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Preface

The purpose of this monograph is to give an exposition of the global quantization
of operators on nilpotent homogeneous Lie groups. We also present the background
analysis on homogeneous and graded nilpotent Lie groups. The analysis on homo-
geneous nilpotent Lie groups drew a considerable attention from the 70’s onwards.
Research went in several directions, most notably in harmonic analysis and in the
study of hypoellipticity and solvability of partial differential equations. Over the
decades the subject has been developing on different levels with advances in the
analysis on the Heisenberg group, stratified Lie groups, graded Lie groups, and
general homogeneous Lie groups.

In the last years analysis on homogeneous Lie groups and also on other types
of Lie groups has received another boost with newly found applications and further
advances in many topics. Examples of this boost are subelliptic estimates, multi-
plier theorems, index formulae, nonlinear problems, potential theory, and symbolic
calculi tracing full symbols of operators. In particular, the latter has produced fur-
ther applications in the study of linear and nonlinear partial differential equations,
requiring the knowledge of lower order terms of the operators.

Because of the current advances, it seems to us that a systematic exposition of
the recently developed quantizations on Lie groups is now desirable. This requires
bringing together various parts of the theory in the right generality, and extending
notions and techniques known in particular cases, for instance on compact Lie
groups or on the Heisenberg group.

In order to do so, we start with a review of the recent developments in
the global quantization on compact Lie groups. In this, we follow mostly the
development of this subject in the monograph [RT10a] by Turunen and the second
author, as well as its further progress in subsequent papers. After a necessary
exposition of the background analysis on graded and homogeneous Lie groups, we
present the quantization on general graded Lie groups. As the final part of the
monograph, we work out details of the general theory developed in this book in
the particular case of the Heisenberg group.

In the introduction, we will provide a link between, on one hand, the symbolic
calculus of matrix valued symbols on compact Lie groups with, on the other hand,

vii



viii Preface

different approaches to the symbolic calculus on the Heisenberg group for instance.
We will also motivate further our choices of presentation from the point of view
of the development of the theory and of its applications.

We would like to thank Fulvio Ricci for discussions and for useful comments
on the historical overview of parts of the subject that we tried to present in the
introduction. We would also like to thank Gerald Folland for comments leading to
improvements of some parts of the monograph.

Finally, it is our pleasure to acknowledge the financial support by EPSRC
(grant EP/K039407/1), Marie Curie FP7 (Project PseudodiffOperatorS - 301599),
and by the Leverhulme Trust (grant RPG-2014-02) at different stages of preparing
this monograph.

Véronique Fischer
Michael Ruzhansky

London, 2015
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Introduction

Nilpotent Lie groups appear naturally in the analysis of manifolds and provide an
abstract setting for many notions of Euclidean analysis. As is generally the case
when studying analysis on nilpotent Lie groups, we restrict ourselves to the very
large subclass of homogeneous (nilpotent) Lie groups, that is, Lie groups equipped
with a family of dilations compatible with the group structure. They are the groups
appearing ‘in practice’ in the applications (some of them are described below).
From the point of view of general harmonic analysis, working in this setting also
leads to the distillation of the results of the Euclidean harmonic analysis depending
only on the group and dilation structures.

In order to motivate the work presented in this monograph, we focus our
attention in this introduction on three aspects of the analysis on nilpotent Lie
groups: the use of nilpotent Lie groups as local models for manifolds, questions
regarding hypoellipticity of differential operators, and the development of pseudo-
differential operators in this setting. We only outline the historical developments
of ideas and results related to these topics, and on a number of occasions we refer
to other sources for more complete descriptions. We end this introduction with the
main topic of this monograph: the development of a pseudo-differential calculus
on homogeneous Lie groups.

Nilpotent Lie groups by themselves and as local models

It has been realised for a long time that the analysis on nilpotent Lie groups can
be effectively used to prove subelliptic estimates for operators such as ‘sums of
squares’ of vector fields on manifolds. Such ideas started coming to light in the
works on the construction of parametrices for the Kohn-Laplacian �b (the Lapla-
cian associated to the tangential CR complex on the boundary X of a strictly
pseudoconvex domain), which was shown earlier by J. J. Kohn to be hypoelliptic
(see e.g. an exposition by Kohn [Koh73] on the analytic and smooth hypoelliptic-
ities). Thus, the corresponding parametrices and subsequent subelliptic estimates
have been obtained by Folland and Stein in [FS74] by first establishing a version
of the results for a family of sub-Laplacians on the Heisenberg group, and then
for the Kohn-Laplacian �b by replacing X locally by the Heisenberg group. These
ideas soon led to powerful generalisations. The general techniques for approximat-
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2 Introduction

ing vector fields on a manifold by left-invariant operators on a nilpotent Lie group
have been developed by Rothschild and Stein in [RS76]. Here the dimension of
the nilpotent Lie group is normally larger than that of the manifold, and a first
step of such a construction is to perform the ‘lifting’ of vector fields to the group.
Consequently, this approach allowed one to produce parametrices for the original
differential operator on the manifold by using the analysis on homogeneous Lie
groups. A more geometric version of these constructions has been carried out by
Folland in [Fol77b], see also Goodman [Goo76] for the presentation of nilpotent
Lie algebras as tangent spaces (of sub-Riemannian manifolds). The functional ana-
lytic background for the analysis in the stratified setting was laid down by Folland
in [Fol75]. A general approach to studying geometries appearing from systems of
vector fields has been developed by Nigel, Stein and Wainger [NSW85].

Thus, one of the motivations for carrying out the analysis and the calculus of
operators on nilpotent Lie groups comes from the study of differential operators on
CR (Cauchy-Riemann) or contact manifolds, modelling locally the operators there
on homogeneous invariant convolution operators on nilpotent groups. In ‘practice’
and from this motivation, only nilpotent Lie groups endowed with some compatible
structure of dilations, i.e. homogeneous Lie groups, are considered. This will be
also the setting of our present exposition.

The simplest example (apart from Rn) of a nilpotent Lie group is the Heisen-
berg group, and the harmonic analysis there is a very well researched topic. We do
not intend to make an overview of the subject here, but we refer to the books of
Stein [Ste93] and Thangavelu [Tha98] for an introduction to the harmonic analysis
on the Heisenberg group and for the historic development of the area. Elements
of the harmonic analysis on different groups can be also found in Taylor’s book
[Tay86]. The Heisenberg group enters many applied areas, including various as-
pects of quantum mechanics, signal analysis, optics, thermodynamics; we refer to
the recent book of Binz and Pods [BP08] for an overview of this subject. We men-
tion another recent book by Calin, Chang and Greiner [CCG07] containing many
explicit calculations related to the Heisenberg group and its sub-Riemannian ge-
ometry, as well as a sub-Riemannian treatment in Capogna, Danielli, Pauls and
Tyson [CDPT07]. As such, in this monograph we will deal with the Heisenberg
group almost exclusively in the context of pseudo-differential operators, and we
refer to excellent surveys of Folland [Fol77a] and Howe [How80] on the role played
by the Heisenberg group in the theory of partial differential equations and in har-
monic analysis, as well as to Folland’s book [Fol89] for its relation to the theory
of pseudo-differential operators on Rn through the Weyl quantization. See also a
more recent short survey by Semmes [Sem03] and a book by Krantz [Kra09].

Well-posedness questions for hyperbolic partial differential equations on the
Heisenberg group have been considered parallel to their Euclidean counterparts.
For example, the conditions for the well-posedness of the wave equation for the
Laplacian associated to the ∂̄b complex have been found by Nachman [Nac82],
the Lp-estimates for the wave equation for the sub-Laplacian have been estab-
lished by Müller and Stein [MS99], the smoothness of the Schrödinger kernel has
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been analysed by Sikora and Zienkiewicz [SZ02], a space-time estimate for the
Schrödinger equation has been obtained by Zienkiewicz [Zie04], etc. Nonlinear
wave and Schrödinger equations and Strichartz estimates have been analysed on
the Heisenberg group as well, see e.g. Zuily [Zui93], Bahouri, Gérard and Xu
[BGX00] and Furioli, Melzi and Veneruso [FMV07], as well as other equations,
e.g. the Ginzburg-Landau equation by Birindelli and Valdinoci [BV08], quasilin-
ear equations by Capogna [Cap99], etc.

The Hardy spaces on homogeneous Lie groups and the surrounding harmonic
analysis have been investigated by Folland and Stein in their monograph [FS82]. In
general, there are different machineries available depending on a degree of general-
ity: the stratified Lie groups enjoy additional hypoellipticity techniques going back
to Hörmander’s celebrated sum of the squares theorem, while on the Heisenberg
group explicit expressions from its representation theory can be used.

A typical example of such different degrees of generality within homogeneous
Lie groups is, for instance, a problem of characterising the Hardy space H1 in
L1 by families of singular integrals. Thus, in [CG84], Christ and Geller presented
sufficient conditions for general homogeneous Lie groups, gave explicit examples of
(generalised) Riesz transforms for such a family of integral operators on stratified
Lie groups, and derived further necessary and sufficient conditions on the Heisen-
berg group in terms of its representation theory (see also further work by Christ
[Chr84]).

A related aspect of harmonic analysis, the Calderón-Zygmund theory on
homogeneous Lie groups, has a long history as well. Again, this started with the
analysis of convolution operators (with earlier works e.g. by Korányi and Vági
[KV71] in the nilpotent direction), but in this book we will adopt an utilitarian
approach, and the setting of Coifman andWeiss [CW71a] of spaces of homogeneous
type will be sufficient for our purposes (see Section 3.2.3 and Section A.4).

Proceeding with this part of the introduction on general homogeneous Lie
groups, let us follow Folland and Stein [FS82] and mention another important
occurrence of homogeneous Lie groups. If G is a non-compact real connected semi-
simple Lie group, its Iwasawa decomposition G = KAN contains the homogeneous
Lie group N whose family of dilations comes from an appropriate one-parameter
subgroup of the abelian group A (more precisely, if g = k ⊕ k⊥ is the Cartan
decomposition of the Lie algebra g, the decomposition G = KAN corresponds
to the Iwasawa decomposition of the Lie algebra, g = k + a + n, where a is the
maximal abelian subalgebra of k⊥, and the nilpotent Lie algebra n is the sum
of the positive root spaces corresponding to eigenvalues of a acting on g). This
decomposition generalises the decomposition of a real matrix as a product of an
orthogonal, diagonal, and an upper triangular with 1 at the diagonal matrix.
Furthermore, the the symmetric space G/K has the homogeneous nilpotent Lie
group N as its ‘boundary’ in the sense that N may be identified with a dense
subset of the maximal boundary of G/K. As we show in Section 6.1.1 for no = 1,
if G = SU(no + 1, 1), G/K may be identified with the unit ball in Cno+1 and the
Heisenberg group Hno acts simply transitively on the complex sphere of Cno+1
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where one point has been excluded. This provides a link between the Heisenberg
group Hno

, the analysis of the complex spheres, and the group SU(no + 1, 1)
or, more generally, between general semi-simple Lie groups and homogeneous Lie
groups as boundaries of their symmetric spaces. For example, harmonic functions
on the symmetric space G/K can be represented by convolution operators on N
(see e.g. the survey of Koranyi [Kor72]).

Our setting contains the realm of Carnot groups as this class of groups
consists of the stratified Lie groups equipped with a specified metrics on the
first layer, see e.g. Gromov [Gro96] for a survey on geometric analysis of Carnot
groups. Our setting includes any class of stratified Lie groups, for instance H-
groups, Heisenberg-Kaplan groups, Métivier-type groups [Mét80], filiform groups,
as well as Kolmogorov-type groups appearing in the study of hypoelliptic ultra-
parabolic operators including the Kolmogorov-Fokker-Planck operator (see Kol-
mogorov [Kol34], Lanconelli and Polidoro [LP94]). We refer to the book [BLU07]
by Bonfiglioli, Lanconelli and Uguzonni for a detailed consideration of these groups
and of their sub-Laplacians as well as related operators.

Hypoellipticity and Rockland operators

On compact Lie groups, the Fourier analysis and the symbolic calculus developed
in [RT10a] are based on the Laplacian and on the growth rate of its eigenvalues.
While on compact Lie groups the Laplacians (or the Casimir element) are operators
naturally associated to the group, it is no longer the case in the nilpotent setting.
Thus, on nilpotent Lie groups it is natural to work with operators associated
with the group through its Lie algebra structure. On stratified Lie groups these
are the sub-Laplacians, and such operators are not elliptic but hypoelliptic. More
generally, on graded Lie groups invariant hypoelliptic differential operators are the
so-called Rockland operators.

Indeed, in [Roc78], Rockland showed that if T is a homogeneous left-invariant
differential operators on the Heisenberg group, then the hypoellipticity of T and
T t is equivalent to a condition now called the Rockland condition (see Definition
4.1.1). He also asked whether this equivalence would be true for more general
homogeneous Lie groups. Soon after, Beals showed in [Bea77b] that the hypoel-
lipticity of a homogeneous left-invariant differential operator on any homogeneous
Lie group implies the Rockland condition. In the same paper he also showed that
the converse holds in some step-two cases. Eventually in [HN79], Helffer and Nour-
rigat settled what has become known as Rockland’s conjecture by proving that
the hypoellipticity is equivalent to the Rockland condition (see Section 4.1.3). At
the same time, it was shown by Miller [Mil80] that in the setting of homogeneous
Lie groups, the existence of an operator satisfying the Rockland condition (hence
of an invariant hypoelliptic differential operator in view of Helffer and Nourrigat’s
result), implies that the group is graded, see also Section 4.1.1. This means, alto-
gether, that the setting of graded Lie groups is the right generality for marrying
the harmonic analysis techniques with those coming from the theory of partial
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differential equations.
A number of well-known functional inequalities can be extended to the graded

setting, for example, see Bahouri, Fermanian-Kammerer and Gallagher [BFKG12b].
Also, there are many contributions to questions of solvability related to the hy-
poellipticity problem: for a good introduction to local and non-local solvability
questions on nilpotent Lie groups see Corwin and Rothschild [CR81] and, miss-
ing to mention many contributions, for a more recent discussion of the topic see
Müller, Peloso and Ricci [MPR99].

The hypoellipticity of second order operators is a very well researched sub-
ject. Its beginning may be traced to the 19th century with the diffusion problems
in probability arising in Kolmogorov’s work [Kol34]. Hörmander made a major
contribution [Hör67b] to the subject which then developed rapidly after that (see
e.g. the book of Oleinik and Radkevich [OR73]) until nowadays. We will not be
concerned much with these nor with the solvability problems in this book, since
one of topics of importance to us will be Rockland operators of an arbitrary degree,
and we will be giving more relevant references as we go along.

Here we want to mention that the question of the analytic hypoellipticity
turns out to be more involved than that in the smooth setting. In general, if a
graded Lie group is not stratified, there are no homogeneous analytic hypoellip-
tic left-invariant differential operators, a result by Helffer [Hel82]. For stratified
Lie groups, the situation is roughly as follows: for H-type groups the analytic hy-
poellipticity is equivalent to the smooth hypoellipticity, while for step ≥ 3 (and
an additional assumption that the second stratum is one-dimensional) the sub-
Laplacians are not analytic hypoelliptic, see Métivier [Mét80] and Helffer [Hel82],
respectively, and the discussions therein. For the Kohn-Laplacian �b in the ∂̄-
Neumann problem as well as for higher order operators in this setting the analytic
hypoellipticity was shown earlier by Tartakoff [Tar78, Tar80]. Below we will men-
tion a few more facts concerning the analytic hypoellipticity in the framework of
the analytic calculus of pseudo-differential operators.

Pseudo-differential operators

Several versions of the smooth calculi of pseudo-differential operators on the
Heisenberg group have been considered over the years. An earlier attempt yielding
the calculus of invariant operators with symbols on the dual g′ of the Lie algebra
of the group was made by Strichartz [Str72]. A calculus for (right-invariant) opera-
tors has been also constructed by Melin [Mel81] yielding parametrices for operators
elliptic in the so-called generating directions. In particular, the symbolic calculus
for invariant operators on stratified and graded Lie groups developed by Melin
further in [Mel83] provided a simpler proof of many of Helffer and Nourrigat’s
arguments.

The question of a general symbolic calculus for convolution operators on
nilpotent Lie groups was raised by Howe in [How84], who also tackled questions
related to the Calderón-Vaillancourt theorem. A more recent development of the
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calculus for invariant operators on homogeneous Lie groups and applications to
the corresponding symbolic conditions for the L2-boundedness of convolution op-
erators was given by G�lowacki in [G�lo04] and [G�lo07]. All this analysis applies to
invariant operators and employs the Euclidean Fourier transform yielding a sym-
bol on the dual g′. The symbol classes of such operators on the group are defined
as coming from the usual Hörmander classes on the (Euclidean) vector space g′.
They satisfy the spectral invariance properties and yield further useful generalisa-
tions of parametrix constructions, see G�lowacki [G�lo12]. An approach to Melin’s
operators on nilpotent Lie groups from the point of view of the Weyl calculus was
done by Manchon, with further applications to the Weyl spectral asymptotics for
the infinitesimal representations of elliptic operators in his calculus, see [Man91].
There exists also a calculus of left-invariant integral operators on the Heisenberg
group, using Laguerre polynomials for its Fourier analysis, see Beals, Gaveau,
Greiner and Vauthier [BGGV86], or using Leray’s quadratic Fourier transform by
Gaveau, Greiner and Vauthier [GGV86].

While these are mostly the calculi of invariant operators, the geometric con-
siderations require one to also understand operators in the non-invariant setting.
However, here the amount of knowledge is more limited and most of the symbolic
calculus is restricted to the Heisenberg group. Dynin’s construction of certain op-
erators on the Heisenberg group in [Dyn76] (see also [Dyn78]), was also developed
by Folland into considering meta-Heisenberg groups in [Fol94]. Beside this, a non-
invariant pseudo-differential calculus on any homogeneous Lie group was developed
by Christ, Geller, G�lowacki and Polin in [CGGP92] but this is not symbolic since
the operator classes are defined via properties of the kernel. In the revised ver-
sion of [Tay84], Taylor described several (non-invariant) operator calculi and, in
a different direction, he also noted a way to develop symbolic calculi: using the
representations of the group, he defines a general quantization and symbols on any
unimodular type I group (by quantization, we mean a procedure which associates
an operator with a symbol). He illustrated this on the Heisenberg group and ob-
tained there several important applications for, e.g., the study of hypoellipticity.
He used the fact that, because of the properties of the Schrödinger representations
of the Heisenberg group, a symbol is a family of operators in the Euclidean space,
themselves given by symbols via the Weyl quantization. Recently, the definition
of suitable classes of Shubin type for these Weyl-symbols led to another version
of the calculus on the Heisenberg group by Bahouri, Fermanian-Kammerer and
Gallagher [BFKG12a].

A calculus of pseudo-differential operators on the Heisenberg group in the
analytic setting was developed by Geller [Gel90], with applications to the analytic
hypoellipticity and further extensions of the calculus to real analytic CR mani-
folds. In particular, this implies the analytic hypoellipticity of the Kohn-Laplacian
on q-forms on pseudoconvex real analytic manifolds. It also implies that the Szegö
projection preserves analyticity, recovering earlier results on the relations between
Szegö projections and ∂̄∗

b -operator by Greiner, Kohn and Stein [GKS75], in turn
related to the solvability of the Lewy equation. The analytic hypoellipticity of the
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complex boundary Kohn-Laplacian on the (p, q)-forms arising in the ∂̄-Neumann
problem was proved earlier by Tartakoff [Tar78] using L2-methods and by Trèves
[Trè78] using the calculus. Here we note that a corresponding Euclidean symbolic
calculus with applications to the propagation of analytic singularities and corre-
sponding version of Fourier integral operators has been developed by Sjöstrand
[Sjö82], and the propagation of the analytic wave front set for the sub-Laplacian
was studied by Grigis and Sjöstrand [GS85].

The analysis of the nilpotent setting can be extended to more general man-
ifolds. Here, a typical application of the analysis on the Heisenberg groups is to
questions on contact manifolds. Indeed, a contact structure defines a grading on
the space of vector fields assigning them the degree of one or two. Locally, a con-
tact manifold is diffeomorphic to the Heisenberg group, and the principal symbol
of a differential operator on the contact manifold is its higher order terms, with
the calculus on the contact manifold induced by that on the Heisenberg group,
at least on the principal symbol level. The ellipticity condition for an operator on
a contact manifold is thus replaced by the Rockland condition for the homoge-
neous principal part of the corresponding operator on the Heisenberg group. Such
constructions can be carried out in more general settings, in particular on the
so-called Heisenberg manifolds, which are smooth manifolds with a distinguished
hyperplane bundle. The calculus of operators in this setting was carried out by
Beals and Greiner in [BG88], in particular also generalising the calculus on CR
manifolds needed for the construction of parametrices for the Kohn-Laplacian �b.
A recent advance in this direction mostly aimed at the second order operators
on Heisenberg manifolds, with a more intrinsic notion of the principal symbol of
such operators, was made by Ponge [Pon08]. Examples of such analysis include
CR manifolds and contact manifolds, with applications to the Kohn-Laplacian, the
Gover-Graham operators, the contact Laplacian associated to the Rumin complex,
as well as to more general Rockland operators.

Moreover, such operators are subelliptic and their index may be calculated
by the Atiyah-Singer index formula, see van Erp [vE10a]. The explicit knowl-
edge of the Bargmann-Fock representations of the Heisenberg group allows one
to construct the necessary Heisenberg calculus adapted to subelliplic operators in
this setting, leading to the index formula also for subelliptic pseudo-differential
operators on contact manifolds, see van Erp [vE10b].

The calculus of pseudo-differential operators on homogeneous Lie groups in
terms of their kernels developed by Christ, Geller, G�lowacki and Polin in [CGGP92]
extended the parametrix construction of Helffer and Nourrigat in [HN79] and some
properties of Taylor’s calculus from [Tay84] in the case of the Heisenberg group.
However, this calculus is not symbolic since it is based on the properties of the
kernel. The same is true for the analysis of operators on unimodular Lie groups
considered by Meladze and Shubin [MS87] where the operator classes were defined
in terms of local properties of the kernels.

Recently in [MR15], Mantoiu and the second author developed a more general
τ -quantization scheme on general locally compact unimodular type I groups, thus
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encompassing in particular the cases of compact Lie groups by the second author
and Turunen [RT10a] and nilpotent Lie groups including the one developed in this
monograph. Moreover, the τ -quantizations there allow one to deal with analogues
of both Kohn-Nirenberg and Weyl quantizations. However, due to the generality
the scope of available results at the moment is much more limited than the one
presented in [RT10a] in the compact case, or in this book. The type I assumption
is useful for having a rich machinery concerning the abstract Plancherel theorem
(see Section 1.8.2), however it can be dropped for some questions: e.g. for an Lp-
Lq Fourier multiplier theorem on general locally compact separable unimodular
groups (without type I assumption) see Akylzhanov and Ruzhansky [AR15]. For
nilpotent Lie groups, the relation between such quantizations and Melin’s quanti-
zation described above has been also established in [MR15].

Quantization on homogeneous Lie groups and the book structure

Most of the above works that concern the non-invariant symbolic calculi of op-
erators on nilpotent Lie groups, are restricted to the Heisenberg groups or to
manifolds having the Heisenberg group as a local model (except for the calculi
which are not symbolic). One of the reasons is that they rely in an essential way
on the explicit formulae for representations of the Heisenberg group. However, in
all the motivating aspects described above graded Lie groups appear as well as the
Heisenberg group. Also, graded groups appear as local models once one is dealing
with operators which are not in the form of ‘sum of squares’ even on manifolds
such as the Heisenberg manifolds.

Recently, in [RT10a, RT13], the second author and Turunen developed a
global symbolic calculus on any compact Lie group. They defined symbol classes
so that the quantization procedure, analogous to the Kohn-Nirenberg quantiza-
tion on Rn, makes sense on compact Lie groups, and the resulting operators form
an algebra with properties ‘close enough’ to the one enjoyed by the Euclidean
Hörmander calculus. In particular, one can also recover the Hörmander classes of
pseudo-differential operators on compact Lie groups viewed as compact manifolds
through conditions imposed on global full matrix-valued symbols. This approach
works for any compact Lie group and is intrinsic to the group in the sense that it
does not depend on pseudo-differential calculus of (Euclidean) Hörmander classes
on its Lie algebra. While relying on the representation theory of the group, the
quantization and the calculus do not depend on explicit formulae for its repre-
sentations. It does not depend either on the available Riemannian structure. This
gives an advantage over the calculi expressed in terms of a fixed connection of
a manifold, such as the one developed by Widom [Wid80], Safarov [Saf97], and
Sharafutdinov [Sha05], see also the survey of McKeag and Safarov [MS11].

The crucial and new ingredient in the definition of symbol classes in [RT10a]
was the introduction and systematic use of difference operators in order to replace
the Euclidean derivatives in the Fourier variables by ‘analogous’ operators acting
on the unitary dual of the group. These difference operators allow one to express
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the pseudo-differential behaviour directly on the group and are very natural from
the point of view of the Calderón-Zygmund theory. These operators and their
properties on compact Lie groups will be reviewed in Section 2.2.2.

It is not possible however to extend readily the results of the compact case
developed in [RT10a] to the nilpotent context. Indeed, the global analysis on a
non-compact setting is usually more challenging than in the case of a compact
manifold. In the specific case of Lie groups, the dual of a non-compact group
is no longer discrete and the unitary irreducible representations may be infinite
dimensional, and are often so. More problematically there is no Laplacian and
one expects to replace it by a sub-Laplacian on stratified Lie groups or, more
generally, by a positive Rockland operator on graded Lie groups; such operators
are not central.

Thus, in this book we study the global quantization of operators on graded
Lie groups, in particular aiming at developing an intrinsic symbolic calculus of such
operators. This is done in Chapter 5. As noted earlier, the graded Lie groups is a
natural generality for such analysis since we can still make a full use of the Rock-
land operators as well as from the representation theory which is well understood
e.g. by Kirillov’s orbit method [Kir04]. The consequent Fourier analysis is then
also well understood from earlier works on the Plancherel formula on nilpotent
and even on more general locally compact unimodular type I groups; an overview
of this topic is given in Section 1.7.

Summarising very briefly the results presented in Chapter 5, we introduce a
global quantization on graded Lie groups and classes Sm

ρ,δ of symbols and of the
corresponding operators in Ψm

ρ,δ = OpSm
ρ,δ such that for each (ρ, δ) with 1 ≥ ρ ≥

δ ≥ 0 and δ �= 1, we have an operator calculus, in the sense that the set
⋃

m∈R
Ψm

ρ,δ

forms an algebra of operators, stable under taking the adjoint, and acting on the
Sobolev spaces in such a way that the loss of derivatives is controlled by the order
of the operator. Moreover, the operators that are elliptic or hypoelliptic within
these classes allow for a parametrix construction whose symbol can be obtained
from the symbol of the original operator. Some applications of the constructed
calculus are contained in Chapter 5, see also the authors’ paper [FR13] for further
applications to lower bounds of operators on graded Lie groups. A preliminary
very brief outline of the constructions here was given in [FR14a].

To lay down the necessary foundation for the quantization of operators and
symbols, we also make an exposition of the construction of the Sobolev spaces
on graded Lie groups based on positive Rockland operators. Such construction
has been previously done on stratified Lie groups by Folland [Fol75], for Sobolev
spaces based on the (left-invariant) sub-Laplacian. Sub-Laplacians in this context
are (up to a sign) a particular case of positive Rockland operators on stratified
groups and our results coincide with Folland’s in this case. However if we follow
Folland’s treatment but now in the more general context of graded Lie groups,
beside the appearance of several technical problems, we would be led to make fur-
ther assumptions. One of them would be that the degree of the positive Rockland
operator ν must be less than the homogeneous dimension Q of the group, ν < Q
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(assuming ν < Q ensures the uniqueness of its homogeneous fundamental solu-
tion). In fact, Goodman makes such an assumption in his treatment of Sobolev
spaces on graded Lie group in [Goo76]. In order to avoid this assumption and also
to deal with other issues, we need to develop other arguments in the study of the
powers of a general positive Rockland operator R and of I+R and in the study of
the associated Sobolev spaces. This is done under no assumptions on the relation
between ν and Q in Sections 4.3 and 4.4.

The analysis of Sobolev spaces is based on the heat kernel associated with
a positive Rockland operator. We make an exposition of this topic in Section
4.2.2. Our presentation there follows essentially the arguments of Folland and
Stein [FS82]. The heat kernels are not necessarily positive functions and the heat
semi-group does not necessarily correspond to a martingale as in the stratified
case or more generally for sums of squares of vector fields with Hörmander’s con-
dition. Such sums of squares have been analysed in much more general settings.
For example, we can refer to the book of Varopoulos, Saloff-Coste and Coulhon
[VSCC92] for a treatment of the heat kernel on unimodular Lie groups of poly-
nomial growth, and the usually associated to it estimates, such as Harnack and
Sobolev inequalities. For another point of view, allowing dealing with heat kernels
associated to more general subelliptic second order order differential operators we
refer to Dungey, ter Elst and Robinson’s book [DtER03].

Overall, the majority of the background material can be (sometimes even
more easily) introduced in the setting of homogeneous Lie groups and we discuss
these in Chapter 3. Our treatment in this chapter is inspired by those of Folland
and Stein [FS82] and Ricci [Ric] but is slightly more general than that in the
existing literature since we allow kernels and operators to have complex-valued
homogeneity degrees. This allows us to treat complex powers of operators later
on, e.g. in Section 4.3.3.

We assume that the reader is familiar with analysis at a graduate level, e.g. as
presented in the books of Rudin [Rud87, Rud91], Reed and Simon [RS80, RS75],
or Folland [Fol99]. Nevertheless, we make a brief exposition of topics, mostly from
the representation theory of groups, to remind the reader of the necessary concepts
used in later parts of the book and to fix the terminology and notation. This is
done in Chapter 1, and references to more material are given throughout.

The exposition of the (matrix) quantization on compact Lie groups from
[RT10a] and its related works is given in Chapter 2. This serves both as an intro-
duction to the topic as well as provides motivation and examples for some of the
concepts presented later in the book.

Chapter 6 is devoted to presenting an application of the general theory devel-
oped in Chapter 5 to the concrete setting of the Heisenberg groups. Some results
from this chapter have been announced in the authors’ paper [FR14b] and this
chapter provides their proofs. We give the necessary preliminaries of the analysis
on the Heisenberg group, including a description of its dual using Schrödinger
representations, with further concrete expressions for the Plancherel measure and
Plancherel formula. For the Heisenberg group Hn, its Schrödinger representations
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πλ are acting on the space L2(Rn), thus yielding symbols acting on the Schwartz
space S(Rn), the space of smooth vectors of πλ. In turn, these symbols can be con-
veniently described using their Weyl quantization, giving a notion of scalar-valued
λ-symbols. In this particular case of the Heisenberg group, the symbol classes of
Chapter 5 can be characterised by the property that these λ-symbols belong to
some Shubin spaces, more precisely, a semiclassical-λ-type version of the usual
Shubin classes of symbols. Consequently, this is applied to giving criteria for el-
lipticity and hypoellipticity of operators on the Heisenberg group in terms of the
invertibility properties of their λ-symbols. We provide a list of examples to show
the applicability of these results in several settings.

Open Access. This chapter is distributed under the terms of the Creative Commons At-
tribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, duplication, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
a link is provided to the Creative Commons license and any changes made are indicated.
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Notation and conventions

N = {1, 2, 3, . . .}
N0 = N ∪ {0}
R∗ = R\{0}
R+ = (0,∞)

C+ = {z ∈ C, Re z > 0}
0! = 1

For α = (α1, . . . , αN ), α! = α1! · · ·αN !, |α| = α1 + · · ·+ αN

[α] is the homogeneous degree, defined in (3.12)

⌈x⌉ is the smallest n ∈ Z such that n > x

⌊x⌋ is the largest n ∈ Z such that n ≤ x

⌈M⌋ = max{|α| : α ∈ Nn
0 with [α] ≤M}, as defined in (3.35)

A ≍ B means there is some c > 0 such that c−1A ≤ B ≤ cA∑
j

aj :=
∑

j cjaj denotes a (finite) linear combination with some (irrelevant) con-

stants cj
Unit elements: e on general groups, and 0 on nilpotent groups

δx is the delta-distribution at x: δx(φ) = φ(x)

δj,k is the Kronecker delta: δj,k = 0 for j �= k, and δj,j = 1

L (H1,H2) is the space of all linear continuous mappings from H1 to H2

L (H) := L (H,H)
U(H) is the space of unitary mappings in L (H)
G is a Lie group, g is its Lie algebra, and

U(g) is its universal enveloping algebra defined in Section 1.3

T̄ , T ∗ and T t are defined by (1.8), (1.9), and (1.10) for an element T ∈ U(g) and
in Definition 1.3.1 for an operator T on L2(G)

RepG is the set of all strongly continuous unitary irreducible representations of
the group G

Ĝ is the unitary dual of G, i.e. RepG modulo the equivalence of representations

L2(Ĝ) is the space of square integrable fields on Ĝ with respect to the Plancherel
measure, see (1.29)

L∞(Ĝ), LL(L
2(G)), and K(G) are the realisations of the von Neumann algebra

of the group G as the spaces of the bounded fields of operators on Ĝ, of the left-

13
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invariant operators in L (L2(G)), and of the convolution kernels corresponding to
the latter, respectively, see Section 1.8.2
L∞
a,b(Ĝ), LL(L

2
a(G), L2

b(G)), and Ka,b(G) are the Sobolev versions of the above,
see Section 5.1.2
Diffk(G) is the space of left-invariant differential operators of order k

diffk(Ĝ) is the space of difference operators on Ĝ of order k
Cc(G) is the space of continuous functions on G with compact support
Co(G) is the space of continuous functions onG vanishing at infinity (see Definition
3.1.57)
D(G) = C∞

c (G) or D(R) = C∞
c (R) are spaces of smooth compactly supported

functions
C∞(G,F ) denotes the set of smooth functions from G to a Fréchet space F
Lp(G) or simply Lp for 1 ≤ p ≤ ∞ is the usual Lebesgue space on G with norm
‖ · ‖Lp = ‖ · ‖Lp(G) = ‖ · ‖p
(·, ·)L2 = (·, ·)L2(G) is the Hilbert sesquilinear form on L2(G) corresponding to the
norm ‖ · ‖L2

M(G) the Banach space of regular complex measures on G endowed with the total
mass ‖ · ‖M(G)

〈·, ·〉 denotes the distributional duality
Q denotes the homogeneous dimension of a homogeneous Lie group. After Section
6.4.2, it denotes the harmonic oscillator
sup always means the essential supremum with respect to the corresponding mea-
sure
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Chapter 1

Preliminaries on Lie groups

In this chapter we provide the reader with basic preliminary facts about Lie groups
that we will be using in the sequel. At the same time, it gives us a chance to fix
the notation for the rest of the monograph. The topics presented here are all well-
known and we decided to give a brief account without proofs referring the reader
for more details to excellent sources where this material is treated from different
points of view; for example, the monographs by Chevalley [Che99], Fegan [Feg91],
Nomizu [Nom56], Pontryagin [Pon66], to mention only a few. Thus, this chapter
can also serve as a quick and informal introduction to the subject, and we refer to
monographs [RT10a] for an undergraduate level introduction to general Lie groups
and their representation theory, and to Corwin and Greenleaf [CG90] or Goodman
[Goo76] for a rather comprehensive treatment of nilpotent Lie groups. The groups
that we are dealing with in the monograph are either compact or nilpotent Lie
groups, so we can restrict our attention to unimodular Lie groups only.

The choice of material is adapted to our subsequent needs and, after giving
basic definitions, we go straight to discussing convolutions, invariant differential
operators, and elements of the representation theory. More information on com-
pact or homogeneous nilpotent Lie groups will be given in relevant chapters at
appropriate places. In particular Section 3.1.1 will provide examples and basic
properties of graded nilpotent Lie groups. Relevant monographs to consult on in-
variant differential operators and related harmonic analysis may be Helgason’s
books [Hel84b, Hel01] or Wallach’s [Wal73].

1.1 Lie groups, representations, and Fourier transform

A Lie group G is a smooth manifold endowed with the smooth mappings

G×G ∋ (x, y) �→ xy ∈ G and G ∋ x �→ x−1 ∈ G

satisfying, for all x, y, z ∈ G, the properties
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1. x(yz) = (xy)z;

2. ex = xe = x;

3. xx−1 = x−1x = e,

where e ∈ G is an element of the group called the unit element. To avoid unnec-
essary technicalities at a few places, we will always assume that G is connected,
although we sometimes will emphasise it explicitly. A compact Lie group is a Lie
group which is compact as a manifold.

Lie groups are naturally topological groups. Recall that a topological group
G is a topological set G endowed with the continuous mappings

G×G ∋ (x, y) �→ xy ∈ G and G ∋ x �→ x−1 ∈ G

satisfying, for all x, y, z ∈ G, the same properties 1., 2. and 3. as above. When
the topology of a topological group is locally compact (i.e. every point has a
compact neighbourhood), we say that the group is locally compact. Lie groups are
(Hausdorff) locally compact.

Representations

A representation π of a group G on a Hilbert space Hπ �= {0} is a homomorphism
π of G into the group of bounded linear operators on Hπ with bounded inverse.
This means that

• for every x ∈ G, the linear mapping π(x) : Hπ → Hπ is bounded and has
bounded inverse,

• for any x, y ∈ G, we have π(xy) = π(x)π(y).

A representation π of a group G is unitary when π(x) is unitary for every
x ∈ G. Hence a unitary representation π of a group G is a homomorphism π ∈
Hom(G,U(Hπ)), which means that

• for every x ∈ G, the linear mapping π(x) : Hπ → Hπ is unitary:

π(x)−1 = π(x)∗;

• for any x, y ∈ G, we have π(xy) = π(x)π(y).

Here and everywhere, if H is a topological vector space, L (H) denotes the
space of all continuous linear operators H → H, and U(H) the space of unitary
ones, with respect to the inner product on H. For two different topological vector
spaces H1 and H2, we denote by L (H1,H2) the space of all linear continuous
mappings from H1 to H2.

An invariant subspace for a representation π is a vector subspace W ⊂ Hπ

such that π(x)W ⊂ W holds for every x ∈ G. A representation π is called irre-
ducible when it has no closed invariant subspaces.
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Let us give the prototype example of a representation which is not irreducible.
If πj ∈ Hom(G,U(Hπj

)) is a family of representations, then using the direct sum

Hπ :=
⊕

j

Hπj

with the induced inner product, we get a representation π which is the direct sum
of πj :

π =
⊕

j

πj ∈ Hom(G,U(Hπ)), π(x)|Hπj
= πj(x).

Naturally, a sum of several πj ’s can not be irreducible as each Hπj
is a closed

invariant subspace of Hπ.

If the space Hπ is finite dimensional, the representation π is said to be finite
dimensional and its dimension/degree is defined by

dπ := dimHπ.

The trivial representation, sometimes denoted by 1, is given by the group homo-
morphism G ∋ x �→ 1 ∈ C, and its dimension is one. If Hπ is infinite dimensional,
then the representation π is said to be infinite dimensional.

Two representations π1 and π2 are said to be equivalent if there exists a
bounded linear mapping A : Hπ1

→ Hπ2
between their representation spaces with

a bounded inverse such that the relation

Aπ1(x) = π2(x)A (1.1)

holds for all x ∈ G. In this case we write

π1 ∼ π2 or, more precisely sometimes, π1 ∼A π2

and denote their equivalence class by [π1] = [π2]. For unitary representations,
A is assumed to be unitary as well. A bounded linear mapping with bounded
inverse satisfying the relation (1.1) is sometimes called an intertwining operator or
intertwiner. The set of bounded linear mappings A with bounded inverse satisfying
the relation (1.1) is denoted by Hom(π1, π2).

Note that for any representation π, Hom(π, π) contains at least λIHπ
, λ ∈ C,

where IHπ is the identity mapping on Hπ.

We now assume that the group G is topological. A representation π of G is
continuous if the mapping

{
G×Hπ −→ Hπ

(x, v) �−→ π(x)v
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is continuous. A representation π of G is called strongly continuous if the mapping
π : G → L (Hπ) is continuous for the strong operator topology in L (Hπ), that
is, if the mapping {

G −→ Hπ

x �−→ π(x)v

is continuous for all v ∈ Hπ.

A continuous representation is strongly continuous. The converse is true for
unitary representations. Indeed, if π is a unitary representation of G, then we have
for any x, x0 ∈ G and v, v0 ∈ Hπ,

‖π(x)v − π(x0)v0‖Hπ
= ‖π(x0)(π(x

−1
0 x)v − v0)‖Hπ

= ‖π(x−1
0 x)v − v0‖Hπ

= ‖π(x−1
0 x)(v − v0) + (π(x−1

0 x)v0 − v0)‖Hπ

≤ ‖π(x−1
0 x)(v − v0)‖Hπ

+ ‖π(x−1
0 x)v0 − v0‖Hπ

= ‖v − v0‖Hπ
+ ‖π(x−1

0 x)v0 − v0‖Hπ
,

having used only the unitarity of π and the triangle inequality. This shows that if
a representation of G is unitary and strongly continuous then it is continuous.

Schur’s lemma: Let π be a strongly continuous unitary representation of a topo-
logical group G on a Hilbert space Hπ. The representation π is irreducible if and
only if the only bounded linear operators on Hπ commuting with all π(x), x ∈ G,
are the scalar operators. Equivalently,

π irreducible ⇐⇒ Hom(π, π) = {λIHπ
: λ ∈ C}.

The set of all equivalence classes of strongly continuous irreducible unitary
representations of G is called the unitary dual of G or just dual of G and is denoted
by Ĝ.

Later, we will give more details on representations of compact or nilpotent
Lie groups and their dual.

The unitary dual of G is never a group unless G is commutative. However,
if G is a commutative locally compact group, then Ĝ has a natural structure of a
commutative locally compact group and we have

Pontryagin duality: if G is a commutative locally compact group, then
̂̂
G ≃ G.

For most of the statements in the sequel, if they hold for one representation,
they will also hold for all equivalent representations. That is why we may simplify
the notation a little writing π ∈ Ĝ instead of [π] ∈ Ĝ for its equivalence class.
In this case we can think of π as either any representative from its class or the
equivalence class itself. If we need to work with a particular representation from
an equivalence class (for example the one diagonalising certain operators in a
particular choice of the basis in Hπ) we will specify this explicitly.
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Haar measure

A fundamental fact, valid on general locally compact groups, is the existence of
an invariant measure, called Haar measure:

Theorem 1.1.1. Let G be a locally compact group. Then there exists a non-zero left-
invariant measure on G, and it is unique up to a positive constant. More precisely,
there exists a positive Radon measure on G satisfying

|xA| = |A| for every Borel set A ⊂ G and every x ∈ G,

where |A| denotes the measure of the set A with respect to this Radon measure.
In the sequel, we denote this measure by dx, dy, etc., depending on the variable
of integration. Then, for every x ∈ G and every continuous compactly supported
function f on G, we have

∫

G

f(xy)dy =

∫

G

f(y)dy.

We fix one of such measures. In this monograph, we will be only dealing with
either compact or nilpotent Lie groups, in which case it can be shown that the
Haar measure is also right-invariant:

|Ax| = |A| for every Borel set A ⊂ G and every x ∈ G,

and also ∫

G

f(yx)dy =

∫

G

f(y)dy;

such groups are called unimodular. Since the mapping f �→
∫
G
f(y−1)dy is posi-

tive, left-invariant, and normalised, by uniqueness we must also have
∫

G

f(y−1)dy =

∫

G

f(y)dy.

For a more general definition of a modular function we can refer to Definition
B.2.10. Here we can summarise a few properties of (unimodular) groups:

• Any Lie group is a locally compact (Hausdorff) group.

• Any compact (Hausdorff) group is a locally compact (Hausdorff) group and
it is also unimodular.

• Any abelian locally compact (Hausdorff) group is unimodular.

• Any nilpotent or semi-simple Lie group is unimodular.

If 1 ≤ p ≤ ∞, Lp(G) or simply Lp denote the usual Lebesgue space on G
with respect to the Haar measure, with the norm

‖ · ‖Lp = ‖ · ‖Lp(G) = ‖ · ‖p,
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given for p ∈ [1,∞) by

‖f‖p =

(∫

G

|f(x)|pdx
)1/p

,

and for p =∞ by
‖f‖∞ = sup

x∈G
|f(x)|.

Here the supremum refers to the essential supremum with respect to the Haar
measure.

The Hilbert sesquilinear form on L2(G) is denoted by

(f1, f2)L2 = (f1, f2)L2(G) =

∫

G

f1(x)f2(x)dx.

Example 1.1.2. Let us give an important example of so-called left and right regular
representations leading to the notions of left- and right-invariant operators. We
define the left and right regular representations of G on L2(G), πL, πR : G →
U(L2(G)), respectively, by

πL(x)f(y) := f(x−1y) and πR(x)f(y) := f(yx).

Definition 1.1.3. An operator A is called left (right, resp.) invariant if it commutes
with the left (right, resp.) regular representation of G.

Fourier analysis

For f ∈ L1(G) we define its Fourier coefficient or group Fourier transform at the
strongly continuous unitary representation π as

FGf(π) ≡ f̂(π) ≡ π(f) :=

∫

G

f(x)π(x)∗dx. (1.2)

More precisely, we can write

(f̂(π)v1, v2)Hπ
=

∫

G

f(x)(π(x)∗v1, v2)Hπ
dx.

This gives a linear mapping f̂(π) : Hπ → Hπ. If the representation π is finite
dimensional, then after a choice of a basis in the representation space Hπ, the
Fourier coefficient f̂(π) can be also viewed as a matrix f̂(π) ∈ Cdπ×dπ .

Remark 1.1.4. The choice of taking the adjoint π(x)∗ in (1.2) is natural if we think

of the unitary dual of the torus Tn = Rn/Zn being T̂n = {πξ(x) = e2πix·ξ}ξ∈Zn ≃
Zn, and the Fourier transform on the torus defined by

f̂(πξ) ≡ f̂(ξ) =

∫

Tn

e−2πix·ξf(x)dx =

∫

Tn

f(x)πξ(x)
∗dx.
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In other contexts, the other choice, that is, integrating against π(x) instead of
π(x)∗, may be made. This is the case for instance in the study of C∗-algebras
associated with groups.

Remark 1.1.5. We note that the Fourier coefficient f̂(π) depends on the choice of
the representation π from its equivalence class [π]. Namely, if π1 ∼ π2, so that

π2(x) = U−1π1(x)U

for some unitary U and all x ∈ G, then

f̂(π2) = U−1f̂(π1)U.

This means that strictly speaking, we need to look at Fourier coefficients modulo
conjugations induced by the equivalence of representations. This should, however,
cause no problems, and we refer to Remark 2.2.1 for more discussion on this.

Recalling that the Fourier transform on Rn maps translations to modulations,
here we have an analogous property, namely, if π ∈ Ĝ, f ∈ L1(G) and x ∈ G, then

f̂(·x)(π) = π(x)f̂(π) and f̂(x ·)(π) = f̂(π)π(x), (1.3)

whenever the right hand side makes sense. Let us show these properties by a formal
argument, which can be made rigorous on Lie groups, see the proof of Proposition
1.7.6, (iv). We have

π(x)f̂(π) =

∫

G

f(y)π(x)π(y)∗dy

=

∫

G

f(y)π(yx−1)∗dy

=

∫

G

f(yx)π(y)∗dy

= f̂(·x)(π), (1.4)

as well as

f̂(x ·)(π) =

∫

G

f(xy)π(y)∗dy

=

∫

G

f(y)π(x−1y)∗dy

=

∫

G

f(y)π(y)∗π(x)dy

= f̂(π)π(x). (1.5)

We will continue with a more detailed discussion of the Fourier transform on
compact Lie groups in Section 2.1, on nilpotent Lie groups in Section 1.8.1 and,
more generally, on a separable locally compact connected, unimodular, amenable
group G of type I in Section 1.8.2.
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1.2 Lie algebras and vector fields

A (real) Lie algebra is a real vector space V endowed with a bilinear mapping

V × V ∋ (a, b) �→ [a, b] ∈ V,

called the commutator of a and b, such that

• [a, a] = 0 for every a ∈ V ;

• Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c ∈ V .

By writing [a+ b, a+ b] = [a, a] + [a, b] + [b, a] + [b, b] we see that the first property
is equivalent to the condition that

∀a, b ∈ V [a, b] = −[b, a].

We now proceed to equip the tangent space of G (at every point) with a Lie
algebra structure. A map X(x) : C∞(G) → R is called a tangent vector to G at
x ∈ G if

• X(x)(f + g) = X(x)f +X(x)g;

• X(x)(fg) = X(x)(f)g(x) + f(x)X(x)(g).

The notation X(x) is used only in this section and the reason for its choice is that
we want to reserve the notation Xx for derivatives, to be used later.

The space of all tangent vectors at x is a finite dimensional vector space of
dimension equal to the dimension of G as a manifold; the finite dimensionality can
be seen by passing to local coordinates. This vector space is denoted by TxG. The
disjoint union,

TG :=
⋃

x∈G

TxG

is a vector bundle over X, called the tangent bundle. The canonical projection
proj : TG → G is given by projX(x) := x. If Ux is a (sufficiently small) open

neighbourhood of x in G, we can trivialise the vector bundle TG by proj−1(Ux) ≃
Ux × E with a vector space E of dimension equal to that of G. This induces the
manifold structure on TG.

A (smooth) vector field on G is a (smooth) section of TG, i.e. a (smooth)
mapping X : G→ TG such that X(x) ≡ X(x) ∈ TxG. It acts on C∞(G) by

(Xf)(x) := (X(x)f)(x), f ∈ C∞(G).

There is a bracket structure on the space of vector fields acting on C∞(G) given
by

[X,Y ](x)(f) := X(x)Y f − Y (x)Xf, x ∈ G,

leading to the corresponding (smooth) vector field [X,Y ] : G → TG given by
x �→ [X,Y ](x). One can readily check that [X,X] = 0 for every vector field X and
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that the introduced bracket satisfies the Jacobi identity. This bracket [·, ·] is called
the commutator bracket for vector fields.

We now recall that G is also a group, and relate vector fields to the group
structure. First, we define the left and right translations by an element y ∈ G:

Ly, Ry : G→ G, Ly(x) := yx, Ry(x) := xy.

Consequently, their derivatives are the mappings

dLy, dRy : TG→ TG such that dLy ∈ L (TxG, TyxG), dRy ∈ L (TxG, TxyG).

Now, a vector field X : G → TG is called left-invariant if it commutes with the
left translations, in the sense that

X ◦ Ly = dLy ◦X ∀y ∈ G. (1.6)

A similar construction leads to the notion of right-invariant vector fields, satisfying

X ◦Ry = dRy ◦X

for all y ∈ G.

It follows that once a left-invariant vector field is defined at any one point, by
the left-invariance it is uniquely determined at all points. Thus, the mapping X �→
X(e) is a one-to-one correspondence between left-invariant vector fields on G and
the tangent space TeG at the unit element e ∈ G. Conversely, given X(e) ∈ TeG,
the vector field X defined by (1.6) is automatically smooth and, by definition,
left-invariant. With this identification, we can now simplify the notation for left-
invariant vector fields X, writing X also for its value X(e) at the unit element. It
can be readily checked that if X and Y are left-invariant vector fields, so is also
their commutator [X,Y ].

Definition 1.2.1. The Lie algebra g of the Lie group G is the space TeG equipped
with the commutator [·, ·] induced by the commutator bracket of vector fields.

We now define the exponential mapping expG. For X ∈ g, consider the initial
value problem for a function γ : [0, ǫ)→ G, ǫ > 0, given by the ordinary differential
equation determined by the left-invariant vector field associated with X:

γ′(t) = X(γ(t)), γ(0) = e.

From the theory of ordinary differential equations we know that this equation is
uniquely solvable on some interval [0, ǫ) and the solution depends smoothly on
X(e). Moreover, we notice that we can increase the interval of existence by taking
smaller vectors X(e), in particular, in such a way that the solution exists on the
interval [0, 1]. In this case we set expG X := γ(1). Altogether, it follows that the
mapping expG is a smooth diffeomorphism from some open neighbourhood of 0 ∈ g

to some open neighbourhood of e ∈ G.
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Now, each vector X ∈ g can be viewed as a left-invariant differential operator
on C∞(G) defined by

Xf(x) :=
d

dt
f(x expG(tX))|t=0. (1.7)

Indeed, it can be readily checked that XπL(y) = πL(y)X for all y ∈ G. Analo-
gously, the same vector X ∈ g defines a right-invariant differential operator, which
we denote by

X̃f(x) :=
d

dt
f(expG(tX)x)|t=0.

Thus, throughout this book, we will be interpreting the Lie algebra g = TeG of G
as the vector space of first order left-invariant partial differential operators on G.
The space of all left-invariant vector fields will be sometimes denoted by D(G) or
by Diff1(G), and the space of all right-invariant vector fields by D̃(G).

1.3 Universal enveloping algebra and differential

operators

Roughly speaking, the universal enveloping algebra of a Lie algebra g is the natural
non-commutative polynomial algebra on g. If g is the Lie algebra of a Lie group G,
then, similarly to the interpretation of g as the space of left-invariant derivatives
on G, the universal enveloping algebra U(g) of the Lie algebra of G will be also
interpreted as the vector space of left-invariant partial differential operators on
G of finite order. The associative algebra will be generated as a complex algebra
over g, so that we could write U(gC) for it, where gC denotes the complexification
of g. However, we will simplify the notation writing U(g), and will later use the
Poincaré-Birkhoff-Witt theorem to identify it with the left-invariant differential
operators on G with complex coefficients. Let us now formalise these statements.

The following construction is algebraic and works for any real Lie algebra g.
Let us denote the m-fold tensor product of gC by ⊗mgC := gC ⊗ · · · ⊗ gC, and let

T :=
∞⊕

m=0

⊗mgC

be the tensor product algebra of g, which means that T is the linear span of the
elements of the form

λ001+
M∑

m=1

Km∑

k=1

λmkXmk1 ⊗ · · · ⊗Xmkm,

where 1 is the formal unit element of T , λmk ∈ C, Xmkj ∈ g, and M,KM ∈ N.
This T becomes an associative algebra with the product

(X1 ⊗ · · · ⊗Xp)(Y1 ⊗ · · · ⊗ Yq) := X1 ⊗ · · · ⊗Xp ⊗ Y1 ⊗ · · · ⊗ Yq
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extended to a uniquely determined bilinear mapping T ×T → T . We now want to
induce the commutator structure on T : let I be the two-sided ideal in T spanned
by the set

O := {X ⊗ Y − Y ⊗X − [X,Y ] : X,Y ∈ g},
i.e. I is the smallest vector subspace of T such that

• O ⊂ I;
• for every J ∈ I and T ∈ T we have JT, TJ ∈ I.

The quotient algebra
U(g) := T /I

is called the universal enveloping algebra of g; the quotient mapping

ι : T ∋ T �→ T + I ∈ U(g) = T /I,

restricted to g, ι|g : g→ U(g), is called the canonical mapping of g. This gives the
embedding of g into U(g):

Ado-Iwasawa theorem: the canonical mapping ι|g : g→ U(g) is injective.

Let n = dimG and let {Xj}nj=1 be a basis of the Lie algebra g of G. Regarded
as first order left-invariant derivatives, they give rise to higher order left-invariant
differential operators

Xα = Xα1
1 . . . Xαn

n , α = (α1, . . . , αn) ∈ Nn
0 .

The converse is also true (for a stronger version of this see e.g. [Bou98, Ch 1, Sec.
2.7]):

Poincaré-Birkhoff-Witt theorem: any left-invariant differential operator T on G
can be written in a unique way as a finite sum

T =
∑

α∈Nn
0

cαX
α,

where all but a finite number of the coefficients cα ∈ C are zero. This gives an
identification between the universal enveloping algebra U(g) and the space of left-
invariant differential operators on G.

We denote the space of all left-invariant differential operators of order k by
Diffk(G).

If T is as above, we define three new elements T̄ , T ∗, and T t of U(g) via

T̄ :=
∑

α∈Nn
0

c̄α(Xn)
αn . . . (X1)

α1 , (1.8)

T ∗ :=
∑

α∈Nn
0

c̄α(−Xn)
αn . . . (−X1)

α1 , (1.9)
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and
T t :=

∑

α∈Nn
0

cα(−Xn)
αn . . . (−X1)

α1 . (1.10)

These T ∗ and T t are called the (formal) adjoint and transpose operators of T ,
respectively. Naturally, they coincide with the natural transpose and formal adjoint
operators of their corresponding left-invariant vector fields. Recall that the latter
operators are defined via:

Definition 1.3.1. Let T be an operator T on L2(G) with domain D(G) (T may be
unbounded, D(G) ⊂ DomT ). The natural transpose and formal adjoint operators
of T are the operators T t and T ∗ on L2(G) defined via

〈Tφ, ψ〉 = 〈φ, T tψ〉 and (Tφ, ψ)L2(G) = (φ, T ∗ψ)L2(G), φ, ψ ∈ D(G).

We also define the operator T̄ on L2(G) via

T̄ φ := T φ̄,

for φ, φ̄ ∈ DomT .

Note that we also have, e.g.,

T ∗ = {T t} = {T̄}t

and so on. Denoting
f̃(x) := f(x−1),

the left- and right- invariant differential operators are related by

X̃f(x) = −(Xf̃)(x−1) and hence X̃αf(x) = (−1)|α|(Xαf̃)(x−1). (1.11)

Indeed, we can write

Xf̃(x) =
d

dt
f((x expG(tX))−1)|t=0 =

d

dt
f(expG(−tX)x−1)|t=0 = −(X̃f)(x−1),

implying (1.11).
For any X ∈ g identified with a left-invariant vector field, we have

X̃y{f(xy)} =
d

dt
f(xetXy)t=0 = Xx{f(xy)}.

Recursively, we obtain

X̃α
y {f(xy)} = Xα

x {f(xy)}. (1.12)

The first order differential operators are formally skew-symmetric:
∫

G

(Xf1)f2 = −
∫

G

f1(Xf2) and

∫

G

(X̃f1)f2 = −
∫

G

f1(X̃f2),
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so that from (1.11) we also have

X̃f(x) = −(Xf̃)(x−1) = (Xtf̃)(x−1).

We now summarise several further notions and their properties that will be
of use to us in the sequel:

• there is a natural representation of the Lie group G acting on its Lie algebra
g, called the adjoint representation. To introduce it, first define the inner
automorphism Ix(y) := xyx−1. We have Ix : G → G and Ixy = IxIy. Its
differential at e gives a linear mapping from TeG to TeG, and we denote it
by

Ad(x) := (dIx)e : g→ g.

We have Ad(e) = I and Ad(xy) = Ad(x)Ad(y), so that Ad : G → L (g)
becomes a representation of G on g;

• the left and right multiplications on G are related by

x expG X = exp(Ad(x)X)x, x ∈ G, X ∈ g;

• a Lie group G is called a linear Lie group if it is a closed subgroup of GL(n,C);
the adjoint representation of such G is given by

Ad(X)Y = XYX−1

as multiplication of matrices;

• universality of unitary groups: any compact Lie group is isomorphic to a
subgroup of U(N), the group of (N ×N)-unitary matrices, for some N ∈ N;

• let ad : g→ L(g) be the linear mapping defined by

ad(X)Y := [X,Y ];

then d(Ad)e = ad; see also Definition 1.7.4;

• the Killing form of the Lie algebra g is the bilinear mapping B : g × g → R
defined by

B(X,Y ) := Tr(ad(X) ad(Y ));

it satisfies

B(X,Y ) = B(Y,X) and B(X, [Y, Z]) = B([X,Y ], Z)

and is invariant under the adjoint representation of G, namely,

B(X,Y ) = B(Ad(x)(X),Ad(x)(Y )) for all x ∈ G, X, Y ∈ g;
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• A connected Lie group G is called semi-simple if B is non-degenerate; a
connected semi-simple groupG is compact if and only if B is negative definite.

The Ad-invariance of the Killing form has its consequences. On one hand,
any bilinear form on g can be extended to a bilinear (non-necessarily positive
definite) metric on G by left translations. It is automatically left-invariant. On
the other hand, if the form on g is Ad-invariant, then the extended metric is
also right-invariant. Thus, we can conclude that the Killing form induces a bi-
invariant metric on G. By the last property above, if G is semi-simple, the Killing
form is non-degenerate, and hence the corresponding metric is pseudo-Riemannian.
Moreover, if G is a connected semi-simple compact Lie group, the positive-definite
form −B induces the bi-invariant Riemannian metric on G.

For the basis {Xj}nj=1 as above, let us define Rij := B(Xi, Xj). If the group

G is semi-simple, the matrix (Rij) is invertible, and we denote its inverse by R−1.
This leads to another vector space basis on g given by

Xi :=
n∑

j=1

(R−1)ijXj ,

and to the so-called Casimir element of U(g) defined by

Ω :=

n∑

i=1

XiX
i.

It has the crucial property: Ω is independent of the choice of the basis {Xj}, and
ΩT = TΩ for all T ∈ U(g).

We finish this section with the formula for the group product which will be useful
for us, especially in the nilpotent case:

Theorem 1.3.2 (Baker-Campbell-Hausdorff formula). Let G be a Lie group with
Lie algebra g. There exists a neighbourhood V of 0 in g such that for any X,Y ∈ V ,
we have

expG X expG Y = expG
(∑

n>0

(−1)n+1

n

∑

p,q∈N
n
0

pi+qi>0

(
∑n

j=1(pj + qj))
−1

p1!q1! . . . pn!qn!

×(adX)p1(adY )q1 . . . (adX)pn(adY )qn−1Y
)
.

The equality holds whenever the sum on the right-hand side is convergent.

Writing first few terms explicitly, we have

expG X expG Y

= expG

(
X + Y +

1

2
[X,Y ] +

1

12
[[X,Y ], Y ]− 1

12
[[X,Y ], X] + . . .

)
.
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1.4 Distributions and Schwartz kernel theorem

Here we fix the notation concerning distributions. For an extensive analysis of
spaces of distributions and their properties on manifolds we refer to [Hör03].

The space of smooth functions compactly supported in a smooth manifold M
will be denoted by D(M). Throughout the book, any smooth manifold is assumed
to be paracompact (i.e. every open cover has an open refinement that is locally
finite) and this allows us to consider the space of distributions D′(M) as the dual
of D(M). Note that any Lie group is paracompact.

If u ∈ D′(M) and φ ∈ D(M), we shall denote the evaluation of u on φ by
〈u, φ〉, or even by 〈u, φ〉M when we wish to be precise; however, we shall usually
pretend that the distributions are functions and write

〈u, φ〉 =
∫

M

u(x)φ(x)dx, u ∈ D′(M), φ ∈ D(M).

The Schwartz space S(Rn) of rapidly decreasing functions will be equipped
with a family of seminorms defined by

‖f‖S(Rn),N := sup
|α|≤N, x∈Rn

(1 + |x|)N
∣∣∣∣
(

∂

∂x

)α

f(x)

∣∣∣∣ . (1.13)

Its dual, the space of tempered distributions, is denoted by S ′(Rn).

Theorem 1.4.1 (Schwartz kernel theorem). We have the following statements:

• Let T : S(Rn)→ S ′(Rn) be a continuous linear operator. Then there exists a
unique distribution κ ∈ S ′(Rn × Rn) such that

Tφ(x) =

∫

Rn

κ(x, y)φ(y)dy.

In other words, T is an integral operator with kernel κ. The converse is also
true.

• Let M be a smooth connected manifold and let T : D(M) → D′(M) be a
continuous linear operator. There exists a unique distribution κ ∈ D′(M×M)
such that

Tφ(x) =

∫

M

κ(x, y)φ(y)dy.

In other words, T is an integral operator with kernel κ. The converse also is
true.

In both cases, the map κ �→ T is an isomorphism of topological vector space.

We refer to e.g. [Tre67] for further details. We will also give a version of this
theorem on Lie groups for left-invariant operators in Corollary 3.2.1.
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Let Ω be an open set in Rn or inM . We say that u ∈ D′(Ω) is supported in the
set K ⊂ Ω if 〈u, φ〉 = 0 for all φ ∈ D(Ω) such that φ = 0 on K. The smallest closed
set in which u is supported is called the support of u and is denoted by suppu.
The space of compactly supported distributions on M is denoted by E ′(M), and
the duality between E ′(M) and C∞(M) will still be denoted by 〈·, ·〉.

We write u ∈ D′
j(Ω) for the space of distributions of order j on Ω, which

means that for any compact subset K of Ω,

∃C > 0 ∀φ ∈ D(K) |〈u, φ〉| ≤ C‖φ‖Cj(K),

but j does not depend on K. An important property of such distributions, useful
for us, is the following

Proposition 1.4.2. If a distribution u ∈ D′
j(R

n) has support suppu = {0}, then
there exist constants aα ∈ C such that

u =
∑

|α|≤j

aα∂
αδ0,

where δ0(φ) = φ(0) is the delta-distribution at zero.

1.5 Convolutions

Let f, g ∈ L1(G) be integrable function on a locally compact group. The convolu-
tion f ∗ g is defined by

(f ∗ g)(x) :=
∫

G

f(y)g(y−1x)dy.

In this monograph we consider only unimodular groups. This means that the Haar
measure is both left- and right-invariant. Consequently we also have

(f ∗ g)(x) =
∫

G

f(xy−1)g(y)dy.

On a nilpotent or compact Lie group which is not abelian, the convolution is
not commutative: in general, f ∗ g �= g ∗ f . However, apart from the lack of
commutativity, group convolution and the usual convolution on Rn share many
properties. For example, we have

〈f ∗ g, h〉 =

∫

G

(f ∗ g)(x) h(x) dx

=

∫

G

∫

G

f(y) g(y−1x) h(x) dy dx

= 〈f, h ∗ g̃〉, with g̃(x) = g(x−1). (1.14)
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We also have

〈f ∗ g, h〉 =

∫

G

∫

G

f(y) g(y−1x) h(x) dy dx

=

∫

G

∫

G

f(y) g(z) h(yz) dy dz

=

∫

G

∫

G

f(wz−1) g(z) h(w) dz dw

= 〈g, f̃ ∗ h〉. (1.15)

With the notation ·̃ for the operation given by g̃(x) = g(x−1), we also have

(f ∗ g)̃ = g̃ ∗ f̃ . (1.16)

One can readily check the following simple properties:

• if f, g ∈ L1(G) then f ∗ g ∈ L1(G), and we have ‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 ;

• under the assumptions above, we have

(f ∗ g)(x) =
∫

G

f(y−1)g(yx)dy =

∫

G

f(xy)g(y−1)dy

for almost every x ∈ G;

• if either f or g are continuous on G then f ∗ g is continuous on G;

• ‖f ∗ g‖L∞ ≤ ‖f‖L2‖g‖L2 ;

• the convolution is associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h, for f, g, h ∈ L1(G);

• the convolution is commutative if and only if G is commutative;

• (if G is a Lie group and ) if X is a left-invariant vector field, whenever it
makes sense, we have

X(f ∗ g) = f ∗ (Xg) and X̃(f ∗ g) = (X̃f) ∗ g;

moreover, we also have
(Xf) ∗ g = f ∗ (X̃g);

• the right convolution operator f �→ f ∗κ is left-invariant; the left convolution
operator f �→ κ ∗ f is right-invariant.

To check the last statement, let us show that the right convolution operator given
via Af = f ∗ κ is left-invariant:

πL(z)Af(x) = (f ∗ κ)(z−1x) =

∫

G

f(y) κ(y−1z−1x)dy

=

∫

G

f(z−1y) κ(y−1x)dy = (πL(z)f) ∗ κ(x) = AπL(z)f(x).
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Conversely, it follows from the Schwartz integral kernel theorem that if A is left-
invariant, it can be written as a right convolution Af = f ∗ κ, and if A is right-
invariant, it can be written as a left convolution Af = f ∗ κ, see Section 1.4 and
later Corollary 3.2.1.

