVaR99.5% and
TVaR95% (!1 = 1/24 and!2 = 1/12).
As it is shown in Table 3.3, GlueVaR11/30,2/3

99.5%,95%
is more conservative than the

other two selected GlueVaR risk measures. This result can be generalized to
all situationsbecause the associateddistortion functionofGlueVaR11/30,2/3

99.5%,95%

is greater than the other two distortion functions in thewhole domain. Note
that it is also observed in Table 3.3 that

GlueVaR1/20,1/8
99.5%,95%

… GlueVaR0,1
99.5%,95%

.

It is only valid to these data and an ordering between them can not be gen-
eralized. However, a relationship between these twoGlueVaR riskmeasures



X1 X2 X3 X1 +X2 +X3 Difference(§)

(a) (b) (c) (d) (a+b+c-d)

VaR95% 2.5 0.6 1.1 5.9 °1.7

TVaR95% 12.5 8.0 1.3 19.7 2.1

TVaR99.5% 40.8 42.1 1.8 81.1 3.6

GlueVaR11/30,2/3
99.5%,95%

18.6 16.9 1.4 35.6 1.9

GlueVaR1/20,1/8
99.5%,95%

4.9 2.9 1.1 10.2 °1.3

GlueVaR0,1
99.5%,95%

9.4 4.2 1.2 12.9 1.9

(§) Benefit of diversification.

andquantile-based riskmeasures canbeestablished. It has been shown that

VaRÆ … GlueVaR
h1,h2

Ø,Æ
… TVaRÆ if h1 …

1°Ø

1°Æ
.

That means,

VaR95% … GlueVaR0,1
99.5%,95%

… TVaR95%, because 0 … 0.1, and
VaR95% … GlueVaR1/20,1/8

99.5%,95%
… TVaR95%, because 0.05 … 0.1.

Although results in Table 3.3 may suggest that

TVaR95% … GlueVaR11/30,2/3
99.5%,95%

… TVaR99.5%,

this can not be asserted in general because conditions on the parameters of
the GlueVaR risk measure to satisfy

TVaRÆ … GlueVaR
h1,h2

Ø,Æ
… TVaRØ

are 1°Ø

1°Æ
… h1 and h2 = 1.

In this case it holds that 0.1 … 0.37 but h2 6= 1.



Let us analyze the subadditivity property. Like the VaR95%, note that the
GlueVaR1/20,1/8

99.5%,95%
fails to be subadditive for X1, X2 and X3 since 4.9+2.9+

1.1 < 10.2. Let us emphasize that these three GlueVaR risk measures have
not associated a concave distortion function in the whole domain, so the
subadditivity property can not be guaranteed for any of them. The fact that
risk values are subadditive for the GlueVaR11/30,2/3

99.5%,95%
and GlueVaR0,1

99.5%,95%

is a characteristic attributable to this data but cannot be generalized to all
contexts. In the case of the GlueVaR11/30,2/3

99.5%,95%
and GlueVaR1/20,1/8

99.5%,95%
, the

associated distortion function is concave in [0,1°Æ).

3.8 Exercises
1. Consider the following empirical distribution

13, 15, 26, 26, 26, 37, 37, 100

Determine the GlueVaR11/30,2/3
85%,50%

and GlueVaR0,1
85%,50%

.
Hint: The heights (h1,h2) equal to (11/30,2/3) and (0,1) correspond to
(!1 = 1/3, !2 = 1/3) and (!1 =°1/9, !2 = 10/9), respectively.

2. Consider the following distribution function F (x) = x2

9
for 0 < x … 3.

Find the GlueVaR1/20,1/8
99.5%,95%

.
Hint: The heights (h1,h2) equal to (1/20,1/8) correspond to!1 = 1/24

and!2 = 1/12.

3. (Exemple 6.7 in [McNeil et al., 2005]) Consider a defaultable corporate
bond. The default probability is equal to 2%. The current price of the
bond is 100. If there is no default, a bond pays in t +1 an amount of 105,
otherwise there is no payment. Hence L the loss of bond is equal to 100

when the bond defaults and to °5 otherwise. Compute the VaR95% of
the following two portfolios:

• Portfolio A consists of 100 units of this bond.
• Portfolio B consists of 100 independent bonds with the same charac-
teristics that this bond.

Hint: The loss function of a bond can be expressed as L = 100Y °5(1°
Y ) = 105Y °5, where Y is a indicator variable that takes value 1 if the
bond defaults and 0 otherwise.



4. Let X andY be two independent randomvariables uniformlydistributed
between [0,1] and Z = X +Y their sum. Analyze if it holds that VaR25%

(Z ) < VaR25%(X1)+VaR25%(X2).

Hint: The cumulative distribution function of Z is

FZ (z) =

8
>><
>>:

z2

2
if 0 < z … 1

°
z2

2
+2z °1 if 1 < z … 2





4 GlueVaR and other new risk
measures

This chapter is structured in two parts. Analytical closed-form expressions
of GlueVaR risk measures for commonly used statistical distributions in the
insurance context are derived. These closed-form expressions should en-
able practitioners to undertake an effortless transition from the use of VaR
and TVaR to GlueVaR. Third order Cornish-Fisher approximations to Glue-
VaR risk measures for general skewed distribution functions are also intro-
duced in this chapter. Finally, the relationship between GlueVaR, Tail Dis-
tortion risk measures and RVaR risk measures are shown.

4.1 Analytical closed-form expressions of GlueVaR
A useful consequence of (3.4) is that when analytical closed-form expres-
sions of VaRÆ(X ) and TVaRÆ(X ) are known for a random variable X , the
closed-form expression of GlueVaRh1,h2

Ø,Æ
(X ) can automatically be derived

without further complications. Otherwise, using the definition of GlueVaR
as a distortion risk measure, the Choquet Integral of X with respect to the
set function ∑

h1,h2

Ø,Æ
±P should be calculated.

4.1.1 Illustration: GlueVaR expression for Student t distribution

Let X be a random variable such that eX =
X °µ

æ
is distributed as a Student

t random variable with ∫ degrees of freedom (df). In such a case, X has µ

mean and a standard deviation equal to

s
∫ ·æ2

∫°2
. Then

VaRÆ(X ) =µ+æ · tÆ

TVaRÆ(X ) =µ+æ ·
ø(tÆ)

1°Æ
·

µ
∫+ t 2

Æ

∫°1

∂
,



where tÆ is the Æ-quantile of a Student t distribution with ∫ df and ø is its
density function.
Using (3.4) the GlueVaR of random variable X is

GlueVaR
h1,h2

Ø,Æ
(X ) =!1 ·

∑
µ+æ ·

ø(tØ)

1°Ø
·

√
∫+ t 2

Ø

∫°1

!∏

+!2 ·

∑
µ+æ ·

ø(tÆ)

1°Æ
·

µ
∫+ t 2

Æ

∫°1

∂∏
+ (1°!1 °!2) · (µ+æ · tÆ)

=µ+æ ·

∑µ
h1

1°Ø
°

h2 °h1

Ø°Æ

∂
·ø(tØ) ·

√
∫+ t 2

Ø

∫°1

!

+
h2 °h1

Ø°Æ
·ø(tÆ) ·

µ
∫+ t 2

Æ

∫°1

∂
+ (1°h2) · tÆ

∏
.

4.1.2 Analytical expressions for other frequently used
distributions

Normal (N ), Lognormal (L N ) and Generalized Pareto (GP ) distribu-
tions have simple closed-form expressions of GlueVaR. The same notation
conventions that were introduced in Chapter 1 are used. Namely, ¡ and
© stand for the standard Normal pdf and cdf, respectively. The standard
Normal distribution Æ and Ø quantiles are denoted as qÆ = ©

°1(Æ) and
qØ =©

°1(Ø). For the GP distribution, the definition provided in Hosking
and Wallis [1987] is considered, where the scale parameter is denoted by æ
and k is the shape parameter. The GP distribution contains the Uniform
(k = 1), the Exponential (k = 0), the Pareto (k < 0) and the type II Pareto
(k > 0) distributions as special cases. Closed-form expressions of GlueVaR
for several distributions are presented in Table 4.1. Note that there are some
exceptions to the general rule to deduce these closed-form expressions to
be considered. When X follows a Pareto distribution with k … 1 and for
any confidence level Æ, TVaRÆ(X ) = +1 as we have shown in Table 1.3 of
Chapter 1. But when h1 = 0 GlueVaRh1,h2

Ø,Æ
(X ) is finite. There is a compensa-

tion effect between TVaRÆ(X ) and TVaRØ(X ). This is taken into account in
Table 4.1.



Distribu-
tion GlueVaR

β,αh1,h2 expression

Normal:
N (µ,æ2)

µ+æ ·qÆ · (1°h2)+æ ·
h2 °h1

Ø°Æ
· [¡(qÆ)°¡(qØ)]+æ ·

h1

1°Ø
·

¡(qØ)

Lognormal:
L N (µ,æ2)

exp(µ+æ ·qÆ) · (1°h2)

+exp

µ
µ+

æ2

2

∂
·

h2 °h1

Ø°Æ
· [©(æ°qÆ)°©(æ°qØ)]

+exp

µ
µ+

æ2

2

∂
·

h1

1°Ø
·©(æ°qØ)

Exponen-
tial:

GP (k,æ),
with k = 0

æ·[h2°ln(1°Æ)]+æ·(1°Ø)·ln

µ
1°Ø

1°Æ

∂
·

∑
h2 °h1

Ø°Æ
°

h1

1°Ø

∏

Continued on next page



Table 4.1: continued from previous page

Distribu-
tion GlueVaR

β,αh1,h2 expression

Pareto:
GP (k,æ),
with k < 0

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

+1 if k …°1, h1 6= 0

æ

k
·
£
1° (1°Æ)k

§

+
h2 °h1

Ø°Æ
· (1°Ø) ·

æ

k
·
£
(1°Ø)k ° (1°Æ)k

§

+
h2 °h1

Ø°Æ
·

æ

k +1
·
£
(1°Æ)k+1 ° (1°Ø)k+1

§

if k <°1, h1 = 0

æ ·

∑
1

1°Æ
°1

∏

°
h2 °h1

Ø°Æ
· (1°Ø) ·æ ·

∑
1

1°Ø
°

1

1°Æ

∏

+
h2 °h1

Ø°Æ
·æ · ln

µ
1°Æ

1°Ø

∂
if k =°1, h1 = 0

æ

k
· [1° (1°Æ)k ]

+
æ

k
·

µ
h2 °h1

Ø°Æ
°

h1

1°Ø

∂
· [(1°Æ)k · (1°Ø)]

+
h2 °h1

Ø°Æ
·
æ

k
·

"
k · (1°Æ)k+1

k +1

#

+

µ
h2 °h1

Ø°Æ
°

h1

1°Ø

∂
·
æ

k
·

"
(1°Ø)k+1

k +1

#
if k 2 (°1,0)

Type II
Pareto:

GP (k,æ),
with k > 0

æ

k
· [1° (1°Æ)k ]+

æ

k
·

µ
h2 °h1

Ø°Æ
°

h1

1°Ø

∂
· [(1°Æ)k · (1°Ø)]

+
h2 °h1

Ø°Æ
·
æ

k
·

"
k · (1°Æ)k+1

k +1

#

+

µ
h2 °h1

Ø°Æ
°

h1

1°Ø

∂
·
æ

k
·

"
(1°Ø)k+1

k +1

#

4.1.3 The Cornish-Fisher approximation of GlueVaR

General considerations about Cornish-Fisher VaRmethodologies have been
pointed out in Section 1.2.2 of Chapter 1. Approximations to GlueVaR risk



measures for general skewed distribution functions using a Cornish-Fisher
expansion of their quantiles are provided in this section. In insurance ap-
plications managers often have to face to highly skewed random variables
with right fat tails. In many of these situations, however, they do not know
whether the underlying random variable of interest is distributed according
to a known parametric distribution function. In those situations that the
distribution is unknown, the value of the common quantile-based riskmea-
sures is routinely approximated by practitioners. It is shown that approxi-
mations of GlueVaR riskmeasures for general unknown skewed distribution
functions can be directly obtained by means of the relationship of GlueVaR
risk measures and the standard quantile-based risk measures.
The Cornish-Fisher expansion is widely used by practitioners to approxi-
mate the VaRÆ(X ) and TVaRÆ(X ) values when the random variable follows
a skewed unknown distribution [see Cornish and Fisher, 1937; Fisher and
Cornish, 1960; Johnson and Kotz, 1970; McCune and Gray, 1982]. The VaR
and TVaR measure values can be approximated as VaRÆ(X ) ' µ+ qv,Ææ

and TVaRÆ(X ) ' µ+ qt v,Ææ, where µ = E[X ], æ2 = V[X ] and both qv,Æ

and qt v,Æ are modified quantiles of the standard Normal distribution that
take into account the skewness of the distribution function of X .
FollowingSandström[2007], themodifiedquantilesqv,Æ andqt v,Æ are com-
puted as follows. Let us consider ∞ = E[(X °µ)3]/æ3 as a measure of the
skewness of the randomvariable X . IfqÆ =©

°1(Æ) and¡ are theÆ-quantile
and the density function of the standard Normal distribution, respectively,
then qv,Æ and qt v,Æ can be written as,
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Extensionsof theCornish-Fisher expansion that considermoments of higher
order than ∞ have been provided in the literature [see, for instance, Gi-
amouridis, 2006]. More details can be found in Appendix B of Sandström
[2011].
Given the interpretation of a GlueVaR risk measure as a linear combination
of risk measures which was shown in (3.4), the approximation for the Glue-
VaR of the random variable X following the Cornish-Fisher expansion can



be obtained as

GlueVaR
h1,h2

Ø,Æ
(X ) 'µ+æ
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The error of the approximation is upper bounded by the maximum error
incurredwhen approximatingVaRÆ(X ), TVaRÆ(X ) andTVaRØ(X )using the
equivalent Cornish-Fisher expansion for skewed distributions. This result is
straightforward. It follows from the linear relationship shown in expression
(3.4) and taking into account that weights!1,!2 and!3 are lower or equal
than one, satisfying that!1 +!2 +!3 = 1.

4.2 On the relationship between GlueVaR and Tail
Distortion risk measures

As it has been aforementioned, different works that pay attention to risk
measures based on distortion functions or based on several generalizations
of quantiles have appeared in recent years. See, for instance, Zhu and Li
[2012]; Bellini and Gianin [2012]; Bellini et al. [2014]; Dhaene et al. [2012a]
and Goovaerts et al. [2012].
This section is devoted to reveal the connectionsbetweenGlueVaR riskmea-
sures and Tail Distortion risk measures. To the best of our knowledge, Tail
Distortion riskmeasures were introduced in Zhu and Li [2012]. Here the no-
tation used for these family of risk measures is adapted from that in Lv et al.
[2013]. Consider a distortion function g , this is a non-decreasing and injec-
tive function g from [0,1] to [0,1] such that g (0) = 0 and g (1) = 1, and a
confidence levelÆ 2 (0,1). The Tail DistortionRiskMeasureTg ,Æ associated
to g andÆ is defined as the distortion riskmeasure with distortion function
gÆ, where

gÆ(u) = g
≥ u

1°Æ

¥
· [0 … u < 1°Æ]+ [1°Æ… u … 1].

Note that [0 … u < 1°Æ] is a function that takes value 1 in the interval
[0 … u < 1°Æ] and 0 elsewhere. In other words, if X is a random variable
representing a loss in a probability space (≠,A ,P ) and its survival function
is SX (x) = P (X > x), then

Tg ,Æ(X ) =

Z0

°1

£
gÆ (SX (x))°1

§
d x +

Z+1

0
gÆ (SX (x))d x . (4.1)



Note that gÆ is continuous in 1°Æ or, alternatively, gÆ(1°Æ) = 1.

Proposition 4.1. Consider a GlueVaR
!1,!2

Ø,Æ
risk measure with parameters Æ,

Ø,!1 and!2. ThisGlueVaR is equivalent to aTailDistortion riskmeasureTg ,Æ

if, and only if,!2 = 1°!1 and

g (t ) =

µ
!1 · (1°Æ)

1°Ø
+1°!1

∂
· t ·

£
0 … t < (1°Æ)°1

· (1°Ø)
§

+ (!1 + (1°!1) · t ) ·
£
(1°Æ)°1

· (1°Ø) … t … 1
§

. (4.2)

The proof is provided in Section A.3 of the Appendix.
Note that only GlueVaR risk measures with !3 = 0 can be represented as
Tail Distortion riskmeasures, because!1+!2+!3 = 1 must hold as part of
the definition of aGlueVaR

!1,!2

Ø,Æ
riskmeasure. In other words, one can only

represent as Tail Distortion riskmeasures those GlueVaR that do not weight
the part corresponding to the VaRÆ.
The origin of GlueVaR risk measures can be found in Belles-Sampera [2011].
As a curiosity, the definition of a parametric family of risk measures named
PUp-TVaR can also be found therein, which are exactly the Tail Distortion
risk measures linked to Proportional Hazards Distortion functions g (u) =

u
1
a , a   1 from the perspective of Zhu and Li [2012].

4.3 On the relationship between GlueVaR and RVaR
risk measures

To the best of our knowledge RVaR risk measures were introduced in Cont
et al. [2010]. This section is dedicated to show a close relationship between
GlueVaR risk measures and the RVaR family. We have recently discovered
this connection. It is highly probable that some synergies between the re-
search associated to both families are going to arise. For instance, existing
results related to capital allocation principles using RVaR [see, for instance,
Embrechts et al., 2016] and the ones obtained with GlueVaR (which we are
going to present in Chapter 7) may be interconnected. Another example of
these synergiesmay be found in the analysis of risk attitudes thatwe present
in Chapter 5 because, as we will show, the application of our assessment
tools are straightforward in RVaR risk measures.
Let X be an absolutely continuous random variable, which positive values
represent losses. Let Æ, Ø 2 [0,1]. The value of the risk measure RVaRÆ,Ø



applied to X is, by definition, the following:

RVaRÆ,Ø(X ) =

8
<
:

1

Ø

ZÆ+Ø

Æ
VaR∞(X )d∞ if Ø> 0

VaRÆ(X ) if Ø= 0

(4.3)

The notation used for VaR is not the one used when defining GlueVaR risk
measures, becauseVaRÆ(X ) in (4.3) refers to the100(1°Æ)%quantilewhile
in GlueVaR definition the notation VaRÆ(X ) is used to representing the
100Æ% quantile. In order to find relationships betweenRVaR andGlueVaR

risk measures it is convenient to rewrite expression (4.3) as

RVaRÆ,Ø(X ) =

8
<
:

1

Ø

ZÆ+Ø

Æ
VaR1°∞(X )d∞ if Ø> 0

VaR1°Æ(X ) if Ø= 0

(4.4)

The notation used in definition of GlueVaR risk measures for VaR is incor-
porated in (4.4).
Note that

1
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Æ

Ø
TVaR1°Æ(X ) (4.5)

Let us introduce some additional notation: a = 1°Æ and b = 1°Ø. So it
can be deduced that 1° (Æ+Ø) = a +b °1 and that Æ+Ø = 2° (a +b).
Therefore, last expression in (4.5) may be rewritten as

2° (a +b)

1°b
TVaRa+b°1(X )°

1°a

1°b
TVaRa(X ) (4.6)

Note now that a + b ° 1 … a because a, b 2 [0,1], and this implies that
TVaRa(X )   TVaRa+b°1(X ). Additionally, if

!1 =°
1°a

1°b
and!2 =

2° (a +b)

1°b
(4.7)

then!1 +!2 =
1

1°b
[a °1+2°a °b] =

1°b

1°b
= 1.



Recall that a usual way towrite the value of aGlueVaR riskmeasure applied
to X is as follows:

GlueVaR
ch1,ch2

bØ,bÆ
(X ) = c!1TVaR bØ(X )+ c!2TVaRbÆ(X )

+ (1° c!1 ° c!2)VaRbÆ(X ) (4.8)

where c!1 and c!2 depend on parameters bÆ, bØ, ch1 and ch2.
Taking into account the previous expressions and notations, consider

bÆ= a +b °1
bØ= a

c!1 =!1 =°
1°a

1°b

c!2 =!2 =
2° (a +b)

1°b
.

(4.9)

As long as c!1 and c!2 are related to ch1 and ch2 by the next expression (as it
is shown in Section A.2 of the Appendix)
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1 1

!µ
c!1

c!2

∂
(4.10)

it is deduced from (4.9) and (4.10) that
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(4.11)

So, putting (4.8), (4.9) and (4.11) altogether the following expression holds:

GlueVaR0,1
a,a+b°1

(X ) =°
1°a

1°b
TVaRa(X )

+
2° (a +b)

1°b
TVaRa+b°1(X ). (4.12)

The right-hand side of expression (4.12) is exactly expression (4.6). This
means that, for Ø> 0 (or, equivalently, for b < 1),

RVaRÆ,Ø = GlueVaR0,1
a,a+b°1

.