With our choice of the definition of the convolution and the Fourier transform
in (1.2), one can readily check that for f, g ∈ L1(G), we have

f̂ ∗ g(π) = ĝ(π)f̂(π) (1.17)

or, in the other notation,
π(f ∗ g) = π(g)π(f).

We say that an operator A is of weak type (p, p) if there is a constant C > 0
such that for every λ > 0 we have

|{x ∈ G : |Af(x)| > λ}| ≤ C
‖f‖pLp(G)

λp
,

where |{·}| denotes the Haar measure of a set in G.

Proposition 1.5.1 (Marcinkiewicz interpolation theorem). Let r < q and assume
that operator A is of weak types (r, r) and (q, q). Then A is bounded on Lp(G) for
all r < p < q.

An important fact, the Young inequality, relates convolution to Lp-spaces:

Proposition 1.5.2 (Young’s inequality). Suppose

1 ≤ p, q, r ≤ ∞ and
1

p
+

1

q
=

1

r
+ 1.

If f1 ∈ Lp(G) and f2 ∈ Lq(G) then f1 ∗ f2 ∈ Lr(G) and

‖f1 ∗ f2‖r ≤ ‖f1‖p‖f2‖q.

If p, q ∈ (1,∞) are such that 1
p + 1

q > 1, f1 ∈ Lp(G), and f2 satisfies the

weak-Lq(G) condition:

sup
s>0

sq |{x : |f2(x)| > s}| =: ‖f2‖qw−Lq(G) <∞,

then f1 ∗ f2 ∈ Lr with r as above and

‖f1 ∗ f2‖r ≤ ‖f1‖p‖f2‖w−Lq(G).

The proof is an easy adaptation of the Euclidean case which can be found
e.g., in [SW71] or, in the nilpotent case, in [FS82, Proposition 1.18] and [Fol75,
Proposition 1.10].
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Convolution of distributions

We now define the convolution of distributions on a Lie group G. For φ ∈ C∞(G),
we recall that

φ̃(x) = φ(x−1)

and
πL(x)φ(y) = φ(x−1y).

Consequently, we note that

(πL(x)φ̃)(y) = φ̃(x−1y) = φ(y−1x).

It follows that we can write the convolution as

(f ∗ g)(x) = 〈f, πL(x)g̃〉,

and hence it make sense to define

Definition 1.5.3. Let v ∈ D′(G) and φ ∈ D(G). Then we define their convolution
as

(v ∗ φ)(x) := 〈v, πL(x)φ̃〉 ≡ 〈v, φ̃(x−1 ·)〉.
We also define

(φ ∗ v)(x) := 〈v, πR(x
−1)φ̃〉 ≡ 〈v, φ̃(·x−1)〉,

where
πR(x

−1)φ̃(y) = φ̃(yx−1),

and which is also consistent with the convolution of functions.

We note that this expression makes since since πL(x), πR(x
−1) and φ �→ φ̃

are continuous mappings from D(G) to D(G).

For example, for the delta-distribution δe at the unit element e ∈ G, it follows
that

δe ∗ φ = φ for every φ ∈ D(G),

since we can calculate

(δe ∗ φ)(x) = 〈δe, πL(x)φ̃〉 = φ(y−1x)|y=e = φ(x).

The following properties are easy to check using Definition 1.5.3:

• if v ∈ D′(G) and φ ∈ D(G), then v ∗ φ ∈ C∞(G);

• if u, v, φ ∈ D(G), then 〈u ∗ v, φ〉 = 〈u, φ ∗ ṽ〉, in consistency with (1.14).

For v ∈ D′(G), we now define ṽ ∈ D′(G) by

〈ṽ, φ〉 := 〈v, φ̃〉.

In particular, if v ∈ D′(G) and φ ∈ D(G), then φ ∗ ṽ ∈ C∞(G). This shows that
the following convolution of distributions is correctly defined:
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Definition 1.5.4. Let u ∈ E ′(G) and v ∈ D′(G). Then we define their convolution
as

〈u ∗ v, φ〉 := 〈u, φ ∗ ṽ〉, ∀φ ∈ D(G).

This gives u∗v ∈ D′(G) which is consistent with the convolution of functions
in view of (1.15). If we start with a compactly supported distribution v ∈ E ′(G) in
Definition 1.5.3, we arrive at the definition of the composition u ∗ v for u ∈ D′(G)
and v ∈ E ′(G), given by the same formula as in Definition 1.5.4.

A word of caution has to be said about convolution of distributions, namely,
it is not in general associative for distributions, although it is associative for func-
tions.

1.6 Nilpotent Lie groups and algebras

From now on, any Lie algebra g is assumed to be real and finite dimensional.

Proposition 1.6.1. The following are equivalent:

• ad is a nilpotent endomorphism over g, i.e.

∃k ∈ N ∀X ∈ g (adX)k = 0;

• the lower central series of g, defined inductively by

g(1) := g, g(j) := [g, g(j−1)], (1.18)

terminates at 0 in a finite number of steps.

Definition 1.6.2. (i) If a Lie algebra g satisfies any of the equivalent conditions
of Proposition 1.6.1, then it is called nilpotent.

(ii) Moreover, if g(s+1) = {0} and g(s) �= {0}, then g is said to be nilpotent of
step s.

(iii) A Lie group G is nilpotent (of step s) whenever its Lie algebra is nilpotent
(of step s).

Here are some examples of nilpotent Lie groups and their Lie algebras.

Example 1.6.3. The abelian group Rn equipped with the usual addition is nilpo-
tent. Its Lie algebra is Rn equipped with the trivial Lie bracket.

Example 1.6.4. If no ∈ N, the Heisenberg group Hno is the Lie group whose
underlying manifold is R2no+1 and whose law is

h1h2 =
(
x1 + x2, y1 + y2, t1 + t2 +

1

2
(x1y2 − y1x2)

)
, (1.19)
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for h1 = (x1, y1, t1) and h2 = (x2, y2, t2) in Rno × Rno × R. Here, for vectors
x1, y1, x2, y2 ∈ Rno , we denote by x1y2 and y1x2 their usual inner products on
Rno .

Its Lie algebra hno
is R2no+1 equipped with the Lie bracket given by the

commutator relations of its canonical basis {X1, . . . , Xno
, Y1, . . . , Yno

, T}:

[Xj , Yj ] = T for j = 1, . . . , no,

and all the other Lie brackets (apart from those obtained by anti-symmetry) are
trivial.

In the case no = 1, we will often simplify the notation and write X,Y, T for
the basis of h1, etc...

Example 1.6.5. Let Tno
be the group of no×no matrices which are upper triangular

with 1 on the diagonal. The matrix group Tno
is a nilpotent Lie group.

It can be proved that any (connected simply connected) nilpotent Lie group
can be realised as a subgroup of Tno

.
Its Lie algebra tno is the space of no × no matrices which are upper triangle

with 0 on the diagonal. A basis is {Ei,j , 1 ≤ i < j ≤ no} where Ei,j is the matrix
with all zero entries except the i-th row and j-th column which is 1.

Proposition 1.6.6. Let G be a connected simply connected nilpotent Lie group with
Lie algebra g. Then

(a) The exponential map expG is a diffeomorphism from g onto G.

(b) If G is identified with g via expG, the group law (x, y) �→ xy is a polynomial
map.

(c) If dλg denotes a Lebesgue measure on the vector space g, then dλg ◦ exp−1
G is

a bi-invariant Haar measure on G.

This proposition can be found in, e.g. [FS82, Proposition 1.2] or [CG90, Sec.
1.2].

After the choice of a basis {X1, . . . , Xn} for g, Proposition 1.6.6, Part (a),
implies that the group G is identified with Rn via the exponential mapping; this
means that a point x = (x1, . . . , xn) ∈ Rn is identified with the point

expG(x1X1 + . . .+ xnXn)

of the group. Part (b) implies that the law can be written as

x · y = (P1(x, y), P2(x, y), . . . , Pn(x, y)), (1.20)

where Pj : Rn × Rn → R, j = 1, . . . , n, are polynomial mappings given via the
Baker-Campbell-Hausdorff formula (see Theorem 1.3.2). Indeed in the nilpotent
case, since ad is nilpotent, the Baker-Campbell-Hausdorff formula is finite and
holds for any two elements of the Lie algebra.
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Remark 1.6.7. More is known.

1. Certain choices of bases, namely the so-called Jordan-Hölder or strong-Malcev
bases ([Puk67, CG90]), lead to a ‘triangular’ shaped law, that is,

P1(x, y) = x1 + y1,

P2(x, y) = x2 + y2 +Q2(x1, y1),

...

Pn(x, y) = xn + yn +Qn(x1, . . . , xn−1, y1, . . . , yn−1),

with Q1, . . . , Qn polynomials.

In Chapter 3 we will see that in the particular case of homogeneous Lie
groups, with the choice of the basis made in Section 3.1.3, this fact together
with some additional homogeneous properties is proved in Proposition 3.1.24.

2. The second type of exponential coordinates

Rn ∋ (x1, . . . , xn) �−→ expG(x1X1) . . . expG(xnXn) ∈ G,

may be used to identify a nilpotent Lie group with Rn after the choice of a
suitable basis as in Part 1.

In the particular case of homogeneous Lie groups, with the choice of the
basis made in Section 3.1.3, this fact together with some additional homoge-
neous properties is proved in Lemma 3.1.47.

3. The converse of (a) and (b) in Proposition 1.6.6 holds in the following sense:
if a Lie group G can be identified with Rn such that

(a) its law is a polynomial mapping (as in (1.20)),

(b) and for any s, t ∈ R, x ∈ Rn, the product of the two points sx and tx
is the point (s+ t)x,

then the Lie group G is nilpotent [Puk67, Part. II chap. I].

However, we will not use these general facts.

Setting aside the abelian case (Rn,+), we use the multiplicative notation for
the group law of any other connected simply connected nilpotent Lie group G.
The identification of G with g leads to consider the origin 0 as the unit element
(even if the equality xx−1 = 0 may look surprising at first sight). Because of the
Baker-Campbell-Hausdorff formula (see Theorem 1.3.2), the inverse of an element
is in fact its opposite, that is, with the notation above,

x−1 = (−x1, . . . ,−xn).

The identification of G with g allows us to define objects which usually live
on a vector space, for example the Schwartz class:
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Definition 1.6.8. A Schwartz function f on G is a function f such that f ◦ expG is
a Schwartz function on g. We denote by S(G) the class of Schwartz functions. It is
naturally a Fréchet space and its dual space is the space of tempered distribution
S ′(G).

Formally a distribution T ∈ D′(G) is tempered when T ◦ expG is a tempered
distribution on g. The distribution duality is formally given by

〈f, φ〉 =
∫

G

f(x)φ(x)dx, f ∈ S ′(G), φ ∈ S(G).

The Schwartz space and the tempered distributions on a nilpotent homoge-
neous Lie group will be studied more thoroughly in Section 3.1.9.

1.7 Smooth vectors and infinitesimal representations

In this section we describe the basics of the part of the representation theory of
non-compact Lie groups that is relevant to our context. For most statements of
this section we give proofs since understanding of these ideas will be important for
the developments of pseudo-differential operators in Chapter 5. Thus, the setting
that we have in mind is that of nilpotent Lie groups, although we do not need to
make this assumption for the following discussion. For the general representation
theory of locally compact groups we can refer to, for example, the books of Knapp
[Kna01], Wallach [Wal92, Chapter 14] or Folland [Fol95].

Let us first recall some basic definitions about differentiability of a Banach
space-valued function.

Definition 1.7.1. Let f be a function from on open subset Ω of Rn to a Banach
space B with norm | · |B .

The function f is said to be differentiable at xo ∈ Ω if there exists a (neces-
sarily unique) linear map f ′(xo) : Rn → B such that

1

|x− xo|Rn

|f(x)− f(xo)− f ′(xo)(x− xo)|B −→x→xo

0.

We call f ′(xo) the differential of f at xo.
If f is differentiable at each point of Ω, then x �→ f ′(x) is a function from

Ω to the Banach space L (Rn, B) of linear mappings from Rn to B (recall that
linear mappings from Rn to B are automatically bounded.) We say that f is of
class C1 if x �→ f ′(x) is continuous, and that f is of class C2 if x �→ f ′(x) is of
class C1 and so on. We say that f is of class C∞ if f is of class Ck for all k ∈ N.

These definitions extend to any open set of any smooth manifold.

As in the case of functions valued in a finite dimensional Euclidean space, we
have the basic properties for a function f as in Definition 1.7.1:
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• The function f is of class Ck if and only if all of its partial derivatives of
order 1, 2, . . . , k exist and are continuous.

• The chain rule holds for a composition f ◦ h where h is a mapping from an
open subset of a finite dimensional Euclidean space into Ω.

We can now define the smooth vectors of a representation.

Definition 1.7.2. Let G be a Lie group and let π be a representation of G on a
Hilbert space Hπ. A vector v ∈ Hπ is said to be smooth or of type C∞ if the
function

G ∋ x �→ π(x)v ∈ Hπ

is of class C∞.

We denote by H∞
π the space of all smooth vectors of π.

The following is a necessary preparation to introduce the notion of the in-
finitesimal representation and of the operator dπ(X). This will be of fundamental
importance in the sequel.

Proposition 1.7.3. Let G be a Lie group with Lie algebra g. Let π be a strongly
continuous representation of G on a Hilbert space Hπ. Then for any X ∈ g and
v ∈ H∞

π , the limit

lim
t→0

1

t
(π(expG(tX))v − v)

exists in the norm topology of Hπ and is denoted by dπ(X)v. Each dπ(X) leaves
H∞

π invariant, and dπ is a representation of g on H∞
π satisfying

∀X,Y ∈ g dπ(X)dπ(Y )− dπ(Y )dπ(X)− dπ ([X,Y ]) = 0. (1.21)

Consequently, dπ extends to a representation of the Lie algebra U(g) on H∞
π with

dπ(0) = 0 and dπ(1) = 0.

Recalling the derivative with respect to X in (1.7), we may formally abbre-
viate writing

dπ(X)v = X(π(x)v)|x=e or even dπ(X) = Xπ(e). (1.22)

Sketch of the proof of Proposition 1.7.3. Let v ∈ H∞
π . The function f : g → Hπ

defined by f(X) := π(expX)v is of class C∞, and for any X ∈ g we have

f ′(0)(X) = lim
t→0

1

t
(π(expG(tX))v − v) .

By definition f ′(0)(X) = dπ(X).
Since π is continuous we have, using the identification of g with the space of

left-invariant vector fields,

π(x)dπ(X)v = lim
t→0

1

t
π(x) (π(expG(tX))v − v)

= lim
t→0

1

t
(π(x expG(tX))v − π(x)v) = XF (x),
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where F : G → H is the function defined by F (x) := π(x)v. By assumption F is
of type C∞ thus x �→ XF (x) is also of type C∞ and the equality above says that
dπ(X)v is smooth. Hence dπ(X) leaves H∞

π stable. Consequently X �→ dπ(X) can
be extended to an algebra homomorphism U(g)→ H∞

π as in the statement.
It remains to prove (1.21), i.e. that

∀X,Y ∈ g dπ(X)dπ(Y )− dπ(Y )dπ(X)− dπ ([X,Y ]) = 0.

We fix X,Y ∈ g and define a path c by

c(t) := expG

(
(−sgnt)|t| 12X

)
expG

(
−|t| 12Y

)
expG

(
(sgnt)|t| 12X

)
expG

(
|t| 12Y

)
.

Clearly c is defined on a neighbourhood of 0 in R and valued in G, and is of class
C1 with c′(0) = [X,Y ]. Let v ∈ H∞

π . By the chain rule the map t �→ π(c(t))v has
differential F ′(e)([X,Y ]) at t = 0, where F is F (x) = π(x)v as above and e is the
neutral element. Thus

dπ([X,Y ]) = lim
t→0

1

t
(π(c(t))v − v) = lim

t→0

1

t2
(
π(c(t2))v − v

)
.

The strong continuity of π implies then

lim
t→0

1

t2
(π(expG(tX) expG(tY ))v − π(expG(tY ) expG(tX))v)

= lim
t→0

π(expG(tY ) expG(tX))
1

t2
(
π(c(t2))v − v

)

= dπ([X,Y ])v. (1.23)

But we can also compute

(dπ(X)dπ(Y )v, u) = ∂s=0∂t=0(π(expG(sX) expG(tY ))v, u)

= lim
t→0

(
1

t2
{π(expG(tX) expG(tY ))− π(expG(tX))− π(expG(tY )) + I} v, u).

Interchanging X and Y and subtracting we find

((dπ(X)dπ(Y )− dπ(Y )dπ(X))v, u) (1.24)

= lim
t→0

(
1

t2
{π(expG(tX) expG(tY ))− π(expG(tY ) expG(tX))} v, u).

Comparing this with (1.23), we obtain (1.21). This concludes the proof of
Proposition 1.7.3. �

Definition 1.7.4. Let G be a Lie group with Lie algebra g and let π be a strongly
continuous representation of G on a Hilbert space Hπ. The representation dπ
defined in Proposition 1.7.3 is called the infinitesimal representation associated
to π. We will often denote it also by π. Consequently, for T ∈ U(g) or for its
corresponding left-invariant differential operator, we write

π(T ) := dπ(T ).
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Example 1.7.5. For example, the infinitesimal representation of Ad is ad, see Sec-
tion 1.3.

We now collect some properties of the infinitesimal representations.

Proposition 1.7.6. Let G be a Lie group with Lie algebra g and let π be a strongly
continuous unitary representation of G on a Hilbert space Hπ. Then we have the
following properties.

(i) For the infinitesimal representation dπ of g on H∞
π each dπ(X) for X ∈ g is

skew-hermitian: dπ(X)∗ = −dπ(X).

(ii) The space H∞
π of smooth vectors is invariant under π(x) for every x ∈ G,

and

∀D ∈ U(g) ∀v ∈ H∞
π π(x)dπ(D)π(x)−1v = dπ(Ad(x)D)v.

(iii) If S is a vector subspace of Hπ such that for all v ∈ S and X ∈ g, the limits
of t−1 {π(expG(tX))v − v} as t→ 0 exist, then S ⊂ H∞

π .

(iv) Let φ ∈ D(G). For any X ∈ g, viewed as a left-invariant vector field,

∀v ∈ Hπ π(φ)v ∈ H∞
π and dπ(X)π(φ)v = π(Xφ)v,

and viewing X as a right-invariant vector field X̃,

∀v ∈ H∞
π π(φ)dπ(X)v = π(X̃φ)v.

If G is a connected simply connected nilpotent Lie group, one can replace
D(G) by the Schwartz space S(G).

Proof. Let us prove Part (i). Let u, v ∈ H∞
π . The unitarity of π implies

(
v,

i

t
(π(expG(tX))u− u)

)
=

(
i

−t (π(expG(−tX))v − v) , u

)
.

By definition of dπ(X)u and dπ(X)v, the limits as t → 0 of the left and right
hand sides are (v, idπ(X)u) and (idπ(X)v, u), respectively. Hence they are equal
and dπ(X) is skew-hermitian. This proves Part (i).

For (ii), we first observe that the map x �→ π(x)π(xo)v is the composition of
x �→ xxo and x �→ π(x)v. Hence H∞

π is an invariant subspace for π(xo).
Now let X ∈ g, x ∈ G and v ∈ H∞

π . Then we compute easily

1

t
(π(expG(tX))− I)π(x)−1v = π(x)−1 1

t

(
π(x expG(tX)x−1)− I

)
v

= π(x)−1 1

t
(π(expG(Ad(x)(tX))− I) v.
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Passing to the limit as t→ 0, we obtain

dπ(X)π(x)−1v = π(x)−1dπ(Ad(x)(tX))v.

Hence
π(x)dπ(X)π(x)−1 = dπ(Ad(x)(tX))

on H∞
π . Using Proposition 1.7.3, we obtain a similar property for D ∈ U(g) instead

of X. This shows (ii).

For (iii), by assumption for v ∈ S the map Fv : G ∋ x �→ π(x)v is differ-
entiable at the neutral element e, the partial derivative in the X ∈ g direction
being

XFv(e) = lim
t→0

1

t
{π(expG(tX))v − v} .

More generally, since π is strongly continuous, we have for any x ∈ G,

π(x)XFv(e)= lim
t→0

1

t
π(x) {π(expG(tX))v − v}= lim

t→0

1

t
{Fv(x expG(tX))− Fv(x)} .

Thus Fv is also differentiable at x ∈ G and

XFv(x) = π(x)XFv(e)

for any X ∈ g. This shows that the first derivatives of Fv are continuous, thus Fv

must be of class C1. Furthermore,

F ′
v(x)(X) = π(x)XFv(e).

If Fv is of class Ck for k ∈ N, then the map x �→ XFv(x) = π(x)XFv(e) is of class
Ck and Fv must be of class Ck+1. Inductively this shows that Fv is of type C∞.
This shows Part (iii).

For (iv), for any φ ∈ L1(G) and x ∈ G, recalling (1.3), we have

π(x)π(φ) = π(φ(·x)).

Hence for any φ ∈ D(G), v ∈ Hπ and X ∈ g,

1

t
(π(expG(tX))π(φ)v − π(φ)v) = π

(
φ(· expG(tX))− φ

t

)
v.

This last expression tends to π(Xφ)v as t→ 0. Applying (iii) to S = π(φ)Hπ, we
see that S ⊂ H∞

π . We also have

dπ(X)π(φ)v = π(Xφ)v.

For the right-invariant case, again by (1.3), we have

π(φ)π(x) = π(φ(x ·))
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for any φ ∈ L1(G) and x ∈ G. Hence for any φ ∈ D(G), v ∈ Hπ and X ∈ g,

1

t
(π(φ)π(expG(tX))v − π(φ)v) = π

(
φ(expG(tX) ·)− φ

t

)
v.

This last expression tends to π(X̃φ)v as t → 0 while the left-hand side tends to
π(φ)dπ(X)v if v ∈ H∞

π . This proves Part (iv) in the general case. The changes for
G connected simply connected nilpotent Lie group, and to replace D(G) by S(G)
are straightforward. This concludes the proof of Proposition 1.7.6. �

In the following proposition, we show that the space of smooth vectors is
dense in the space of a strongly continuous representation. The argument is fa-
mously due to G̊arding.

Proposition 1.7.7. Let G be a Lie group and let π be a strongly continuous repre-
sentation of G on a Hilbert space Hπ. Then the subspace H∞

π of smooth vectors is
dense in Hπ.

Proof. Let v ∈ Hπ and ǫ > 0 be given. Since π is strongly continuous, the set

Ω := {x ∈ G : |π(x)∗v − v|Hπ < ǫ}
is open. We can find a non-negative function φ ∈ D(G) supported in Ω satisfying∫
G
φ(x)dx = 1. Then

|π(φ)v − v|Hπ =

∣∣∣∣
∫

G

φ(x)(π(x)∗v − v)dx

∣∣∣∣
Hπ

≤
∫

Ω

φ(x)|π(x)∗v − v|Hπ
dx ≤

∫

G

φ(x)ǫdx = ǫ.

By Proposition 1.7.6, we know that π(φ)v is a smooth vector. This shows that
H∞

π is dense in Hπ. �

In the proof above, we have in fact showed that the vectors π(φ)v for v ∈ Hπ

and φ ∈ D(G) form a dense subspace of Hπ. If G is nilpotent connected simply
connected, the same property holds with φ ∈ S(G). The finite linear combinations
of those vectors form a subspace called the G̊arding subspace, which is included in
H∞

π by Proposition 1.7.6 (iv).
It turns out that the G̊arding subspace is not only included in the subspace

H∞
π but is in fact equal to H∞

π . This is a consequent of the following theorem, due
to Dixmier and Malliavin [DM78]:

Theorem 1.7.8 (Dixmier-Malliavin). Let G be a Lie group and let π be a strongly
continuous representation of G on a Hilbert space Hπ.

The space H∞
π of smooth vectors is spanned by all the vectors of the form

π(φ)v for v ∈ H∞
π and φ ∈ D(G). This means that any smooth vector can be

written as a finite linear combination of vectors of the form π(φ)v.
If G is a connected simply connected nilpotent Lie group, one can replace

D(G) by the Schwartz space S(G).



1.8. Plancherel theorem 43

1.8 Plancherel theorem

Here we discuss the Plancherel theorem for locally compact groups and for the
special case of nilpotent Lie groups. Our presentation will be rather informal.
One reason is that we decided not to present here in full detail the orbit method
yielding the representations of the nilpotent Lie groups but to limit ourselves only
to its consequences useful for our subsequent analysis. The reason behind this
choice is that it could take quite much space to prove the general results for the
orbit method and would lead us too much away from our main exposition also
risking overwhelming the reader with technical discussions somewhat irrelevant
for our purposes. In general, this subject is well-known and we can refer to books
by Kirillov [Kir04] or by Corwin and Greenleaf [CG90] for excellent expositions
of this topic. The same reasoning applies to the abstract Plancherel theorem: it is
known in a much more general form, due to e.g. Dixmier [Dix77, Dix81], and we
will limit ourselves to describing its implications for nilpotent Lie groups relevant
to our subsequent work.

As we will see in Chapter 2, all the results of the abstract Plancherel theorem
in the case of compact groups can be recaptured there thanks to the Peter-Weyl
theorem (see Theorem 2.1.1). However, for nilpotent Lie groups, even if the orbit
method provides a description of the dual of the group and of the Plancherel
measure, in our analysis we will need to use the properties of the von Neumann
algebra of the group provided by the general abstract Plancherel theorem. This
will replace the use of the Fourier coefficients in the compact case.

Before we proceed, let us adopt two useful conventions. First, the set of all
strongly continuous unitary irreducible representations of a locally compact group
G will be denoted by RepG, i.e.

RepG = {all strongly continuous unitary irreducible representations of G}.

The equivalence of representations in RepG leads to the unitary dual Ĝ. We have
already agreed to write π ∈ Ĝ meaning that the expressions, when dealing with
Fourier transforms, may depend on π as described in Remark 1.1.5. However,
in this section we will sometimes want to show that certain expressions do not
depend on the equivalence class of π, and for this purpose we will be sometimes
distinguishing between the sets RepG and Ĝ.

The second useful convention that we will widely use especially in Chapter
5 is that we may denote the Fourier transform in three ways, namely, we have

φ̂(π) ≡ π(φ) ≡ FG(φ)(π).

Although this may seem as too much notation for the same object, the reason for
this is two-fold. Firstly, the notation π(φ) is widely adopted in the representation



44 Chapter 1. Preliminaries on Lie groups

theory of C∗-algebra associated with groups. Secondly, it becomes handy for longer
expressions as well as for expressing properties like

π(Tφ) = π(T )π(φ)

where π(T ) is the infinitesimal representation given in Definition 1.7.4. The no-

tation φ̂(π) is useful as an analogy for the Euclidean case and will be extensively
used in the case of compact groups. When we want to write the Fourier transform
as a mapping between different spaces, the notation FG becomes useful.

1.8.1 Orbit method

In this section we briefly discuss the idea of the orbit method and its implications
for our analysis. In general, we will not use the orbit method by itself in our
analysis, but only the existence of a Plancherel measure and some Fourier analysis
similar to the compact case as described in Section 2.1.

Let G be a connected, simply connected, nilpotent Lie group with Lie algebra
g. The orbit method describes a way to associate to a given linear functional on
g a collection of unitary irreducible representations of G which are all unitarily
equivalent between themselves. Consequently, to any element of the dual g′ of g,
one can associate an equivalence class of unitary irreducible representations. It
turns out that any such class is realised in this way. Furthermore, two elements
f1, f2 ∈ g′ lead to the same class if and only if the two elements are in the same
orbit under the natural action of G on g′; this natural action is the so-called co-
adjoint representation: since the group G acts on g by the adjoint representation
Ad, it also acts on its dual g′ by

co-Ad : G× g′ ∋ (g, f) �−→ f(Ad−1g ·) ∈ g′.

This gives a one-to-one correspondence between

• on the one hand, the dual Ĝ of the group, that is, the collection of unitary
irreducible representations modulo unitary equivalence, and

• on the other hand, g′/co-Ad(G), that is, the set of co-adjoint orbits.

Example 1.8.1. In the case of the Heisenberg group Hno
presented in Example

1.6.4, a family of representatives of all co-adjoint orbits is

1. either of the form λT ′ if λ ∈ R\{0},
2. or of the form

∑no

j=1

(
x′
jX

′
j + y′jY

′
j

)
with x′

j , y
′
j ∈ R,

where {X ′
1, . . . , X

′
no
, Y ′

1 , . . . , Y
′
no
, T ′} is the dual basis to the canonical basis of bno

given in Example 1.6.4. To λT ′ is associated the Schrödinger representation πλ,
and to

∑no

j=1 x
′
jX

′
j+y′jY

′
j is associated the 1-dimensional representation (x, y, t) �→

exp
(
i(xx′ + yy′)

)
, where xx′ and yy′ denote the canonical scalar product on Rn.

See Section 6.2.
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As for Schrödinger representations, the representations constructed via the
orbit method can be realised as acting on some L2(Rm) and the dual Ĝ may be
identified with g′/co-Ad(G), or even with suitable representatives of this quotient.

Thus, by the orbit method the unitary dual Ĝ is ‘concretely’ described as
a subset of some Euclidean space. It is then possible to construct ‘explicitly’ a
measure μ on Ĝ such that we have the Fourier inversion theorem (where we recall
once more the notation and conventions described in the beginning of Section 1.8):

Theorem 1.8.2. Let G be a connected simply connected nilpotent Lie group. The
dual Ĝ is then equipped with a measure μ called the Plancherel measure satisfying
the following property for any φ ∈ S(G).

The operator π(φ) ≡ φ̂(π) is trace class for any strongly continuous unitary
irreducible representation π ∈ RepG, and Tr(π(φ)) depends only on the class of π;

the function Ĝ ∋ π �→ Tr (π(φ)) is integrable against μ and the following formula
holds:

φ(0) =

∫

Ĝ

Tr (π(φ)) dμ(π). (1.25)

For the explicit expression of the Plancherel measure μ, see, e.g., [CG90,
Theorem 4.3.9].

Applying formula (1.25) to φ(·) = f(·x) and using π(φ) = π(x)π(f) in view
of (1.3), we obtain:

Corollary 1.8.3 (Fourier inversion formula). Let G be a connected simply connected

nilpotent Lie group and let μ be the Plancherel measure on Ĝ.
If f ∈ S(G), then π(x)π(f) and π(f)π(x) are trace class for every x ∈ G,

the function Ĝ ∋ π �→ Tr (π(x)π(f)) is integrable against μ, and we have

f(x) =

∫

Ĝ

Tr (π(x)π(f)) dμ(π) =

∫

Ĝ

Tr (π(f)π(x)) dμ(π). (1.26)

The latter equality can be seen by the same argument as above, applied to
the function f(x ·).

Example 1.8.4. In the case of the Heisenberg group Hno
, the Plancherel measure

is given by integration over R\{0} against cn0
|λ|nodλ, with a suitable constant cno

(depending on normalisations):

φ(0) = cno

∫

R\{0}
Tr

(
πλ(φ)

)
|λ|nodλ.

An orthonormal basis for Hπλ
= L2(Rno) is given by the Hermite functions. The

subset of Ĝ formed by the 1-dimensional representations is negligible with respect
to the Plancherel measure. We refer to Section 6.2.3 for a more detailed discussion
as well as for the constant cno .
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Applying the inversion formula to φ ∗ (φ∗), where φ∗(x) = φ̄(x−1), one ob-
tains:

Theorem 1.8.5 (Plancherel formula). We keep the notation of Theorem 1.8.2. Let
φ ∈ S(G). Then the operator π(φ) is Hilbert-Schmidt, that is,

‖π(φ)‖2
HS

= Tr (π(φ)π(φ)∗) <∞

for any π ∈ RepG, and its Hilbert-Schmidt norm is constant on the equivalence
class of π. The function Ĝ ∋ π �→ ‖π(φ)‖2

HS
is integrable against μ and

∫

G

|φ(x)|2dx =

∫

Ĝ

‖π(φ)‖2
HS
dμ(π). (1.27)

Formula (1.27) can be extended unitarily to hold for any φ ∈ L2(G), permit-
ting the definition of the group Fourier transform of a square integrable function
on G.

Applying the inversion formula to φ ∗ (ψ∗), or bilinearising the Plancherel
formula, we also obtain:

Corollary 1.8.6. Let φ, ψ ∈ S(G). Then the operator π(φ)π(ψ)∗ is trace class for
any π ∈ RepG, and its trace is constant on the equivalence class of π. The function
Ĝ ∋ π �→ Tr (π(φ)π(ψ)∗) is integrable against μ and

(φ, ψ)L2(G) =

∫

G

φ(x)ψ(x)dx =

∫

Ĝ

Tr (π(φ)π(ψ)∗) dμ(π).

1.8.2 Plancherel theorem and group von Neumann algebras

In this section we describe the concept of the group von Neumann algebra that be-
comes handy in associating symbols with convolution kernels of invariant operators
on G. For the details of the constructions described below we refer to Dixmier’s
books [Dix77, Dix81] and to Section B in the appendix of this monograph. For
the Plancherel theorem on locally compact groups with emphasis on the decom-
position of reducible representations in continuous Hilbert sums, see also Bruhat
[Bru68]. A more extensive discussion of this subject is given in Appendix B.2,
more precisely in Section B.2.5. An abstract version of the Plancherel theorem is
also given in the appendix in Theorem B.2.32.

Our framework

The representation theory of a general locally compact group may be very wild.
However, in favourable cases most of the traditional Fourier analysis on compact
Lie groups (described in Section 2.1) remains valid under natural modifications;
for instance, the sum over the discrete dual in the compact case is replaced by an
integral. By favourable cases we mean the following hypothesis:
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(H) The group G is separable locally compact,
unimodular, and of type I.

(See e.g. Dixmier [Dix77]). For our purpose, it suffices to know that any Lie group

which is either compact or nilpotent satisfies (H). Its unitary dual Ĝ is a standard
Borel space.

We will now present the abstract Plancherel theorem as obtained by Dixmier
in [Dix77, §18.8] and stated in Theorem B.2.32. Here, we will formulate it neither
in its logical order with the viewpoint of proving its statement nor in its full
generality since this would require introducing a lot of additional notation. Instead,
we present its consequences applicable to our setting, starting with the existence
of the Plancherel measure.

The Plancherel formula

We start by describing the part of the Plancherel theorem dealing with the Plan-
cherel formula. First if φ ∈ Cc(G) and π ∈ RepG, then φ̂(π) is a bounded operator
on Hπ (as the group Fourier transform of an integrable function) and one checks
easily that its Hilbert-Schmidt norm is constant on the class of π ∈ RepG in
Ĝ. Hence ‖φ̂(π)‖HS(Hπ) may be viewed as depending on π ∈ Ĝ. The Plancherel
formula states that there exists a unique positive σ-finite measure μ, called the
Plancherel measure, such that for any φ ∈ Cc(G) we have

∫

G

|φ(x)|2dx =

∫

Ĝ

∥∥∥φ̂(π)
∥∥∥
2

HS(Hπ)
dμ(π). (1.28)

In the compact or nilpotent case, the Plancherel measure can be described ex-
plicitly via the Peter-Weyl Theorem (see Theorem 2.1.1) or the orbit method (see
Theorem 1.8.5), respectively.

The Plancherel formula in (1.28) may be reformulated in the following (more
precise) way. The group Fourier transform is an isometry from Cc(G) endowed
with the L2(G)-norm to the Hilbert space

L2(Ĝ) :=

∫ ⊕

Ĝ

HS(Hπ)dμ(π). (1.29)

Hence the space L2(Ĝ) is defined (see Section B.1 or, e.g., [Dix81, Part II ch. I])
as the space of μ-measurable fields of Hilbert-Schmidt operators {σπ ∈ HS(Hπ) :

π ∈ Ĝ} which are square integrable in the sense that

‖σ‖2
L2(Ĝ)

:=

∫

Ĝ

‖σπ‖2HSdμ(π) <∞.

Here we use the usual identifications of a strongly continuous irreducible unitary
representation from RepG with its equivalence class in Ĝ, and of a field of opera-
tors on Ĝ with its equivalence class with respect to the Plancherel measure μ. One
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can check that indeed, the properties above do not depend on a particular repre-
sentative of π and of the field of operators. The Plancherel formula implies that FG

extends to an isometry on L2(G). We keep the same notation FG for this map, al-
lowing us to consider the Fourier transform of a square integrable function. The ab-
stract Plancherel theorem states moreover that the isometry FG : L2(G)→ L2(Ĝ)

is surjective. In other words, FG maps L2(G) onto L2(Ĝ) isometrically.
Note that for any φ, ψ ∈ L2(G), the operator π(φ) π(ψ)∗ is trace class on Hπ

for almost all π ∈ RepG with

Tr |π(φ) π(ψ)∗| ≤ ‖π(φ)‖HS(Hπ)‖π(ψ)∗‖HS(Hπ) = ‖π(φ)‖HS(Hπ)‖π(ψ)‖HS(Hπ),

and that Tr |π(φ) π(ψ)∗| and Tr (π(φ) π(ψ)∗) are constant on the class of π ∈
RepG in Ĝ. Thus these traces can be viewed as being parametrised by π ∈ Ĝ.
The bilinearisation of the Plancherel formula yields

∫

G

φ(x)ψ(x)dx =

∫

Ĝ

Tr (π(φ) π(ψ)∗) dμ(π). (1.30)

One also checks easily, for example by density of Cc(G) in L2(G), that For-
mula (1.17), that is,

f̂ ∗ g(π) = ĝ(π)f̂(π) (1.31)

or, in the other notation,
π(f ∗ g) = π(g)π(f),

remains valid for f ∈ L1(G) and g ∈ L2(G) and also for f ∈ L2(G) and g ∈ L1(G).

We now present the parts of the Plancherel theorem (relevant for our sub-
sequent analysis) regarding the description of the group von Neumann algebra.

Group von Neumann algebra

In this monograph, we realise the von Neumann algebra of a group G as the algebra
denoted by LL(L

2(G)) and defined as follows.

Definition 1.8.7. Let L (L2(G)) denote the set of bounded linear operators L2(G)→
L2(G), and let LL(L

2(G)) be the subset formed by the operators in L (L2(G))
which are left-invariant (in the sense of Definition 1.1.3).

Endowed with the operator norm and composition of operators, one checks
easily that LL(L

2(G)) is a von Neumann algebra, see Section B.2.5 for the expo-
sition of its general ideas.

Given a μ-measurable field of uniformly bounded operators σ = {σπ}, the
operator Tσ ∈ LL(L

2(G)) defined via

T̂σφ(π) = σπφ̂(π), φ ∈ L2(G), (1.32)
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is in LL(L
2(G)). Using (1.30), this yields that the operator Tσ : S(G) → S ′(G)

can also be defined by

(Tσφ, ψ)L2(G) =

∫

Ĝ

Tr (σπ π(φ) π(ψ)∗) dμ(π), φ, ψ ∈ L2(G). (1.33)

This defines a map σ �→ Tσ from L∞(Ĝ) to LL(L
2(G)) where the space

L∞(Ĝ) is defined by

Definition 1.8.8. Let L∞(Ĝ) denote the space of μ-measurable fields on Ĝ of uni-

formly bounded operators σ = {σπ ∈ L (Hπ), π ∈ Ĝ}, that is,

sup
π∈Ĝ

‖σπ‖L (Hπ) <∞. (1.34)

Here we use the usual identifications of a strongly continuous irreducible
unitary representation from RepG with its equivalence class in Ĝ, and of a field of
operators on Ĝ with its equivalence class with respect to the Plancherel measure
μ. One can check that indeed, being in L∞(Ĝ) does not depend on a particular
representative of π and of the field of operators. In (1.34), the supremum is to be
understood as the essential supremum with respect to the Plancherel measure μ.

We endow L∞(Ĝ) with the pointwise composition given by

στ := {σπτπ, π ∈ Ĝ}, for σ = {σπ, π ∈ Ĝ}, τ = {τπ, π ∈ Ĝ} ∈ L∞(Ĝ),

and the essential supremum norm

‖σ‖L∞(Ĝ) := sup
π∈Ĝ

‖σπ‖L (Hπ). (1.35)

We may sometimes abuse the notation and write ‖σπ‖L∞(Ĝ) when no confu-

sion is possible.
One checks easily that L∞(Ĝ) is a von Neumann algebra and that the map

L∞(Ĝ) ∋ σ �−→ Tσ ∈ LL(L
2(G)),

is a morphism of von Neumann algebras. The Plancherel theorem implies that
this map is in fact a bijection and an isometry, and hence a von Neumann algebra
isomorphism. More precisely it yields that for any T ∈ LL(L

2(G)), there exists

a μ-measurable field of uniformly bounded operators {σ(T )
π } such that for any

φ ∈ L2(G) the Hilbert-Schmidt operators T̂ φ(π) and σ
(T )
π f̂(π) are equal μ-almost

everywhere; the field {σ(T )
π } is unique up to a μ-negligible set.

Note that by the Schwartz kernel theorem (see Corollary 3.2.1), an operator
T ∈ LL(L

2(G)) is of convolution type with kernel κ ∈ D′(G),

Tf = f ∗ κ, f ∈ D(G).
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If κ ∈ D′(G) is such that the corresponding convolution operator D(G) ∋ f �→ f ∗κ
extends to a bounded operator Tκ on L2(G) then Tκ ∈ LL(L

2(G)) and we extend
the definition of the group Fourier transform by setting

σ(T )
π := π(κ) ≡ κ̂(π). (1.36)

We denote by K(G) the set of such distributions κ:

Definition 1.8.9. Let K(G) denote the space of distributions κ ∈ D′(G) such that
the corresponding convolution operator

D(G) ∋ f �→ f ∗ κ
extends to a bounded operator on L2(G).

If G is a connected simply connected nilpotent Lie group, the Schwartz kernel
theorem (see Corollary 3.2.1), implies in fact that the distributions in K(G) are
tempered, i.e. K(G) ⊂ S ′(G).

If κ ∈ K(G), then κ∗ defined via κ∗(x) = κ̄(x−1) is also in K(G). If κ1, κ2 ∈
K(G) and Tκ1

, Tκ2
∈ LL(L

2(G)) denote the associated right-convolution opera-
tor, then Tκ1Tκ2 ∈ LL(L

2(G)) and we denote by κ2 ∗ κ1 its convolution kernel.
One checks easily that this convolution product coincides or extends the already
defined convolution products in Section 1.5. Furthermore K(G) equipped with this
convolution product, the ∗-adjoint and the operator norm

‖κ‖K(G) := ‖f �→ f ∗ κ‖L (L2(G)) (1.37)

is a von Neumann algebra. It is naturally isomorphic to LL(L
2(G)).

The part of the Plancherel theorem that we have already presented implies
that the space K(G) is a von Neumann algebra isomorphic to LL(L

2(G)) and to

L∞(Ĝ). Moreover, the group Fourier transform defined on K(G) gives the isomor-

phism between K(G) and L∞(Ĝ).

Naturally, L1(G) is embedded in K(G) since if κ ∈ L1(G), then the operator
φ �→ φ ∗ κ is in LL(L

2(G)). Note that Young’s inequality (see Proposition 1.5.2)
implies

‖κ̂‖L∞(Ĝ) = ‖κ‖K ≤ ‖κ‖L1(G). (1.38)

Furthermore, as FG(φ ∗ κ) = κ̂φ̂ (see e.g. (1.31)), there is no conflict of notation
between the group Fourier transforms defined first on L1(G) via (1.2) and then
on K(G) in (1.36) as these group Fourier transforms coincide, since the field of
operators associated to an operator in LL(L

2(G)) is unique.

More generally, the proof of Example 1.8.10 below shows that the space of
complex Borel measures M(G) (which contains L1(G)) is contained in K(G), that
is,

L1(G) ⊂M(G) ⊂ K(G).

Moreover, their group Fourier transform may be defined directly via (1.39) below
or as of an element of K(G) via Definition 1.36.
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Example 1.8.10 (Complex Borel measures). Any complex Borel measure η on G
is in K(G) and

‖η‖K ≤ ‖η‖M(G),

where ‖η‖M(G) denotes the total mass of η.
The group Fourier transform of a complex Borel measure η is given in the

sense of Bochner by the integral

FG(η)(π) ≡ η̂(π) ≡ π(η) :=

∫

G

π(x)∗dη(x). (1.39)

In particular, the group Fourier transform of the Dirac measure δe at the neutral
element is the identity operator

δ̂e(π) ≡ π(δe) = IHπ

on the representation space Hπ. More generally, the group Fourier transform of
the Dirac measure δxo

at the element xo ∈ G is

δ̂xo
(π) = π(xo).

Proof of Example 1.8.10. By Jensen’s inequality, for p = 1 and 2 (in fact for any
p ∈ [1,∞)), the operator Tη : D(G) ∋ φ �→ φ ∗ η extends to an Lp-bounded
operator with norm ‖η‖.

If φ ∈ Cc(G), then φ ∗ η ∈ L1(G) (see Example 1.8.10) and we have in the
sense of Bochner, using the change of variable y = xz−1,

π(φ ∗ η) =

∫

G×G

φ(xz−1)π(x)∗dxdη(z) =

∫

G×G

φ(y)π(yz)∗dydη(z)

=

∫

G×G

φ(y)π(z)∗π(y)∗dydη(z) =

∫

G

π(z)∗dη(z)

∫

G

φ(y)π(y)∗dy

= π(η)π(φ),

confirming the formula for π(η). Since the field of operators associated to an
operator in LL(L

2(G)) is unique, the group Fourier transform of η as an element

of K(G) is {π(η), π ∈ Ĝ} defined in (1.39). �

The abstract Plancherel theorem

We now summarise the consequences of Dixmier’s abstract Plancherel theorem,
see Theorem B.2.32, that we will use:

Theorem 1.8.11 (Abstract Plancherel theorem). Let G be a Lie group satisfying
hypothesis (H). We denote by μ its Plancherel measure.

The Fourier transform FG extends to an isometry from L2(G) onto

L2(Ĝ) :=

∫ ⊕

Ĝ

HS(Hπ)dμ(π).
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The Fourier transform of an element f of K(G), i.e. f ∈ D′(G) such that
the operator D(G) ∋ φ �→ φ ∗ f extends boundedly to L2(G), has a meaning as a
field of uniformly (μ-essentially) bounded operators

{f̂(π) ≡ π(f) : π ∈ Ĝ} ∈ L∞(Ĝ)

satisfying

π(φ ∗ f) = π(f)π(φ)

for any φ ∈ D(G) and π ∈ Ĝ. Conversely, any field in L∞(Ĝ) leads to an element
of K(G). Furthermore

‖f‖K = ‖φ �→ φ ∗ f‖L (L2(G)) = sup
π∈Ĝ

‖f̂(π)‖L (Hπ). (1.40)

The Fourier transform is a von Neumann algebra isomorphism from K(G)

onto L∞(Ĝ). In particular, it is a bijection from K(G) onto L∞(Ĝ) and satisfies

∀f1, f2, f ∈ K(G) FG(f1 ∗ f2) = FG(f2)FG(f1) and FG(f
∗) = FG(f)

∗,

if f∗(x) = f̄(x−1). Moreover

‖f̂‖L∞(Ĝ) = ‖f‖K(G).

If G is a connected simply connected nilpotent Lie group, the elements of
K(G) are tempered distributions.

Naturally the various definitions of group Fourier transforms on L1(G) or on
the space M(G) of regular complex measures on G, on L2(G) or on K(G), coincide
on any intersection of these subspaces of D′(G). This can be seen easily using the

abstract Plancherel theorem, especially the bijections FG : L2(G) → L2(Ĝ) and

FG : K(G) → L∞(Ĝ), together with the properties of the convolution and of the
representations, especially (1.31).

1.8.3 Fields of operators acting on smooth vectors

Let us assume that the group G satisfies hypothesis (H) as in the previous section
and is also a Lie group. This means that G is a unimodular Lie group of type I,
for instance a compact or nilpotent Lie group.

In our subsequent analysis, we will need to consider fields of operators para-
metrised by Ĝ but not necessarily bounded, for instance the fields given by the
π(X)α’s.

The definition of fields of smooth vectors or of operators defined on smooth
vectors will be a consequence of the following lemma. For a more general setting
for measurable fields of operators see Section B.1.5.
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Lemma 1.8.12. Let π1, π2 ∈ RepG with π1 ∼T π2, that is, we assume that π1 and
π2 are intertwined by the unitary operator T , i.e. Tπ1 = π2T . Then T maps H∞

π1

onto H∞
π2

bijectively.

Proof. This is an easy consequence of the Dixmier-Malliavin theorem, see Theorem
1.7.8. �

Lemma 1.8.12 allows us to define fields of operators not necessarily bounded
but just defined on smooth vectors:

Definition 1.8.13. A Ĝ-field of operators defined on smooth vectors is a family of
classes of operators {σπ, π ∈ Ĝ} where

σπ := {σπ1
: H∞

π1
→ Hπ1

, π1 ∈ π}

for each π ∈ Ĝ viewed as a subset of RepG, satisfying for any two elements σπ1

and σπ2 in σπ:
π1 ∼T π2 =⇒ σπ2

T = Tσπ1
.

It is measurable when for one (and then any) choice of realisation π1 and

any vector xπ1
∈ H∞

π1
, as π runs over Ĝ, the resulting field {σπ1

xπ1
, π ∈ Ĝ} is

μ-measurable whenever
∫
Ĝ
‖xπ1
‖2Hπ1

dμ(π) <∞.

We will allow ourselves the shorthand notation

σ = {σπ : H∞
π → Hπ, π ∈ Ĝ}

to indicate that the Ĝ-field of operators is defined on smooth vectors. Unless
otherwise stated, all the Ĝ-fields of operators are assumed to be measurable and
with operators defined on smooth vectors. We may allow ourselves to write σ =
{σπ, π ∈ Ĝ}. Note that we do not require the domain of each operator to be the
whole representation space Hπ1 but just the space of smooth vectors.

The next definition would allow us to compose such fields of operators.

Definition 1.8.14. A measurable Ĝ-field of operators acting on the smooth vectors
is a measurable Ĝ-field of operators σ = {σπ : H∞

π → Hπ, π ∈ Ĝ} such that for
any π1 ∈ RepG, we have

σπ1
(H∞

π1
) ⊂ H∞

π1
.

We will often abuse the notation and write

{σπ : H∞
π → H∞

π , π ∈ Ĝ}

to express the fact that the measurable Ĝ-field of operators act on smooth vectors.

Remark 1.8.15. Let σ = {σπ : H∞
π → Hπ, π ∈ Ĝ} be a Ĝ-field. If π1 ∼T π2 that

is, we assume that π1 and π2 are intertwined by the unitary operator T , then T
maps σπ1

(H∞
π1
) onto σπ2

(H∞
π2
) bijectively. Thus the range σπ(H∞

π ) makes sense as
the collection of the equivariant ranges σπ1

(H∞
π ) for π1 ∈ π ⊂ RepG.

Consequently, in Definition 1.8.14, it suffices that σπ1
(H∞

π1
) ⊂ H∞

π1
for one

representation π1 ∈ π for each π ∈ Ĝ.
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Remark 1.8.16. We will often consider measurable field of operators σπ,s acting on

smooth vectors and parametrised not only by Ĝ but also by another set S. When
this set S is a subset of some Rn, we say that this parametrisation is smooth
whenever the map appearing in Definition 1.8.14 above is not only measurable
with respect to Ĝ but also smooth with respect to the S-variable. Note that this
hypothesis yields the existence of the fields of operators given by Dsσπ,s where Ds

is a (smooth) differential operator on S.

It is clear that one can sum two fields σ = {σπ : H∞
π → Hπ, π ∈ Ĝ} and

τ = {τπ : H∞
π → Hπ, π ∈ Ĝ} defined on smooth vectors. We may then write

σ + τ = {σπ + τπ : H∞
π → Hπ, π ∈ Ĝ}

for the resulting field. If σ and τ act on smooth vectors, then so does σ + τ .
It is also clear that one can compose two fields σ = {σπ : H∞

π → Hπ, π ∈ Ĝ}
and τ = {τπ : H∞

π → H∞
π , π ∈ Ĝ} defined on smooth vectors if the first one acts

on smooth vectors. We may then write

στ = {σπτπ : H∞
π → Hπ, π ∈ Ĝ}

for the resulting field which is then defined on smooth vectors. Note that στ is not
obtained as the composition of two unbounded operators on Hπ as in Definition
A.3.2 but as the composition of two operators acting on the same space H∞

π .

Almost by definition of smooth vectors, we have the following example of
measurable fields of operators acting on smooth vectors:

Example 1.8.17. If T ∈ U(g) then {π(T ), π ∈ Ĝ} yields a measurable field of

operators acting on smooth vectors and parametrised by Ĝ (see also Proposition
1.7.3).

If T1, T2 ∈ U(g) then the composition of {π(T1), π ∈ Ĝ} with {π(T2), π ∈ Ĝ}
as field of operators acting on smooth vectors is {π(T1T2), π ∈ Ĝ}.

The definition of Fourier transform and Proposition 1.7.6 (iv) easily imply
the next example of measurable fields of operators acting on smooth vectors:

Example 1.8.18. If φ ∈ D(G), then φ̂ = {π(φ) : H∞
π → H∞

π , π ∈ Ĝ} is a measur-

able Ĝ-field of operators acting on smooth vectors.
If φ1, φ2 ∈ D(G), then the composition of φ̂1 with φ̂2 as fields of operators

acting on smooth vectors is φ̂2 ∗ φ1.
If G is simply connected and nilpotent, the properties above also hold for

Schwartz functions.

A field σ = {σπ : Hπ → Hπ, π ∈ Ĝ} always gives by restriction operators
that are defined on smooth vectors. If we start from a field of operators σ = {σπ :

H∞
π → Hπ, π ∈ Ĝ} defined on smooth vectors, we can not always extend it to
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operators defined on every Hπ. However, since the space H∞
π of smooth vectors is

dense in Hπ (see Proposition 1.7.7), each operator σπ1
: H∞

π1
→ Hπ1

, π1 ∈ RepG,
has a unique extension to a bounded operator on Hπ1

provided that such an
extension exists. In this case, σπ2 would have the same property if π1 ∼ π2, and
the operator norm ‖σπ1‖L (Hπ1 )

or the Hilbert-Schmidt norm ‖σπ1‖HS(Hπ1 )
of σπ1

are constant (maybe infinite) for π1 ∈ π. Hence we may regard these norms as

being parametrised by π ∈ Ĝ. Furthermore, if ‖σ‖L∞(Ĝ) or ‖σ‖L2(Ĝ) are finite,

then the field of bounded operators in L∞(Ĝ) or L2(Ĝ) (resp.) is unique and
extends σ.

On a compact Lie group, any Ĝ-field of operators is measurable and the
operators act on smooth vectors. This is because in this case Ĝ is discrete and
countable, and all the strongly continuous irreducible representations are finite
dimensional and these have only smooth vectors, see the Peter-Weyl theorem in
Theorem 2.1.1.

However on a non-compact Lie group, we can not restrict ourselves to the
case of Ĝ-fields acting on smooth vectors in general since a non-compact Lie group
may have infinite dimensional (strongly continuous irreducible) representations

with non-smooth vectors and we then can find fields in L2(Ĝ) which do not act on

smooth vectors. Indeed, in this case, we can find a measurable field {vπ, π ∈ Ĝ}
of non-smooth vectors satisfying

∫
Ĝ
‖vπ‖2HS(Hπ)

dμ(π) <∞, and then construct the

field of operators {vπ⊗v∗π, π ∈ Ĝ} in L2(Ĝ) which does not act on smooth vectors.
Such field of vectors {vπ} are easy to find for instance on the Heisenberg group
Hn whose case is detailed in Chapter 6: in this case, almost all the representations
in Ĥn may be realised on L2(Rn) and the space of smooth vectors then coincides
with the Schwartz space S(Rn), see Section 6.2.1.

We can give a sufficient condition for a field to act on smooth vectors:

Lemma 1.8.19. Let σ = {σπ : H∞
π → Hπ} be a field defined on smooth vectors. If

for each φ ∈ D(G), σφ̂ is a field of operators acting on smooth vectors, that is,

σφ̂ = {σππ(φ) : H∞
π → H∞

π },

then σ acts on smooth vectors.

Proof. Let us assume that σφ̂ is a field of operators acting on smooth vectors
for every φ ∈ D(G). Then, for each π ∈ Ĝ realised as a representation and each

smooth vector v ∈ H∞
π , σπφ̂(π)v is smooth. By the Dixmier-Malliavin Theorem,

see Theorem 1.7.8. the finite linear combination of the vectors of the form φ(π)v
form H∞

π . Therefore σπ : H∞
π → H∞

π , and the statement is proved. �

As an application of Lemma 1.8.19, we see that the field δ̂xo
given at the end

of Example 1.8.10 acts on smooth vectors:

Example 1.8.20. For any xo ∈ G, the field δ̂xo
= {π(xo) : H∞

π → H∞
π } ∈ L∞(Ĝ)

acts on smooth vectors.
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Proof. Let xo ∈ G. If φ ∈ D(G), then by (1.4), π(xo)π(φ) = φ̂(· xo)(π) and
φ(· xo) ∈ D(G). Thus for any v ∈ H∞

π , π(xo)π(φ)v is smooth. We conclude using
Lemma 1.8.19. �

To summarise, we will identify measurable Ĝ-fields σ = {σπ : H∞
π → Hπ, π ∈

Ĝ} defined on smooth vectors with their possible extensions whenever possible. If
the group is non-compact, we can not restrict ourselves to fields acting on smooth
vectors.
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Chapter 2

Quantization on compact Lie
groups

In this chapter we briefly review the global quantization of operators and sym-
bols on compact Lie groups following [RT13] and [RT10a] as well as more recent
developments of this subject in this direction. Especially the monograph [RT10a]
can serve as a companion for the material presented here, so we limit ourselves to
explaining the main ideas only. This quantization yields full (finite dimensional)
matrix-valued symbols for operators due to the fact that the unitary irreducible
representations of compact Lie groups are all finite dimensional. Here, in order
to motivate the developments on nilpotent groups, which is the main subject of
the present monograph, we briefly review key elements of this theory referring to
[RT10a] or to other sources for proofs and further details.

Technically, the machinery for such global quantization of operators on com-
pact Lie groups appears to be simpler than that on graded Lie groups that we deal
with in subsequent chapters. Indeed, since the symbols can be viewed as matri-
ces (more precisely, as linear transformations of finite dimensional representation
spaces), we do not have to worry about their domains of definitions, extensions,
and other functional analytical properties arising in the nilpotent counterpart of
the theory. Also, we have the Laplacian at our disposal, which is elliptic and bi-
invariant, simplifying the analysis compared to the analysis based on, for example,
the sub-Laplacian on the Heisenberg group, or more general Rockland operators
on graded Lie groups. On the other hand, the theory on graded Lie groups is
greatly assisted by the homogeneous structure, significantly simplifying the anal-
ysis of appearing difference operators and providing additional tools such as the
naturally defined dilations on the group.

When we will be talking about the quantization on graded Lie groups in
Chapter 5 we will be mostly concerned, at least in the first stage, about assigning
an operator to a given symbol. In fact, it will be a small challenge by itself to make
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58 Chapter 2. Quantization on compact Lie groups

rigorous sense of a notion of a symbol there, but eventually we will show that the
correspondence between symbols and operators is one-to-one. The situation on
compact Lie groups is considerably simpler in this respect. Moreover, in (2.19)
we will give a simple formula determining the symbol for a given operator. Thus,
here we may talk about quantization of both symbols and operators, with the
latter being often preferable from the point of view of applications, when we are
concerned in establishing certain properties of a given operator and use its symbol
as a tool for it.

Overall, this chapter is introductory, also serving as a motivation for the
subsequent analysis, so we only sketch the ideas and refer for a thorough treatise
with complete proofs to the monograph [RT10a] or to the papers that we point
out in relevant places.

We do not discuss here all applications of this analysis in the compact setting.
For example, we can refer to [DR14b] for applications of this analysis to Schatten
classes, r-nuclearity, and trace formulae for operators on L2(G) and Lp(G) for
compact Lie groups G. For the functional calculus of matrix symbols and operators
on G we refer to [RW14].

A related but different approach to the pseudo-differential calculus of [RT10a]
has been also recently investigated in [Fis15]; there, a different notion of difference
operators is defined intrinsically on each compact groups. This will not be discussed
here.

2.1 Fourier analysis on compact Lie groups

Throughout this chapter G is always a compact Lie group. As in Chapter 1, we
equip it with the uniquely determined probability Haar measure which is auto-
matically bi-invariant by the compactness of G. We denote it by dx. We start by
making a few remarks on the representation theory specific to compact Lie groups.

2.1.1 Characters and tensor products

An important first addition to Section 1.1 is that for a compact group G, every
continuous irreducible unitary representation of G is finite dimensional. We denote
by dπ the dimension of a finite dimensional representation π, dπ = dimHπ.

Another important property is the orthogonality of representation coefficients
as follows. Let π1, π2 ∈ Ĝ and let us choose some basis in the representation spaces

so that we can view π1, π2 as matrices π1 = ((π1)ij)
dπ1
i,j=1 and π2 = ((π2)kl)

dπ2

k,l=1.
Then:

• if π1 �= π2, then ((π1)ij , (π2)kl)L2(G) = 0 for all i, j, k, l;

• if π1 = π2 but (i, j) �= (k, l), then ((π1)ij , (π2)kl)L2(G) = 0;
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• if π1 = π2 and (i, j) = (k, l), then

((π1)ij , (π2)kl)L2(G) =
1

dπ
, with dπ = dπ1

= dπ2
.

For a finite dimensional continuous unitary representation π : G → U(Hπ) we
denote

χπ(x) := Tr(π(x)),

the character of the representation π. Characters have a number of fundamental
properties most of which follow from properties of the trace:

• χπ(e) = dπ;

• π1 ∼ π2 if and only if χπ1
= χπ2

;

• consequently, the character χπ does not depend on the choice of the basis in
the representation space Hπ;

• χ(yxy−1) = χπ(x) for any x, y ∈ G;

• χπ1⊕π2 = χπ1 + χπ2 ;

• χπ1⊗π2
= χπ1

χπ2
, with the tensor product π1 ⊗ π2 defined in (2.1);

• a finite dimensional continuous unitary representation π of G is irreducible
if and only if ‖χπ‖L2(G) = 1.

• for π1, π2 ∈ Ĝ, (χπ1
, χπ2

)L2(G) = 1 if π1 ∼ π2, and (χπ1
, χπ2

)L2(G) = 0 if
π1 �∼ π2;

• for any f ∈ L2(G), there is the decomposition

f =
∑

π∈Ĝ

dπf ∗ χπ,

given by the projections (2.7).

If we take π1 ∈ Hom(G,U(H1)) and π2 ∈ Hom(G,U(H2)) two finite dimen-
sional representations of G on H1 and H2, respectively, their tensor product π1⊗π2

is the representation on H1 ⊗H2, π1 ⊗ π2 ∈ Hom(G,U(H1 ⊗H2)), defined by

(π1 ⊗ π2)(x)(v1 ⊗ v2) := π1(x)v1 ⊗ π2(x)v2. (2.1)

Here the inner product on H1 ⊗H2 is induced from those on H1 and H2 by

(v1 ⊗ v2, w1 ⊗ w2)H1⊗H2 := (v1, w1)H1(v2, w2)H2 .

In particular, it follows that

((π1 ⊗ π2)(x)(v1 ⊗ v2), w1 ⊗ w2)H1⊗H2
= (π1(x)v1, w1)H1

(π2(x)v2, w2)H2
. (2.2)
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If π1, π2 ∈ Ĝ, the representation π1 ⊗ π2 does not have to be irreducible, and we
can decompose it into irreducible ones:

π1 ⊗ π2 =
⊕

π∈Ĝ

mππ. (2.3)

The constants mπ = mπ(π1, π2) are called the Clebsch-Gordan coefficients and
they determine the multiplicity of π in π1 ⊗ π2,

mππ ≡ ⊕mπ
1 π.

Also, we can observe that in view of the finite dimensionality only finitely many of
mπ’s are non-zero. Combining this with (2.2), we see that the product of any of the

matrix coefficients of representations π1, π2 ∈ Ĝ can be written as a finite linear
combination of matrix coefficients of the representations from (2.3) with non-zero
Clebsch-Gordan coefficients. In fact, this can be also seen on the level of characters
providing more insight into the multiplicities mπ. First, for the tensor product of
π1 and π2 we have χπ1⊗π2

= χπ1
χπ2

. Consequently, equality (2.3) implies

χπ1
χπ2

= χπ1⊗π2
=

∑

π∈Ĝ

mπχπ (2.4)

with
mπ = mπ(π1, π2) = (χπ1

χπ2
, χπ)L2(G).

This equality can be now reduced to the maximal torus of G, for which we recall

Cartan’s maximal torus theorem: Let Tl →֒ G be an injective group homomorphism
with the largest possible l. Then two representations of G are equivalent if and
only if their restrictions to Tl are equivalent. In particular, the restriction χπ|Tl of
χπ to Tl determines the equivalence class [π].

Now, coming back to (2.4), we can conclude that we have

χπ1 |Tl χπ2 |Tl =
∑

π∈Ĝ

mπ χπ|Tl .

For a compact connected Lie group G, the maximal torus is also called the Cartan
subgroup, and its dimension is denoted by rankG, the rank of G.

Explicit formulae for representations and the Clebsch-Gordan coefficients on
a number of compact groups have been presented by Vilenkin [Vil68] or Zhelobenko
[Žel73], with further updates in [VK91, VK93] by Vilenkin and Klimyk.

2.1.2 Peter-Weyl theorem

As discussed in Section 1.3, the Casimir element of the universal enveloping algebra
U(g) can be viewed as an elliptic linear second order bi-invariant partial differential
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operator on G. If G is equipped with the uniquely determined (normalised) bi-
invariant Riemannian metric, the Casimir element can be viewed as its (negative
definite) Laplace-Beltrami operator, which we will denote by LG. Consequently,
for any D ∈ U(g) we have

DLG = LGD.

The fundamental result on compact groups is the Peter-Weyl Theorem
[PW27] giving a decomposition of L2(G) into eigenspaces of the Laplacian LG

on G, which we now sketch.

Theorem 2.1.1 (Peter-Weyl). The space L2(G) can be decomposed as the orthogonal

direct sum of bi-invariant subspaces parametrised by Ĝ,

L2(G) =
⊕

π∈Ĝ

Vπ, Vπ = {x �→ Tr(Aπ(x)) : A ∈ Cdπ×dπ},

the decomposition given by the Fourier series

f(x) =
∑

π∈Ĝ

dπ Tr
(
f̂(π)π(x)

)
. (2.5)

After a choice of the orthonormal basis in each representation space Hπ, the set

B :=
{√

dπ πij : π = (πij)
dπ
i,j=1, π ∈ Ĝ

}
(2.6)

becomes an orthonormal basis for L2(G). For f ∈ L2(G), the convergence of the
series in (2.5) holds for almost every x ∈ G, and also in L2(G).

One possible idea for the proof of the Peter-Weyl theorem is as follows. Let
us take B as in (2.6). Finite linear combinations of elements of B are called the
trigonometric polynomials on G, and we denote them by span(B). From the orthog-
onality of representations (see Section 2.1.1) we know that B is an orthonormal
set in L2(G). It follows from (2.3) and the consequent discussion that span(B) is a
subalgebra of C(G), trivial representation is its identity, and it is involutive since

π∗ ∈ Ĝ if π ∈ Ĝ. By invariance it is clear that B separates points of G. Conse-
quently, by the Stone-Weierstrass theorem span(B) is dense in C(G). Therefore,
it is also dense in L2(G), giving the basis and implying the Peter-Weyl theorem.