ForØ= 0 (orb = 1), expression (4.12) is notwell defined, but a+b°1 = a in
such a case and it can be checked that GlueVaR0,1

a,a = VaRa . To get the feel-
ing that this is correct, let us plot the distortion function ofGlueVaR0,1

a,a+b°1

in Figure 4.1.



0,1

a,a+b°1

1

11°a 2° (a +b)

GlueVaR0,1
a,a+b°1

Looking at the plot of the distortion function in Figure 4.1, if b = 1 then
2° (a +b) = 1°a and then the distortion function of VaRa would appear.
In addition, if a = 1 (which means that Æ= 0) then the distortion function
of TVaRb is obtained. As it is one of the purposes of RVaRÆ,Ø risk measures,
it is possible to continuously moving from VaR1°Æ to TVaR1°Ø.
Taking all the previous comments into account, the following equivalence
holds:

RVaRÆ,Ø = GlueVaR0,1
a,a+b°1

(4.13)

4.4 Example
The example of risk quantification shown in Chapter 3 is followed to es-
timate GlueVaR risk measures considering alternative distributions. Out-
comes are shown in Table 4.2. The table is divided into four blocks, each
block representing the corresponding risk figures for the cost of claims for
property damage (X1), the cost of claims of bodily injuries (X2), the cost
of claims of medical expenses (X3) and the aggregate cost of claims (X1 +

X2 + X3). Risk measure values using the empirical distribution (first row)
are compared with outcomes when Normal, Lognormal, Student t with 4

df and Generalized Pareto distributions are fitted to data. In the last two
rows of each block results are shown when risk measure values are approx-



imated by a Cornish-Fisher expansion. The sample mean (bµ= z̄), the sam-
ple deviation (bæ2 =

P
i (Zi ° z̄)2/(n °1)) and the sample skewness (calcu-

lated as b∞= bæ°3
°P

i (Zi °z̄)3/n
¢
) are considered as estimators ofµ,æ and∞

when Z is one of the four random variables X1, X2, X3, X1+X2+X3. Sam-
ple statistics were computed using observations that fall below the 99.5%

quantile in order to exclude the effect of extreme losses on estimates (first
Cornish-Fisher approximation). Thatmeans, a subsample of the first 348 in-
creasingly ordered elements of the random variable were used to estimate
parameters. Therefore, the two highest values were considered as extreme
losses and were not included. Outcome values of risk measures were com-
pared with the risk measure approximations when all the observations are
included on sample estimates (second Cornish-Fisher approximation). All
the calculations were made in R and MS Excel.

GlueVaRh1,h2

99.5%,95%

Model VaR95% TVaR95% TVaR99.5%

°
11

30
, 2

3

¢
(0,1)

°
1

20
, 1

8

¢

X1

Empirical 2.5 12.5 40.8 18.6 9.4 4.9

Normal 6.9 8.5 11.6 9.0 8.1 7.2

Lognormal 2.7 8.7 32.7 14.5 5.4 4.4

Student t (4 d.f.) 8.8 12.8 24.6 15.4 11.5 9.8

Pareto 2.5 5.5 18.1 8.7 4.1 3.4

Cornish-Fisher(1a) 8.5 27.8 128.4 54.9 16.6 15.1

Cornish-Fisher(1b) 16.3 59.1 284.0 119.8 34.1 31.0

X2

Empirical 0.6 8.0 42.1 16.9 4.2 2.9

Normal 6.0 7.4 10.2 7.9 7.1 6.3

Lognormal 1.6 5.8 25.7 11.0 3.6 3.0

Student t (4 d.f.) 7.6 11.2 21.7 13.5 10.1 8.5

Pareto 1.6 3.5 11.9 5.7 2.6 2.2

Cornish-Fisher(2a) 2.2 2.7 3.7 2.9 2.6 2.3

Cornish-Fisher(2b) 6.1 7.5 10.3 8.0 7.2 6.4

X3

Empirical 1.1 1.3 1.8 1.4 1.2 1.1

Continued on next page



Table 4.2: continued from previous page
GlueVaRh1,h2

99.5%,95%

Model VaR95% TVaR95% TVaR99.5%

°
11

30
, 2

3

¢
(0,1)

°
1

20
, 1

8

¢

Normal 0.9 1.0 1.3 1.1 1.0 0.9

Lognormal 0.8 1.4 3.2 1.8 1.2 1.0

Student t (4 d.f.) 1.0 1.4 2.5 1.7 1.3 1.1

Pareto 0.9 1.4 3.0 1.8 1.2 1.0

Cornish-Fisher(3a) 1.0 2.1 7.6 3.6 1.5 1.4

Cornish-Fisher(3b) 1.1 2.0 6.1 3.1 1.5 1.4

X1 +X2 +X3

Empirical 5.9 19.7 81.1 35.6 12.9 10.2

Normal 12.6 15.4 21.1 16.4 14.8 13.2

Lognormal 5.5 15.8 60.7 27.3 10.8 8.6

Student t (4 d.f.) 16.0 23.2 44.4 27.8 20.8 17.7

Pareto 5.0 11.0 36.0 17.3 8.1 6.7

Cornish-Fisher(4a) 11.0 34.3 155.5 66.9 20.8 19.0

Cornish-Fisher(4b) 34.6 134.0 659.7 276.1 75.6 68.9

(1a) bµ= 0.5, bæ= 2.3 and b∞= 6.4. Subsample without extreme losses.
The two largest values of X1 are excluded.
(1b) bµ= 0.7, bæ= 3.8 and b∞= 8.7. Full sample.
(2a) bµ= 0.2, bæ= 1.2 and b∞= 0. Subsample without extreme losses.
The two largest values of X2 are excluded.
(2b) bµ= 0.5, bæ= 3.4 and b∞= 0. Full sample.
(3a) bµ= 0.3, bæ= 0.3 and b∞= 2.6. Subsample without extreme losses.
The two largest values of X2 are excluded.
(3b) bµ= 0.3, bæ= 0.4 and b∞= 1.4. Full sample.
(4a) bµ= 1.0, bæ= 3 and b∞= 5.9. Subsample without extreme losses.
The two largest values of X1 +X2 +X3 are excluded.
(4b) bµ= 1.4, bæ= 6.8 and b∞= 11.4. Full sample.

Some comments related to outcome values for Cornish-Fisher approxima-
tions of the quantile-based riskmeasures should bemade. According to the
results, one could think that this kind of risk measurement corresponds to
a conservative attitude for the two types of approximations shown in Ta-
ble 4.2. The exception would be risk values obtained when X2 is evaluated.



Relevant differences are observed depending on the approximation finally
used on right skewed data. Outcome values related to the second Cornish-
Fisher approximation (full sample) are drastically large when the data are
severely right skewed distributed, as in the case of X1 and X1 + X2 + X3.
Theseoutcomevalueswouldbeassociated to a excessively conservative (un-
realistic) attitude. If the first Cornish-Fisher approximation is considered,
i.e. when sample statistics were estimated excluding extreme losses, a sig-
nificant drop is observed although the outcome values for this approxima-
tion are still larger than those values associated with the empirical or the
parametric distributions for right-skewed random variables. Note that only
the two largest losses are not included in the sample estimates involving the
first approximation. When the data are slightly right skewed distributed,
as in the case of X3, the two Cornish-Fisher approximations show a bet-
ter performance. In other words, the Cornish-Fisher approximation should
be used with certain caution when the data are severely right skewed dis-
tributed. Probably higher order moments should be taken into account.
An important issue that arises from these results is the model risk. Even
when the same riskmeasure is used, huge differences are observed depend-
ing on the hypothesis about the underlying distribution of the claim cost
randomvariables. Let us assume that the regulator is focused on the VaR95%

for the aggregate cost X1 + X2 + X3 as a measure of pure underwriting risk
(without taking into account the premiumpaid by the policyholders). If it is
supposed that the randomvariable is Paretodistributed, then the institution
will need 5 thousands of euros for regulatory solvency purposes. The com-
pany should set aside almost 3.2 times this economic amount whether the
underlying distribution is Student t with 4 degrees of freedom. This topic
is out of the scope of this chapter. The interested reader is addressed, for
instance, to the study of Alexander and Sarabia [2012] which deals with VaR
model risk or to the reference Aggarwal et al. [2016] suggested at the end of
Chapter 1.

4.5 Exercises
1. Determine if the GlueVaR11/30,2/3

99.5%,95%
of a Normal distributed random vari-

able X with N (µ = 5,æ2 = 16) satisfies the expressions related to the
properties of Translation invariance, Positive homogeneity and Strictness.

2. Consider theNormaldistributed randomvariable X1 withN (µ= 5,æ2 =

16) and the Normal distributed random variable X2 withN (µ= 4,æ2 =



20). Show that:

• VaRÆ(Z ) is equal to VaRÆ(X1)+VaRÆ(X2) for any Æ in the case that
rx y = 1, where Z = X1 + X2 and rx y is the Pearson linear correlation
coefficient.

• When rx y < 1, then VaRÆ(Z ) < VaRÆ(X1)+VaRÆ(X2).

• Repeat the analysis for the GlueVaR1/20,1/8
99.5%,95%

risk measure.

3. Check that if X is distributed as a Pareto (X ª GP (k,æ), with k < 0),
the expression for TVaRÆ(X ) shown in Table 1.3 may be obtained either:

• From Definition 1.9 (i.e, TVaRÆ(X ) =
1

1°Æ

Z1

Æ
VaR∏(X )d∏), or

• From the expression of TVaRÆ(X ) as a distortion risk measure shown
in Section 3.2 (i.e.

TVaRÆ(X ) =

Z0

°1

£
∞Æ (SX (x))°1

§
d x +

Z+1

0
∞Æ (SX (x))d x,

where ∞Æ is the distortion function displayed in Table 3.2).

Hint: Note that, in this case,
µ
1°

k

æ
VaRÆ(X )

∂1/k

= SX (VaRÆ(X )) = 1°Æ .

4. Obtain the RVaR risk measure equivalent to the GlueVaR0,1
95%,90%

.



5 Risk measure choice

Tools designed to provide adequate risk measurements are needed by both
decisionmaking agents and regulatory agents, who require informationabout
potential losses within a probabilistic framework. As such, the choice of a
risk measure plays a central role in decision making in many areas includ-
ing health, safety, environmental, adversarial and catastrophic risks [Cox Jr.,
L.A., 2013; MacKenzie, 2014]. Many different risk measures are available to
practitioners, but the selection of the most suitable risk measure to be used
in a given context is generally controversial. A key element in characteriz-
ing a risk measure is the underlying risk attitude that is assumed when this
measure is used for risk assessment. Therefore, in selecting the best mea-
sure, the practitioner is concerned with how a particular measure matches
up with the alternatives. However, this simple question only has a complex
answer.
Consider theValue at Risk and theTail Value at Risk, probably themost com-
mon riskmeasures used in assessing risk. SupposeÆ is the confidence level,
which reflects the degree of tolerance to undesirable events. The VaRÆ (X )

is the Æ-quantile of loss X , while the TVaRÆ(X ) averages quantiles ranging
from the Æ-quantile to the maximum (the 100%-quantile) of X . Based on
these definitions, it seems obvious that these two quantile-based risk mea-
sures can be directly compared in terms of their respective conceptions of
risk using their associated confidence levels. For instance, the VaR provides
for a concept of risk associated with a barrier, beyond which the decision
maker assumes that catastrophe lies [Alexander and Sarabia, 2012]. A VaR

at a 95% confidence level presents a lower resistance to undesirable events
than a VaR at a 99% level. This also holds for TVaRÆ(X ). Comparisons of
VaR and TVaR measures can likewise be readily undertaken when their re-
spective confidence levels are fixed and equal. Given anÆ-confidence level,
the TVaRÆ(X ) is always greater or equal than the VaRÆ(X ). However, a di-
rect comparison cannot be made if the VaR and the TVaR risk measures



have different confidence levels. For example, imagine a decision maker
wishes to compare the implicit risk attitude of the TVaR95%(X ) and the
VaR99%(X ). In this instance, it is not immediately obvious which of these
two risk measures offers the greatest risk tolerance. Furthermore, if the de-
cisionmaker wants to know the risk attitude of ameasure other than that of
these twoquantile-based riskmeasures, comparisons are even less intuitive.
Here, we focus on the family of distortion riskmeasures, where the VaR and
TVaR can be understood as two particular cases. This chapter seeks to con-
tribute to the study of attitudes towards risk in the assessment of risk. The
study analyses the risk perception that is implicit when an agent applies a
particular distortion risk measure. A battery of instruments is developed
to facilitate the comparison of the risk attitude of distortion risk measures
fromboth global and local perspectives. The results afford new elements for
determining the suitability of a particular distortion risk measure in com-
parison with other available options. They also allow an agent to determine
which risk measure provides the most risk tolerant behavior.
An illustrative example of the risk attitude characterization implicit in a dis-
tortion risk measure is included in this chapter. The European insurance
regulatory framework serves as an excellent example of the choice of a com-
pulsory risk measure, i.e. VaR99.5%. However, insurers implement other
choices in their internal tools. We show that, given a particular insurer’s
dataset, distortion riskmeasures other than that of theValue at Risk canpro-
vide the same risk estimates. However, if the insurer does choose a different
riskmeasure, this chapter provides complementary tools for evaluating risk
that can be used to understand its position in the European insurance or
financial market, or even to benchmark it in relation to the mandatory risk
assessment standard.

5.1 Aggregate attitude towards risk
The characterization of the implicit attitude towards risk in a given distor-
tion risk measure is carried out by means of the analysis of the distortion
function, which provides a precise portrait of the underlying risk position
of a decisionmaker when selecting a particular risk measure for risk assess-
ment.
Let us consider the mathematical expectation. As indicated previously in
Section 3.2 of Chapter 3, the mathematical expectation can be understood
as a distortion risk measure involving the identity function i d as the associ-
ated distortion function. Figure 5.1 illustrates the distortion function associ-



ated with the mathematical expectation. In other words, the mathematical
expectation canbeunderstood as the distortion riskmeasure used by agents
when survival probabilities are not distorted (i.e. they are distorted by the
identity function). So, themathematical expectation can be associatedwith
a risk neutral attitude of the agent.

•

•

0

1

1

The area under the distortion function can be understood as an indicator of
the aggregate risk attitude of an agent, with decisionmakers being classified
as risk tolerant, risk neutral or risk intolerant. Note that we assume that a
risk neutral agentwould not distort the survival distribution function, so the
associated distortion function linked to aggregated risk neutrality would be
the i d function. The area under the i d function is one half and this value
could be used as a benchmark of global risk attitude. A globally risk intol-
erant agent would make an upper distortion of the survival distribution in
accumulated terms; thus, the area under g for this agent would be larger
than one half. Similarly, an agent would be globally risk tolerant if the area
under g was lower than one half.
Thedistortion functions of theValue atRisk andTail Value atRiskwith alpha
confidence level are shown in Figure 5.2 and Figure 5.3, respectively. From



Figure 5.2 it is straightforward to check that the area under the distortion
function of the VaRÆ isÆ. Similarly, from Figure 5.3 it is easy to observe that
the area under the distortion function of the TVaRÆ is Æ+ (1°Æ)/2.

α

•

•

0

1

1

±

1°Æ

•

An agent would be globally risk neutral using either theVaRÆ measure with
Æ= 0.5 or the TVaRÆ with Æ equal to zero. In terms of aggregate risk neu-
trality it would be equivalent to use either the mathematical expectation,
or VaR50% or TVaR0%. Note that VaR50% is the median and TVaR0% is the
mathematical expectation. Similarly, an agent would be globally risk intol-
erant using either the VaRÆ with Æ > 0.5 or the TVaRÆ with a positive Æ.
On the contrary, an agent would be globally risk tolerant using the VaRÆ

with Æ < 0.5. It is worthy to emphasize that under the definition of aggre-
gate risk attitude followed in this chapter an aggregate risk tolerant agent
would never use the TVaR risk measure, since the area under the distortion
function is bounded in the interval [0.5,1].
GlueVaR risk measures were introduced in Chapter 3 as a class of distortion
risk measures. Recall that these measures are defined by means of four pa-
rametersÆ,Ø,!1 and!2, such that 0 <Æ…Ø< 1, Ø°1

Ø°Æ
…!1 … 1 and!1+



α

•

•

0

1

11°Æ

!2 … 1. This parametric flexibility of GlueVaR risk measures makes them
useful in a variety of contexts, because each particular risk context could re-
quire a different set of parameter values. In the case of the GlueVaR

!1,!2

Ø,Æ
,

the implicit global risk attitude would depend on the values of the four pa-
rameters that define the risk measure.
To conclude, in Belles-Sampera et al. [2013b] we introduced some relation-
ships between distortion risk measures and aggregation operators. Aggre-
gation functions (or operators) are mathematical functions used for com-
bining information in many fields of human knowledge, as artificial intelli-
gence, biology or economics [Torra and Narukawa, 2007]. Aggregation in-
dicators are used to characterize the aggregation function [Belles-Sampera
et al., 2014c, 2013c]. One of the most frequently used indicators is the de-
gree of orness, which seeks to summarize the importance of each i th-order
statistic, i = 1, . . . ,n, in the aggregationprocess associatedwith theChoquet
integral with respect to a set function. This indicator provides some kind of
level of preference inherent to such an aggregation function on a [0,1] scale,
where 0 represents the minimum and 1 the maximum order statistic (Duj-
mović [2006]; Fernández Salido and Murakami [2003]). In Belles-Sampera



et al. [2016c] we showed that the degree of orness can be interpreted as an
approximation of the area under the distortion function.

5.1.1 Local risk attitude

It is reasonable to suppose that decision makers do not worry about all ran-
dom event losses in the same way. Decision makers frequently treat differ-
ent random events distinctly (note that some of these events can represent
benefits or affordable losses). While the area under the distortion function
evaluates the accumulated distortion performed over the survival distribu-
tion function, it does not take into account which part of the survival distri-
bution function was distorted. Clearly, from the perspective of a manager,
distorting the survival probability in the right tail of the random variable
linked to losses is not the same as distorting the probability in the left tail.
Additionally, all distortion functionswith an area equal to one half would be
associated with global risk neutrality, where the i d function is only a par-
ticular case.
In Figure 5.4 it is shown an example in which the size of the area under
several distortion functions is the same. Obviously, these distortion func-
tions have not associated the same risk attitude. In the case of the distor-
tion function represented by a dotted line, survival probability values in the
interval [0,0.5] are overweighted and survival probability values in the inter-
val [0.5,1] are underweighted. So, relatively high losses are overrepresented
(right tail) and relatively low losses are underrepresented. On the contrary,
the distortion function represented by the solid line overweights relatively
low losses and underweights high losses. Note that also the area under the
diagonal, which is in fact the distortion function of themathematical expec-
tation, is the same.
Therefore, the global vision of risk embedded in a risk measure has to be
completedwith local information. Oneoptionopen tous is todefine the risk
attitude in absolute terms. An absolute risk neutral agent is a decisionmaker
that does not distort the survival probability andwho, therefore, uses the i d

function as the associated distortion function, i.e. g (u) = id(u) = u for all
0 … u … 1. An absolute risk intolerant agent is associated with a distortion
function g such that g (u) > u, for all 0 … u … 1. And, similarly, an absolute
risk tolerant agent has a distortion function g such that g (u) < u, for all
0 … u … 1. This definition of risk attitude is in absolute terms in the sense
that the relationship of ordering between g (u) andu must be fulfilled in the
whole range [0,1]. Note that these considerations lead to a more restrictive
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definition of risk attitude than that provided by the aggregate risk attitude.
The definition of the absolute risk attitude implies that the implicit attitude
of an agent is invariant over the range of values. Yet, there are no reasons
as to why the agent should have a unique risk attitude across the whole do-
main. An agent’s attitude to risk is likely to differ in accordance with the
interval of loss under consideration. The risk attitude implicit in frequently
used riskmeasures is not invariant; this is the case, for instance, of theVaRÆ.
When using the VaRÆ, a risk intolerant attitude is associated with the in-
terval [1°Æ,1), but a risk tolerant attitude is associated with the interval
(0,1°Æ). Thus, an homogeneous risk attitude cannot be linked to theVaRÆ

risk measure throughout the domain.
Let us define a quotient function Qg from (0,1] to R, based on the distor-
tion function g associated with the risk measure, in order to characterize
the local vision of risk. Let the function Qg be defined as the quotient be-
tween the distortion function g and the identity function,Qg (u) =

g (u)
u

for
all 0 < u … 1. The Qg allows the analysis of the agent’s perception of risk
at any point in the survival probability distribution. This quotient function
provides a function of survival probabilities, u, which describes the distor-
tion factor applied by g at each u level. The quotient Qg is a quantifier of



the local risk tolerance of the agent at any point. The quotient value repre-
sents the relative risk attitude of the decision maker compared to that of an
agentwith a risk neutral attitudewho is confident of the survival probability.
An agent is risk neutral, risk tolerant or risk intolerant at point u ifQg (u) is
equal to, lower or higher than one, respectively.
A graphical analysis of the quotient function is proposed to investigate the
risk attitude of the agent at any point in the survival distribution function
when using a certain risk measure. An interesting characteristic is that the
quotient function is bounded. Since the quotient function computes the
ratio between the distorted survival probability and the survival probability,
so 1

u
is the maximum value attainable by this quotient function. In fact,

the maximum risk intolerance frontier at the survival value equal to u is
achievedwhenQg (u) = 1

u
(upper bound). Note thatQg takes non-negative

values. The maximum local risk tolerance frontier is achieved when Qg (u)

is equal to zero (lower bound). In addition, when the agent does not distort
the survival probabilities,Qg (u) takes value equal to 1 (local risk neutrality
line).
In Figure 5.5 bounds of the Qg are plotted. Upper and lower bounds are
represented in the Figure 5.5 by a solid line. The local risk neutrality line
is plotted by a dotted line. An agent’s risk intolerance (tolerance) attitude
emerges at point u when the quotient function is bigger (smaller) than one.
As the quotient function is bounded, we candeduce at anydistorted survival
value how far the value is from the maximum risk intolerance/tolerance.
The evaluationof the local risk appetite patternof amanager using theVaRÆ

and TVaRÆ is investigated. In Figure 5.6 the quotient functions associated
with the VaRÆ and TVaRÆ are displayed,Q√Æ

andQ∞Æ
respectively.

If we focus our attention on the quotient function associated with the VaR,
Q√Æ

, it can be seen that a radical risk attitude is implicit in the interval
[1°Æ,1), shifting to the opposite extreme in the interval (0,1°Æ). Indeed, a
maximumrisk intolerance is involved in [1°Æ,1) and amaximumrisk toler-
ance attitude is involved in (0,1°Æ). Some similarities are found when the
quotient function associated with the TVaR is examined, Q∞Æ

. Two ranges
involving a different risk attitude are also distinguished. Maximum risk in-
tolerance is involved in the interval [1°Æ,1) and a constant (non-boundary)
risk intolerance attitude is involved in (0,1°Æ). In that interval, the quo-
tient function value is farther to the maximum as closer is to zero the sur-
vival probability. Unlike the VaRÆ, an absolute risk intolerance attitude is
associated with the TVaRÆ because the quotient function is larger than one
throughout the range (0,1).
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Note: Distortion functions only differ in terms of the interval [0,1°Æ). The quo-
tient function of themathematical expectation,Qid, is represented by a horizontal
dotted line.

The quotient function of the GlueVaR
!1,!2

Ø,Æ
is not plotted because the par-

ticular shape for the Q∑
!1,!2
Ø,Æ

depends on the values of the four parameters
that define the risk measure. However, as in the former two risk measures,



a maximum risk intolerance is involved in the interval [1°Æ,1) when the
quotient function of the GlueVaR

!1,!2

Ø,Æ
is analyzed. However, more than

just one attitude can be involved in the range (0,1°Æ). The high flexibility
of GlueVaR

!1,!2

Ø,Æ
allows multiple attitudes towards risk to be implicit in the

range (0,1°Æ), depending on the values of the remaining three parameters,
Ø,!1 and!2.
In short, the quotient function Qg can be used to characterize the relative
risk behavior of an agent at any point. The value of a quotient function at a
particular point depends on the distortion function as well as on the origi-
nal survival function. In other words, risk attitude in the quotient function
is contemplated in the size of the distortion performed (the numerator) but
also in the position inwhich this distortion is performed (the denominator).
Note that the area under the quotient function provides similar information
to that of the area under g , but expressed in terms of risk neutrality. Indeed,
the area under the quotient function can be interpreted as the area under a
weighteddistortion function, whereweights (1/u) are given todistorted val-
ues, i.e. g (u) · 1

u
. Following this interpretation, greater weights are assigned

todistortion functionvalues associatedwith lower survival values. The areas
under the quotient function of VaRÆ and TVaRÆ are A

°
Q√Æ

¢
=° ln(1°Æ)

and A
°
Q∞Æ

¢
= 1° ln(1°Æ), respectively. Similarly, the area under the quo-

tient function of the GlueVaR
!1,!2

Ø,Æ
is equal to

A
≥
Q∑

!1,!2
Ø,Æ

¥
=!1

∑
1+ ln

µ
1°Æ

1°Ø

∂∏
+!2 ° ln(1°Æ).

Evaluating the area under the quotient functionmay be useful when analyz-
ing the aggregate risk behavior in situations inwhich values of the distortion
function are weighted, indicating that risk intolerance is negatively associ-
ated with the size of the survival values. Thus, the area under the quotient
function can be interpreted as a weighted quantifier of the aggregate risk
attitude, where an area equal to one indicates aggregate risk neutrality, an
area larger than one indicates aggregate risk intolerance and an area lower
than one indicates aggregate risk tolerance.

Example 5.1 (Obtaining risk attitudes of a RVaR risk measure). Taking into
account the arguments presented in this chapter, the following corollaries
of equivalence (4.13) proven in Section 4.3 of Chapter 4 may be stated:



• The aggregate risk attitude of RVaRÆ,Ø can be obtained as the area under
the distortion function plotted in Figure 4.1:

2° (a +b)° (1°a)

2
+1° (2° (a +b)) =

1°b +2(a +b)°2

2

=
2a +b °1

2

=
2°2Æ°Ø

2
(5.1)

• The local risk attitude of RVaRÆ,Ø is given by the following quotient func-
tion:

QRVaR(u) =

8
>>>><
>>>>:

0 if u 2 [0,Æ]
u °Æ

uØ
if u 2 (Æ,Æ+Ø]

1

u
if u 2 (Æ+Ø,1]

(5.2)

A numerical illustration of the results listed before is provided. Let us eval-
uate a RVaR0.1%,5% risk measure. It combines VaR at the 99.9% and TVaR

at the 95%. Parameters are Æ = 0.1% and Ø = 5%. From expression (5.1)
the aggregate risk behavior of RVaR0.1%,5% is 2°0.2%°5%

2
=

194.8%
2

= 97.4%.
From expression (5.2), the specific risk attitude of RVaR0.1%,5% is described
by the following quotient function:

QRVaR(u) =

8
>>>><
>>>>:

0 if u 2 [0,0.1%]

1000u °1

50u
if u 2 (0.1%,5.1%]

1

u
if u 2 (5.1%,1]

(5.3)

The equivalent GlueVaR risk measure to RVaR0.1%,5% is the one with pa-
rameters a = 99.9%, a + b ° 1 = 99.9%+ 95%° 1 = 94.9%, h1 = 0 and
h2 = 1. In other words,

RVaR0.1%,5% = GlueVaR0,1
99.9%,94.9%

.

Given that a general expression for the overall or aggregate risk attitude be-
hind a GlueVaR

bh1,bh2

bØ,bÆ
risk measure is the following

b!1

√
1+ bØ°2bÆ

2

!
+ b!2

µ
1° bÆ

2

∂
+ bÆ



let us check if, using this formula for GlueVaR0,1
99.9%,94.9%

the 97.4% is re-
covered. From expressions (4.9):

bÆ= a +b °1 = 94.9%

bØ= a = 99.9%

b!1 =!1 =°
1°a

1°b
=°

0.1%

5%
=°

2

100

b!2 =!2 =
2° (a +b)

1°b
=

194.9%

5%
=

194.9

5
.

(5.4)

Then

°
2

100

µ
1+99.9%°2 ·94.9%

2

∂
+

5.1%

5%

µ
1°94.9%

2

∂
+94.9%

°
2

100

µ
10.1%

2

∂
+

5.1

5

µ
5.1%

2

∂
+94.9%

°0.101%+2.601%+94.9% = 2.5%+94.9% = 97.4%.

5.2 Application of risk assessment in a scenario
involving catastrophic losses

This section illustrates how the above findings can be applied in character-
izing underlying risk attitudes. It is devised to highlight situations in which
the implicit risk attitude linked to the VaR is unable to detect changes in
potential catastrophic losses. We argue that the use of equivalent GlueVaR
risk measures can be helpful in overcoming this drawback.
Suppose that the VaR with a confidence level Æ = 99.5% is required to as-
sess the regulatory capital under some regulatory framework. Note that the
selection of the confidence level involves a trade-off betweenprotection and
competitiveness. The level of the protection could be reducedwith low con-
fidence levels. An increase in the confidence levels could involve higher eco-
nomic reserves and, therefore, theprotectionwould rise; however, this could
also affect the competitiveness.
Risk managers may dislike using the VaR as a risk measure, because of the
lack of risk-based information it provides on catastrophic losses. Indeed,
two firms withmarked differences in the sum of their potential losses in ad-
verse scenarios may report the same risk value, even though they are not
exposed to the same level of risk. As such, their disparities would go un-
observed by decision makers. Moreover, the lack of subadditivity may well



constitute another drawback. Alternatives to VaR99.5% that take into ac-
count catastrophic losses can be considered by risk managers. Traditional
approaches frequently lead to severely higher economic reserves. Managers
need to find a risk measure that generates similar economic reserves than
VaR99.5% for the overall risk faced by the insurance company and, addition-
ally, they would like that the alternative risk measure provides risk-based
information on catastrophic losses and that, hopefully, it satisfies appealing
subadditivity properties.

5.2.1 Calibration of GlueVaR parameters
Our goal is to find the set of GlueVaR risk measures that return the same
risk value that the VaR99.5% in a particular context. So, we need to find the
parameter values that define the GlueVaR

!1,!2

Ø,Æ
risk measures. All the steps

required in calibratingGlueVaR riskmeasures aredescribedhere. The crite-
rion followed in the calibrationprocedure is theneed to obtain the same risk
measure value with the GlueVaR risk measures as the one obtained with
the VaR99.5%. Moreover, the selection of the risk measure is restricted to
the subfamily of GlueVaR candidates that may satisfy that their distortion
function is concave in [0,1°Æ). The strategy for calibrating the parameters
is as follows:
• Minimum and maximum admissible values of the Æ and Ø confidence
levels have to be determined, Æmin and Ømax.

• Let us assume that Z random variable represents the overall risk. A set of
d £d constrained optimization problems is defined at this step:

Pi , j : min
!1,!2

|GlueVaR
!1,!2

Ø j ,Æi
(Z )°VaR99.5%(Z )| ,

subject to

8
<
:

0 …!1 … 1,

0 …!2,

!1 +!2 … 1

where i , j = 1, . . . ,d , Æi = Æmin +
i °1

d °1
(Ømax °Æmin) and Ø j = Æi +

j °1

d °1
(Ømax°Æi ). Flexibility rises with the number of partitions d , as do

computational costs. Constraints are fixed to guarantee that the distor-
tion function of the GlueVaR is concave in [0,1°Æi ).

• An optimization algorithm should be used to solve this set of problems.
If Pi§, j§ represents the problem for which the minimum value of the ob-
jective function is reached and (!§

1 ,!§
2 ) is the associated solution, then



a GlueVaR
!§

1 ,!§
2

Ø j§ ,Æi§
is found with its distortion function concave in [0,1°

Æi§) and gives similar risk values to those obtained with VaR99.5% when
applied to the overall risk of the company. Pi , j problems may not have
solutions. Were this to be the case, then the optimization criteria would
have tobe revised, including a lowerÆmin, a higherØmax and/or a largerd .

• More than one GlueVaR solution is frequently found. Alternative com-
binations of parameter values return the same objective function value,
or a value that differs insignificantly. In this situation, solutions could be
ranked in accordance with the underlying risk attitude involved. Here,
we propose ranking the solutions based on the value of the area under
the distortion function associated with each optimal risk measure. With
this goal in mind, degrees of orness are computed for (multiple) optimal
GlueVaR

!§
1 ,!§

2

Ø j§ ,Æi§
solutions. Two particular GlueVaR risk measures among

the set of solutions are of special interest:

Lower-limit solution. Selection of theGlueVaR riskmeasurewith the as-
sociated minimum area under the distortion function;

Upper-limit solution. Selection of theGlueVaR riskmeasurewith the as-
sociated maximum area under the distortion function.

In other words, boundaries of the area size under distortion functions are
detected. OptimalGlueVaR riskmeasures linked to boundaries reflect the
extreme risk attitudes of agents when the random variable Z is analyzed.

5.2.2 Data and Results
We are going to use the dataset used in previous chapters. It contains X1,
X2 and X3. Total claim costs are the sum of the three random variables,
Z = X1 + X2 + X3. So the aggregate risk faced by the insurer is the sum of
the three random variables Xi , i = 1,2,3. We assume that the insurer uses
the VaR99.5% as its risk measure.
Before dealing with the calibration of the GlueVaR risk measures, we first
compute the VaR99.5%(Z ) and its associated area under its distortion func-
tion. The risk measure value is equal to VaR99.5%(Z ) = 51.05 and the area
under its distortion function is equal to 0.995. Let us now focus on the strat-
egy used to calibrate the GlueVaR parameters. The following steps are per-
formed toobtainGlueVaR riskmeasures that are comparable to theVaR99.5%(Z ):

a) theminimumandmaximumvalues of confidence levels are fixed at 90%

and 99.9%, i.e. Æmin = 90% and Ømax = 99.9%;



b) the number of partitions is stipulated in d = 25, so we deal with 625

optimization problems;

c) the empirical distribution function of total claim costs is used for the risk
quantification, and, finally;

d) the outcome choice of the GlueVaR solutions are obtained using con-
strOptim function from rootSolve library in R.

Amore complex calibration problem involving a modified random variable
including catastrophic losses can be found in Belles-Sampera et al. [2016c].
We obtained a set of optimal GlueVaR risk measures that give the same risk
value as the VaR99.5% in this specific context. Thus, 192 optimal solutions
were found. Once a set of GlueVaR riskmeasures has been obtained as feasi-
ble solutions, the areas under the distortion functions linked to each Glue-
VaR were computed to characterize the respective underlying aggregated
risk attitude. The boundary values and the associated GlueVaR risk mea-
sures were identified. We should emphasize that the maximum area was
equal to the areaof theVaR99.5%. In fact, theoptimalGlueVaR

!1,!2

Ø,Æ
solution

with the highest area size was the GlueVaRwith parametersÆ= 99.5%,Ø=

99.9% and !1 = !2 = 0, and it holds that GlueVaR0,0
99.9%,99.5%

= VaR99.5%

(see expression (3.4)). In other words, given a certain risk value, the VaRÆ

is the GlueVaR risk measure that presents the highest area under the asso-
ciated distortion function of all the GlueVaR risk measures that return this
value. Recall that the distortion function associated with the VaRÆ assigns
one to survival values higher than (1°Æ) and zero to the rest.
The minimum area under the distortion function and the associated Glue-
VaR risk measure for the original dataset are reported in Table 5.1. Informa-
tion about the underlying aggregate risk attitude of the agent canbe inferred
from the minimum area. Table 5.1 shows that, for this dataset, there exists
an optimalGlueVaR riskmeasure forwhich the area of the associated distor-
tion function is approximately 0.949. Thus, this GlueVaR risk measure gives
the same value as that given by VaR99.5% when applied to Z , but, in aggre-
gate terms, it involves a more moderate distortion of the original survival
distribution function and, consequently, less aggregate risk intolerance.
The area under the distortion function should be complemented with the
examination of the quotient function which allows the relative risk attitude
at any point of the survival distribution to be analyzed. The quotient func-
tions of risk measures associated with boundary areas in both scenarios are
examined. All the quotient functions analyzed are located in the upper risk-



Original dataset

Æ 0.900

Ø 0.999

!1 0.483

!2 1.035 ·10°6

!3 0.516

Area under the
distortion function 0.949

Note: Parameter values of the associated GlueVaR risk measure equivalent to
VaR99.5% and minimum area under the distortion function.

tolerance frontier in the range [0.10,1). For ease of comparison, the quo-
tient functions are rescaled and their left-tails are shown only in the range
[0,0.10] in Figure 5.7.

Notable differences can be observed in the relative risk attitudes locally im-
plicit in the left-tail of the quotient functions. Let us first examine the quo-
tient function of the GlueVaR risk measure that presents the maximum de-
gree of orness (left), which is the same quotient function associated with
the VaR99.5%. The agent is most risk intolerant at any point of the interval
[0.5%,1) andmaximum risk tolerant at (0,0.5%). This means, the quotient
function is located in the upper frontier at [0.5%,1) and in the lower frontier
at (0,0.5%). When the GlueVaR risk measure that presents the minimum
area is analyzed (right), the patterns of the left-tails of the quotient func-
tions are undoubtedly different. An interesting finding is that the Qg (u) is
not located within the boundaries at any point of the interval (0,0.10). This
means, the risk intolerant attitude is notmaximized in the range [0.5%,0.10)

but, on the contrary, the agent is more risk intolerant to catastrophic losses
at (0,0.5%) than when using VaR99.5%.



Note: Maximum (left) andminimum (right) areas under distortion functions of op-
timal GlueVaR risk measures. Dashed curve indicates the upper-bound quotient
function curve, i.e. 1

u
for all 0 … u … 1.

5.3 GlueVaR to reflect risk attitudes

Distortion risk measures are widely used for assessing risk in a range of dif-
ferent contexts. As we have seen, the risk value obtained from such risk
measures depends basically on the characteristics of the random variable,
which are captured by the survival distribution function, and the associated
distortion function. These two elements can be disaggregated and, here, our
attention has focused on an analysis of the distortion function, which can
be understood as a weighting function of survival probabilities. Thus, any
risk attitude implicit in a distortion risk measure is to some extent attached
to its distortion function.
The analysis of the risk attitude implicit in the Value at Risk illustrates that it
is not sensitive to changes involving riskier scenarios. The reason for this is
that the riskmeasure presents two extreme risk attitudes, i.e. maximum risk
resistance in [1°Æ,1) andmaximum risk intolerance in (0,1°Æ). Here, we
have shown that additional risk information may be obtained using com-
parable GlueVaR risk measures that are calibrated to report the same risk
value as that of the VaRÆ. The calibration procedure of GlueVaR parame-
ters was not the primary focus of this chapter and it was not our intention
to cover all the possible calibration criteria. However, two final remarks are



worth recording. First, the procedure proposed depends necessarily on the
risk measure of reference and also on the random variable. As such, the
set of comparable GlueVaR risk measures differs when the random variable
changes. This is not an unbridgeable drawback when requesting to the su-
pervisory authorities authorization for changing the riskmeasure to a Glue-
VaR one, if decisionmakers are able to justify theGlueVaR selection process.
For example, these measures may be used to analyze variations from one
year to next in the implicit risk attitude of boundary cases when theVaRÆ is
applied to assess the annual risk. Second, the VaRÆ was chosen as the risk
measure of reference because of its application in practice, but the calibra-
tion strategy of the GlueVaR risk measures could easily be adapted to other
risk measurement problems.

5.4 Exercises
1. Compare the area under the distortion function of the GlueVaR11/30,2/3

85%,50%
,

GlueVaR0,1
85%,50%

and the GlueVaR1/20,1/8
85%,50%

. What do you can say in terms
of aggregate risk attitude associated to these risk measures?
Hint: The heights (h1,h2) equal to (11/30,2/3), (0,1), and (1/20,1/8)

correspond to (!1 = 1/3, !2 = 1/3), (!1 =°1/9, !2 = 10/9) and (!1 =

1/24, !2 = 1/12), respectively.

2. Plot the quotient functions of previous GlueVaR risk measures. Discuss
what additional information (if there are) in terms of local risk attitude is
provided when the quotient function of these risk measures is analyzed.

3. Compute the area under the distortion functions of the RVaR1%,5% and
RVaR5%,1%.

• What do you can say in terms of aggregate risk attitude associated to
these risk measures?

• Discuss their quotient functions in terms of the implicit local risk atti-
tude.

4. Analyze the area under the distortion function and the quotient function
of theWang-Transform risk measure [Wang, 2002]. Discuss the relation-
ship between Æ and the underlying risk attitude.
Hint: The distortion function of the Wang-Transform risk measure is de-
fined as g (u) = ©[©°1(u)°∏], where u = S(x) and ∏ = ©

°1(Æ) with
the security level Æ.