For f ∈ L2(G), the decomposition

f =
∑

π∈Ĝ

dπf ∗ χπ

given in Section 2.1.1 corresponds to the decomposition (2.5), the projections of
L2(G) to Vπ given by the convolution mappings

L2(G) ∋ f �→ f ∗ χπ ∈ Vπ. (2.7)
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The Peter-Weyl theorem can be also viewed as the decomposition of left or right
regular representations of G on L2(G) into irreducible components. Indeed, from
the homomorphism property of representations it follows that in the decomposition

L2(G) =
⊕

π∈Ĝ

dπ⊕

j=1

span{πij : 1 ≤ i ≤ dπ}, (2.8)

the spans on the right hand side are πL-invariant, and the restriction of πL to each
such space is equivalent to the representation π itself. This gives the decomposition
of πL into irreducible components as

πL ∼
⊕

π∈Ĝ

dπ⊕

1

π.

The same is true for the decomposition of L2(G) into πR-invariant subspaces
span{πij : 1 ≤ j ≤ dπ}, replacing the spans in (2.8).

It follows that the spaces Vπ are bi-invariant subspaces of L2(G) and, there-
fore, they are eigenspaces of all bi-invariant operators. In particular, they are
eigenspaces for the Laplacian LG and, by varying the basis in the representation
space Hπ, we see that Vπ corresponds to the same eigenvalue of LG, which we
denote by −λπ, i.e.

−LG|Vπ
= λπI, λπ ≥ 0. (2.9)

It is useful to introduce also the quantity corresponding to the first order elliptic
operator (I− LG)

1/2,
〈π〉 := (1 + λπ)

1/2, (2.10)

so that we also have
(I− LG)

1/2|Vπ
= 〈π〉I.

The quantity 〈π〉 and its powers become very useful in quantifying the growth/
decay of Fourier coefficients, and eventually of symbols of pseudo-differential op-
erators.

Using the Fourier series expression (2.5) and the orthogonality of matrix
coefficients of representations, one can readily show that the Plancherel identity
takes the form

(f, g)L2(G) =
∑

π∈Ĝ

dπ Tr
(
f̂(π)ĝ(π)∗

)
.

From this, it becomes natural to define the norm ‖ · ‖ℓ2(Ĝ),

‖f̂‖ℓ2(Ĝ) =

⎛
⎝∑

π∈Ĝ

dπ‖f̂(π)‖2HS

⎞
⎠

1/2

, (2.11)
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with

‖f̂(π)‖HS =
√
Tr

(
f̂(π)f̂(π)∗

)
.

This norm defines the Hilbert space ℓ2(Ĝ) with the inner product

(σ, τ)ℓ2(Ĝ) :=
∑

π∈Ĝ

dπ Tr (σ(π)τ(π)
∗), σ, τ ∈ ℓ2(Ĝ), (2.12)

and

‖σ‖ℓ2(Ĝ) = (σ, σ)
1/2

ℓ2(Ĝ)
=

⎛
⎝∑

π∈Ĝ

dπ‖σ(π)‖2HS

⎞
⎠

1/2

, σ ∈ ℓ2(Ĝ),

so that the Plancherel identity yields

‖f‖L2(G) = ‖f̂‖ℓ2(Ĝ). (2.13)

We conclude the preliminary part by recording some useful relations between the
dimensions dπ and the eigenvalues 〈π〉 for representations π ∈ Ĝ: there exists
C > 0 such that

dπ ≤ C〈π〉 dimG
2 and, even stronger, dπ ≤ C〈π〉

dimG−rankG
2 . (2.14)

The first estimate follows immediately from the Weyl asymptotic formula for the
eigenvalue counting function for the first order elliptic operator (I − LG)

1/2 on
the compact manifold G recalling that d2π is the multiplicity of the eigenvalue 〈π〉,
and the second one follows with a little bit more work from the Weyl character
formula, with rankG denoting the rank of G. There is also a simple convergence
criterion ∑

π∈Ĝ

d2π〈π〉−s
<∞ if and only if s > dimG, (2.15)

which follows from property (ii) in Section 2.1.3 applied to the delta-distribution
δe at the unit element e ∈ G.

2.1.3 Spaces of functions and distributions on G

Different spaces of functions and distributions can be characterised in terms of the
Fourier coefficients. For this, it is convenient to introduce the space of matrices
taking into account the dimensions of representations. Thus, we set

Σ :=
{
σ = (σ(π))π∈Ĝ : σ(π) ∈ L (Hπ)

}

≃
{
σ = (σ(π))π∈Ĝ : σ(π) ∈ Cdπ×dπ

}
,

the second line valid after a choice of basis in Hπ, and we are interested in the
images of function spaces on G in Σ under the Fourier transform.
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As it will be pointed out in Remark 2.2.1, we should rather consider the
quotient space Σ/ ∼ as the space of Fourier coefficients, with the equivalence in Σ
induced by the equivalence of representations. However, in order to simplify the
exposition, we will keep the notation Σ as above.

The set Σ can be considered as a special case of the direct sum of Hilbert
spaces described in (1.29), with the corresponding interpretation in terms of von
Neumann algebras. However, a lot of the general machinery can be simplified in the
present setting since the Fourier coefficients allow the interpretation of matrices
indexed over the discrete set Ĝ, with the dimension of each matrix equal to the
dimension of the corresponding representation.

Distributions

For any distribution u ∈ D′(G), its matrix Fourier coefficient at π ∈ Ĝ is defined
by

û(π) := 〈u, π∗〉.
These are well-defined since π(x) are smooth (even analytic). This gives rise to
the Fourier transform of distributions on G but we will come to this after stating
a few properties of several function spaces.

The following equivalences are easy to obtain for spaces defined initially via
their localisations to coordinate charts, in terms of the quantity 〈π〉 introduced in
(2.10):

(i) as we have already seen, f ∈ L2(G) if and only if f̂ ∈ ℓ2(Ĝ), i.e. if

∑

π∈Ĝ

dπ‖f̂(π)‖2HS <∞.

(ii) For any s ∈ R, we have f ∈ Hs(G) if and only if 〈π〉sf̂ ∈ ℓ2(Ĝ) if and only if

∑

π∈Ĝ

dπ〈π〉2s‖f̂(π)‖2HS <∞.

(iii) f ∈ C∞(G) if and only if for every M > 0 there exits CM > 0 such that

‖f̂(π)‖HS ≤ CM 〈π〉−M

holds for all π ∈ Ĝ.

(iv) u ∈ D′(G) if and only if there exist M > 0 and C > 0 such that

‖û(π)‖HS ≤ C〈π〉M

holds for all π ∈ Ĝ.
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The second characterisation (ii) follows from (i) if we observe that f ∈ Hs(G)
means that (I − LG)

s/2f ∈ L2(G), and then pass to the Fourier transform side.

The third characterisation (iii) follows if we observe that f̂(π) must satisfy (ii) for
all s and use estimates (2.14), and (iv) follows from (iii) by duality. The last two

characterisations motivate to define spaces S(Ĝ),S ′(Ĝ) ⊂ Σ by

S(Ĝ) :=
{
σ ∈ Σ : ∀M > 0 ∃CM > 0 such that ‖σ(π)‖HS ≤ CM 〈π〉−M

}

and

S ′(Ĝ) :=
{
σ ∈ Σ : ∃M > 0, C > 0 such that ‖σ(π)‖HS ≤ C〈π〉M

}
,

with the seminormed topology on S(Ĝ) defined by family

pk(σ) =
∑

π∈Ĝ

dπ〈π〉k‖σ(π)‖HS,

and the dual topology on S ′(Ĝ). It follows that the Fourier inversion formula (2.5)
can be extended to the following: the Fourier transform FG in (1.2) and its inverse,
defined by

(F−1
G σ)(x) :=

∑

π∈Ĝ

dπ Tr (σ(π)π(x)), (2.16)

are continuous as FG : C∞(G)→ S(Ĝ), F−1
G : S(Ĝ)→ C∞(G), and are inverse to

each other on C∞(G) and S(Ĝ). In particular, this implies that S(Ĝ) is a nuclear

Montel space. The distributional duality between S ′(Ĝ) and S(Ĝ) is given by

〈σ1, σ2〉Ĝ =
∑

π∈Ĝ

dπ Tr (σ1(π)σ2(π)), σ1 ∈ S ′(Ĝ), σ2 ∈ S(Ĝ).

The Fourier transform can be then extended to the space of distributions D′(G).

Thus, for u ∈ D′(G), we define FGu ≡ û ∈ S ′(Ĝ) by

〈FGu, τ〉Ĝ :=
〈
u, ι ◦ F−1

G τ
〉
G
, τ ∈ S(Ĝ),

where (ι ◦ ϕ)(x) = ϕ(x−1) and 〈·, ·〉G is the distributional duality between D′(G)
and C∞(G). Analogously, its inverse is given by

〈
F−1

G σ, ϕ
〉
G
:= 〈σ,FG(ι ◦ ϕ)〉Ĝ, σ ∈ S ′(Ĝ), ϕ ∈ C∞(G),

and these extended mappings are continuous between D′(G) and S ′(Ĝ) and are
inverse to each other. It can be readily checked that they agree with their re-
strictions to spaces of test functions, explaining the appearance of the inversion
mapping ι.
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Gevrey spaces and ultradistributions

Recently, Gevrey spaces of ultradifferentiable functions as well as spaces of corre-
sponding ultradistributions have been characterised as well. We say that a function
φ ∈ C∞(G) is a Gevrey-Roumieu ultradifferentiable function, φ ∈ γs(G), if in ev-
ery local coordinate chart, its local representative ψ ∈ C∞(Rn) belongs to γs(Rn),
that is, satisfies the condition that there exist constants A > 0 and C > 0 such
that

|∂αψ(x)| ≤ CA|α|(α!)s

holds for all x ∈ Rn and all multi-indices α. For s = 1 we obtain the space of
analytic functions on G. As with other spaces before, γs(G) is thus defined as
having its localisations in γs(Rn), and a question of its characterisation in terms
of its Fourier coefficients arises.

Analogously, we say that φ is a Gevrey-Beurling ultradifferentiable function,
φ ∈ γ(s)(G), if its local representatives ψ satisfy the condition that for every A > 0
there exists CA > 0 such that

|∂αψ(x)| ≤ CAA
|α|(α!)s

holds for all x ∈ Rn and all multi-indices α. For 1 ≤ s < ∞, these spaces do
not depend on the choice of local coordinates on G in the definition, and can be
characterised as follows:

Proposition 2.1.2. Let 1 ≤ s <∞.
(1) We have φ ∈ γs(G) if and only if there exist B > 0 and K > 0 such that

||φ̂(π)||HS ≤ Ke−B〈π〉1/s

holds for all π ∈ Ĝ.
(2) We have φ ∈ γ(s)(G) if and only if for every B > 0 there exists KB > 0 such
that

||φ̂(π)||HS ≤ KBe
−B〈π〉1/s

holds for all π ∈ Ĝ.

The space of continuous linear functionals on γs(G)
(
or γ(s)(G)

)
is called the

space of ultradistributions and is denoted by γ′
s(G)

(
or γ′

(s)(G)
)
, respectively.

For any v ∈ γ′
s(G)

(
or γ′

(s)(G)
)
, we note that its Fourier coefficient at π ∈ Ĝ

can be defined analogously to the case of distributions by

v̂(π) := 〈v, π∗〉 ≡ v(π∗).

These are well-defined since G is compact and hence π(x) are analytic.
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Proposition 2.1.3. Let 1 ≤ s <∞.
(1) We have v ∈ γ′

s(G) if and only if for every B > 0 there exists KB > 0 such
that

‖v̂(π)‖HS ≤ KBe
B〈π〉1/s

holds for all π ∈ Ĝ.
(2) We have v ∈ γ′

(s)(G) if and only if there exist B > 0 and K > 0 such that

‖v̂(π)‖HS ≤ KeB〈π〉1/s

holds for all π ∈ Ĝ.

Proposition 2.1.2 can be actually extended to hold for any 0 < s < ∞,
and we refer to [DR14a] for proofs and further details. This can be viewed also
from the point of view of general eigenfunction expansions of function of compact
manifolds, see [DR16] for the treatment of more general Komatsu-type classes
of ultradifferentiable functions and ultradistributions, building on an analogous
description for analytic functions by Seeley [See69].

For a review of the representation theory of compact Lie groups and further
constructions using the Littlewood-Paley decomposition based on the heat kernel
we refer to Stein’s book [Ste70b].

2.1.4 ℓp-spaces on the unitary dual Ĝ

For a general theory of non-commutative integration on locally compact unimodu-
lar groups we refer to Dixmier [Dix53] and Segal [Seg50, Seg53]. In this framework,
the Hausdorff-Young inequality has been established (see Kunze [Kun58]) for a ver-

sion of ℓp-spaces on the unitary dual Ĝ based on the Schatten classes, namely, an
inequality of the type

⎛
⎝∑

π∈Ĝ

dπ‖f̂(π)‖p
′

Sp′

dπ

⎞
⎠

1/p′

≤ ‖f‖Lp(G) for 1 < p ≤ 2,

with an obvious modification for p = 1, where 1
p +

1
p′ = 1, and Sp′

dπ
is the (dπ×dπ)-

dimensional Schatten p′-class. While the theory of the above spaces is well-known
(see e.g. Hewitt and Ross [HR70, Section 31] or Edwards [Edw72, Section 2.14]),

here we describe and develop a little further another class of ℓp-spaces on Ĝ which
was considered in [RT10a, Section 10.3.3], to which we refer for details and proofs
of statement that we do not prove here.

For 1 ≤ p <∞, we define the space ℓp(Ĝ) ⊂ Σ by the condition

‖σ‖ℓp(Ĝ) :=

⎛
⎝∑

π∈Ĝ

d
p( 2

p− 1
2 )

π ‖σ(π)‖p
HS

⎞
⎠

1/p

<∞.
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For p =∞, we define the space ℓ∞(Ĝ) ⊂ Σ by

‖σ‖ℓ∞(Ĝ) := sup
π∈Ĝ

d−1/2
π ‖σ(π)‖HS <∞.

For p = 2 we recover the space ℓ2(Ĝ) defined in (2.11), while the ℓ1(Ĝ)-norm
becomes

‖σ‖ℓ1(Ĝ) :=
∑

π∈Ĝ

d3/2π ‖σ(π)‖HS.

This space and the Hausdorff-Young inequality for it become useful in, for example,
proving Proposition 2.1.2. Also, it appears naturally in questions concerning the
convergence of the Fourier series:

Remark 2.1.4. If σ ∈ ℓ1(Ĝ), then the (Fourier) series (2.16) converges absolutely
and uniformly on G.

On the other hand, one can show that if f ∈ Ck(G) with an even k > 1
2 dimG,

then f̂ ∈ ℓ1(Ĝ) and the Fourier series (2.5) converges uniformly. Indeed, we can
estimate

‖f̂‖ℓ1(Ĝ) =
∑

π∈Ĝ

d
3/2
π

〈π〉k
‖π((I− LG)

k/2f)‖HS

≤

⎛
⎝∑

π∈Ĝ

d2ξ〈π〉−2k

⎞
⎠

1/2⎛
⎝∑

π∈Ĝ

dπ‖π((I− LG)
k/2f)‖2

HS

⎞
⎠

1/2

≤ C‖(I− LG)
k/2f‖L2(G) <∞,

in view of the Plancherel formula and (2.15), provided that 2k > dimG. In fact,
the same argument shows the implication

f ∈ Hs(G), s >
1

2
dimG =⇒ f̂ ∈ ℓ1(Ĝ),

with the uniform convergence of the Fourier series (2.5) of f .

Regarding these ℓp(Ĝ)-spaces as weighted sequence spaces with weights given
by powers of dπ, a general theory of interpolation spaces [BL76, Theorem 5.5.1]
implies that they are interpolation spaces, namely, for any 1 ≤ p0, p1 < ∞, we
have (

ℓp0(Ĝ), ℓp1(Ĝ)
)
θ,p

= ℓp(Ĝ),

where 0 < θ < 1 and 1
p = 1−θ

p0
+ θ

p1
, see [RT10a, Proposition 10.3.40].

The Hausdorff-Young inequality holds for these spaces as well. Namely, if
1 ≤ p ≤ 2 and 1

p + 1
p′ = 1, we have



2.1. Fourier analysis on compact Lie groups 69

‖f̂‖ℓp′ (Ĝ) ≤ ‖f‖Lp(G) (2.17)

for all f ∈ Lp(G), and
‖F−1

G σ‖Lp′ (G) ≤ ‖σ‖ℓp(Ĝ), (2.18)

for all σ ∈ ℓp(Ĝ).

We give a brief argument for these. To prove (2.18), on one hand we already
have Plancherel’s identity (2.13). On the other hand, from (2.16) we have

|(F−1
G σ)(x)| ≤

∑

π∈Ĝ

dπ‖σ(π)‖HS‖π(x)‖HS =
∑

π∈Ĝ

d3/2π ‖σ(π)‖HS = ‖σ‖ℓ1(Ĝ).

Now the Stein-Weiss interpolation (see e.g. [BL76, Corollary 5.5.4]) implies (2.18).

From this, (2.17) follows using the duality ℓp(Ĝ)′ = ℓp
′

(Ĝ), 1 ≤ p <∞.
We remark that it is also possible to prove (2.17) directly by interpolation

as well. However, one needs to employ an ℓ∞-version of the interpolation theory
with the change of measure, as e.g. in Lizorkin [Liz75].

Let us point out the continuous embeddings, similar to the usual ones:

Proposition 2.1.5. We have

ℓp(Ĝ) →֒ ℓq(Ĝ) and ‖σ‖ℓq(Ĝ) ≤ ‖σ‖ℓp(Ĝ) ∀σ ∈ Σ, 1 ≤ p ≤ q ≤ ∞.

Proof. We can assume p < q. Then, in the case 1 ≤ p < ∞ and q = ∞, we can
estimate

‖σ‖p
ℓ∞(Ĝ)

=

(
sup
π∈Ĝ

d
− 1

2
π ‖σ(π)‖HS

)p

≤
∑

π∈Ĝ

d
2− p

2
π ‖σ(π)‖p

HS
= ‖σ‖p

ℓp(Ĝ)
.

Let now 1 ≤ p < q <∞. Denoting aπ := d
2
q− 1

2
π ‖σ(π)‖HS, we get

‖σ‖ℓq(Ĝ) =

⎛
⎝∑

π∈Ĝ

aqπ

⎞
⎠

1
q

≤

⎛
⎝∑

π∈Ĝ

apπ

⎞
⎠

1
p

=

⎛
⎝∑

π∈Ĝ

d
p( 2

q− 1
2 )

π ‖σ(π)‖p
HS

⎞
⎠

1
p

≤ ‖σ‖ℓp(Ĝ),

completing the proof. �

Finally, we establish a relation between the family ℓp(Ĝ) and the correspond-

ing Schatten family of ℓp-spaces, which we denote by ℓpsch(Ĝ), defined by the norms

‖σ‖ℓpsch(Ĝ) :=

⎛
⎝∑

π∈Ĝ

dπ‖σ(π)‖pSp

⎞
⎠

1/p

, σ ∈ Σ, 1 ≤ p <∞,
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where Sp = Sp
dπ

is the (dπ × dπ)-dimensional Schatten p-class, and

‖σ‖ℓ∞sch(Ĝ) := sup
π∈Ĝ

‖σ(π)‖L (Hπ), σ ∈ Σ.

We have the following relations:

Proposition 2.1.6. For 1 ≤ p ≤ 2, we have continuous embeddings as well as the
estimates

ℓp(Ĝ) →֒ ℓpsch(Ĝ) and ‖σ‖ℓpsch(Ĝ) ≤ ‖σ‖ℓp(Ĝ) ∀σ ∈ Σ, 1 ≤ p ≤ 2.

For 2 ≤ p ≤ ∞, we have

ℓpsch(Ĝ) →֒ ℓp(Ĝ) and ‖σ‖ℓp(Ĝ) ≤ ‖σ‖ℓpsch(Ĝ) ∀σ ∈ Σ, 2 ≤ p ≤ ∞.

Proof. For p = 2, the norms coincide since S2 = HS. Let first 1 ≤ p < 2. Since
σ(π) ∈ Cdπ×dπ , denoting by sj its singular numbers, by the Hölder inequality we
have

‖σ(π)‖pSp =

dπ∑

j=1

spj ≤

⎛
⎝

dπ∑

j=1

1

⎞
⎠

2−p
2

⎛
⎝

dπ∑

j=1

s
p 2

p

j

⎞
⎠

p
2

= d
2−p
2

π ‖σ(π)‖p
HS
,

i.e.

‖σ(π)‖Sp ≤ d
2−p
2p

π ‖σ(π)‖HS (1 ≤ p ≤ 2).

Consequently, it follows that

‖σ‖p
ℓpsch(Ĝ)

=
∑

π∈Ĝ

dπ‖σ(π)‖pSp ≤
∑

π∈Ĝ

d
2− p

2
π ‖σ(π)‖p

HS
= ‖σ‖p

ℓp(Ĝ)
,

proving the first claim. Conversely, for 2 < p <∞, we can estimate

‖σ(π)‖2
HS

=

dπ∑

j=1

s2j ≤

⎛
⎝

dπ∑

j=1

1

⎞
⎠

p−2
p

⎛
⎝

dπ∑

j=1

s
2 p

2
j

⎞
⎠

2
p

= d
p−2
p

π ‖σ(π)‖2Sp ,

implying

‖σ(π)‖HS ≤ d
p−2
2p

π ‖σ(π)‖Sp (2 < p <∞).

It follows that

‖σ‖p
ℓp(Ĝ)

=
∑

π∈Ĝ

d
2− p

2
π ‖σ(π)‖p

HS
≤

∑

π∈Ĝ

dπ‖σ(π)‖pSp = ‖σ‖p
ℓpsch(Ĝ)

,

proving the second claim for 2 < p <∞. Finally, for p =∞, the inequality

‖σ(π)‖HS ≤ d1/2π ‖σ(π)‖L (Hπ)
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implies

‖σ‖ℓ∞(Ĝ) = sup
π∈Ĝ

d−1/2
π ‖σ(π)‖HS ≤ sup

π∈Ĝ

‖σ(π)‖L (Hπ) = ‖σ‖ℓ∞sch(Ĝ),

completing the proof. �

2.2 Pseudo-differential operators on compact Lie groups

In this section we look at linear continuous operators A : C∞(G)→ D′(G) and a
global quantization of A yielding its full matrix-valued symbol. By the Schwartz
kernel theorem (Theorem 1.4.1) there exists a unique distribution KA ∈ D′(G×G)
such that

Af(x) =

∫

G

KA(x, y)f(y)dy,

interpreted in the distributional sense. We can rewrite this as a right-convolution
kernel operator

Af(x) =

∫

G

RA(x, y
−1x)f(y)dy,

with
RA(x, y) = KA(x, xy

−1),

so that
Af(x) = (f ∗RA(x, ·))(x).

2.2.1 Symbols and quantization

The idea for the following construction is that we define the symbol of A as the
Fourier transform of its right convolution kernel in the second variable. However,
for the presentation purposes we now take a different route and, instead, we define
the mapping σA : G× Ĝ→ Σ by

σA(x, π) := π(x)∗(Aπ)(x), (2.19)

with (Aπ)(x) ∈ L (Hπ) defined by

(Aπ(x)u, v)Hπ
:= A(π(x)u, v)Hπ

for all u, v ∈ Hπ. After choosing a basis in the representation space Hπ, we can
interpret this as a matrix σA(x, π) ∈ Cdπ×dπ and (Aπ)ij = A(πij), i.e. the operator
A acts on the matrix π(x) componentwise, so that

σA(x, π)ij =

dπ∑

k=1

πki(x)Aπkj(x).

We note that the symbol in (2.19) is well-defined since we can multiply the distri-
bution Aπ by a smooth (even analytic) matrix π.
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Remark 2.2.1. We also observe that strictly speaking, the definition (2.19) depends
on the choice of the representation π from its equivalence class [π]. Namely, if
π1 ∼ π2, so that

π2(x) = U−1π1(x)U

for some unitary U and all x ∈ G, then

f̂(π2) = U−1f̂(π1)U

and, therefore,

σA(x, π2) = U−1σA(x, π1)U. (2.20)

However, it can be readily checked that the quantization formula (2.22) below
remains unchanged due to the presence of the trace. So, denoting by RepG the
set of all strongly continuous unitary irreducible representations of G, the symbol
is well defined as a mapping

σA : G× RepG→ Σ or as σA : G× Ĝ→ Σ/ ∼

where the equivalence on Σ is given by the equivalence of representations on RepG
inducing the equivalence on Σ by conjugations, as in formula (2.20). We will disre-
gard this technicality in the current presentation to simplify the exposition, refer-
ring to [RT10a] for a more rigorous treatment. We note, however, that if π1 ∼ π2,
then

Tr
(
π1(x)σA(x, π1)f̂(π1)

)
= Tr

(
π2(x)σA(x, π2)f̂(π2)

)
. (2.21)

Using the symbol σA, it follows that the linear continuous operator A :
C∞(G)→ D′(G) can be (de-)quantized as

Af(x) =
∑

π∈Ĝ

dπ Tr
(
π(x)σA(x, π)f̂(π)

)
. (2.22)

If the operator A maps C∞(G) to itself and f ∈ C∞(G), the formula (2.22) can
be understood in the pointwise sense to hold for all x ∈ G, with the absolute
convergence of the series. It can be shown that formulae (2.19) and (2.22) imply
that σA is the Fourier transform of RA, namely, we have

σA(x, π) =

∫

G

RA(x, y)π(y)
∗dy.

If the formula (2.22) holds, we will also write A = Op(σA).

In view of (2.21), the sum in (2.22) does not depend on the choice of a
representation π from its equivalence class [π].
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Example 2.2.2. For the identity operator I we have its symbol

σI(x, π) = π(x)∗π(x) = Idπ

is the identity matrix in Cdπ×dπ , by the unitarity of π(x), so that (2.22) recovers
the Fourier inversion formula (2.5) in this case. For the Laplacian LG on G, we
have

σLG
(x, π) = π(x)∗LGπ(x) = −λπIdπ

by the unitarity of π and (2.9), where −λπ are the eigenvalues of LG corresponding
to π. Consequently, we also have

σ(I−LG)μ/2(x, π) = 〈π〉μIdπ .

Example 2.2.3. In the case of the torus G = Tn = Rn/Zn, and the representations
{πξ}ξ∈Zn fixed as in Remark 1.1.4, we see that all dπξ

= 1. Hence

σA(x, πξ) ≡ σA(x, ξ) = e−2πix·ξA(e2πix·ξ) ∈ C, (x, ξ) ∈ Tn × Zn,

with the quantization (2.22) becoming the toroidal quantization

Af(x) =
∑

ξ∈Zn

e2πix·ξ σA(x, ξ) f̂(ξ),

for a thorough analysis of which we refer to [RT10b] and [RT10a, Section 4].

Example 2.2.4. With our choices of definitions, the symbols of left-invariant op-
erators on G become independent of x. As shown in Section 1.5, if

Af = f ∗ κ

for some κ ∈ L1(G), then it is left-invariant. Consequently, the right convolution
kernel of A is RA(x, y) = κ(y) and, therefore, its Fourier transform is

σA(x, π) = κ̂(π).

On the other hand, if
Af = κ ∗ f

for some κ ∈ L1(G), then it is right-invariant. In this case its right convolution
kernel is RA(x, y) = κ(xyx−1) and, therefore, its Fourier transform in y gives

σA(x, π) = π(x)∗κ̂(π)π(x).

The notion of the symbol σA becomes already useful in stating a criterion
for the L2-boundedness for an operator A. We recall from Section 1.3 that Xα

denotes the left-invariant partial differential operators of order |α| corresponding
to a basis of left-invariant vector fields X1, · · · , Xn, n = dimG, of the Lie algebra
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g of G. As the derivatives with respect to these vector fields in general do not
commute, in principle we have to take into account their order in forming partial
differential operators of higher degrees. However, we note that the subsequent
statements remain valid if we restrict our choice to

Xα = Xα1
1 · · ·Xαn

n .

We will sometimes write Xα
x to emphasise that the derivatives are taken with

respect to the variable x.

Theorem 2.2.5. Let G be a compact Lie group and let A : C∞(G) → C∞(G) be
a linear continuous operator. Let k be an integer such that k > 1

2 dimG. Assume
that there is a constant C > 0 such that

‖Xα
x σA(x, π)‖L (Hπ) ≤ C

for all (x, π) ∈ G× Ĝ, and all |α| ≤ k. Then A extends to a bounded operator from
L2(G) to L2(G).

In this theorem and elsewhere, ‖ · ‖L (Hπ) denotes the operator norm of
σA(x, π) ∈ L (Hπ) or, after a choice of the basis, the operator norm of the matrix
multiplication by the matrix σA(x, π) ∈ Cdπ×dπ . The appearance of the operator
norm is natural since for the convolution operators we have

‖f �→ f ∗ h‖L (L2(G)) = ‖f �→ h ∗ f‖L (L2(G)) = sup
π∈Ĝ

‖ĥ(π)‖L (Hπ), (2.23)

following from f̂ ∗ h(π) = ĥ(π)f̂(π) and Plancherel’s theorem.

2.2.2 Difference operators and symbol classes

In order to describe the symbolic properties and to establish the symbolic calculus
of operators we have to replace the derivatives in frequency, used in the symbolic
calculus on Rn, by suitable operations acting on the space Σ of Fourier coefficients.
We call these operations difference operators. Roughly speaking, this corresponds
to the idea that in the Calderón-Zygmund theory, the integral kernel KA has sin-
gularities at the diagonal or, in other words, the right-convolution kernel RA(x, ·)
has singularity at the unit element e of the group only. Therefore, if we form an
operator with a new integral kernel q(·)RA(x, ·) with a smooth q ∈ C∞(G) satis-
fying q(e) = 0, the properties of this new operator should be better than those of
the original operator A.

In [RT10a], the corresponding notion of difference operators has been in-
troduced leading to the symbolic calculus of operators on G. However, we now
follow the ideas of [RTW14] with a slightly more general treatment of difference
operators.
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Definition 2.2.6. Let q ∈ C∞(G) vanish of order k ∈ N at the unit element e ∈ G,
i.e. (Dq)(e) = 0 for all left-invariant differential operators D ∈ Diffk−1(G) of order
k − 1. Then the difference operator of order k is an operator acting on the space
Σ of Fourier coefficients by the formula

(Δq f̂)(π) := q̂f(π).

We denote the set of all difference operators of order k by diffk(Ĝ).

We now define families of first order difference operators replacing derivatives
in the frequency variable in the Euclidean setting.

Definition 2.2.7. A collection of ℓ first order difference operators Δq1 , . . . ,Δqℓ ∈
diff1(Ĝ) is called admissible, if the corresponding functions q1, . . . , qℓ ∈ C∞(G)
satisfy

qj(e) = 0, dqj(e) �= 0, j = 1, . . . , ℓ,

and, moreover,

rank(dq1(e), . . . , dqℓ(e)) = dimG.

It follows, in particular, that e is an isolated common zero of the family {qj}ℓj=1.
We call an admissible collection strongly admissible, if it is the only common zero,
i.e. if

ℓ⋂

j=1

{x ∈ G : qj(x) = 0} = {e}.

We note that difference operators all commute with each other. For a given
admissible collection of difference operators we use the multi-index notation

Δα
π := Δα1

q1 · · ·Δαℓ
qℓ

and qα(x) := q1(x)
α1 · · · qℓ(x)αℓ ,

the dimension of the multi-index α ∈ Nℓ
0 depending on the number ℓ of difference

operators in the collection. Consequently, there exist corresponding differential
operators X(α) ∈ Diff |α|(G) such that the Taylor expansion formula

f(x) =
∑

|α|≤N−1

1

α!
qα(x−1)X(α)f(e) +O(h(x)N ), h(x)→ 0, (2.24)

holds true for any smooth function f ∈ C∞(G) and any N , with h(x) the geodesic
distance from x to the identity element e. An explicit construction of operators
X(α) in terms of qα(x) can be found in [RT10a, Section 10.6]. Operators Xα and
X(α) can be expressed in terms of each other.

Example 2.2.8. In the case of the torus, G = Tn = Rn/Zn, let

qj(x) = e−2πixj − 1, j = 1, . . . , n.
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The collection {qj}nj=1 is strongly admissible, and the corresponding difference
operators take the form

(Δqjσ)(πξ) ≡ (Δqjσ)(ξ) = σ(ξ + ej)− σ(ξ), j = 1, . . . , n,

with πξ ∈ T̂n identified with ξ ∈ Zn, where ej is the jth unit vector in Zn. The
periodic Taylor expansion takes the following form (see [RT10a, Theorem 3.4.4]):
for any φ ∈ C∞(Tn) we have

φ(x) =
∑

|α|<N

1

α!
(e2πix − 1)αX(α)

z φ(z)|z=0 +
∑

|α|=N

φα(x)(e
2πix − 1)α,

where φα ∈ C∞(Tn) and

(e2πix − 1)α := (e2πix1 − 1)α1 · · · (e2πixn − 1)αn .

The operators X
(α)
z have the form

X(α)
z = X(α1)

z1 · · ·X(αn)
zn with X(αk)

zk
=

αk−1∏

j=0

(
1

2πi

∂

∂zk
− j

)
.

Example 2.2.9. For partial differential operators, it can be readily observed that
the application of difference operators reduces the order of symbols. Thus, let

D =
∑

|α|≤N

cα(x)X
α
x , cα ∈ C∞(G).

Then it was shown in [RT10a, Proposition 10.7.4] that

ΔqσD(x, π) =
∑

|α|≤N

cα(x)
∑

β≤α

(
α

β

)
(−1)|β|(Xβ

x q)(e)σXα−β
x

(x, π).

In particular, if q has zero of order M at e ∈ G then Op(ΔqσD) is of order N−M .

Remark 2.2.10. We can estimate differences in terms of original symbols: assume
that the symbol σ ∈ Σ satisfies

μ := sup
π
〈π〉−m‖σ(π)‖L (Hπ) <∞

for some m ∈ R. Then for any difference operator Δq defined in terms of a function
q ∈ C∞(G) we have the estimate

‖Δqσ(π)‖L (Hπ) ≤ Cμ‖q‖Cκ+⌈|m|⌉(G)〈π〉m

with a constant C independent of σ and q, where κ = ⌈(dimG)/2⌉ is the smallest
integer larger than half the dimension of G and ⌈|m|⌉ is the smallest integer larger
than |m|. We refer to [RW14, Lemma 7.1] for the proof. However, if q vanishes at
the unit element e to some order, we can impose a much better behaviour.
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The usual Hörmander classes Ψm(G) of pseudo-differential operators on G
viewed as a manifold can be characterised in terms of the matrix-valued symbols.
Here we recall that A ∈ Ψm(G) means that in every local coordinate chart U ⊂ G,
the pullback of A|U to Rn is a pseudo-differential operator AU ∈ Ψm

1,0(R
n), i.e. it

can be written as

AUf(x) =

∫

Rn

e2πix·ξa(x, ξ)f̂(ξ)dξ with f̂(ξ) =

∫

Rn

e−2πix·ξf(x)dx, (2.25)

with symbol a = aU ∈ Sm
1,0(R

n), i.e. satisfying

|∂β
x∂

α
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|

for all multi-indices α, β, and all x, ξ ∈ Rn.

The following characterisation was partly proved in [RT10a, RT13] (namely
(A)⇐⇒(C)) and completed in [RTW14] (namely (B)⇐⇒(C)⇐⇒(D)) .

Theorem 2.2.11. Let G be a compact Lie group of dimension n. Let A be a linear
continuous operator from C∞(G) to D′(G). Then the following statements are
equivalent:

(A) A ∈ Ψm(G).

(B) For every left-invariant differential operator D ∈ Diffk(G) of order k and

every difference operator Δq ∈ diff l(Ĝ) of order l the symbol estimate

‖ΔqDσA(x, π)‖L (Hπ) ≤ CqD〈π〉m−l

is valid.

(C) For an admissible collection Δ1, . . . ,Δℓ ∈ diff1(Ĝ) we have

‖Δα
πX

β
xσA(x, π)‖L (Hπ) ≤ Cαβ〈π〉m−|α|

for all multi-indices α ∈ Nℓ
0 and β ∈ Nn

0 . Moreover,

sing suppRA(x, ·) ⊆ {e}.

(D) For a strongly admissible collection Δ1, . . . ,Δℓ ∈ diff1(Ĝ) we have

‖Δα
πX

β
xσA(x, π)‖L (Hπ) ≤ Cαβ〈π〉m−|α|

for all multi-indices α ∈ Nℓ
0 and β ∈ Nn

0 .

Motivated by Theorem 2.2.11, (D), we may define symbol classes Sm
ρ,δ(G).

Fixing a strongly admissible collection of difference operators

Δ1, . . . ,Δℓ ∈ diff1(Ĝ),
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we say that σA ∈ Sm
ρ,δ(G) if σA(x, ·) ∈ Σ satisfies

‖Δα
πX

β
xσA(x, π)‖L (Hπ) ≤ Cαβ〈π〉m−ρ|α|+δ|β|

(2.26)

for all (x, π) ∈ G × Ĝ and for all multi-indices α ∈ Nℓ
0 and β ∈ Nn

0 . If ρ > δ,
this definition is independent of the choice of a strongly admissible collection
of difference operators. The equivalence (A)⇐⇒(D) in Theorem 2.2.11 can be
rephrased as

A ∈ Ψm(G)⇐⇒ σA ∈ Sm
1,0(G).

For any 0 ≤ δ < ρ ≤ 1, the equivalence (B)⇐⇒(C)⇐⇒(D) in Theorem 2.2.11
remains valid for the symbol class Sm

ρ,δ(G) if we replace the symbolic conditions
there by the condition (2.26). As we shall see later, the class Sm

ρ,δ(G) with different
values of ρ and δ becomes useful in a number of applications.

Theorem 2.2.5 has analogue for (ρ, δ) classes:

Theorem 2.2.12. Let 0 ≤ δ < ρ ≤ 1 and let A be an operator with symbol in
Sm
ρ,δ(G). Then A is a bounded from Hs(G) to Hs−m(G) for any s ∈ R.

See [RW14, Theorem 5.1] for the proof.

2.2.3 Symbolic calculus, ellipticity, hypoellipticity

We now give elements of the symbolic calculus on the compact Lie group G. Here,
we fix some strongly admissible collection of difference operators, with correspond-

ing operators X
(α)
x coming from the Taylor expansion formula (2.24). We refer to

[RT10a, Section 10.7.3] for proofs and other variants of the calculus below. We
start with the composition.

Theorem 2.2.13. Let m1,m2 ∈ R and 0 ≤ δ < ρ. Let A,B : C∞(G)→ C∞(G) be
linear continuous operators with symbols σA ∈ Sm1

ρ,δ (G) and σB ∈ Sm1

ρ,δ (G). Then

σAB ∈ Sm1+m2

ρ,δ (G) and we have

σAB ∼
∑

α≥0

1

α!
(Δα

πσA)(X
(α)σB),

where the asymptotic expansion means that for every N ∈ N we have

σAB(x, π)−
∑

|α|<N

1

α!
(Δα

πσA)(x, π)X
(α)
x σB(x, π) ∈ S

m1+m2−(ρ−δ)N
ρ,δ (G).

The composition formula together with Theorem 2.2.5 imply a criterion for
the boundedness in L2-Sobolev spaces.
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Corollary 2.2.14. Let G be a compact Lie group and let A : C∞(G) → C∞(G) be
a linear continuous operator. Let m ∈ R. Assume that the symbol σA satisfies

‖Xα
x σA(x, π)‖L (Hπ) ≤ Cα〈π〉m

for all (x, π) ∈ G × Ĝ, and all multi-indices α. Then A extends to a bounded
operator from Hs(G) to Hs−m(G), for all s ∈ R.

Let us now present a construction of amplitude operators in our setting. Let
0 ≤ ρ, δ ≤ 1. We say that a : G×G× Ĝ→ Σ is a matrix-valued amplitude in the
class Am

ρ,δ(G) if for a strongly admissible collection of difference operators on Ĝ
we have the amplitude inequalities

‖Δα
πX

β
xX

γ
y a(x, y, π)‖L (Hπ) ≤ Cαβγ〈π〉m−ρ|α|+δ|β+γ|

,

for all multi-indices α, β, γ and for all (x, y, π) ∈ G × G × Ĝ. The corresponding
amplitude operator Op(a) : C∞(G)→ D′(G) is defined by

Op(a)f(x) :=
∑

π∈Ĝ

dπ Tr

(
π(x)

∫

G

a(x, y, η)f(y)π(y)∗dy

)
. (2.27)

In the case a(x, y, π) = σA(x, π) independent of y, we recover the quantization
(2.22), namely, we have Op(a) = A.

Theorem 2.2.15. Let a ∈ Am
ρ,δ(G). If 0 ≤ δ < 1 and 0 ≤ ρ ≤ 1 then Op(a) is a

continuous linear operator from C∞(G) to C∞(G). Moreover, if 0 ≤ δ < ρ ≤ 1,
then A = Op(a) is a pseudo-differential operator with a matrix-valued symbol
σA ∈ Sm

ρ,δ(G), which has the asymptotic expansion

σA(x, π) ∼
∑

α≥0

1

α!
Δα

πX
(α)
y a(x, y, π)|y=x,

where the asymptotic expansion means that for every N ∈ N we have

σA(x, π)−
∑

|α|<N

1

α!
Δα

πX
(α)
y a(x, y, π)|y=x ∈ S

m−(ρ−δ)N
ρ,δ (G).

For the proof of this theorem we refer to [RT11]. Given the formula for the
amplitude operators in Theorem 2.2.15, the symbol of the adjoint operator can be
found as follows.

Theorem 2.2.16. Let m ∈ R and 0 ≤ δ < ρ. Let A : C∞(G)→ C∞(G) be a linear
continuous operator with symbol σA ∈ Sm

ρ,δ(G). Then the symbol σA∗ of the adjoint
operator A∗ satisfies σA∗ ∈ Sm

ρ,δ(G), and is given by

σA∗(x, π) ∼
∑

α≥0

1

α!
Δα

πX
(α)
x σA(x, π)

∗,
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where σA(x, π)
∗ is the adjoint matrix to σA(x, π), and the asymptotic expansion

means that for every N ∈ N we have

σA∗(x, π)−
∑

|α|<N

1

α!
Δα

πX
(α)
x σA(x, π)

∗ ∈ S
m−(ρ−δ)N
ρ,δ (G).

We recall that the operator A ∈ Ψm(G) on G viewed as a manifold is elliptic
if all of its localisations to coordinate charts are (locally) elliptic. This can be
characterised in terms of the matrix-valued symbols. A combination of [RTW14,
Theorem 4.1] and [RT10a, Theorem 10.9.10] yields

Theorem 2.2.17. An operator A ∈ Ψm(G) is elliptic if and only if its symbol

σA(x, π) is invertible for all but finitely many π ∈ Ĝ, and for all such π satisfies

‖σA(x, π)
−1‖L (Hπ) ≤ C〈π〉−m

for all x ∈ G. Furthermore, in this case, assume that

σA ∼
∞∑

j=0

σAj
, Aj ∈ Ψm−j(G).

Let σB ∼
∑∞

k=0 σBk
, where

σB0
(x, π) = σA0

(x, π)−1

for large 〈π〉, and the symbols σBk
are defined recursively by

σBN
= −σB0

N−1∑

k=0

N−k∑

j=0

∑

|γ|=N−j−k

1

γ!
(Δγ

πσBk
)(X(γ)

x σAj ).

Then Op(σBk
) ∈ Ψ−m−k(G), B = Op(σB) ∈ Ψ−m(G), and the operators AB − I

and BA− I are in Ψ−∞(G).

One can also provide a criterion for the hypoellipticity in terms of matrix-
valued symbols ([RTW14]), in analogy to the one on Rn given by Hörmander
([Hör67b]).

Theorem 2.2.18. Let m ≥ m0 and 0 ≤ δ < ρ ≤ 1. Let A ∈ Op(Sm
ρ,δ(G)) be a

pseudo-differential operator with symbol σA ∈ Sm
ρ,δ(G) which is invertible for all

but finitely many π ∈ Ĝ, and for all such π satisfies

‖σA(x, π)
−1‖L (Hπ) ≤ C〈π〉−m0

for all x ∈ G. Assume also that (for a strongly admissible collection of difference
operators) we have

‖σA(x, π)
−1

[
Δα

πX
β
xσA(x, π)

]
‖L (Hπ) ≤ C〈π〉−ρ|α|+δ|β|
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for all multi-indices α, β, all x ∈ G, and all but finitely many π ∈ Ĝ. Then there
exists an operator B ∈ Op(S−m0

ρ,δ (G)) such that AB − I and BA − I belong to

Ψ−∞(G). Consequently, we have

sing supp Au = sing supp u

for all u ∈ D′(G).

We finish this section with several results that are usually expected from the
calculus. The following asymptotic expansion formula was established in [RW14].

Proposition 2.2.19. Let σj ∈ S
mj

ρ,δ (G), j ∈ N0, 0 ≤ δ < ρ ≤ 1, be a family of
symbols with mj ց −∞. Then there exists a symbol σ ∈ Sm0

ρ,δ (G) such that

σ −
N−1∑

j=0

σj ∈ SmN

ρ,δ (G)

for all N ∈ N0.

The functional calculus of matrix valued symbols and its operator counter-
part have been also developed in [RW14]. A notable corollary of such functional
calculus is the following

Corollary 2.2.20. Let 0 ≤ δ < ρ ≤ 1 and let m ≥ 0. Assume σA ∈ S2m
ρ,δ (G) satisfies

σA(x, π) > 0 and
‖σA(x, π)

−1‖L (Hπ) ≤ C〈π〉−2m

for all x and π. Then the square root

σB(x, π) =
√
σA(x, π)

in the sense of positive matrices is a symbol satisfying σB ∈ Sm
ρ,δ(G).

This is the corollary of the following more general result:

Theorem 2.2.21. Let 0 ≤ δ ≤ 1 and 0 < ρ ≤ 1. Assume σA ∈ Sm
ρ,δ(G), m ≥ 0, is

positive definite, invertible, and satisfies

‖σA(x, π)
−1‖L (Hπ) ≤ C〈π〉−m

for all x and for all but finitely many π. Then for any number s ∈ C,

σB(x, π) := σA(x, π)
s = exp(s log σA(x, π))

defines a symbol σB ∈ Sm′

ρ,δ(G), with m′ = Re (ms).

In fact, the assumptions of Theorem 2.2.21 imply something stronger, namely,
that the symbol σA(x, π) is parameter-elliptic with respect to R−; we refer to
[RW14] for the definition of parameter-ellipticity in this setting, and for a more gen-
eral exposition and statements of the functional calculus on compact Lie groups.
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2.2.4 Fourier multipliers and Lp-boundedness

Here we give an overview of the Lp-estimates for the Fourier multipliers and for
non-invariant operators on compact Lie groups following [RW13, RW15]. We set
aside the case of bi-invariant operators (or spectral multipliers) noting that there
exist many results in this direction (see e.g. N. Weiss [Wei72], Coifman and G.
Weiss [CW74], Stein [Ste70b], Cowling [Cow83], Alexopoulos [Ale94], to refer the
reader to only a few). Instead, we concentrate on the case of left-invariant operators
(or Fourier multipliers). To the best of our knowledge the literature in this case is
much smaller, with a notable exception of a multiplier theorem for left-invariant
operators on the group SU(2) treated by Coifman and Weiss [CW71b], Coifman
and de Guzmán [CdG71], and appearing in more detail in the monograph by
Coifman and Weiss [CW71a]. The conditions there are formulated using specific
explicit expressions involving Clebsch-Gordan coefficients on SU(2), but they can
be recast in a much shorter form using the concept of difference operators. It also
allows one to treat the case of general compact Lie groups. Finally we note that
there exist also results for the spectral multipliers in the sub-Laplacian, also on
SU(2), for which we refer to Cowling and Sikora [CS01].

First, we discuss left-invariant operators A : C∞(G) → D′(G), so that the
matrix-valued symbol σA(x, π) = σA(π) is independent of x and can be given as

σA(π) = π(x)∗(Aπ)(x) = (Aπ)(e).

The multiplier theorems that we will present can be said to be of Mihlin-Hörman-
der type in the sense that they provide analogues of famous multiplier theorems
on Rn by Mihlin [Mih56, Mih57] and Hörmander [Hör60].

In order to formulate the results, we need to fix a particular collection of
first order difference operators associated to the elements of the unitary dual Ĝ.
Thus, for a fixed representation π0 ∈ Ĝ, we notice that the (dπ0

× dπ0
)-matrix

π0(x) − Idπ0
vanishes at x = e. Consequently, we define the difference operators

π0D = (π0Dij)
dπ0
i,j=1 associated with its elements,

π0
Dij := Δ(π0)ij−δi,j ,

where δi,j is the Kronecker delta. For a family of difference operators of this type,

D1 =π1
Di1j1 , D2 =π2

Di2j2 , . . . ,Dm =πm
Dimjm , (2.28)

with πk ∈ Ĝ, 1 ≤ ik, jk ≤ dπk
, 1 ≤ k ≤ m, we define

Dα := Dα1
1 · · ·Dαm

m . (2.29)

The described difference operators π0
D have a number of useful properties. For

example, they satisfy the finite Leibniz formula (while general difference operators
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satisfy only an asymptotic Leibniz formula, see [RT10a, Section 10.7.4]). Namely,
for any fixed π0, they satisfy

Dij(στ) = (Dijσ)τ + σ(Dijτ) +

dπ0∑

k=1

(Dikσ)(Dkjτ). (2.30)

The collection of difference operators

{π0
Dij : π0 ∈ Ĝ, 1 ≤ i, j ≤ dπ0

}

is strongly admissible. Moreover, it has a finite strongly admissible sub-collection.
Indeed, a homomorphic embedding of G into U(N) for some N is itself a represen-
tation of G. Decomposing it into irreducible components gives the desired finite
family of π0’s.

We now formulate the first result on the Lp-boundedness of left-invariant
operators.

Theorem 2.2.22. Let A : C∞(G) → D′(G) be a left-invariant linear continuos
operator on a compact Lie group G, and let k denote the smallest even integer
such that k > 1

2 dimG. Assume that the symbol σA of A satisfies

‖DασA(π)‖L (Hπ) ≤ Cα〈π〉−|α|
(2.31)

for all multi-indices |α| ≤ k and all π ∈ Ĝ. Then the operator A is of weak type
(1,1) and is bounded on Lp(G) for all 1 < p <∞.

We note that by Theorem 2.2.11, imposing conditions (2.31) for all multi-
indices α would imply that A is a left-invariant pseudo-differential operator in
Hörmander’s class, A ∈ Ψ0(G), for which the Lp-boundedness would follow from
the corresponding Lp-boundedness in Rn for its localisations. However, imposing
conditions (2.31) for multi-indices |α| ≤ k still assures that the operator A is of
Calderón-Zygmund type (in the sense of Coifman and Weiss, see Section A.4). The
proof of the Lp-boundedness for 1 < p ≤ 2 follows by Marcinkiewicz interpolation
theorem (see Proposition 1.5.1) from the L2-boundedness (and hence also weak
(2,2) type) in Theorem 2.2.5, and from weak (1,1) type, which becomes, therefore,
the main task.

For 2 < p < ∞, the result follows by duality. Before we give an idea behind
the proof of the weak (1,1) type, let us formulate several corollaries from Theorem
2.2.22. We recall that the Sobolev space W p,s(G) on G is the usual Sobolev space
on G as a manifold defined by requiring all the localisations to belong to the
Euclidean space W p,s(Rn) = (I−LRn)−s/2Lp(Rn), where LRn is the Laplacian on
Rn and s ∈ R.

Corollary 2.2.23. Let A : C∞(G) → D′(G) be a left-invariant linear continuous
operator on a compact Lie group G. Let 0 ≤ ρ ≤ 1 and let k denote the smallest
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even integer such that k > 1
2 dimG. Assume that the symbol σA of A satisfies

‖DασA(π)‖L (Hπ) ≤ Cα〈π〉−ρ|α|

for all multi-indices |α| ≤ k and all π ∈ Ĝ. Then the operator A extends to a
bounded operator from the Sobolev space W p,r(G) to Lp(G) for any 1 < p < ∞,
with

r = k(1− ρ)|1
p
− 1

2
|.

Example 2.2.24. Let

Lsub = X2 + Y 2

be a sub-Laplacian on SU(2). Then it was shown in [RTW14] that it has a
parametrix with the matrix-valued symbol in the class S−1

1
2 ,0

(SU(2)). Consequently,

for any 1 < p <∞, Corollary 2.2.23 implies the subelliptic estimate

‖f‖
W

p,s+1−| 1
p
− 1

2
|
(SU(2))

≤ Cp‖Lsubf‖Wp,s(SU(2)),

where the estimate is extended from s = 0 to any s ∈ R by the calculus. We refer to
[RTW14] for the construction and discussion of parametrices for other operators,
including the heat and the wave operator, d’Alambertian, and some higher order
operators, on SU(2) and on S3, and to [RW13, RW15] for the corresponding Lp-
estimates.

Example 2.2.25. Let (φ, θ, ψ) be the standard Euler angles on SU(2), see e.g.
[RT10a, Chapter 11] for a detailed treatment of SU(2). Thus, we have 0 ≤ φ < 2π,
0 ≤ θ ≤ π, and −2π ≤ ψ < 2π, and every element

u = u(φ, θ, ψ) =

(
a b
−b̄ ā

)
∈ SU(2)

is parametrised in such a way that

2aā = 1 + cos θ, 2ab = ieiφ sin θ, −2ab̄ = ieiψ sin θ.

Conversely, we can also write

u(φ, θ, ψ) =

(
cos( θ2 )e

i(φ+ψ)/2 i sin( θ2 )e
i(φ−ψ)/2

i sin( θ2 )e
−i(φ−ψ)/2 cos( θ2 )e

−i(φ+ψ)/2

)
∈ SU(2).

Let X be a left-invariant vector field on G normalised in such a way that ‖X‖ =
‖∂/∂ψ‖ with respect to the Killing form. It was shown in [RTW14] that for γ ∈ C,

the operator X + γ is invertible if and only if iγ �∈ 1

2
Z,
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and, moreover, for such γ, the inverse (X + γ)−1 has its matrix-valued symbol in
the class S0

0,0(SU(2)). The same conclusion remains true if we replace SU(2) by
S3, with the corresponding selection of Euler’s angles. Then, Corollary 2.2.23 and
the calculus imply the subelliptic estimate

‖f‖Wp,s(S3) ≤ Cp‖(X + γ)f‖
W

p,s+2| 1
p
− 1

2
|
(S3)

, 1 < p <∞, s ∈ R.

There is an analogue of this estimate on arbitrary compact Lie groups, see [RW15].

Let us briefly indicate an idea behind the proof of Theorem 2.2.22. In order
to use the theory of singular integral operators (according to Coifman and Weiss,
see Section A.4), we first define a suitable quasi-distance on G.

Let Ad : G → U(g) be the adjoint representation of G. Then by the Peter-
Weyl theorem it can be decomposed as a direct sum of irreducible representations,

Ad = (dimZ(G))1⊕
⊕

π∈Θ0

π,

where Z(G) is the centre of G, 1 is the trivial representation, and Θ0 is an index set
for the representations entering in this decomposition. Then we define a smooth
non-negative function

r2(x) := dimG− TrAd(x) =
∑

π∈Θ0

(dπ − χπ(x)), (2.32)

which is central, non-degenerate, and vanishes of the second order at the unit
element e ∈ G. It can be then checked that the function

d(x, y) := r(x−1y)

is the quasi-distance in the sense of Section A.4. Consequently, one can check that
the operator A satisfies Calderón-Zygmund conditions of spaces of homogeneous
type, in terms of the quasi-distance above. Such a verification relies heavily on the
developed symbolic calculus, Leibniz rules for difference operators, and criteria for
the weak (1,1) type in terms of suitably defined mollifiers. We refer to [RW15] for
further details of this construction.

Using the function r(x), one can refine the statement of Theorem 2.2.22.
Thus, let us define the difference operator associated with r2(x), namely,

△∗ := Δr2 = FG r2(x) F−1
G ,

and we have that △∗ ∈ diff2(Ĝ) is the second order difference operator.

Theorem 2.2.26. Let A : C∞(G) → D′(G) be a left-invariant linear continuous
operator on a compact Lie group G, and let k denote the smallest even integer
such that k > 1

2 dimG. Assume that the symbol σA of A satisfies

‖△∗ k/2σA(π)‖L (Hπ) ≤ C〈π〉−k
(2.33)
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as well as
‖DασA(π)‖L (Hπ) ≤ Cα〈π〉−|α|

(2.34)

for all multi-indices |α| ≤ k − 1 and all π ∈ Ĝ. Then the operator A is of weak
type (1,1) and is bounded on Lp(G) for all 1 < p <∞.

We note that, comparing (2.33) to the condition (2.31) in Theorem 2.2.22,
only a single difference condition of order k is required in Theorem 2.2.26. This
has interesting consequences, already in the case of the torus, as we will show in
Example 2.2.27.

Moreover, the assumption (2.34) can be refined further: namely, to form a
strongly admissible family of first order difference operators giving Dα in (2.28)
and (2.29), it is enough to take only πk ∈ Θ0, the set of the irreducible components
of the adjoint representation.

In all the theorems of this section an assumption that k is an even integer is
present. This seems to be related to the technical part of the argument, namely,
to the usage of the second order difference operator △∗ that is naturally related to
the quasi-metric on G as well as satisfies the finite Leibniz formula. The latter can
be derived from (2.30) using the decomposition

△∗ = −
∑

π∈Θ0

dπ∑

i=1

πDii,

which follows from the definition of r2(x) in (2.32). Thus, it satisfies

△∗ (στ) = (△∗σ)τ + σ(△∗ τ)−
∑

π∈Θ0

dπ∑

i,j=1

(πDijσ)(πDjiτ),

and becomes instrumental in establishing the relation between assumption (2.33)
and properties of the integral kernel of A in terms of the quasi-metric. However, we
note also that the condition on the even number of analogous expressions appears
already in the multiplier theorem for bi-invariant operators, established by rather
different methods by N. Weiss [Wei72].

Example 2.2.27. Let us consider now the case of the torus, G = Tn. In this case,
the left-invariant operators take the form

Af(x) =
∑

ξ∈Zn

e2πix·ξσ(ξ)f̂(ξ) with f̂(ξ) =

∫

Tn

e−2πix·ξf(x)dx.

or, in other words,

Âf(ξ) = σ(ξ)f̂(ξ), ξ ∈ Zn.

We take

r2(x) = 2n−
n∑

j=1

(e2πixj + e−2πixj ),
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so that

△∗σ(ξ) = 2nσ(ξ)−
n∑

j=1

(σ(ξ + ej) + σ(ξ − ej)),

where ξ ∈ Zn and ej is the jth unit vector in Zn. The appearing operator △∗ is
rather curious since it replaces the assumptions usually imposed on all highest
order difference conditions as, for example, in the suitably modified toroidal ver-
sion of Hörmander’s multiplier theorem [Hör60] (where one would need to make
assumptions on all differences of order

[
n
2

]
+ 1), or in Marcienkiewicz’ version of

multiplier theorem of Nikolskii [Nik77, Section 1.5.3] (where one imposes difference
conditions up to order n). To clarify the nature of the operator △∗ , we give the
examples for T2 and T3. As a consequence of Theorem 2.2.26 we get the following
statements. Let 1 < p <∞. Assume that

|σ(ξ)| ≤ C and |ξ| |σ(ξ + ej)− σ(ξ)| ≤ C,

for all ξ ∈ Z2 and j = 1, 2, or ξ ∈ Z3 and j = 1, 2, 3, respectively. Furthermore,
assume that

|ξ|2 |σ(ξ)− 1

4

2∑

j=1

(σ(ξ + ej) + σ(ξ − ej))| ≤ C for T2,

or

|ξ|2|σ(ξ)− 1

6

3∑

j=1

(σ(ξ + ej) + σ(ξ − ej))| ≤ C for T3,

respectively. Then the operator A is bounded on Lp(T2) or Lp(T3), respectively.

We now drop the assumption of left-invariance and consider general lin-
ear continuous operators from C∞(G) to D′(G). Then we can assure the Lp-
boundedness provided we complement the differences in π with derivatives with
respect to x.

Theorem 2.2.28. Let A : C∞(G) → D′(G) be a linear continuous operator on a
compact Lie group G, and let k denote the smallest even integer such that k >
1
2 dimG. Let 1 < p < ∞ and let l > dimG

p be an integer. Assume that the symbol
σA of A satisfies

‖Xβ
x△∗ k/2σA(x, π)‖L (Hπ) ≤ C〈π〉−k

(2.35)

as well as

‖Xβ
xD

ασA(x, π)‖L (Hπ) ≤ Cα〈π〉−|α|
(2.36)

for all π ∈ Ĝ and for all multi-indices α and β with |α| ≤ k− 1 and |β| ≤ l. Then
the operator A is bounded on Lp(G).

We refer to [RW15] for the detailed proofs of all the results in this section.
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2.2.5 Sharp G̊arding inequality

The sharp G̊arding inequality on Rn is an important lower bound for operators
with positive symbols, finding many applications in the theory of partial differ-
ential equations of elliptic, parabolic and hyperbolic types. The original G̊arding
inequality for elliptic operators has been established by G̊arding in [G̊ar53]. It says
that if p ∈ Sm

ρ,δ(R
n), 0 ≤ δ < ρ ≤ 1, is a symbol satisfying

Re p(x, ξ) ≥ c|ξ|m,

c > 0, for all x ∈ Rn and ξ large enough, then the corresponding pseudo-differential
operator

p(x,D)f(x) =

∫

Rn

e2πix·ξp(x, ξ)f̂(ξ)dξ

satisfies the following lower bound: for every s ∈ R and every compact set K ⊂ Rn

there exist some constants c0, c1 such that

Re (p(x,D)f, f)L2(Rn) ≥ c0‖f‖2Hm/2(Rn) − c1‖f‖2Hs(Rn) (2.37)

holds for all f ∈ D(K). Its improvement, the so-called sharp G̊arding inequality was
obtained by Hörmander in [Hör66]. It says that if p ∈ Sm

ρ,δ(R
n), 0 ≤ δ < ρ ≤ 1,

is a non-negative symbol, p(x, ξ) ≥ 0 for all x, ξ ∈ Rn, then the corresponding
pseudo-differential operator satisfies the lower bound

Re (p(x,D)f, f)L2(Rn) ≥ −c‖f‖2H(m−(ρ−δ))/2(Rn) (2.38)

for all f ∈ D(K). This inequality was further generalised to systems by Lax and
Nirenberg [LN66], Kumano-go [Kg81], and Vaillancourt [Vai70]. It has been also
extended to regain two derivatives for the class S2

1,0(R
n) by Fefferman and Phong

[FP78]. For expositions concerning sharp G̊arding inequalities with different proofs
we refer to monographs of Kumano-go [Kg81], Taylor [Tay81], Lerner [Ler10], or
Friedrichs’ notes [Fri70]. There is also an approach based on constructions in space
variables rather than in frequency one, developed by Nagase [Nag77].

The situation with G̊arding inequalities on manifolds is more complicated.
The main problem is that the assumption that the symbol of a pseudo-differential
operator is non-negative is harder to formulate since the full symbol is not in-
variantly defined. For second order pseudo-differential operators, under the non-
negativity assumption on the principal symbol and certain non-degeneracy as-
sumptions on the sub-principal symbol, a lower bound now known as Melin-
Hörmander inequality has been obtained by Melin [Mel71] and Hörmander [Hör77].
The non-degeneracy conditions on the sub-principal symbol can be somehow re-
laxed, see [MPP07].

Nevertheless, in our setting we are assisted by the fact that the algebraic
structure of a Lie group gives us the notion of the full symbol in (2.19). This
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symbol, however, is not needed for the standard G̊arding inequality (2.37) since the
ellipticity is determined by the principal symbol only. Thus, the standard G̊arding
inequality (2.37) on compact Lie groups has been established in [BGJR89] using
Langlands’ results for semi-groups on Lie groups [Lan60].

Let us first look at a possible assumption for the positivity of an operator in
the invariant situation. If an operator A is given by the convolution Af = κ ∗ f ,
we obtain

(Af, f)L2(G) = (κ ∗ f, f)L2(G) = (f̂ κ̂, f̂)ℓ2(Ĝ) =
∑

π∈Ĝ

dπ Tr
(
f̂(π) κ̂(π) f̂(π)∗

)
,

where we used the Plancherel identity (2.13). On the other hand, according to
Section 1.5, A is right-invariant, and according to Example 2.2.4 its symbol is
σA(x, π) = π(x)∗κ̂(ξ)π(x). Thus, we get that A is a positive operator if and only if

the matrix κ̂(π) is positive for all π ∈ Ĝ, i.e. when (κ̂(π)v, v)Hπ
≥ 0 for all v ∈ Hπ.

But this means that the symbol σA is positive, σA(x, π) ≥ 0 for all (x, π) ∈ G× Ĝ.
Analogously, for left-invariant operators Af = f ∗ κ, one sees that

(Af, f)L2(G) = (f ∗ κ, f)L2(G) = (κ̂ f̂ , f̂)ℓ2(Ĝ) =
∑

π∈Ĝ

dπ Tr
(
f̂(π)∗ κ̂(π) f̂(π)

)
.

So again, A is a positive operator if and only if its symbol σA(π) = κ̂(π) is positive.

This motivates a hypothesis that the positivity of the matrix-valued symbol
on G would be an analogue of the positivity of the Kohn-Nirenberg symbol on Rn.
Indeed, we have the following criterion, which for non-invariant operators becomes
a sufficient condition:

Theorem 2.2.29. Let A ∈ Ψm(G) be such that its matrix-valued symbol σA is
positive, i.e.

σA(x, π) ≥ 0 for all (x, π) ∈ G× Ĝ.

Then there exists a constant c such that

Re (Af, f)L2(G) ≥ −c‖f‖2H(m−1)/2(G)

for all f ∈ C∞(G).

The usual proofs of the sharp G̊arding inequality on Rn (that is, the proofs
not relying on the anti-Wick quantization) make use of a positive approximation
of a pseudo-differential operator, the so-called Friedrichs symmetrisation, approx-
imating an operator with non-negative symbol of order m by a positive operator
modulo an error of order m − 1. This construction, indeed, allows one to gain
one derivative needed for the sharp G̊arding inequality. Unfortunately, such an
approximation in the frequency variable seems to be less useful on a Lie group G
because the unitary dual Ĝ is not well adapted for such purpose. However, one
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can carry out, instead, a symmetrisation in the space variables using the symbolic
calculus of operators for the construction. In particular, it relies heavily on dealing
with the symbol class Sm

1, 12
(G) defined in Section 2.2.3.

As in the case of operators on Rn, the sharp G̊arding inequality leads to sev-
eral further conclusions concerning the L2-boundedness of operators. For example,
pseudo-differential operators of the first order are bounded on L2(Rn) provided
their matrix-valued symbols are bounded:

Corollary 2.2.30. Let A ∈ Ψ1(G) be such that its matrix-valued symbol σA satisfies

‖σA(x, π)‖L (Hπ) ≤ C

for all (x, π) ∈ G× Ĝ. Then the operator A is bounded from L2(G) to L2(G).

It can be also used to determine constants as bounds for operator norms
of mappings between L2-Sobolev spaces. For the proofs of the statements in this
section, as well as for further details we refer the reader to [RT11].

In the above, we concentrated on symbol classes Sm
1,0(G) of type (1, 0). How-

ever, certain conclusions can be made also for operators with symbols of type
(ρ, δ).

Proposition 2.2.31 (G̊arding’s inequality on G). Let 0 ≤ δ < ρ ≤ 1 and m > 0.
Let A ∈ OpS2m

ρ,δ (G) be elliptic and such that σA(x, ξ) ≥ 0 for all x and co-finitely
many ξ. Then there are constants c1, c2 > 0 such that for any function f ∈ Hm(G)
the inequality

Re (Af, f)L2 ≥ c1‖f‖2Hm − c2‖f‖2L2

holds true.