6 An overview on capital
allocation problems

Capital allocationproblemsof insurance and financial institutions arisewhen
amanagement unitmust distribute an amount of resources amongdifferent
business units. These resourcesmay be the aggregate cost faced by the com-
pany, its solvency capital requirement or the total variable economic com-
pensation to be shared across business units, among other examples. This
kind of problems are frequent and relevant fromanEnterprise RiskManage-
ment (ERM) perspective, mainly if the risk that each business unit faces is,
somehow, taken into account for the final allocation. Sometimes the capital
allocation is merely notional, as pointed out in Dhaene et al. [2012b]. This
does not diminish the importance of studying these problems at all. The al-
location information may be useful to conduct different business analyses
in order to improve the risk management of the company.
Main concepts and notations regarding capital allocation problems are in-
troduced in the next section. These are the building blocks on which the
rest of the discussion is based and represent a necessary starting point to
go further in next chapters. The overview on capital allocation problems
is completed with a description of some particularly interesting solutions
and with a list of properties that particular solutions to these problemsmay
satisfy.

6.1 Main concepts and notation
In general terms, a capital allocation problemmay be understood in the fol-
lowing way:

“An amount K > 0 of monetary units has to be distributed across n 2 N

agents, and the allocation must be a full allocation.”



Described in such a way, capital allocation problems can be understood as
disaggregation problems. Several comments must be made in relation to
capital allocation problems. First of all, on the riskmanagement framework
inwhich this kind of problems arises. These problems are strongly related to
the fact that risk managers from the insurance and banking industries must
determine, at different levels of granularity, the contributions of agents to
the risk-based regulatory capital required to companies. In that sense, the
concept of agent must be understood in a broad way: it may be a commer-
cial agent, a business unit, a branch of the overall business or even a par-
ticular guarantee included in a set of contracts. Nonetheless, it has to be
noted that similar risk management problems are faced by asset manage-
ment firms when planning investment strategies or when assessing perfor-
mance of their investment portfolios. In such contexts it is more usual to re-
fer to these problems as portfolio risk attribution or risk budgeting problems
[see, for instance, Grégoire, 2007; Rahl, 2012].
Secondly, it is important to list the main elements that play a role in a cap-
ital allocation problem. Capital allocation problems may be described by
means of the following elements:

• The capital K > 0 to be distributed;
• The agents, indexed by i = 1, . . . ,n;
• Random variables linked to each agent, {Xi }i=1,...,n ;
• Functions fi , i = 1, . . . ,n, used to simplify the information provided by
each Xi ;

• A distribution criterion;
• Capitals Ki , i = 1, . . . ,n, assigned to each agent as a solution to the prob-
lem;

• The goal that is pursued with the allocation. Some examples are cost of
risk allocation, reward to riskless allocation or reward on risk and return
(risk&return) allocation.

In particular, a solution of a capital allocationproblem is the set ofn capitals
{Ki }i=1,...,n allocated to each agent, where capitalKi is the amount of capital
assigned to the i th agent. It is usually required that the solution satisfies
the full allocation property. It happens when the set of capitals adds up to
K , that is, Pn

i=1
Ki = K . The capital amount assigned to the i th agent Ki is

related to the risk Xi faced by that agent. Random variables Xi , i = 1, . . . ,n,
are frequently representing i th agent’s losses.



A solution to a capital allocation problem is called a capital allocation prin-
ciple. One of the fundamental elements characterizing a capital allocation
principle is thedistribution criterion that drives the allocation. Proportional
allocation criteria are such that each capital Ki , i = 1, . . . ,n, may be ex-
pressed as the product of capital K times a proportion of the form

fi (Xi )
nP

j=1
f j (X j )

,

where fi functions simplify all the information provided by Xi . Therefore,
the general expression for a proportional allocation principle is

Ki = K ·
fi (Xi )

nP
j=1

f j (X j )

, i = 1, . . . ,n. (6.1)

Frequently, functions fi are risk measures or partial contributions to the
value that a risk measure assigns to the whole random loss understood as
S =

Pn
j=1

X j . If fi is a risk measure Ω, the proportional allocation principle
is classified as a stand-alone proportional allocation principle. On the other
hand, when dealing with { fi }i=1,...,n which represent partial contributions
to Ω(S) for a given risk measure Ω, the proportional allocation principle is
based onmarginal or partial contributions. The name is inherited by the fact
that expression Ω(S) =

Pn
j=1

f j (X j ) holds. In such those cases, notation
fi (Xi ) = Ω(Xi | S) is going to be used and, therefore, the general expression
for proportional allocation principles based on partial contributions is

Ki = K ·
Ω(Xi | S)

Ω(S)
, i = 1, . . . ,n. (6.2)

Among proportional capital allocation principles, the main difference be-
tween stand-alone principles and the ones based on partial contributions
is related to diversification effects. Stand-alone principles do not take into
account neither benefits nor penalizations on risk of each i th agent due to
the fact that the agent belongs to a set of agents, while principles based on
partial contributions do. That is, stand-alone principles do not take into
account dependencies between risks and partial contributions based prin-
ciples take into account that risks are interconnected.
Non-proportional allocation principles are such that an expression like (6.1)
for each of the assigned capitals Ki , i = 1, . . . ,n, cannot be achieved. An ex-
ample of non-proportional principle is the excess based allocation principle
shown in Section 6.3.3.



A significant number of principles can be included in the framework pro-
vided by Dhaene et al. [2012b]. For instance, when using the so-called quad-
ratic optimization criterion, principles like

Ki = Ωi (Xi )+ vi ·

"
K °

nX

j=1

Ω j (X j )

#
, (6.3)

whereΩi , i = 1, . . . ,n, are riskmeasures and vi areweights such that
Pn

j=1
v j

= 1. If all vi are equal to Ωi (Xi )/
°Pn

j=1
Ω j (X j )

¢
, then it is a proportional

allocation principle. To obtain non-proportional allocation principles, at
least one of the vi , say vi0

, must be not equal to Ωi (Xi )/
≥Pn

j=1
Ω j (X j )

¥
. In

other words, there must exist an i0 2 {1, . . . ,n} such that

vi0
6=

Ωi0

°
Xi0

¢
Pn

j=1
Ω j (X j )

.

Last but not least, a major issue is the goal pursued with the allocation. We
here propose three different goals: cost of risk, reward to riskless and reward
on risk and return. Other alternative goals may be considered and they will
depend on the opinion of decision makers (risk managers, regulators, etc.).
The aimof a capital allocation problemwith a cost of risk goal is to distribute
the cost among the agents by taking into account some measure of the risk
faced by each one of them. An example of such a cost of risk allocation is
the disaggregation of the Solvency Capital Requirement (SCR) of the whole
business of an European insurance company under the Solvency II regime
among its lines of business.
Assume that a management team wants to stimulate a risk averse attitude
among the business units it has in charge, thismanagement teammay adopt
a compensation schemebasedon the following idea: the riskier thebusiness
unit is, the lesser the reward it receives. In such a situation, a capital allo-
cation problem with a reward to riskless objective is conducted. This kind
of problems rarely appears in practice. But, if we try to think in an example
of such a capital allocation problem, it could appear when there is the re-
quest of notionally distributing the contribution of each agent to the overall
diversification benefit, where only there is information about a final cost of
risk allocation and the overall diversification benefit. That is, where there is
not information about each individual diversification benefit.
A much more frequent problem faced by managers in practice is to allo-
cate capital under a reward on risk and return criterion, in order to better re-
ward those agents whose trade-off between return obtained and risk faced



is higher. In this context, a return-on-risk measure seems to be the natural
choice of functions { fi }i=1,...,n in order to assign rewards under the reward
on risk and return perspective. In next sections some examples related to
this type of allocation are going to be provided.
A principle is denoted in this book by ~K = (K1,K2, . . . ,Kn). An abuse of
notation is made because K is used both to denote the vector ~K whose
components are Ki and the capital to be distributed among agents. Given
an (absolute) capital allocation principle ~K with K =

Pn
j=1

K j , its relative
counterpart is defined as the n dimensional vector ~x , whose components
are xi = Ki /K and satisfy that Pn

j=1
x j = 1. If there is no room for con-

fusion, upper-case letters mean absolute principles while lower-case letters
mean relative ones. This notation is used in next chapters.

6.2 Properties of capital allocation principles
As in the case of risk measures, capital allocations have been often stud-
ied from an axiomatic point of view. Denault [2001] defines a set of axioms
that capital allocations should satisfy. Allocations satisfying some of these
axioms1 were called coherent allocations therein, in line with the idea of co-
herent risk measures previously introduced by Artzner et al. [1999]. Let Xi ,
i = 1, . . . ,n, be the set of risks and S = X1 +·· ·+ Xn their sum. Consider a
risk measure Ω(S) and capital allocation principles for which K = Ω(S) and
Ki , i = 1, . . . ,n are partial contributions Ki = Ω(Xi | S) such that Ω(S) =

nP
i=1

Ω(Xi | S). The properties that those capital allocation principles should
satisfy are:

• Consistency (or riskless allocation)
The capital allocated to a risk that has no uncertainty is equal to the cer-
tain risk.
If Xi = k for any constant k 2R then Ki = Ω(Xi | S) = k.

• Full allocation
The capital for the overall risk is split into capitals for all individual risks,
that is

Ω(a1X1 +·· ·+an Xn) =
nX

i=1

Ω(ai Xi | S), ai 2R
+ .

1 No undercut, symmetry and riskless allocation (or consistency).



If Ω satisfies the positive homogeneity property, then this is equivalent to

Ω(a1X1 +·· ·+an Xn) =
nX

i=1

aiΩ(Xi | S).

Notice that for ai = 1, for all i = 1, . . . ,n,

Ω

√
nX

i=1

Xi

!
=

nX

i=1

Ω(Xi | S).

• No undercut
The capital allocation for any decomposition of total risk undercut is not
higher than the capital amount that it would be allocated as a separated
portfolio.
For any subset of N , A µ N , where N = {1, . . . ,n}, it is satisfied that

X

i2A

Ki =
X

i2A

Ω(Xi | S) … Ω

√
X

i2A

Xi

!
.

• No diversification
If there are not diversification benefits for the agents when considered
together in terms of risk (i.e. if Pn

i=1
Ω(Xi ) = Ω(S)) then the capital allo-

cation principle becomes really simple: the stand-alone risk of each agent
is the amount allocated to it. IfPn

i=1
Ω(Xi ) = Ω(S) thenKi = Ω(Xi ) for all

i = 1, . . . ,n.

• Symmetry
For two identical risks, Xi = X j , i 6= j , the allocated capital must be the
same Ω(Xi | S) = Ω(X j | S).

• Continuity
Infinitesimal variations on the whole risk have no impact on risk alloca-
tions,

lim
h!0

Ω(Xi | S +h) = Ω(Xi | S).

This is not a complete list of properties. Other properties as translation in-
variance, scale invarianceormonotonicitywith respect to a concordanceor-
dering are often asked to capital allocation principles. The interested reader
is referred, for instance, to van Gulick et al. [2012].



6.3 Review of some principles
A collection of particular principles is included in this section. Three partial
contribution based capital allocation principles are defined and one non-
proportional capital allocation principle. This section does not pursue to
be a deep review of principles found in the literature. The principles dis-
cussed in this section have been selected for exposition purposes. The at-
tention has been paid to specific issues of each capital allocation principle,
so a non-homogeneous extension is found in the discussion of each princi-
ple.

6.3.1 The gradient allocation principle
This principle is also knownasEuler allocationprinciple [McNeil etal., 2005]
or, from a game-theoretic perspective, as Aumann-Shapley allocation prin-
ciple [Denault, 2001]. According to Tasche [1999, 2004, 2007] capital allo-
cation principles based on the gradient are the most appropriate allocation
principles to deal with risk adjusted returns. Since reward on risk and re-
turn allocations could be specially useful in sound ERM systems, the key
elements of the gradient allocation principle and its usefulness as reward
on risk and return allocations are discussed in detail in this section.
The basic idea that must be remarked is that the gradient allocation princi-
ple takes advantage of the Euler’s theorem on homogeneous functions ap-
plied to positively homogeneous risk measures. The definition of homoge-
neous functions and the Euler’s theorem are as follows.

Definition 6.1 (Homogeneous function of degree r ). Let f be a function
from R

n to R, n > 0.

f is homogeneous of degree r , 8∏ 2R, f (∏ ·~u) =∏r
· f (~u) .

Theorem 6.1 (Euler’s theorem on homogeneous functions). Let f : Rn !
R be a differentiable function onRn . Then,

f is an homogeneous function of degree r ,
nX

i=1

ui ·
@ f

@ui
(~u) = r · f (~u) .

It has to be noted that a differentiable function f defined from R
n to R has

a gradient equal tor f (~u) =

µ
@ f

@u1
(~u),

@ f

@u2
(~u), . . . ,

@ f

@un
(~u)

∂
and, therefore,

the right-hand side of the equivalence in Theorem 6.1 can be also written as
h~u,r f (~u)i= r · f (~u), where h , i stands for the interior product in R

n .



Consider now a positively homogeneous risk measure Ω. This means that
Ω(∏ · X ) = ∏ ·Ω(X ) for all ∏   0 and for all X 2 °, as we have seen in Ta-
ble 1.2 of Chapter 1. Now, given a random vector ~X = (X1, X2, . . . , Xn) 2 °

n ,
consider the following function f~X as well:

°
R
+
¢n f~X =Ω±s

//

s
++

R

°

Ω

KK

~u 7! s(~u) =
nX

i=1

ui Xi 7! Ω(s(~u)) = Ω

√
nX

i=1

ui Xi

!
= f~X (~u) (6.4)

Taking into account Definition 6.1 restricted to
°
R
+
¢n , considering that Ω is

a positively homogeneous risk measure, and noting that
nP

i=1
ui Xi 2 ° for all

~u 2
°
R
+
¢n if ~X 2 °

n , then it is deduced that f~X is anhomogeneous functionof
degree r = 1. In such a case, applying Theorem 6.1 the following expression
holds:

f~X (~u) =
nX

i=1

ui ·
@ f~X

@ui
(~u) = h~u,r f~X (~u)i . (6.5)

If ~u = (1,1, . . . ,1) then the sumPn
i=1

ui Xi is the sum of all the components
of the random vector ~X . From this point forward, this sum is denoted as S,
so S =

Pn
i=1

Xi . If the following simplified notation is used

@Ω

@ui
(S) =

@ f~X

@ui
(~u)|~u=(1,1,...,1) ,

then expression (6.5) becomes

Ω(S) =
nX

i=1

@Ω

@ui
(S) , (6.6)

which is the formula usually related to the underlying idea of the Euler allo-
cation principle.

Example 6.1. LetW1 andW2 be two independent random variables identi-
cally distributed as standard Normal distributions. Consider X1 = W1 and
X2 =

1
2
·W1+

p
3

2
·W2. Obviously, X1 is distributed as a standard Normal dis-

tribution and it is easy to check that X2 too, although X1 and X2 are not in-
dependent but there is a linear correlation of 50% between them. Consider



now two positive deterministic returns r1 > 0 and r2 > 0 and two assets
whose random returns can be represented byY1 = r1+X1 andY2 = r2+X2.
Investing in u1   0 units of the first asset and in u2   0 units of the second
one a portfolio with return r(~u) = u1 ·Y1 +u2 ·Y2 is obtained. By construc-
tion, the return of this portfolio is Normally distributed, withmean equal to
u1 · r1 +u2 · r2 and variance equal to

V(r(~u)) = E
°
[r(~u)°E(r(~u)]2

¢

= E

√"
(u1 +0.5 ·u2) ·W1 +

p
3

2
·u2 ·W2

#2!

=

µ
u2

1 +u1 ·u2 +
1

4
·u2

2

∂
·E(W 2

1 )+
3

4
·u2

2 ·E(W 2
2 )

+2 ·

µ
u1 +

1

2
·u2

∂
·

p
3

2
·u1 ·u2 ·E(W1 ·W2)

= u2
1 +u1 ·u2 +u2

2 .

Starting from an initial portfolio of u0
1 units of the first asset and u0

2 units of
the secondone, we are interested in allocating the risk facedby this portfolio
(measured with the VaR risk measure at some confidence level) using the
gradient allocation principle. Is this possible?
First thing to be noticed is that positive values of returns r(~u) are profits and
not losses. This is important in order to calculate the risk faced by the port-
folio, because ifÆ 2 (0,1) is the chosen confidence level thenwe are going to
compute Ω(s(~u)) = VaRÆ(°r(~u)) or, in other words, the loss function that
we are going to consider is s(~u) =°r(~u) (recall the discussion with respect
to the ‘liability’ or the ‘asset’ side perspectives provided in Section 1.2.1). The
second remark is more subtle and it is related to ensure that Ω(s(~u)) is an
homogeneous function of degree 1 on R

2, because this is a necessary con-
dition to be allowed to apply the Euler’s Theorem. In this case, there is no
problem with Ω(s(~u)), because Ω = VaRÆ is a positively homogeneous risk
measure and s(~u) = °u1 ·Y1 °u2 ·Y2 is linear in u1 and u2, so homoge-
neous of degree 1. But note that, for instance, if we change the actual Y1 by
Y1 = log(u1 +

1
2

)+ X1 then the associated s(~u) is not homogeneous of de-
gree 1 and conditions to successfully apply the gradient allocation principle
are not satisfied.
Following thenotation introduced in expression (6.4) let us compute f~Y (~u) =

VaRÆ(s(~u)) and its gradient r f~Y (~u). We have already shown that r(~u) is



Normally distributed so, recalling Table 1.3 in Chapter 1:

VaRÆ(s(~u)) =°u1 · r1 °u2 · r2 +©
°1(Æ) ·

q
u2

1 +u1 ·u2 +u2
2 . (6.7)

Note that the previous expression is symmetric in ui , i = 1, 2. The gradient
of VaRÆ(s(~u)) is the vector with the following components

@VaRÆ(s(~u))

@u1
=°r1 +©

°1(Æ) ·
(2 ·u1 +u2) ·

q
u2

1 +u1 ·u2 +u2
2

2 · (u2
1 +u1 ·u2 +u2

2)
,

@VaRÆ(s(~u))

@u2
=°r2 +©

°1(Æ) ·
(u1 +2 ·u2) ·

q
u2

1 +u1 ·u2 +u2
2

2 · (u2
1 +u1 ·u2 +u2

2)
.

(6.8)

All the elements to derive the capital allocation based on the gradient prin-
ciple are nowavailable, sowith respect to theportfolio consisting inu0

1 units
of the first asset and u0

2 units of the second one and taking into account ex-
pression (6.5) the final allocation becomes the following:

VaRÆ

°
°u0

1 ·Y1 |°u0
1 ·Y1 °u0

2 ·Y2

¢

=°u0
1 · r1 +©

°1(Æ) ·
(2 · (u0

1)2 +u0
1 ·u0

2) ·
q

(u0
1)2 +u0

1 ·u0
2 + (u0

2)2

2 · ((u0
1)2 +u0

1 ·u0
2 + (u0

2)2)
,

(6.9)
VaRÆ

°
°u0

2 ·Y2 |°u0
1 ·Y1 °u0

2 ·Y2

¢

=°u0
2 · r2 +©

°1(Æ) ·
(u0

1 ·u0
2 +2 · (u0

2)2) ·
q

(u0
1)2 +u0

1 ·u0
2 + (u0

2)2

2 · ((u0
1)2 +u0

1 ·u0
2 + (u0

2)2)
.

Let us complete the example with some numbers, similar to those that can
be found in Buch et al. [2011]. Imagine that our starting portfolio consists in
the combination of u0

1 = 1.5 units of the first asset and u0
2 = 1.7 units of the

second one, and that the deterministic returns r1 and r2 are r1 = 46.2098%

and r2 = 46.3798%, respectively. Additionally, let the confidence levelÆ be
equal to 99.97%, so©°1(Æ) = 3.4316. The random loss of the portfolio has
the following expression s(~u0) =°1.5 ·Y1 °1.7 ·Y2 and

E(s(~u0)) =°1.5 ·46.2098%°1.7 ·46.3798% =°148.1605%,

V(s(~u0)) = (°1.5)2
+ (°1.5) · (°1.7)+ (°1.7)2

= 7.69, (6.10)

VaR99.97%(s(~u0)) =°148.1605%+3.4316 ·
p

7.69 = 803.4554%,



so a really profitable return of 148.1605% is expected (negative lossesmean
gains) and negative returns will not be under °803.4554% in the 99.97%

of situations. How may this potential risk be allocated to the assets? One
possibility is to use the gradient allocation principle as derived in expression
(6.9):

VaR99.97%(°1.5 ·Y1 |°1.5 ·Y1 °1.7 ·Y2)

=°69.3147%+3.4316 ·
7.05 ·2.7731

2 ·7.69
= 366.8941%, and

VaR99.97%(°1.7 ·Y2 |°1.5 ·Y1 °1.7 ·Y2)

=°78.8457%+3.4316 ·
8.33 ·2.7731

2 ·7.69
= 436.5613%.

(6.11)

Note that, as it may be expected,

VaR99.97%(s(~u0)) = VaR99.97%

°
°1.5 ·Y1 | s(~u0)

¢

+VaR99.97%(°1.7 ·Y2 | s(~u0))

(803.4554% = 366.8941%+436.5613%).

Another way to interpret the allocation provided in expression (6.11) is that
the 45.66% (366.8941%/803.4554%) of the risk is allocated to the first as-
set and the 54.34% of the risk is allocated to the second one.

Now, it is shown that the gradient allocation principle is the most appro-
priate principle to deal with reward on risk and return. First, we consider
a particular Return on Risk Adjusted Capital (RORAC) measure, and some
concepts and notations taken from Tasche [2007]:

Definition 6.2. The total RORAC of portfolio S =
Pn

i=1
Xi is defined by

RORAC(S) =
°E(S)

Ω(S)
,

where Ω is a risk measure and each random variable Xi , i = 1, . . . ,n is such
that its positive values represent losses.

Definition 6.3. Given a portfolio S =
Pn

i=1
Xi and a set of contributions

Ω(Xi | S), i = 1, . . . ,n, to the value of the risk of the portfolio measured by
Ω, i.e. Ω(S) =

Pn
i=1

Ω(Xi | S), the portfolio-related RORAC of each random
variable Xi is defined by

RORAC(Xi | S) =
°E(Xi )

Ω(Xi | S)
, 8 i = 1, . . . ,n .



Note that, inmost of the situations, numerators inDefinitions 6.2 and 6.3 are
positive, because the mathematical expectations of S and Xi , i = 1, . . . ,n,
arenegative: itmaybeassumed that i thbusiness unit doesnot expect losses,
so E(Xi ) < 0 due to the fact that positive values of Xi mean losses. A sec-
ond remark is that the Definition 6.3 depends on both portfolio S and par-
tial contributions to Ω(S). Bearing these two previous definitions in mind,
let us now present the RORAC compatibility definition provided by Tasche
[2007]:

Definition 6.4 (RORAC compatible risk contributions). Risk contributions
Ω(Xi | S), i = 1, . . . ,n are RORAC compatible if there are some ≤i > 0, i =

1, . . . ,n such that

RORAC(Xi | S) > RORAC(S) )

RORAC(S +hXi ) > RORAC(S) for all 0 < h < ≤i

According to the definition of RORAC compatibility, if the partial risk and
return performance of i th agent given by Definition 6.3 is greater than the
risk and return performance of the overall portfolio given by Definition 6.2,
then the risk and return performance of the overall portfolio is improved by
slightly increasing the position of i th agent in the portfolio. In other words,
if some RORAC(Xi | S) is greater than the RORAC(S) and the contribution
Ω(Xi | S) is RORAC compatible, then the position on i th agent should be
increased in order to improve the overall performance of the portfolio.
Assuming that it is possible to slightly increase the position of i th agent in
the portfolio, going from Xi to Xi · (1+h) with h 2 (0,≤i ), the necessary
condition expressed in Definition 6.4 can be understood as equivalent to
the following one

@RORAC

@ui
(s(~u))|~u=(1,1,...,1) > 0, (6.12)

simply by computing

lim
h!0

1

h
[RORAC(S +hXi )°RORAC(S)] .

Taking advantage of expression (6.12) the RORAC compatibility of the gra-
dient allocation principle can be proved.



Proposition 6.1. Suppose that Ω(s(~u)) and
@ f~X

@ui
(~u) for all i = 1, . . . ,n, are

strictly positive. A gradient allocation principle ~K 2 R
n of the form Ki = K ·

Ω(Xi | S)

Ω(S)
where risk contributions are Ω(Xi | S) =

@Ω

@ui
(S) for all i = 1, . . . ,n,

is such that all the risk contributions are RORAC compatible.

Proof. Let us show that expression (6.12) holds for each i = 1, . . . ,n:

@RORAC

@ui
(s(~u)) =

@

@ui

2
4
°E

≥Pn
j=1

u j ·X j

¥

Ω
≥Pn

j=1
u j ·X j

¥

3
5

=

@

@ui

h
°E

≥Pn
j=1

u j ·X j

¥i
·Ω

≥Pn
j=1

u j ·X j

¥

h
Ω

≥Pn
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As long as the denominator of the previous expression is always positive,
then it is deduced that @RORAC

@ui
(s(~u)) > 0 if and only if°E(Xi ) ·Ω(s(~u))+

E(s(~u)) ·
@ f~X

@ui
(~u) > 0. Consider that both Ω(s(~u)) and

@ f~X

@ui
(~u) are strictly

positive: these conditions may usually hold, because of dealing with risk
values or risk contributions of a portfolio of risky positions. But note that, in
fact, these conditions have been required as hypotheses in the proposition.
Being this the case, this last expression may be written as

°E(Xi )

@ f~X

@ui
(~u)

>
°E(s(~u))

Ω(s(~u))
.

Moreover, when restricted to ~u = (1,1, . . . ,1) this last expression provides



the following information:

@RORAC

@ui
(s(~u))|~u=(1,1,...,1) > 0, if and only if

°E(Xi )

@Ω

@ui
(S)

>
°E(S)

Ω(S)
()

°E(Xi )

Ω(Xi | S)
>

°E(S)

Ω(S)

() RORAC(Xi | S) > RORAC(S) . ‰

Example 6.2. Let us continue with the example shown previously in this
chapter, in order to illustrate RORAC calculations and to check that, when
using the gradient allocationprinciple, theRORACcompatibility is satisfied.
First of all, let us compute the total RORAC of the portfolio (recall expres-
sion 6.2) and the portfolio-related RORAC of each asset in the portfolio (as
defined in expression 6.3):

RORAC(s(~u0)) =

u0
1 · r1 +u0

2 · r2

°u0
1 · r1 °u0

2 · r2 +©°1(Æ) ·
q

(u0
1)2 +u0

1 ·u0
2 + (u0

2)2
,

RORAC(°u0
1 ·Y1 | s(~u0))) =

u0
1 · r1

°u0
1 · r1 +©°1(Æ) ·

(2 · (u0
1)2 +u0

1 ·u0
2) ·

q
(u0

1)2 +u0
1 ·u0

2 + (u0
2)2

2 · ((u0
1)2 +u0

1 ·u0
2 + (u0

2)2)

,

RORAC(°u0
2 ·Y2 | s(~u0))) =

u0
2 · r2

°u0
2 · r2 +©°1(Æ) ·

(u0
1 ·u0

2 +2 · (u0
2)2) ·

q
(u0

1)2 +u0
1 ·u0

2 + (u0
2)2

2 · ((u0
1)2 +u0

1 ·u0
2 + (u0

2)2)

.

(6.13)

Considering the aforementioned values ofu0
1 ,u0

2 , r1, r2, andÆ, the previous
expressions lead to the following results:

RORAC(s(~u0)) =
1.5 ·46.2098%+1.7 ·46.3798%

°1.5 ·46.2098%°1.7 ·46.3798%+3.4316 ·2.7731
= 148.1605%/803.4554%

= 18.4404%,



RORAC(°1.5 ·Y1 | s(~u0))) =
1.5 ·46.2098%

°1.5 ·46.2098%+3.4316 ·
7.05 ·2.7731

2 ·7.69
= 69.3147%/366.8941%

= 18.8923%,

RORAC(°1.7 ·Y2 | s(~u0))) =
1.7 ·46.3798%

°1.7 ·46.3798%+3.4316 ·
8.33 ·2.7731

2 ·7.69
= 78.8457%/436.5613%

= 18.0606%.

(6.14)

These results are providing us the following information: on the one hand,
although it is expected that the current position on the second asset would
generate a higher return (near 79%) than the current position on the first
one (69%), the trade-off between risk and returnmeasured by the portfolio-
related RORAC is better for the position on the first asset than for the posi-
tion on the second one. Additionally, the portfolio-related RORAC of the
position on the first asset (18.8923%) is higher than the RORAC of the over-
all portfolio (18.4404%) which, in turn, is higher than the portfolio-related
RORAC of the position on the second asset (18.0606%). As we know that
within this allocation the RORAC compatibility is satisfied, a natural strat-
egy to improve theRORACof our current portfoliowould be slightly increas-
ing our position in the first asset and shorting our position in the second
asset (also with a slight decrement of the position). For instance, it can be
checked that if positions (u0

1,u0
2) are changed to be (1.56,1.69) instead of

(1.5,1.7), then the RORAC of the overall portfolio becomes 18.4479% (an
improvement is achieved).
This is a straight application of the RORAC compatibility property of RO-
RAC contributions as stated in Definition 6.4. Note that this is not contra-
dictory with the fact that an optimal portfolio (in terms of RORAC) would
be found following a different strategy (for instance, increasing current posi-
tions in both assets at the same time). Why? Because the strategy of increas-
ing both positions may be decomposed in several sub-strategies (steps) in
which increasing or decreasing positions on the assets depend on the recal-
culatedportfolio-relatedRORACs. Going back to thenumerical example, af-
ter changing our portfolio to 1.56 units of the first asset and 1.69 units of the
second one, it can be checked that RORAC(°1.56 ·Y1 | s(~u0)) = 18.7133%

andRORAC(°1.69·Y2 | s(~u0)) = 18.2104%. To improve the overall RORAC



of the portfolio we could now decide to change again our positions, increas-
ing to 1.69 our position on the first asset and freezing the position on the
second one. By doing this, we would obtain an overall RORAC for our new
portfolio equal to 18.4521% (higher than the 18.4479% obtained with the
first change of positions). But now RORAC(°1.69 ·Y1 | s(~u0)) = 18.4120%

and RORAC(°1.69 ·Y2 | s(~u0)) = 18.4923%, which would drive us to make
another change: we would increase our position on the second asset to, for
example, 1.71 units and let the position on the first one equal to 1.69. If we
do that then the RORAC of the overall portfolio slightly raises to 18.4522%.
Is this portfolio with (u0

1,u0
2) = (1.69,1.71) optimal in terms of RORAC?We

do not know, but its overall RORAC (18.4522%) is higher than the original
one (18.4404%) and, as we have shown, original positions on both assets
have increased.

This examplehasbeenadapted fromBuch etal. [2011]. The interested reader
canbe found there examples showing the sub-optimality, in termsof theRO-
RAC of the overall portfolio, of some strategies devised by properly applying
the RORAC compatibility property that the contributions derived from the
gradient allocation principle satisfy.

Some final comments on the gradient allocation principle. This elegant ap-
proach to proportional capital allocation principles based on partial contri-
butions has two main drawbacks when they are applied on a real context.
On the one hand, infinitesimal (or very small) perturbations on the risky
position of an agent can often not be made in practice. Frequently, it is not
feasible to performarbitrarily small changes in positions. As a consequence,
the compatibility of RORAC contributions should be barely satisfied even
for the risk contributions linked to the gradient allocation principle.

The second limitation is related to the computation of risk contributions°
@ f~X /@ui

¢
(~u), where the value of the risk measure Ω for sums s(~u), ~u 2R

n

cannotbe expressed in ananalytic closed-formexpression. This is, probably,
the most frequent practical situation. In most of the cases, some decisions
must be taken in order to approximately do an allocation based on the gra-
dient. For instance, Tasche [2007] shows how the risk contributions of Xi

to the VaRÆ of the portfolio can be approximated using kernel estimators.
With this respect, it has to be noted that this situation is extremely similar
to the one depicted in Figure 1.2 inChapter 1, but now considering on the left
hand side (Theory) a gradient allocation principle ~K and in the right hand
side (Practice) the effective estimation of that capital allocation principle b~K .



6.3.2 Other capital allocation principles based on partial
contributions

There are other examples of proportional capital allocationprinciples based
on partial contributions fitting expression (6.2). Two examples are given
here, one from a probabilistic perspective and another one from a game-
theoretic perspective.

The covariance allocation principle

This principle is proposed, for instance, in Overbeck [2000]. It takes into
account the variance as the risk measure for the whole portfolio: Ω(S) =

V(S). The partial contribution of the i th agent Xi is the covariance of Xi

with respect to S, so Ω(Xi | S) = Cov(Xi ,S). Therefore, this principle is
expressed as

Ki = K ·
Cov(Xi ,S)

V(S)
, 8 i = 1, . . . ,n. (6.15)

Note that Ω(S) =
Pn

j=1
Ω(Xi | S) because of the (bi)linearity of the covari-

ance:

Ω(S) =V(S) = Cov(S,S) = Cov

√
nX

j=1

X j ,S

!
=

nX

j=1

Cov(X j ,S) =
nX

j=1

Ω(Xi | S) .

From the perspective of the Euler’s Theorem on homogeneous functions,
this principle can be understood in two different (but related) ways. The
first interpretation considers as the risk measure Ω the variance in expres-
sion (6.4), in order to interpret the covariance principle similarly to a gradi-
ent principle. The resulting function f~X =V±s is not anhomogeneous func-
tion of degree r = 1 but an homogeneous function of degree r = 2, because
the variance is not a positively homogeneous risk measure but satisfies the
following relationship: for all ∏ 2 R and for all X 2 °, V(∏ · X ) = ∏2 ·V(X ).
From Theorem 6.1 this means that expression

2 ·V

√
nX

j=1

u j ·X j

!
=

nX

i=1

ui ·
@V

°Pn
k=1

uk ·Xk

¢

@ui
(6.16)

holds or, in other words, that
"

1

2
·
@V

°Pn
k=1

uk ·Xk

¢

@ui

#

|~u=(1,1,...,1)

= Cov(Xi ,S).



Let us check this last equivalence:
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@ui
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X

k 6=i

ui ·uk ·Cov(Xi , Xk )
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X

j 6=i

X
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X j , Xk

¢
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X

j 6=i

u j ·ui ·Cov(X j , Xi )

#

= 2 ·ui ·Cov(Xi , Xi )+2 ·
X

k 6=i

uk ·Cov(Xi , Xk )

= 2 ·Cov(Xi ,s(~u))

If last expression is evaluated at ~u = (1,1, . . . ,1) then the desired result is
found.
The second interpretation allows to understand the covariance allocation
principle as a pure gradient allocationprinciple as explained in Section 6.3.1.
The key is to consider as the risk measure Ω in (6.4) the covariance of a ran-
dom variable with respect to the sum S of the components of ~X instead of
the variance. So the function f~X is taken as f~X = Cov(·,S) ± s. As long as
Cov(∏ · X ,S) = ∏ ·Cov(X ,S) for all ∏ 2 R and for all X 2 °, f~X is an homo-
geneous function of degree r = 1 and Theorem 6.1 may be applied in this
case as in Proposition 6.1.

Example 6.3. Let us apply the covariance principle to obtain an allocation
linked to the portfolio of Example 6.1.



The first step is to recall the expression for the variance of (s(~u)) and to de-
rive the expression for the homogeneous (covariance) function:

V(s(~u)) = u2
1 +u1 ·u2 +u2

2,

Cov(°u1 ·Y1,s(~u)) = E [(°u1 ·Y1 °E(°u1 ·Y1)) · (s(~u)°E(s(~u)))]

= E
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p
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2
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If (u0
1,u0

2) = (1.5,1.7) thenV
°
s(~u0)

¢
= 7.69, Cov

°
°1.5 ·Y1,s(~u0)

¢
= 3.525

and Cov
°
°1.7 ·Y2,s(~u0)

¢
= 4.165. In relative terms, the covariance alloca-

tion principle is assigning a 45.84% of the risk (measured by the variance)
to the first asset and a 54.16% to the second one.

Finally, somecomments on strengths andweaknesses of the covarianceprin-
ciple may be pointed out. As a strength in front of other gradient allocation
principles, estimators of both V(S) and Cov(Xi ,S) for all i = 1, . . . ,n can
be found satisfying that the sum of the estimated covariances add up to the
estimated variance of the overall portfolio, whatever the set of random vari-
ables {Xi }i=1,...,n is. Hence, the covariance principle overcomes the second
drawback commented at the end of the previous section. As aweakness, the
allocation only takes care of linear dependence structures between random
variables Xi , i = 1, . . . ,n, andmay lead tonegative allocated capitalsKi . The
article ofWang [2014] is inspired by the covariance allocation principle and
the tail variance risk measure presented in Furman and Landsman [2006].
In this work the author define the capital allocation principles based on the
Tail Covariance PremiumAdjusted and tackles a possible non linear depen-
dence between business lines.

The Shapley value principle and one of its simplifications

Another proportional allocation principle based on partial contributions
can be derived from game theory. The capital allocation problem can be



understood as a cooperative game in which capital K has to be fairly shared
by the agents, taking into account that the cost of a coalition is linked to the
risk that this coalition assumes. The key concept to find such a fair alloca-
tion is the Shapley value (sometimes also called Bondareva-Shapley value).
Let us use the following notations: N = {1, . . . ,n}, A µ N denotes a subset
of N with cardinality a = |A| andR(A) = Ω

°P
k2A Xk

¢
. A capital allocation

principle based on the Shapley value is of the form (6.2), where

Ω(Xi | S) =
X

AµN‡{i }

a! · (n °a °1)!

n!
· [R(A[ {i })°R(A)] . (6.17)

Note thatR(N ) = Ω(S). Additionally, it canbeproved thatΩ(S) =
Pn

i=1
Ω(Xi

| S) using the properties of the Shapley value. The contribution of i th agent
to the overall risk is, basically, a weighted average of all the marginal contri-
butions that i th agent makes on the risk of each of the coalitions that can
be obtained without i th agent. This principle can require a high computa-
tional demand for obtaining each Ω(Xi | S) if n is large.
In order to avoid this drawback, some authors propose an alternative ap-
proach, that is a simplification of this principle. In Balog [2010] this alter-
native is called incremental principle. It is built by reducing the number of
terms added up in expression (6.17) only to the one linked to the set N ‡{i }.
In other words, the incremental principle is of the form (6.1) where

fi (Xi ) =R(N )°R(N ‡ {i }) = Ω(S)°Ω

√
X

j 6=i

X j

!
,8 i = 1, . . . ,n.

This alternative principle assigns as partial contribution of i th agent the dif-
ference between the overall risk and the risk quantified in absence of the i th
agent. To some extent, this principle can be considered as a hybrid between
a proportional principle based on partial contributions and a stand-alone
proportional principle. This principle cannot be considered a proportional
principle based on partial contributions, because Pn

j=1
f j (X j ) 6= Ω(S). But,

at the same time, some relationshipbetween i th agent and the rest of partic-
ipants is taken into account by fi , so it cannot be considered a stand-alone
proportional principle. The loss of information is theprice thatmust bepaid
to reduce the computational cost of the Shapley value for large n.

Example 6.4. Let us illustrate the Shapley value principle. Wewill consider
three random variables, two of which are identical. They can only take four
possible values. So, for the following states (!1,!2,!3,!4), randomvariables



X1, X2 and X3 are defined as follows:
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The corresponding probabilities are:

P

0
BBB@

!1

!2

!3

!4

1
CCCA=

0
BBB@

p1

p2

p3

p4

1
CCCA=

0
BBB@

1/10

1/10

2/5

2/5

1
CCCA .

This information can be displayed in a table, where S = X1 + X2 + X3 and
the other partial sums can also be computed.

≠ P X1 X2 X3 X1 +Xi=2,3 X2 +X3 S

!1 1/10 60 3 3 63 6 66

!2 1/10 0 30 30 30 60 60

!3 2/5 30 °7.5 °7.5 22.5 °15 15

!4 2/5 °15 15 15 0 30 15

The reader can easily compute the survival function for each of the random
variables. Let us showhow to compute the probability distribution function
and the survival function for S, namely the sum of the three initial random
variables.

≠ P S FS SS

!3 2/5 15 4/5 1/5

!4 2/5 15 4/5 1/5

!2 1/10 60 9/10 1/10

!1 1/10 66 1 0

The question is now to illustrate how to perform the allocation of a risk
measure based on the Shapley principle. Let us consider the TVaR85%(S).
Then, the following measures are needed: TVaR85%(X1), TVaR85%(X2),
TVaR85%(X3), TVaR85%(X1 + Xi=2,3), TVaR85%(X2 + X3) and, obviously,
TVaR85%(S).