The statement follows by the calculus from its special case m = ρ − δ. We
refer to [RW14, Corollary 6.2] for the proofs.
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Chapter 3

Homogeneous Lie groups

By definition a homogeneous Lie group is a Lie group equipped with a family of
dilations compatible with the group law. The abelian group (Rn,+) is the very
first example of homogeneous Lie group. Homogeneous Lie groups have proved to
be a natural setting to generalise many questions of Euclidean harmonic analysis.
Indeed, having both the group and dilation structures allows one to introduce
many notions coming from the Euclidean harmonic analysis. There are several
important differences between the Euclidean setting and the one of homogeneous
Lie groups. For instance the operators appearing in the latter setting are usually
more singular than their Euclidean counterparts. However it is possible to adapt
the technique in harmonic analysis to still treat many questions in this more
abstract setting.

As explained in the introduction (see also Chapter 4), we will in fact study
operators on a subclass of the homogeneous Lie group, more precisely on graded
Lie groups. A graded Lie group is a Lie group whose Lie algebra admits a (N)-
gradation. Graded Lie groups are homogeneous and in fact the relevant structure
for the analysis of graded Lie groups is their natural homogeneous structure and
this justifies presenting the general setting of homogeneous Lie groups. From the
point of view of applications, the class of graded Lie groups contains many inter-
esting examples, in fact all the ones given in the introduction. Indeed these groups
appear naturally in the geometry of certain symmetric domains and in some subel-
liptic partial differential equations. Moreover, they serve as local models for contact
manifolds and CR manifolds, or for more general Heisenberg manifolds, see the
discussion in the Introduction.

The references for this chapter of the monograph are [FS82, ch. I] and
[Goo76], as well as Fulvio Ricci’s lecture notes [Ric]. However, our conventions
and notation do not always follow the ones of these references. The treatment
in this chapter is, overall, more general than that in the above literature since
we also consider distributions and kernels of complex homogeneous degrees and
adapt our analysis for subsequent applications to Sobolev spaces and to the op-
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92 Chapter 3. Homogeneous Lie groups

erator quantization developed in the following chapters. Especially, our study of
complex homogeneities allows us to deal with complex powers of operators (e.g.
in Section 4.3.2).

3.1 Graded and homogeneous Lie groups

In this section we present the definition and the first properties of graded Lie
groups. Since many of their properties can be explained in the more general setting
of homogeneous Lie groups, we will also present these groups.

3.1.1 Definition and examples of graded Lie groups

We start with definitions and examples of graded and stratified Lie groups.

Definition 3.1.1. (i) A Lie algebra g is graded when it is endowed with a vector
space decomposition (where all but finitely many of the Vj ’s are {0}):

g =

∞⊕

j=1

Vj such that [Vi, Vj ] ⊂ Vi+j .

(ii) A Lie group is graded when it is a connected simply connected Lie group
whose Lie algebra is graded.

The condition that the group is connected and simply connected is technical
but important to ensure that the exponential mapping is a global diffeomorphism
between the group and its Lie algebra.

The classical examples of graded Lie groups and algebras are the following.

Example 3.1.2 (Abelian case). The abelian group (Rn,+) is graded: its Lie algebra
Rn is trivially graded, i.e. V1 = Rn.

Example 3.1.3 (Heisenberg group). The Heisenberg group Hno
given in Example

1.6.4 is graded: its Lie algebra hno
can be decomposed as

hno
= V1 ⊕ V2 where V1 = ⊕no

i=1RXi ⊕ RYi and V2 = RT.

(For the notation, see Example 1.6.4 in Section 1.6.)

Example 3.1.4 (Upper triangular matrices). The group Tno of no × no matrices
which are upper triangular with 1 on the diagonal is graded: its Lie algebra tno of
no × no upper triangular matrices with 0 on the diagonal is graded by

tno = V1 ⊕ . . .⊕ Vno−1 where Vj = ⊕no−j
i=1 REi,i+j .

(For the notation, see Example 1.6.5 in Section 1.6.) The vector space Vj is formed
by the matrices with only non-zero coefficients on the j-th upper off-diagonal.
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As we will show in Proposition 3.1.10, a graded Lie algebra (hence possessing
a natural dilation structure) must be nilpotent. The converse is not true, see
Remark 3.1.6, Part 2.

Examples 3.1.2–3.1.4 are stratified in the following sense:

Definition 3.1.5. (i) A Lie algebra g is stratified when g is graded, g = ⊕∞
j=1Vj ,

and the first stratum V1 generates g as an algebra. This means that every
element of g can be written as a linear combination of iterated Lie brackets
of various elements of V1.

(ii) A Lie group is stratified when it is a connected simply connected Lie group
whose Lie algebra is stratified.

Remark 3.1.6. Let us make the following comments on existence and uniqueness
of gradations.

1. A gradation over a Lie algebra is not unique: the same Lie algebra may
admit different gradations. For example, any vector space decomposition of
Rn yields a graded structure on the group (Rn,+). More convincingly, we
can decompose the 3 dimensional Heisenberg Lie algebra h1 as

h1 =

3⊕

j=1

Vj with V1 = RX1, V2 = RY1, V3 = RT.

This last example can be easily generalised to find several gradations on the
Heisenberg groups Hno

, no = 2, 3, . . . , which are not the classical ones given
in Example 3.1.3. Another example would be

h1 =

8⊕

j=1

Vj with V3 = RX1, V5 = RY1, V8 = RT, (3.1)

and all the other Vj = {0}.
2. A gradation may not even exist. The first obstruction is that the existence

of a gradation implies nilpotency; in other words, a graded Lie group or a
graded Lie algebra are nilpotent, as we shall see in the sequel (see Proposition
3.1.10). Even then, a gradation of a nilpotent Lie algebra may not exist. As a
curiosity, let us mention that the (dimensionally) lowest nilpotent Lie algebra
which is not graded is the seven dimensional Lie algebra given by the following
commutator relations:

[X1, Xj ] = Xj+1 for j = 2, . . . , 6, [X2, X3] = X6,

[X2, X4] = [X5, X2] = [X3, X4] = X7.

They define a seven dimensional nilpotent Lie algebra of step 6 (with basis
{X1, . . . , X7}). It is the (dimensionally) lowest nilpotent Lie algebra which
is not graded. See, more generally, [Goo76, ch.I §3.2].
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3. To go back to the problem of uniqueness, different gradations may lead to
‘morally equivalent’ decompositions. For instance, if a Lie algebra g is graded
by g = ⊕∞

j=1Vj then it is also graded by g = ⊕∞
j=1Wj whereW2j′+1 = {0} and

W2j′ = Vj′ . This last example motivates the presentation of homogeneous Lie
groups: indeed graded Lie groups are homogeneous and the natural homoge-
neous structure for the graded Lie algebra

g = ⊕∞
j=1Vj = ⊕∞

j=1Wj

is the same for the two gradations.

Moreover, the relevant structure for the analysis of graded Lie groups
is their natural homogeneous structure.

4. There are plenty of graded Lie groups which are not stratified, simply because
the first vector subspace of the gradation may not generate the whole Lie
algebra (it may be {0} for example). This can also be seen in terms of dilations
defined in Section 3.1.2. Moreover, a direct product of two stratified Lie
groups is graded but may be not stratified as their stratification structures
may not ‘match’. We refer to Remark 3.1.13 for further comments on this
topic.

3.1.2 Definition and examples of homogeneous Lie groups

We now deal with a more general subclass of Lie groups, namely the class of
homogeneous Lie groups.

Definition 3.1.7. (i) A family of dilations of a Lie algebra g is a family of linear
mappings

{Dr, r > 0}
from g to itself which satisfies:

– the mappings are of the form

Dr = Exp(A ln r) =
∞∑

ℓ=0

1

ℓ!
(ln(r)A)ℓ,

where A is a diagonalisable linear operator on g with positive eigen-
values, Exp denotes the exponential of matrices and ln(r) the natural
logarithm of r > 0,

– each Dr is a morphism of the Lie algebra g, that is, a linear mapping
from g to itself which respects the Lie bracket:

∀X,Y ∈ g, r > 0 [DrX,DrY ] = Dr[X,Y ].

(ii) A homogeneous Lie group is a connected simply connected Lie group whose
Lie algebra is equipped with dilations.
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(iii) We call the eigenvalues of A the dilations’ weights or weights. The set of
dilations’ weights, or in other worlds, the set of eigenvalues of A is denoted
by WA.

We can realise the mappings A and Dr in a basis of A-eigenvectors as the
diagonal matrices

A ≡

⎛
⎜⎜⎜⎝

υ1
υ2

. . .

υn

⎞
⎟⎟⎟⎠ and Dr ≡

⎛
⎜⎜⎜⎝

rυ1

rυ2

. . .

rυn

⎞
⎟⎟⎟⎠ .

The dilations’ weights are υ1, . . . , υn.

Remark 3.1.8. Note that if {Dr} is a family of dilations of the Lie algebra g, then
D̃r := Drα := Exp(αA ln r) defines a new family of dilations {D̃r, r > 0} for any
α > 0. By adjusting α if necessary, we may assume that the dilations’ weights
satisfy certain properties in order to compare different families of dilations and
in order to fix one of such families. For example in [FS82], it is assumed that the
minimum eigenvalue is 1.

Graded Lie algebras are naturally equipped with dilations: if the Lie algebra
g is graded by

g = ⊕∞
j=1Vj ,

then we define the dilations

Dr := Exp(A ln r)

where A is the operator defined by AX = jX for X ∈ Vj .

The converse is true:

Lemma 3.1.9. If a Lie algebra g has a family of dilations such that the weights are
all rational, then g has a natural gradation.

Proof. By adjusting the weights (see Remark 3.1.8), we may assume that all the
eigenvalues are positive integers. Then the decomposition in eigenspaces gives the
the gradation of the Lie algebra. �

Before discussing the dilations in the examples given in Section 3.1.1 and
other examples of homogeneous Lie groups, let us state the following crucial prop-
erty.

Proposition 3.1.10. The following holds:

(i) A Lie algebra equipped with a family of dilations is nilpotent.

(ii) A homogeneous Lie group is a nilpotent Lie group.
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Proof of Proposition 3.1.10. Let {Dr = Exp(A ln r)} be the family of dilations.
By Remark 3.1.8, we may assume that the smallest weight is 1. For υ ∈ WA let
Wυ ⊂ g be the corresponding eigenspace of A. If υ ∈ R but υ /∈ WA then we set
Wυ := {0}.

Thus DrX = rυX for X ∈Wυ. Moreover, if X ∈Wυ and Y ∈Wυ′ then

Dr[X,Y ] = [DrX,DrY ] = rυ+υ′

[X,Y ]

and hence
[Wυ,Wυ′ ] ⊂Wυ+υ′ .

In particular, since υ ≥ 1 for υ ∈ WA, we see that the ideals in the lower series of
g (see (1.18)) satisfy

g(j) ⊂ ⊕a≥jWa.

Since the set WA is finite, it follows that g(j) = {0} for j sufficiently large. Con-
sequently the Lie algebra g and its corresponding Lie group G are nilpotent. �

Let G be a homogeneous Lie group with Lie algebra g endowed with dilations
{Dr}r>0. By Proposition 3.1.10, the connected simply connected Lie group G
is nilpotent. We can transport the dilations to the group using the exponential
mapping expG = exp of G (see Proposition 1.6.6 (a)) in the following way: the
maps

expG ◦Dr ◦ exp−1
G , r > 0,

are automorphisms of the group G; we shall denote them also by Dr and call them
dilations on G. This explains why homogeneous Lie groups are often presented as
Lie groups endowed with dilations.

We may write

rx := Dr(x) for r > 0 and x ∈ G.

The dilations on the group or on the Lie algebra satisfy

Drs = DrDs, r, s > 0.

As explained above, Examples 3.1.2, 3.1.3 and, 3.1.4 are naturally homoge-
neous Lie groups:

In Example 3.1.2: The abelian group (Rn,+) is homogeneous when equipped with
the usual dilations Drx = rx, r > 0, x ∈ Rn.

In Example 3.1.3: The Heisenberg group Hno
is homogeneous when equipped with

the dilations

rh = (rx, ry, r2t), h = (x, y, t) ∈ Rno × Rno × R.

The corresponding dilations on the Heisenberg Lie algebra hno
are given by

Dr(Xj) = rXj , Dr(Yj) = rYj , j = 1, . . . , no, and Dr(T ) = r2T.
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In Example 3.1.4: The group Tno is homogeneous when equipped with the dilations
defined by

[Dr(M)]i,j = rj−i[M ]i,j 1 ≤ i < j ≤ no, M ∈ Tno
.

The corresponding dilations on the Lie algebra tno are given by

Dr(Ei,j) = rj−iEi,j 1 ≤ i < j ≤ no.

As already seen for the graded Lie groups, the same homogeneous Lie group
may admit various homogeneous structures, that is, a nilpotent Lie group or al-
gebra may admit different families of dilations, even after renormalisation of the
eigenvalues (see Remark 3.1.8). This can already be seen from the examples in
the graded case (see Remark 3.1.6 part 1). These examples can be generalised as
follows.

Example 3.1.11. On Rn we can define

Dr(x1, . . . , xn) = (rυ1x1, . . . , r
υnxn),

where 0 < υ1 ≤ . . . ≤ υn, and on Hno we can define

Dr(x1, . . . , xno , y1, . . . , yno , t) = (rυ1x1, . . . , r
υnoxno , r

υ′
1y1, . . . , r

υ′
no yno , r

υ′′

t),

where υj > 0, υ′
j > 0 and υj + υ′

j = υ′′ for all j = 1, . . . , no.
These families of dilations give graded structures whenever the weights υj

for Rn and υj , υ
′
j , υ

′′ for Hno
are all rational or, more generally, all in αQ+ for

a fixed α ∈ R+. From this remark it is not difficult to construct a homogeneous
non-graded structure: on R3, consider the diagonal 3 × 3 matrix A with entries,
e.g., 1 and π and 1 + π.

Example 3.1.12. Continuing the example above, choosing the υj and υ′
j ’s rational

in a certain way, it is also possible to find a homogeneous structure for Hno such
that the corresponding gradation of hno = ⊕∞

j=1Vj does exist but is necessarily
such that V1 = {0}: we choose υj , υ

′
j positive integers different from 1 but with

1 as greatest common divisor (for instance for no = 2, take υ1 = 3, υ2 = 2, υ′
1 =

5, υ′
2 = 6 and υ′′ = 8). As an illustration for Corollary 4.1.10 in the sequel, with

this example, the homogeneous dimension is Q = 3+ 2+ 5+ 6+ 8 = 24 while the
least common multiple is νo = 2× 3× 5 = 30, so we have here Q < νo.

If nothing is specified, we assume that the groups (Rn,+) and Hno
are en-

dowed with their classical structure of graded Lie groups as described in Examples
3.1.2 and 3.1.3.

Remark 3.1.13. We continue with several comments following those given in Re-
mark 3.1.6.
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1. The converse of Proposition 3.1.10 does not hold, namely, not every nilpotent
Lie algebra or group admits a family of dilations. An example of a nine di-
mensional nilpotent Lie algebra which does not admit any family of dilations
is due to Dyer [Dye70].

2. A direct product of two stratified Lie groups is graded but may be not strat-
ified as their stratification structures may not ‘match’. This can be also seen
on the level of dilations defined in Section 3.1.2. Jumping ahead and using
the notion of homogeneous operators, we see that this remark may be an
advantage for example when considering the sub-Laplacian L = X2 + Y 2 on
the Heisenberg group H1. Then the operator

−L+ ∂k
t

for k ∈ N odd, becomes homogeneous on the direct product H1 × R when it
is equipped with the dilation structure which is not the one of a stratified
Lie group, see Lemma 4.2.11 or, more generally, Remark 4.2.12.

3. In our definition of a homogeneous structure we started with dilations defined
on the Lie algebra inducing dilations on the Lie group. If we start with a Lie
group the situation may become slightly more involved. For example, R3 with
the group law

xy = (arcsinh(sinh(x1) + sinh(y1)), x2 + y2 + sinh(x1)y3, x3 + y3)

is a 2-step nilpotent stratified Lie group, the first stratum given by

X = cosh(x1)
−1∂x1 , Y = sinh(x1)∂x2 + ∂x3 ,

and their commutator is
T = [X,Y ] = ∂x2 .

It may seem like there is no obvious homogeneous structure on this group
but we can see it going to its Lie algebra which is isomorphic to the Lie
algebra h1 of the Heisenberg group H1. Consequently, the above group itself
is isomorphic to H1 with the corresponding dilation structure.

4. In fact, the same argument as above shows that if we defined a stratified
Lie group by saying that there is a collection of vector fields on it stratified
with respect to their commutation relations, then for every such stratified
Lie group there always exists a homogeneous stratified Lie group isomorphic
to it. Indeed, since the Lie algebra is stratified and has a natural dilation
structure with integer weights, we obtain the required homogeneous Lie group
by exponentiating this Lie algebra. We refer to e.g. [BLU07, Theorem 2.2.18]
for a detailed proof of this.

Refining the proof of Proposition 3.1.10, we can obtain the following techni-
cal result which gives the existence of an ‘adapted’ basis of eigenvectors for the
dilations.
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Lemma 3.1.14. Let g be a Lie algebra endowed with a family of dilations {Dr, r >
0}. Then there exists a basis {X1, . . . , Xn} of g, positive numbers υ1, . . . , υn > 0,
and an integer n′ with 1 ≤ n′ ≤ n such that

∀t > 0 ∀j = 1, . . . , n Dt(Xj) = tυjXj , (3.2)

and
[g, g] ⊂ RXn′+1 ⊕ . . .⊕ RXn. (3.3)

Moreover, X1, . . . , Xn′ generate the algebra g, that is, any element of g can be
written as a linear combination of these vectors together with all their iterated Lie
brackets.

This result and its proof are due to ter Elst and Robinson (see [tER97,
Lemma 2.2]). Condition (3.2) says that {Xj}nj=1 is a basis of eigenvectors for the
mapping A given by

Dr = Exp(A ln r).

Condition (3.3) says that this basis can be chosen so that the first n′ vectors of
this basis generate the whole Lie algebra and the others span (linearly) the derived
algebra [g, g].

Proof of Lemma 3.1.14. We continue with the notation of the proof of Proposi-
tion 3.1.10. For each weight υ ∈ WA, we choose a basis

{Yυ,1, . . . , Yυ,d′
υ
, Yυ,d′

υ+1, . . . , Yυ,dυ
} of Wυ

such that {Yυ,d′
υ+1, . . . , Yυ,dυ} is a basis of the subspace

Wυ

⋂(
Span

⋃

υ′+υ′′=υ

[Wυ′ ,Wυ′′ ]

)
.

Since g = ⊕υ∈WA
Wυ, we have by construction that

[g, g] ⊂ Span {Yυ,j : υ ∈ WA, d′υ + 1 ≤ j ≤ dυ} .
Let h be the Lie algebra generated by

{Yυ,j : υ ∈ WA, 1 ≤ j ≤ d′υ} . (3.4)

We now label and order the weights, that is, we write

WA = {υ1, . . . , υm}
with 1 ≤ υ1 < . . . < υm. It follows by induction on N = 1, 2 . . . ,m that ⊕N

j=1Wυj

is contained in h and hence h = g and the set (3.4) generate (algebraically) g.
A basis with the required property is given by

Yυ1,1, . . . , Yυ1,d′
υ1
, . . . , Yυm,1, . . . , Yυm,d′

υm
for X1, . . . , Xn′ ,

and

Yυ1,d′
υ1

+1, . . . , Yυ1,dυ1
, . . . , Yυm,d′

υm
+1, . . . , Yυm,dυm

for Xn′+1, . . . , Xn.

�
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3.1.3 Homogeneous structure

In this section, we shall be working on a fixed homogeneous Lie group G of di-
mension n with dilations

{Dr = Exp(A ln r)}.
We denote by υ1, . . . , υn the weights, listed in increasing order and with each value
listed as many times as its multiplicity, and we assume without loss of generality
(see Remark 3.1.8) that υ1 ≥ 1. Thus,

1 ≤ υ1 ≤ υ2 ≤ . . . ≤ υn. (3.5)

If the group G is graded, then the weights are also assumed to be integers with
one as their greatest common divisor (again see Remark 3.1.8).

By Proposition 3.1.10 the Lie group G is nilpotent connected simply con-
nected. Thus it may be identified with Rn equipped with a polynomial law, using
the exponential mapping expG of the group (see Section 1.6). With this identifi-
cation its unit element is 0 ∈ Rn and it may also be denoted by 0G or simply by
0.

We fix a basis {X1, . . . , Xn} of g such that

AXj = υjXj

for each j. This yields a Lebesgue measure on g and a Haar measure on G by
Proposition 1.6.6. If x or g denotes a point in G the Haar measure is denoted by
dx or dg. The Haar measure of a measurable subset S of G is denoted by |S|.

We easily check that

|Dr(S)| = rQ|S|,
∫

G

f(rx)dx = r−Q

∫

G

f(x)dx, (3.6)

where
Q = υ1 + . . .+ υn = TrA. (3.7)

The number Q is larger (or equal) than the usual dimension of the group:

n = dimG ≤ Q,

and may replace it for certain questions of analysis. For this reason the number Q
is called the homogeneous dimension of G.

Homogeneity

Any function defined on G or on G\{0} can be composed with the dilations Dr.
Using property (3.6) of the Haar measure and the dilations, we have for any
measurable functions f and φ on G, provided that the integrals exist,

∫

G

(f ◦Dr)(x) φ(x) dx = r−Q

∫

G

f(x) (φ◦D 1
r
)(x) dx. (3.8)
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Therefore, we can extend the map f �→ f ◦Dr to distributions via

〈f ◦Dr, φ〉 := r−Q〈f, φ ◦D 1
r
〉, f ∈ D′(G), φ ∈ D(G). (3.9)

We can now define the homogeneity of a function or a distribution in the
same way:

Definition 3.1.15. Let ν ∈ C.

(i) A function f on G\{0} or a distribution f ∈ D′(G) is homogeneous of degree
ν ∈ C (or ν-homogeneous) when

f ◦Dr = rνf for any r > 0.

(ii) A linear operator T : D(G) → D′(G) is homogeneous of degree ν ∈ C (or
ν-homogeneous) when

T (φ ◦Dr) = rν(Tφ) ◦Dr for any φ ∈ D(G), r > 0.

Remark 3.1.16. We will also say that a linear operator T : E → F , where E is a
Fréchet space containing D(G) as a dense subset, and F is a Fréchet space included
in D′(G), is homogeneous of degree ν ∈ C when its restriction as an operator from
D(G) to D′(G) is. For example, it will apply to the situation when T is a linear
operator from Lp(G) to some Lq(G).

Example 3.1.17 (Coordinate function). The coordinate function xj = [x]j given
by

G ∋ x = (x1, . . . , xn) �−→ xj = [x]j , (3.10)

is homogeneous of degree υj .

Example 3.1.18 (Koranyi norm). The function defined on the Heisenberg group
Hno

by

Hno
∋ (x, y, t) �−→

((
|x|2 + |y|2

)2
+ t2

)1/4

,

where |x| and |y| denote the canonical norms of x and y in Rno , is homogeneous
of degree 1. It is sometimes called the Koranyi norm.

Example 3.1.19 (Haar measure). Equality (3.8) shows that the Haar measure,
viewed as a tempered distribution, is a homogeneous distribution of degree Q (see
(3.7)). We can write this informally as

d(rx) = rQdx,

see (3.6).
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Example 3.1.20 (Dirac measure at 0). The Dirac measure at 0 is the probability
measure δ0 given by ∫

G

fdδ0 = f(0).

It is homogeneous of degree −Q since for any φ ∈ D(G) and r > 0, we have

〈δ0 ◦Dr, φ〉 = r−Q〈δ0, φ ◦D 1
r
〉 = r−Qφ(

1

r
0) = r−Qφ(0) = 〈r−Qδ0, φ〉.

Example 3.1.21 (Invariant vector fields). Let X ∈ g be viewed as a left-invariant
vector field X or a right-invariant vector field X̃ (cf. Section 1.3). We assume
that X is in the υj-eigenspace of A. Then the left and right-invariant differential

operators X and X̃ are homogeneous of degree υj . Indeed,

X(f ◦Dr) (x) = ∂t=0 {f ◦Dr (x expG(tX))} = ∂t=0 {f (rx expG(r
υj tX))}

= rυj∂t′=0 {f (rx expG(t
′X))} = rυj (Xf)(rx),

and similarly for X̃.

The following properties are very easy to check:

Lemma 3.1.22. (i) Whenever it makes sense, the product of two functions, dis-
tributions or operators of degrees ν1 and ν2 is homogeneous of degree ν1ν2.

(ii) Let T : D(G)→ D′(G) be a ν-homogeneous operator. Then its formal adjoint
and transpose T ∗ and T t, given by

∫

G

(Tf)g =

∫

G

f(T ∗g),

∫

G

(Tf)g =

∫

G

f(T tg), f, g ∈ D(G),

are also homogeneous with degree ν̄ and ν respectively.

Consequently for any non-zero multi-index α = (α1, . . . , αn) ∈ Nn
0\{0}, the

function
xα := xα1

1 . . . xαn
n , (3.11)

and the operators

(
∂

∂x

)α

:=

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

, Xα := Xα1
1 . . . Xαn

n and X̃α := X̃α1
1 . . . X̃αn

n ,

are homogeneous of degree

[α] := υ1α1 + . . .+ υnαn. (3.12)

Formula (3.12) defines the homogeneous degree of the multi-index α. It is usually
different from the length of α given by

|α| := α1 + . . .+ αn.
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For α = 0, the function xα and the operators ( ∂
∂x )

α, Xα, X̃α are defined
to be equal, respectively, to the constant function 1 and the identity operator I,
which are of degree [α] := 0.

With this convention for each α ∈ Nn
0 , the differential operators ( ∂

∂x )
α, Xα

and X̃α are of order |α| but of homogeneous degree [α].
One easily checks for α1, α2 ∈ Nn

0 that

[α1] + [α2] = [α1 + α2], |α1|+ |α2| = |α1 + α2|.

Proposition 3.1.23. Let the operator T be homogeneous of degree νT and let f be
a function or a distribution homogeneous of degree νf . Then, whenever Tf makes
sense, the distribution Tf is homogeneous of degree νf − νT .

In particular, if f ∈ D′(G) is homogeneous of degree ν, then

Xαf, X̃αf, ∂αf

are homogeneous of degree ν − [α].

Proof. The first claim follows from the formal calculation

(Tf) ◦Dr = r−νT T (f ◦Dr) = r−νT T (rνf f) = r−νT+νfTf.

The second claim follows from the first one since Xα, X̃αf and ∂αf are well
defined on distributions and are homogeneous of the same degree [α] given by
(3.12). �

3.1.4 Polynomials

By Propositions 3.1.10 and 1.6.6 we already know that the group law is polynomial.
This means that each [xy]j is a polynomial in the coordinates of x and of y. The
homogeneous structure implies certain additional properties of this polynomial.

Proposition 3.1.24. For any j = 1, . . . , n, we have

[xy]j = xj + yj +
∑

α,β∈N
n
0 \{0}

[α]+[β]=υj

cj,α,βx
αyβ .

In particular, this sum over [α] and [β] can involve only coordinates in x or y with
degrees of homogeneity strictly less than υj.

For example,

for υ1 : [xy]1 = x1 + y1,

for υ2 : [xy]2 = x2 + y2 +
∑

[α]=[β]=υ1

c2,α,βx
αyβ ,

for υ3 : [xy]3 = x3 + y3 +
∑

[α]=υ1, [β]=υ2

or [α]=υ2, [β]=υ1

c3,α,βx
αyβ ,
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and so on.

Proof. Let j = 1, . . . , n. From the Baker-Campbell-Hausdorff formula (see Theo-
rem 1.3.2) applied to the two vectors X = x1X1 + . . . + xnXn and Y = y1X1 +
. . .+ ynXn of g, we have with our notation that

[xy]j = xj + yj +Rj(x, y)

where Rj(x, y) is a polynomial in x1, y1, . . . , xn, yn. Moreover, Rj must be a finite
linear combination of monomials xαyβ with |α|+ |β| ≥ 2:

Rj(x, y) =
∑

α,β∈N
n
0

|α|+|β|≥2

cj,α,βx
αyβ .

We now use the dilations. Since the function xj is homogeneous of degree υj ,
we easily check

Rj(rx, ry) = rυjRj(x, y)

for any r > 0 and this forces all the coefficients cj,α,β with [α] + [β] �= υj to be
zero. The formula follows. �

Recursively using Proposition 3.1.24, we obtain for any α ∈ Nn
0\{0}:

(xy)α = [xy]α1
1 . . . [xy]αn

n =
∑

β1,β2∈N
n
0

[β1]+[β2]=[α]

cβ1,β2
(α)xβ1yβ2 , (3.13)

with

cβ1,0(α) =

{
0 ifβ1 �= α
1 ifβ1 = α

and c0,β2
(α) =

{
0 ifβ2 �= α
1 ifβ2 = α

. (3.14)

Definition 3.1.25. A function P on G is a polynomial if P ◦ expG is a polynomial
on g.

For example the coordinate functions x1, . . . , xn defined in (3.10) or, more
generally, the monomials xα defined in (3.11) are (homogeneous) polynomials on
G.

It is clear that every polynomial P on G can be written as a unique finite
linear combination of the monomials xα, that is,

P =
∑

α∈Nn
0

cαx
α, (3.15)

where all but finitely many of the coefficients cα ∈ C vanish. The homogeneous
degree of a polynomial P written as (3.15) is

D◦P := max{[α] : α ∈ Nn
0 with cα �= 0},
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which is often different from its isotropic degree:

d◦P := max{|α| : α ∈ Nn
0 with cα �= 0}.

For example on Hno
, 1 + t is a polynomial of homogeneous degree 2 but

isotropic degree 1.

Definition 3.1.26. We denote by P(G) the set of all polynomials on G. For any
M ≥ 0 we denote by P≤M the set of polynomials P on G such that D◦P ≤ M
and by Piso

≤M the set of polynomials on G such that d◦P ≤ M . We also define in

the same way P<M , P=M , P≥M and so on, and similarly for Piso.

It is clear that P(G) is an algebra, for pointwise multiplication, which is
generated by the xj ’s.

It is not difficult to see:

Lemma 3.1.27. The subspaces P≤M and Piso
≤M of P are finite dimensional with

bases {xα : α ∈ Nn
0 , [α] ≤ M} and {xα : α ∈ Nn

0 , |α| ≤ M}, respectively.
Furthermore,

∀M ≥ 0 P≤M ⊂ Piso
≤M ⊂ P≤υnM .

Proof. The first part of the lemma is clear. For the second, because of (3.5), we
have

∀α ∈ Nn
0 |α| ≤ [α] ≤ υn|α|. (3.16)

Therefore,
∀P ∈ P d◦P ≤ D◦P ≤ υnd

◦P,

and the inclusions follow. �

By Proposition 3.1.24, [xy]j is in P≤υj
as a function of x for each y, and also

as a function of y for each x. Hence each subspace P≤M is invariant under left and
right translation. This is not the case for Piso

≤M (unless Piso
≤M ∼ C or G = (Rn,+));

consequently, it will not be of much use to us.

3.1.5 Invariant differential operators on homogeneous Lie groups

We now investigate expressions for left- and right-invariant operators on homoge-
neous Lie groups.

Proposition 3.1.28. The left and right-invariant vector fields Xj and X̃j, for any
j = 1, . . . , n, can be written as

Xj =
∂

∂xj
+

∑

1≤k≤n
υj<υk

Pj,k
∂

∂xk
=

∂

∂xj
+

∑

1≤k≤n
υj<υk

∂

∂xk
Pj,k

X̃j =
∂

∂xj
+

∑

1≤k≤n
υj<υk

Qj,k
∂

∂xk
=

∂

∂xj
+

∑

1≤k≤n
υj<υk

∂

∂xk
Qj,k,
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where Pj,k and Qj,k are homogeneous polynomials on G of homogeneous degree
υk − υj > 0.

Proof. For any x ∈ G, we denote by Lx : G→ G the left-translation, i.e. Lx(y) =
xy. Let j = 1, . . . , n. Recall that Xj is the differential operator invariant under
left-translation which agrees with ∂

∂xj
at 0, that is, for any f ∈ C∞(G) and xo ∈ G,

we have

(Xjf) ◦ Lxo
(0) = Xj(f ◦ Lxo

)(0) and Xj(f)(0) =
∂f

∂xj
(0).

Thus

(Xjf)(xo) = (Xjf) ◦ Lxo
(0) = Xj(f ◦ Lxo

)(0) =
∂

∂xj
(f ◦ Lxo

)(0)

=

n∑

k=1

∂f

∂xk
(xo)

∂[xox]k
∂xj

(0),

by the chain rule. But by Proposition 3.1.24,

∂[xox]k
∂xj

(0) =
∂

∂xj

⎧
⎪⎪⎨
⎪⎪⎩
[xo]k + xk +

∑

α,β∈N
n
0 \{0}

[α]+[β]=υk

ck,α,βx
α
o x

β

⎫
⎪⎪⎬
⎪⎪⎭

(0)

= δj,k +
∑

β=ej , α∈N
n
0 \{0}

[α]+[β]=υk

ck,α,βx
α
o ,

where ej is the multi-index with 1 in the j-th place and zeros elsewhere, and δj,k
is the Kronecker delta. The assertion for Xj now follows immediately, and the

assertion for X̃j is proved in the same way using right translations. �

Proposition 3.1.28 gives, in particular,

for υn : Xn =
∂

∂xn
,

for υn−1 : Xn−1 =
∂

∂xn−1
+ Pn−1,n

∂

∂xn
,

for υn−2 : Xn−2 =
∂

∂xn−2
+ Pn−2,n−1

∂

∂xn−1
+ Pn−2,n

∂

∂xn
,

so that

∂

∂xn
= Xn,

∂

∂xn−1
= Xn−1 − Pn−1,nXn,

∂

∂xn−2
= Xn−2 − Pn−2,n−1 (Xn−1 − Pn−1,nXn)− Pn−2,nXn,
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and so forth, with similar formulae for the right-invariant vector fields. This shows
that there are formulas for the ∂

∂xj
’s of the same sort as for the Xj ’s and X̃j ’s,

that is,
∂

∂xj
= Xj +

∑

1≤k≤n
υj<υk

pj,kXk = X̃j +
∑

1≤k≤n
υj<υk

qj,kX̃k, (3.17)

where pj,k and qj,k are homogeneous polynomials on G of homogeneous degree
υk − υj > 0.

Remark 3.1.29. 1. Given the formulae above and the condition on the degree,
it is not difficult to see that the Pj,k and Qj,k in Proposition 3.1.28 and the
pj,k and qj,k in (3.17), with υk > υj , are polynomials in (x1, . . . , xk−1) and

commute with Xk, X̃k and ∂
∂xk

respectively.

2. The first part of Proposition 3.1.28 and its proof are valid for any nilpotent
Lie group (see Remark 1.6.7, part (1)). In our setting here, the homoge-
neous structure implies the additional property that the Pj,k and Qj,k are
homogeneous.

Corollary 3.1.30. For any α ∈ Nn
0\{0},

Xα =
∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

Pα,βX̃
β =

∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

X̃βpα,β ,

X̃α =
∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

Qα,βX
β =

∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

Xβqα,β ,

where Pα,β , pα,β , Qα,β , qα,β are homogeneous polynomials of homogeneous degree
[β]− [α].

Proof. By Proposition 3.1.28 we obtain recursively for any α ∈ Nn
0\{0} that

Xα =
∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

Pα,β

(
∂

∂x

)β

, (3.18)

with Pα,β homogeneous polynomial of degree [β]− [α]. Similar formulae yield X̃α

in terms of the
(

∂
∂x

)β
’s.

Recursively from (3.17), we also obtain similar formulae for
(

∂
∂x

)α
in terms

of the Xβ or X̃β .

The assertion comes form combining these formulae, with a similar argument
for pα,β and qα,β . �
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Corollary 3.1.31. For any M ≥ 0, the maps

(i) P �−→
{(

∂

∂x

)α

P (0)

}

α∈Nn
0 , [α]≤M

,

(ii) P �−→ {XαP (0)}α∈Nn
0 , [α]≤M ,

(iii) P �−→
{
X̃αP (0)

}
α∈Nn

0 , [α]≤M
,

are linear isomorphisms from P≤M to CdimP≤M . Also, the maps

(i) P �−→
{(

∂

∂x

)α

P (0)

}

α∈Nn
0 , [α]=M

,

(ii) P �−→ {XαP (0)}α∈Nn
0 , [α]=M ,

(iii) P �−→
{
X̃αP (0)

}
α∈Nn

0 , [α]=M
,

are linear isomorphisms from P=M to CdimP=M .

Proof. By Lemma 3.1.27, the vector subspace P≤M of P is finite dimensional, with
basis {xα : α ∈ Nn

0 , [α] ≤M}. Hence case (i) is a simple consequence of Taylor’s
Theorem on Rn.

Note that in the formula (3.18), Pα,β is a constant function when [α] = [β]
and Pα,β(0) = 0 when [α] > [β]. Hence

Xα|0 =
∑

β∈N
n
0 , |β|≤|α|
[β]=[α]

Pα,β

(
∂

∂x

)β ∣∣∣∣
0

.

We have similar result from the other formulae relating Xα, X̃α and
(

∂
∂x

)α
.

Cases (ii) and (iii) follow from these observations together with case (i). The
case of the homogeneous polynomials of order M is similar. �

We may use the following property without referring to it.

Corollary 3.1.32. Let α, β ∈ Nn
0 . The differential operator XαXβ is a linear com-

bination of Xγ with [γ] ∈ Nn
0 , [γ] = [α] + [β]:

XαXβ =
∑

γ∈N
n
0 , |γ|≤|α|+|β|
[γ]=[α]+[β]

c′α,β,γX
γ . (3.19)

The differential operator X̃αX̃β is a linear combination of X̃γ with [γ] ∈ Nn
0 ,

|γ| ≤ |α|+ |β| and [γ] = [α] + [β].
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Proof. The differential operator XαXβ is a left-invariant differential operator of
order |α|+ |β| by (3.18), and it is a linear combination of Xγ , |γ| ≤ |α|+ |β| (see
Section 1.3),

XαXβ =
∑

γ∈Nn
0 , |γ|≤|α|+|β|

c′α,β,γX
γ .

By homogeneity, for any r > 0 and any function f ∈ C∞(G), we have on one
hand,

XαXβ(f ◦Dr) = r[α]+[β](XαXβf) ◦Dr,

and on the other hand,

XαXβ(f ◦Dr) =
∑

γ∈Nn
0 , |γ|≤|α|+|β|

c′α,β,γX
γ(f ◦Dr)

=
∑

γ∈Nn
0 , |γ|≤|α|+|β|

c′α,β,γr
[γ](Xγf) ◦Dr.

Choosing f suitably (for example f being polynomials of homogeneous degree
at most [α] + [β], see Corollary 3.1.31), this implies that if [α] + [β] �= [γ] then
c′α,β,γ = 0, showing (3.19).

The property for the right-invariant vector fields is similar. �

3.1.6 Homogeneous quasi-norms

We can define an Euclidean norm |·|E on g by declaring theXj ’s to be orthonormal.
We may also regard this norm as a function on G via the exponential mapping,
that is,

|x|E = | exp−1
G x|E .

However, this norm is of limited use for our purposes, since it does not interact in
a simple fashion with dilations. We therefore define:

Definition 3.1.33. A homogeneous quasi-norm is a continuous non-negative func-
tion

G ∋ x �−→ |x| ∈ [0,∞),

satisfying

(i) (symmetric) |x−1| = |x| for all x ∈ G,

(ii) (1-homogeneous) |rx| = r|x| for all x ∈ G and r > 0,

(iii) (definite) |x| = 0 if and only if x = 0.

The | · |-ball centred at x ∈ G with radius R > 0 is defined by

B(x,R) := {y ∈ G : |x−1y| < R}.
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Remark 3.1.34. With such definition, we have for any x, xo ∈ G, R > 0,

xoB(x,R) = B(xox,R), (3.20)

since

z ∈ xoB(x,R)⇐⇒ x−1
o z ∈ B(x,R)⇐⇒ |x−1x−1

o z| < R⇐⇒ z ∈ B(xox,R).

In particular, we see that

B(x, r) = xB(0, r).

It is also easy to check that

B(0, r) = Dr(B(0, 1)).

Note that in our definition of quasi-balls, we choose to privilege the left
translations. Indeed, the set {y ∈ G : |yx−1| < R} may also be defined as
a quasi-ball but one would have to use the right translation instead of the left
xo-translation to have a similar property to (3.20).

An important example of a quasi-norm is given by Example 3.1.18 on the
Heisenberg group Hno

. More generally, on any homogeneous Lie group, the follow-
ing functions are homogeneous quasi-norms:

|(x1, . . . , xn)|p =

⎛
⎝

n∑

j=1

|xj |
p
υj

⎞
⎠

1
p

, (3.21)

for 0 < p <∞, and for p =∞:

|(x1, . . . , xn)|∞ = max
1≤j≤n

|xj |
1
υj . (3.22)

In Definition 3.1.33 we do not require a homogeneous quasi-norm to be
smooth away from the origin but some authors do. Quasi-norms with added regu-
larity always exist as well but, in fact, a distinction between different quasi-norms
is usually irrelevant for many questions of analysis because of the following prop-
erty:

Proposition 3.1.35. (i) Every homogeneous Lie group G admits a homogeneous
quasi-norm that is smooth away from the unit element.

(ii) Any two homogeneous quasi-norms | · | and | · |′ on G are mutually equivalent:

‖ · ‖ ≍ ‖ · ‖′ in the sense that ∃a, b > 0 ∀x ∈ G a|x|′ ≤ |x| ≤ b|x|′.



3.1. Graded and homogeneous Lie groups 111

Proof. Let us consider the function

Ψ(r, x) = |Drx|2E =

n∑

j=1

r2υjx2
j .

Let us fix x �= 0. The function Ψ(r, x) is continuous, strictly increasing in r
and satisfies

Ψ(r, x) −→
r→0

0 and Ψ(r, x) −→
r→+∞

+∞.

Therefore, there is a unique r > 0 such that |Drx|E = 1. We set |x|o := r−1.

Hence we have defined a map

G\{0} ∋ x �→ |x|−1
o ∈ (0,∞)

which is the implicit function for Ψ(r, x) = 1. This map is smooth since the
function Ψ(r, x) is smooth from (0,+∞)×G\{0} to (0,∞) and ∂rΨ(r, x) is always
different from zero. Setting |0G|o := 0, the map | · |o clearly satisfies the properties
of Definition 3.1.33. This shows part (i).

For Part (ii), it is sufficient to prove that any homogeneous quasi-norm is
equivalent to | · |o constructed above. Before doing so, we observe that the unit
spheres in the Euclidean norm and the homogeneous quasi-norm | · |o coincide,
that is,

S := {x ∈ G : |x|E = 1} = {x ∈ G : |x|o = 1}.

Let | · | be any other homogeneous norm. Since it is a definite function (see
(iii) of Definition 3.1.33) its restriction to S is never zero. By compactness of S
and continuity of | · |, there are constants a, b > 0 such that

∀x ∈ S a ≤ |x| ≤ b.

For any x ∈ G\{0}, let t > 0 be given by t−1 = |x|o. We have Dtx ∈ S, and thus

a ≤ |Dtx| ≤ b and a|x|o = t−1a ≤ |x| ≤ t−1b = b|x|o.

The conclusion of Part (ii) follows. �

Remark 3.1.36. If G is graded, the formula (3.21) for p = 2υ1 . . . υn gives another
concrete example of a homogeneous quasi-norm smooth away from the origin since
x �→ |x|pp is then a polynomial in the coordinate functions {xj}.

Proposition 3.1.35 and our examples of homogeneous quasi-norms show that
the usual Euclidean topology coincides with the topology associated with any
homogeneous quasi-norm:
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Proposition 3.1.37. If | · | is a homogeneous quasi-norm on G ∼ Rn, the topology
induced by the | · |-balls

B(x,R) := {y ∈ G : |x−1y| < R},

x ∈ G and R > 0, coincides with the Euclidean topology of Rn.
Any closed ball or sphere for any homogeneous quasi-norm is compact. It

is also bounded with respect to any norm of the vector space Rn or any other
homogeneous quasi-norm on G.

Proof of Proposition 3.1.37. It is a routine exercise of topology to check that the
equivalence of norm given in Proposition 3.1.35 implies that the topology induced
by the balls of two different homogeneous quasi-norms coincide. Hence we can
choose the norm | · |∞ given by (3.22) and the corresponding balls

B∞(x,R) := {y ∈ G : |x−1y|∞ < R}.

We also consider the supremum Euclidean norm given by

|(x1, . . . , xn)|E,∞ = max
1≤j≤n

|xj |,

and its corresponding balls

BE,∞(x,R) := {y ∈ G : | − x+ y|E,∞ < R}.

That the topologies induced by the two families of balls

{B∞(x,R)}x∈G,R>0 and {BE,∞(x,R)}x∈G,R>0

must coincide follows from the following two observations. Firstly it is easy to
check for any R ∈ (0, 1)

B∞(0, R
1
υ1 ) ⊂ BE,∞(0, R) ⊂ B∞(0, R

1
υn ).

Secondly for each x ∈ G, the mappings Ψx : y �→ x−1y and ΨE,x : y �→ −x+ y are
two smooth diffeomorphisms of Rn. Hence these mappings are continuous with
continuous inverses (with respect to the Euclidean topology). Furthermore, by
Remark 3.1.34, we have

Ψx(B∞(x,R)) = B∞(0, R) and ΨE,x(BE,∞(x,R)) = BE,∞(0, R).

The second part of the statement follows from the first and from the conti-
nuity of homogeneous quasi-norms. �

The next proposition justifies the terminology of ‘quasi-norm’ by stating that
every homogeneous quasi-norm satisfies the triangle inequality up to a constant,
the other properties of a norm being already satisfied.
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Proposition 3.1.38. If | · | is a homogeneous quasi-norm on G, there is a constant
C > 0 such that

|xy| ≤ C (|x|+ |y|) ∀x, y ∈ G.

Proof. Let |·| be a quasi-norm onG. Let B̄ := {x : |x| ≤ 1} be its associated closed
unit ball. By Proposition 3.1.37, B̄ is compact. As the product law is continuous
(even polynomial), the set {xy : x, y ∈ B̄} is also compact. Therefore, there is a
constant C > 0 such that

∀x, y ∈ B̄ |xy| ≤ C.

Let x, y ∈ G. If both of them are 0, there is nothing to prove. If not, let t > 0 be
given by t−1 = |x|+ |y| > 0. Then Dt(x) and Dt(y) are in B̄, so that

t|xy| = |Dt(xy)| = |Dt(x)Dt(y)| ≤ C,

and this concludes the proof. �

Note that the constant C in Proposition 3.1.38 satisfies necessarily C ≥ 1
since |0| = 0 implies |x| ≤ C|x| for all x ∈ G. It is natural to ask whether
a homogeneous Lie group G may admit a homogeneous quasi-norm | · | which
is actually a norm or, equivalently, which satisfies the triangle inequality with
constant C = 1. For instance, on the Heisenberg group Hno , the homogeneous
quasi-norm given in Example 3.1.18 turns out to be a norm (cf. [Cyg81]). In the
stratified case, the norm built from the control distance of the sub-Laplacian, often
called the Carnot-Caratheodory distance, is also 1-homogeneous (see, e.g., [Pan89]
or [BLU07, Section 5.2]). This can be generalised to all homogeneous Lie groups.

Theorem 3.1.39. Let G be a homogeneous Lie group. Then there exist a homoge-
neous quasi-norm on G which is a norm, that is, a homogeneous quasi-norm | · |
which satisfies the triangle inequality

|xy| ≤ |x|+ |y| ∀x, y ∈ G.

A proof of Theorem 3.1.39 by Hebisch and Sikora uses the correspondence
between homogeneous norms and convex sets, see [HS90]. Here we sketch a differ-
ent proof. Its idea may be viewed as an adaptation of a part of the proof that the
control distance in the stratified case is a distance. Our proof may be simpler than
the stratified case though, since we define a distance without using ‘horizontal’
curves.

Sketch of the proof of Theorem 3.1.39. If γ : [0, T ] → G is a smooth curve, its
tangent vector γ′(to) at γ(to) is usually defined as the element of the tangent
space Tγ(to)G at γ(to) such that

γ′(to)(f) =
d

dt
f(γ(t))

∣∣∣∣
t=to

, f ∈ C∞(G).
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It is more convenient for us to identify the tangent vector of γ at γ(to) with an
element of the Lie algebra g = T0G. We therefore define γ̃′(to) ∈ g via

γ̃′(to)(f) :=
d

dt
f(γ(to)

−1γ(t))

∣∣∣∣
t=to

, f ∈ C∞(G).

We now fix a basis {Xj}nj=1 of g such that DrXj = rυjXj . We also define
the map | · |∞ : g→ [0,∞) by

|X|∞ := max
j=1,...,n

|xj |
1
υj , X =

n∑

j=1

xjXj ∈ g.

Given a piecewise smooth curve γ : [0, T ]→ G, we define its length adapted
to the group structure by

ℓ̃(γ) :=

∫ T

0

|γ̃′(t)|∞dt.

If x and y are in G, we denote by d(x, y) the infimum of the lengths ℓ̃(γ)
of the piecewise smooth curves γ joining x and y. Since two points x and y can
always be joined by a smooth compact curve, e.g. γ(t) = ((1−t)x) ty, the quantity
d(x, y) is always finite. Hence we have obtained a map d : G×G→ [0,∞). It is a
routine exercise to check that d is symmetric and satisfies the triangle inequality
in the sense that we have for all x, y, z ∈ G, that

d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y).

Moreover, one can check easily that ℓ̃(Dr(γ)) = rℓ̃(γ) and ℓ̃(zγ) = ℓ̃(γ), thus we
also have for all x, y, z ∈ G and r > 0, that

d(zx, zy) = d(x, y) and d(rx, ry) = rd(x, y). (3.23)

Let us show that d is non-degenerate, that is, d(x, y) = 0⇒ x = y. First let
|·|E be the Euclidean norm on g ∼ Rn such that the basis {Xj}nj=1 is orthonormal.
We endow each tangent space TxG with the Euclidean norm obtained by left
translation of the Euclidean norm | · |E . Hence we have for any smooth curve γ at
any point to

|γ′(to)|Tγ(to)G = |γ̃′(to)|E .
Now we see that if X =

∑n
j=1 xjXj ∈ g is such that

|X|E,∞ := max
j=1,...,n

|xj | ≤ 1,

then
|X|E ≍ |X|E,∞ ≤ |X|∞.
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This implies that if γ : [0, T ]→ G is a smooth curve satisfying

∀t ∈ [0, T ] |γ′(t)|Tγ(t)G < 1, (3.24)

then
ℓ(γ) ≤ Cℓ̃(γ), (3.25)

where ℓ is the usual length

ℓ(γ) :=

∫ T

0

|γ′(t)|Tγ(t)Gdt,

and C > 0 a positive constant independent of γ.
Let dG be the Riemaniann distance induced by our choice of metric on the

manifold G, that is, the infimum of the lengths ℓ(γ) of the piecewise smooth curves
γ joining x and y. Very well known results in Riemaniann geometry imply that
dG induces the same topology as the Euclidean topology. Moreover, there exists
a small open set Ω containing 0 such that any point in Ω may be joined to 0 by
a smooth curve satisfying (3.24) at any point. Then (3.25) yields that we have
dG(0, x) ≤ Cd(0, x) for any x ∈ Ω. This implies that d is non-degenerate since d
is invariant under left-translation and is 1-homogeneous in the sense of (3.23),

Checking that the associated map x �→ |x| = d(0, x) is a quasi-norm concludes
the sketch of the proof of Theorem 3.1.39. �

Even if homogeneous norms do exist, it is often preferable to use homogeneous
quasi-norms. Because the triangle inequality is up to a constant in this case, we
do not necessarily have the inequality ||xy| − |x|| ≤ C|y|. However, the following
lemma may help:

Proposition 3.1.40. We fix a homogeneous quasi-norm | · | on G. For any f ∈
C1(G\{0}) homogeneous of degree ν ∈ C, for any b ∈ (0, 1) there is a constant
C = Cb > 0 such that

|f(xy)− f(x)| ≤ C|y| |x|Re ν−1 whenever |y| ≤ b|x|.

Indeed, applying it to a C1(G\{0}) homogeneous quasi-norm, we obtain

∀b ∈ (0, 1) ∃C = Cb > 0 ∀x, y ∈ G |y| ≤ b|x| =⇒
∣∣|xy| − |x|

∣∣ ≤ C|y|. (3.26)

Proof of Proposition 3.1.40. Let f ∈ C1(G\{0}). Both sides of the desired in-
equality are homogeneous of degree Re ν so it suffices to assume that |x| = 1
and |y| ≤ b. By Proposition 3.1.37 and the continuity of multiplication, the set
{xy : |x| = 1and |y| ≤ b} is a compact which does not contain 0. So by the
(Euclidean) mean value theorem on Rn, we get

|f(xy)− f(x)| ≤ C|y|E .

We conclude using the next lemma. �
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The next lemma shows that locally a homogeneous quasi-norm and the Eu-
clidean norm are comparable:

Lemma 3.1.41. We fix a homogeneous quasi-norm | · | on G. Then there exist
C1, C2 > 0 such that

C1|x|E ≤ |x| ≤ C2|x|
1

υn

E whenever |x| ≤ 1.

Proof of Lemma 3.1.41. By Proposition 3.1.37, the unit sphere {y : |y| = 1} is
compact and does not contain 0. Hence the Euclidean norm assumes a positive
maximum C−1

1 and a positive minimum C−υn
2 on it, for some C1, C2 > 0.

Let x ∈ G. We may assume x �= 0. Then we can write it as x = ry with
|y| = 1 and r = |x|. We observe that since

|ry|2E =

n∑

j=1

y2j r
2υj ,

we have if r ≤ 1
rυn |y|E ≤ |ry|E ≤ r|y|E .

Hence for r = |x| ≤ 1, we get

|x|E = |ry|E ≤ r|y|E ≤ |x|C−1
1 and |x|E = |ry|E ≥ rυn |y|E ≥ |x|υnC−υn

2 ,

implying the statement. �

3.1.7 Polar coordinates

There is an analogue of polar coordinates on homogeneous Lie groups.

Proposition 3.1.42. Let G be a homogeneous Lie group equipped with a homoge-
neous quasi-norm | · |. Then there is a (unique) positive Borel measure σ on the
unit sphere

S := {x ∈ G : |x| = 1},
such that for all f ∈ L1(G), we have

∫

G

f(x)dx =

∫ ∞

0

∫

S

f(ry)rQ−1dσ(y)dr. (3.27)

In order to prove this claim, we start with the following averaging property:

Lemma 3.1.43. Let G be a homogeneous Lie group equipped with a homogeneous
quasi-norm | · |. If f is a locally integrable function on G\{0}, homogeneous of
degree −Q, then there exists a constant mf ∈ C (the average value of f) such that
for all u ∈ L1((0,∞), r−1dr), we have

∫

G

f(x)u(|x|)dx = mf

∫ ∞

0

u(r)r−1dr. (3.28)
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The proof of Lemma 3.1.43 yields the formula for mf in terms of the homo-
geneous quasi-norm | · |,

mf =

∫

1≤|x|≤e

f(x)dx. (3.29)

However, in Lemma 3.1.45 we will give an invariant meaning to this value.

Proof of Lemma 3.1.43. Let f be locally integrable function on G\{0}, homoge-
neous of degree −Q. We set for any r > 0,

ϕ(r) :=

{ ∫
1≤|x|≤r

f(x)dx if r ≥ 1,

−
∫
r≤|x|≤1

f(x)dx if r < 1.

The mapping ϕ : (0,∞)→ C is continuous and one easily checks that

ϕ(rs) = ϕ(r) + ϕ(s) for all r, s > 0,

by making the change of variable x �→ sx and using the homogeneity of f . It
follows that ϕ(r) = ϕ(e) ln r and we set

mf := ϕ(e).

Then the equation (3.28) is easily satisfied when u is the characteristic function
of an interval. By taking the linear combinations and limits of such functions, the
equation (3.28) is also satisfied when u ∈ L1((0,∞), r−1dr). �

Proof of Proposition 3.1.42. For any continuous function f on the unit sphere S,
we define the homogeneous function f̃ on G\{0} by

f̃(x) := |x|−Qf(|x|−1x).

Then f̃ satisfies the hypotheses of Lemma 3.1.43. The map f �→ mf̃ is clearly a
positive functional on the space of continuous functions on S. Hence it is given
by integration against a regular positive measure σ (see, e.g. [Rud87, ch.VI]).

For u ∈ L1((0,∞), r−1dr), we have

∫
f(|x|−1x)u(|x|)dx =

∫
f̃(x)|x|Qu(|x|)dx = mf̃

∫ ∞

r=0

rQ−1u(r)dr

=

∫ ∞

0

∫

S

f(y)u(r)rQ−1dσ(y)dr.

Since linear combinations of functions of the form f(|x|−1x)u(|x|) are dense in
L1(G), the proposition follows. �

We view the formula (3.27) as a change in polar coordinates.
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Example 3.1.44. For 0 < a < b <∞ and α ∈ C, we have
∫

a<|x|<b

|x|α−Qdx = C

{
α−1(bα − aα) if α �= 0
ln

(
b
a

)
if α = 0

with C = σ(S).

And if α ∈ R and f is a measurable function on G such that f(x) = O(|x|α−Q)
then f is integrable either near ∞ if α < 0, or near 0 if α > 0.

The measure σ in the polar coordinates decomposition actually has a smooth
density. We will not need this fact and will not prove it here, but refer to [FR66]
and [Goo80].

Now, the polar change of coordinates depends on the choice of a homogeneous
quasi-norm to fix the unit sphere. But it turns out that the average value of the
(−Q)-homogeneous function considered in Lemma 3.1.43 does not. Let us prove
this fact for the sake of completeness.

Lemma 3.1.45. Let G be a homogeneous Lie group and let f be a locally integrable
function on G\{0}, homogeneous of degree −Q.

Given a homogeneous quasi-norm, let σ be the Radon measure on the unit
sphere S giving the polar change of coordinate (3.27). Then the average value of
f defined in (3.28) is given by

mf =

∫

S

fdσ. (3.30)

This average value mf is independent of the choice of the homogeneous quasi-
norm.

Proof of Lemma 3.1.45. For any homogeneous quasi-norm, using the polar change
of coordinates (3.27), we obtain

∫

a<|x|<b

f(x)dx =

∫ b

a

∫

S

f(rx)dσ(x)rQ−1dr

=

∫ b

a

∫

S

f(x)dσ(x)r−1dr =

∫ b

a

r−1dr

∫

S

f(x)dσ(x) =

(
ln

b

a

)
mf .

This shows (3.30), taking a = 1 and b = e, see (3.29) and the proof of Lemma
3.1.43.

Let | · | and | · |′ be two homogeneous quasi-norms on G. We denote by

B̄r := {x ∈ G : |x| ≤ r} and B̄′
r := {x ∈ G : |x|′ ≤ r},

the closed balls around 0 of radius r for | · | and | · |′, respectively. By Proposi-
tion 3.1.35, Part (ii), there exists a constant a > 0 such that B̄′

a ⊂ B̄1. We also
have B̄′

a ⊂ B̄′
2a ⊂ B̄2 and, with the usual sign convention for integration, we have

∫

B̄2\B̄1

=

∫

B̄2\B̄′
a

−
∫

B̄1\B̄′
a

=

∫

B̄2\B̄′
2a

+

∫

B̄′
2a\B̄′

a

−
∫

B̄1\B̄′
a

.
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Using the homogeneities of f and of the Haar measure, we see, after the changes
of variables x = 2y and x = az, that

∫

B̄2\B̄′
2a

f(x)dx =

∫

B̄1\B̄′
a

f(y)dy and

∫

B̄′
2a\B̄′

a

f(x)dx =

∫

B̄′
2\B̄′

1

f(z)dz.

Hence ∫

B̄2\B̄1

f =

∫

B̄′
2\B̄′

1

f.

Using the first computations of this proof, the left and right hand sides are equal to
(ln b/a)mf and (ln b/a)m′

f , respectively, where mf and m′
f are the average values

for | · | and | · |′. Thus mf = m′
f . �

3.1.8 Mean value theorem and Taylor expansion

Here we prove the mean value theorem and describe the Taylor series on homoge-
neous Lie groups. Naturally, the space C1(G) here is the space of functions f such
that Xjf are continuous on G for all j, etc. The following mean value theorem
can be partly viewed as a refinement of Proposition 3.1.40.

Proposition 3.1.46. We fix a homogeneous quasi-norm | · | on G. There exist group
constants C0 > 0 and η > 1 such that for all f ∈ C1(G) and all x, y ∈ G, we have

|f(xy)− f(x)| ≤ C0

n∑

j=1

|y|υj sup
|z|≤η|y|

|(Xjf)(xz)|.

In order to prove this proposition, we first prove the following property.

Lemma 3.1.47. The map φ : Rn → G defined by

φ(t1, . . . , tn) = expG(t1X1) expG(t2X2) . . . expG(tnXn),

is a global diffeomorphism.

Moreover, fixing a homogeneous quasi-norm | · | on G, there is a constant
C1 > 0 such that

∀(t1, . . . , tn) ∈ Rn, j = 1, . . . , n, |tj |
1
υj ≤ C1|φ(t1, . . . , tn)|.

The first part of the lemma is true for any nilpotent Lie group (see Remark
1.6.7 Part (ii)). But we will not use this fact here.

Proof. Clearly the map φ is smooth. By the Baker-Campbell-Hausdorff formula
(see Theorem 1.3.2), the differential dφ(0) : Rn → T0G is the isomorphism

dφ(0)(t1, . . . , tn) =

n∑

j=1

tjXj |0,
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so that φ is a local diffeomorphism near 0 (this is true for any Lie group). More
precisely, there exist δ, C ′ > 0 such that φ is a diffeomorphism from U to the ball
Bδ := {x ∈ G : |x| < δ} with

φ−1(Bδ) = U ⊂ {(t1, . . . , tn) : max
j=1,...,n

|tj |
1
υj < C ′}.

We now use the dilations and for any r > 0, we see that

φ(rυ1t1, . . . , r
υntn) = expG(r

υ1t1X1) . . . expG(r
υntnXn)

= (r expG(t1X1)) . . . (r expG(tnXn))

= r (expG(t1X1) . . . expG(tnXn)) ,

hence
φ(rυ1t1, . . . , r

υntn) = rφ(t1, . . . , tn). (3.31)

If φ(t1, . . . , tn) = φ(s1, . . . , sn), formula (3.31) implies that for all r > 0, we
have

φ(rυ1t1, . . . , r
υntn) = φ(rυ1s1, . . . , r

υnsn).

For r sufficiently small, this forces tj = sj for all j since φ is a diffeomorphism on
U . So the map φ : Rn → G is injective.

Moreover, any x ∈ G\{0} can be written as

x = ry with r :=
2

δ
|x| and y := r−1x ∈ B δ

2
⊂ φ(U).

We may write y = φ(s1, . . . sn) with |sj |
1
υj ≤ C ′ and formula (3.31) then implies

that x = φ(t1, . . . , tn) is in φ(Rn) with tj := rυjsj satisfying |tj |
1
υj ≤ C ′r. Setting

C1 = 2C ′/δ, the assertion follows. �

Proof of Proposition 3.1.46. First let us assume that y = expG(tXj). Then

f(xy)− f(x) =

∫ t

0

∂s′=s {f(x expG(s′Xj))} ds

=

∫ t

0

∂s′=0 {f(x expG(sXj) expG(s
′Xj))} ds

=

∫ t

0

Xjf(x expG(sXj))ds,

and hence

|f(xy)− f(x)| ≤ |t| sup
0≤s≤t

|Xjf(x expG(sXj))|

≤ |t| sup
|z|≤|y|

|Xjf(xz)|.
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Since | expG(sXj)| = |s|
1
υj | expG Xj | and hence |y| = |t|

1
υj | expG Xj |, setting

C2 := max
k=1,...,n

| expG Xk|−υk ,

we obtain
|f(xy)− f(x)| ≤ C2|y|υj sup

|z|≤|y|
|Xjf(xz)|. (3.32)

We now prove the general case, so let y be any point of G. By Lemma 3.1.47,
it can be written uniquely as y = y1y2 . . . yn with yj = expG(tjXj), and hence

|yj | = |t|
1
υj | expG Xj | ≤ C1C3|y| where C3 := max

k=1,...,n
| expG Xk|, (3.33)

and C1 is as in Lemma 3.1.47. We write

|f(xy)− f(x)| ≤ |f(xy1 . . . yn)− f(xy1 . . . yn−1)|
+|f(xy1 . . . yn−1)− f(xy1 . . . yn−2)|+ . . .+ |f(xy1)− f(x)|,

and applying (3.32) to each term, we obtain

|f(xy)− f(x)| ≤
n∑

j=1

C2|yj |υj sup
|z|≤|yj |

|Xjf(xy1 . . . yj−1z)|.

Let C4 ≥ 1 be the constant of the triangle inequality for |·| (see Proposition 3.1.38).
If |z| ≤ |yj |, then z′ = y1 . . . yj−1z satisfies

|z′| ≤ C4(|y1 . . . yj−1|+ |yj |) ≤ C4

(
C4(|y1 . . . yj−2|+ |yj−1|) + |yj |

)

≤ C2
4 (|y1 . . . yj−2|+ |yj−1|+ |yj |) ≤ . . . ≤ Cj−1

4 (|y1|+ |y2|+ . . . |yj |)
≤ Cj−1

4 jC1C3|y|,

using (3.33). Therefore, setting η := Cn
4 nC1C3, using again (3.33), we have ob-

tained

|f(xy)− f(x)| ≤ C2

n∑

j=1

(C1C3|y|)υj sup
|z′|≤η|y|

|Xjf(xz
′)|,

completing the proof. �

Remark 3.1.48. Let us make the following remarks.

1. In the same way, we can prove the following version of Proposition 3.1.46 for
right-invariant vector fields: a homogeneous quasi-norm | · | being fixed on G,
there exists group constants C > 0 and b > 0 such that for all f ∈ C1(G)
and all x, y ∈ G, we have

|f(yx)− f(x)| ≤ C

n∑

j=1

|y|υj sup
|z|≤b|y|

|(X̃jf)(zx)|.
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2. If the homogeneous Lie group G is stratified, a more precise version of the
mean value theorem exists involving only the vector fields of the first stratum,
see Folland and Stein [FS82, (1.41)], but we will not use this fact here.

3. The statement and the proof of the mean value theorem can easily be adapted
to hold for functions which are valued in a Banach space, the modulus being
replaced by the Banach norm.

Taylor expansion

In view of Corollary 3.1.31, we can define Taylor polynomials:

Definition 3.1.49. The Taylor polynomial of a suitable function f at a point x ∈ G
of homogeneous degree ≤M ∈ N0 is the unique P ∈ P≤M such that

∀α ∈ Nn
0 , [α] ≤M XαP (0) = Xαf(x).

More precisely, we have defined the left Taylor polynomial, and a similar
definition using the right-invariant differential operators X̃α yields the right Taylor
polynomial. However, in this monograph we will use only left Taylor polynomials.

We may use the following notation for the Taylor polynomial P of a function
f at x and for its remainder of order M :

P
(f)
x,M := P and R

(f)
x,M (y) := f(xy)− P (y). (3.34)

For instance, P
(f)
x,M (0) = f(x). We will also extend the notation for negative M

with
P

(f)
x,M := 0 and R

(f)
x,M (y) := f(xy) when M < 0.

With this notation, we easily see (whenever it makes sense), the following
properties.