Recall (see, Chapter 1, eq. (1.4)) that an expression for the TVaRÆ(Z ), for a
random variable Z , is:

TVaRÆ(Z ) = VaRÆ(Z )+
1

1°Æ
·ESÆ(Z ). (6.18)

Then since, VaR85%(S) = 60 and

ES85%(S) =
4X

j=1

(s j °VaR85%(S))+ ·p j = (66°60) ·
1

10
=

6

10
, (6.19)

it follows that

TVaR85%(S) = 60+
100

15
·

6

10
= 60+

60

15
= 64. (6.20)

Similarly,TVaR85%(X1) = 50 andTVaR85%(X2)= TVaR85%(X3) = 25, while
TVaR85%(X1 +Xi=2,3) = 52 and TVaR85%(X2 +X3) = 50.
Since all the necessary values of the risk measure Ω = TVaR85% are ready,
then two tables are constructed in order to obtain Ω(X1 | S), Ω(X2 | S) and
Ω(X3 | S). Let us first concentrate on X1.

A P
k2A

Xk a a! (n°a°1)!
n!

X1 +
P

k2A
Xk R(A) R(A[ {1})

∅ ∅ 0 1 2/6 X1 0 50

{2} X2 1 1 1/6 X1 +X2 25 52

{3} X3 1 1 1/6 X1 +X3 25 52

{2,3} X2 +X3 2 2 1/6 S 50 64

Using expression (6.17), it follows that:

Ω(X1 | S) =
2

6
· (50°0)+

1

6
· (52°25)+

1

6
· (52°25)+

2

6
· (64°50)

= 30+
1

3

Using a similar procedure, it follows that Ω(X2|S) = Ω(X3 | S) = 16+5/6.
Therefore, Ω(S) =

P3
i=1Ω(Xi | S) = 64.

6.3.3 The excess based allocation principle
The last principle explained in this chapter is the principle proposed in van
Gulick et al. [2012]. The reason is twofold. On the one hand, because of its



originality and, on the other hand, because of its non-proportionality. Taken
the authors’ own words [cf. page 29].
“Theallocation rule thatweproposedetermines theallocation that lexicograph-
ically minimizes the portfolio’s excesses among a set of allocations that satis-
fies two basic properties. First, no portfolio is allocated more risk capital than
the amount of risk capital that it would need to withhold if it were on its own.
Second, a portfolio is not allocated less than the minimum loss it can incur”.
To better understand this principle, the followingdefinition fromvanGulick
et al. [2012] must be presented.

Definition 6.5 (Lexicographical ordering). Form 2N and any two vectors
~x,~y 2R

n ,~x is lexicographically strictly smaller than~y , denoted as~x <lex ~y ,
if there exists an i … m such that xi < yi , and for all j < i it holds that x j =

y j . Moreover,~x is lexicographically smaller than ~y , denoted by~x …lex ~y , if
~x =~y or~x <lex ~y .

The authors considers that the capital K to be shared among the agents is,
in fact, equal to Ω(S), where Ω should be a coherent risk measure. They use
notation N = {1, . . . ,n}. Once these preliminaries are established, the idea
of the excess based allocation principle may be outlined in four steps:

(i) Consider any capital allocation principle ~K such that Pn
j=1

K j = Ω(S)

and such that the following boundary conditions are satisfied for all
i 2 N : max{0,min!2≠ Xi (!)} … Ki … Ω(Xi ). The set of all the prin-
ciples satisfying these conditions is called the set of feasible principles,
denoted as F.

(ii) Compute, for each feasible principle, the vector of dimension 2n con-
sisting in ē(~K ) =

≥
E

h°P
j2A(X j °K j )

¢
+

i¥
AµN

. So, there is a compo-
nent for each subset A µ N . This component is equal to the mathe-
matical expectation of the random variable that represents the non-
negative excess of capital that principle ~K assigns to coalition A.

(iii) For each feasible principle ~K , the components of ē(~K ) are ordered in
a decreasingmanner. The ordered resulting vector inRn is denoted by
µ[ē(~K )].

(iv) The excess based allocation principle, denoted by ~KEB A , is the feasi-
ble principle which lexicographically minimizes the µ[ē(~K )]. In other
words, ~KEB A is chosen among all feasible principles as the principle



associated to the first position in the set of ordered µ[ē(~K )], suppos-
ing that this order is similar to the one provided by a librarian who has
been increasingly ordering vectors µ[ē(~K )] alphabetically.

Obviously, last comment on step (iv) is not formal. A more precise way to
present the excess based allocation principle is by

~KEB A =
©
~K 2F | µ[ē(~K )] …lex µ[ē(~C )], 8~C 2F

™
, (6.21)

taking into account that the set at the right-hand side of expression (6.21) is
a single value set [as proved in van Gulick et al., 2012] and that, therefore,
there is a simplification of notation when identifying a set consisting on a
single element with that element.
Although this perspective on the allocation procedure is very interesting, as
in the case of the capital allocation principle based on the Shapley value,
this principle can involve a significant computational cost when n is large.
In addition, as long as the coherenceproperty is required to the riskmeasure
Ω to be used in the EBA principle, it has to be noted that VaR could not be
used as Ω in that allocation procedure.

Example 6.5. The same randomvariables that were defined in the previous
example (6.4) are used here to illustrate the excess based allocation princi-
ple, using TVaR85%.
The following steps are needed:

a) Conditions to be fulfilled by each feasible principle.

b) Calculation of vectors ē(~K ).

c) Ordering the components of ē(~K ), to obtain µ[ē(~K )].

d) Finding the excess based allocation.

a) A feasible principle ~K = (K1,K2,K3) has to fulfill the following condi-
tions:

Condition 1. K = K1 +K2 +K3. Since K = TVaR85%(S) = 64, then K1 +

K2 +K3 = 64.

Condition 2. K2 = K3, because the excess based allocation principle satis-
fies the symmetry property.



Condition 3. Condition max{0,min!2≠ Xi (!)} … Ki … Ω(Xi ) in this case
correspond to 0 … K1 … 50 and 0 … K2 … 25 (similarly, 0 … K3 … 25).
Since by Condition 1 K2 = K3 = (64 ° K1)/2 it follows that (64 °
K1)/2 = K2 … 25 then 14 … K1.
Moreover, no sub-portfolio should be allocated more capital than its
own risk. Therefore, K1+K2 … Ω(K1+K2) = 52 and then, since K2 =

(64°K1)/2, it follows that K1 + (64°K1)/2 … Ω(K1 +K2) = 52 and
so, K1 … 40. Then, the final conditions are:

14 … K1 … 40

K2 = K3 =
64°K1

2
.

b) Vector ē(~K ) has eight components, corresponding respectively to∅, {1},
{2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}. It can be written as follows:

ē(~K ) =

0
BBBBBBBBBBBBBBBBBBBBBB@

0
Ω

(60°K1)/10 if K1 < 30

(36°K1)/2 if K1 … 30Ω
(K1 °4)/20 if K1 < 34

(K1 °28)/4 if K1 … 34Ω
(K1 °4)/20 if K1 < 34

(K1 °28)/4 if K1 … 34

(62°K1)/20

(62°K1)/20
Ω

(K1 °4)/10 if K1 < 34

(K1 °28)/4 if K1 … 34

1/5

1
CCCCCCCCCCCCCCCCCCCCCCA

.

Note that the vector can be parametrized in terms of K1.
c) Ordering depends on the values of K1. Therefore, for instance if K1 =

14, then the decreasing order is, in terms of the subsets of N , {1} > {1,2} =

{1,3} > {2,3} > {2} = {3} > N >∅.
The ordering is different for each of the following intervals of K1, namely
[14,23+1/3], [23+1/3,32], [32,33], [33,260/7] and [260/7,40]. Due to
linearity, we only need to concentrate on the extremes of the previous inter-
vals in order to find the candidates for the excess based allocation principle.
d) To finalize the computation of the allocation principle, weneed to choose
the principle that minimizes lexicographically the µ[ē(~K )]. We will first
choose the principle in each interval and then find the overall choice. So,



In the interval K1 2 [14,23+1/3], the minimum is found for {1} and it is
givenbyK1 = 23+1/3, so ~K[14,23+1/3] = (23+1/3, 20+1/3, 20+1/3),
because K2 = (64 ° K1)/2. Moreover, ē(~K[14,23+1/3]) = (6.3̇, 1.93̇,

1.93̇, 1.93̇, 0.96̇, 0.96̇, 0.2, 0).

In the interval K1 2 [23+ 1/3,32], the minimum is at {1} and it is given
by K1 = 32, so ~K[23+1/3,32] = (32,16,16). Here ē(~K[23+1/3,32]) = (2.8,

2.8, 1.5, 1.5, 1.4, 1.4, 0.2, 0), corresponding respectively to {1} > {2,

3} > {1, 2} = {1, 3} > {2} = {3} > N >∅.

In the interval K1 2 [32,33], the minimum is now at {2, 3} and it is given
byK1 = 32, so again ~K[32,33] = (32, 16, 16) and ē(~K[32,33])= (2.8, 2.8,

1.5, 1.5, 1.4, 1.4, 0.2, 0), corresponding respectively to {2, 3} > {1} >

{1, 2} = {1, 3} > {2} = {3} > N >∅.

In the interval K1 2 [33,260/7], the minimum is at {2, 3} and it is given by
K1 = 33, so again ~K[33,260/7] = (33, 15.5, 15.5) and ē(~K[33,260/7]) =

(2.9, 2.7, 1.45, 1.45, 1.45, 1.45, 0.2, 0), corresponding respectively
to {2, 3} > {1} > {2} = {3} > {1, 2} = {1, 3} > N >∅.

In the interval K1 2 [260/7,40], the minimum is at {2, 3} and it is given by
K1 = 260/6, so again ~K[260/7,40] = (37.14, 13.43, 13.43) and
ē(~K[260/7,40]) = (4.57, 2.286, 2.286, 2.286, 1.2426, 1.2426, 0.2, 0),
corresponding respectively to {2, 3} > {2} = {3} > {1} > {1, 2} = {1, 3}

> N >∅.

In the previous allocations, we seek the lexicographical minimum, which
corresponds to ē(~K[23+1/3,32]) = ē(~K[32,33]) = (2.8, 2.8, 1.5, 1.5, 1.4, 1.4,

0.2, 0). As a result, the excess based allocation principle is:

~K = (K1,K2,K3) = (32, 16, 16).

Note that in van Gulick et al. [2012], the authors recommend an optimiza-
tion procedure, which has not been implemented in the previous example.

6.4 Further reading
There is a largenumber of academicworks related to capital allocationprob-
lems. An extensive literature can be found discussing solutions to capital
allocation problems [see, among others. Denault, 2001; Kalkbrener, 2005;
Tsanakas, 2009; Buch et al., 2011; van Gulick et al., 2012]. A number of re-
cent studies focus on specific probability distributions of losses [Cossette



et al., 2012, 2013], risk dependence structures [Cai and Wei, 2014], asymp-
totics of capital allocations based on commonly used risk measures [Asimit
et al., 2011] or modifications of the optimization function to overcome lim-
itations of allocations based on minimizing the loss function [Xu and Hu,
2012; Xu and Mao, 2013]. More precisely, You and Li [2014] analyze capi-
tal allocation problems concerning mutually interdependent risks, mainly
where they are tied through an Archimedean copula. Wang [2014] investi-
gates the usefulness of the Tail Covariance Premium Adjusted principle in
the case of two business lines with exponentially distributed losses, where
their dependence structure corresponds to a Farlie-Gumbel-Morgenstern
copula. Zaks and Tsanakas [2014] generalize the framework proposed in
Dhaene et al. [2012b], allowing the inclusion of different hierarchical levels
of preferences about risk in the final solution. In Urbina and Guillen [2014]
several principles are examined to solve a capital allocation problem related
to operational risk. This list of academic contributions on capital allocation
problems is not exhaustive. In fact, this topic is object of ongoing research.
Two recent contributions are Tsanakas and Millossovich [2016] and Li and
You [2015].

6.5 Exercices
1. Compare the allocation in percentage to each risk, obtained in the ex-

amples corresponding to the Shapley allocation principle and the excess
based allocation principle.

2. Compute the RORAC for the risks described in Example 6.5.

3. Compute the gradient allocation principle which was illustrated in Ex-
ample 6.1, but now using a different level Æ = 95%. You should discuss
the consequences on that principle of diminishing the confidence level.

4. Consider again Example 6.1 and change the riskmeasure to another one,
for instance TVaR. Compare the results with the ones obtained for the
VaR.





7 Capital allocation based on
GlueVaR

In Section6.1 of theprevious chapter a set of elements to fully describe a cap-
ital allocation problemwere identified. Nonetheless, two of those elements
are of main importance: the assignment criterion and the functions used to
simplify the information provided by each random loss. So, one could think
that guidelines about how capital should be shared among firm’s units are
basically defined in terms of two components: (1) a capital allocation crite-
rion and (2) a risk measure. The choice of the specific form for each com-
ponent is essential as different capital allocation solutions result from the
specific selected combinations.
In this chapterweconsider the framework suggestedbyDhaene etal. [2012b].
Under this framework, capital allocation principles are interpreted as solu-
tions to optimization problems. This approach has been followed in the re-
cent literature [see, for instance You and Li, 2014; Zaks and Tsanakas, 2014].

7.1 A capital allocation framework
Most of theproportional allocationprinciples canbedescribed in the frame-
work suggested by Dhaene et al. [2012b]. Under this unifying framework
a capital allocation problem is represented by means of three elements: a
non-negative function (which is usually linked to a norm), a set of weights,
and a set of auxiliary random variables. However, the Haircut allocation
principle could not be fitted into this framework despite its simplicity: the
Haircut allocation principle combines a stand-alone proportional capital al-
location criterion with the classical Value at Risk.
Here, the extension of the framework due to Dhaene et al. [2012b] is de-
scribed. This was suggested in Belles-Sampera et al. [2014b]. A slight modi-
ficationof the original frameworkwas proposed, consisting in relaxing some



of the conditions in order to allow the inclusion of the Haircut capital allo-
cation principle.
Assume that a capital K > 0 has to be allocated across n business units de-
noted by i = 1, . . . ,n. Any capital allocation problem can be described as
the optimization problem given by

min
K1,K2,...,Kn

nX

j=1

v j ·E

∑
≥ j ·D

µ
X j °K j

v j

∂∏
s.t.

nX

j=1

K j = K , (7.1)

with the following characterizing elements:

(a) a function D : R!R
+;

(b) a set of positive weights vi , i = 1, . . . ,n, such that Pn
i=1

vi = 1; and

(c) a set of random variables ≥i , i = 1, . . . ,n, with E[≥i ] <+1.

Unlike the original framework provided by Dhaene et al. [2012b], a distinc-
tion ismade in (c) so that each ≥i is nowno longer forced to be positive with
each E[≥i ] equal to 1.
To conclude, there exist a relationshipbetween this capital allocation frame-
work and aggregation functions. Aggregation functions may be defined as
solutions to optimization problems, as proposed in De Baets [2013]. Capi-
tal allocation problems are disaggregation problems and therefore, to some
extent, the goal of capital allocation principles is the opposite of the goal of
aggregation functions, which is a summarizing purpose. Nonetheless, the
optimization perspective taken into account in expression (7.1) involves ag-
gregation operators in the objective function. For instance, one can think

of the function E

"
nP

j=1
v j ·≥ j ·D

µ
X j °K j

v j

∂#
to be minimized in (7.1) as the

composition of two main aggregation operators: one aggregation operator
is given by expression

nP
j=1

v j ·≥ j ·D

µ
X j °K j

v j

∂
and the other one is themath-

ematical expectation E. It has to be noted that a similar perspective is pro-
posed in Xu and Hu [2012], where the first aggregation functionmay be rep-
resented as™(L(~K )) =™

°Pn
j=1

√(X j °K j )
¢
, where√ is a function usually

linked to a distance and™ an increasing function (which could be the iden-
tity function, for instance).



7.2 The Haircut capital allocation principle
Following themodification thatweproposed inBelles-Sampera etal. [2014b],
the Haircut capital allocation solution can be obtained from the minimiza-
tion problem (7.1). If a capital K > 0 has to be allocated across n business
units, the Haircut allocation principle states that the capital Ki to be as-
signed to each business unit must be

Ki = K ·
F°1

Xi
(Æ)

nP
j=1

F°1
X j

(Æ)

, 8 i = 1, . . . ,n, (7.2)

where Xi is the random loss linked to the i th business unit, F°1
Xi

is the in-
verse of the cumulative distribution function of Xi and Æ 2 (0,1) is a given
confidence level.
Let us consider di = min

©
d   1 | 0 < |M d [Xi ]| < +1

™
for all i = 1, . . . ,n,

where M d [Xi ] = E
£

X d
i

§
is the moment of order d > 0 of random variable

Xi . Note that di   1 for each i to face a feasible capital allocation problem.
In other words, if a business unit presents a random loss with no finite mo-
ments, then the risk taken by that business unit is not insurable/hedgeable.
The approach for fitting the Haircut allocation principle in the framework
linked to the optimization problem (7.1) can be summarized as follows: if a
constant ri must be expressed as ri = E[≥i ·Xi ], then using ≥i =

X
di °1

i

M di [Xi ]
·ri , a

solution is found because E[≥i ·Xi ] = E
£°

X
di

i
/M di [Xi ]

¢§
·ri = ri . Although

this is an elegant approach, the interpretation of the transformation made
by ≥i on Xi is intricate.

Proposition 7.1. Let us consider a confidence level Æ 2 (0,1). Then, the three
characterizing elements required to represent the Haircut allocation principle
in the general framework defined by (7.1) are:

(a) D(x) = x2,

(b) vi =
E[≥i ·Xi ]

nP
j=1

E[≥ j ·X j ]

, i = 1, . . . ,n; and

(c) ≥i =
X

di°1
i

M di [Xi ]
·F°1

Xi
(Æ), i = 1, . . . ,n.



Proof. In this setting, it is straightforward to show that the solution ~K =

(K1,K2, . . . ,Kn) to the minimization problem (7.1) is the Haircut allocation
solution expressed by (7.2). Dhaene et al. [2012b] show that, if function D is
the squared Euclidean norm (D(x) = x2), then any solution to (7.1) can be
written as

Ki = E[≥i ·Xi ]+ vi ·

√
K °

nX

j=1

E[≥ j ·X j ]

!
, for all i = 1, . . . ,n. (7.3)

In this setting, vi = E[≥i ·Xi ]/
Pn

j=1
E[≥ j ·X j ] for each i , so

Ki = E[≥i ·Xi ]+K ·
E[≥i ·Xi ]

nP
j=1

E[≥ j ·X j ]

°E[≥i ·Xi ] = K ·
E[≥i ·Xi ]

nP
j=1

E[≥ j ·X j ]

.

And, finally, for all i it holds that E [≥i ·Xi ] = F°1
Xi

(Æ) because of (c). There-
fore, each Ki in the solution ~K is given by

Ki = K ·
F°1

Xi
(Æ)

nP
j=1

F°1
X j

(Æ)

.

‰

Some comments on vi weights and ≥i auxiliary random variables follow.
Capital allocation principles driven by (7.3) can be thought of as two step
allocation procedures: in a first step, a particular quantity (Ci = E[≥i · Xi ])

is allocated to each business unit. As the sum of all these quantities does
not necessarily equal K (i.e., Pn

j=1
C j 6= K ), in the second step the differ-

ence
≥
K °

Pn
j=1

C j

¥
is allocated to the business units considering weights

vi . From this perspective, Ci capitals are expected values of Xi losses re-
stricted to particular events of interest and, therefore, ≥i auxiliary random
variables are used to select those events of interest for each business unit.
On the other hand, vi weights are related to the second step of the proce-
dure, indicating how the difference between K and Pn

j=1
C j must be dis-

tributed among business units. For a deeper interpretation of vi weights
and≥i auxiliary randomvariables inmore general cases, the interested reader
is referred to Dhaene et al. [2012b].
A remark on the gradient allocation principle. This principle can be fitted
into the framework introduced by Dhaene et al. [2012b] following a similar



strategy than the one in Proposition 7.1, but changing F°1
Xi

(Æ) by @Ω

@ui
(S) for

all i = 1, . . . ,n. Or, in other words,

D(x) = x2, vi =
E [≥i ·Xi ]

nP
j=1

E[≥ j ·X j ]

and ≥i =

√
X

di°1
i

M di [Xi ]

!
·
@Ω

@ui
(S)

for all i = 1, . . . ,n. Therefore, we find again that the gradient allocation prin-
ciple is a proportional principle based on partial contributions, althoughwe
have now used a side track to arrive to this conclusion.