Lemma 3.1.50. For any M ∈ N0, α ∈ Nn
0 and suitable function f , we have

XαP
(f)
x,M = P

(Xαf)
x,M−[α] and XαR

(f)
x,M = R

(Xαf)
x,M−[α].

Proof. It is easy to check that the polynomial Po := XαP
(f)
x,M is homogeneous of

degree M − [α]. Furthermore, using (3.19), it satisfies for every β ∈ Nn
0 , such that

[α] + [β] ≤M , the equality

XβPo(0) = XβXαP
(f)
x,M (0)

=
∑

|γ|≤|α|+|β|
[γ]=[α]+[β]

c′α,β,γX
γP

(f)
x,M (0) =

∑

|γ|≤|α|+|β|
[γ]=[α]+[β]

c′α,β,γX
γf(x)

= XβXαf(x).

This shows the claim. �
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In Definition 3.1.49 the suitable functions f are distributions on a neigh-
bourhood of x in G whose (distributional) derivatives Xαf are continuous in a
neighbourhood of x for [α] ≤M . We will see in the sequel that in order to control
(uniformly) a remainder of a function f of order M we would like f to be at least
(k + 1) times continuously differentiable, i.e. f ∈ Ck+1(G), where k ∈ N0 is equal
to

⌈M⌋ := max{|α| : α ∈ Nn
0 with [α] ≤M}; (3.35)

this is indeed a maximum over a finite set because of (3.16).

We can now state and prove Taylor’s inequality.

Theorem 3.1.51. We fix a homogeneous quasi-norm | · | on G and obtain a corre-
sponding constant η from the mean value theorem (see Proposition 3.1.46). For any
M ∈ N0, there is a constant CM > 0 such that for all functions f ∈ C⌈M⌋+1(G)
and all x, y ∈ G, we have

|R(f)
x,M (y)| ≤ CM

∑

|α|≤⌈M⌋+1
[α]>M

|y|[α] sup
|z|≤η⌈M⌋+1|y|

|(Xαf) (xz)| ,

where R
(f)
x,M and ⌈M⌋ are defined by (3.34) and (3.35).

Theorem 3.1.51 for M = 0 boils down exactly to the mean value theorem as
stated in Proposition 3.1.46. Similar comments as in Remark 3.1.48 for the mean
value theorem are also valid for Taylor’s inequality.

Proof. Under the hypothesis of the theorem, a remainder R
(f)
x,M is always C1 and

vanishes at 0. Let us apply the mean value theorem (see Proposition 3.1.46) at the

point 0 to the remainders R
(f)
x,M , R

(Xj0f)

x,M−υj0
, R

(Xυj1
Xυj0

f)

x,M−(υj0+υj1 )
, and so on as long as

M − (υj0 + . . .+ υjk) ≥ 0; using this together with Lemma 3.1.50, we obtain

∣∣∣R(f)
x,M (y0)

∣∣∣ ≤ C0

n∑

j0=1

|y0|υj0 sup
|y1|≤η|y0|

∣∣∣∣R
(Xυj0

f)

x,M−υj0
(y1)

∣∣∣∣ ,

∣∣∣∣R
(Xυj0

f)

x,M−υj0
(y1)

∣∣∣∣ ≤ C0

n∑

j1=1

|y1|υj1 sup
|y2|≤η|y1|

∣∣∣∣R
(Xυj1

Xυj0
f)

x,M−(υj0
+υj1

)(y2)

∣∣∣∣ ,

...∣∣∣∣R
(Xυjk

...Xυj0
f)

x,M−(υj0
+...+υjk

)(yk)

∣∣∣∣ ≤ C0

n∑

jk=1

|yk|υjk sup
|yk+1|≤η|yk|

∣∣∣∣R
(Xυjk+1

...Xυj0
f)

x,M−(υj0
+...+υjk+1

)(yk)

∣∣∣∣ .

We combine these inequalities together, to obtain
∣∣∣R(f)

x,M (y0)
∣∣∣ ≤ Ck+1

0 ηk
∑

ji=1,...,n
i=0,...,k+1

|y0|υj0
+...+υjk sup

|yk+1|≤ηk+1|y0|

∣∣∣R(X
υjk+1 ...X

υj0 f)
x,M−(υj0+...+υjk+1

)(yk)
∣∣∣ .
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The process stops exactly for k = ⌈M⌋ by the very definition of ⌈M⌋. For this value
of k, Corollary 3.1.32 and the change of discrete variable α := υj0ej0+. . . υjk+1

ejk+1

(where ej denotes the multi-index with 1 in the j-th place and zeros elsewhere)
yield the result. �

Remark 3.1.52. 1. We can consider Taylor polynomials for right-invariant vec-
tor fields. The corresponding Taylor estimates would then approximate f(yx)
with a polynomial in y. See Part 1 of Remark 3.1.48, about the mean value
theorem for the case of order 0. Note that in Theorem 3.1.51 we consider
f(xy) and its approximation by a polynomial in y.

2. If the homogeneous Lie group G is stratified, a more precise versions of Tay-
lor’s inequality exists involving only the vector fields of the first stratum, see
Folland and Stein [FS82, (1.41)], but we will not use this fact here.

3. The statement and the proof of Theorem 3.1.51 can easily be adapted to
hold for functions which are valued in a Banach space, the modulus being
replaced by the Banach norm.

4. One can derive explicit formulae for Taylor’s polynomials and the remainders
on homogeneous Lie groups, see [Bon09] (see also [ACC05] for the case of
Carnot groups), but we do not require these here.

As a corollary of Theorem 3.1.51 that will be useful to us later, the right-
derivatives of Taylor polynomials and of the remainder will have the following
properties, slightly different from those for the left derivatives in Lemma 3.1.50.

Corollary 3.1.53. Let f ∈ C∞(G). For any M ∈ N0 and α ∈ Nn
0 , we have

X̃αP
(f)
x,M = P

(Xα
x f(x ·))

0,M−[α] and X̃αR
(f)
x,M = R

(Xα
x f(x ·))

0,M−[α] .

Proof. Recall from (1.12) that for any X ∈ g identified with a left-invariant vector
field, we have

X̃y{f(xy)} =
d

dt
f(xetXy)t=0 = Xx{f(xy)},

and recursively, we obtain

X̃α
y {f(xy)} = Xα

x {f(xy)}. (3.36)

Therefore, we have

X̃αP
(f)
x,M (y)− P

(Xα
x f(x ·))

0,M−[α] (y)

= X̃α
y

{
f(xy)−R

(f)
x,M (y)

}
−

{
Xα

x f(xy)−R
(Xα

x f(x ·))
0,M−[α] (y)

}

= −X̃αR
(f)
x,M (y) +R

(Xα
x f(x ·))

0,M−[α] (y). (3.37)
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By Corollary 3.1.30, we can write

X̃αR
(f)
x,M (y) =

∑

|β|≤|α|, [β]≥[α]

Qα,β(y)X
βR

(f)
x,M (y)

=
∑

|β|≤|α|, [β]≥[α]

Qα,β(y)R
(Xβf)
x,M−[β](y),

where each Qα,β is a homogeneous polynomial of degree [β]− [α].
Fixing a homogeneous quasi-norm | · | on G, the Taylor inequality (Theorem

3.1.51) applied to R
(Xα

x f(x ·))
0,M−[α] and R

(Xβf)
x,M−[β] implies that, for |y| ≤ 1,

|R(Xα
x f(x ·))

0,M−[α] (y)| ≤ C|y|M−[α]+1 and |R(Xβf)
x,M−[β](y)| ≤ C|y|M−[β]+1.

Hence
|X̃αR

(f)
x,M (y)| ≤ C|y|M−[α]+1.

Going back to (3.37), we have obtained that its left hand side can be estimated as

|X̃αP
(f)
x,M (y)− P

(Xα
x f(x ·))

0,M−[α] (y)| ≤ C|y|M−[α]+1.

But X̃αP
(f)
x,M (y) − P

(Xα
x f(x ·))

0,M−[α] (y) is a polynomial of homogeneous degree at most

M − [α]. Therefore, this polynomial is identically 0. This concludes the proof of
Corollary 3.1.53. �

3.1.9 Schwartz space and tempered distributions

The Schwartz space on a homogeneous Lie groupG is defined as the Schwartz space
on any connected simply connected nilpotent Lie group, namely, by identifying G
with the underlying vector space of its Lie algebra (see Definition 1.6.8). The
vector space S(G) is naturally endowed with a Fréchet topology defined by any of
a number of families of seminorms.

In the ‘traditional’ Schwartz seminorm on Rn (see (1.13)) we can replace
(without changing anything for the Fréchet topology):

•
(

∂
∂x

)α
and the isotropic degree |α| by Xα and the homogeneous degree [α],

respectively, in view of Section 3.1.5,

• the Euclidean norm by the norm | · |p given in (3.21), and then by any ho-
mogeneous norm since homogeneous quasi-norms are equivalent (cf. Propo-
sition 3.1.35).

Hence we choose the following family of seminorms for S(G), where G is a
homogeneous Lie group:

‖f‖S(G),N := sup
[α]≤N, x∈G

(1 + |x|)N |Xαf(x)| (N ∈ N0),
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after having fixed a homogeneous quasi-norm | · | on G.
Another equivalent family is given by a similar definition with the right-

invariant vector fields X̃α replacing Xα.

The following lemma proves, in particular, that translations, taking the in-
verse, and convolutions, are continuous operations on Schwartz functions.

Lemma 3.1.54. Let f ∈ S(G) and N ∈ N. Then we have

∥∥f
(
y ·

)∥∥
S(G),N

≤ CN (1 + |y|)N‖f‖S(G),N (y ∈ G), (3.38)
∥∥∥f̃

∥∥∥
S(G),N

≤ CN‖f‖S(G),(υn+1)N where f̃(x) = f(x−1), (3.39)

∥∥f
(
· y

)∥∥
S(G),N

≤ CN (1 + |y|)(υn+1)N‖f‖S(G),(υn+1)2N (y ∈ G). (3.40)

Moreover,

∥∥f
(
y ·

)
− f

∥∥
S(G),N

−→y→0 0 and
∥∥f

(
· y

)
− f

∥∥
S(G),N

−→y→0 0. (3.41)

The group convolution of two Schwartz functions f1, f2 ∈ S(G) satisfies

‖f1 ∗ f2‖S(G),N ≤ CN‖f1‖S(G),N+Q+1‖f2‖S(G),N . (3.42)

Proof. Let Co ≥ 1 be the constant of the triangle inequality, cf. Proposition 3.1.38.
We have easily that

∀x, y ∈ G (1 + |x|) ≤ Co(1 + |y|)(1 + |yx|). (3.43)

Thus,

∥∥f
(
y ·

)∥∥
S(G),N

≤ sup
[α]≤N, x∈G

(Co(1 + |y|)(1 + |yx|))N |Xαf(yx)|

≤ CN
o (1 + |y|)N‖f‖S(G),N .

This shows (3.38).

For (3.39), using (1.11) and Corollary 3.1.30, we have

∥∥∥f̃
∥∥∥
S(G),N

≤ sup
[α]≤N, x∈G

(1 + |x|)N |(X̃αf)(x−1)|

≤ sup
[α]≤N, x∈G

∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

(1 + |x|)N |
(
Qα,βX

βf
)
(x−1)|

≤ CN sup
[β]≤υnN, x∈G

(1 + |x′|)N+[β]|Xβf(x′)|

by homogeneity of the polynomials Qα,β and (3.16).

Since f
(
· y

)
= (f̃

(
y−1 ·

)
)̃, we deduce (3.40) from (3.38) and (3.39).
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By the mean value theorem (cf. Proposition 3.1.46),

∥∥f
(
y ·

)
− f

∥∥
S(G),N

= sup
[α]≤N, x∈G

(1 + |x|)N |Xαf(yx)−Xαf(x)|

≤ C
n∑

j=1

|y|υj sup
[α]≤N

x∈G, |z|≤η|y|

(1 + |x|)N |(XjX
αf)(xz)|

≤ C
n∑

j=1

|y|υj ‖f‖S(G),N+υn
, (3.44)

and this proves (3.41) for the left invariance. The proof is similar for the right
invariance and is left to the reader.

Since using (3.43) we have

(1 + |x|)N |Xα(f1 ∗ f2)(x)| ≤
∫

G

(1 + |x|)N |f1(y)| |Xαf2(y
−1x)|dy

≤ CN
o

∫

G

(1 + |y|)N |f1(y)|(1 + |y−1x|)N |Xαf2(y
−1x)|dy

≤ CN
o sup

z∈G
(1 + |z|)N |Xαf2(z)|

∫

G

(1 + |y|)N |f1(y)|dy,

we obtain (3.42) by the convergence in Example 3.1.44. �

The space of tempered distributions S ′(G) is the (continuous) dual of S(G).
Hence a linear form f on S(G) is in S ′(G) if and only if

∃N ∈ N0, C > 0 ∀φ ∈ S(G) |〈f, φ〉| ≤ C‖φ‖S(G),N . (3.45)

The topology of S ′(G) is given by the family of seminorms given by

‖f‖S′(G),N := sup{|〈f, φ〉|, ‖φ‖S(G),N ≤ 1}, f ∈ S ′(G), N ∈ N0.

Now, with these definitions, we can repeat the construction in Section 1.5
and define convolution of a distribution in S ′(G) with the test function in S(G).
Then we have

Lemma 3.1.55. For any f ∈ S ′(G) there exist N ∈ N and C > 0 such that

∀φ ∈ S(G) ∀x ∈ G |(φ ∗ f)(x)| ≤ C(1 + |x|)N‖φ‖S(G),N . (3.46)

The constant C may be chosen of the form C = C ′‖f‖S′(G),N ′ for some C ′ and
N ′ independent of f .

For any f ∈ S ′(G) and φ ∈ S(G), φ∗f ∈ C∞(G). Moreover, if fℓ −→ℓ→∞ f
in S ′(G) then for any φ ∈ S(G),

φ ∗ fℓ −→ℓ→∞ φ ∗ f
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in C∞(G).
Furthermore, if f ∈ S ′(G) is compactly supported then φ ∗ f ∈ S(G) for any

φ ∈ S(G).

Proof. Let f ∈ S ′(G) and φ ∈ S(G). By definition of the convolution in Definition
1.5.3 and continuity of f (see (3.45)) we have

|(φ ∗ f)(x)| = |〈f, φ̃(·x−1)〉| ≤ C‖φ̃(·x−1)‖S(G),N

≤ C(1 + |x−1|)(υn+1)N‖φ̃‖S(G),(υn+1)2N (by (3.40))

≤ C(1 + |x|)(υn+1)N‖φ‖S(G),(υn+1)3N (by (3.39)).

This shows (3.46). Consequently

X̃α(φ ∗ f) = (X̃αφ) ∗ f

is also bounded for every α ∈ Nn
0 and hence φ ∗ f is smooth. The convergence

statement then follows from the definition of the convolution for distributions.
Let us now assume that the distribution f is compactly supported. Its support

is included in the ball of radius R for R large enough. There exists N ∈ N0 such
that

|(φ ∗ f)(x)| = |〈f, φ̃(·x−1)〉| ≤ C sup
|y|≤R, |α|≤N

∣∣∣∣
(

∂

∂y

)α

(φ(xy−1))

∣∣∣∣

≤ CR sup
|y|≤R, [α]≤υnN

∣∣∣X̃α
y {φ(xy−1)}

∣∣∣ ,

using (3.16) and (3.17). By (1.11), we have

X̃α
y {φ(xy−1)} = (−1)|α|(Xαφ)(xy−1),

and so for every M ∈ N0 with M ≥ [α], we obtain

∣∣∣X̃α
y {φ(xy−1)}

∣∣∣ =
∣∣Xαφ(xy−1)

∣∣ ≤ ‖φ‖S(G),M (1 + |xy−1|)−M .

By (3.43), we have also

(1 + |xy−1|)−1 ≤ Co(1 + |y|)(1 + |x|)−1.

Therefore, for every M ∈ N with M ≥ υnN we get

|(φ ∗ f)(x)| ≤ CR sup
|y|≤R

CM
o (1 + |y|)M (1 + |x|)−M‖φ‖S(G),M

≤ C ′
R(1 + |x|)−M‖φ‖S(G),M .

This shows φ ∗ f ∈ S(G). �
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We note that there are certainly different ways of introducing the topology
of the Schwartz spaces by different choices of families of seminorms.

Lemma 3.1.56. Other families of Schwartz seminorms defining the same Fréchet
topology on S(G) are

• φ �→ max[α],[β]≤N ‖xαXβφ‖p
• φ �→ max[α],[β]≤N ‖Xβxαφ‖p
• φ �→ max[β]≤N ‖(1 + | · |)NXβφ‖p

(for the first two we don’t need a homogeneous quasi-norm) where p ∈ [1,∞].

Proof. The first two families with the usual Euclidean derivatives instead of left-
invariant vector fields are known to give the Fréchet topologies. Therefore, by e.g.
using Proposition 3.1.28, this is also the case for the first two families.

The last family would certainly be equivalent to the first one for the homo-
geneous quasi-norm | · |p in (3.21), for p being a multiple of υ1, . . . , υn, since |x|pp
is a polynomial. Therefore, the last family also yields the Fréchet topology for any
choice of homogeneous quasi-norm since any two homogeneous quasi-norms are
equivalent by Proposition 3.1.35. �

3.1.10 Approximation of the identity

The family of dilations gives an easy way to define approximations to the identity.

If φ is a function on G and t > 0, we define φt by

φt := t−Qφ ◦Dt−1 i.e. φt(x) = t−Qφ(t−1x).

If φ is integrable then
∫
φt is independent of t.

We denote by Co(G) the space of continuous functions on G which vanish at
infinity:

Definition 3.1.57. We denote by Co(G) the space of continuous function f : G→ C
such that for every ǫ > 0 there exists a compact set K outside which we have
|f | < ǫ.

Endowed with the supremum norm ‖ · ‖∞ = ‖ · ‖L∞(G), Co(G) is a Banach
space.

We also denote by Cc(G) the space of continuous and compactly supported
functions on G. It is easy to see that Cc(G) is dense in Lp(G) for p ∈ [1,∞) and
in Co(G) (in which case we set p =∞).

Lemma 3.1.58. Let φ ∈ L1(G) and
∫
G
φ = c.
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(i) For every f ∈ Lp(G) with 1 ≤ p < ∞ or every f ∈ Co(G) with p = ∞, we
have

φt ∗ f −→
t→0

cf in Lp(G) or Co(G), i.e. ‖φt ∗ f − cf‖Lp(G) −→
t→0

0.

The same holds for f ∗ φt.

(ii) If φ ∈ S(G), then for any ψ ∈ S(G) and f ∈ S ′(G), we have

φt ∗ ψ −→
t→0

cψ in S(G) and φt ∗ f −→
t→0

cf in S ′(G).

The same holds for ψ ∗ φt and f ∗ ψt.

The proof is very similar to its Euclidean counterpart.

Proof. Let φ ∈ L1(G) and c =
∫
G
φ. If f ∈ Cc(G) then

(φt ∗ f)(x)− cf(x) =

∫

G

t−Qφ(t−1y)f(y−1x)dy − cf(x)

=

∫

G

φ(z)f((tz)−1x)dz −
∫

G

φ(z)dzf(x)

=

∫

G

φ(z)
(
f((tz)−1x)− f(x)

)
dz.

Hence by the Minkowski inequality we have

‖φt ∗ f − cf‖p ≤
∫

G

|φ(z)|
∥∥f((tz)−1· )− f

∥∥
p
dz.

Since
∥∥f((tz)−1· )− f

∥∥
p
≤ 2‖f‖p, this shows (i) for any f ∈ Cc(G) by the

Lebesgue dominated convergence theorem. Let f be in Lp(G) or Co(G) (in this
case p = ∞). By density of Cc(G), for any ǫ > 0, we can find fǫ ∈ Cc(G) such
that ‖f − fǫ‖p ≤ ǫ. We have

‖φt ∗ (f − fǫ)‖p ≤ ‖φt‖1‖f − fǫ‖p ≤ ‖φ‖1ǫ,

thus

‖φt ∗ f − cf‖p ≤ ‖φt ∗ (f − fǫ)‖p + |c|‖fǫ − f‖p + ‖φt ∗ fǫ − cfǫ‖p
≤ (‖φ‖1 + |c|)ǫ+ ‖φt ∗ fǫ − cfǫ‖p.

Since ‖φt ∗ fǫ − cfǫ‖p → 0 as t→ 0, there exists η > 0 such that

∀t ∈ (0, η) ‖φt ∗ fǫ − cfǫ‖p < ǫ.

Hence if 0 < t < η, we have

‖φt ∗ f − cf‖p ≤ (‖φ‖1 + |c|+ 1)ǫ.
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This shows the convergence of φt ∗ f − cf for any f ∈ Lp(G) or Co(G).

With the notation ·̃ for the operation given by g̃(x) = g(x−1), we also have

(f ∗ g)̃ = g̃ ∗ f̃ .

Hence applying the previous result to f̃ and φ̃, we obtain the convergence of
f ∗ φt − cf .

Let us prove (ii) for φ, ψ ∈ S(G). We have as above

(φt ∗ ψ)(x)− cψ(x) =

∫

G

φ(z)
(
ψ((tz)−1x)− ψ(x)

)
dz,

thus

‖φt ∗ ψ − cψ‖S(G),N ≤
∫

G

|φ(z)|
∥∥ψ((tz)−1·)− ψ

∥∥
S(G),N

dz

≤
∫

G

|φ(z)| C
n∑

j=1

|(tz)−1|υj ‖ψ‖S(G),N+υn
dz

by (3.44). And this shows

‖φt ∗ ψ − cψ‖S(G),N ≤ C

n∑

j=1

‖φ‖S(G),Q+1+υj
‖ψ‖S(G),N+υn

tυj −→
t→0

0.

Hence we have obtained the convergence of φt ∗ ψ − cψ. As above, applying the
previous result to ψ̃ and φ̃, we obtain the convergence of ψ ∗ φt.

Let f ∈ S ′(G). By (1.14) for distributions, we see for any ψ ∈ S(G), that

〈f ∗ φt, ψ〉 = 〈f, ψ ∗ φ̃t〉 −→
t→0

c〈f, ψ〉

by the convergence just shown above. This shows that f ∗ φt converges to f in
S ′(G). As above, applying the previous result to f̃ and φ̃, we obtain the conver-
gence of f ∗ φt. �

In the sequel we will need (only in the proof of Theorem 4.4.9) the follow-
ing collection of technical results. Recall that a simple function is a measurable
function which takes only a finite number of values.

Lemma 3.1.59. Let B denote the space of simple and compactly supported functions
on G. Then we have the following properties.

(i) The space B is dense in Lp(G) for any p ∈ [1,∞).

(ii) If φ ∈ S(G) and f ∈ B, then φ ∗ f and f ∗ φ are in S(G).
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(iii) For every f ∈ B and p ∈ [1,∞],

φt ∗ f −→
t→0

(

∫

G

φ)f

in Lp(G). The same holds for f ∗ φt.

Proof. Part (i) is well-known (see, e.g., Rudin [Rud87, ch. 1]).
As a convolution of a Schwartz function φ with a compactly supported tem-

pered distribution f ∈ B, f ∗ φ and φ ∗ f are Schwartz by Lemma 3.1.55. This
proves (ii).

Part (iii) follows from Lemma 3.1.58 (i) for 1 ≤ p <∞. For the case p =∞,
we proceed as in the first part of the proof of Lemma 3.1.58 (i) taking f not in
Cc(G) but a simple function with compact support. �

Remark 3.1.60. In Section 4.2.2 we will see that the heat semi-group associated
to a positive Rockland operator gives an approximation of the identity ht, t > 0,
which is commutative:

ht ∗ hs = hs ∗ ht = hs+t.

3.2 Operators on homogeneous Lie groups

In this section we analyse operators on a (fixed) homogeneous Lie group G. We
first study sufficient conditions for a linear operator to extend boundedly from
some Lp-space to an Lq-space. We will be particularly interested in the case of
left-invariant homogeneous linear operators. In the last section, we will focus our
attention on such operators which are furthermore differential and on the possible
existence of their fundamental solutions. As an application, we will give a version
of Liouville’s Theorem which holds on homogeneous Lie groups. All these results
have well-known Euclidean counterparts.

All the operators we consider here will be linear so we will not emphasise
their linearity in every statement.

3.2.1 Left-invariant operators on homogeneous Lie groups

The Schwartz kernel theorem (see Theorem 1.4.1) says that, under very mild
hypothesis, an operator on a smooth manifold has an integral representation. An
easy consequence is that a left-invariant operator on a Lie group has a convolution
kernel.

Corollary 3.2.1 (Kernel theorem on Lie groups). We have the following statements.

• Let G be a connected Lie group and let T : D(G) → D′(G) be a continuous
linear operator which is invariant under left-translations, i.e.

∀xo ∈ G, f ∈ D(G) T (f(xo ·)) = (Tf)(xo ·).



3.2. Operators on homogeneous Lie groups 133

Then there exists a unique distribution κ ∈ D′(G) such that

Tf1 : x �−→ f1 ∗ κ(x) =
∫

G

κ(y−1x)f1(y)dy.

In other words, T is a convolution operator with (right convolution) kernel κ.
The converse is also true.

• Let G be a connected simply connected nilpotent Lie group identified with Rn

endowed with a polynomial law (see Proposition 1.6.6). Let T : S(G)→ S ′(G)
be a continuous linear operator which is invariant under left translations, i.e.

∀xo ∈ G, f ∈ S(G) T (f(xo ·)) = (Tf)(xo ·).

Then there exists a unique distribution κ ∈ S ′(Rn) such that

Tf1 : x �−→ f1 ∗ κ(x) =
∫

G

κ(y−1x)f1(y)dy.

In other words, T is a convolution operator with (right convolution) kernel κ.
The converse is also true.

In both cases, for any test function f1, the function Tf1 is smooth. Further-
more, the map κ �→ T is an isomorphism of topological vector spaces.

A similar statement holds for right-invariant operators.
We omit the proof: it relies on approaching the kernels κ(x, y) by continuous

functions for which the invariance forces them to be of the form κ(y−1x). The
converses are much easier and have been shown in Section 1.5.

In this monograph, we will often use the following notation:

Definition 3.2.2. Let T be an operator on a connected Lie group G which is con-
tinuous as an operator D(G)→ D′(G) or as S(G)→ S ′(G). Its right convolution
kernel κ, as given in Corollary 3.2.1, is denoted by

Tδ0 = κ.

In the case of left-invariant differential operators, we obtain easily the fol-
lowing properties.

Proposition 3.2.3. If T is a left-invariant differential operator on a connected Lie
group G, then its kernel is by definition the distribution Tδ0 ∈ D′(G) such that

∀φ ∈ D(G) Tφ = φ ∗ Tδ0.

The distribution Tδ0 ∈ S ′(G) is supported at the origin. The equality

f ∗ Tδ0 = Tf
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holds for any f ∈ E ′(G), the left-hand side being the group convolution of a distri-
bution with a compactly supported distribution. The equality

Tδ0 ∗ f = T̃ f

for the right-invariant differential operator corresponding to T also holds for any
f ∈ E ′(G).

The kernel of T tδ0 is given formally by

T tδ0(x) = Tδ0(x
−1).

If T = Xℓ, for a left-invariant vector field X on G and ℓ ∈ N, then the
distribution (−1)ℓXℓδ0(x

−1) is the left convolution kernel of the right-invariant
differential operator T̃ .

We can also see from (1.14) and Definition 1.5.4 that the adjoint of the
bounded on L2(G) operator Tf = f ∗ κ is the convolution operator T ∗f = f ∗ κ̃,
well defined on D(G), with the right convolution kernel given by

κ̃(x) = κ̄(x−1). (3.47)

The transpose operation is defined in Definition A.1.5, and for left-invariant
differential operators it takes the form given by (1.10). Clearly the transpose of a
left-invariant differential operator on G is a left-invariant differential operator on
G.

Proof. A left-invariant differential operator is necessarily continuous as D(G) →
D(G). Hence it admits the kernel Tδ0. We have for φ ∈ D(G) with φ̃(x) = φ(x−1)
that

〈Tδ0, φ̃〉 = (φ ∗ Tδ0)(0) = Tφ(0).

So if 0 /∈ suppφ then 〈Tδ0, φ〉 = 0. This shows that Tδ0 is supported at 0.
If φ, ψ ∈ D(G), then

〈φ ∗ Tδ0, ψ〉 = 〈Tφ, ψ〉 = 〈φ, T tψ〉 = 〈φ, ψ ∗ T tδ0〉.

By (1.14) this shows that T tδ0 = (Tδ0)̃. Furthermore, if f ∈ D′(G), then

〈Tf, φ〉 = 〈f, T tφ〉 = 〈f, φ ∗ T tδ0〉 = 〈f, φ ∗ (Tδ0)̃〉 = 〈f ∗ Tδ0, φ〉.

This shows Tf = f ∗ Tδ0.
Now we can check easily (see (1.11)) that

X̃f = −(Xf̃ )̃

and, more generally,
X̃ℓf = (−1)ℓ(Xℓf̃ )̃
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for ℓ ∈ N. Since the equality (f ∗ g)̃ = g̃ ∗ f̃ holds as long as it makes sense, this
shows that

(−1)ℓ(Xℓδ0)̃ ∗ f = T̃ f.

�

In fact, our primary concern will be to study operators of a different nature,
and their possible extensions to some Lp-spaces. This (i.e. the Lp-boundedness) is
certainly not the case for general differential operators.

Assuming that an operator is continuous as S(G) → S ′(G) or as D(G) →
D′(G) is in practice a very mild hypothesis. It ensures that a potential extension
into a bounded operator Lp(G)→ Lq(G) is necessarily unique, by density of D(G)
in Lp(G). Hence we may abuse the notation, and keep the same notation for an
operator which is continuous as S(G) → S ′(G) or as D(G) → D′(G) and its
possible extension, once we have proved that it gives a bounded operator from
Lp(G) to Lq(G).

We want to study in the context of homogeneous Lie groups the condition
which implies that an operator as above extends to a bounded operator from
Lp(G) to Lq(G).

As the next proposition shows, only the case p ≤ q is interesting.

Proposition 3.2.4. Let G be a homogeneous Lie group and let T be a linear left-
invariant operator bounded from Lp(G) to Lq(G), for some (given) finite p, q ∈
[1,∞). If p > q then T = 0.

The proof is based on the following lemma:

Lemma 3.2.5. Let f ∈ Lp(G) with 1 ≤ p <∞. Then

lim
x→∞

‖f − f(x ·)‖Lp(G) = 2
1
p ‖f‖Lp(G).

Proof of Lemma 3.2.5. First let us assume that the function f is continuous with
compact support E. For xo ∈ G, the function f(xo ·) is continuous and supported
in x−1

o E. Therefore, if xo is not in EE−1 = {yz : y ∈ E, z ∈ E−1}, then f and
f(xo ·) have disjoint supports, and

‖f − f(xo ·)‖pp =

∫

E

|f |p +
∫

x−1
o E

|f(xo ·)|p = 2‖f‖pp.

Now we assume that f ∈ Lp(G). For each sufficiently small ǫ > 0, let fǫ be a
continuous function with compact support Eǫ ⊂ {|x| ≤ ǫ−1} satisfying ‖f−fǫ‖p <
ǫ. We claim that for any sufficiently small ǫ > 0, we have

|xo| > 2ǫ−1 =⇒
∣∣∣‖f − f(xo ·)‖p − 2

1
p ‖f‖p

∣∣∣ ≤ (2 + 2
1
p )ǫ. (3.48)
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Indeed, using the triangle inequality, we obtain
∣∣∣‖f − f(xo ·)‖p − 2

1
p ‖f‖p

∣∣∣ ≤
∣∣∣‖f − f(xo ·)‖p − 2

1
p ‖fǫ‖p

∣∣∣+ 2
1
p

∣∣‖fǫ‖p − ‖f‖p
∣∣.

For the last term of the right-hand side we have
∣∣‖fǫ‖p − ‖f‖p

∣∣ ≤ ‖fǫ − f‖p < ǫ,

whereas for the first term, if xo �∈ EǫE
−1
ǫ , using the first part of the proof and

then the triangle inequality, we get

∣∣‖f − f(xo ·)‖p − 2
1
p ‖fǫ‖p

∣∣ =
∣∣‖f − f(xo ·)‖p − ‖fǫ − fǫ(xo ·)‖p

∣∣
≤ ‖(f − f(xo ·))− (fǫ − fǫ(xo ·))‖p
≤ ‖f − fǫ‖p + ‖f(xo ·)− fǫ(xo ·)‖p < 2ǫ.

This shows (3.48) and concludes the proof of Lemma 3.2.5. �

Proof of Proposition 3.2.4. Let f ∈ D(G). As T is left-invariant, we have

‖(Tf)(xo ·)− Tf‖q =
∥∥T

(
f(xo ·)− f

)∥∥
q
≤ ‖T‖L (Lp(G),Lq(G)) ‖f(xo ·)− f‖p .

Taking the limits as xo tends to infinity, by Lemma 3.2.5, we get

2
1
q ‖Tf‖q ≤ ‖T‖L (Lp(G),Lq(G))2

1
p ‖f‖p .

But then
‖T‖L (Lp(G),Lq(G)) ≤ 2

1
p− 1

q ‖T‖L (Lp(G),Lq(G)).

Hence p > q implies ‖T‖L (Lp(G),Lq(G)) = 0 and T = 0. �

As in the Euclidean case, Proposition 3.2.4 is all that can be proved in the
general framework of left-invariant bounded operators from Lp(G) to Lq(G). How-
ever, if we add the property of homogeneity more can be said and we now focus
our attention on this case.

3.2.2 Left-invariant homogeneous operators

The next statement says that if the operator T is left-invariant, homogeneous
and bounded from Lp(G) to Lq(G), then the indices p and q must be related in
the same way as in the Euclidean case but with the topological dimension being
replaced by the homogeneous dimension Q.

Proposition 3.2.6. Let T be a left-invariant linear operator on G which is bounded
from Lp(G) to Lq(G) for some (given) finite p, q ∈ [1,∞). If T is homogeneous of
degree ν ∈ C (and T �= 0), then

1

q
− 1

p
=

Re ν

Q
.
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Proof. We compute easily,

‖f ◦Dt‖p = t−
Q
p ‖f‖p, f ∈ Lp(G), t > 0.

Thus, since T is homogeneous of degree ν, we have

tRe ν−Q
q ‖Tf‖q = ‖tν

(
Tf

)
◦Dt‖q = ‖T

(
f ◦Dt

)
‖q ≤ ‖T‖L (Lp(G),Lq(G))‖f ◦Dt‖p

= ‖T‖L (Lp(G),Lq(G))t
−Q

p ‖f‖p,

so
∀t > 0 ‖T‖L (Lp(G),Lq(G)) ≤ t−Re ν+Q

q −Q
p ‖T‖L (Lp(G),Lq(G)).

Hence we must have

−Re ν +
Q

q
− Q

p
= 0

as claimed. �

Combining together Propositions 3.2.4 and 3.2.6, we see that it makes sense
to restrict one’s attention to

Re ν

Q
∈ (−1, 0].

The case Re ν = 0 is the most delicate and we leave it aside for the moment (see
Section 3.2.5). We shall discuss instead the case

−Q < Re ν < 0.

Let us observe that the homogeneity of the operator is equivalent to the
homogeneity of its kernel:

Lemma 3.2.7. Let T be a continuous left-invariant linear operator as S(G) →
S ′(G) or as D(G) → D′(G), where G is a homogeneous Lie group. Then T is ν-
homogeneous if and only if its (right) convolution kernel is −(Q+ν)-homogeneous.

Proof. On one hand we have

T (f(r ·))(x) =
∫

G

f(ry)κ(y−1x)dy,

and on the other hand,

Tf (rx) =

∫

G

f(z)κ(z−1rx)dz =

∫

G

f(ry)κ((ry)−1rx)rQdy

= rQ
∫

G

f(ry)(κ ◦Dr)(y
−1x)dy.

Now the statement follows from these and the uniqueness of the kernel. �
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The following proposition gives a sufficient condition on the homogeneous
kernel so that the corresponding left-invariant homogeneous operator extends to
a bounded operator from Lp(G) to Lq(G).

Proposition 3.2.8. Let T be a linear continuous operator as S(G) → S ′(G) or as
D(G) → D′(G) on a homogeneous Lie group G. We assume that the operator T
is left-invariant and homogeneous of degree ν, that

Re ν ∈ (−Q, 0),

and that the (right convolution) kernel κ of T is continuous away from the origin.

Then T extends to a bounded operator from Lp(G) to Lq(G) whenever p, q ∈
(1,∞) satisfy

1

q
− 1

p
=

Re ν

Q
.

The integral kernel κ then can also be identified with a locally integrable
function at the origin.

We observe that, by Corollary 3.2.1, κ is a distribution (in S ′(G) or D′(G))
on G. The hypothesis on κ says that its restriction to G\{0} coincides with a
continuous function κo on G\{0}.

Proof of Proposition 3.2.8. We fix a homogeneous norm | · | on G. We denote by
B̄R := {x : |x| ≤ R} and S := {x : |x| = 1} the ball of radius R and the unit
sphere around 0. By Lemma 3.2.7, κo is a continuous homogeneous function of
degree −(Q + ν) on G\{0}. Denoting by C its maximum on the unit sphere, we
have

∀x ∈ G\{0} |κo(x)| ≤
C

|x|Q+Re ν
.

Hence κo defines a locally integrable function on G, even around 0, and we keep
the same notation for this function. Therefore, the distribution κ′ = κ − κo on
G is, in fact, supported at the origin. It is also homogeneous of degree −Q − ν.
Due to the compact support of κ′, |〈κ′, f〉| is controlled by some Ck norm of f on
a fixed small neighbourhood of the origin. But, because of its homogeneity, and
using (3.9), we get

∀t > 0 〈κ′, f〉 = t−Q−ν〈κ′ ◦D 1
t
, f〉 = t−ν〈κ′, f ◦Dt〉.

Letting t tend to 0, the Ck norms of f ◦Dt remain bounded, so that 〈κ′, f〉 = 0
since Re ν < 0. This shows that κ′ = 0 and so κ = κo.

Note that the weak Lr(G)-norm of κ is finite for r = Q/(Q+Re ν). Indeed,
if s > 0,

|κo(x)| > s =⇒ |x|Q+Re ν ≤ C

s
,
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so that

|{x : |κo(x)| > s}| ≤
∣∣∣∣B(C/s)

1
Q+Re ν

∣∣∣∣ ≤ c

(
C

s

) Q
Q+Re ν

,

with c = |B1|, and hence

‖κo‖w−Lr(G) ≤ cC
Q

Q+Re ν with r =
Q

Q+Re ν
.

The proposition is now easy using the generalisation of Young’s inequalities (see
Proposition 1.5.2), so that we get that T is bounded from Lp(G) to Lq(G) for

1

q
− 1

p
=

1

r
− 1 =

Re ν

Q
,

as claimed. �

We may use the usual vocabulary for homogeneous kernels as in [Fol75] and
[FS82]:

Definition 3.2.9. Let G be a homogeneous Lie group and let ν ∈ C.
A distribution κ ∈ D′(G) which is smooth away from the origin and homo-

geneous of degree ν −Q is called a kernel of type ν on G.
A (right) convolution operator T : D(G)→ D′(G) whose convolution kernel

is of type ν is called an operator of type ν. That is, T is given via

T (φ) = φ ∗ κ,
where κ kernel of type ν.

Remark 3.2.10. We will mainly be interested in the Lp → Lq-boundedness of
operators of type ν. Thus, by Propositions 3.2.4 and 3.2.6, we will restrict ourselves
to ν ∈ C with Re ν ∈ [0, Q).

If Re ν ∈ (0, Q), then a (ν − Q)-homogeneous function in C∞(G\{0}) is
integrable on a neighbourhood of 0 and hence extends to a distribution in D′(G),
see the proof of Proposition 3.2.8. Hence, in the case Re ν ∈ (0, Q), the restriction
to G\{0} yields a one-to-one correspondence between the (ν − Q)-homogeneous
functions in C∞(G\{0}) and the kernels of type ν.

We will see in Remark 3.2.29 that the case Re ν = 0 is more subtle.

In view of Lemma 3.2.7 and Proposition 3.2.8, we have the following state-
ment for operators of type ν with Re ν ∈ (0, Q).

Corollary 3.2.11. Let G be a homogeneous Lie group and let ν ∈ C with

Re ν ∈ (0, Q).

Any operator of type ν is (−ν)-homogeneous and extends to a bounded operator
from Lp(G) to Lq(G) whenever p, q ∈ (1,∞) satisfy

1

p
− 1

q
=

Re ν

Q
.
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As we said earlier the case of a left-invariant operator which is homogeneous
of degree 0 is more complicated and is postponed until the end of Section 3.2.4. In
the meantime, we make a useful parenthesis about the Calderón-Zygmund theory
in our context.

3.2.3 Singular integral operators on homogeneous Lie groups

In the case of R, a famous example of a left-invariant 0-homogeneous operator is the
Hilbert transform. This particular example has motivated the development of the
theory of singular integrals in the Euclidean case as well as in other more general
settings. In Section A.4, the interested reader will find a brief presentation of this
theory in the setting of spaces of homogeneous type (due to Coifman and Weiss). In
this section here, we check that homogeneous Lie groups are spaces of homogeneous
type and we obtain the corresponding theorem of singular integrals together with
some useful consequences for left-invariant operators. We also propose a definition
of Calderón-Zygmund kernels on homogeneous Lie groups, thereby extending the
one on Euclidean spaces (cf. Section A.4).

First let us check that homogeneous Lie groups equipped with a quasi-norm
are spaces of homogeneous type in the sense of Definition A.4.2 and that the Haar
measure is doubling (see Section A.4):

Lemma 3.2.12. Let G be a homogeneous Lie groups and let | · | be a quasi-norm.
Then the set G endowed with the usual Euclidean topology together with the quasi-
distance

d : (x, y) �→ |y−1x|

is a space of homogeneous type and the Haar measure has the doubling property
given in (A.5).

Proof of Lemma 3.2.12. We keep the notation of the statement. The defining
properties of a quasi-norm and the fact that it satisfies the triangular inequality up
to a constant (see Proposition 3.1.38) imply easily that d is indeed a quasi-distance
on G in the sense of Definition A.4.1. By Proposition 3.1.37, the corresponding
quasi-balls B(x, r) := {y ∈ G : d(x, y) < r}, x ∈ G, r > 0, generate the usual
topology of the underlying Euclidean space. Hence the first property listed in
Definition A.4.2 is satisfied.

By Remark 3.1.34, the quasi-balls satisfy B(x, r) = xB(0, r) and B(0, r) =
Dr(B(0, 1)). By (3.6), the volume of B(0, r) is |B(0, r)| = rQ|B(0, 1)|. Hence we
have obtained that the volume of any open quasi-ball is |B(x, r)| = rQ|B(0, 1)|.
This implies that the Haar measure satisfies the doubling condition given in (A.5).
We can now conclude the proof of the statement with Lemma A.4.3. �

Lemma 3.2.12 implies that we can apply the theorem of singular integrals on
spaces of homogeneous type recalled in Theorem A.4.4 and we obtain:
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Theorem 3.2.13 (Singular integrals). Let G be a homogeneous Lie group and let T
be a bounded linear operator on L2(G), i.e.

∃Co ∀f ∈ L2 ‖Tf‖2 ≤ Co‖f‖2. (3.49)

We assume that the integral kernel κ of T coincides with a locally integrable
function away from the diagonal, that is, on (G × G)\{(x, y) ∈ G × G : x = y}.
We also assume that there exist C1, C2 > 0 satisfying

∀y, yo ∈ G

∫

|y−1
o x|>C1|y−1

o y|
|κ(x, y)− κ(x, yo)|dx ≤ C2, (3.50)

for a quasi-norm | · |.
Then for all p, 1 < p ≤ 2, T extends to a bounded operator on Lp because

∃Ap > 0 ∀f ∈ L2 ∩ Lp ‖Tf‖p ≤ Ap‖f‖p;

for p = 1, the operator T extends to a weak-type (1,1) operator since

∃A1 > 0 ∀f ∈ L2 ∩ L1 μ{x : |Tf(x)| > α} ≤ A1
‖f‖1
α

;

the constants Ap, 1 ≤ p ≤ 2, depend only on Co, C1 and C2.

Remark 3.2.14. • The L2-boundedness, that is, Condition (3.49), implies that
the operator satisfies the Schwartz kernel theorem (see Theorem 1.4.1) and
thus yields the existence of a distributional integral kernel. We still need to
assume that this distribution is locally integrable away from the diagonal.

• Since any two quasi-norms on G are equivalent (see Proposition 3.1.35), if
the kernel condition in (3.50) holds for one quasi-norm, it then holds for any
quasi-norm (maybe with different constants C1, C2).

As recalled in Section A.4, the notion of Calderón-Zygmund kernels in the
Euclidean setting appear naturally as sufficient conditions (often satisfied ‘in prac-
tice’) for (A.7) to be satisfied by the kernel of the operator and the kernel of its
formal adjoint. This leads us to define the Calderón-Zygmund kernels in our setting
as follows:

Definition 3.2.15. A Calderón-Zygmund kernel on a homogeneous Lie group G is
a measurable function κo defined on (G×G)\{(x, y) ∈ G×G : x = y} satisfying
for some γ, 0 < γ ≤ 1, C1 > 0, A > 0, and a homogeneous quasi-norm | · | the
inequalities

|κo(x, y)| ≤ A|y−1x|−Q,

|κo(x, y)− κo(x
′, y)| ≤ A

|x−1x′|γ
|y−1x|Q+γ

if C1|x−1x′| ≤ |y−1x|,

|κo(x, y)− κo(x, y
′)| ≤ A

|y−1y′|γ
|y−1x|Q+γ

if C1|y−1y′| ≤ |y−1x|.
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A linear continuous operator T as D(G) → D′(G) or as S(G) → S ′(G) is called
a Calderón-Zygmund operator if its integral kernel coincides with a Calderón-
Zygmund kernel on (G×G)\{(x, y) ∈ G×G : x = y}.
Remark 3.2.16. 1. In other words, we have modified the definition of a classical

Calderón-Zygmund kernel (as in Section A.4)

• by replacing the Euclidean norm by a homogeneous quasi-norm

• and, more importantly, the topological (Euclidean) dimension of the
underlying space n by the homogeneous dimension Q.

2. By equivalence of homogeneous quasi-norms, see Proposition 3.1.35, the def-
inition does not depend on a particular choice of a homogeneous quasi-norm
as we can change the constants C1, A.

As in the Euclidean case, we have

Proposition 3.2.17. Let G be a homogeneous Lie group and let T be a bounded
linear operator on L2(G).

If T is a Calderón-Zygmund operator on G (in the sense of Definition 3.2.15),
then T is bounded on Lp(G), p ∈ (1,∞), and weak-type (1,1).

Proof of Proposition 3.2.17. Let T be a bounded operator on L2(G) and κ :
(x, y) �→ κ(x, y) its distributional kernel. Then its formal adjoint T ∗ is also bounded
on L2(G) with the same operator norm. Furthermore its distributional kernel is
κ(∗) : (x, y) �→ κ̄(y, x). We assume that κ coincides with a Calderón-Zygmund
kernel κo away from the diagonal. We fix a quasi-norm | · |. The first inequality in

Definition 3.2.15 shows that κo and κ
(∗)
o coincide with locally integrable functions

away from the diagonal. Using the last inequality, we have for any y, yo ∈ G,
∫

|y−1
o x|≥C1|y−1

o y|
|κo(x, y)− κo(x, yo)|dx ≤ A

∫

|y−1
o x|≥C1|y−1

o y|

|y−1yo|γ
|y−1

o x|Q+γ
dx

and, using the change of variable x′ = y−1
o x, we have

∫

|y−1
o x|≥C1|y−1

o y|

1

|y−1
o x|Q+γ

dx =

∫

|x′|≥C1|y−1
o y|
|x′|−(Q+γ)dx′

≤
∫

|x′|≥C1|y−1
o y|
|x′|−(Q+γ)dx′

= c

∫ +∞

r=C1|y−1
o y|

r−(Q+γ)rQ−1dr = c1|y−1
o y|−γ ,

having also used the polar coordinates (Proposition 3.1.42) with c denoting the
mass of the Borel measure on the unit sphere, and c1 a new constant (of C1, γ
and Q). Hence we have obtained

∫

|y−1
o x|≥C1|y−1

o y|
|κo(x, y)− κo(x, yo)|dx ≤ c1A.
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Similarly for κ
(∗)
o , we have

∫

|y−1
o x|≥C1|y−1

o y|
|κ(∗)

o (x, y)− κ(∗)
o (x, yo)|dx =

∫

|y−1
o x|≥C1|y−1

o y|
|κo(y, x)− κo(yo, x)|dx

≤ A

∫

|y−1
o x|≥C1|y−1

o y|

|y−1
o y|γ

|y−1
o x|Q+γ

dx,

having used the second inequality in Definition 3.2.15. The same computation as

above shows that the last left-hand side is bounded by c1A. Hence κo and κ
(∗)
o

satisfy (3.50). Proposition 3.2.17 now follows from Theorem 3.2.13. �

Remark 3.2.18. As in the Euclidean case, Calderón-Zygmund kernels do not nec-
essarily satisfy the other condition of the L2-boundedness (see (3.49)) and a condi-
tion of ‘cancellation’ is needed in addition to the Calderón-Zygmund condition to
ensure the L2-boundedness. Indeed, one can prove adapting the Euclidean case (see
the proof of Proposition 1 in [Ste93, ch.VII §3]) that if κo is a Calderón-Zygmund
kernel satisfying the inequality

∃c > 0 ∀x �= y κo(x, y) ≥ c|y−1x|−Q,

then there does not exist an L2-bounded operator T having κo as its kernel.

The following statement gives sufficient conditions for a kernel to be Calderón-
Zygmund in terms of derivatives:

Lemma 3.2.19. Let G be a homogeneous Lie group. If κo is a continuously differ-
entiable function on (G×G)\{(x, y) ∈ G×G : x = y} satisfying the inequalities
for any x, y ∈ G, x �= y, j = 1, . . . , n,

|κo(x, y)| ≤ A|y−1x|−Q,

|(Xj)xκo(x, y)| ≤ A|y−1x|−(Q+υj),

|(Xj)yκo(x, y)| ≤ A|y−1x|−(Q+υj),

for some constant A > 0 and homogeneous quasi-norm | · |, then κo is a Calderón-
Zygmund kernel in the sense of Definition 3.2.15 with γ = 1.

Again, if these inequalities are satisfied for one quasi-norm, then they are
satisfied for all quasi-norms, maybe with different constants A > 0.

Proof of Lemma 3.2.19. We fix a quasi-norm | · |. We assume that it is a norm
without loss of generality because of the remark just above and the existence of a
homogeneous norm (Theorem 3.1.39); although we could give a proof without this
hypothesis, it simplifies the constants below. Let κo be as in the statement. Using
the Taylor expansion (Theorem 3.1.51) or the Mean Value Theorem (Proposition
3.1.46), we have

|κo(x
′, y)− κo(x, y)| ≤ Co

n∑

j=1

|x−1x′|υj sup
|z|≤η|x−1x′|

|(Xj)x1=xzκo(x1, y)|.
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Using the second inequality in the statement, we have

sup
|z|≤η|x−1x′|

|(Xj)x1=xzκo(x1, y)| ≤ A sup
|z|≤η|x−1x′|

|y−1xz|−(Q+υj).

The reverse triangle inequality yields

|y−1xz| ≥ |y−1x| − |z| ≥ 1

2
|y−1x| if |z| ≤ 1

2
|y−1x|.

Hence, if 2η|x−1x′| ≤ |y−1x|, then we have

sup
|z|≤η|x−1x′|

|y−1xz|−(Q+υj) ≤ 2Q+υj |y−1x|−(Q+υj),

and we have obtained

|κo(x, y)− κo(x
′, y)| ≤ Co

n∑

j=1

|x−1x′|υj2Q+υj |y−1x|−(Q+υj)

≤ Co

⎛
⎝

n∑

j=1

(2η)−(υj−1)2Q+υj

⎞
⎠ |x−1x′||y−1x|−(Q−1).

This shows the second inequality in Definition 3.2.15.
We proceed in a similar way to prove the third inequality in Definition 3.2.15:

the Taylor expansion yields

|κo(x, y)− κo(x, y
′)| ≤ Co

n∑

j=1

|y−1y′|υj sup
|z|≤η|y−1y′|

|(Xj)y1=yzκo(x, y1)|

while one checks easily

sup
|z|≤η|y−1y′|

|(Xj)y1=yzκo(x, y1)| ≤ A sup
|z|≤η|y−1y′|

|(yz)−1x|−(Q+υj)

≤ A2Q+υj |y−1x|−(Q+υj),

when 2η|y−1y′| ≤ |y−1x|. We conclude in the same way as above and this shows
that κo is a Calderón-Zygmund kernel. �

Corollary 3.2.20. Let G be a homogeneous Lie group and let κ be a continuously
differentiable function on G\{0}. If κ satisfies for any x ∈ G\{0}, j = 1, . . . , n,

|κ(x)| ≤ A|x|−Q,

|Xjκ(x)| ≤ A|x|−(Q+υj),

|X̃jκ(x)| ≤ A|x|−(Q+υj),

for some constant A > 0 and homogeneous quasi-norm | · |, then
κo : (x, y) �→ κ(y−1x)

is a Calderón-Zygmund kernel in the sense of Definition 3.2.15 with γ = 1.
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Corollary 3.2.20 will be useful when dealing with convolution kernels which
are smooth away from the origin, in particular when they are also (−Q)-homoge-
neous, see Theorem 3.2.30.

Proof of Corollary 3.2.20. Keeping the notation of the statement, using properties
(1.11) of left and right invariant vector fields, we have

(Xj)xκo(x, y) = (Xjκ)(y
−1x),

(Xj)yκo(x, y) = −(X̃jκ)(y
−1x).

The statement now follows easily from Lemma 3.2.19. �

Often, the convolution kernel decays quickly enough at infinity and the main
singularity to deal with is about the origin. The next statement is an illustration
of this idea:

Corollary 3.2.21. Let G be a homogeneous Lie group and let T be a linear operator
which is bounded on L2(G) and invariant under left translations.

We assume that its distributional convolution kernel coincides on G\{0} with
a continuously differentiable function κ which satisfies

∫

|x|≥1/2

|κ(x)|dx ≤ A,

sup
0<|x|≤1

|x|Q|κ(x)| ≤ A,

sup
0<|x|≤1

|x|Q+υj |Xjκ(x)| ≤ A, j = 1, . . . , n,

for some constant A > 0 and a homogeneous quasi-norm | · |. Then T is bounded
on Lp(G), p ∈ (1,∞), and is weak-type (1,1).

Proof. Let χ ∈ D(G) be [0, 1]-valued function such that χ ≡ 0 on {|x| ≥ 1}
and χ ≡ 1 on {|x| ≤ 1/2}. As

∫
|x|≥1/2

|κ(x)|dx is finite, (1 − χ)κ is integrable

and the convolution operator with convolution kernel (1 − χ)κ is bounded on
Lp(G) for p ∈ [1,∞]. Hence it suffices to prove that the kernel κo given via
κo(x, y) = (χκ)(y−1x) is Calderón-Zygmund.

From the estimates satisfied by κ, it is clear that the quantities

sup
x∈G\{0}

|x|Q|(χκ)(x)| and sup
x∈G\{0}

|x|−(Q+υj)|Xj(χκ)(x)|

are finite. As each X̃j may be expressed as a combination of Xk with homogeneous
polynomial coefficients, see Section 3.1.5, we have for any (regular enough) function
f with compact support

sup
x∈G\{0}

|x|−(Q+υj)|X̃jf(x)| ≤ C sup
x∈G\{0}
k=1,...,n

|x|−(Q+υk)|Xkf(x)|.
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Consequently, the quantities supx∈G\{0} |x|−(Q+υj)|X̃j(χκ)(x)| are also bounded.
Applying Lemma 3.2.19 to κo defined above, one checks easily that it is a Calderón-
Zygmund kernel. Applying Proposition 3.2.17 concludes the proof of Corollary
3.2.21. �

This closes our parenthesis about the Calderón-Zygmund theory in our con-
text, and we can go back to the study of left-invariant homogeneous operators,
this time of homogeneous degree 0.

3.2.4 Principal value distribution

As we will see in the sequel, many interesting operators for our analysis on a
homogeneous Lie group G will be given by convolution operators with (right con-
volution distributional) kernels homogeneous of degree ν with Re ν = −Q. In most
of the ‘interesting’ cases, the distribution κ will be given by a locally integrable
function away from the origin; denoting by κo the restriction of κ to G\{0}, one
may wonder if there is a one-to-one correspondence between κ and κo. As in the
Euclidean case, this leads to the notion of the principal value distribution and we
adapt the ideas here to fit the homogeneous context; in particular, the topological
(Euclidean) dimension is replaced by the homogeneous dimension Q.

So the question is: Considering a locally integrable function κo on G\{0}
which is homogeneous of degree ν with Re ν = −Q, does there exist a distribution
κ ∈ D′(G) on G, homogeneous of the same degree ν on G, whose restriction to
G\{0} coincides with κo? that is,

〈κ, f〉 =
∫

G\{0}
κo(x)f(x)dx,

whenever f ∈ D(G) and 0 �∈ supp f . In other words, can the functional

D(Rn\{0}) ∋ f �−→
∫

G\{0}
κo(x)f(x)dx

be extended to a continuous functional on D(Rn)?

Remark 3.2.22. 1. We observe that if such an extension exists, it is not unique
in general. For ν = −Q, the reason is that the Dirac δ0 at the origin is
homogeneous of degree −Q (see Example 3.1.20), so that if κ is a solution,
then κ + cδ0 for any constant c is another solution. (However, see Proposi-
tion 3.2.27.)

2. The second observation is that the answer is negative in general:

Example 3.2.23. Let |·| be some fixed homogeneous quasi-norm on G smooth away
from the origin. The function defined by κo(x) = |x|ν with ν = −Q+ iτ , τ ∈ R, is
homogeneous of degree ν on G\{0} but can not be extended into a homogeneous
distribution κ ∈ D′(G) of homogeneous degree ν.
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Proof of Example 3.2.23. Indeed, let us assume that such a distribution κ exists
for this κo. Homogeneity of degree −Q+ iτ means that

〈κ, ψ ◦Dt〉 = t−iτ 〈κ, ψ〉, t > 0, ψ ∈ D(G).

Let Bδ := {x ∈ G : |x| < δ} be the ball around 0 of radius δ. Let φ ∈ D(G) be a
real-valued function supported on D2(Bδ)\Bδ, such that

∫

G

(φ(x)− φ(2x)) |x|−Qdx �= 0.

We now define

ψ(x) := |x|−iτφ(x) and f := ψ − 2iτ (ψ ◦D2), x ∈ G\{0}.

Immediately we notice that

f(x) = |x|−iτ (φ(x)− φ(2x))

and, therefore, both ψ and f are supported inside D4(Bδ)\Bδ and are smooth.
We compute

〈κo, f〉 =
∫

G

(φ(x)− φ(2x)) |x|−Qdx �= 0

by the choice of φ. On the other hand,

〈κ, f〉 = 〈κ, ψ〉 − 2iτ 〈κ, ψ ◦D2〉 = 0.

We have obtained a contradiction. �

The next statement answers the question above under the assumption that
κo is also continuous on G\{0}.
Proposition 3.2.24. Let G be a homogeneous Lie group and let κo be a continuous
homogeneous function on G\{0} of degree ν with Re ν = −Q.

Then κo extends to a homogeneous distribution in D′(G) if and only if its
average value, defined in Lemmata 3.1.43 and 3.1.45, is mκo

= 0.

Proof. Let us fix a homogeneous quasi-norm | · |. We denote by σ the measure on
the unit sphere S = {x : |x| = 1} which gives the polar change of coordinates
(see Proposition 3.1.42) and |σ| its total mass.

By Lemma 3.1.41, there exists c > 0 such that

|x| ≤ 1 =⇒ |x|E ≤ c|x|. (3.51)

First let us assume mκo
= 0. Therefore, for any a, b ∈ [0,∞),

∫

a<|x|<b

κo(x)dx =

∫ b

r=a

∫

S

κo(rx)dσ(x)r
Q−1dr = mκo

∫ b

r=a

rνrQ−1dr = 0,
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see Section 3.1.7. We claim that, for each f ∈ D(G),

∃ lim
ǫ→0

∫

|x|>ǫ

κo(x)f(x)dx <∞. (3.52)

Indeed, let us check the Cauchy condition for 0 < ǫ < ǫ′. We see that
∣∣∣∣∣

∫

|x|>ǫ

κo(x)f(x)dx−
∫

|x|>ǫ′
κo(x)f(x)dx

∣∣∣∣∣ =
∣∣∣∣∣

∫

ǫ<|x|<ǫ′
κo(x)f(x)dx

∣∣∣∣∣

=

∣∣∣∣∣

∫

ǫ<|x|<ǫ′
κo(x) (f(x)− f(0)) dx

∣∣∣∣∣

≤
∫

ǫ<|x|<ǫ′
|κo(x)| |f(x)− f(0)| dx.

The (Euclidean) mean value theorem and the estimate (3.51) imply

|f(x)− f(0)| ≤ ‖∇f‖∞|x|E ≤ ‖∇f‖∞c|x| if |x| < 1.

Since κo is ν-homogeneous with Re ν = −Q, denoting by Co the maximum of |κo|
on the unit sphere {x : |x| = 1}, we have

∀x ∈ G\{0} |κo(x)| ≤ Co|x|−Q.

Hence if ǫ′ < 1,
∣∣∣∣∣

∫

|x|>ǫ

κo(x)f(x)dx−
∫

|x|>ǫ′
κo(x)f(x)dx

∣∣∣∣∣ ≤
∫

ǫ<|x|<ǫ′
‖∇f‖∞cCo|x|1−Qdx

= ‖∇f‖∞cCo(ǫ
′ − ǫ).

This implies the Cauchy condition. Therefore, Claim (3.52) is proved and we de-
note the limit by

〈κ, f〉 := lim
ǫ→0

∫

|x|>ǫ

κo(x)f(x)dx, f ∈ D(G). (3.53)

This clearly defines a linear functional. Moreover, this functional is continuous
since if f ∈ D(G) is supported in a ball B̄R = {x : |x| ≤ R} for R large enough,
then, for ǫ < 1,

∣∣∣∣∣

∫

|x|>ǫ

κo(x)f(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

ǫ<|x|<1

κo(x)f(x)dx

∣∣∣∣∣+
∣∣∣∣∣

∫

1<|x|
κo(x)f(x)dx

∣∣∣∣∣

≤ ‖∇f‖∞cCo(1− ǫ) + Co

∫

1<|x|≤R

|f(x)|dx

≤ CR(‖∇f‖∞ + ‖f‖∞).
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For the converse, we proceed by contradiction: let us assume that κ exists
and that mκo

�= 0. Then

κo −
mκo

|σ| |x|
ν

is a continuous homogeneous distribution of G\{0} of degree ν with mean average
∫

S

(
κo(x)−

mκo

|σ| |x|
ν

)
dσ(x) =

∫

S

κo(x)dσ(x)−
mκo

|σ|

∫

S

dσ(x)

= mκo
−mκo

= 0.

Hence it admits an extension into a homogeneous distribution by the first part
of the proof. But this would imply that |x|ν has such an extension and this is
impossible by Example 3.2.23. �

Remark 3.2.25. (i) In view of the proof above, the hypothesis of continuity in
Proposition 3.2.24 (and also in Proposition 3.2.27) can be relaxed into the
following condition: κo is locally integrable and locally bounded on G\{0}.

This ensures that all the computations make sense and, since the unit
sphere of a given homogeneous quasi-norm is compact, |κo| is bounded there.

We will not use this fact.

(ii) By Lemma 3.1.45 the condition mκo
= 0 is independent of the homogeneous

quasi-norm. However, the distribution defined in (3.53) depends on the choice
of a particular homogeneous quasi-norm. For instance, one can show that the
function on R2 given in polar coordinates by

κo(re
iθ) =

cos 4θ

r2
,

admits two different extensions κ via the procedure (3.53) when considering
the Euclidean norm (x, y) �→ (x2 + y2)1/2 and the ℓ1-norm (x, y) �→ |x|+ |y|.

Definition 3.2.26. The distribution given in (3.53) is called a principal value dis-
tribution denoted by

p.v. κo(x).

The notation is ambiguous unless a homogeneous norm is specified.
The next proposition states that, modulo a Dirac distribution at the origin,

the only possible extension is the principal value distribution:

Proposition 3.2.27. Let κ be a homogeneous distribution of degree ν with Re ν =
−Q on a homogeneous Lie group G. We assume that the restriction of κ to G\{0}
coincides with a continuous function κo.

Then κo is homogeneous of degree ν on G\{0} and mκo
= 0. Moreover, after

the choice of a homogeneous norm,

κ(x) = p.v. κo(x) + cδo,

for some constant c ∈ C, with c = 0 if ν �= −Q.
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Proof. By Proposition 3.2.24, mκo = 0. Then

κ′ := κ− p.v. κo

is also homogeneous of degree ν and supported at the origin.

Let f ∈ D(G) with f(0) = 0. Due to the compact support of κ′, |〈κ′, f〉| is
controlled by some Ck norm of f on a fixed small neighbourhood of the origin.
But, because of its homogeneity of degree ν with Re ν = −Q,

∀t > 0 |〈κ′, f〉| = |〈κ′, f ◦Dt〉|.

Letting t tend to 0, the note that the Ck norms of f ◦Dt remain bounded. Let us
show that as t→ 0, we actually have 〈κ′, f ◦Dt〉 → 0. We claim that f ◦Dt → 0
in Ck(U) for a neighbourhood U of 0. Indeed,

Xα(f ◦Dt) = t[α](Xαf) ◦Dt → 0 as t→ 0,

provided that α �= 0. On the other hand, also (f ◦ Dt)(x) = f(tx) → f(0) = 0
as t → 0, and same for the L∞ norm over the set U . Thus, we have proved that
〈κ′, f〉 = 0 for any f ∈ D(G) vanishing at 0.

We now fix a function χ ∈ D(G) with χ(0) = 1. For any f ∈ D(G),

〈κ′, f〉 = 〈κ′, f − f(0)χ〉+ f(0)〈κ′, χ〉 = f(0)〈κ′, χ〉,

since f − f(0)χ ∈ D(G) vanishes at 0. This shows κ′ = cδ0 where c = 〈κ′, χ〉. But
δ0 is homogeneous of degree −Q, see Example 3.1.20, whereas κ′ is homogeneous
of degree ν. So c = 0 if ν �= −Q.

Alternatively, we can also argue as follows. By Proposition 1.4.2 we must
have

κ′ = κ− p.v. κo =
∑

|α|≤j

aα∂
αδ0

for some j and some constants aα. Now, we know by Example 3.1.20 that δ0 is
homogeneous of degree −Q, and by Proposition 3.1.23 that ∂αδ0 is homogeneous
of degree −Q−[α]. Since κ′ is homogeneous of degree −Q, it follows that all aα = 0
for −Q − [α] �= ν. The statement now follows since, if ν �= −Q, we must have all
aα = 0, and if ν = −Q, we take c = a0. �

Using the vocabulary of kernels of type ν, see Definition 3.2.9, Proposition
3.2.24 implies easily:

Corollary 3.2.28. Let G be a homogeneous Lie group and let κo be a smooth ho-
mogeneous function on G\{0} of degree ν with Re ν = −Q. Then κo extends to
a homogeneous distribution in D′(G) if and only if its average value, defined in
Lemmata 3.1.43 and 3.1.45, is mκo

= 0. In this case, the extension is a kernel of
type ν.
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Remark 3.2.29. Remark 3.2.10 explained the correspondence between the kernels
of type ν and their restriction to G\{0} in the case Re ν ∈ (0, Q).

With Corollary 3.2.28, we obtain the case Re ν = 0: the restriction to G\{0}
yields a correspondence between

• the (ν−Q)-homogeneous functions in C∞(G\{0}) with vanishing mean value

• and the kernels of type ν.

It is one-to-one if ν �= 0 but if ν = 0, we have to consider the kernels of type ν
modulo Cδ0.

3.2.5 Operators of type ν = 0

We can now go back to our original motivation, that is, a condition on a left-
invariant homogeneous operator of degree 0 to obtain continuity on every Lp(G).
Our condition here is that the operator is of type 0, or more generally of type ν,
Re ν = 0.

Theorem 3.2.30. Let G be a homogeneous Lie group and let ν ∈ C with

Re ν = 0.

Any operator of type ν on G is (−ν)-homogeneous and extends to a bounded op-
erator on Lp(G), p ∈ (1,∞).

The proof consists in showing that the operator is Calderón-Zygmund (in
the sense of Definition 3.2.15) and bounded on L2(G). Note that the cancellation
condition (see Remark 3.2.18), is provided by mκo

= 0, see Proposition 3.2.27.

Proof. Let κ ∈ D′(G) be a kernel of type ν, Re ν = 0. We denote by κo its
smooth restriction to G\{0}. One checks easily that κo satisfies the hypotheses of
Corollary 3.2.20. Consequently, κo is a Calderón-Zygmund kernel in the sense of
Definition 3.2.15. By the Singular Integral Theorem, more precisely its form given
in Proposition 3.2.17, to prove the Lp-boundedness for every p ∈ (1,∞), it suffices
to prove the case p = 2.

Fixing a homogeneous norm | · | smooth away from the origin, by Proposi-
tion 3.2.27, we may assume that κ is the principal value distribution of κo (see
Definition 3.2.26). We want to show that

f �→ f ∗ p.v. κo

is bounded on L2(G). For this, we will apply the Cotlar-Stein lemma (see Theo-
rem A.5.2) to the operators

Tj : f �→ f ∗Kj , j ∈ Z,

where
Kj(x) = κo(x)12−j≤|x|≤2−j+1(x).
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We claim that

max
(
‖T ∗

j Tk‖L (L2(G)), ‖TjT
∗
k ‖L (L2(G))

)
≤ C2−|j−k|. (3.54)

Assuming this claim, by the Cotlar-Stein lemma,
∑

j Tj defines a bounded oper-

ator on L2(G) and its (right convolution) kernel is
∑

j Kj which coincides, as a
distribution, with p.v. κo = κ. This would conclude the proof.

Let us start to prove Claim (3.54). It is not difficult to see (see (3.47)) that
the adjoint of the operator Tj on L2(G) is the convolution operator with right
convolution kernel given by

K∗
j (x) = K̄j(x

−1),

which is compactly supported. Therefore, the operators T ∗
j Tk and TjT

∗
k are con-

volution operators with kernels Kk ∗ K∗
j and K∗

k ∗ Kj , respectively. We observe
that, by homogeneity of κo, for any j ∈ N0,

|Kj(x)| = 2jQ|K0(2
jx)| and so ‖Kj‖L1(G) = ‖K0‖L1(G).

By the Young convolution inequality (see Proposition 1.5.2), the operators Tj ,
T ∗
j Tk and TjT

∗
k are bounded on L2(G) with operator norms

‖Tj‖L (L2(G)) ≤ ‖Kj‖1 = ‖K0‖1,
‖T ∗

j Tk‖L (L2(G)) ≤ ‖Kk ∗K∗
j ‖1 ≤ ‖Kk‖1‖K∗

j ‖1 = ‖K0‖21,
‖TjT

∗
k ‖L (L2(G)) ≤ ‖K∗

k ∗Kj‖1 ≤ ‖K∗
k‖1‖Kj‖1 = ‖K0‖21.

In order to prove Claim (3.54) we need to obtain a better decay for ‖Kk ∗K∗
j ‖1

and ‖K∗
k ∗Kj‖1 when j and k are ‘far apart’. Since ‖Kk ∗K∗

j ‖1 = ‖Kj ∗K∗
k‖1 and

‖K∗
k ∗Kj‖1 = ‖K∗

j ∗Kk‖1, we may assume k > j. Quantitatively we assume that

C12
j−k+1 < 1/2 where C1 ≥ 1 is the constant appearing in (3.26) for b = 1/2.

We observe that the cancellation condition mκo
= 0 implies

∫

G

Kk(x)dx =

∫

2−k≤|x|≤2−k+1

κo(x)dx = mκo
ln 2 = 0,

and so

∣∣Kk ∗K∗
j (x)

∣∣ =

∣∣∣∣
∫

G

Kk(y)K
∗
j (y

−1x)dy

∣∣∣∣ =
∣∣∣∣
∫

G

Kk(y)
(
K∗

j (y
−1x)−K∗

j (x)
)
dy

∣∣∣∣

≤
∫

G

|Kk(y)|
∣∣K∗

j (y
−1x)−K∗

j (x)
∣∣ dy

≤
∫

2−k≤|y|≤2−k+1

Co|y|−Q
∣∣K∗

j (y
−1x)−K∗

j (x)
∣∣ dy,
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where Co is the maximum of |κo| on the unit sphere {|x| = 1}. Thus after the
change of variable z = 2ky,

∣∣Kk ∗K∗
j (x)

∣∣ ≤
∫

1≤|z|≤2

Co|z|−Q
∣∣K∗

j ((2
−kz)−1x)−K∗

j (x)
∣∣ dz.

We want to estimate the L1-norm with respect to x of the last expression. Hence
we now look at

∫

G

∣∣K∗
j ((2

−kz)−1x)−K∗
j (x)

∣∣ dx =

∫

G

∣∣Kj

(
x1 2−kz

)
−Kj(x1)

∣∣ dx1,

after the change of variable x = x−1
1 . Using Kj = 2jνK0 ◦Dj and the change of

variable x2 = 2jx1, we obtain
∫

G

∣∣Kj

(
x1 2−kz

)
−Kj(x1)

∣∣ dx1 =

∫

G

∣∣K0

(
x2 2−k+jz

)
−K0(x2)

∣∣ dx2.

Let A0 = {1 ≤ |x| ≤ 2} be the annulus with radii 1 and 2 around 0 and write
momentarily y−1 = 2−k+jz with z ∈ A0. We can write the last integral as

∫

G

∣∣K0(xy
−1)−K0(x)

∣∣ dx =

∫

A0∩(A0y)

+

∫

A0\(A0y)

+

∫

(A0y)\A0

.

For the last two integrals, we see with a change of variable x = x′y−1 that
∫

A0\(A0y)

=

∫

A0\(A0y)

|K0(x)| dx =

∫

(A0y)\A0

∣∣K0(x
′y−1)

∣∣ dx′ =

∫

(A0y)\A0

,

and ∫

A0\(A0y)

|K0| ≤
∫
|xy−1|>2
1≤|x|≤2

Co|x|−Qdx+

∫
|xy−1|<1
1≤|x|≤2

Co|x|−Qdx.

Thus
∫

G

∣∣K0(xy
−1)−K0(x)

∣∣ dx =

∫

A0∩(A0y)

|K0(xy
−1)−K0(x)|dx (3.55)

+2Co

⎛
⎝
∫
|xy−1|>2
1≤|x|≤2

|x|−Qdx+

∫
|xy−1|<1
1≤|x|≤2

|x|−Qdx

⎞
⎠ .

Since y−1 is relatively small, by (3.26) we get for the two integrals above

∫
|xy−1|>2
1≤|x|≤2

+

∫
|xy−1|<1
1≤|x|≤2

≤
∫

2−C1|y|<|x|≤2

+

∫

1≤|x|<1+C1|y|

= ln
2

2− C1|y|
+ ln(1 + C1|y|) ≤ C|y|,
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(see Example 3.1.44), whereas by Proposition 3.1.40 we have for any x ∈ A0,

∣∣K0(xy
−1)−K0(x)

∣∣ ≤ C|y| |x|−Q−1,

and so
∫

A0∩(A0y)

∣∣K0(xy
−1)−K0(x)

∣∣ dx ≤ C|y|
∫

1≤|x|≤2

|x|−Q−1dx ≤ C|y|.

We have obtained that the expression (3.55) is up to a constant less than 2−k+j

when C12
j−k+1 < 1/2 (and y−1 = 2−k+jz, z ∈ A0). This estimate gives

‖Kk ∗K∗
j ‖1 ≤ Co

∫

z∈A0

|z|−Q

∫

G

∣∣K0(x 2−k+jz)−K0(x)
∣∣ dx dz

≤ Co

∫

z∈A0

|z|−Q+1C2−k+j dz ≤ C2−k+j .

With a very minor modification, we can show in the same way that ‖K∗
k ∗Kj‖1 ≤

C2−k+j .
This shows Claim (3.54) and concludes the proof of Theorem 3.2.30. �

Remark 3.2.31. In view of the proof, we can relax the smoothness condition in
the hypotheses of Theorem 3.2.30: it suffices to assume that κo ∈ C1(G\{0}).

This ensures that we can apply Propositions 3.2.27 and 3.1.40 during the
proof.

3.2.6 Properties of kernels of type ν, Re ν ∈ [0, Q)

The kernels and operators of type ν have been defined in Definition 3.2.9. Sum-
marising results of the previous section, namely Corollary 3.2.11 for Re ν ∈ (0, Q),
and Theorem 3.2.30 for Re ν = 0, we can unite them as

Corollary 3.2.32. Let G be a homogeneous Lie group and let ν ∈ C with

Re ν ∈ [0, Q).

Any operator of type ν on G is (−ν)-homogeneous and extends to a bounded op-
erator from Lp(G) to Lq(G) provided that

1

p
− 1

q
=

Re ν

Q
, 1 < p ≤ q <∞.

When considering kernels of type ν, we have regularly used the following
property: if κ is a kernel of type ν then, fixing a homogeneous quasi-norm | · | on
G, κ admits a maximum Cκ on the unit sphere {|x| = 1}, and by homogeneity we
have

∀x ∈ G\{0} |κ(x)| ≤ Cκ|x|Re ν−Q. (3.56)
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In particular, it is locally integrable if Re ν > 0 and defines a distribution on the
whole group G in this case. In the case when Re ν = 0, by Proposition 3.2.27, κ
also defines a distribution on G of the form

κ = p.v. κ1 + cδ0,

where κ1 is of type ν with vanishing average value and c ∈ C is a constant.

We can also deduce the type of a kernel from the following lemma:

Lemma 3.2.33. Let κ be a kernel of type νκ with Re νκ ∈ (0, Q). Let T be a
homogeneous differential operator of homogeneous degree νT . If Re νκ−νT ∈ [0, Q)
then Tκ defines a kernel of type νκ − νT .

Proof. Clearly Tκ is a (Q − νκ + νT )-homogeneous distribution which coincides
with a smooth function away from 0. �

Remark 3.2.34. We have obtained certain properties of convolution operators with
kernels of type ν in Corollary 3.2.11 for Re ν ∈ (0, Q), and in Theorem 3.2.30 for
Re ν = 0. When composing two such types of operators, we have to deal with
the convolution of two kernels and this is a problematic question in general. In-
deed, the problems about convolving distributions on a non-compact Lie group
are essentially the same as in the case of the abelian convolution on Rn. The con-
volution τ1 ∗ τ2 of two distributions τ1, τ2 ∈ D′(G) is well defined as a distribution
provided that at most one of them has compact support, see Section 1.5. How-
ever, additional assumptions must be imposed in order to define convolutions of
distributions with non-compact supports. Furthermore, the associative law

(τ1 ∗ τ2) ∗ τ3 = τ1 ∗ (τ2 ∗ τ3), (3.57)

holds when at most one of the τj ’s has non-compact support, but not necessarily
when only one of the τj ’s has compact support even if each convolution in (3.57)
could have a meaning.

The following proposition establishes that there is no such pathology appear-
ing when considering convolution with kernel of type ν with Re ν ∈ [0, Q). This
will be useful in the sequel.

Proposition 3.2.35. Let G be a homogeneous Lie group.

(i) Suppose ν ∈ C with 0 ≤ Re ν < Q, p ≥ 1, q > 1, and r ≥ 1 given by

1

r
=

1

p
+

1

q
− Re ν

Q
− 1.

If κ is a kernel of type ν, f ∈ Lp(G), and g ∈ Lq(G), then f ∗ (g ∗ κ) and
(f ∗ g) ∗ κ are well defined as elements of Lr(G), and they are equal.
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(ii) Suppose κ1 is a kernel of type ν1 ∈ C with Re ν1 > 0 and κ2 is a kernel of
type ν2 ∈ C with Re ν2 ≥ 0. We assume Re (ν1 + ν2) < Q. Then κ1 ∗ κ2 is
well defined as a kernel of type ν1 + ν2. Moreover, if f ∈ Lp(G) where

1 < p < Q/(Re (ν1 + ν2))

then (f ∗ κ1) ∗ κ2 and f ∗ (κ1 ∗ κ2) belong to Lq(G),

1

q
=

1

p
− Re (ν1 + ν2)

Q
,

and they are equal.

Proof. Let us prove Part (i). By Corollary 3.2.11, Theorem 3.2.30 and Young’s
inequality (see Proposition 1.5.2), the mappings (f, g) �→ f ∗ (g ∗ κ) and (f, g) �→
(f ∗ g) ∗κ are continuous from Lp(G)×Lq(G) to Lr(G). They coincide when they
have compact support, and hence in general.

Let us prove Part (ii). We fix a homogeneous quasi-norm | · | smooth away
from the origin. We will use the general properties of kernels of type ν explained
at the beginning of this section, especially estimate (3.56).

Let x �= 0 be given. We can find ǫ > 0 such that the balls

B(0, ǫ) := {y : |y| < ǫ} and B(x, ǫ) := {y : |xy−1| < ǫ},

do not intersect. We note that these balls are different from those in Definition
3.1.33 (that are used throughout this book) but in this proof only, it will be more
convenient for us to work with the balls defined as above.

If Re ν1, Re ν2 > 0, then both κ1 and κ2 are locally integrable and

∣∣κ1(xy
−1)κ2(y)

∣∣ ≤ Cx,ǫ

⎧
⎨
⎩
|y|Re ν2−Q for y ∈ B(0, ǫ),
|xy−1|Re ν1−Q for y ∈ B(x, ǫ),
O(|y|Re (ν1+ν2)−2Q) y /∈ B(0, ǫ) ∪B(x, ǫ).

Thus we can integrate κ1(xy
−1)κ2(y) against dy on B(0, ǫ), B(x, ǫ) and outside of

B(0, ǫ) ∪B(x, ǫ) to obtain the sum of three integrals absolutely convergent:

⎡
⎣
∫

y∈B(0,ǫ)

+

∫

y∈B(x,ǫ)

+

∫
|y|>ǫ

|xy−1|>ǫ

⎤
⎦κ1(xy

−1)κ2(y)dy := κ(x).

This defines κ(x) which is independent of ǫ small enough.

If Re ν2 = 0, by Proposition 3.2.27, we may assume that κ2 is the principal
value of a homogeneous distribution with mean average 0 (see also Definition 3.2.26
and (3.53)). In this case, by smoothness of κ1 away from 0 and Proposition 3.1.40,

∣∣(κ1(xy
−1)− κ1(x)

)
κ2(y)

∣∣ ≤ Cx,ǫ|y|1−Q for y ∈ B(0, ǫ),
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and we obtain again the sum of three integrals absolutely convergent:
∫

y∈B(0,ǫ)

(
κ1(xy

−1)− κ1(x)
)
κ2(y)dy +

+

⎡
⎣
∫

y∈B(x,ǫ)

+

∫
|y|>ǫ

|xy−1|>ǫ

⎤
⎦κ1(xy

−1)κ2(y)dy =: κ(x).

This defines κ(x) which is independent of ǫ small enough.
In both cases, we have defined a function κ on G\{0}. A simple change of

variables shows that κ is homogeneous of degree ν1 + ν2 − Q (this is left to the
reader interested in checking this fact).

Let us fix φ1 ∈ D(G) with φ1 ≡ 1 on B(0, ǫ/2) and φ1 ≡ 0 on the complement
of B(0, ǫ). We fix again x �= 0 and we set φ2(y) = φ1(xy

−1). Then φ1 and φ2 have
disjoint supports and for Re ν2 > 0 it is easy to check that for z ∈ B(x, ǫ/2) we
have κ(z) = I1 + I2 + I3, where

I1 =

∫

G

φ1(y)κ1(zy
−1)κ2(y)dy,

I2 =

∫

G

φ2(y)κ1(zy
−1)κ2(y)dy =

∫

G

φ2(y
−1z)κ1(y)κ2(y

−1z)dy,

I3 =

∫

G

(1− φ1(y)− φ2(y))κ1(zy
−1)κ2(y)dy,

with a similar formula for Re ν2 = 0. The integrands of I1, I2, and I3 depend
smoothly on z. Furthermore, one checks easily that their derivatives in z remains
integrable. This shows that κ is smooth near each point x �= 0. Since Re (ν1+ν2) >
0, κ is locally integrable on the whole group G. Hence the distribution κ ∈ D′(G)
is a kernel of type ν1 + ν2.

We can check easily for φ ∈ D(G),

〈κ, φ〉 = 〈κ1, φ ∗ κ̃2〉 = 〈κ2, κ̃1 ∗ φ〉.

So having (1.14) and (1.15) we define κ1 ∗ κ2 := κ.

Let f ∈ Lp(G) where p > 1 and

1

q
=

1

p
− Re (ν1 + ν2)

Q
> 0.

We observe that (f ∗ κ1) ∗ κ2 and f ∗ κ are in Lq(G) by Corollary 3.2.11, Theo-
rem 3.2.30, and Young’s inequality (see Proposition 1.5.2). To complete the proof,
it suffices to show that the distributions (f ∗ κ1) ∗ κ2 and f ∗ (κ1 ∗ κ2) are equal.
For this purpose, we write κ1 = κ0

1 + κ∞
1 with

κ0
1 := κ1 1|x|≤1 and κ∞

1 := κ1 1|x|>1.
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If r = Q/(Q − Re ν1) then κ0
1 ∈ Lr−ǫ(G) and κ∞

1 ∈ Lr+ǫ(G) for any ǫ > 0. We
take ǫ so small that r − ǫ > 1 and

p−1 + (r + ǫ)−1 − Re ν2/Q− 1 > 0.

By Part (i), (f ∗ κ0
1) ∗ κ2 and f ∗ (κ0

1 ∗ κ2) coincide as elements of Ls(G) where

s−1 = p−1 + (r − ǫ)−1 − Re ν2/Q− 1.

And (f ∗ κ∞
1 ) ∗ κ2 and f ∗ (κ∞

1 ∗ κ2) coincide as elements of Lt(G) where

t−1 = p−1 + (r + ǫ)−1 − Re ν2/Q− 1.

Thus (f ∗κ1)∗κ2 and f ∗κ coincide as elements of Ls(G) and Lt(G). This concludes
the proof of Part (ii) and of Proposition 3.2.35. �

3.2.7 Fundamental solutions of homogeneous differential operators

On open sets or manifolds, general results about the existence of fundamental
kernels of operators hold, see e.g. [Tre67, Theorems 52.1 and 52.2]. On a Lie group,
we can study the case when the fundamental kernels are of the form κ(x−y) in the
abelian case and κ(y−1x) on a general Lie group, where κ is a distribution, often
called a fundamental solution. It is sometimes possible and desirable to obtain
the existence of such fundamental solutions for left or right invariant differential
operators.

In this section, we first give a definition and two general statements valid
on any connected Lie group, and then analyse in more detail the situation on
homogeneous Lie groups.

Definition 3.2.36. Let L be a left-invariant differential operator on a connected
Lie group G. A distribution κ in D′(G) is called a (global) fundamental solution
of L if

Lκ = δ0.

A distribution κ̃ on a neighbourhood Ω of 0 is called a local fundamental solution
of L (at 0) if Lκ̃ = δ0 on Ω.

On (Rn,+), global fundamental solutions are often called Green functions.

Example 3.2.37. Fundamental solutions for the Laplacian Δ =
∑

j ∂
2
j on Rn are

well-known

G(x) =

⎧
⎨
⎩

cn
|x|n−2 + p(x) if n ≥ 3

c2 ln |x|+ p(x) if n = 2
x1[0,∞)(x) + p(x) if n = 1

where cn is a (known) constant of n, p is any polynomial of degree ≤ 1, and | · |
the Euclidean norm on Rn.
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Example 3.2.37 shows that fundamental solutions are not unique, unless some
hypotheses, e.g. homogeneity (besides existence), are added.

Although, in practice, ‘computing’ fundamental solutions is usually difficult,
they are useful and important objects.

Lemma 3.2.38. Let L be a left-invariant differential operator with smooth coeffi-
cients on a connected Lie group G.

1. If L admits a fundamental solution κ, then for every distribution u ∈ D′(G)
with compact support, the convolution f = u ∗ κ ∈ D′(G) satisfies

Lf = u

on G.

2. An operator L admits a local fundamental solution if and only if it is locally
solvable at every point.

For the definition of locally solvability, see Definition A.1.4.

Proof. For the first statement,

L
(
u ∗ κ

)
= u ∗ Lκ = u ∗ δ0 = u.

For the second statement, if L is locally solvable, then at least at the origin,
one can solve Lκ̃ = δ0 and this shows that L admits a local fundamental solution.

Conversely, let us assume that L admits a local fundamental solution κ̃ on
the open neighbourhood Ω of 0. We can always find a function χ ∈ D(Ω) such that
χ = 1 on an open neighbourhood Ω1 � Ω of 0; we define κ1 ∈ D′(Ω) by κ1 := χκ̃
and view κ1 also as a distribution with compact support. Then it is easy to check
that Lκ1 = δ0 on Ω1 but that

Lκ1 = δ0 +Φ,

where Φ is a distribution whose support does not intersect Ω1.
Let Ω0 be an open neighbourhood of 0 such that

Ω−1
0 Ω0 = {x−1y : x, y ∈ Ω0} � Ω1.

We can always find a function χ1 ∈ D(Ω0) which is equal to 1 on a neighbourhood
Ω′

0 � Ω0 of 0.
If now u ∈ D′(G), then the convolution f = (χ1u) ∗ κ1 is well defined and

Lf = χ1u+ χ1u ∗ Φ,

showing that Lf = χ1u on Ω0 and hence Lf = u on Ω′
0. Hence L is locally solvable

at 0. By left-invariance, it is locally solvable at any point. �
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Because of the duality between hypoellipticity and solvability, local funda-
mental solutions exist under the following condition:

Proposition 3.2.39. Let L be a left-invariant hypoelliptic operator on a connected
Lie group G. Then Lt is also left-invariant and it has a local fundamental solution.

Proof. The first statement follows easily from the definition of Lt, and the second
from the duality between solvability and hypoellipticity (cf. Theorem A.1.3) and
Lemma 3.2.38. �

The next theorem describes some property of existence and uniqueness of
global fundamental solutions in the context of homogeneous Lie groups.

Theorem 3.2.40. Let L be a ν-homogeneous left-invariant differential operator on
a homogeneous Lie group G. We assume that the operators L and Lt are hypoel-
liptic on a neighbourhood of 0. Then L admits a fundamental solution κ ∈ S ′(G)
satisfying:

(a) if ν < Q, the distribution κ is homogeneous of degree ν −Q and unique,

(b) if ν ≥ Q, κ = κo + p(x) ln |x| where
(i) κo ∈ S ′(G) is a homogeneous distribution of degree ν − Q, which is

smooth away from 0,

(ii) p is a polynomial of degree ν −Q and,

(iii) | · | is any homogeneous quasi-norm, smooth away from the origin.

Necessarily κ is smooth on G\{0}.
Remark 3.2.41. In case (a), the unique homogeneous fundamental solution is a
kernel of type ν, with the uniqueness understood in the class of homogeneous
distributions of degree ν−Q. For case (b), Example 3.2.37 shows that one can not
hope to always have a homogeneous fundamental solution.

The rest of this section is devoted to the proof of Theorem 3.2.40.
The proofs of Parts (a) and (b) as presented here mainly follow the original

proofs of these results due to Folland in [Fol75] and Geller in [Gel83], respectively.

Proof of Theorem 3.2.40 Part (a). Let L be as in the statement and let ν < Q.
By Proposition 3.2.39, L admits a local fundamental solution at 0: there exist a
neighbourhood Ω of 0 and a distribution κ̃ ∈ D′(Ω) such that Lκ̃ = δ0 on Ω. Note
that by the hypoellipticity of L, κ̃ as well as any fundamental solution coincide
with a smooth function away form 0. By shrinking Ω if necessary, we may assume
that after having fixed a homogeneous quasi-norm, Ω is a ball around 0. So if
x ∈ Ω and r ∈ (0, 1] then rx ∈ Ω.

Folland observed that if κ exists then the distribution h := κ̃− κ annihilates
L on Ω, so it must be smooth on Ω, while

κ(x) = rQ−ν κ̃(rx)− rQ−νh(rx)



3.2. Operators on homogeneous Lie groups 161

yields
κ(x) = lim

r→0
rQ−ν κ̃(rx)

and
h(x) = κ̃(x)− lim

r→0
rQ−ν κ̃(rx).

Going back to our proof, Folland’s idea was to define hr ∈ D′(Ω) by

hr := κ̃− rQ−ν κ̃ ◦Dr on Ω\{0}, r ∈ (0, 1],

which makes sense in view of the smoothness of κ̃ on Ω\{0}. Since for any test
function φ ∈ D(Ω),

〈L(rQ−ν κ̃(r ·)), φ〉 = 〈rQ(Lκ̃)(r ·)), φ〉 = 〈Lκ̃, φ(r−1·)〉 = φ(r−10) = φ(0),

we have Lhr = δ0 − δ0 = 0. So hr is in NL(Ω) ⊂ C∞(Ω) where the D′(Ω) and
C∞(Ω) topologies agree, see Theorem A.1.6. Let us show that

∃ lim
r→0

hr ∈ h ∈ C∞(Ω); (3.58)

for this it suffices to show that {hr} is a Cauchy family in D′(Ω).

We observe that if s ≤ r, we have

hs(x)− hr(x) = rQ−ν κ̃(rx)− sQ−ν κ̃(sx)

= rQ−ν

(
κ̃
(
rx

)
−

(s
r

)Q−ν

κ̃
(s
r
rx

))

= rQ−νh s
r
(rx). (3.59)

In particular, setting s = r2 in (3.59) we obtain

hr2 = rQ−νhr ◦Dr + hr.

This formula yields, first by substituting r by r2,

hr4 = r2(Q−ν)hr2 ◦Dr2 + hr2

= r2(Q−ν)
(
rQ−νhr ◦Dr ◦Dr2 + hr ◦Dr2

)
+ rQ−νhr ◦Dr + hr

= r3(Q−ν)hr ◦Dr3 + r2(Q−ν)hr ◦Dr2 + rQ−νhr ◦Dr + hr.

Continuing inductively, we obtain

hr2ℓ
=

2ℓ−1∑

k=0

rk(Q−ν)hr ◦Drk .

This implies

∀n ∈ N0 sup
x∈(1−ǫ)Ω

|h
r2ℓ

(x)| ≤ (1− rQ−ν)−1 sup
x∈(1−ǫ)Ω

|hr(x)|,
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and, since any s ≤ 1
2 can be expressed as s = r2

ℓ

for some ℓ ∈ N0 and some
r ∈ [ 14 ,

1
2 ],

∀s ≤ 1

2
sup

x∈(1−ǫ)Ω

|hs(x)| ≤ (1− 2ν−Q)−1 sup
x∈(1−ǫ)Ω
1
4≤r≤ 1

2

|hr(x)|.

Now the Schwartz-Treves lemma (see Theorem A.1.6) implies that the topolo-
gies of D′(Ω) and C∞(Ω) on

NL(Ω) = {f ∈ D′(Ω) : Tf = 0} ⊂ C∞(Ω)

coincide. Since r �→ hr is clearly continuous from (0, 1] to D′(Ω)∩NL(Ω), {hr, r ∈
[ 14 ,

1
2 ]} and {hr, r ∈ [ 12 , 1]} are compact in D(Ω). Therefore, we have

sup
x∈(1−ǫ)Ω
0<s≤1

|hs(x)| ≤ sup
x∈(1−ǫ)Ω
0<s≤ 1

2

|hs(x)|+ sup
x∈(1−ǫ)Ω

1
2≤s≤1

|hs(x)|

≤ (1− 2ν−Q)−1 sup
x∈(1−ǫ)Ω
1
4≤r≤ 1

2

|hr(x)|+ sup
x∈(1−ǫ)Ω

1
2≤s≤1

|hs(x)| = Cǫ <∞,

that is, the hr’s are uniformly bounded on (1− ǫ)Ω. But if s < r, (3.59) implies

sup
x∈(1−ǫ)Ω

|hs(x)− hr(x)| ≤ rQ−ν sup
x∈(1−ǫ)Ω

∣∣h s
r
(rx)

∣∣ ≤ Cǫr
Q−ν −→

r→0
0.

This shows that {hr}r∈(0,1] is a Cauchy family of C(K) for any compact subset
K of Ω. Therefore, {hr}r∈(0,1] is a Cauchy family of D′(Ω) and Claim (3.58) is
proved. Let h ∈ C∞(Ω) be the limit of {hr}. Necessarily Lh = 0. We set

κ := κ̃− h ∈ D′(Ω).

Now, on one hand
Lκ = Lκ̃− Lh = δ0

and κ is smooth on Ω\{0}, and on the other,

κ(x) = lim
r→0

rQ−ν κ̃(rx),

so if s ∈ (0, 1], then

κ(sx) = lim
r→0

rQ−ν κ̃(srx) = lim
r′=rs→0

(
r′

s

)Q−ν

κ̃(r′x) = sν−Qκ(x).

By requiring that the formula κ(sx) = sν−Qκ(x) holds for all s > 0 and x �= 0, we
can extend κ into a distribution defined on the whole space. The homogeneity of
L guarantees that the equation Lκ = δ0 holds globally.

Finally, if κ1 were another fundamental solution of L satisfying (a), then
κ − κ1 would be (ν − Q)-homogeneous with ν − Q < 0; κ − κ1 would also be
smooth even at 0 since it annihilates L on G. Thus κ− κ1 = 0. �
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Proof of Theorem 3.2.40 Part (b). Let L be as in the statement and let ν ≥ Q.
Let also κ̃, Ω and hr be defined as in the proof of part (a).

Geller noticed that Folland’s idea could be adapted by taking higher order
derivatives. Indeed from (3.59), we have

Xαhs(x)−Xαhr(x) = rQ−ν+[α]Xαh s
r
(rx);

if α ∈ Nn
0 is large so that Q − ν + [α] > 0, we can proceed as for hr in the proof

of Part (a) and obtain that {Xαhr}r∈(0,1] is a Cauchy family of C∞(Ω).

If [α] ≤ ν −Q, the C∞(Ω)-family {Xαhr}r∈(0,1] may not be Cauchy but by
Taylor’s theorem at the origin for homogeneous Lie groups, cf. Theorem 3.1.51,

∣∣∣hr(x)− P
(hr)
0,M (x)

∣∣∣ ≤ CM

∑

|α|≤⌈M⌋+1
[α]>M

|x|[α] sup
|z|≤η⌈M⌋+1|x|

|(Xαhr) (z)| ,

for any x such that x and η⌈M⌋+1x are in the ball Ω. Choosing M = ν − Q and

setting the polynomial pr(x) := P
(hr)
0,M (x) and the ball Ω′ := η−(⌈M⌋+1)Ω, this

shows that the C∞(Ω′)-family {hr − pr}r∈(0,1] is Cauchy. We set

C∞(Ω′) ∋ h := lim
r→0

(hr − pr), κo := κ̃− h ∈ D(Ω′).

Note that Lpr = 0, since the polynomial pr is of degree ν −Q and the differential
operator L is ν-homogeneous. Therefore, Lκo = δ0 in Ω′ and κo ∈ C∞(Ω′\{0}).
Furthermore, if [α] > ν −Q and x ∈ Ω′\{0} then

(
∂

∂x

)α

κo(x) = lim
r→0

rQ−ν+[α]

(
∂

∂x

)α

κ̃(rx),

so if s ∈ (0, 1],
(

∂

∂x

)α

κo(sx) = lim
r→0

rQ−ν+[α]

(
∂

∂x

)α

κ̃(rsx)

= lim
r′=rs→0

(
r′

s

)Q−ν+[α] (
∂

∂x

)α

κ̃(r′x) = sν−Q−[α]

(
∂

∂x

)α

κ(x).

One could describe this property as
(

∂
∂x

)α
κo being homogeneous on Ω′\{0}. We

conclude the proof by applying Lemma 3.2.42 below. �

In order to state Lemma 3.2.42, we first define the set W of all the possible
homogeneous degrees [α], α ∈ Nn

0 ,

W := {υ1α1 + . . .+ υnαn : α1, . . . , αn ∈ N0}. (3.60)

In other words, W is the additive semi-group of R generated by 0 and WA.
For instance, in the abelian case (Rn,+) or on the Heisenberg group Hno

,
with our conventions, W = N0. This is also the case for a stratified Lie group or
for a graded Lie group with g1 non-trivial.
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Lemma 3.2.42. Let B be an open ball around the origin of a homogeneous Lie
group G equipped with a smooth homogeneous quasi-norm | · |. We consider the
sets of functions Kν defined by

if ν ∈ R\W Kν := {f ∈ C∞(B\{0}) : f is ν-homogeneous} ,
if ν ∈ W Kν := {f ∈ C∞(B\{0}) : f = f1 + p(x) ln |x| ,

where f1 is ν-homogeneous and p is a ν-homogeneous polynomial} ,

where W was defined in (3.60), and we say that a function f on B or B\{0} is
ν-homogeneous when f ◦Ds = sνf on B for all s ∈ (0, 1).

For any ν ∈ R and f ∈ C∞(B\{0}), if
(

∂
∂x

)α
f ∈ Kν−[α] with [α] > ν, then

there exists p ∈ P<ν such that f − p ∈ Kν .

Recall (see Definition 3.1.26) that P<M denotes the set of polynomials P on
G such that D◦P < M . It is empty if M < 0.

Proof of Lemma 3.2.42. By induction it suffices to prove that for any ν ∈ R and
f ∈ C∞(B\{0}),

∂(f − pj)

∂xj
∈ Kν−υj with pj ∈ P<ν−υj for all j = 1, . . . , n

=⇒ f − p ∈ Kν for some p ∈ P<ν . (3.61)

To prove (3.61), we start by showing that for any f ∈ C∞(B\{0}),

∂f

∂xj
∈ Kν−υj for all j = 1, . . . , n =⇒ f − c ∈ Kν for some c ∈ C. (3.62)

By convention (see Definition 3.1.26), a homogeneous polynomial of homogeneous
degree which is not inW is 0. With this in mind we continue the proof of (3.62) in
a unified way. We consider f ∈ C∞(B\{0}) satisfying the hypothesis of (3.62): for
each j = 1, . . . , n, ∂f

∂xj
∈ Kν−υj and there exists pj ∈ P=ν−υj

such that f−pj ln | · |
is a ν-homogeneous function on \{0}. We define

A(r, x) := f(rx)− rνf(x), x ∈ B, r ∈ (0, 1].

We see that

∂A(r, x)

∂xj
= rυj

∂f

∂xj
(rx)− rν

∂f

∂xj
(x)

= rυjpj(rx) ln |rx| − rνpj(x) ln |x| = rνpj(x) ln r.

Note that for any j, k we have

∂pj
∂xk

=
∂pk
∂xj

since
∂

∂xk

∂

∂xj
A(r, x) =

∂

∂xj

∂

∂xk
A(r, x).
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Because of this observation we can adapt the proof of the Poincaré Lemma to
construct the polynomial

q(x) := c

n∑

k=1

υkxkpk(x), (3.63)

which is ν-homogeneous and satisfies

∂q

∂xj
= c

n∑

k=1

υkxk
∂pk(x)

∂xj
+ cυjpj(x) = c

n∑

k=1

υkxk
∂pj(x)

∂xk
+ cυjpj(x)

= c∂t=1 (pj(tx)) + cυjpj(x) = c(ν − υj)pj(x) + cυjpj(x)

= pj(x),

by choosing c = ν−1 if ν �= 0; if ν = 0, the polynomials pj and q are zero. So we
have

∂

∂xj
(A(r, x)− q(x)rν ln r) = 0 for all j = 1, . . . , n.

Therefore,

A(r, x) = q(x)rν ln r + a(r) for some a ∈ C∞((0, 1]).

Replacing f by f − (rν ln r) q we may assume that q = 0 in all the cases, so that

∀r ∈ (0, 1], x ∈ B f(rx)− rνf(x) = a(r). (3.64)

Now if 0 < r, s < 1, then using the formula just above twice, we get

a(rs) = f(rsx)− (rs)νf(x) = a(r) + rνf(sx)− (rs)νf(x)

= a(r) + rν(a(s) + sνf(x))− (rs)νf(x)

= a(r) + rνa(s).

Solving this functional equation and setting

fo(x) := f(x)− a(|x|) (x ∈ G\{0}),

for a particular solution a, we check easily that fo is ν-homogeneous:

• If ν = 0, then a satisfies the functional equation

a(rs) = a(r) + a(s)

and must, therefore, be of the form a(r) = C ln(r) for some constant C ∈ C.
Using (3.64) we obtain

fo(rx) = f(rx)− a(|rx|) = f(x) + a(r)− a(|rx|) = f(x)− C ln |x| = fo(x).
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• If ν �= 0, then a satisfies the functional equation

a(r) + rνa(s) = a(s) + sνa(r)

and must therefore be of the form a(r) = C(1−rν) for some constant C ∈ C.
Using (3.64) we obtain

fo(rx) = f(rx)− C(1− |rx|ν) = rνf(x) + C(1− rν)− C(1− |rx|ν)
= rν (f(x)− C(1− |x|ν)) = rνfo(x).

Hence (3.62) is proved and we can now go back to showing the main claim, that
is, the one given in (3.61). Let f and pj be as in the hypotheses of (3.61).

First we see that if ν < 0, then all the polynomials pj are zero and, inspired
by the construction of q above, we check easily that

∂

∂xj

(
ν−1

n∑

k=1

υkxk
∂f

∂xk

)
=

∂f

∂xj
,

thus f and ν−1
∑n

k=1 υkxk
∂f
∂xk

must coincide so (3.61) is proved in this case.

Let us assume ν ≥ 0. We claim that

∀j, k = 1, . . . , n
∂pk
∂xj

=
∂pj
∂xk

. (3.65)

This is certainly true if ν − υj − υk < 0 since both are zero in this case. If instead
ν − υj − υk ≥ 0 then the polynomial

∂pk
∂xj
− ∂pj

∂xk
=

∂

∂xj

(
pk −

∂f

∂xk

)
− ∂

∂xk

(
pj −

∂f

∂xj

)
,

is in Kν−υj−υk and thus must be zero. Indeed if a polynomial p is in some Ka then
either a �∈ W and then p = 0, or a ∈ W and p(rx) is a polynomial in r of degree
≤ a with r−ap(rx) unbounded unless p = 0; in both cases, p = 0.

Therefore, we can construct q as above by (3.63) so that ∂q
∂xj

= pj . Then

∂(f − q)

∂xj
=

∂f

∂xj
− pj ∈ Kν−υj for all j = 1, . . . , n,

so f − q ∈ Kν by (3.62).
This concludes the proof of Claim (3.61) and of Lemma 3.2.42. �

Remark 3.2.43. The class of functions Kν defined in Lemma 3.2.42 is also used in
the definition of the calculus by Christ et al. [CGGP92].

As an application of Theorem 3.2.40, let us extend Liouville’s Theorem to
homogeneous Lie groups.
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3.2.8 Liouville’s theorem on homogeneous Lie groups

Let us consider the following statement and proof of Liouville’s Theorem in Rn:

Theorem 3.2.44 (Liouville). Every harmonic tempered distribution is a polynomial.
This means that if f ∈ S ′(Rn) and Δf = 0 in the sense of distributions where

Δ is the canonical Laplacian, then f is a polynomial on Rn.

Proof. Let f ∈ S ′(Rn) with Δf = 0. Then |ξ|2f̂ = 0 where f̂ is the Euclidean

Fourier transform of f ∈ S ′(Rn) on Rn. Hence the distribution f̂ is supported at
the origin and must be a linear combination of derivatives of the Dirac distribution
at 0, see Proposition 1.4.2. Consequently f is a polynomial. �

Liouville’s Theorem and its proof given above are also valid for any homo-
geneous elliptic constant-coefficient differential operator on Rn. We now show the
following generalisation for homogeneous Lie groups:

Theorem 3.2.45 (Liouville theorem on homogeneous Lie groups). Let L be a ho-
mogeneous left-invariant differential operator on a homogeneous Lie group G. We
assume that L and Lt are hypoelliptic on G. If the distribution f ∈ S ′(G) satisfies
Lf = 0 then f is a polynomial.

The rest of this section is devoted to the proof of Theorem 3.2.45. We follow
the proof given by Geller in [Gel83].

Let ·̂ denote the Euclidean Fourier transform on Rn (cf. (2.25)). In view of

the proof of Theorem 3.2.44, we want to show that the distribution f̂ is supported
at 0. For this purpose, it suffices to show that any test function φ ∈ S(G) whose

Euclidean Fourier transform is supported away from 0, that is, supp φ̂ �∋ 0, can be
written as Ltψ for some ψ ∈ S(G). Indeed, denoting momentarily ι(x) = −x for
x ∈ G identified with Rn, and by ·̌ the inverse Fourier transform on Rn, we have
φ̌ = φ̂ ◦ ι, so that supp φ̌ = supp φ̂, and

〈f̂ , φ̌〉 = 〈f, φ〉 = 〈f, Ltψ〉 = 〈Lf, ψ〉 = 0.

The set of functions φ with 0 �∈ supp φ̂ is contained in

So(Rn) :=

{
φ ∈ S(Rn) :

(
∂

∂ξ

)α

φ̂(0) = 0, ∀α ∈ Nn
0

}
.

We observe that the space So(Rn) can be also described in terms of the group
structure using the identification of G with Rn, as

So(Rn) = So(G) = {φ ∈ S(G) :

∫

G

xαφ(x)dx = 0, ∀α ∈ Nn
0}.

Indeed
∫
Rn xαφ(x)dx = cα(

∂
∂ξ )

αφ̂(0) with cα a known non-zero constant. Here dx
denotes the Lebesgue measure on Rn and the Haar measure on G since these two
measures coincide via the identification of G with Rn.
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By Theorem 3.2.40, the operator Lt has a fundamental solution κ ∈ S ′(G)
satisfying Part (a) or (b) of the statement. Thus we need only showing that for
any φ ∈ So(G), the function ψ := φ ∗κ is not only smooth (cf. Lemma 3.1.55) but
also Schwartz. This is done in the following lemma:

Lemma 3.2.46. If φ ∈ So(G) is a Schwartz function and κ ∈ S ′(G) is a homo-
geneous distribution smooth away from the origin or a distribution of the form
κ = p(x) ln |x| where p is a polynomial and | · | a homogeneous quasi-norm smooth
away from the origin, then φ ∗ κ ∈ S(G).

The end of this section is devoted to the proof of Lemma 3.2.46; this relies
on consequences of the following versions of Hadamard’s Lemma for S(Rn) and
So(Rn):

Lemma 3.2.47 (Hadamard). Let f ∈ S(Rn) with
∫
f = 0. Then f can be written

as

f =

n∑

j=1

∂fj
∂xj

with fj ∈ S(Rn)

In addition, if f ∈ So(Rn), each function fj can be also taken in So(Rn).

Proof of Lemma 3.2.47. We fix χo ∈ D(Rn) such that χo(ξ) = 1 if |ξ| ≤ 1 and

χo(ξ) = 0 if |ξ| > 2. Since
∫
f = 0 we have f̂(0) = 0 and

f̂(ξ) = χof̂ + (1− χo)f̂ = (χof̂)− (χof̂)(0) + (1− χo)f̂ .

We can write

(χof̂)(ξ)− (χof̂)(0) =

∫ 1

0

∂t

((
χof̂

)
(tξ)

)
dt =

n∑

j=1

ξj

∫ 1

0

∂(χof̂)

∂ξj
(tξ)dt,

and

(1− χo)f̂(ξ) =

n∑

j=1

ξ2j
1− χo(ξ)

|ξ|2 f̂(ξ) (here |ξ|2 =

n∑

j=1

ξ2j ).

We set

hj(ξ) :=

∫ 1

0

∂(χof̂)

∂ξj
(tξ)dt+ ξj

1− χo(ξ)

|ξ|2 f̂(ξ).

The first term is compactly supported (in the ball of radius 2), whereas the second
one is well defined and is identically 0 on the unit ball. Since both terms are
smooth, hj ∈ S(Rn). We have obtained f̂ =

∑
j ξjhj . We define fj ∈ S(Rn) such

that f̂j = cjhj where the constant cj is such that ∂̂j = cjξj . Hence f =
∑

j
∂fj
∂xj

.

Moreover, since
(

∂

∂x

)α

hj(0) =

(
∂

∂x

)α
∂

∂ξj
f̂(0),

we see that if f ∈ So(Rn) then fj ∈ So(Rn). �
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We will use the following consequence of Lemma 3.2.47 (in fact only the
second point):

Corollary 3.2.48. • If f ∈ So(Rn), then for any M ∈ N0,

f =
∑

|α|=M

(
∂

∂x

)α

fα with fα ∈ So(Rn).

• If f ∈ So(G) where G is a homogeneous Lie groups, then for any M ≥ 1, we
can write f as a finite sum

f =
∑

[α]>M

Xαfα

with fα ∈ So(G).

Proof of Corollary 3.2.48. Both points are obtained recursively, the first one from
Lemma 3.2.47 and the second from the following observation: if f ∈ So(G), there
exists gj ∈ So(G) such that f =

∑n
j=1 Xjgj . Indeed writing f as in Lemma 3.2.47

and using (3.17) with Remark 3.1.29 (1), we set

gj := fj +
∑

1≤k≤n
υj<υk

(pj,kfj)

and we see that gj ∈ So(G). �

We can now prove Lemma 3.2.46.

Proof of Lemma 3.2.46. Let κ be a distribution as in the statement. We can always
decompose κ as the sum of κ0 + κ∞, where κ0 has compact support and κ∞ is
smooth. Indeed, let χ ∈ D(G) be identically 1 on a neighbourhood of the origin
and define κ0 by

〈κ0, φ〉 := 〈κ, χφ〉.
Then

κ∞ := κ− κ0

coincides with (1 − χ)κo, where κo is a smooth function on G\{0} either homo-
geneous or of the form p(x) ln |x|; we denote by ν the homogeneous degree of the
function κo or of the polynomial p.

Let φ ∈ So(G). Since the distribution κ0 is compactly supported, we get, by
Lemma 3.1.55, that φ ∗ κ0 ∈ S(G). Since, by Corollary 3.2.48, we can write φ as
a (finite) linear combination of Xαf with f ∈ So(G) and [α] as large as we want.
We observe that

(Xαf) ∗ κ∞ = f ∗ X̃ακ∞
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and that for [α] larger that |ν|+N + 1 for N ∈ N0 fixed, we have

|X̃ακ∞(x)| ≤ CN (1 + |x|)−N .

Thus

|(Xαf) ∗ κ∞(x)| = |f ∗ X̃ακ∞(x)| =
∣∣∣∣
∫

G

f(y)X̃ακ∞(y−1x)dy

∣∣∣∣

≤
∫

G

|f(y)|CN (1 + |y−1x|)−Ndy

≤ CNCN
o (1 + |x|)−N

∫

G

|f(y)|(1 + |y|)Ndy,

by (3.43). This shows that φ ∗ κ∞ ∈ S(G). �

Hence Lemma 3.2.46 and Theorem 3.2.45 are proved.
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Chapter 4

Rockland operators and Sobolev
spaces

In this chapter, we study a special type of operators: the (homogeneous) Rockland
operators. These operators can be viewed as a generalisation of sub-Laplacians to
the non-stratified but still homogeneous (graded) setting. The terminology comes
from a property conjectured by Rockland and eventually proved by Helffer and
Nourrigat in [HN79], see Section 4.1.3.

First, we discuss these operators in general. Subsequently, we concentrate on
positive Rockland operators and study the heat semi-group, the Bessel and Riesz
potentials and the Sobolev spaces naturally associated with a positive Rockland
operator. Most results concerning the heat semi-group are known [FS82, ch.3.B].
To the authors’ knowledge, however, this chapter is the first systematic presenta-
tion of the fractional powers and the homogeneous and inhomogeneous Sobolev
spaces associated with a positive Rockland operator on a graded Lie group.

In fact, this appears to be the greatest generality for such constructions, since
the existence of a Rockland (differential) operator on a homogeneous Lie group
implies that the group must admit a graded structure, see Proposition 4.1.3. In
the case of stratified Lie groups, Sobolev spaces have been developed by Folland
[Fol75] for 1 < p <∞, for the Rockland operator being a sub-Laplacian (see also
[Sak79]). Since sub-Laplacians are not always available on graded Lie groups, our
constructions are based on general positive Rockland operators. In particular, this
allows one to still cover the case of stratified Lie groups, but permitting taking
Rockland operators other than a canonical sub-Laplacian.

Although we define Sobolev spaces using a fixed Rockland operator, The-
orem 4.4.20 shows that these spaces are actually independent of the choice of a
homogeneous positive Rockland operator.
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4.1 Rockland operators

We start with the discussion of general Rockland operators, giving definitions,
examples, and then relating them to the hypoellipticity questions.

4.1.1 Definition of Rockland operators

The first definition of a Rockland operator uses the representations of the group.
We use the notation which has become quite conventional nowadays in this part
of the theory of group representations and which is explained in Section 1.7. In
particular, Ĝ denotes the unitary dual of G and H∞

π the smooth vectors of a

representation π ∈ Ĝ, see Definition 1.7.2. For a left-invariant differential operator
T we will denote π(T ) := dπ(T ), see Definition 1.7.4.

Definition 4.1.1. Let T be a left-invariant differential operator on a Lie group G.
Then T satisfies the Rockland condition when

(R) for each representation π ∈ Ĝ, except for the trivial representation,
the operator π(T ) is injective on H∞

π , that is,

∀v ∈ H∞
π π(T )v = 0 =⇒ v = 0.

There is a similar definition of the Rockland condition for right-invariant
differential operators, and also for left or right-invariant L2(G)-bounded operators
(for the latter, see G�lowacki [G�lo89, G�lo91]). See also Section 4.4.8.

Definition 4.1.2. Let G be a homogeneous Lie group. A Rockland operator R on
G is a left-invariant differential operator which is homogeneous of positive degree
and satisfies the Rockland condition.

Some other authors may define non-homogeneous Rockland operators as op-
erators of the form R =

∑
[α]≤ν cαX

α with the ‘main’ term
∑

[α]=ν cαX
α satis-

fying the Rockland property given in (R). Here we have chosen to assume that a
Rockland operator is homogeneous to study directly the main term.

We will give examples of Rockland operators in Section 4.1.2. Before this,
we show that their existence on a homogeneous Lie group implies that the group
is graded and that the weights could be chosen in N. This property influences
the examples we can produce, and the subsequent development of the theory of
pseudo-differential operators.

Proposition 4.1.3. Let G be a homogeneous Lie group. If there exists a Rockland
operator on G then the group G is graded.

Furthermore, the dilations’ weights υ1, . . . , υn satisfy

a1υ1 = . . . = anυn

for some integers a1, . . . , an.
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This property was shown by Miller in [Mil80], with a small gap in the proof
later corrected by ter Elst and Robinson (see [tER97]).

Proof of Proposition 4.1.3. Let G be a homogeneous Lie group. Its Lie algebra g is
endowed with the dilations Dr = Exp(ln rA). Let the number n′ and {X1, . . . , Xn}
be the basis described in Lemma 3.1.14. We assume that there exists a ν-homo-
geneous Rockland operator R which we can write as

R =
∑

[α]=ν

cαX
α.

We fix an integer j ≤ n′. Let φ : g → R be the linear functional such that
φ(Xk) = δj,k, that is, φ(Xj) = 1 while φ(Xk) = 0 for any k �= j. Since Xj /∈ [g, g],
φ is identically zero on [g, g]. We set for any X ∈ g:

π(expG X) := exp (iφ(X)) .

This defines a one-dimensional representation π of G. Indeed, if x, y ∈ G, we can
write x = expG X and y = expG Y and we have

xy = expG X expG Y = expG(X + Y + Z)

with Z ∈ [g, g] by the Baker-Campbell-Hausdorff formula (see Theorem 1.3.2).
Thus, φ(Z) = 0 and we obtain

π(xy) = exp (iφ(X + Y + Z)) = exp (iφ(X) + iφ(Y ))

= exp (iφ(X)) exp (iφ(Y )) = π(x)π(y).

So π is a one-dimensional representation of G and we see that

π(Xk) = ∂t=0π(e
tXk) = ∂t=0 exp (iφ(tXk)) = ∂t=0 exp (itφ(Xk)) = iδj,k.

As π is a non-trivial one-dimensional representation of G and R satisfies the
Rockland condition,

π(R) =
∑

[α]=ν

cαπ(X
α)

must be non-zero. We see that π(Xα) is always zero unless α is of the form aej for
a ∈ N where ej is the multi-index with 1 in the j-th place and zeros elsewhere; in
this case [α] = υja. So ν must be of the form ν = υja for some integer a = aj ∈ N
which may depend on j. And this is true for any j = 1, . . . , n′.

Since X1, . . . , Xn′ generate the Lie algebra g, the other weights are linear
combinations with coefficients in N0 of the υj ’s, j ≤ n′. This shows that the oper-
ators D′

r = Exp( ln r
ν A) are dilations over g with rational weights. By Lemma 3.1.9,

the group G is graded. �
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Remark 4.1.4. Proposition 4.1.3 and Remark 3.1.8 imply that the natural context
for the study of Rockland operators is a graded Lie group endowed with a family
of dilations with integer weights.

One may further assume that the weights have no common divisor other than
1 but we do not assume so unless we specify it.

From the proof of Proposition 4.1.3, we see:

Corollary 4.1.5. Let G be a graded Lie group and let {X1, . . . , Xn} be the basis
described in Lemma 3.1.14. We keep the notation of the lemma.

The homogeneous degree of any Rockland operator is a multiple of υ1, . . . , υn′ .
If R is a Rockland operator satisfying Rt = R then its homogeneous degree

is even.

4.1.2 Examples of Rockland operators

On (Rn,+), it is easy to see that Rockland differential operators are exactly the op-
erators P (−i∂1, . . . ,−i∂n) where P is a polynomial which is homogeneous (for the
standard dilations) and does not vanish except at zero. For instance homogeneous
elliptic operators on Rn with constant coefficients are Rockland operators. More
generally, let us prove that sub-Laplacians on a stratified Lie group are Rockland
operators. First let us recall their definition.

Definition 4.1.6. If G is a stratified Lie group with a given basis Z1, . . . , Zp for the
first stratum of its Lie algebra, then the left-invariant differential operator on G
given by

Z2
1 + . . .+ Z2

p

is called a sub-Laplacian.

For example, the canonical sub-Laplacian of the Heisenberg group Hno is

X2
1 + Y 2

1 + . . .+X2
no

+ Y 2
no
,

see Examples 1.6.4, 3.1.2 and 3.1.3 for our notation regarding the Heisenberg
group.

Lemma 4.1.7. Any sub-Laplacian on a stratified Lie group is a Rockland operator
of homogeneous degree 2.

This could be seen as a consequence of famous powerful theorems, namely
from combining Hörmander’s sums of squares and Helffer-Nourrigat (see Theo-
rems A.1.2 and 4.1.12 in the sequel) but we prefer to give a direct and easy proof.

Proof. Let
R = Z2

1 + . . .+ Z2
p

be a sub-Laplacian on the stratified Lie group G, where Z1, . . . , Zp is a given basis
for the first stratum V1 of the Lie algebra of G.
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Clearly R is a homogeneous left-invariant differential operator of degree 2.
Let π ∈ Ĝ\{1} and v ∈ H∞

π be such that π(R)v = 0. Then

0 = (π(R)v, v)Hπ = (π(Z1)
2v, v)Hπ + . . .+ (π(Zp)

2v, v)Hπ

= −(π(Z1)v, π(Z1)v)Hπ − . . .− (π(Zp)v, π(Zp)v)Hπ

= −‖π(Z1)v‖2Hπ
− . . .− ‖π(Zp)v‖2Hπ

,

and hence

π(Z1)v = . . . = π(Zp)v = 0.

Since {Z1, . . . , Zp} generates linearly the first stratum V1 of g and V1 generates
g as a Lie algebra, we see that π(X)v = 0 for any vector X ∈ g. But since π is
non-trivial and irreducible, this forces v to be zero. �

Looking at the proof of Lemma 4.1.7, it is not difficult to construct the
‘classical’ Rockland differential operators on graded Lie groups G:

Lemma 4.1.8. Let G be a graded Lie group of dimension n, i.e. G ∼ Rn. We denote
by {Dr}r>0 the natural family of dilations on its Lie algebra g, and by υ1, . . . , υn
its weights. We fix a basis {X1, . . . , Xn} of g satisfying

DrXj = rυjXj , j = 1, . . . , n, r > 0.

If νo is any common multiple of υ1, . . . , υn, the operator

n∑

j=1

(−1)
νo
υj cjX

2 νo
υj

j with cj > 0, (4.1)

is a Rockland operator of homogeneous degree 2νo.

Proof. The operator R given in (4.1) is clearly a homogeneous left-invariant dif-

ferential operator of homogeneous degree 2νo. Let π ∈ Ĝ\{1} and v ∈ H∞
π be such

that π(R)v = 0. Then

0 = (π(R)v, v)Hπ
=

n∑

j=1

(−1)
νo
υj cj(π(Xj)

2 νo
υj v, v)Hπ

=

n∑

j=1

cj‖π(Xj)
νo
υj v‖Hπ

,

and hence π(Xj)
νo
υj v = 0 for j = 1, . . . , n.

Let us observe the following simple fact regarding any positive integer p and
any Z ∈ U(g): the hypothesis π(Z)pv = 0 implies that

• if p is odd then π(Z)p+1v = π(Z)π(Z)pv = 0,
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• whereas if p is even then

0 = (π(Z)pv, v)Hπ = (−1)p/2(π(Z)
p
2 v, π(Z)

p
2 v)Hπ = (−1)p/2‖π(Z)

p
2 v‖2Hπ

,

and hence π(Z)
p
2 v = 0.

Applying this argument inductively on Z = Xj and p = νo/υj , νo/2υj , . . . ,
we obtain that π(Xj)v = 0 for each j. Hence v = 0. �

Remark 4.1.9. By Proposition 4.1.3 and its proof, if a homogeneous Lie group G
admits a Rockland operator, then, up to rescaling the dilations (cf. Remark 3.1.8),
we may assume that the group G is graded and endowed with its natural family
of dilations {Dr}r>0. Lemma 4.1.8 gives the converse: on such a group, we can
always find a Rockland operator.

The proof of Lemma 4.1.8 can easily be modified using an adapted basis
constructed in Lemma 3.1.14 to obtain

Corollary 4.1.10. Let G be a graded Lie group endowed with a family of dilations
{Dr}r>0. Let {X1, . . . , Xn} be a basis of g as in Lemma 3.1.14. In particular, the
vectors X1, . . . , Xn′ generate the Lie algebra g.

If νo is any common multiple of υ1, . . . , υn′ , the operator

n′∑

j=1

(−1)
νo
υj X

2 νo
υj

j , (4.2)

is a Rockland operator of homogeneous degree 2νo.

If the group G is stratified, the vectors X1, . . . , Xn′ span linearly the first
stratum and we obtain the sub-Laplacian if we choose νo = υ1.

From one Rockland operator, we can construct many since powers of a Rock-
land operator or its complex conjugate operator are Rockland:

Lemma 4.1.11. Let R be a Rockland operator on a graded Lie group G endowed
with a family of dilations with integer weights. Then the operators Rk for any
k ∈ N and R̄ are also Rockland operators.

The operator R̄ as an element of U(g) was defined in (1.8).

Proof. It is clear that R̄ and Rk are left-invariant homogeneous differential oper-
ators on G.

Let π ∈ Ĝ\{1}. We have

π(R̄) = π(R).
This holds in fact for any left-invariant differential operator viewed as an element
of U(g). Therefore, R̄ is Rockland. For the case of Rk, let v ∈ H∞

π be such
that π(Rk)v = 0. Applying recursively the simple fact explained in the proof of
Lemma 4.1.8, we obtain π(R)v = 0 and this implies v = 0 because R is Rockland.
Therefore, Rk is also Rockland. �
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4.1.3 Hypoellipticity and functional calculus

The analysis of left-invariant homogeneous operators on a nilpotent graded Lie
group has played a very important role in the understanding of hypoellipticity.
We refer the interested reader on this subject to the lecture notes by Helffer and
Nier [HN05]. For the definition of hypoellipticity, see Section A.1.

In [Roc78], Rockland showed that if T is a homogeneous left-invariant dif-
ferential operators on the Heisenberg group Hno

, then the hypoellipticity of T
and T t is equivalent to the Rockland condition (see Definition 4.1.1). He also
asked whether this equivalence would be true for more general homogeneous Lie
groups. Just afterwards, Beals showed [Bea77b] that the hypoellipticity of a homo-
geneous left-invariant differential operator on any homogeneous Lie group implies
the Rockland condition. At the same time he also showed that the converse holds
in some step-two cases. Eventually in [HN79], Helffer and Nourrigat settled what
has become Rockland’s conjecture by proving the following equivalence:

Theorem 4.1.12. Let R be a left-invariant and homogeneous differential opera-
tor on a homogeneous Lie group G. The hypoellipticity of R is equivalent to R
satisfying the Rockland condition.

In this case, any operator of the form

R+
∑

[α]<ν

cαX
α,

where ν is the degree of homogeneity of R and cα any complex number, is also
hypoelliptic.

The proof of Theorem 4.1.12 relies on the description of Ĝ via Kirillov’s orbit
method.

Remark 4.1.13. 1. The hypotheses of Theorem 4.1.12 with the existence of a
Rockland operator imply that the family of dilations of the group may be
rescaled to have integer weights and consequently that the group may be
viewed as graded, see Proposition 4.1.3. When describing properties of a
Rockland operatorR on a homogeneous Lie group G, unless stated otherwise,
we will always assume that the group G is graded in such a way that the
operator R is homogeneous for the natural family of dilations (with integer
weights).

2. Combining the theorems of Hellfer-Nourrigat and of Hörmander (see Theo-
rems 4.1.12 and A.1.2) gives another proof that the sub-Laplacians are Rock-
land operators, see Lemma 4.1.7.

3. If R is a Rockland operator formally self-adjoint, i.e. R∗ = R as elements of
U(g), then Rt = R̄ must also be Rockland by Lemma 4.1.11. Hence Theorem
4.1.12 implies that any formally self-adjoint Rockland operator satisfies the
hypothesis of Theorem 3.2.40 and thus admits fundamental solutions. It also
satisfies the hypothesis of the Liouville theorem as in Theorem 3.2.45.
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4. Let us also mention an alternative reformulation of the Hellfer-Nourrigat
theorem given by Rothschild [Rot83]: a left-invariant homogeneous operator
R on a graded Lie group G is hypoelliptic if and only if there is no non-
constant bounded function f on G such that Rf = 0 on G. The proof of
this relies on the Liouville theorem from Section 3.2.8. Essentially, in one
direction this is Beals’ result as above, while in the other it will follow from
Corollary 4.3.4.

Along the proof of Theorem 4.1.12 (see [HN79, Estimate (6.1)]), Helffer and
Nourrigat also showed the following property which will be used in the sequel.

Corollary 4.1.14. Let G be a graded Lie group endowed with a family of dilations
with integer weights. Let R be a Rockland operator G of homogeneous degree ν.
Then there exists C > 0 such that

∀φ ∈ S(G)
∑

[α]=ν

‖Xαφ‖2L2(G) ≤ C
(
‖Rφ‖2L2(G) + ‖φ‖2L2(G)

)
.

After developing the Sobolev spaces on G, we will be actually able to prove
its Lp-version, see Lemma 4.4.19.

The following property of Rockland differential operators is technically im-
portant and relies on hypoellipticity.

Proposition 4.1.15. Let R be a Rockland operator on a graded Lie group G. We
assume that R is formally self-adjoint. Let π be a strongly continuous unitary
representation of G.

Then the operators R and π(R) densely defined on D(G) ⊂ L2(G) and H∞
π ⊂

Hπ, respectively, are essentially self-adjoint.

That R is formally self-adjoint means that R∗ = R as elements of the uni-
versal enveloping algebra U(g), see (1.9).

Before we prove it, let us point out its consequences:

Corollary 4.1.16 (Functional calculus of Rockland operators and their Fourier
transform). Let R be a Rockland operator on a graded Lie group G. We as-
sume that R is formally self-adjoint as an element of U(g). Then R is essentially
self-adjoint on L2(G) and we denote by R2 its self-adjoint extension on L2(G).
Moreover, for each strongly continuous unitary representation π of G, π(R) is
essentially self-adjoint on Hπ and we keep the same notation for its self-adjoint
extension. Let E, Eπ be the spectral measures of R2 and π(R):

R2 =

∫

R

λdE(λ) and π(R) =
∫

R

λdEπ(λ).

For any Borel subset B ⊂ R, the orthogonal projection E(B) is left-invariant
hence E(B) ∈ LL(L

2(G)). The group Fourier transform of its convolution kernel
E(B)δ0 ∈ K(G) is

FG(E(B)δ0)(π) = Eπ(B).
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If φ is a measurable function on R, the spectral multiplier operator φ(R2) is
defined by

φ(R2) :=

∫

R

φ(λ)dE(λ),

and its domain Dom(φ(R2)) is the space of function f ∈ L2(G) such that the
integral

∫
R
|φ(λ)|2d(E(λ)f, f) is finite. It satisfies for all f ∈ Dom(φ(R2)) and

r > 0:

f(r ·) ∈ Dom(φ(r−νR2)) and φ(R2)f = φ(r−νR2) (f(r ·)) (r−1 ·). (4.3)

If π1 is another strongly continuous representation such that π1 ∼T π, that
is, T is a unitary operator satisfying Tπ1 = πT , then TEπ1 = EπT and we have
for any measurable function φ the equality

Tφ(π1(R)) = φ(π(R))T. (4.4)

Let φ ∈ L∞(R) be any measurable bounded function. Then the spectral mul-
tiplier operator φ(R2) is in LL(L

2(G)), that is, it is bounded on L2(G) and left-
invariant. Its convolution kernel denoted by φ(R2)δo is the unique tempered dis-
tribution φ(R2)δo ∈ S ′(G) such that

∀f ∈ S(G) φ(R2)f = f ∗ φ(R2)δo.

In fact φ(R2)δo ∈ K(G) and its group Fourier transform is

F{φ(R2)δo}(π) = φ(π(R)) =
∫

R

φ(λ)dEπ(λ). (4.5)

Consequently, for any f ∈ L2(G),

F{φ(R2)f}(π) = φ(π(R))f̂(π). (4.6)

We have for any r > 0 and x ∈ G:

φ(rνR2)δo(x) = r−Qφ(R2)δo(r
−1x). (4.7)

For any φ ∈ L∞(R),

{φ(R2)δ0}∗ = φ̄(R)δ0, where {φ(R2)δ0}∗(x) = φ(R2)δ0(x). (4.8)

If φ is also real-valued, then φ(R2) is a self-adjoint operator and its kernel satisfies
φ(R2)δo = (φ(R2)δo)

∗, that is, in the sense of distributions,

φ(R2)δo(x) = φ(R2)δo(x
−1).