7.3 Proportional risk capital allocation principles
using GlueVaR

The three characteristic elements of the framework suggested by Dhaene
et al. [2012b] are function D , weights vi and a set of appropriate ≥i , for
all i = 1, . . . ,n. According to the notation used by Dhaene et al. [2012b],
we deal with business unit driven proportional allocation principles when
≥i depends on Xi . If ≥i depends on S =

Pn
i=1

Xi then we have aggregate
portfolio driven proportional allocation principles. In the former case, the
marginal risk contributions of business units to the overall risk of the port-
folio are not taken into account; in the latter, they are. Adopting the no-
tation introduced in the previous chapter, principles belonging to the first
category are here denoted as stand-alone proportional allocation principles
while principles in the second category are denoted as proportional alloca-
tion principles based on partial contributions.
In this chapter, two GlueVaR based proportional capital allocation princi-
ples that we suggested in Belles-Sampera et al. [2014b] are presented. Both
principles share the expressions for twoof the three characterizing elements:

D(x) = x2 and vi =
E [≥i ·Xi ]

nP
j=1

E
£
≥ j ·X j

§ , for all i = 1, . . . ,n.

They differ in the set of random variables ≥i , i = 1, . . . ,n, which are pre-
sented below for the case of continuous random variables Xi .



7.3.1 Stand-alone proportional allocation principles using
GlueVaR

Given two confidence levels Æ and Ø in (0,1), Æ<Ø, and two distorted sur-
vival probabilities h1 and h2, if ≥i is fixed as

≥i =!1 ·

h
Xi   F°1

Xi
(Ø)

i

1°Ø
+!2 ·

h
Xi   F°1

Xi
(Æ)

i

1°Æ

+!3 ·
X

di°1
i

M di [Xi ]
·F°1

Xi
(Æ), for all i = 1, . . . ,n, (7.4)

then the stand-alone proportional allocation principle using as risk mea-
sure the GlueVaRh1,h2

Ø,Æ
can be represented in themodified capital allocation

framework explained in Section 7.1. Components of the solution (K1,K2, . . . ,

Kn) are expressed as

Ki = K ·

GlueVaRh1,h2

Ø,Æ
(Xi )

nP
j=1

GlueVaRh1,h2

Ø,Æ
(X j )

, for all i = 1, . . . ,n. (7.5)

7.3.2 Proportional allocation principles based on partial
contributions using GlueVaR

Similarly, if there exists a confidence level Æ§ 2 (0,1) such that F°1
S (Æ) =Pn

j=1
F°1

X j
(Æ§), the proportional allocation principle based on partial con-

tributionsusingGlueVaRh1,h2

Ø,Æ
canbe fitted to themodified capital allocation

framework detailed in Section 7.1. In this case, ≥i has to be equal to

≥i =!1 ·

£
S   F°1

S (Ø)
§

1°Ø
+!2 ·

£
S   F°1

S (Æ)
§

1°Æ

+!3 ·
X

di°1
i

M di [Xi ]
·F°1

Xi
(Æ§), for all i = 1, . . . ,n. (7.6)

Each component of the solution (K1,K2, . . . ,Kn) is then obtained as

Ki = K ·

∑
!1 ·

E
£

Xi | S   F°1
S (Ø)

§

GlueVaRh1,h2

Ø,Æ
(S)

+!2 ·
E
£

Xi | S   F°1
S (Æ)

§

GlueVaRh1,h2

Ø,Æ
(S)

+!3 ·
F°1

Xi
(Æ§)

GlueVaRh1,h2

Ø,Æ
(S)

∏
. (7.7)



Alternatively, another approach canbe considered. There exists a set of con-
fidence levelsÆ j 2 (0,1), for all j = 1, . . . ,n, such thatF°1

S (Æ) =
Pn

j=1
F°1

X j
(Æ j ).

Therefore, the proportional allocation principle based on partial contribu-
tions usingGlueVaRh1,h2

Ø,Æ
can also be fitted to themodified capital allocation

framework. In this case, ≥i have to be equal to

≥i =!1 ·

£
S   F°1

S (Ø)
§

1°Ø
+!2 ·

£
S   F°1

S (Æ)
§

1°Æ

+!3 ·
X

di°1
i

M di [Xi ]
·F°1

Xi
(Æi ), for all i = 1, . . . ,n. (7.8)

Each component of the solution (K1,K2, . . . ,Kn) is then obtained as

Ki = K ·

∑
!1 ·

E
£

Xi | S   F°1
S (Ø)

§

GlueVaRh1,h2

Ø,Æ
(S)

+!2 ·
E
£

Xi | S   F°1
S (Æ)

§

GlueVaRh1,h2

Ø,Æ
(S)

+!3 ·
F°1

Xi
(Æi )

GlueVaRh1,h2

Ø,Æ
(S)

∏
. (7.9)

A final comment related to non-proportional capital allocation principles
using GlueVaR. It has to be mentioned that it is possible and straightfor-
ward to obtain non-proportional principles using any of the auxiliary ran-
dom variables ≥i described in expressions (7.4), (7.6) or (7.8). If function
D(x) = x2, then the only thing that must be taken into account is that at
least one of the weights vi , i = 1, . . . ,n, must be different from E[≥i · Xi ]/°Pn

j=1
E[≥ j ·X j ]

¢
. Under these restrictions, whatever set of auxiliary random

variables~≥ is chosenamongexpressions (7.4), (7.6) or (7.8), non-proportional
capital allocation principles ~K using GlueVaR are obtained through expres-
sion (7.3).

7.4 An example of insurance risk capital allocation
using GlueVaR on claim costs

Data of previous chapters are used to illustrate the application of capital
allocation principles based on GlueVaR risk measures. Table 7.1 shows risk
values for this example. The last column presents diversification benefit,
which is the difference between the sum of the risks of X1, X2 and X3 and
the risk of X1 + X2 + X3. In this example, VaR95% and one of the GlueVaR
risk measures are not subadditive in the whole domain.



X1 X2 X3 X1 +X2 +X3 Difference(§)

(a) (b) (c) (d) (a)+(b)+(d)-(c)
VaR95% 2.5 0.6 1.1 5.9 °1.7

TVaR95% 12.5 8.0 1.3 19.7 2.1

TVaR99.5% 40.8 42.1 1.8 81.1 3.6

GlueVaR11/30,2/3
99.5%,95%

18.6 16.9 1.4 35.6 1.3

GlueVaR0,1
99.5%,95%

9.4 4.2 1.2 12.9 1.9

GlueVaR1/20,2/8
99.5%,95%

4.9 2.9 1.1 10.2 °1.3

(§) Benefit of diversification.

Next, a capital allocation application is illustrated where total capital has to
be allocated between the three units of risk, X1, X2 and X3. Table 7.2 shows
particular allocation solutions for two proportional risk capital allocation
principles using GlueVaR.
Adifferent pattern is observed for the threeGlueVaR riskmeasureswhen the
stand-alone criterion or the partial contribution criterion is considered. In
the case of the stand-alone criterion, the capital is allocated primarily to risk
X1, followed by X2 and X3, respectively. Let us focus on capital allocation
solutions involving the partial contribution criterion in which confidence
levels Æ j , j = 1, 2, 3, are not forced to be equal across the risk units. A no-
table increase in the risk allocated to X2 is observed if a partial contribution
criterion with no constant level Æ j and GlueVaR1/20,2/8

99.5%,95%
is chosen1.

This result is obtained because the impact on the quantile of X2 is the op-
posite of that on X1 and X3 when Æ j , j = 1, 2, 3, are estimated as F°1

S

(95%) = F°1
X1

(Æ1)+F°1
X2

(Æ2)+F°1
X3

(Æ3). These confidence levels are equal
to Æ1 = 26%, Æ2 = 98% and Æ3 = 43%. So, the associated quantiles for in-
dividual variables are VaR26%(X1), VaR98%(X2) and VaR43%(X3). The risk
contribution of X1 and X3 are underweighted compared to the risk contri-
bution of X2. If we interpret the GlueVaR risk measure as a linear combina-

1 The partial contribution criterion with constant level is not calculated in this example.
However, there is a Æ§ = 95,42% such that VaR95%(Z ) '

P3
j=1

VaR95,42%(X j ).



Proportion
allocated to

X1

Proportion
allocated to

X2

Proportion
allocated to

X3

Stand-alone criterion

GlueVaR11/30,2/3
99.5%,95%

50.41% 45.80% 3.79%

GlueVaR0,1
99.5%,95%

63.51% 28.38% 8.11%

GlueVaR1/20,1/8
99.5%,95%

54.44% 32.22% 12.22%

Partial contribution criterion with non constant (a) Æ j

GlueVaR11/30,2/3
99.5%,95%

(b) 46.42% 51.74% 1.84%

GlueVaR0,1
99.5%,95%

(b) 68.19% 26.86% 4.95%

GlueVaR1/20,1/8
99.5%,95%

(b) 25.11% 73.11% 2.78%

(a) Confidence levels Æ j 2 (0,1) are selected to satisfy F°1
S (95%) = F°1

X1
(Æ1) +

F°1
X2

(Æ2)+F°1
X3

(Æ3). In this case Æ1 = 26%, Æ2 = 98% and Æ3 = 43%.

tion of!1 ·TVaR99.5%+!2 ·TVaR95%+!3 ·VaR95%, the associated weights
of the GlueVaR1/20,2/8

99.5%,95%
are!1 = 1/24, !2 = 1/12 and!3 = 21/24. So, the

GlueVaR1/20,1/8
99.5%,95%

reflects a risk measurement attitude just a bit more con-
servative than VaR95%, giving the largest weight to this risk value. Bearing
in mind the quantitative tools that we have proposed in Chapter 5 to assess
aggregate risk attitudes, the latter statement is reinforced by the following
fact: the area under the distortion function of GlueVaR1/20,2/8

99.5%,95%
is

1

24
·

1+99.5%

2
+

1

12
·

1+95%

2
+

21

24
·95% = 0.042+0.081+0.831

= 95.4%

which is, effectively, slightly higher than 95%, the size of the area associated
to VaR95%.



7.5 Exercices
1. Consider two risks that are Normally distributed withmeans, µ1 and µ2,

both non-negative and covariance matrix S. Write a program to imple-
ment the GlueVaR stand-alone allocation principle assuming that the
inputs are the distribution parameters and, in addition,Æ, Ø,!1,!2 and
!3.

2. Assume n random variables, each one is uniformly distributed in the in-
terval [0,100]. Consider the GlueVaR stand-alone allocation principle,
where!1 =!2 =!3, express the result of the allocation to each compo-
nent in terms of n, Æ and Ø.

3. Assume n random variables, each one is uniformly distributed in the in-
terval [0,100]. Consider the GlueVaR stand-alone allocation principle,
whereÆ= 0.95 andØ= 0.99, express the result of the allocation to each
component in terms ofn,!1,!2 and!3 and discuss the particular cases
when!1 = 1 or!2 = 1.

4. Consider the example described in Section 7.4 and consider a change of
monetary units, which means that each variable is multiplied by a con-
stant E > 0, where E is the exchange rate. How would that modification
affect the capital allocation results if nothing else changes?



8 Capital allocation principles as
compositional data

In Chapter 6 it was shown that given an (absolute) capital allocation princi-
ple ~K withK =

Pn
j=1

K j , its relative counterpart is defined as~x , where com-
ponents are xi = Ki /K . This chapter is devoted to show that relative capital
allocation principles can be understood as belonging to the (standard) sim-
plex. Following a nomenclature often used by geologists, any vector of the
simplex is called a composition and any set of vectors in the simplex is called
compositional data. This chapter first presents themetric space structure of
the simplex. Secondly, it is shown that it is possible to move forward and
backwards from relative capital allocation principles to compositions and
the opposite. Applications of this relationship are illustrated with the data
set used all along this book. This chapter is based on the study that we car-
ried out in Belles-Sampera et al. [2016a].

8.1 The simplex and its vectorial andmetric structure
Let us define the (standard) simplex S

n =
©
~z 2 R

n | z j   0, j = 1, . . . ,n,Pn
j=1

z j = 1
™
providedwith aparticular structureof vector andmetric space.

Any vector~z 2 S
n is a composition and a set of vectors is called composi-

tional data. We need to define the vector space and to enrich it later with
a distance in order to be allowed to talk about this vector space as a metric
space. Any set of vectors needs two operations (often called vector addi-
tion and scalar multiplication) in order to be called a vector space over R.
These operations must satisfy a set of particular properties. The vector ad-
dition must be commutative, associative, and a neutral element is needed.
Moreover, for each vector, its additive inverse must exist. A scalar multipli-
cation for a vector space over R combines a real number with a vector and,
whatever this combination is, it is necessary that the combinationmust be-



long again to the set of vectors. Additionally, a neutral element for the scalar
multiplicationmust exist, and the distributivity of the scalar multiplication
with respect to the vector addition and, on the other side, the distributivity
of the vector additionwith respect to the scalarmultiplicationmust be both
satisfied.
Following the notation provided in Aitchison and Egozcue [2005], a vec-
tor addition called perturbation (denoted by ©) and a scalar multiplication
called powering (denoted byØ) may be attached to the setS n . These oper-
ations are defined by expressions (8.1) and (8.2), respectively, where~x,~y 2
S

n and ∏ 2R:

~x ©~y =

√
x1 · y1Pn

j=1
x j · y j

, . . . ,
xn · ynPn

j=1
x j · y j

!
, (8.1)

∏Ø~x =

√
x∏

1Pn
j=1

x∏
j

, . . . ,
x∏

nPn
j=1

x∏
j

!
. (8.2)

It can be proved that the simplexS
n providedwith operations© andØ has

a linear vector space structure of dimension n °1. An important function
in the context of compositional data is the closure function, C . The closure
function applied to a vector in R

n returns another vector whose compo-
nents are the components of the original vector divided by the sum of all
the components of the original vector. Keeping this in mind, the following
expressions hold:

~x ©~y =C
£
(x1 · y1, . . . , xn · yn)

§
, ∏Ø~x =C

h°
x∏

1 , . . . , x∏
n

¢i
.

Moreover, assuming the vector space structure of (S n ,©,Ø), the neutral
element~0 of © can be deduced. Given a vector~x such that xi > 0 for all i ,
the relationship~x ©~r =~0 informs that~r is the inverse of~x with respect to
the perturbation operation, so it should be written as~r = (°1)Ø~x . In other
words,

~r =

√
1/x1Pn

j=1
(1/x j )

, . . . ,
1/xnPn

j=1
(1/x j )

!
.

Then, using this last expression and (8.1),

~0 =~x ©~r =C

"√
1

Pn
j=1

(1/x j )
, . . . ,

1
Pn

j=1
(1/x j )

!#
=

µ
1

n
, . . . ,

1

n

∂
,

so the neutral element~0 of the perturbation operation is the composition
with all of its n elements equal to 1/n.



S
2

1

1

S
2

~0 =

≥
1
2 , 1

2

¥

~x =

≥
1
3 , 2

3

¥

~y =

≥
3
4 , 1

4

¥

~x ©~y =

≥
3
5 , 2

5

¥

1
2 Ø~x ' (0.4142,0.5858)

Example 8.1 (Perturbation, powering and neutral element inS
2). Wepro-

vide an example in a low dimension (n = 2) in order to illustrate how the
vector spaces (S n , ©, Ø) work. Consider~x = (1/3,2/3) and~y = (3/4,1/4)

in S
2, and ∏= 1/2 2R. We can ask ourselves for~x ©~y , ∏Ø~x and~0

~x ©~y =

µ
1

4

5

12
,

1

6

5

12

∂
=

µ
3

5
,

2

5

∂
,

∏Ø~x =

√ p
1/3

p
1/3+

p
2/3

,

p
2/3

p
1/3+

p
2/3

!
' (0.4142,0.5858) , and

~0 =

µ
1

2
,

1

2

∂
.

For instance,~x ©~0 =

µ
1

6

1

2
,

1

3

1

2

∂
=

µ
1

3
,

2

3

∂
=~x .

All these vectors are displayed in Figure 8.1.

Finally, a distance is needed in order to consider the vector space (S n ,©,Ø)

as a metric space. The simplicial metric defined in Aitchison [1983] is here
considered. Given two compositions~x, ~y , the distance between them from
the point of view of the simplicial metric is

¢(~x,~y) =

"
nX

i=1

∑
ln

µ
xi

GM(~x)

∂
° ln

µ
yi

GM(~y)

∂∏2
#1/2

, (8.3)



where GM(~z) denotes the geometric mean of the components of~z vector,

this is GM(~z) =

∑
nQ

i=1
zi

∏1/n

.
An equivalent expression for ¢(~x,~y) is the following:

¢(~x,~y) =

"
1

2n

nX

i=1

nX

j=1

∑
ln

µ
xi

x j

∂
° ln

µ
yi

y j

∂∏2
#1/2

. (8.4)

This simplicialmetric is linked to a norm k·k¢ and to an inner product h , i¢
in a usual way. Given two vectors~x, ~y 2S

n ,

¢(~x,~y) = k~x ™~yk¢ =

q
h~x ™~y ,~x ™~yi¢,

where~x ™~y =~x © [(°1)Ø~y], and

h~u,~vi¢ =
1

2n

nX

i=1

nX

j=1

∑
ln

µ
ui

u j

∂
· ln

µ
vi

v j

∂∏
. (8.5)

Example 8.2 (Level curves inS
3). Once the distances are defined, we can

explore – for instance – the geometrical locus of all those elements in the
simplex with the same distance to a given element in that simplex. In other
words, we could be interested in determining a sort of level curves in S

n

related to the distances of compositions~x 2S
n to a fixed composition ~y0.

Eachoneof these level curveswouldbedrivenby a certaind 2R
+, the target

distance. Formally, we could look for geometrical loci denoted lcd (~y0) and
defined by

lcd (~y0) =
©
~x 2S

n
|¢(~x, ~y0) = d

™
.

In Figure 8.2 several level curves are represented in a two dimensional pro-
jection of S

3. On the left, lcd (~0) for d = 0.2, 0.45, 0.8 and 1.0 are repre-
sented. As it is observed, the higher the distance to the composition of ref-
erence (in this case, ~y0 =~0 = (1/3,1/3,1/3)) the sharper the curve. Differ-
enceswith respect to theEuclideandistance are evident, because these level
curves have not circular shapes with center in the composition of reference.
The behavior is similar on the right hand side of Figure 8.2. In that case, the
composition of reference is ~y0 = (1/8,1/2,3/8) instead of the neutral ele-
ment with respect to the perturbation (addition). The corresponding level
curves lcd (~y0) for d = 0.2, 0.45, 0.8 and 1.0 are once again represented but
with this alternative reference.



lcd (~y0) S
3

R
2 lcd (~y0)

~y0 d d = 0.2 d = 0.45 d = 0.8 d = 1.0

~y0 = (1/3, 1/3, 1/3)

~y0 = (1/8, 1/2, 3/8)

Under this framework, as it was shown in De Baets [2013], the simplicial
arithmeticmeanof the compositional data~x1,~x2, . . . ,~xm maybeunderstood
as a solution of a minimization problem, in the following way:

AM¢ (~x1, . . . ,~xm) =
1

m
Ø

mM

k=1

~xk = argmin
~z

mX

k=1

k~z ™~xkk2
¢

, (8.6)

where
mL

k=1
~xk means theperturbationof the set ofm compositions {~xk }k=1,...,m .

At first sight, this expression is equivalent to the arithmetic mean of m real
numbers u1, u2, . . . ,um :

AM(u1, . . . ,um) =
1

m
·

mX

k=1

uk = argmin
v

mX

k=1

kv °ukk2
2, (8.7)

so, the simplicialmetric presented in this section is thenaturalmetric choice
if (simplicial) arithmetic means are computed. In other words, the expres-
sion (8.6) contains theproperdefinitionof the arithmeticmeanof~x1, . . . ,~xm

in the metric space (S n ,©,Ø,¢). From the definitions of both perturba-
tion andpowering operations, an explicit expression for the simplicial arith-
metic mean presented in (8.6) is

AM¢ (~x1, . . . ,~xm) =C [(G1, . . . ,Gn)], (8.8)

where Gk = GM(x1,k , x2,k , . . . , xm,k ), i.e. Gk =
£Qm

i=1
xi ,k

§1/m , for all k =

1, . . . ,n .