If φ is real-valued and furthermore if Rt = R, then φ(R2)δo is real-valued
(as a distribution).
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Remark 4.1.17. For any measurable function φ : R → C such that for every
π1 ∈ RepG, the domain of φ(π1(R)) contains H∞

π1
, the corresponding Ĝ-field of

operators {φ(π(R)) : H∞
π → Hπ} is well defined in the sense of Definition 1.8.13

because of (4.4). This is the case for instance if φ is bounded since in this case
φ(π1(R)) is a bounded and therefore defined on the whole space Hπ1 .

The rest of this section is devoted to the proof of Proposition 4.1.15 and
Corollary 4.1.16; it may be skipped at first reading. Proposition 4.1.15 follows
from a Theorem by Nelson and Stinespring [NS59, Theorem 2.2] regarding elliptic
operators on Lie groups as well as the adaptation of its proof due to Folland and
Stein [FS82, ch.3.B] to our case. Let us sketch briefly the ideas for the sake of
completeness. Nelson and Stinespring’s Theorem can be reformulated here as the
following:

Proposition 4.1.18. Let R be a Rockland operator on a graded Lie group G. We
assume that R is formally self-adjoint as an element of U(g).

If π is a strongly continuous unitary representation of G, then the closure of
π(R∗) is the adjoint of π(R).
Proof of Proposition 4.1.18. Let v ∈ Hπ be orthogonal to the range of π(R) + I.
Then for all φ ∈ D(G),

0 = ((π(R) + I)π(φ)v, v)Hπ
=

∫

G

(R+ I)φ(x) (π(x)∗v, v)Hπ
dx.

In other words, the continuous function fπ defined by

fπ(x) := (π(x)∗v, v)Hπ
= (v, π(x)v)Hπ

, x ∈ G,

is a solution in the sense of distributions of the partial differential equation (R+
I)f = 0. By Theorem 4.1.12, the operator R+I is hypoelliptic. Hence fπ is smooth
on G and the equation (R + I)fπ = 0 holds in the ordinary pointwise sense. We
observe that for any X ∈ U(g) identified with a left-invariant vector field we have

Xfπ(x) = ∂t=0

{(
v, π(xetX)v

)
Hπ

}
= (v, π(x)π(X)v)Hπ

.

Thus,
(R+ I)fπ(x) = (v, π(x)π(R)v)Hπ

+ (v, π(x)v)Hπ
.

Therefore, (R+ I)fπ(0) = 0 implies

(v, π(R)v)Hπ
= −(v, v)Hπ = −‖v‖2Hπ

.

If R can be written as S∗S for some non-constant S ∈ U(g), then the left-hand
side is equal to ‖π(S)v‖2 so v = 0. In the general case, we apply the argument
above to R∗R = R2 which is also a Rockland operator by Lemma 4.1.11, and we
obtain the desired conclusion thanks to the following lemma applied to T = π(R),
T ′ = π(R∗) and D = H∞

π . �
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Lemma 4.1.19. Let D be a dense vector subspace of a Hilbert space H. Let T and
T ′ be two linear operators on H, whose domains are D and whose ranges are
contained in D such that T ′ is contained in the adjoint of T . If T ′T is essentially
self-adjoint then the closure of T ′ is the adjoint of T .

Proof of Lemma 4.1.19. We denote by T∗ the adjoint of T . Let (u, v) be an element
of the graph of T∗ which is orthogonal to the graph of T ′. This means

v = T∗u and ∀w ∈ D (u,w)H + (v, T ′w)H = 0.

In particular, for w = Tx with x ∈ D, we obtain

0 = (u, Tx)H + (v, T ′Tx)H = (v, x)H + (v, T ′Tx)H, x ∈ D.

But it is not difficult to see that I + T ′T has a dense range. Consequently v = 0.
So (u,w)H = 0 for all w ∈ D and therefore u = 0. This shows that the graph of
T∗ contains no non-zero element orthogonal to the graph of T ′; hence the closure
of T ′ is T∗. �

Proof of Proposition 4.1.15. We apply Proposition 4.1.18 to the left regular action
on L2(G) and the strongly continuous unitary representation π of G. �

Proof of Corollary 4.1.16. Applying the spectral theorem to the self-adjoint op-
erators R2 and π(R) (see, e.g., Rudin [Rud91, Part III]) we obtain the spectral
measures E and Eπ together with the definition of the spectral multipliers.

For each xo ∈ G and r > 0 we set for any Borel set B ⊂ R and any function
f ∈ L2(G),

E(xo)(B)f := (E(B)) (f(xo ·)) (x−1
o ·),

E(r)(B)f :=
(
E(r−νB)

)
(f(r ·)) (r−1 ·),

where the dilation of a subset of R is defined in the usual sense. It is not difficult
to check that this defines new spectral measures E(xo) and E(r) and, that for any
function f ∈ S(G),

∫

R

λdE(xo)(λ)f =

∫

R

λd (E(λ)) (f(xo ·)) (x−1
o ·) = R2 (f(xo ·)) (x−1

o ·)

= R (f(xo ·)) (x−1
o ·) = Rf = R2f,∫

R

λdE(r)(λ)f =

∫

R

(r−νλ)d (E(λ)) (f(r ·)) (r−1 ·) = r−νR2 (f(r ·)) (r−1 ·)

= r−νR (f(r ·)) (r−1 ·) = Rf = R2f,

since R is left-invariant and ν-homogeneous. By density of S(G) in L2(G), we have
obtained for any f ∈ L2(G) that

∫

R

λdE(xo)(λ)f = R2f and

∫

R

λdE(r)(λ)f = R2f.
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By uniqueness of the spectral measure of R2, the spectral measures E(xo), E(r)

and E coincide. For E(r) this implies (4.3).

For E(xo) this means that for each Borel subset B ⊂ R, the projection E(B)
is a left-invariant operator on L2(G). By the Plancherel theorem (see Section 1.8.2)
the group Fourier transform of its convolution kernel E(B)δ0 ∈ K(G) satisfies

∀f ∈ L2(G) π(E(B)f) = π(E(B)δ0)π(f). (4.9)

It is not difficult, using the uniqueness of the group Fourier transform, to check
that

F : B �−→ π(E(B)δ0) =: F (B),

is a spectral measure on Hπ. Equality (4.9) can be rewritten for any f ∈ L2(G) as

FG

(∫

R

φ(λ)dE(λ)f

)
(π) =

(∫

R

φ(λ)dF (λ)

)
f̂(π), (4.10)

with φ = 1B , that is, the characteristic function of a Borel subset B ⊂ R. Hence
Equality (4.10) also holds for a finite linear combination of characteristic functions,
and then, passing through the limit carefully, for any φ ∈ L∞(R) with f ∈ L2(G)
and φ(λ) = λ for f ∈ S(G). The latter yields

(∫

R

λdF (λ)

)
f̂(π) = FG

(∫

R

λdE(λ)f

)
(π)

= FG(R2f)(π) = π(R)f̂(π).

Since the space H∞
π of smooth vectors is linearly spanned by elements of the form

f̂(π)v, f ∈ S(G), v ∈ Hπ (see Theorem 1.7.8), we have on H∞
π

∫

R

λdF (λ) = π(R).

The uniqueness of the spectral measure Eπ shows that

Eπ(B) = F (B) = π(E(B)δ0).

Equality (4.5) follows from (4.10) for φ ∈ L∞(R).

If π1 ∼T π, then we set E
(T )
π := TEπ1

T−1, where Eπ1
denotes the spectral

measure of π1(R). We check easily that E
(T )
π is a spectral measure on Hπ and that

∫

R

λdE(T )
π = T

∫

R

λdEπ1
T−1 = Tπ1(R)T−1 = Tπ1T

−1(R) = π(R).

The property of the spectral measure Eπ, that is, its uniqueness and the functional

calculus, shows that E
(T )
π = Eπ and that (4.4) holds.

The rest of the statement follows from the Schwartz kernel theorem (see
Corollary 3.2.1) and basic properties of the convolution. �
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4.2 Positive Rockland operators

In this section we concentrate on positive Rockland operators, i.e. Rockland oper-
ators which are positive in the operator sense. Positive Rockland operators always
exist on a graded Lie group, see Remark 4.2.4 below. Among Rockland operators,
positive ones enjoy a number of additional useful properties. In particular, in this
section, we analyse the heat semi-group associated to a positive Rockland operator
and the corresponding heat kernel.

4.2.1 First properties

We shall be interested in Rockland differential operators which are positive in the
sense of operators:

Definition 4.2.1. An operator T on a Hilbert space H is positive when for any
vectors v, v1, v2 ∈ H in the domain of T , we have

(Tv1, v2)H = (v1, T v2)H and (Tv, v)H ≥ 0.

In the case of left-invariant differential operator, this is easily equivalent to

Proposition 4.2.2. Let T be a left-invariant differential operator on a Lie group G.
Then T is positive on L2(G) when T is formally self-adjoint, that is, T ∗ = T in
U(g), and satisfies

∀f ∈ D(G)

∫

G

Tf(x)f(x) dx ≥ 0.

For the definition of T ∗, see (1.9).

The following properties of positive operators are easy to prove:

Lemma 4.2.3. 1. A linear combination with non-negative coefficients of positive
operators is a positive operator.

2. If X is a left-invariant vector field and p ∈ 2N0, then the operator (−1) p
2Xp

is positive on G.

3. If T is a positive differential operator on G then for any k ∈ N the differential
operator T k is also positive.

Proof. The first property is clear.
The second is true since each invariant vector field is essentially skew-sym-

metric, see Section 1.3.
Let us prove the third property. Let T be a positive differential operator and

k ∈ N. Clearly T k is also formally self-adjoint and we obtain recursively if k = 2ℓ:

∫

G

T kf(x)f(x)dx =

∫

G

T ℓf(x)T ℓf(x)dx =

∫

G

∣∣T ℓf(x)
∣∣2 dx,
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which is necessarily non-negative, whereas if k = 2ℓ+ 1,

∫

G

T kf(x)f(x)dx =

∫

G

T (T ℓf(x)) T ℓf(x)dx,

which is non-negative since T is positive. �

We observe that the signs of the coefficients of a positive differential operator
can not be guessed, as the example −(∂1 ± ∂2)

2 on R2 shows.

Remark 4.2.4. By Lemma 4.2.3, Parts 1 and 2, we see that the examples in Section
4.1.2 yield positive Rockland operators. For instance, on stratified Lie groups,
the sub-Laplacians give operators −R with R positive and Rockland. Also, the
operators in (4.1) and (4.2) give positive Rockland operators. In particular, this
shows that any graded Lie group admits a positive Rockland operator.

We may obtain other positive Rockland operators as powers of those since a
direct consequence of Lemma 4.1.11 and Lemma 4.2.3, Part 3, is the following

Lemma 4.2.5. Let R be a positive Rockland operator on a graded Lie group G.
Then Rk for every k ∈ N and R̄ = Rt are also positive Rockland operators.

We fix a positive Rockland operator R. By Proposition 4.2.2, R is essentially
self-adjoint and we may adopt the same notation as in Corollary 4.1.16. Since R
is positive, the spectrum of R2 is included in [0,∞) and we have

R2 =

∫ ∞

0

λdE(λ).

Proposition 4.2.6. Let R be a positive Rockland operator on a graded Lie group G.
If π ∈ Ĝ, then the operator π(R) is positive. Furthermore, if π is non-trivial and

(π(R)v, v)Hπ
= 0

then v = 0.

Proof. By Proposition 4.1.15, π(E(B)) = Eπ(B). Since E is supported in [0,∞)
then so is Eπ and the operator π(R) is positive:

∀v ∈ H∞
π (π(R)v, v)Hπ =

∫ ∞

0

λd(Eπ(λ)v, v)Hπ ≥ 0.

If (π(R)v, v)Hπ
= 0 then the (real non-negative) measure (Eπ(λ)v, v)Hπ

is con-
centrated on {λ = 0} and this means that v = Eπ(0)v is in the nullspace of π(R).
Thus v = 0 since R satisfies the Rockland condition and π is non-trivial. �
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4.2.2 The heat semi-group and the heat kernel

In this section, we fix a positive Rockland operator R which is homogeneous of
degree ν ∈ N.

By the functional calculus (see Corollary 4.1.16), we define the multipliers

e−tR2 :=

∫ ∞

0

e−tλdE(λ), t > 0.

We then have

‖e−tR2‖L (L2(G)) ≤ sup
λ≥0
|e−tλ| = 1 and e−tR2e−sR2 = e−(t+s)R2 ,

since e−sλe−tλ = e−(t+s)λ. Thus {e−tR2}t>0 is a contraction semi-group of oper-
ators on L2(G) (see Section A.2). This semi-group is often called the heat semi-
group. The corresponding convolution kernels ht ∈ S ′(G), t > 0, are called heat
kernels. We summarise its main properties in the following theorem:

Theorem 4.2.7. Let R be a positive Rockland operator on a graded Lie group G.
Then the heat kernels ht associated with R satisfy the following properties.
Each function ht is Schwartz and we have

∀s, t > 0 ht ∗ hs = ht+s, (4.11)

∀x ∈ G, t, r > 0 hrνt(rx) = r−Qht(x), (4.12)

∀x ∈ G ht(x) = ht(x−1), (4.13)∫

G

ht(x)dx = 1. (4.14)

The function h : G× R→ C defined by

h(x, t) :=

{
ht(x) if t > 0 and x ∈ G,
0 if t ≤ 0 and x ∈ G,

is smooth on (G× R)\{(0, 0)} and satisfies

(R+ ∂t)h = δ0,0,

where δ0,0 is the delta-distribution at (0, 0) ∈ G× R.
Having fixed a homogeneous norm | · | on G, we have for any N ∈ N0, α ∈ Nn

0

and ℓ ∈ N0, that

∃C = Cα,N,ℓ > 0 ∀t ∈ (0, 1] sup
|x|=1

|∂ℓ
tX

αht(x)| ≤ Cα,N tN . (4.15)

The proof of Theorem 4.2.7 is given in the next section. We finish this section
with some comments and some corollaries of this theorem.
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Remark 4.2.8. 1. If the group is stratified and R = −L where L is a sub-
Laplacian, then R is of order two and the proof relies on Hunt’s theorem
[Hun56], cf. [FS82, ch1.G]. In this case, the heat kernel is real-valued and
moreover non-negative. The heat semi-group is then a semi-group of contrac-
tion which preserves positivity.

2. The behaviour of the heat kernel in the general case is quite well understood.
For instance, it can be extended to the complex right-half plane. Then the
heat kernel hz with z ∈ C, Re z > 0 decays exponentially. See [Dzi93, DHZ94,
AtER94].

3. Since R2 is a positive operator, only the values of φ ∈ L∞(R) on [0,∞) are
taken into account for the multipliers φ(R2). But in fact, the value at 0 can
be neglected too, as a consequence of the property of the heat kernel. Indeed,
from ht ∈ S(G) and (4.12), it is not difficult to show

‖f ∗ ht‖L2(G) −→
t→∞

0,

first for f ∈ D(G) and then by density for any f ∈ L2. This shows

‖e−tR2f‖L2(G) −→
t→∞

0,

and therefore we have

‖
∫ ǫ

0

dE(λ)‖L2(G) −→
ǫ→0

0.

4. Another consequence of the heat kernel being Schwartz, proved in [HJL85],

is that the spectrum of π(R) is discrete and lies in (0,∞) for any π ∈ Ĝ\{1}.
Indeed, it is easy to see that π(R) is the infinitesimal generator of the semi-
group {π(e−tR)}t>0 in Hπ and that π(e−tR) = π(ht) is a compact operator
since ht ∈ S(G) (for this last property, see [CG90, Theorem 4.2.1]).

Moreover, strong properties of the eigenvalue distributions of π(R) are
known, see [tER97].

Theorem 4.2.7 shows that the functions ht provide a commutative approx-
imation of the identity, see Remark 3.1.60. We already know that {e−tR2}t>0 is
a strongly continuous contraction semi-group. Moreover, we have the following
properties for any p:

Corollary 4.2.9. The operators

f �→ f ∗ ht, t > 0,

form a strongly continuous semi-group on Lp(G) for any p ∈ [1,∞) and on Co(G).
Furthermore, for any f ∈ D(G) and any p ∈ [1,∞] (finite or infinite), we have
the convergence ∥∥∥∥

1

t
(f ∗ ht − f)−Rf

∥∥∥∥
p

−→t→0 0. (4.16)
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Finally, we formulate a simple but useful corollary of Theorem 4.2.7.

Corollary 4.2.10. Setting r = t−
1
ν in (4.12), we get

∀x ∈ G, t > 0 ht(x) = t−
Q
ν h1(t

− 1
ν x) (4.17)

and

for x ∈ G\{0} fixed, Xα
x h(x, t) =

{
O(t−

Q+[α]
ν ) as t→∞,

O(tN ) for all N ∈ N0 as t→ 0.
(4.18)

Inequalities (4.18) are also valid for any x in a fixed compact subset of G\{0}.

4.2.3 Proof of the heat kernel theorem and its corollaries

This section is entirely devoted to the proofs of Theorem 4.2.7 and Corollaries 4.2.9
and 4.2.10. This may be skipped at first reading. The proofs essentially follow the
arguments of Folland and Stein [FS82, Ch. 4. B].

Since ht is the convolution kernel of the R2-multiplier operator, Corollary
4.1.16 yield that ht ∈ S ′(G) is a distribution which satisfies Properties (4.12) and
(4.13) for each t > 0 fixed. Note that (4.12) easily yields (4.17).

By the Schwartz kernel theorem (see Corollary 3.2.1), since (0,∞) ∋ t �→
e−tR2 ∈ L (L2(G)) is a strongly continuous mapping, the function (0,∞) ∋ t �→
ht ∈ S ′(G) is continuous. Consequently the mapping (t, x) �→ ht(x) is a distribu-
tion on (0,∞)×G.

By the properties of semi-groups (cf. Proposition A.2.3 (4)), we have

∀φ ∈ D(G), t > 0, ∂t(e
−tR2φ) = −R2(e

−tR2φ) = −R(e−tR2φ).

Taking this equation at 0G shows that (t, x) �→ ht(x) is a solution in the sense of
distributions of the equation (∂t +R)f = 0 on (0,∞)×G.

The next lemma is independent of the rest of the proof and shows that ∂t+R
can be turned into a Rockland operator:

Lemma 4.2.11. Let R be a positive Rockland operator on a graded Lie group G.
We equip the group H := G× R (which is the direct product of the groups G and
(R,+)) with the dilations

Dr(x, t) := (rx, rνt), x ∈ G, t ∈ R.

The group H has become a homogeneous Lie group and the operators R+ ∂t
and R− ∂t are Rockland operators on H.

Proof of Lemma 4.2.11. The dual of H is easily seen to be isomorphic to Ĝ× R:

• if π ∈ Ĝ and λ ∈ R, we can construct the representation ρ = ρπ,λ of H on
Hρ = Hπ by ρ(x, t) := eiλtπ(x);
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• conversely, any representation ρ ∈ Ĥ can be realised into a representation of
the form ρπ,λ.

Let ρ = ρπ,λ ∈ Ĥ. We observe thatH∞
ρ = H∞

π , ρ(R) = π(R), and ρ(∂t) = iλ.
If v ∈ H∞

ρ is such that ρ(R+ ∂t)v = 0 then

0 = (ρ(R± ∂t)v, v)Hρ
= (π(R)v, v)Hπ

± iλ(v, v)Hπ
= (π(R)v, v)Hπ

± iλ‖v‖2Hπ
.

Since, by Proposition 4.2.6, (π(R)v, v)Hπ
≥ 0, the real part of the previous equal-

ities is (π(R)v, v)Hπ
= 0. Again by Proposition 4.2.6, necessarily v = 0. �

Remark 4.2.12. A similar proof implies that R± ∂k
t for k ∈ N odd is a Rockland

operator on the group G× R endowed with the dilations Dr(x, t) = (rx, rν/kt).

Corollary 4.2.13. The distribution (t, x) �→ ht(x) is smooth on (0,∞) × G and
satisfies the equation

(∂t +R)f = 0.

Furthermore, for any t > 0, ht ∈ L2(G) and
∫

G

|ht(x)|2dx = t−
Q
ν

∫

G

|h1(x)|2dx <∞. (4.19)

Proof. The operator ∂t + R is Rockland on G × R by Lemma 4.2.11, therefore
hypoelliptic by the Hellfer-Nourrigat theorem (see Theorem 4.1.12). Since the
distribution (t, x) �→ ht(x) is a solution of the equation (∂t+R)f = 0 on (0,∞)×G,
it is in fact smooth.

Since R is a positive Rockland operator, Rt is also a positive Rockland
operator (see Lemma 4.2.5) and we can apply Lemma 4.2.11 to both. Therefore,
R + ∂t and its transpose are Rockland and thus hypoelliptic on G × R. By the
Schwartz-Treves theorem (see Theorem A.1.6), the distribution topology on G ×
(0,∞) and the C∞-topology agree on the the nullspace of R+ ∂t

N = {f ∈ D′(G× (0,∞)) : (R+ ∂t)f = 0}.

Since (0,∞) ∋ t �→ ht ∈ S ′(G) is continuous and (t, x) �→ ht(x) is smooth on
(0,∞)×G, the mapping T defined via

Tφ(x, t) = (e−tR2φ)(x) =

∫

G

ht(x)φ(x)dx, φ ∈ L2(G), x ∈ G, t > 0,

is continuous from L2(G) to D′(G × (0,∞)). Furthermore, the semi-group prop-
erties imply that the range of T lies in N . Therefore, the mapping

L2(G) ∋ φ �−→ Tφ(0, 1) =

∫

G

φ(x)h1(x)dx,

is a continuous functional. Hence h1 must be square integrable.
By homogeneity (see (4.17)), for any t > 0, we see that ht ∈ L2(G) as a

consequence of Corollary 4.2.10 and (4.19) must hold. �
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We now define the function h : G × R → C as in the statement of Theorem
4.2.7 by

h(x, t) :=

{
ht(x) if t > 0 and x ∈ G,
0 if t ≤ 0 and x ∈ G.

By Corollary 4.2.13, the function h is smooth on G × (R\{0}) and satisfies the
equation (R + ∂t)h = 0 on G × (R\{0}). However, it is not obvious that it is a
distribution on G × R. Our next goal is to prove that it is indeed a distribution
and that it satisfies the equation (R+ ∂t)h = 0 on G× R.

It is easy to prove that h is a distribution under the assumption ν > Q/2
since it is then locally integrable:

Lemma 4.2.14. If ν > Q/2, then h is locally integrable on G× R.

Proof of Lemma 4.2.14. We assume ν > Q/2. We see that for any ǫ > 0 and
R > 0, using the homogeneity property given in (4.19),

∫ ǫ

0

∫

|x|<R

|h(x, t)|dxdt ≤
∫ ǫ

0

(∫

|x|<R

|ht(x)|2dx
) 1

2
(∫

|x|<R

1dx

) 1
2

dt

≤ |B(0, 1)| 12RQ/2

(∫

G

|h1(x)|2dx
) 1

2
∫ ǫ

0

t−
Q
2ν dt

= CRQ/2ǫ1−
Q
2ν ,

since we assumed ν > Q/2. This shows that h is locally integrable on G× R and
hence defines a distribution. �

If we know that h is a distribution, being a solution of (R + ∂t)h = δ0,0 is
almost granted:

Lemma 4.2.15. Let us assume that h ∈ D′(G× R) is a distribution and that

• either h1 ∈ L2(G) and ν > Q/2,

• or h1 ∈ L1(G) (without restriction on ν > Q/2).

Then h satisfies the equation

(R+ ∂t)h = δ0,0

as a distribution.

The proof of Lemma 4.2.15 will require the following technical property which
is independent of the rest of the proof:

Lemma 4.2.16. Let R be a positive Rockland operator on a graded Lie group G ∼
Rn with homogeneous degree ν. If mν ≥ ⌈n2 ⌉, the functions in the domain of Rm

are continuous on Ω, i.e.
Dom(Rm) ⊂ C(Ω),
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where C(Ω) denotes the space of continuous functions on Ω. Furthermore, for any
compact subset Ω of G, there exists a constant C = CΩ,R,G,m such that

∀φ ∈ Dom(Rm) sup
x∈Ω
|φ(x)| ≤ C (‖φ‖L2 + ‖Rmφ‖L2) .

This is a (very) weak form of Sobolev embeddings. We will later on obtain
stronger results in Theorem 4.4.25. The proof below uses Corollary 4.1.14 showed
by Helffer and Nourrigat during their proof of Theorem 4.1.12.

Proof of Lemma 4.2.16. By the classical Sobolev embedding theorem on Rn, see
e.g. [Ste70a, p.124], if φ ∈ L2(Rn) together with ∂α

xφ ∈ L2(Rn) for any multi-index
α satisfying |α| ≤ ⌈n2 ⌉, then φ may be modified on a set of zero measure so that
the resulting function, still denoted by φ, is continuous.

Furthermore, for any compact subset Ω of G, we may choose a closed ball
B(0, R) strictly containing Ω, and there exists a constant C = CΩ,R independent
of φ such that

sup
Ω
|φ| ≤ C

∑

|α|≤⌈n
2 ⌉
‖∂α

xφ‖L2(B(0,R)).

As the abelian derivatives may be expressed as linear combination of left-
invariant ones, see Section 3.1.5, there exists another constant C = CR such that

∑

|α|≤⌈n
2 ⌉
‖∂α

xψ‖L2(B(0,R)) ≤ C
∑

|α|≤⌈n
2 ⌉
‖Xαψ‖L2(B(0,R))

for any ψ such that the right-hand side makes sense. By the corollary of the Helffer-
Nourrigat theorem applied to Rm (see Corollary 4.1.14, see also Lemma 4.2.5),
there exists C = CR,m > 0 such that

∀ψ ∈ S(G)
∑

[α]≤mν

‖Xαψ‖L2(G) ≤ C
(
‖Rmψ‖L2(G) + ‖ψ‖L2(G)

)
.

The last two properties yield easily

∑

|α|≤⌈n
2 ⌉
‖∂α

xψ‖L2(B(0,R)) ≤ C
(
‖Rmψ‖L2(G) + ‖ψ‖L2(G)

)
,

for any function ψ ∈ L2(G) for which the right-hand side makes sense, for some
constant C = CR,R,m independent of ψ, as long as mν ≥ ⌈n2 ⌉. Together with
the embedding property recalled at the beginning of the proof, this shows Lemma
4.2.16. �

We can now go back to the proof of the heat kernel theorem, and more
precisely, the proof of Lemma 4.2.15.
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Proof of Lemma 4.2.15. If we set for each ǫ > 0 and (x, t) ∈ G× R,

h(ǫ)(x, t) :=

{
h(x, t) if t > ǫ,
0 if t ≤ ǫ,

it is clear that this defines a distribution h(ǫ) ∈ D′(G×R) and that {h(ǫ)} converges
to h in D′(G× R) as ǫ tends to 0. To prove that

(R+ ∂t)h = δ0,0,

it suffices to show that (R + ∂t)h
(ǫ) converges to δ0,0 in D′(G × R) as ǫ tends to

0; this means:

∀φ ∈ D(G× R) 〈h(ǫ), (Rt − ∂t)φ〉 = 〈(R+ ∂t)h
(ǫ), φ〉 D′

−→
ǫ→0

φ(0).

Using the translation of the group H = G× R which is the direct product of the
groups G and (R,+), this is equivalent to the pointwise convergence in H:

∀φ ∈ D(H), (x, t) ∈ H (R+ ∂t)(φ ∗ h(ǫ))(x, t) −→
ǫ→0

φ(x, t), (4.20)

since

(R+ ∂t)(φ ∗ h(ǫ))(x, t) = φ ∗ ((R+ ∂t)h
(ǫ))(x, t) = 〈(R+ ∂t)h

(ǫ), φ((x, t) ·−1)〉.

The above convolution is in H, given by

(φ ∗ h(ǫ)) (x, t) =

∫

G

∫

R

φ(y, u)h(ǫ)((y, u)−1(x, t))dydu

=

∫

G

∫ t−ǫ

u=−∞
φ(y, u)h(y−1x,−u+ t)dydu.

We see that

(R+ ∂t)(φ ∗ h(ǫ))(x, t) =

∫

G

∫ t−ǫ

u=−∞
φ(y, u) (Rx + ∂t)h(y

−1x,−u+ t)dydu

+

∫

G

φ(y, t− ǫ)h(y−1x, ǫ)dy,

and the first term of the right hand side is zero since (R+ ∂t)h = 0 on G× (0,∞)
and R+ ∂t is left-invariant on H. Hence

(R+ ∂t)(φ ∗ h(ǫ))(x, t) = φ(·, t− ǫ) ∗ hǫ(x), (4.21)

using the convolution in H and G for the left and right hand sides respectively.

We now fix t and set φǫ(y) := φ(y, t− ǫ). Then

φ(·, t− ǫ) ∗ hǫ = φǫ ∗ hǫ,
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and we can write

φǫ ∗ hǫ − φ0 = (φǫ − φ0) ∗ hǫ − (φ0 ∗ hǫ − φ0). (4.22)

For the first term in the right-hand side of (4.22), we need to separate the case
h1 ∈ L2(G) with ν > Q/2 from the case h1 ∈ L1(G). Indeed if h1 ∈ L2(G) with
ν > Q/2, then by (4.19),

‖hǫ‖2 = ǫ−
Q
2ν ‖h1‖2

and the Cauchy-Schwartz inequality yields

‖(φǫ − φ0) ∗ hǫ‖∞ ≤ ‖φǫ − φ0‖2‖hǫ‖2.
We easily obtain ‖φǫ − φ0‖2 ≤ Cǫ as φ ∈ D(G× R). Thus

‖(φǫ − φ0) ∗ hǫ‖∞ ≤ C ′ǫ1−
Q
2ν −→ǫ→0 0,

since we assumed ν > Q/2. If h1 ∈ L1(G), then by (4.19), ‖hǫ‖1 = ‖h1‖1 and the
Hölder inequality yields

‖(φǫ − φ0) ∗ hǫ‖∞ ≤ ‖φǫ − φ0‖∞‖hǫ‖1 = ‖h1‖1‖φǫ − φ0‖∞.

Again ‖φǫ − φ0‖2 ≤ Cǫ as φ ∈ D(G× R) thus

‖(φǫ − φ0) ∗ hǫ‖∞ ≤ C ′ǫ −→ǫ→0 0.

For the second term in the right-hand side of (4.22), the functional calculus
of R2 yields the convergence in L2(G)

φ0 ∗ hǫ = e−ǫR2φ0 −→ǫ→0 φ0.

AsR2 commutes with theR2-multiplier e−ǫR2 and since φ0 ∈ D(G),R2φ0 = Rφ0,
we know that φ0 ∗ hǫ = e−ǫR2φ0 ∈ Dom(R2) and moreover

(Rφ0) ∗ hǫ = (R2φ0) ∗ hǫ = e−ǫR2R2φ0 = R2e
−ǫR2φ0

L2(G)−→ ǫ→0 R2φ0.

More generally, for any m ∈ N, φ0 ∗ hǫ = e−ǫR2φ0 ∈ Dom(Rm
2 ) and

Rm
2 e−ǫR2φ0

L2(G)−→ ǫ→0 Rm
2 φ0.

By Lemma 4.2.16, this implies that φ0 ∗ hǫ− φ0 is continuous on G. Furthermore,
for any compact subset Ω of G ∼ Rn and any m ∈ N with mν > ⌊n2 ⌋, we have

sup
Ω
|φ0 ∗ hǫ − φ0| ≤ C (‖φ0 ∗ hǫ − φ0‖2 + ‖Rm(φ0 ∗ hǫ − φ0)‖2) −→ǫ→0 0.

Hence we have obtained that both terms on the right-hand side of (4.22)
go to zero for the supremum norm on any compact subset of G. Therefore, the
expression in (4.21) tends to

(R+ ∂t)(φ ∗ h(ǫ))(x, t) −→ǫ→0 φ(·, t− ǫ) ∗ hǫ(x),

for t fixed, locally in x. This is even stronger than the pointwise convergence in H
we wanted in (4.20) and concludes the proof of Lemma 4.2.15. �
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Corollary 4.2.17. Under the hypothesis of Lemma 4.2.15, h is smooth on (G ×
R)\{(0, 0)} and satisfies (4.15) and (4.18). Moreover, each function ht is Schwartz
on G and ∫

G

ht(x)dx = 1.

Proof of Corollary 4.2.17. By Lemma 4.2.15, the distribution h annihilates the
hypoelliptic operator R+∂t on (G×R)\{0}, and thus h is smooth on (G×R)\{0}.
Since h(x, t) = 0 for t ≤ 0, this implies that h(x, t) vanish to infinite order as t→ 0:

∀x ∈ G\{0}, N ∈ N0 ∃ǫ > 0, C > 0 ∀t ∈ (0, ǫ) |h(x, t)| ≤ CtN .

We can choose ǫ = 1 since h is smooth on G×(0,∞). In fact this estimate remains
true for any x-derivatives ( ∂

∂x )
αh(x, t). It is also uniform in x when x runs over a

fixed compact set which does not contain 0. Choosing this compact set to be the
unit sphere of a given quasi-norm | · |, we have

∀N ∈ N0 ∃C > 0 ∀t ∈ (0, 1] sup
|x|=1

∣∣∣∣
(

∂

∂x

)α

h(x, t)

∣∣∣∣ ≤ CtN .

We may replace the abelian derivatives ( ∂
∂x )

α by the left-invariant ones, see Section
3.1.5. This implies (4.15).

Using the homogeneity of h (see Property (4.12) which was already proven
and Proposition 3.1.23), we have

∀x ∈ G, r > 0 Xαh(x, t) = rQ−[α]Xαhrνt(rx),

and so, in particular, if |x| ≥ 1 then we obtain, because of (4.15), that

|Xαh1(x)| = |x|−Q+[α]|Xαh|x|−ν (|x|−1x)| ≤ Cα,N |x|−Q+[α]−νN .

Since h1 is smooth on G, this shows that h1 is Schwartz. This is also the case for
ht by homogeneity, see (4.17). Note that the same homogeneity property together
with (4.15) implies (4.18).

Since each function ht satisfies the homogeneity property given in (4.17) and
is integrable, the functions ht form a commutative approximation of the identity,
see Remark 3.1.60. In particular,

φ ∗ ht −→t→0 cφ in L2(G),

with c =
∫
G
h1(x)dx. Since we know

φ ∗ ht = e−tR2φ −→ǫ→0 φ in L2(G),

this constant c must be equal to 1. By homogeneity,

∀t > 0

∫

G

ht(x)dx =

∫

G

h1(x)dx = c = 1.

�
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Lemmata 4.2.14 and 4.2.15 imply Theorem 4.2.7 and Corollary 4.2.10 under
the assumption ν > Q/2. We now need to remove this assumption. For this, we will
use the following formula which is a consequence of the principle of subordination:

Lemma 4.2.18. For any γ > 0, we have

e−γ =

∫ ∞

0

e−s

√
πs

e−
γ2

4s ds. (4.23)

Sketch of the proof of Lemma 4.2.18. We follow [Ste70a, p.61]. We start from the
well known identity

πe−γ =

∫ ∞

−∞

eiγx

1 + x2
dx, (4.24)

which is an application of the Residue theorem to the function

z �→ eiγz

z2 + 1
.

In (4.24) we replace 1 + x2 using

1

1 + x2
=

∫ ∞

0

e−(1+x2)udu,

and we obtain the double integral

πe−γ =

∫ ∞

−∞
eiγx

∫ ∞

0

e−(1+x2)udu dx.

One can show that it is possible to invert the order of integration:

πe−γ =

∫ ∞

0

e−u

∫ ∞

−∞
eiγxe−x2udx du.

It is well known that the inner integral in dx is equal to

e−
γ2

4u√
πu

.

And this shows (4.23). �

We can now finish the proofs of Theorem 4.2.7 and Corollary 4.2.10.

End of the proofs of Theorem 4.2.7 and Corollary 4.2.10. Since the case ν > Q/2
is already proven, we may assume ν ≤ Q/2.

For any m ∈ N0, R2m is a positive Rockland operator (see Lemma 4.2.5),
with homogeneous degree 2mν. We denote by Km the function on G × R giving

its heat kernel in the sense that if t > 0, Km(·, t) ∈ S ′(G) is the kernel of e−tR2m

2
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and if t ≤ 0 then Km(x, t) = 0 for any x ∈ G. This is possible since, by Corollary
4.2.13, Km is smooth on G× (0,∞). By homogeneity, it will always satisfy

∀x ∈ G, t > 0 Km(x, t) = t−
Q

ν2m Km(t−
1

ν2m x, 1). (4.25)

In (4.23), replacing γ by tλ2m−1

, one finds that

e−tλ2m−1

=

∫ ∞

0

e−s

√
πs

e−
t2λ2m

4s ds.

Using the functional calculus on R, that is, integrating against the spectral mea-
sure dE(λ) of R2, we obtain formally that for any non-negative integer m ∈ N0

and t > 0,

e−tR2m−1

2 =

∫ ∞

0

e−s

√
πs

e−
t2

4sR
2m

2 ds, (4.26)

and for the kernels of these operators,

Km−1(x, t) =

∫ ∞

0

e−s

√
πs

Km(x,
t2

4s
)ds. (4.27)

It is not difficult to see that Formulae (4.26) and (4.27) hold as operators and con-
tinuous integrable functions respectively when, for instance, Km(·, t) is integrable
on G for each t > 0 and

∫ ∞

0

e−s

√
πs
‖Km(·, t

2

4s
)‖L1(G)ds <∞.

Indeed under this hypothesis, Km−1(·, t) is integrable on G for any fixed t > 0 and

‖Km−1(·, t)‖L1(G) ≤
∫ ∞

0

e−s

√
πs
‖Km(·, t

2

4s
)‖L1(G)ds <∞. (4.28)

It is then a standard procedure to make sense of (4.26) by first integrating λ over
[0, N ] and then letting N tend to infinity.

We first assume that 2mν > Q/2, so that the conclusion of Theorem 4.2.7
holds for Km. In particular, Km(·, 1) ∈ S(G) and by homogeneity, the L1-norm of
Km(·, t) is ∫

G

|Km(x, t)|dx =

∫

G

|Km(x, 1)|dx,

is finite and independent of t. Therefore
∫ ∞

0

e−s

√
πs

∫

G

|Km(x,
t2

4s
)|dxds =

∫

G

|Km(x, 1)|dx
∫ ∞

0

e−s

√
πs

ds,

is finite. Consequently Formula (4.27) holds and by (4.28),

‖Km−1(t, ·)‖L1(G) ≤
∫

G

|Km(x, 1)|dx
∫ ∞

0

e−s

√
πs

ds <∞.
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By homogeneity,
∫
G
|Km−1(x, t)|dx must also be independent of t > 0, while it is

identically zero if t ≤ 0. This implies that Km−1 is locally integrable on G × R
and that Km−1(·, 1) ∈ L1(G). By Lemmata 4.2.14 and 4.2.15, Km−1 satisfy the
properties of the heat kernel described in Theorem 4.2.7 and Corollary 4.2.10.

Now we can repeat the same reasoning with m replaced successively by m−
1,m − 2, . . . , 2, 1. Since K0 = h, this concludes the proofs of Theorem 4.2.7 and
Corollary 4.2.10. �

We still have to show Corollary 4.2.9.

Proof of Corollary 4.2.9. Since the heat kernels ht, t > 0, form a commutative
approximation of the identity (see Theorem 4.2.7 and Remark 3.1.60 in Section
3.1.10), the operators f �→ f ∗ ht, t > 0, form a strongly continuous semi-group
on Lp(G) for any p ∈ [1,∞) and on Co(G), see Lemma 3.1.58. It is naturally
equibounded by ‖h1‖ since

‖f ∗ ht‖p ≤ ‖f‖p‖ht‖1 and ‖ht‖1 = ‖h1‖.

Let us prove the convergence in (4.16) for p =∞. Let f ∈ D(G). By Lemma
4.2.16, for any compact subset Ω ⊂ G,

sup
Ω

∣∣∣∣
1

t
(f ∗ ht − f)−Rf

∣∣∣∣

≤ C

(∥∥∥∥
1

t
(f ∗ ht − f)−Rf

∥∥∥∥
2

+

∥∥∥∥
1

t
Rm (f ∗ ht − f)−Rm+1f

∥∥∥∥
2

)
,

where m is an integer such that mν ≥ ⌈n2 ⌉. Since D(G) ⊂ Dom(R) and

e−tR2f = f ∗ ht,

we have for any integer m′ ∈ N0 that

1

t
Rm′

(f ∗ ht − f)−Rm′+1f =
1

t
Rm′

2

(
e−tR2f − f

)
−Rm′+1

2 f

=
1

t

(
e−tR2Rm′

2 f −Rm′

2 f
)
−Rm′+1

2 f =
1

t

(
(Rm′

f) ∗ ht −Rm′

f
)
−Rm′+1f

−→t→0 0 in L2(G).

Therefore,

sup
Ω

∣∣∣∣
1

t
(f ∗ ht − f)−Rf

∣∣∣∣ −→t→0 0.

We fix a quasi-norm | · |. By Part 2 of Remark 3.2.16 and the existence of a
homogeneous norm (Theorem 3.1.39), without loss of generality, we may assume
| · | to be also a norm, that is, the triangular inequality is satisfied with constant 1;
although we could give a proof without this hypothesis, it simplifies the constants
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below. Let B̄R be a closed ball about 0 of radius R which contains the support of
f . We choose Ω = B̄2R the closed ball about 0 and with radius 2R. If x �∈ Ω, then
since f is supported in B̄R ⊂ Ω,

(
1

t
(f ∗ ht − f)−Rf

)
(x) =

1

t
f ∗ ht(x) =

1

t

∫

|y|≤R

f(y)ht(y
−1x)dy,

hence
∣∣∣∣
1

t
f ∗ ht(x)

∣∣∣∣ ≤
‖f‖∞

t

∫

|y|≤R

|ht(y
−1x)|dy =

‖f‖∞
t

∫

|xt
1
ν z−1|≤R

|h1(z)|dz,

as ht satisfies (4.17). Note that {z : |xt 1
ν z−1| ≤ R} ⊂ {z : |t 1

ν z| > R/2} since

|t 1
ν z| ≤ R/2 =⇒ |xt 1

ν z−1| ≥ |x| − |t 1
ν z−1| ≥ 3

2
R.

Therefore ∫

|xt
1
ν z−1|≤R

|h1(z)|dz ≤
∫

|z|>t−
1
ν R/2

|h1(z)|dz.

Since h1 is Schwartz, we must have

∃C ∀z ∈ G\{0} |h1(z)| ≤ C|z|−a,

for a = Q + 2ν for instance. This together with the polar change of variable (cf.
Proposition 3.1.42) yield

∫

|z|>t−
1
ν R/2

|h1(z)|dz ≤ C

∫ ∞

r=t−
1
ν R/2

r−a−Q−1dr = C ′t2.

Consequently, denoting by Ωc the complement of Ω in G, we have

sup
Ωc

∣∣∣∣
1

t
(f ∗ ht − f)−Rf

∣∣∣∣ ≤ C ′t −→t→0 0.

This shows the convergence in (4.16) for p =∞.

We proceed in a similar way to prove the convergence in (4.16) for p finite.
As above we fix f ∈ D(G) supported in B̄R. We decompose

‖1
t
(f ∗ ht − f)−Rf‖p

≤ ‖1
t
(f ∗ ht − f)−Rf‖Lp(B̄2R) + ‖

1

t
(f ∗ ht − f)−Rf‖Lp(Bc

2R).

For the first term,

‖1
t
(f ∗ ht − f)−Rf‖Lp(B̄2R) ≤ |B̄2R|

1
p ‖1

t
(f ∗ ht − f)−Rf‖∞ −→

t→0
0,
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as we have already proved the convergence in (4.16) for p = ∞. For the second
term, we obtain for the reasons explained in the case p =∞ that

‖1
t
(f ∗ ht − f)−Rf‖Lp(Bc

2R) =
1

t
‖f ∗ ht‖Lp(Bc

2R)

=
1

t

(∫

|x|>2R

∣∣∣∣∣

∫

|y|<R

f(y) ht(y
−1x)dy

∣∣∣∣∣

p

dx

) 1
p

≤ C

t

(∫

|x|>2R

(∫

|y|<R

|f(y)| t−Q
ν |t− 1

ν (y−1x)|−ady

)p

dx

) 1
p

≤ Ct−1+p(−Q
ν + a

ν )‖f‖L1

(∫

|x|>2R

(|x| −R)−apdx

) 1
p

,

where we have used that the reverse triangle inequality

|y−1x| ≥ |x| − |y| ≥ |x| −R.

Consequently we obtain the convergence in (4.16) for p finite if we choose a large
enough. �

4.3 Fractional powers of positive Rockland operators

In this section we aim at defining fractional powers of positive Rockland operators.
We will carry out the construction on the scale of Lp-spaces for 1 ≤ p ≤ ∞,
with L∞(G) substituted by the space Co(G) of continuous functions vanishing at
infinity. The extension of a positive Rockland operator R to Lp(G) will be denoted
by Rp, and first we discuss the essential properties of such an extension. Then we
define its complex powers. Before studying the corresponding Riesz and Bessel
potentials, we will show that imaginary powers are continuous operators on Lp,
p ∈ (1,∞).

4.3.1 Positive Rockland operators on Lp

We start by defining the analogue Rp of the operator R on Lp(G).

Definition 4.3.1. Let R be a positive Rockland operator on a graded Lie group G.
For p ∈ [1,∞), we denote by Rp the operator such that −Rp is the infinites-

imal generator of the semi-group of operators f �→ f ∗ ht, t > 0, on Lp(G).
We also denote by R∞o

the operator such that −R∞o
is the infinitesimal

generator of the semi-group of operators f �→ f ∗ ht, t > 0, on Co(G).

For the moment it seems that R2 denotes the self-adjoint extension of R on
L2(G) and minus the generator of f �→ f ∗ ht, t > 0, on L2(G). In the sequel, in
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fact in Theorem 4.3.3 below, we show that the two operators coincide and there
is no conflict of notation.

The case p =∞ is somewhat irrelevant and will be often replaced by p =∞o,
especially when using duality. The next lemma aims at clarifying this point.

Lemma 4.3.2. • If p ∈ (1,∞), any bounded linear functional on Lp(G) can be
realised by integration against a function in Lp′

(G), where p′ is the conjugate
exponent of p, that is, 1

p + 1
p′ = 1. Consequently, the dual Lp(G)′ of Lp(G)

may be identified with Lp′

(G) and the corresponding norms coincide.

• If p = 1, any bounded linear functional on L1(G) can be realised by inte-
gration against a bounded function on G. Consequently, the dual L1(G)′ of
L1(G) may be identified with L∞(G) and the corresponding norms coincide.
In particular, L1(G)′ contains Co(G).

• If p = ∞o, any bounded linear functional on Co(G) can be realised by in-
tegration against a regular complex measure. Consequently, the dual Co(G)′

of Co(G) may be identified with the Banach space M(G) of regular complex
measures endowed with the total mass ‖ · ‖M(G) as its norm, and the cor-
responding norms coincide. With this identification, Co(G)′ contains L1(G)
and the corresponding norms coincide.

Proof. See, e.g., Rudin [Rud87, ch.6]. �

We can now describe the properties of Rp.

Theorem 4.3.3. Let R be a positive Rockland operator on a graded Lie group G.
In this statement, p ∈ [1,∞) ∪ {∞o}.
(i) The semi-group {f �→ f ∗ ht}t>0 is strongly continuous and equicontinuous

on Lp(G) if p ∈ [1,∞) or on Co(G) if p =∞o:

∀t > 0, ∀f ∈ Lp(G) or Co(G) ‖f ∗ ht‖p ≤ ‖h1‖1‖f‖p.
Consequently, the operator Rp is closed. The domain of Rp contains D(G),
and for f ∈ D(G) we have Rpf = Rf .

(ii) The operator R̄p is the infinitesimal generator of the strongly continuous
semi-group {f �→ f ∗ h̄t}t>0 on Lp(G).

(iii) We use the identifications of Lemma 4.3.2. If p ∈ (1,∞) then the dual of Rp

is R̄p′ . The dual of R∞o
restricted to L1(G) is R̄1. The dual of R1 restricted

to Co(G) ⊂ L∞(G) is R̄∞o .

(iv) If p ∈ [1,∞), the operator Rp is the maximal restriction of R to Lp(G), that
is, the domain of Rp consists of all the functions f ∈ Lp(G) such that the
distributional derivative Rf is in Lp(G) and Rpf = Rf .

The operator R∞o
is the maximal restriction of R to Co(G), that is,

the domain of R∞o
consists of all the functions f ∈ Co(G) such that the

distributional derivative Rf is in Co(G) and Rpf = Rf .
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(v) If p ∈ [1,∞), the operator Rp is the smallest closed extension of R|D(G) on
Lp(G). For p = 2, R2 is the self-adjoint extension of R on L2(G).

Proof. Part (i) is a consequence of Corollary 4.2.9, see also Section A.2.
Part (i) implies, intertwining with the complex conjugate, that {f �→ f ∗

h̄t}t>0 is also a strongly continuous semi-group on Lp(G). On D(G), its infinites-
imal operator coincide with R̄ = Rt which is a positive Rockland operator (see
Lemma 4.2.5) and it is easy to see that

∀φ ∈ D(G), t > 0 e−tR̄2φ = e−tR2 φ̄ = φ̄ ∗ ht = φ ∗ h̄t.

This shows Part (ii).

For Part (iii), we observe that using (1.14) and (4.13), we have

∀f1, f2 ∈ D(G) 〈f1 ∗ ht, f2〉 = 〈f1, f2 ∗ h̄t〉. (4.29)

Thus we have for any f, g ∈ D(G) and p ∈ [1,∞) ∪ {∞o}

〈1
t
(e−tRpf − f), g〉 = 1

t
〈f ∗ ht − f, g〉 = 1

t
〈f, g ∗ h̄t − g〉 = 1

t
〈f, e−tR̄p′ g − g〉.

Here the brackets refer to the duality in the sense of distributions or, equivalently,
to the duality explained in Lemma 4.3.2. Taking the limit as t→ 0 of the first and
last expressions proves Part (iii).

We now prove Part (iv) for any p ∈ [1,∞) ∪ {∞o}. Let f ∈ Dom(Rp) and
φ ∈ D(G). Since R is formally self-adjoint, we know that Rt = R̄, and by Part
(i), we have Rqφ = Rφ for any q ∈ [1,∞) ∪ {∞o}. Thus by Part (iii) we have

〈Rpf, φ〉 = 〈f, R̄p′φ〉 = 〈f,Rtφ〉 = 〈Rf, φ〉,

and Rpf = Rf in the sense of distributions. Thus

Dom(Rp) ⊂ {f ∈ Lp(G) : Rf ∈ Lp(G)}.

We now prove the reverse inclusion. Let f ∈ Lp(G) such that Rf ∈ Lp(G).
Let also φ ∈ D(G). The following computations are justified by the properties of
R and ht (see Theorem 4.2.7), Fubini’s Theorem, and (4.29):

〈f ∗ ht − f, φ〉 = 〈f, φ ∗ h̄t − φ〉 = 〈f,
∫ t

0

∂s(φ ∗ h̄s)ds〉

= 〈f,
∫ t

0

−R̄(φ ∗ h̄s)ds〉 = −〈f, R̄
∫ t

0

(φ ∗ h̄s)ds〉

= −〈Rf,
∫ t

0

φ ∗ h̄sds〉 = −
∫ t

0

〈Rf, φ ∗ h̄s〉ds

= −
∫ t

0

〈(Rf) ∗ hs, φ〉ds = −〈
∫ t

0

(Rf) ∗ hsds, φ〉.
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Therefore,

f ∗ ht − f = −
∫ t

0

(Rf) ∗ hsds.

Let us recall the following general property: if t �→ xt is a continuous mapping
from [0,∞) to a Banach space X , then 1

t

∫ t

0
xsds converges to x0 in the strong

topology of X as t→ 0. We apply this property to X = Lp(G) and t �→ (Rf) ∗ht;
the hypotheses are indeed satisfied because of the properties of the heat kernel,
see Theorem 4.2.7. Hence we have the following convergence in Lp(G):

1

t
(f ∗ ht − f) = −1

t

∫ t

0

(Rf) ∗ hsds −→
t→0
−Rf.

This shows f ∈ Dom(Rp) and concludes the proof of (iv).
Part (v) follows from (iv). This also shows that the self-adjoint extension

of R coincides with R2 as defined in Definition 4.3.1 and concludes the proof of
Theorem 4.3.3. �

Theorem 4.3.3 has the following couple of corollaries which will enable us to
define the fractional powers of Rp.

Corollary 4.3.4. We keep the same setting and notation as in Theorem 4.3.3.

(i) The operator Rp is injective on Lp(G) for p ∈ [1,∞) and R∞o
is injective

on Co(G), namely,

for p ∈ [1,∞) ∪ {∞o} : ∀f ∈ Dom(Rp) Rpf = 0 =⇒ f = 0.

(ii) If p ∈ (1,∞) then the operator Rp has dense range in Lp(G). The operator
R∞o

has dense range in Co(G). The closure of the range of R1 is the closed
subspace {φ ∈ L1(G) :

∫
G
φ = 0} of L1(G).

Proof. Let f ∈ Dom(Rp) be such that Rpf = 0 for p ∈ [1,∞) ∪ {∞o}. By
Theorem 4.3.3 (iv), f ∈ S ′(G) and Rf = 0. In Remark 4.1.13 (3), we noticed that
any positive Rockland operator satisfies the hypotheses of Liouville’s Theorem for
homogeneous Lie groups, that is, Theorem 3.2.45. Consequently f is a polynomial.
Since f is also in Lp(G) for p ∈ [1,∞) or in Co(G) for p =∞o, f must be identically
zero. This proves (i).

For (ii), let Ψ be a bounded linear functional on Lp(G) if p ∈ [1,∞) or on
Co(G) if p = ∞o such that Ψ vanishes identically on Range(Rp). Then Ψ can be

realised as the integration against a function f ∈ Lp′

(G) if p ∈ [1,∞) or a measure
also denoted by f ∈ M(G) if p = ∞o, see Lemma 4.3.2. Using the distributional
notation, we have

Ψ(φ) = 〈f, φ〉 ∀φ ∈ Lp(G) or ∀φ ∈ Co(G).
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Then for any φ ∈ D(G), we know that φ ∈ Dom(Rp) and Rpφ = Rφ by Theo-
rem 4.3.3 (i) thus

0 = Ψ(Rp(φ)) = 〈f,R(φ)〉 = 〈R̄f, φ〉,

since Rt = R̄. This shows that R̄f = 0. Applying again Liouville’s Theorem, this
time to the positive Rockland operator R̄ (see Lemma 4.2.5), this shows that f is
a polynomial. For p ∈ (1,∞), f being also a function in Lp′

(G), this implies that
f ≡ 0. For p =∞o, f ∈M(G), this shows that f is an integrable polynomial on G
hence f ≡ 0. For p = 1, f being a measurable bounded function and a polynomial,
f must be constant, i.e. f ≡ c for some c ∈ C. This shows that if p ∈ (1,∞)∪{∞o}
then Ψ = 0 and Range(Rp) is dense in Lp(G) or Co(G), whereas if p = 1 then
Ψ : L1(G) ∋ φ �→ c

∫
G
φ. This shows (ii) for p ∈ (1,∞) ∪ {∞o}.

Let us study more precisely the case p = 1. It is easy to see that
∫

G

Xφ(x)dx = −
∫

G

φ(x) (X1)(x)dx = 0

holds for any φ ∈ L1(G) such that Xφ ∈ L1(G). Consequently, for any φ ∈
Dom(R1), we know that φ and Rφ are in L1(G) thus

∫
G
R1φ = 0. So the range

of R1 is included in

S :=

{
φ ∈ L1(G) :

∫

G

φ = 0

}
⊃ Range(R1).

Moreover, if Ψ1 a bounded linear functional on S such that Ψ1 is identically 0
on Range(R1), by the Hahn-Banach Theorem (see, e.g. [Rud87, Theorem 5.16]),
it can be extended into a bounded linear function Ψ on L1(G). As Ψ vanishes
identically on Range(R1) ⊂ S, we have already proven that Ψ must be of the form

Ψ : L1(G) ∋ φ �→ c

∫

G

φ

for some constant c ∈ C and its restriction to S is Ψ1 ≡ 0. This concludes the
proof of Part (ii). �

Eventually, let us prove that the operator Rp is Komatsu-non-negative, see
hypothesis (iii) in Section A.3:

Corollary 4.3.5. For p ∈ [1,∞) ∪ {∞o}, and any μ > 0, the operator μI +Rp is
invertible on Lp(G), p ∈ [1,∞), and Co(G) for p =∞o, and the operator norm of
(μI +Rp)

−1 is
‖(μI +Rp)

−1‖ ≤ ‖h1‖μ−1.

Proof. Integrating the formula

(μ+ λ)−1 =

∫ ∞

0

e−t(μ+λ)dt,
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against the spectral measure dE(λ) of R2, we have formally

(μI +R2)
−1 =

∫ ∞

0

e−t(μI+R2)dt, (4.30)

and the convolution kernel of the operator on the right-hand side is (still formally)
given by

κμ(x) :=

∫ ∞

0

e−tμht(x)dt.

From the properties of the heat kernel ht (see Theorem 4.2.7 and Corollary
4.2.10), we see that the function κμ defined just above is continuous on G and
that

‖κμ‖1 ≤
∫ ∞

0

e−tμ‖ht‖1dt = ‖h1‖
∫ ∞

0

e−tμdt =
‖h1‖
μ

<∞.

As κμ ∈ L1(G), it is a routine exercise to show that the operator

∫ ∞

0

e−t(μI+R2)dt

is bounded on L2(G) with convolution kernel κμ (it suffices to consider integration
over [0, N ] with N →∞). Moreover, Formula (4.30) holds in L (L2(G)).

For any φ ∈ D(G) and p ∈ [1,∞) ∪ {∞o}, Theorem 4.3.3 (iv) implies

(μI +Rp)φ = (μI +R)φ = (μI +R2)φ ∈ D(G),

thus

((μI +Rp)φ) ∗ κμ = ((μI +R2)φ) ∗ κμ = φ.

This yields that the operator (μI + Rp)
−1 : φ �→ φ ∗ κμ is bounded on Lp(G) if

p ∈ [1,∞) and on Co(G) if p =∞o. Furthermore, its operator norm is

‖(μI +Rp)
−1‖ ≤ ‖κμ‖1 ≤ ‖h1‖μ−1,

completing the proof. �

4.3.2 Fractional powers of operators Rp

We now apply the general theory of fractional powers outlined in Section A.3 to
the operators Rp and I +Rp.

Theorem 4.3.6. Let R be a positive Rockland operator on a graded Lie group G.
We consider the operators Rp defined in Definition 4.3.1. Let p ∈ [1,∞) ∪ {∞o}.
1. Let A denote either R or I +R.
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(a) For every a ∈ C, the operator Aa
p is closed and injective with (Aa

p)
−1 =

A−a
p . We have A0

p = I, and for any N ∈ N, AN
p coincides with the usual

powers of differential operators on S(G) and Dom(AN ) ∩ Range(AN )
is dense in Range(Ap).

(b) For any a, b ∈ C, in the sense of operator graph, we have Aa
pAb

p ⊂ Aa+b
p .

If Range(Ap) is dense then the closure of Aa
pAb

p is Aa+b
p .

(c) Let ao ∈ C+.
• If φ ∈ Range(Aao

p ) then φ ∈ Dom(Aa
p) for all a ∈ C with 0 <

−Re a < Re ao and the function a �→ Aa
pφ is holomorphic in {a ∈

C : −Re ao < Re a < 0}.
• If φ ∈ Dom(Aao

p ) then φ ∈ Dom(Aa
p) for all a ∈ C with 0 < Re a <

Re ao and the function a �→ Aa
pφ is holomorphic in {a ∈ C : 0 <

Re a < Re ao}.
(d) For every a ∈ C, the operator Aa

p is invariant under left translations.

(e) If p ∈ (1,∞) then the dual of Ap is Āp′ . The dual of A∞o restricted to
L1(G) is Ā1. The dual of A1 restricted to Co(G) ⊂ L∞(G) is Ā∞o

.

(f) If a, b ∈ C+ with Re b > Re a, then

∃C = Ca,b > 0 ∀φ ∈ Dom(Ab
p) ‖Aa

pφ‖ ≤ C‖φ‖1−Re a
Re b ‖Ab

pφ‖
Re a
Re b .

(g) For any a ∈ C+, Dom(Aa
p) contains S(G).

(h) If f ∈ Dom(Aa
p)∩Lq(G) for some q ∈ [1,∞)∪{∞o}, then f ∈ Dom(Aa

q )
if and only if Aa

pf ∈ Lq(G), in which case Aa
pf = Aa

qf .

2. For each a ∈ C+, the operators (I +Rp)
a and Ra

p are unbounded and their
domains satisfy for all ǫ > 0,

Dom [(I +Rp)
a] = Dom(Ra

p) = Dom [(Rp + ǫI)a] .

3. If 0 < Re a < 1 and φ ∈ Range(Rp) then

R−a
p φ =

1

Γ(a)

∫ ∞

0

ta−1e−tRpφ dt,

in the sense that limN→∞
∫ N

0
converges in the norm of Lp(G) or Co(G).

4. If a ∈ C+, then the operator (I +Rp)
−a is bounded and for any φ ∈ X with

X = Lp(G) or Co(G), we have

(I +Rp)
−aφ =

1

Γ(a)

∫ ∞

0

ta−1e−t(I+Rp)φ dt,

in the sense of absolute convergence:
∫ ∞

0

ta−1‖e−t(I+Rp)φ‖Xdt <∞.
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5. For any a, b ∈ C, the two (possibly unbounded) operators Ra
p and (I +Rp)

b

commute.

6. For any a ∈ C, the operator Ra
p is homogeneous of degree νa.

Recall (see Definition A.3.2) that the two (possibly unbounded) operators A
and B commute when

x ∈ Dom(AB) ∩Dom(BA) =⇒ ABx = BAx,

and that the domain of the product AB of two (possibly unbounded) operators A
and B on the same Banach space X is formed by the elements x ∈ X such that
x ∈ Dom(B) and Bx ∈ Dom(A).

Proof. The operator Rp is closed and densely defined by Theorem 4.3.3 (i), it is
injective by Corollary 4.3.4 and Komatsu-non-negative in the sense of Section A.3
(iii) by Corollary 4.3.5. Therefore, Rp satisfies the hypotheses of Theorem A.3.4.
Moreover, I +Rp also satisfies these hypotheses by Remark A.3.3, and −(I +Rp)
generates an exponentially stable semi-group:

‖e−t(I+Rp)‖ ≤ e−t‖e−tRp‖ ≤ ‖h1‖1e−t.

Most of the statements then follow from the general properties of fractional
powers constructed via the Balakrishnan formulae recalled in Section A.3. More
precisely, from the Balakrishnan formula, for any N ∈ N, AN

p coincides with the
usual powers of differential operators on S(G) and Part (1a) follows from Theorem
A.3.4 (1) and (2) and Remark A.3.1.

The duality properties explained in Part (1e) for p ∈ (1,∞) hold for the
Balakrishnan operators hence they hold for their maximal closure. The cases of
p = 1,∞o are similar and this proves Part (1e). The properties in Parts (1d), (5)
and (6) hold for the Balakrishnan operators hence they hold for their maximal
closure and these parts are proved.

Part (1b) follows from Theorem A.3.4 (4).

Part (1c) follows from Theorem A.3.4 (5).

Part (1f) follows from Theorem A.3.4 (6).

Part (1g) follows from Parts (1a) and (1c).

Part (1h) is certainly true for any f ∈ S(G) and Re a > 0 via the Balakrish-
nan formulae. By analyticity (see Part (1c)) it is true for any a ∈ C. The density
of D(G) in Lp(G) (or Co(G) if p = ∞o) together with the maximality of Aa

p and
the uniqueness of distributional convergence imply the result.

Part (2) follow from Theorem A.3.4 (8).

Parts (3) and (4) follows from Theorem A.3.4 (10).

This concludes the proof of Theorem 4.3.6. �
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4.3.3 Imaginary powers of Rp and I +Rp

In this section, we show that imaginary powers of a positive Rockland operator
R as well as I + R are bounded operators on Lp(G), p ∈ (1,∞). We prove this
as a consequence of the theorem of singular integrals on homogeneous groups, see
Section 3.2.3.

We start by showing that if R is a positive Rockland operator, then the
imaginary powers of I +Rp are bounded on Lp(G):

Proposition 4.3.7. Let R be a positive Rockland operator on a graded Lie group G.
For any τ ∈ R and p ∈ (1,∞), the operator (I +Rp)

iτ is bounded on Lp(G). For
any p ∈ (1,∞), there exists C = Cp,R > 0 and θ > 0 such that

∀τ ∈ R ‖(I +Rp)
iτ‖L (Lp(G)) ≤ Ceθ|τ |.

For any p ∈ (1,∞) and a ∈ C, Dom((I +Rp)
a) = Dom((I +Rp)

Re a).

The following technical result will be useful in the proof of Proposition 4.3.7
and in other proofs (see Sections 4.3.4 and 4.4.4).

Lemma 4.3.8. Let R be a positive Rockland operator on a graded Lie group G. Let
ht be its heat kernel as in Section 4.2.2.

1. For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn
0 , and any real

number a with 0 < a < Q+[α]
ν , there exists a constant C > 0 such that

∫ ∞

0

ta−1|Xαht(x)|dt ≤ C|x|−Q−[α]+νa.

For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn
0 , there

exists a constant C > 0 such that
∫ ∞

0

|Xαht(x)|e−tdt ≤ C|x|−Q−[α].

2. For any homogeneous quasi-norm |·|, any multi-index α ∈ Nn
0 , and any t > 0,

we have ∫

|x|≥1/2

|Xαht(x)|dx ≤ t−
[α]
ν ‖Xαh1‖L1 .

3. For any homogeneous quasi-norm | · |, any multi-index α ∈ Nn
0 , any N ∈ N

and any t ∈ (0, 1), there exists a constant C > 0 such that

∫

|x|≥1/2

|Xαht(x)|dx ≤ CtN .
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Proof of Lemma 4.3.8 . Let us prove Part 1. We write
∫ ∞

0

ta−1|Xαht(x)|dt =
∫ |x|ν

0

+

∫ ∞

|x|ν
.

For the second integral, we use the property of homogeneity of ht (see (4.12) or
(4.17))

∫ ∞

|x|ν
=

∫ ∞

|x|ν
ta−1−Q+[α]

ν |Xαh1(t
− 1

ν x)|dt

≤ (
Q+ [α]

ν
− a)−1‖Xαh1‖∞|x|ν(a−

Q+[α]
ν ).

As h1 ∈ S(G), ‖Xαh1‖∞ is finite. For the first integral, we use again (4.12) to
obtain

∫ |x|ν

0

=

∫ |x|ν

0

ta−1|x|−(Q+[α])

∣∣∣∣Xαh|x|−νt

(
x

|x|

)∣∣∣∣ dt

≤ C1a
−1|x|ν(a−Q+[α]

ν ).

where C1 := sup|y|=1,0≤t1≤1 |Xαht1(y)| is finite by (4.15). Combining the two
estimates above shows the estimates for the first integral in Part 1. We proceed in
the same way for the second one:

∫ ∞

0

|Xαht(x)|e−tdt =

∫ |x|ν

0

+

∫ ∞

|x|ν
.

We have (with C1 as above)

∫ |x|ν

0

≤ C1|x|ν(a−
Q+[α]

ν )

∫ |x|ν

0

e−tdt = C1|x|ν(a−
Q+[α]

ν )(1− e−|x|ν )

≤ C1|x|ν(a−
Q+[α]

ν ),

whereas
∫ ∞

|x|ν
≤ ‖Xαh1‖∞(|x|ν)−Q+[α]

ν

∫ ∞

|x|ν
e−tdt = ‖Xαh1‖∞|x|−(Q+[α])e−|x|ν

≤ ‖Xαh1‖∞|x|−(Q+[α]).