8.1.1 From capital allocation principles to compositional data
An absolute capital allocation ~K has its relative counterpart~x computed as
xi = Ki /K for all i = 1, . . . ,n. Note that it is satisfied thatPn

j=1
x j = 1. Note

also that when negative allocated capital amounts Ki are allowed, the rel-
ative components would be negative and then~x › S

n . For the rest of the
chapter it is assumed that~x has strictly positive components. That is, we as-
sume that~x is a composition with non-zero and non-negative components.
This assumption allows to avoid negative or zero values on components of
~x , which are an inconvenient for practitioners (negative allocations) and
when operating in the simplex (null compositions)1.
At this point, some concepts introduced in Chapter 6 to classify absolute
capital allocation problems can be associated to concepts introduced in this
chapter. For instance, if we consider proportional capital allocation princi-
ples as stated in expression (6.1), the relative counterpart ~y of the absolute
principle ~K = (K1, . . . ,Kn) may be interpreted as the closure of the vector
with components equal to fi (Xi ), i = 1, . . . ,n:

~K s.t. Ki = K ·
fi (Xi )

nP
j=1

f j (X j )

, 8 i = 1, . . . ,n

, ~y =C
£
( f1(X1), . . . , fn(Xn))

§
.

(8.9)

When stand-alone proportional principles are considered, the previous ex-
pressionhelps to visualizewhydependence structures between randomvari-
ables {Xi }i=1,...,n are not taken at all into account in the capital allocation
solution. In a first step, the amount of risk faced by each agent is assigned
to one of them, which is summarized by fi (Xi ), i = 1, . . . ,n. Subsequently,
the relative risk proportion obtained in thatmanner is scaled byK to obtain
the final capital allocation.

8.2 Perturbation inverse, simplicial distance and
simplicial arithmetic mean applied to capital
allocation problems

In the previous section, it has been shown that relative capital allocation
principles and compositionsmaybenaturally linked. Once this relationship

1 Although elements of a composition can be equal to zero, dealingwith compositionswith
null components is not an easy task in practice.



is established, the idea is to take advantage of the geometric structure of the
simplex to enrich the description of each capital allocation principle and
each capital allocation result. Some applications of compositional methods
in the context of capital allocation problems are shown in this section.

8.2.1 The inverse of a capital allocation
Let us consider a relative capital allocation principle ~x linked to what we
have called in Chapter 6 a cost of risk goal. Amanager would want to depart
from this allocation to distribute rewards instead of costs in order to fulfill
an allocation with a reward to an objective linked to minimisation of risk.
An intuitive idea is to invert each of the relative components, in order to
reflect the inverse nature of the allocation (a relative low cost allocated to
i th agent should mean a relative high reward assigned to him). To proceed
in this direction, onemust normalize the sum of all 1/xi in order to provide
a full allocation of thewhole amount of capital,K . Note that the inversion of
the components is only feasible if all components of~x are different from 0.
This application has a natural interpretation in the simplex S

n . The nor-
malization can be understood as the application of the closure function.
Given a relative capital allocation principle ~x , let ~r be the closure of the
vector with components 1/xi for i = 1, . . . ,n. As it has been shown in Sec-
tion 8.1, ~r is the inverse of ~x with respect to the perturbation operation:
~r = (°1)Ø~x .
Using risk based capital allocation principles to determine penalizations or
rewards may lead to undesirable behaviors of the agents. Basically, agents
have incentives to take conservative business decisions because less risk re-
sults in a better reward. In order to prevent it, a return-on-risk measure
seems to be preferable to assign rewards. It has been indicated in Chap-
ter 6 that rewards on risk and return allocations may be of great relevance
for a sound ERM system.
Note now that there are some direct absolute reward on risk and return cap-
ital allocation principles that can be considered. For instance, if we depart
from a given ~x = C

£
~y
§
, where yi = RORAC(Xi | S)/RORAC(S), for all

i = 1, . . . ,n.
Then, we obtain the absolute capital allocation principle ~K by

Ki = K · xi = K ·
RORAC(Xi | S)

Pn
j=1

RORAC(X j | S)
, 8 i = 1, . . . ,n.

The underlying idea is to give a higher reward to those agents whose rel-
ative RORAC with respect to the overall RORAC of the portfolio is higher.



Note that different definitions of return-on-risk measures than expressions
(6.3) and (6.2) in Chapter 6 for RORAC(Xi | S) and RORAC(S) may be con-
sidered, and the objective of the allocation would not change.

8.2.2 Ranking capital allocation principles
We have presented a simplicial metric or distance ¢ which helps to con-
stitute S

n as a metric space. ¢ can be used to quantitatively rank capi-
tal allocation principles. Let us consider the neutral composition~0 2 S

n

which is the composition with all of its n components equal to 1/n. So, the
distance between any relative capital allocation principle ~x and~0 can be
computed. Alternatively, the distance between any pair of relative capital
allocation principles belonging to S

n can be calculated. Both uses of the
simplicial distance are useful to compare different capital allocation princi-
ples in a quantitative manner.
When the distance between the relative capital allocation ~x and~0 is com-
puted, a quantitative result shows how far the allocation principle is from
a neutral assignment. Note that~0 2 S

n is linked to a capital allocation
principle in which no matter how much risk each agent faces, they would
all receive the same since the same amount is allocated to each one (K /n).
On the other hand, if an allocation principle is taken as a reference (for in-
stance, a gradient allocation principle as explained in Section 6.3.1 of Chap-
ter 6), the distance between the composition linked to this principle and any
other composition quantifies how far this principle is from the allocation of
reference.
Imagine that four allocation principles are in hand for the same amount K

of money and the same n agents: a haircut allocation principle (7.2), ~Kh ; a
covariance allocation principle (6.15), ~Kc ; a stand-alone proportional allo-
cation principle based on GlueVaR (7.5), ~Ks ; and a gradient allocation prin-
ciple related to (6.5), ~Kg . If their respective relative allocation principles
~xh , ~xc , ~xs and~xg are inS

n andeachof the components of~xt , t 2 {h,c, s, g }

is strictly positive, then it is possible to rank them in two different ways:

1) Compute¢(~xt ,~0) for t 2 {h,c, s, g }. Order distances in an increasing or-
der. A higher order position indicates an allocation located further apart
from the neutral allocation;

2) Choose one of the principles as reference (for instance, the gradient allo-
cation principle). Compute¢

°
~xt ,~xg

¢
for t 2 {h,c, s}. These three values

are quantifying how far eachprinciple is from the allocation of reference.



8.2.3 Averaging capital allocation principles
In practice, different management teams may suggest different capital allo-
cations regarding the same assignment problem. The situation sketched at
the end of the previous section could be an example of such a situation. In
those cases, wewant to stress that the set of different capital allocation prin-
ciples can be aggregated through the simplicial arithmetic mean, obtaining
a final allocation that considers each one of the available viewpoints.
Formally, let us imaginem management teamsprovidingm absolute capital
allocation principles ~Kk of amountK to the samen agents, and let~xk be the
relative capital allocation principles linked to ~Kk , k = 1, . . . ,m. Once again,
taking advantage of the geometric structure ofS n , the concept ofaveraging
the m points of view on the same allocation problem is easily derived. In
other words, the expression ~z = AM¢ (~x1, . . . ,~xm)is the proper definition
of the arithmetic mean of ~x1, . . . ,~xm in the metric space (S n ,©,Ø,¢) as
it was shown in (8.6). Once the relative arithmetic mean is obtained, what
remains to do is to assign an amount of K̄i = K · zi monetary units to each
i th agent, i = 1, . . . ,n, in order to provide a capital allocation principle in
the adequate scale. This principle balances the opinions of all the involved
management teams.

8.2.4 An illustration
In order to illustrate the applications described in this section we are get-
ting back to the relative principles obtained in Chapter 7, which where dis-
played in Table 7.2. Recall that these relative principles were derived from
six absolute proportional allocation principles (6.1) based on three differ-
ent GlueVaR risk measures but with two different perspectives: on the one
hand, stand-alone proportional allocation principles (7.5) and, on the other
hand, partial contributions based proportional allocation principles (7.9).
Let us name them as ~xi , i = 1, . . . ,6. Then

~x1 = (50.41%,45.80%,3.79%),

~x2 = (63.51%,28.38%,8.11%),

~x3 = (54.44%,32.22%,12.22%),

~x4 = (46.42%,51.74%,1.84%),

~x5 = (68.19%,26.86%,4.95%),

~x6 = (25.11%,73.11%,1.78%).

(8.10)



X1 X2 X3

Stand-alone
~y1 = (°1)Ø ~x1 6.50% 7.15% 86.35%

~y2 = (°1)Ø ~x2 9.03% 20.22% 70.75%

~y3 = (°1)Ø ~x3 14.00% 23.65% 62.35%

Based on partial contributions
~y4 = (°1)Ø ~x4 3.68% 3.30% 93.02%

~y5 = (°1)Ø ~x5 5.78% 14.67% 79.56%

~y6 = (°1)Ø ~x6 6.48% 2.22% 91.30%

From ~x1 to ~x3 the results correspond to stand-alone proportional allocation
principles and the rest may be understood as proportional allocation prin-
ciples base on partial contributions. In addition, ~x1 and ~x4 are linked to
GlueVaR11/30,2/3

99.5%,95%
, ~x2 and ~x5 to GlueVaR0,1

99.5%,95%
and the remaining were

calculated based on GlueVaR1/20,1/8
99.5%,95%

. Note that all these relative princi-
ples belong to the simplex S

3 and have non-zero components.

Assume now that risk managers are interested in allocation principles with
a reward to conservative objctives (meaning the smaller the risk figure the
better the type of risk). However, the only available information (principles
~xi , i = 1, . . . ,6) is a set of capital allocation principles with a cost of risk goal.
The computation of the inverse of relative capital allocation principles can
be useful in this context, in order to obtain principles driven by a reward
to a risk minimization objective. So the perturbation inverses of relative
capital allocation principles ~xi , i = 1, . . . ,6, are shown in Table 8.1 and they
are denoted as ~yi , i = 1, . . . ,6.

Using the relative principles displayed in (8.10), relative allocation princi-
ples are ranked according to Section 8.2.2. As before, symbol~0 is used to
refer to the neutral allocation. The following simplicial distances are calcu-



lated from expression (8.3):

¢(~x1,~0) =
p

0.8+0.637+2.865 = 2.074,

¢(~x2,~0) =
p

0.911+0.022+1.218 = 1.4669,

¢(~x3,~0) =
p

0.453+0.022+0.674 = 1.0719,

¢(~x4,~0) =
p

1.083+1.32+4.795 = 2.6831,

¢(~x5,~0) =
p

1.404+0.064+2.068 = 1.8803,

¢(~x6,~0) =
p

0.276+2.542+4.495 = 2.7045.

(8.11)

~x0 ~x3 ~x2 ~x5 ~x1

~x4

~x6

1.0719

1.4669

1.8803

2.0740

2.6831

2.7045

Distances considered individually are not too informative. However, these
values allow to rank the principleswith respect to oneprinciple of reference,
as it is graphically shown in Figure 8.3. From results (8.11), it can be deduced
that, in this example, proportional allocation principles based on partial
contributions are generally more distant from the neutral allocation than
the rest (with ~x1 being the only exception). Additionally, when comparing
pairs of compositions with the same risk measure involved, it becomes evi-
dent that themost different behavior is the one linked to principles depend-
ing onGlueVaR1/20,1/8

99.5%,95%
riskmeasure (the pair ~x3 and ~x6). So, in this exam-

ple, when using GlueVaR1/20,1/8
99.5%,95%

as a risk measure, the selection of the al-
location criterion (stand-alone versus based onpartial contributions) seems
to be more relevant than when using the other two GlueVaR risk measures
under consideration.
As a final application, the three relative stand-alone allocations displayed
in (8.10) are averaged by means of the simplicial arithmetic mean. The rel-



ative principles based on partial contributions are also averaged. Finally,
the simplicial arithmetic mean of these previous averages is obtained, just
for the sake of mixing both perspectives in one single principle following a
hierarchical approach in which the distribution criterion (as mentioned in
Section 6.1 of Chapter 6) plays an important role.
With respect to the stand-alone proportional allocation principles, the geo-
metric means of the three components (n = 3) of the three (m = 3) relative
capital allocations, denoted as G1, G2 and G3, respectively, are computed.
Their values are

G1 = (50.41% ·63.51% ·54.44)1/3
= 55.86%,

G2 = (45.8% ·28.38% ·32.22)1/3
= 34.73% and

G3 = (3.79% ·8.11% ·12.22)1/3
= 7.22%.

Following expression (8.8), we calculate the value ofC [(G1,G2,G3)], i.e. the
closure of the vector with components being the geometric means G1, G2

and G3. By doing so, the value of the simplicial average AM¢(~x1, ~x2, ~x3) is
obtained which is a relative allocation principle. Similarly, the simplicial
arithmetic mean of the relative principles based on partial contributions
AM¢(~x4, ~x5, ~x6) is also obtained. Both results are shown in Table 8.2.

X1 X2 X3

AM¢(~x1, ~x2, ~x3) 57.11% 35.51% 7.38%

AM¢(~x4, ~x5, ~x6) 46.64% 50.60% 2.74%

As it can be proved, the components of the simplicial averages are not equal
to the arithmeticmean of the components of the original principles. In fact,
the components of the simplicial average are linked to the geometric mean
of the components of the original relative principles. As a final result, let us
average the two principles displayed in Table 8.2. In this case, the geometric
means of the three components (n = 3) of the two (m = 2) relative capital
allocations, denoted as G 0

1, G 0
2 and G 0

3, respectively, are computed. Their
values are

G 0
1 =

p
57.11% ·46.64% = 51.61%,



G 0
2 =

p
35.51% ·50.62% = 42.39% and

G 0
3 =

p
7.38% ·2.74% = 4.5%.

In order to obtain the final result, we need to calculate the closure of ~w =

(G 0
1,G 0

2,G 0
3). This is

AM¢ (AM¢(~x1, ~x2, ~x3),AM¢(~x4, ~x5, ~x6)) =C [~w] .

This relative principle is

(52.40%, 43.04%, 4.57%).

Final remark. Another feasible approach to reach this unique allocation
would be to calculate the simplicial arithmetic mean of the whole set of rel-
ative principles shown in (8.10). It has to be noted that the result would
certainly be different, because this last approach would lack the specific ag-
gregation hierarchy that we have imposed herein.

8.3 Exercises
1. In the example presented in Section 8.2.4, calculate the simplicial dis-

tance between AM¢

°
AM¢(~x1, ~x2, ~x3), AM¢(~x4, ~x5, ~x6)

¢
and AM¢ (~x1,

~x2, ~x3, ~x4, ~x5, ~x6)where ~xi , i = 1, . . . ,6, are the relative principles shown
in (8.10).

2. Observe the distances between principles shown in the example pre-
sented in Section 8.2.4, find a stand-alone allocation which is located be-
tween ~x1 and ~x2.

3. Assume an allocation principle in a situation of n different sources that
assigns an allocation equal to 2i /(n(n + 1)) for the risk i , i = 1, . . . ,n.
Show that this is not the neutral allocation and find the distance to this
element as a function of n. Calculate the behaviour of this distance as n

increases.

4. In the same situation as in the previous exercise, propose another allo-
cation for i , i = 1, . . . ,n, different to the neutral allocation and compare
it to 2i /(n(n +1)) for the risk i , i = 1, . . . ,n.

5. Assume a situation ofn different sources that assigns an allocation equal
to 2i /(n(n+1)) for the risk i , i = 1, . . . ,n, find an average allocation that



summarizes the allocations provided by this one and the neutral alloca-
tion. Find the average allocation now also with the third allocation that
you proposed in the previous exercise.



Appendix A

A.1 Equivalent expression for the GlueVaR distortion
function

Details on the definition of the GlueVaR distortion function ∑
h1,h2

Ø,Æ
(u) as a

linear combination of the distortion functions of TVaR at confidence levels
Ø and Æ, and VaR at confidence level Æ are provided, i.e. an explanation
of how to obtain expression (3.3) can be found here. Expression (3.1) of the
distortion function ∑

h1,h2

Ø,Æ
(u) can be rewritten as,

∑
h1,h2

Ø,Æ
(u) = h1 ·∞Ø(u) ·

£
0 … u < 1°Ø

§

+

µ
h1 +

h2 °h1

Ø°Æ
· (1°Æ) ·∞Æ(u)°

h2 °h1

Ø°Æ
· (1°Ø)

∂
·

[1°Ø… u < 1°Æ]+√Æ(u), (A.1)

where [x1 … u < x2] is an indicator function, so it takes a value of 1 if
u 2 [x1, x2) and 0 otherwise.
Note that

∞Ø(u) · [0 … u < 1°Ø] = ∞Ø(u)°√Ø(u), (A.2)

[1°Ø… u < 1°Æ] =√Ø(u)°√Æ(u), (A.3)

∞Æ(u) · [1°Ø… u < 1°Æ] =

∞Æ(u)°√Æ(u)°
µ

1°Ø

1°Æ

∂
·
£
∞Ø(u)°√Ø(u)

§
. (A.4)

Taking into account expressions (A.2), (A.3) and (A.4), expression (A.1) may
be rewritten as,

∑
h1,h2

Ø,Æ
(u) =

∑
h1 °

(h2 °h1) · (1°Ø)

Ø°Æ

∏
·∞Ø(u)+



∑
°h1 +h1 °

(h2 °h1) · (1°Ø)

Ø°Æ
+

(h2 °h1) · (1°Ø)

Ø°Æ

∏
·√Ø(u)+

h2 °h1

Ø°Æ
· (1°Æ) ·∞Æ(u)+ (A.5)

∑
1°h1 +

(h2 °h1) · (1°Ø)

Ø°Æ
°

h2 °h1

Ø°Æ
· (1°Æ)

∏
·√Æ(u).

Given that !1 = h1 °
(h2 °h1) · (1°Ø)

Ø°Æ
, !2 =

h2 °h1

Ø°Æ
· (1°Æ) and !3 =

1°h2, expression (3.3) follows directly from (A.5). ‰

A.2 Bijective relationship between heights and
weights as parameters for GlueVaR risk measures

Pairs of GlueVaR heights (h1,h2) and weights (!1,!2) are linearly related
to each other. The parameter relationships are (h1,h2)0 = H ·(!1,!2)0 and,
inversely, (!1,!2)0 = H°1 · (h1,h2)0, where H and H°1 matrices are H =
0
@ 1

1°Ø

1°Æ
1 1

1
A and H°1 =

0
BB@

1°Æ

Ø°Æ

Ø°1

Ø°Æ
Æ°1

Ø°Æ

1°Æ

Ø°Æ

1
CCA, respectively.

A.3 Relationship between GlueVaR and Tail
Distortion risk measures

This section of the appendix is intended to present the proof of Proposition
4.1. Following the notation introduced along this work, as for any random
variable X it holds thatGlueVaR

!1,!2

Ø,Æ
(X ) =

Z
X dµwithµ= ∑

!1,!2

Ø,Æ
±P and

Tg ,Æ(X ) =

Z
X d¥ with ¥= gÆ ±P , proving Proposition 4.1 is equivalent to

proving that ∑!1,!2

Ø,Æ
= gÆ under the proper conditions on!1, !2 and g .

On one hand, suppose that !2 = 1°!1 and that g is given by expression
(4.2). First of all, let us rewrite g as

g (t ) =

µ
!1 · (1°Æ)

1°Ø
+!2

∂
· t ·

£
0 … t < (1°Æ)°1

· (1°Ø)
§
+

(!1 +!2 · t ) ·
£
(1°Æ)°1

· (1°Ø) … t … 1
§

Recall that gÆ is built as g
°

u
1°Æ

¢
· [0 … u < 1°Æ]+ [1°Æ … u … 1]. If

u is less than 1°Ø therefore t = u
1°Æ is less than (1°Æ)°1 · (1°Ø); if u is



comprised between 1°Ø and 1°Æ, then t = u
1°Æ satisfies that (1°Æ)°1 ·

(1°Ø) … t … 1. Summarizing,

gÆ(u) =

8
>>><
>>>:

∑
!1

1°Ø
+

!2

1°Æ

∏
·u if 0 … u < 1°Ø

!1 +
!2

1°Æ
·u if 1°Ø… u < 1°Æ

1 if 1°Æ… u … 1

(A.6)

which is the definition of distortion function ∑
!1,!2

Ø,Æ
as shown in (3.5).

On the other hand, consider as starting point the aforementioned expres-
sion (3.5) of ∑!1,!2

Ø,Æ
. As pointed out, gÆ is always continuous in 1°Æ. Con-

sequently parameters of∑!1,!2

Ø,Æ
must be such that guaranty continuity of the

equivalent gÆ in 1°Æ. In other words, limu"(1°Æ)∑
!1,!2

Ø,Æ
(u) = !1 +!2 =

1 = limu#(1°Æ)∑
!1,!2

Ø,Æ
(u). This is exactly condition !2 = 1°!1. Now, forc-

ing gÆ = ∑
!1,!2

Ø,Æ
, it is straightforward to go backwards from expression (A.6)

to expression (4.2) to complete the proof. ‰
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