We conclude in the same way as above and Part 1 is proved.

Let us prove Part 2. The property of homogeneity of ht (see (4.17)) together
with h1 ∈ S(G) imply

∫

|x|≥1/2

|Xαht(x)|dx =

∫

|x|≥1/2

|Xαh1(t
− 1

ν x)|t− [α]+Q
ν dx

= t−
[α]
ν

∫

t
1
ν |x′|≥1/2

|Xαh1(x
′)|dx′ ≤ t−

[α]
ν

∫

G

|Xαh1|,
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having used the change of variable x′ = t−
1
ν x. This shows Part 2.

Let us prove Part 3. The properties of the heat kernel, especially (4.12) and
(4.15), imply

|Xαht(x)| = |x|−[α]−Q|Xαh|x|−νt(|x|−1x)| ≤ C|x|−[α]−Q(|x|−νt)N ,

if |x| ≥ 1/2 and t ∈ (0, 1) where C = sup|x′|=1,0<t′<1 t
′−N |Xαht′(x

′)| is finite.
Hence ∫

|x|≥1/2

|Xαht(x)|dx ≤ CtN
∫

|x|≥1/2

|x|−[α]−Q−νNdx.

This shows Part 3 and concludes the proof of Lemma 4.3.8. �

Proof of Proposition 4.3.7. By Theorem 4.3.6 (1), to show that (I + Rp)
iτ is

bounded on Lp(G) for some p ∈ (1,∞) and τ ∈ R, it suffices to show that (I+R2)
iτ

can be extended to an Lp-bounded operator. To do this, we will show that Corol-
lary 3.2.21 can be applied to (I +R2)

iτ .
By functional calculus, (I + R2)

iτ is bounded on L2(G). Part 1 of Lemma
4.3.8 together with the formula

∀λ > 0 λiτ =
λ

Γ(1− iτ)

∫ ∞

0

t−iτe−λtdt,

and the functional calculus of R2 imply that the right convolution kernel of (I +
R2)

iτ is the tempered distribution κ which coincides with the smooth function
away from 0 given via

κ(x) =
1

Γ(1− iτ)

∫ ∞

0

t−iτ (I +R)ht(x)e
−tdt, x �= 0. (4.31)

Using this formula, we have

∫

|x|≥1/2

|κ(x)|dx ≤ |Γ(1− iτ)|−1

∫ ∞

t=0

∫

|x|≥1/2

(|ht(x)|+ |Rht(x)|)e−tdxdt.

By Part 2 of Lemma 4.3.8, (and h1 being Schwartz), the integrals

∫ ∞

t=0

∫

|x|≥1/2

|ht(x)|e−tdxdt and

∫ ∞

t=1

∫

|x|≥1/2

|Rht(x)|e−tdxdt,

are finite. By Part 3 of Lemma 4.3.8, the integral

∫ 1

t=0

∫

|x|≥1/2

|Rht(x)|e−tdxdt ≤ C

∫ 1

t=0

t0dt = C,

is finite. This shows that
∫
|x|≥1/2

|κ(x)|dx is finite.
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Using (4.31), we also obtain easily that

sup
0<|x|<1

|x|Q+[α]|Xακ(x)| ≤ |Γ(1− iτ)|−1 sup
0<|x|<1

|x|Q+[α]

∫ ∞

0

|Xαht(x)|+ |XαRht(x)|dt,

and the right-hand side is finite by Lemma 4.3.8. Note that if we denote by κ =
κτ,R the kernel of (I +R2)

iτ , then we have

κτ,R(x−1) = κ−τ,R̄(x),

using the formula in (4.31) and

((I +R)ht) (x
−1) = ((I− ∂t)ht) (x

−1) =
(
(I− ∂t)h̄t

)
(x)

= ((I− ∂t)ht) (x) = ((I +R)ht) (x),

where we have used (4.13). Hence we also have that each quantity

sup
0<|x|<1

|x|Q+[α]|X̃ακ(x)| = sup
0<|x|<1

|x|Q+[α]|Xακ−τ,R̄(x)|

is finite.
The estimates above show that κ satisfies the hypotheses of Corollary 3.2.21

and therefore the operator (I+R2)
iτ is bounded on Lp(G), p ∈ (1,∞). The prop-

erties of the semi-group (see Theorem A.3.4 (3)) imply the rest of the statement
in Proposition 4.3.7. �

Let us now prove the homogeneous case, that is, that the imaginary powers
of a positive Rockland operator are bounded on Lp(G):

Proposition 4.3.9. Let R be a positive Rockland operator on a graded Lie group
G. For any τ ∈ R and p ∈ (1,∞), the operator Riτ

p is bounded on Lp(G). For any
p ∈ (1,∞), there exists C = Cp,R > 0 and θ > 0 such that

∀τ ∈ R ‖Riτ
p ‖L (Lp(G)) ≤ Ceθ|τ |.

For any p ∈ (1,∞) and a ∈ C, Dom(Ra
p) = Dom(RRe a

p ).

Proof of Proposition 4.3.9. Let p ∈ (1,∞) and τ ∈ R. Let us denote by Rp,iτ the
(possibly unbounded) operator given as the strong limit in Lp(G) of (ǫ +Rp)

iτφ
as ǫ → 0, for φ ∈ Dom((ǫ +Rp)

iτ ) for any ǫ ∈ (0, ǫ0) for some small ǫ0 > 0 and
such that this strong limit exists. The domain of Rp,iτ is naturally the space of
all those functions φ. Note that the homogeneity of R implies

(ǫ+Rp)
iτφ = ǫiτ (I + ǫ−1Rp)

iτφ = ǫiτ (I +Rp)
iτ{φ(ǫ−1/ν ·)}(ǫ1/ν ·),

for any ǫ > 0 and any φ ∈ Lp(G) such that

φ(ǫ−1/ν ·) ∈ Dom((I +Rp)
iτ ).
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By Proposition 4.3.7, Dom((I + Rp)
iτ ) = Lp(G) and the operator (I + Rp)

iτ is
bounded. Therefore for all φ ∈ Lp(G) and ǫ > 0, φ is in Dom((ǫ+Rp)

iτ ) and we
have

‖(ǫ+Rp)
iτφ‖Lp(G) = ‖(I +Rp)

iτ{φ(ǫ−1/ν ·)}(ǫ1/ν ·)‖Lp(G)

= ǫ−
Q
pν ‖(I +Rp)

iτ{φ(ǫ−1/ν ·)}‖Lp(G)

≤ ǫ−
Q
pν ‖(I +Rp)

iτ‖L (Lp(G))‖φ(ǫ−1/ν ·)‖Lp(G)

= ‖(I +Rp)
iτ‖L (Lp(G))‖φ‖Lp(G).

Consequently, Rp,iτ extends to a bounded operator on Lp(G). By Theorem
A.3.4 (9), this implies that Riτ

p is also a bounded operator on Lp(G) as Rp has
dense range and domain by Corollary 4.3.4. As in the inhomogeneous case, the
properties of the semi-group (see Theorem A.3.4 (3)) imply the rest of the state-
ment in Proposition 4.3.9. �

Given the proof of Proposition 4.3.7, one would be tempted to study the
convolution kernel of the operator Riτ

2 in order to show the Lp-boundedness in
the proof of Proposition 4.3.9. Indeed, following the same arguments as in the
proof of Proposition 4.3.7, one shows that the kernel of Riτ

2 coincides away from
the origin with the smooth function

G\{0} ∋ x �→ 1

Γ(1− iτ)

∫ ∞

0

t−iτRht(x)dt.

However, this function can not be in general a kernel of type iτ : already for the
usual Laplacian on (Rn,+) it is not the case. Indeed, in the Euclidean case, this
function is radial and non-zero and its average on the sphere can therefore not
vanish.

In the stratified case, Folland proved the Lp-boundedness of imaginary powers
of the sub-Laplacian −L and I+ (−L) using general properties of semigroups pre-
serving positivity together with the Laplace transform see [Fol75, Proposition 3.14
and Lemma 3.13]. More precisely, the boundedness follows from the Littlewood-
Paley theory and the study of square functions associated with the semi-group.
Note that in the case of a sub-Laplacian, the proof in [Fol75] yields a bound of
the operator norm by |Γ(1− iτ)|−1 up to a constant of p.

In our case, we applied a consequence of the theorem of Singular Integrals via
Corollary 3.2.20 to obtain the Lp-boundedness of the imaginary powers of I +R
and we have shown

‖Riτ
p ‖L (Lp(G)) ≤ ‖(I +Rp)

iτ‖L (Lp(G)), p ∈ (1,∞),

in the proof of Proposition 4.3.9. We can follow the constants in the proof of the
theorem of Singular Integrals (see Remark A.4.5 (2)) as well as in our application
to show that ‖(I +Rp)

iτ‖L (Lp(G)) is bounded up to a constant of p, by

(1 + |Γ(1− iτ)|−1)2|
1
p− 1

2 |.
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However, we do not need these precise bounds as the bounds obtained from
the general theory of semigroups as stated in Propositions 4.3.7 and 4.3.9 will
be sufficient for our purpose in the proofs of interpolation properties for Sobolev
spaces in Theorem 4.4.9 and Proposition 4.4.15.

4.3.4 Riesz and Bessel potentials

We mimic the usual terminology in the Euclidean setting, to define the Riesz and
Bessel potentials associated with a positive Rockland operator.

Definition 4.3.10. Let R be a positive Rockland operator of homogeneous degree
ν. We call the operators R−a/ν for {a ∈ C, 0 < Re a < Q} and (I +R)−a/ν for
a ∈ C+, the Riesz potential and the Bessel potential, respectively.

In the sequel we will denote their kernels by Ia and Ba, respectively, as
defined in the following:

Corollary 4.3.11. We keep the setting and notation of Theorem 4.3.3.

(i) Let a ∈ C with 0 < Re a < Q. The integral

Ia(x) :=
1

Γ(aν )

∫ ∞

0

t
a
ν −1ht(x)dt

converges absolutely for every x �= 0. This defines a distribution Ia which is
smooth away from the origin and (a−Q)-homogeneous.

For any p ∈ (1,∞), if φ ∈ S(G) or, more generally, if φ ∈ Lq(G)∩Lp(G)
where q ∈ [1,∞) is given by 1

q − 1
p = Re a

Q , then

φ ∈ Dom(R− a
ν

p ) and R− a
ν

p φ = φ ∗ Ia ∈ Lp(G).

Consequently,

∀φ ∈ S(G) R
a
ν
p φ ∈ Lp(G) and φ = (R

a
ν
p φ) ∗ Ia.

(ii) Let a ∈ C+. The integral

Ba(x) :=
1

Γ(aν )

∫ ∞

0

t
a
ν −1e−tht(x)dt

converges absolutely for every x �= 0 and defines an integrable function Ba on
G. The function Ba is always smooth away from 0.

If Re a > Q, Ba is also smooth at 0.

If Re a > Q/2, then Ba is square integrable: Ba ∈ L2(G).
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All the operators (I +Rp)
−a/ν , p ∈ [1,∞) ∪ {∞o}, are bounded convo-

lution operators with the same (right convolution) kernel Ba.
If a, b ∈ C+, then as integrable functions, we have

Ba ∗ Bb = Ba+b.

Remark 4.3.12. In other words for Part (i), Ia is a kernel of type a and

R−a/ν
p δ0 = Ia.

This shows that if ν < Q, I1 is a fundamental solution of R, in fact, the unique
homogeneous fundamental solution (cf. Theorem 3.2.40).

Note that we will show in Lemma 4.5.9 that more generally XαBa ∈ L2(G)
whenever Re a > [α] +Q/2, as well as other L1-estimates.

Proof of Corollary 4.3.11. The absolute convergence and the smoothness of Ia
and Ba follow from Lemma 4.3.8.

For the homogeneity of Ia, we use (4.12) and the change of variable s = r−νt,
to get

Ia(rx) =
1

Γ(a/ν)

∫ ∞

0

t
a
ν −1ht(rx)dt

=
1

Γ(a/ν)

∫ ∞

0

(rνs)
a
ν −1r−Qhs(x)r

νds = ra−QIa(x).

Hence Ia is a kernel of type a with 0 < Re a < Q (see Definition 3.2.9).
By Lemma 3.2.7, the operator S(G) ∋ φ �→ φ ∗ Ia is homogeneous of degree

−a, and by Proposition 3.2.8, it admits a bounded extension Lq(G) → Lp(G)

when 1
p − 1

q = Re (a)
Q .

Let φ ∈ RQ(S(G)). By Theorem 4.3.6, the function a �→ R− a
ν

p φ is analytic
on the strip {z ∈ C, 0 < Re z < Q} and coincides there with

a �→ 1

Γ(aν )

∫ ∞

0

t
a
ν −1φ ∗ htdt.

But since the integral defining Ia(x) is absolutely convergent for all x ∈ G\{0},
we have

∀a ∈ C, Re a ∈ (0, Q),
1

Γ(aν )

∫ ∞

0

t
a
ν −1φ ∗ htdt = φ ∗ Ia,

and a �→ φ ∗ Ia is analytic on the strip {0 < Re a < Q}.
Hence we have obtained that

R− a
ν

p φ = φ ∗ Ia
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holds for Re a ∈ (0, Q) and for any φ ∈ RQ(S(G)). Note that RQ(S(G)) is dense
in any Lr(G), r ∈ (1,∞) as it suffices to apply Corollary 4.3.4 (ii) to the positive
Rockland operator RQ. Then Corollary 3.2.32 concludes the proof of Part (i).

By Theorem 4.2.7, ∫

G

|ht| =
∫

G

|h1| <∞

for all t > 0, so

∫

G

|Ba(x)|dx ≤
1

|Γ(aν )|

∫ ∞

0

t
Re a
ν −1e−t

∫

G

|ht(x)|dx dt =
Γ(Re a

ν )

|Γ(aν )|
‖h1‖L1 , (4.32)

and Ba is integrable.
By Theorem 4.3.6 Part (4), the integrable function Ba is the convolution

kernel of (I +Rp)
−a/ν .

Let us show the square integrability of Ba. We compute for any R > 0:

|Γ(a/ν)|2
∫

|x|<R

|Ba(x)|2dx =

∫

|x|<R

Γ(a/ν)Ba(x)Γ(a/ν)Ba(x)dx

=

∫

|x|<R

∫ ∞

0

t
a
ν −1e−tht(x)dt

∫ ∞

0

s
ā
ν −1e−sh̄s(x)ds dx

=

∫ ∞

0

∫ ∞

0

s
a
ν −1t

ā
ν −1e−(t+s)

∫

|x|<R

ht(x)h̄s(x)dx dtds.

From the properties of the heat kernel (see (4.13) and (4.11)) we see that
∫

|x|<R

ht(x)h̄s(x)dx =

∫

|x|<R

ht(x)hs(x
−1)dx −→

R→∞
ht ∗ hs(0),

and ht ∗ hs(0) = ht+s(0) = (t+ s)−
Q
ν h1(0).

Therefore,

∫

G

|Ba(x)|2dx =
h1(0)

|Γ(a/ν)|2
∫ ∞

0

∫ ∞

0

s
a
ν −1t

ā
ν −1e−(t+s)(t+ s)−

Q
ν dtds

=
h1(0)

|Γ(a/ν)|2
∫ 1

s′=0

s′
a
ν −1

(1− s′)
ā
ν −1ds′

∫ ∞

u=0

e−uu2(Re a
ν −1)−Q

ν +1du, (4.33)

after the change of variables u = s + t and s′ = s/u. The integrals over s′ and u
converge when Re a > Q/2. Thus Ba is square integrable under this condition.

The rest of the proof of Corollary 4.3.11 follows easily from the properties of
the fractional powers of I +R. �

The proof of Corollary 4.3.11 implies:

Corollary 4.3.13. We keep the notation of Corollary 4.3.11 and h1 denotes the
heat kernel at time t = 1 of R.
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1. For any a ∈ C+, the operator norm of (I +Rp)
− a

ν on Lp(G) if p ∈ [1,∞) or
on Co(G) if p =∞o is bounded by ‖Ba‖1 and we have

‖Ba‖L1(G) ≤
Γ(Re a

ν )

|Γ
(
a
ν

)
| ‖h1‖L1(G).

2. If Re a > Q/2,

‖Ba‖L2(G) =

(
h1(0)

Γ( 2Re a−Q
ν )

Γ( 2Re a
ν )

)1/2

.

3. If p ∈ (1, 2) and a > Q(1− 1
p ) then Ba ∈ Lp(G).

Proof. The first statement follows from (4.32).
For the second part, Estimate (4.33) yields

‖Ba‖22 = h1(0)Ca,

where

Ca = |Γ(a/ν)|−2

∫ 1

s′=0

s′
a
ν −1

(1− s′)
ā
ν −1ds′

∫ ∞

u=0

e−uu2Re a
ν −Q

ν −1du

= |Γ
(a
ν

)
|−2Γ(

a
ν )Γ(

ā
ν )

Γ(aν + ā
ν )

Γ
(2Re a−Q

ν

)
,

thanks to the properties of the Gamma function (see equality (A.4)). We notice
that

Γ
(a
ν

)
Γ
( ā
ν

)
= Γ

(a
ν

)
Γ
(a
ν

)
= |Γ

(a
ν

)
|2.

Thus the constant Ca simplifies into

Ca =
Γ( 2Re a−Q

ν )

Γ(aν + ā
ν )

.

This shows the second part.
The third part is obtained by complex interpolation between Parts 1 and 2.

More precisely, we fix a > 0 and b > Q/2 and we consider the linear functional
defined on simple functions in L1(G) via

Tzφ =

∫

G

Baz+b(1−z)(x)φ(x)

for any z ∈ C, Re z ∈ [0, 1]. We have

|Tzφ| ≤ ‖Baz+b(1−z)‖1‖φ‖∞.



4.3. Fractional powers of positive Rockland operators 215

Before applying Part 1 to ‖Baz+b(1−z)‖1, let us mention that the Stirling
formula (A.3) implies that for any w ∈ C+,

Γ(Rew)

|Γ(w)| �

√
|w|
Rew

(Rew
e )Rew

|(we )w|

�

(
Rew

|w|

)Rew− 1
2

|ww−Rew|

�

(
Rew

|w|

)Rew− 1
2

exp
(
|Imw| ln |w|

)
.

This together with Part 1 then yield

ln |Tzφ| ≤ ln(‖Baz+b(1−z)‖1‖φ‖∞) � (1 + |Im z|) ln(1 + |Im z|),

thus {Tz} is an admissible family of operator (in the sense of Section A.6). The
same arguments also show that

|T1+iyφ| � (1 + |y|)− a
ν + 1

2 exp (c|y| ln(1 + |y|)) ‖φ‖∞,

where c is a constant of a, b, ν.
The Cauchy-Schwartz estimate and Part 2 yield

|Tiyφ| ≤ ‖Baiy+b(1−iy)‖2‖φ‖2,

and Part 2 implies that the quantity

‖Baiy+b(1−iy)‖2 =

(
h1(0)

Γ( 2b−Q
ν )

Γ( 2bν )

)1/2

,

is independent of y. Hence we can apply Theorem A.6.1 to {Tz}: Tt extends to an
Lqt -bounded operator where t ∈ (0, 1) and 1

qt
= 1−t

2 . Therefore Bat+b(1−t) ∈ Lq′t

where q′t is the dual exponent to qt, i.e.
1
qt

+ 1
q′t

= 1. This shows Part 3 and

concludes the proof of Corollary 4.3.13. �

We finish this section with some technical properties which will be useful in
the sequel. The first one is easy to check.

Lemma 4.3.14. If R is a positive Rockland operator with Ba being the kernel of the
Bessel potential as given in Corollary 4.3.11, then R̄ is also a positive Rockland
operator and B̄a is the kernel of the Bessel potential associated to R̄.
Lemma 4.3.15. We keep the notation of Corollary 4.3.11. If a ∈ C+, then the
function

x �→ |x|NBa(x)
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is integrable on G, where | · | denotes any homogeneous quasi-norm on G and N
is any positive integer. Consequently, for any φ ∈ S(G), the function φ ∗ Ba is
Schwartz and

φ �→ φ ∗ Ba
acts continuously from S(G) to itself.

Note that we will show in Lemma 4.5.9 that, more generally,

|x|bXαBa ∈ L1(G) for Re a+ b > [α],

and that
XαBa ∈ L2(G) for Re a > [α] +Q/2.

Proof of Lemma 4.3.15. Let | · | be a homogeneous quasi-norm on G and N ∈ N.
We see that

∫

G

|x|N |Ba(x)|dx ≤
1

|Γ(aν )|

∫ ∞

0

t
Re a
ν −1e−t

∫

G

|x|N |ht(x)|dx dt,

and using the homogeneity of the heat kernel (see (4.17)) and the change of vari-

ables y = t−
1
ν x, we get

∫

G

|x|N |ht(x)|dx =

∫

G

|t 1
ν y|N |h1(y)|dy = cN t

N
ν ,

where cN = ‖|y|Nh1(y)‖L1(dy) is a finite constant since h1 ∈ S(G). Thus,

∫

G

|x|N |Ba(x)|dx ≤
cN
|Γ(aν )|

∫ ∞

0

t
Re a
ν −1+N

ν e−tdt <∞,

and x �→ |x|NBa(x) is integrable.
Let Co ≥ 1 denote the constant in the triangle inequality for | · | (see Proposi-

tion 3.1.38 and also Inequality (3.43)). Let also φ ∈ S(G). We have for any N ∈ N
and α ∈ Nn

0 :

(1 + |x|)N
∣∣∣X̃α [φ ∗ Ba] (x)

∣∣∣ = (1 + |x|)N
∣∣∣X̃αφ ∗ Ba(x)

∣∣∣

≤ (1 + |x|)N
∣∣∣X̃αφ

∣∣∣ ∗ |Ba| (x)

≤ CN
o

∣∣∣(1 + | · |)N X̃αφ
∣∣∣ ∗

∣∣(1 + | · |)NBa(x)
∣∣ (x)

≤ CN
o

∥∥∥(1 + | · |)N X̃αφ
∥∥∥
∞

∥∥(1 + | · |)NBa
∥∥
L1(G)

.

This shows that that φ ∗ Ba ∈ S(G) and that φ �→ φ ∗ Ba is continuous as a map
of S(G) to itself (for a description of the Schwartz class, see Section 3.1.9). �
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Corollary 4.3.16. We keep the notation of Corollary 4.3.11.
For any a ∈ C and p ∈ [1,∞)∪{∞o}, Dom(I+Rp)

a ⊃ S(G) and, moreover,

(I +Rp)
a(S(G)) = S(G). (4.34)

Furthermore on S(G), (I +Rp)
a does not depend on p ∈ [1,∞) ∪ {∞o} and acts

continuously on S(G).
If a ∈ C+, we have

(I +Rp)
a (φ ∗ Baν) = ((I +Rp)

aφ) ∗ Baν = φ (p ∈ [1,∞) ∪ {∞o}). (4.35)

Proof. Formula (4.35) holds for each p ∈ [1,∞) ∪ {∞o} by Theorem 4.3.6 and
Corollary 4.3.11.

Let us show (4.34) in the case of a = N ∈ N. By Theorem 4.3.6 (1a), we have
the equality (I + Rp)

Nφ = (I + R)Nφ for any φ ∈ S(G) and p ∈ (1,∞). Hence
(I + Rp)

N (S(G)) = (I + R)N (S(G)). The inclusion (I + R)N (S(G)) ⊂ S(G) is
immediate. The converse follows easily from Lemma 4.3.15 together with (4.35).
This proves (4.34) for a = N ∈ N. This implies that for any N ∈ N, S(G) is
included in

Dom
[
(I +Rp)

N
]
∩ Range

[
(I +Rp)

N
]

and we can apply the analyticity results (Part (1c)) of Theorem 4.3.6: fixing φ ∈
S(G), the function a �→ (I +Rp)

aφ is holomorphic in {a ∈ C : −N < Re a < N}.
We observe that by Corollary 4.3.11 (ii), if −N < Re a < 0, all the functions
(I +Rp)

aφ coincide with φ ∗ Baν for any p ∈ [1,∞) ∪ {∞o}. This shows that for
each a ∈ C fixed, (I + Rp)

aφ is independent of p. Furthermore, it is Schwartz.
Indeed if Re a < 0 this follow from Lemma 4.3.15. If Re a ≥ 0, we write a = ao+a′

with ao ∈ N and Re a′ < 0 and we have in the sense of operators

(I +R)a′

(I +R)ao ⊂ (I +R)a.
The operator (I +R)ao is a differential operator, hence maps S(G) to itself, and
the operator (I + R)a′

maps S(G) to itself by Lemma 4.3.15. Thus in any case
(I +Rp)

aφ ∈ S(G) and is independent of p.

We have obtained that (I+Rp)
a(S(G)) ⊂ S(G) for any p ∈ (1,∞), a ∈ C. As

{(I+Rp)
a}−1 = (I+Rp)

−a by Theorem 4.3.6 (1a), this proves the equality in (4.34)
for any a ∈ C. Lemma 4.3.15 says that this action is continuous if Re a < 0. This
is also the case for Re a ≥ 0 since we can proceed as above and write a = ao + a′

with ao ∈ N and Re a′ < 0, the action of (I+R)ao being continuous on S(G). This
concludes the proof of Corollary 4.3.16. �

Corollary 4.3.16 implies that the following definition makes sense.

Definition 4.3.17. Let R be a positive Rockland operator of homogeneous degree ν
and let s ∈ R. For any tempered distribution f ∈ S ′(G), we denote by (I+R)s/νf
the tempered distribution defined by

〈(I +R)s/νf, φ〉 = 〈f, (I + R̄)s/νφ〉, φ ∈ S(G).
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4.4 Sobolev spaces on graded Lie groups

In this section we define the (homogeneous and inhomogeneous) Sobolev spaces
associated to a positive Rockland operator R and show that they satisfy similar
properties to the Euclidean Sobolev spaces and to the Sobolev spaces defined
and studied by Folland [Fol75] on stratified Lie groups. In Section 4.4.5, we show
that the constructed spaces are actually independent of the choice of a positive
Rockland operator R on a graded Lie group with which we start our construction.
In Section 4.4.7, we list the main properties of our Sobolev spaces.

4.4.1 (Inhomogeneous) Sobolev spaces

We first need the following lemma:

Lemma 4.4.1. We keep the notation of Theorem 4.3.6. For any s ∈ R and p ∈
[1,∞)∪ {∞o}, the domain of the operator (I +Rp)

s
ν contains S(G), and the map

f �−→ ‖(I +Rp)
s
ν f‖Lp(G)

defines a norm on S(G). We denote it by

‖f‖Lp
s(G) := ‖(I +Rp)

s
ν f‖Lp(G).

Moreover, any sequence in S(G) which is Cauchy for ‖ · ‖Lp
s(G) is convergent in

S ′(G).

We have allowed ourselves to write ‖ ·‖L∞(G) = ‖ ·‖L∞o (G) for the supremum
norm. We may also write ‖ · ‖∞ or ‖ · ‖∞o

.

Proof. By Corollary 4.3.16, the domain of (I + Rp)
s
ν contains S(G). Since the

operator (I +Rp)
s
ν is linear, it is easy to check that the map f �→ ‖(I +Rp)

s
ν f‖p

is non-negative and satisfies the triangle inequality. Since (I +Rp)
s/ν is injective

by Theorem 4.3.6, Part (1), we have that ‖f‖Lp
s(G) = 0 implies f = 0.

Clearly ‖ · ‖Lp
0(G) = ‖ · ‖p, so in the case of s = 0 a Cauchy sequence of

Schwartz functions converges in Lp-norm, thus also in S ′(G).
Let us assume s > 0. By Corollary 4.3.11 (ii), the operator (I + Rp)

− s
ν is

bounded on Lp(G). Hence we have

‖ · ‖Lp(G) ≤ C‖ · ‖Lp
s(G)

on S(G). Consequently a ‖·‖Lp
s(G)-Cauchy sequence of Schwartz functions converge

in Lp-norm thus in S ′(G).
Now let us assume s < 0. Let {fℓ}ℓ∈N be a sequence of Schwartz functions

which is Cauchy for the norm ‖ · ‖Lp
s(G). By (4.35) we have

fℓ =
(
(I +Rp)

s
ν fℓ

)
∗ Bs.
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Furthermore, if φ ∈ S(G) then using (1.14) and (4.13), we have
∫

G

fℓ(x)φ(x)dx =

∫

G

(
(I +Rp)

s
ν fℓ

)
(x) (φ ∗ Bs) (x) dx. (4.36)

By assumption the sequence {(I+Rp)
s
ν fℓ}ℓ∈N is ‖·‖Lp(G)-Cauchy thus convergent

in Lp(G). By Lemma 4.3.15, φ ∗ Bs ∈ S(G). Therefore, the right-hand side of
(4.36) is convergent as ℓ→∞. Hence the scalar sequence 〈fℓ, φ〉 converges for any
φ ∈ S(G). This shows that the sequence {fℓ} converges in S ′(G). �

Lemma 4.4.1 allows us to define the (inhomogeneous) Sobolev spaces:

Definition 4.4.2. Let R be a positive Rockland operator on a graded Lie group
G. We consider its Lp-analogue Rp and the powers of (I + Rp)

a as defined in
Theorems 4.3.3 and 4.3.6. Let s ∈ R.

If p ∈ [1,∞), the Sobolev space Lp
s,R(G) is the subspace of S ′(G) obtained

by completion of S(G) with respect to the Sobolev norm

‖f‖Lp
s,R(G) := ‖(I +Rp)

s
ν f‖Lp(G), f ∈ S(G).

If p = ∞o, the Sobolev space L∞o

s,R(G) is the subspace of S ′(G) obtained by
completion of S(G) with respect to the Sobolev norm

‖f‖L∞o
s,R(G) := ‖(I +R∞o

)
s
ν f‖L∞(G), f ∈ S(G).

When the Rockland operator R is fixed, we may allow ourselves to drop the
index R in Lp

s,R(G) = Lp
s(G) to simplify the notation.

We will see later that the Sobolev spaces actually do not depend on the
Rockland operator R, see Theorem 4.4.20.

By construction the Sobolev space Lp
s(G) endowed with the Sobolev norm is

a Banach space which contains S(G) as a dense subspace and is included in S ′(G).
The Sobolev spaces share many properties with their Euclidean counterparts.

Theorem 4.4.3. Let R be a positive Rockland operator of homogeneous degree ν
on a graded Lie group G. We consider the associated Sobolev spaces Lp

s(G) for
p ∈ [1,∞) ∪ {∞o} and s ∈ R.

1. If s = 0, then Lp
0(G) = Lp(G) for p ∈ [1,∞) with ‖ · ‖Lp

0(G) = ‖ · ‖Lp(G), and
L∞o
0 (G) = Co(G) with ‖ · ‖L∞o

0 (G) = ‖ · ‖L∞(G).

2. If s > 0, then for any a ∈ C with Re a = s, we have

Lp
s(G) = Dom

[
(I +Rp)

a
ν

]
= Dom(R

a
ν
p ) � Lp(G),

and the following norms are equivalent to ‖ · ‖Lp
s(G):

f �−→ ‖f‖Lp(G) + ‖(I +Rp)
s
ν f‖Lp(G), f �−→ ‖f‖Lp(G) + ‖R

s
ν
p f‖Lp(G).
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3. Let s ∈ R and f ∈ S ′(G).

• Given p ∈ (1,∞), we have f ∈ Lp
s(G) if and only if the tempered dis-

tribution (I +Rp)
s/νf defined in Definition 4.3.17 is in Lp(G), in the

sense that the linear mapping

S(G) ∋ φ �→ 〈(I +R)s/νf, φ〉 = 〈f, (I + R̄p′)s/νφ〉

extends to a bounded functional on Lp′

(G) where p′ is the conjugate
exponent of p.

• f ∈ L1
s(G) if and only if (I + R1)

s/νf ∈ L1(G) in the sense that the
linear mapping

S(G) ∋ φ �→ 〈(I +R)s/νf, φ〉 = 〈f, (I + R̄∞o
)s/νφ〉

extends to a bounded functional on Co(G) and is realised as a measure
given by an integrable function.

• f ∈ L∞o
s (G) if and only if (I +R∞o

)s/νf ∈ Co(G) in the sense that the
linear mapping

S(G) ∋ φ �→ 〈(I +R)s/νf, φ〉 = 〈f, (I + R̄1)
s/νφ〉

extends to a bounded functional on L1(G) and is realised as integration
against functions in Co(G).

4. If a, b ∈ R with a < b and p ∈ [1,∞) ∪ {∞o}, then the following continuous
strict inclusions hold

S(G) � Lp
b(G) � Lp

a(G) � S ′(G),

and an equivalent norm for Lp
b(G) is

Lp
b(G) ∋ f �−→ ‖f‖Lp

a(G) + ‖R
b−a
ν

p f‖Lp
a(G).

5. For p ∈ [1,∞) ∪ {∞o} and any a, b, c ∈ R with a < c < b, there exists a
positive constant C = Ca,b,c such that for any f ∈ Lp

b , we have f ∈ Lp
c ∩ Lp

a

and
‖f‖Lp

c
≤ C‖f‖1−θ

Lp
a
‖f‖θLp

b
,

where θ := (c− a)/(b− a).

In Theorem 4.4.20, we will see that the definition of the Sobolev spaces and
their properties given in Theorem 4.4.3 hold independently of the chosen Rockland
operator R.

From now on, we will often use the notation Lp
0(G) since this allows us not to

distinguish between the cases Lp
0(G) = Lp(G) when p ∈ [1,∞) and Lp

0(G) = Co(G)
when p =∞o.

In the proof of Part (2) of Theorem 4.4.3, we will need the following exercise
in functional analysis:
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Lemma 4.4.4. Let T1 and T2 be two linear operators between two Banach spaces
X → Y. We assume that T1 and T2 are densely defined and share the same domain.
We also assume that they are both closed injective operators and that T2 is bijective
with a bounded inverse. Then the graph norms of T1 and T2 are equivalent, that
is,

∃C > 0 ∀x ∈ Dom(T1) = Dom(T2)

C−1(‖x‖+ ‖T2x‖) ≤ ‖x‖+ ‖T1x‖ ≤ C(‖x‖+ ‖T2x‖).

Sketch of the proof of Lemma 4.4.4. One can check easily that T := T1T
−1
2 de-

fines a closed linear operator T : Y → Y defined on the whole space Y. By the
closed graph theorem (see, e.g., [Rud91, Theorem 2.15] or [RS80, Thm III. 12]),
T is bounded. Furthermore, T is injective as the composition of two injective
operators. It may not have a closed range in Y but one checks easily that the
operator

(T−1
2 , T ) :

{
Y −→ X × Y
y �−→ (T−1

2 y, Ty)
,

has a closed range in X × Y. Hence the restriction of (T−1
2 , T ) onto its image is

bounded with a bounded inverse (see e.g. [RS80, Thm III. 11]). Consequently,

‖T−1
2 y‖+ ‖Ty‖ ≍ ‖y‖

for any element y ∈ Y, in particular of the form y = T2x, x ∈ Dom(T2). �

We can now prove Theorem 4.4.3.

Proof of Theorem 4.4.3. Part (1) is true since (I+Rp)
0
ν = I. Let us prove Part (2).

So let s > 0. Clearly Lp
s(G) coincides with the domain of the unbounded operator

(I +Rp)
s
ν (see Theorem 4.3.6 (2)) hence it is a proper subspace of Lp(G). As the

operator (I + Rp)
− s

ν is bounded on Lp(G), we have ‖ · ‖Lp(G) ≤ C‖ · ‖Lp
s(G) on

Lp
s(G). So ‖ · ‖Lp(G) + ‖ · ‖Lp

s(G) is a norm on Lp
s(G) which is equivalent to the

Sobolev norm. Theorem 4.3.6 implies thatR
s
ν
p and (I+Rp)

s
ν satisfy the hypotheses

of Lemma 4.4.4. This shows part (2).

Part (3) follows from Part (2) and the duality properties of the spaces Lp(G)
and Co(G) in the case s ≥ 0. We now consider the case s < 0. By Lemma 4.3.15
and Corollary 4.3.11 (and also Lemma 4.3.14), the mapping

Ts,p′,f : S(G) ∋ φ �−→ 〈f, (I + R̄p′)s/νφ〉 = 〈f, φ ∗ B̄−s〉

is well defined for any f ∈ S ′(G). If Ts,p′,f admits a bounded extension to a

functional on Lp′

0 (G), then we denote this extension T̃s,p′,f and we have

‖T̃s,p′,f‖
L (Lp′

0 ,C)
= ‖f‖Lp

s(G). (4.37)
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This is certainly so if f ∈ S(G). Furthermore a sequence {fℓ}ℓ∈N of Schwartz func-
tions is convergent for the Sobolev norm ‖ · ‖Lp

s(G) if and only if {T̃s,p′,fℓ} is con-
vergent in Lp′

0 (G) (see Lemma 4.3.2). In the case of convergence, by Lemma 4.4.1,
{fℓ}ℓ∈N converges in the sense of distributions. Denoting this limit by f ∈ S ′(G),
we have [

lim
ℓ→∞

T̃s,p′,fℓ

] ∣∣∣∣
S(G)

= Ts,p′,f .

It is easy to see, by linearity of f1 �→ Ts,p′,f1 and (4.37), that Ts,p′,f extends to a

continuous functional on Lp′

0 (G).

Conversely, let us consider a distribution f ∈ S ′(G) such that Ts,p′,f extends

to a bounded functional T̃s,p′,f on Lp′

0 (G). If {fℓ}ℓ∈N is a sequence of Schwartz
functions converging to f in S ′(G), then

lim
ℓ→∞

Ts,p′,fℓ(φ) = Ts,p′,f (φ)

for every φ ∈ S(G), and using the density of S(G) in Lp′

0 (G) and the Banach-
Steinhaus Theorem, this shows that {T̃s,p′,fℓ} converges to T̃s,p′,f in the norm of

the dual of Lp′

0 (G). This shows the case s < 0 and concludes the proof of Part (3).

Let us show Part (4). Let a ≤ b and p ∈ [1,∞) ∪ {∞o}. By Theorem 4.3.6
(1), we have in the sense of operators

(I +Rp)
a
ν ⊃ (I +Rp)

a−b
ν (I +Rp)

b
ν .

Since the operator (I +Rp)
a−b
ν is bounded, we have for any f ∈ S(G)

‖f‖Lp
a(G) = ‖(I +Rp)

a
ν f‖p = ‖(I +Rp)

a−b
ν (I +Rp)

b
ν f‖p

≤ ‖(I +Rp)
a−b
ν ‖L (Lp

0)
‖(I +Rp)

b
ν f‖p = ‖(I +Rp)

a−b
ν ‖L (Lp

0)
‖f‖Lp

b
.

By density of S(G), this implies the continuous inclusion Lp
b ⊂ Lp

a. Note that we
also have if a < b

‖f‖Lp
b (G) = ‖(I +Rp)

b−a
ν (I +Rp)

a
ν f‖p = ‖(I +Rp)

a
ν f‖Lp

b−a(G)

≍ ‖(I +Rp)
a
ν f‖Lp(G) + ‖R

b−a
ν

p (I +Rp)
a
ν f‖Lp(G),

by Part (2) above for any f ∈ S(G). By Theorem 4.3.6 (5), we can commute

the operators R
b−a
ν

p and (I +Rp)
a
ν in this last expression. Consequently, we have

obtained for any f ∈ S(G),

‖f‖Lp
b (G) ≍ ‖f‖Lp

a(G) + ‖R
b−a
ν

p f‖Lp
a(G).
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By density of S(G), this holds for any f ∈ Lp
b(G). Since the operator R

b−a
ν

p is
unbounded, this also implies the strict inclusions given in Part (4).

Part (5) follows from Theorem 4.3.6 (1f) for the case of a = 0. For f ∈ Lp
b ,

we then apply this to b− a, c− a instead of b and c and φ := (I +Rp)
a
ν f ∈ Lp

b−a

instead of f .
This concludes the proof of this part and of the whole theorem. �

Theorem 4.4.3 has the two following corollaries. The first one is an easy
consequence of Part (3).

Corollary 4.4.5. We keep the setting and notation of Theorem 4.4.3. Let s < 0
and p ∈ [1,∞) ∪ {∞o}. Let f ∈ S ′(G).

The tempered distribution f is in Lp
s(G) if and only if the mapping

S(G) ∋ φ �→ 〈f, φ ∗ B̄−s〉

extends to a bounded linear functional on Lp′

0 (G) with the additional property that

• for p = 1, this functional on Co(G) is realised as a measure given by an
integrable function,

• if p =∞o, this functional on L1(G) is realised by integration against a func-
tion in Co(G).

Corollary 4.4.6. We keep the setting and notation of Theorem 4.4.3. Let s ∈ R
and p ∈ [1,∞) ∪ {∞o}. Then D(G) is dense in Lp

s(G).

Proof of Corollary 4.4.6. This is certainly true for s ≥ 0 (see the proof of Parts
(1) and (2) of Theorem 4.4.3). For s < 0, it suffices to proceed as in the last part
of the proof of Part (3) with a sequence of functions fℓ ∈ D(G). �

Theorem 4.4.3, especially Part (3), implies the following property regarding
duality of Sobolev spaces. This will be improved in Proposition 4.4.22 once we
show in Theorem 4.4.20 that the Sobolev spaces are indeed independent of the
considered Rockland operator.

Lemma 4.4.7. Let R be a positive Rockland operator on a graded Lie group G. We
consider the associated Sobolev spaces Lp

s,R(G). If s ∈ R and p ∈ (1,∞), the dual

space of Lp
s,R(G) is isomorphic to Lp′

−s,R̄(G) via the distributional duality, where

p′ is the conjugate exponent of p, 1
p + 1

p′ = 1.

Proof of Lemma 4.4.7. Clearly if f ∈ Lp
s,R(G) then for any φ ∈ S(G),

〈f, φ〉 = 〈f, (I + R̄p′)
s
ν (I + R̄p′)−

s
ν φ〉 = 〈(I +Rp)

s
ν f, (I + R̄p′)−

s
ν φ〉

by Theorem 4.3.6. Hence by Theorem 4.4.3 Part (3),

|〈f, φ〉| ≤ ‖(I +Rp)
s
ν f‖p‖(I + R̄p′)−

s
ν φ‖p′
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and the linear function S(G) ∋ φ �→ 〈f, φ〉 extends to a bounded linear functional

on Lp′

−s,R̄(G). Conversely, let Ψ be a bounded linear functional on Lp′

−s,R̄(G). Then
since

(I + R̄p′)s/νS(G) = S(G) ⊂ Lp′

−s,R̄(G),

see Corollary 4.3.16 and Definition 4.4.2, the linear functional Ψ ◦ (I + R̄p′)s/ν is
well defined on S(G) and satisfies for any φ ∈ S(G),

|Ψ ◦ (I + R̄p′)s/ν(φ)| = |Ψ
(
(I + R̄p′)s/νφ

)
|

≤ C‖(I + R̄p′)s/νφ‖
Lp′

−s,R̄

= C‖φ‖
Lp′

0

.

Therefore, Ψ◦ (I+ R̄p′)s/ν extends into a bounded linear functional on Lp
0(G). �

In the next statement, we show how to produce functions and converging
sequences of Sobolev spaces using the convolution:

Proposition 4.4.8. We keep the setting and notation of Theorem 4.4.3. Here a ∈ R
and p ∈ [1,∞) ∪ {∞o}.
(i) If f ∈ Lp

0(G) and φ ∈ S(G), then f ∗ φ ∈ Lp
a for any a and p.

(ii) If f ∈ Lp
a(G) and ψ ∈ S(G), then

(I +Rp)
a
ν (ψ ∗ f) = ψ ∗

(
(I +Rp)

a
ν f

)
, (4.38)

and ψ ∗ f ∈ Lp
a(G) with

‖ψ ∗ f‖Lp
a(G) ≤ ‖ψ‖L1(G)‖f‖Lp

a(G). (4.39)

Furthermore, if
∫
ψ = 1, writing

ψǫ(x) := ǫ−Qψ(ǫ−1x)

for each ǫ > 0, then {ψǫ ∗ f} converges to f in Lp
a(G) as ǫ→ 0.

Proof of Proposition 4.4.8. Let us prove Part (i). Here f ∈ Lp
0(G). By density of

S(G) in Lp
0(G), we can find a sequence of Schwartz functions {fℓ} converging to

f in Lp
0-norm. Then fℓ ∗ φ ∈ S(G) and for any N ∈ N,

RN (fℓ ∗ φ) = fℓ ∗ RNφ −→
ℓ→∞

f ∗ RNφ in Lp
0(G),

thus RN
p (f ∗ φ) = f ∗ RNφ ∈ Lp(G) and

‖f ∗ φ‖Lp
0(G) + ‖RN

p (f ∗ φ)‖Lp
0(G) <∞.

By Theorem 4.4.3 (4), this shows that f ∗ φ is in Lp
νN for any N ∈ N, hence in

any p-Sobolev spaces. This proves (i).



4.4. Sobolev spaces on graded Lie groups 225

Let us prove Part (ii). We observe that both sides of Formula (4.38) always
make sense as convolutions of a Schwartz function with a tempered distribution.

Let us first assume that f ∈ S(G). Formula (4.38) is true if a < 0 by Corollary
4.3.11 (ii) since then the (I +Rp)

a
ν is a convolution operator with an integrable

convolution kernel. Formula (4.38) is also true if a ∈ νN0 as in this case (I+Rp)
a
ν is

a left-invariant differential operator by Theorem 4.3.6 (1a). Hence Formula (4.38)
holds for any a > 0 by writing a = a0 + a′, a0 ∈ νN0, a

′ < 0, and

(I +Rp)
a
ν f = (I +Rp)

a0
ν (I +Rp)

a′

ν f.

Together with Corollary 4.3.16, this shows that Formulae (4.38) and consequently
(4.39) hold for any a ∈ R and f ∈ S(G).

By density of S(G) in Lp
s(G) and (4.39), this shows that Formulae (4.38) and

(4.39) hold for any f ∈ Lp
s(G).

Hence ψ ∗ f ∈ Lp
a(G) with Lp

a-norm ≤ ‖ψ‖1‖f‖Lp
a(G).

If
∫
G
ψ = 1, by Lemma 3.1.58 (i),

‖ψǫ ∗ f − f‖Lp
a(G) = ‖(I +Rp)

a
ν (ψǫ ∗ f − f)‖p

= ‖ψǫ ∗
(
(I +Rp)

a
ν f

)
− (I +Rp)

a
ν f‖p −→ǫ→0 0,

that is, {ψǫ ∗ f} converges to f in Lp
a(G) as ǫ→ 0. This proves (ii). �

4.4.2 Interpolation between inhomogeneous Sobolev spaces

In this section, we prove that interpolation between Sobolev spaces Lp
a(G) works

in the same way as its Euclidean counterpart.

Theorem 4.4.9. Let R and Q be two positive Rockland operators on two graded Lie
groups G and F . We consider their associated Sobolev spaces Lp

a(G) and Lq
b(F ).

Let p0, p1, q0, q1 ∈ (1,∞) and let a0, a1, b0, b1 be real numbers.
We also consider a linear mapping T from Lp0

a0
(G) + Lp1

a1
(G) to locally in-

tegrable functions on F . We assume that T maps Lp0
a0
(G) and Lp1

a1
(G) boundedly

into Lq0
b0
(F ) and Lq1

b1
(F ), respectively.

Then T extends uniquely to a bounded mapping from Lp
at
(G) to Lq

bt
(F ) for

t ∈ [0, 1] where at, bt, pt, qt are defined by

(
at, bt,

1

pt
,
1

qt

)
= (1− t)

(
a0, b0,

1

p0
,
1

q0

)
+ t

(
a1, b1,

1

p1
,
1

q1

)
.

The idea of the proof is similar to the one of the Euclidean or stratified cases,
see [Fol75, Theorem 4.7]. Some arguments will be modified since our estimates
for ‖(I + R)iτ‖L (Lp) are different from the ones obtained by Folland in [Fol75].
For this, compare Corollary 4.3.13 and Proposition 4.3.7 in this monograph with
[Fol75, Proposition 4.3].
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Proof of Theorem 4.4.9. By duality (see Lemma 4.4.7) and up to a change of
notation, it suffices to prove the case

a1 ≥ a0 and b1 ≤ b0. (4.40)

This fact is left to the reader to check. The idea is to interpolate between the
operators formally given by

Tz = (I +Q)
bz
νQ T (I +R)−

az
νR , (4.41)

where νR and νQ denote the degrees of homogeneity of R and Q, respectively, and
the complex numbers az and bz are defined by

(az, bz) := z (a1, b1) + (1− z) (a0, b0) ,

for z in the strip
S := {z ∈ C : Re z ∈ [0, 1]}.

In (4.41), we have abused the notation regarding the fractional powers of I +Rp

and I +Qq and removed p and q. This is possible by Corollary 4.3.16 and density
of the Schwartz space in each Sobolev space. Hence (4.41) makes sense. We will
use complex interpolation given by Theorem A.6.1, which requires to start with
the space B of compactly supported simple functions on G (see Remark A.6.2).
To solve this technical problem we proceed as in the proof of [Fol75, Theorem 4.7]:
we will use the convolution of a function in B with a bump function χǫ depending
on ǫ at the end of the proof.

The hypotheses on T give that the operator norms

‖T‖
L (L

pj
aj

,L
qj
bj

)
= ‖(I +Q)

bj
νQ T (I +R)−

aj
νR ‖L (Lpj ,Lqj ), j = 0, 1,

are finite.
By Corollary 4.3.16, for any φ ∈ S(G) and ψ ∈ S(F ), we have

〈Tzφ, ψ〉 = 〈T (I +R)−N− az
νR (I +R)Nφ, (I + Q̄)−M+ bz

νQ (I + Q̄)Mψ〉

for any M,N ∈ Z. In particular, for M and N large enough, Theorem 4.3.6 implies
that

S ∋ z �→ 〈Tzφ, ψ〉
is analytic. With M = N ∈ N large enough, for instance the smallest integer with
N > a1, a0, b1, b0, we get

|〈Tzφ, ψ〉| ≤ A(z) B(z) ‖T‖L (L
p1
a1

,L
q1
b1

)‖φ‖Lp1
N
‖ψ‖Lq1

N
,

where A(z) and B(z) denote the operator norms

A(z) := ‖(I +R)−N+
−az+a1

νR ‖L (Lp1 ) and B(z) := ‖(I + Q̄)−M+
bz−b1

νQ ‖L (Lq1 ).



4.4. Sobolev spaces on graded Lie groups 227

We can write

A(z) = ‖(I +R)−(α+βz)‖L (Lp1 ) with α = N − a1 − a0
νR

> 0, β =
a1 − a0
νR

≥ 0.

Thus

A(z) ≤ ‖(I +R)−(α+βRe z)‖L (Lp1 )‖(I +R)−βIm z‖L (Lp1 )

� ‖h1‖L1eθβ|Im z|,

by Corollary 4.3.13 and Proposition 4.3.7 using the notation of their statements.
We have a similar property for B(z). This implies easily that there exists a constant
C depending on φ, ψ, a1, a0, b1, b0 and F,G,R,Q such that we have

∀z ∈ S ln |〈Tzφ, ψ〉| ≤ C(1 + |Im z|).

We now estimate operator norms of Tz for z on the boundary of the strip,
that is, z = j + iy, j = 0, 1, y ∈ R:

‖Tz‖L (Lpj ,Lqj )

= ‖(I +Q)
bz
νQ T (I +R)−

az
νR ‖L (Lpj ,Lqj )

= ‖(I +Q)
bz−bj
νQ (I +Q)

bj
νQ T (I +R)

−aj
νR (I +R)

aj−az

νR ‖L (Lpj ,Lqj )

≤ ‖(I +Qqj )
bz−bj
νQ ‖L (Lqj )‖T‖L (L

pj
aj

,L
qj
bj

)
‖(I +Rpj )

aj−az

νR ‖L (Lpj )

= ‖(I +Qqj )
iy

b1−b0
νQ ‖L (Lqj )‖T‖L (L

pj
aj

,L
qj
bj

)
‖(I +Rpj

)
iy

a0−a1
νR ‖L (Lpj ).

Proposition 4.3.7 then implies

‖Tj+iy‖L (Lpj ,Lqj ) ≤ C‖T‖
L (L

pj
aj

,L
qj
bj

)
e
θR

a1−a0
νR

|y|
e
θQ

b0−b1
νR

|y|
,

where C, θR and θQ are positive constants obtained from the applications of
Proposition 4.3.7 to R and Q.

The end of the proof is now classical. We fix a non-negative function χ ∈ S(G)
with

∫
G
χ = 1 and write

χǫ(x) := ǫ−Qχ(ǫ−1x)

for ǫ > 0. If f ∈ B, then f ∗χǫ ∈ S(G) (see Lemma 3.1.59) and we can set for any
ǫ > 0, z ∈ S,

Tz,ǫf := Tz (f ∗ χǫ) .

Clearly Tz,ǫ satisfy the hypotheses of Theorem A.6.1 (see also Remark A.6.2).
Thus for any t ∈ [0, 1], there exists a constant Mt > 0 independent of ǫ such that

∀f ∈ B ‖Tt,ǫf‖qt ≤Mt‖f‖pt .



228 Chapter 4. Rockland operators and Sobolev spaces

For p ∈ (1,∞), we consider the space Vp of functions φ of the form φ = f ∗χǫ,
with f ∈ B and ǫ > 0, satisfying ‖f‖p ≤ 2‖f ∗ χǫ‖p. By Lemma 3.1.59, the space
Vp contains S(G) and is dense in Lp(G) for p ∈ (1,∞). Going back to the proof
of Theorem 4.4.9, we have obtained for any t ∈ [0, 1] and φ = f ∗ χǫ ∈ Vpt , that

‖Ttφ‖qt = ‖Tt,ǫf‖qt ≤Mt‖f‖pt
≤ 2Mt‖φ‖pt

.

This shows that Tt extends to a bounded operator from Lpt(G) to Lqt(G). �

As a consequence of the interpolation properties, we have

Corollary 4.4.10. Let κ ∈ S ′(G) and let Tκ be its associated convolution operator

Tκ : S(G) ∋ φ �→ φ ∗ κ.

Let also a ∈ R, p ∈ (1,∞) and let {γℓ, ℓ ∈ Z} be a sequence of real numbers which
tends to ±∞ as ℓ → ±∞. Assume that for any ℓ ∈ Z, the operator Tκ extends
continuously to a bounded operator Lp

γℓ
(G) → Lp

a+γℓ
(G). Then the operator Tκ

extends continuously to a bounded operator Lp
γ(G) → Lp

a+γ(G) for any γ ∈ R.
Furthermore, for any c ≥ 0, we have

sup
|γ|≤c

‖Tκ‖L (Lp
γ ,L

p
a+γ)
≤ Cc max

(
‖Tκ‖L (Lp

γℓ
,Lp

a+γℓ
), ‖Tκ‖L (Lp

γ−ℓ
,Lp

a+γ−ℓ
)

)

where ℓ ∈ N0 is the smallest integer such that γℓ ≥ c and −γ−ℓ ≥ c.

4.4.3 Homogeneous Sobolev spaces

Here we define the homogeneous version of our Sobolev spaces and obtain their
first properties. Many proofs are obtained by adapting the corresponding inho-
mogeneous cases and we may therefore allow ourselves to present them more
succinctly. For technical reasons explained below, the definition of homogeneous
Sobolev spaces is restricted to the case p ∈ (1,∞).

As in the inhomogeneous case, we first need the following lemma:

Lemma 4.4.11. We keep the notation of Theorem 4.3.6.

1. For any s ∈ R and p ∈ [1,∞) ∪ {∞o}, the map f �→ ‖R
s
ν
p f‖Lp(G) defines a

norm on S(G) ∩Dom(R
s
ν
p ). We denote it by

‖f‖L̇p
s(G) := ‖R

s
ν
p f‖Lp(G).

2. For any s ≤ 0 and p∈ [1,∞)∪{∞o}, S(G)∩Dom(R
s
ν
p ) contains R⌈|s|ν⌉(S(G))

which is dense in Range(Rp) for ‖ · ‖Lp(G), and any sequence in S(G) ∩
Dom(R

s
ν
p ) which is Cauchy for ‖ · ‖L̇p

s(G) is convergent in S ′(G).
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3. If s > 0 and p ∈ (1,∞), then S(G) ⊂ Dom(R
s
ν
p ) and any sequence in S(G)

which is Cauchy for ‖ · ‖L̇p
s(G) is convergent in S ′(G).

Proof of Lemma 4.4.11. The fact that the map f �→ ‖R
s
ν
p f‖Lp(G) defines a norm

on S(G) follows easily from Theorem 4.3.6 Part (1).
In the case s = 0, ‖ · ‖L̇p

0(G) = ‖ · ‖Lp(G) and Part 2 is proved in this case.

Let s < 0 and p ∈ [1,∞) ∪ {∞o}. By Theorem 4.3.6 (especially Parts
(1a) and (1c)), for any N ∈ N with N > |s|/ν, Dom(R s

ν ) contains RN (S(G))

and RN (S(G)) is dense in Range(Rp). Consequently S(G) ∩ Dom(R
s
ν
p ) contains

RN (S(G)) and is dense in Range(Rp). Let p′ be the dual exponent of p, i.e.
1
p +

1
p′ = 1 with the usual extension. Theorem 4.3.6 (1), and the duality properties

of Lp as well as Rt = R̄ imply

|〈f, φ〉| ≤ ‖R
s
ν
p f‖Lp(G)‖R̄− s

ν

p′ φ‖Lp′ (G),

for any f ∈ S(G) ∩ Dom(R
s
ν
p ) and φ ∈ S(G). Furthermore, as φ ∈ S(G) ⊂

Dom(R− s
ν

p′ ), Theorem 4.3.6 (1) also yields for any φ ∈ S(G)

‖R̄− s
ν

p′ φ‖Lp′ (G) ≤ max

(
‖R̄⌊ |s|

ν ⌋
p′ φ‖Lp′ (G), ‖R̄

⌈ |s|
ν ⌉

p′ φ‖Lp′ (G)

)

≤ C max
[α]=⌊ |s|

ν ⌋,⌈ |s|
ν ⌉
‖Xαφ‖Lp′ (G)

for some constant C = CN,R. We have obtained that

|〈f, φ〉| ≤ C‖R
s
ν
p f‖Lp(G) max

[α]=N,N+1
‖Xαφ‖Lp′ (G)

for any f ∈ S(G)∩Dom(R
s
ν
p ) and φ ∈ S(G). This together with the properties of

the Schwartz space (see Section 3.1.9) easily implies Part 2.

Let s > 0. By Theorem 4.3.6 (1g), S(G) ⊂ Dom(R
s
ν
p ).

Let p ∈ (1,∞). By Corollary 4.3.11 Part (i), if s ∈ (0, Q
p ), then there exists

C > 0 such that

∀f ∈ S(G) ‖f‖Lq(G) ≤ C‖R
s
ν
p f‖Lp(G) = C‖f‖L̇p

s(G),

where q ∈ (1,∞) is such that
1

p
− 1

q
=

s

Q
.

Note that q is indeed in (1,∞) as s < Q
p . Hence if {fℓ} ⊂ S(G) is Cauchy for

‖ · ‖L̇p
s(G), then {fℓ} ⊂ S(G) is Cauchy for ‖ · ‖Lq(G) thus in S ′(G). This shows

Part 3 for any s > 0, p ∈ (1,∞) satisfying ps < Q.
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If s ∈ [N Q
p , (N +1)Qp ) for some N ∈ N0, we write s = s1+s′ with s′ ∈ (0, Q

p )
and

s1 ∈ [(N − 1)
Q

p
,N

Q

p
)

and by Corollary 4.3.11 Part (i) with Theorem 4.3.6 (1), we have

∃C = Cs′,p ∀f ∈ S(G) ‖R
s1
ν
q f‖Lq ≤ C‖R

s
ν
p f‖Lp(G),

where q ∈ (1,∞) is such that
1

q
− 1

p
=

s′

Q
.

Hence if {fℓ} ⊂ S(G) is Cauchy for ‖ · ‖L̇p
s(G), then {fℓ} ⊂ S(G) is Cauchy for

‖ · ‖L̇q
s1

(G). Note that

s1 ≤
NQ

p
<

NQ

q
.

Recursively, this shows Part 3. �

The use of Corollary 4.3.11 in the proof above requires p ∈ (1,∞). Moreover,
by Corollary 4.3.4 (ii), the range of Rp is dense in Lp(G) for p ∈ (1,∞o]. As we
want to have a unified presentation for all the homogeneous spaces of any exponent
s ∈ R, we restrict the parameter p to be in (1,∞) only.

Definition 4.4.12. Let R be a Rockland operator of homogeneous degree ν on
a graded Lie group G, and let p ∈ (1,∞). We denote by L̇p

s,R(G) the space of

tempered distribution obtained by the completion of S(G) ∩ Dom(R
s
ν
p ) for the

norm
‖f‖L̇p

s(G) := ‖R
s
ν
p f‖p, f ∈ S(G) ∩Dom(Rs/ν

p ).

As in the inhomogeneous case, we will write L̇p
s(G) or L̇p

s,R but often omit
the reference to the Rockland operator R. We will see in Theorem 4.4.20 that
the homogeneous Sobolev spaces do not depend on a specific R. Adapting the
inhomogeneous case, one obtains easily:

Proposition 4.4.13. Let G be a graded Lie group of homogeneous dimension Q. Let
R be a positive Rockland operator of homogeneous degree ν on G. Let p ∈ (1,∞)
and s ∈ R.

1. We have (
S(G) ∩Dom(Rs/ν

p )
)
� L̇p

s(G) � S ′(G).

Equipped with the homogeneous Sobolev norm ‖·‖L̇p
s(G), the space L̇

p
s(G)

is a Banach space which contains S(G) ∩Dom(Rs/ν
p ) as dense subspace.

2. If s > −Q/p then S(G) ⊂ Dom(Rs/ν
p ) ⊂ L̇p

s(G). If s < 0 then S(G) ∩
Dom(R

s
ν
p ) contains R⌈|s|ν⌉(S(G)) which is dense in Lp(G).
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3. If s = 0, then L̇p
0(G) = Lp(G) for p ∈ (1,∞) with ‖ · ‖L̇p

0(G) = ‖ · ‖Lp(G).

4. Let s ∈ R, p ∈ (1,∞) and f ∈ S ′(G). If f ∈ L̇p
s(G) then Rs/ν

p f ∈ Lp(G) in
the sense that the linear mapping

(
S(G) ∩Dom(R̄s/ν

p′ )
)
∋ φ �→ 〈f, R̄s/ν

p′ φ〉

is densely defined on Lp′

(G) and extends to a bounded functional on Lp′

(G)
where p′ is the conjugate exponent of p. The converse is also true.

5. If 1 < p < q <∞ and a, b ∈ R with

b− a = Q(
1

p
− 1

q
),

then we have the continuous inclusion

L̇p
b ⊂ L̇q

a

that is, for every f ∈ L̇p
b , we have f ∈ L̇q

a and there exists a constant C =
Ca,b,p,q,G > 0 independent of f such that

‖f‖L̇q
a
≤ C‖f‖L̇p

b
.

6. For p ∈ (1,∞) and any a, b, c ∈ R with a < c < b, there exists a positive
constant C = Ca,b,c such that we have for any f ∈ L̇p

b

‖f‖L̇p
c
≤ C‖f‖1−θ

L̇p
a
‖f‖θ

L̇p
b

where θ := (c− a)/(b− a).

Proof of Proposition 4.4.13. Parts (1), (2), and (3) follow from Lemma 4.4.11 and
its proof. Part (4) follows easily by duality and Lemma 4.4.11. Parts (5) and (6)
are an easy consequence of the property of the fractional powers of R on the Lp-

spaces (cf. Theorem 4.3.6) and the operator R−s/ν
p , s ∈ (0, Q), being of type s and

independent of p (cf. Corollary 4.3.11 (i)). �

Note that Part (2) of Proposition 4.4.13 can not be improved in general as

the inclusions S(G) ⊂ Dom(R
s
ν
p ) or S(G) ⊂ L̇s

p(G) can not hold in general for
any group G as they do not hold in the Euclidean case i.e. G = (Rn,+) with
the usual dilations. Indeed in the case of Rn, p = 2, one can construct Schwartz
functions which can not be in L̇2

s with s < −n/2. It suffices to consider a function

φ ∈ S(G) satisfying φ̂(ξ) ≡ 1 on a neighbourhood of 0 since then |ξ|sφ̂(ξ) is not
square integrable about 0 for s < −n/2.

As in the homogeneous case (see Lemma 4.4.7), Part (4) of Proposition 4.4.13
above implies the following property regarding duality of Sobolev spaces. This
will be improved in Proposition 4.4.22 once we know (see Theorem 4.4.20) that
homogeneous Sobolev spaces are indeed independent of the considered Rockland
operator.
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Lemma 4.4.14. Let R be a positive Rockland operator on a graded Lie group G.
We consider the associated homogeneous Sobolev spaces L̇p

s,R(G). If s ∈ R and p ∈
(1,∞), the dual space of L̇p

s,R(G) is isomorphic to L̇p′

−s,R̄(G) via the distributional

duality, where p′ is the conjugate exponent of p, i.e. 1
p + 1

p′ = 1.

The following interpolation property can be proved after a careful modifica-
tion of the inhomogeneous proof:

Proposition 4.4.15. Let R and Q be two positive Rockland operators on two graded
Lie groups G and F respectively. We consider their associated homogeneous Sobolev
spaces L̇p

a(G) and L̇q
b(F ). Let p0, p1, q0, q1 ∈ (1,∞) and a0, a1, b0, b1 ∈ R.

We also consider a linear mapping T from L̇p0
a0
(G) + L̇p1

a1
(G) to locally in-

tegrable functions on F . We assume that T maps L̇p0
a0
(G) and L̇p1

a1
(G) boundedly

into L̇q0
b0
(F ) and L̇q1

b1
(F ), respectively.

Then T extends uniquely to a bounded mapping from L̇p
at
(G) to L̇q

bt
(F ) for

t ∈ [0, 1], where at, bt, pt, qt are defined by

(
at, bt,

1

pt
,
1

qt

)
= (1− t)

(
a0, b0,

1

p0
,
1

q0

)
+ t

(
a1, b1,

1

p1
,
1

q1

)
.

Sketch of the proof of Proposition 4.4.15. By duality (see Lemma 4.4.14) and up
to a change of notation, it suffices to prove the case a1 ≥ a0 and b1 ≤ b0. The idea
is to interpolate between the operators formally given by

Tz = Qz
b1−b0
νQ Q

b0
νQ TR− a0

νRRz
a0−a1

νR , z ∈ S, (4.42)

with the same notation for νR, νQ, az, bz and S as in the proof of Theorem 4.4.9.
In (4.42), we have abused the notation regarding the fractional powers of Rp and
Qq and removed p and q thanks to by Theorem 4.3.6 (1). Moreover, Theorem 4.3.6
implies that on S(G), each operator Tz, z ∈ S, coincides with

Tz = Q(1−z)
b0−b1
νQ Q

b1
νQTR− a1

νRR(1−z)
a1−a0

νR ,

and that for any φ ∈ S(G) and ψ ∈ S(F ), z �→ 〈Tzφ, ψ〉 is analytic on S. We also
have

|〈Tzφ, ψ〉| ≤ ‖T‖L (L̇
p1
a1

,L̇
q1
b1

)‖R
−az+a1

νR φ‖Lp1 ‖Q̄
bz−b1

νQ ψ‖Lq1 .

Note that −Re az + a1 ≥ 0 thus we have

‖R
−az+a1

νR φ‖Lp1 ≤ ‖R
−Re az+a1

νR φ‖Lp1 ‖R
−Im az

νR φ‖Lp1

� ‖φ‖1−α
Lp1 ‖RNφ‖αLp1 e

θ
|Im az |

νR ,

by Theorem 4.3.6 (1f) with N the smallest integer strictly greater than −Re az+a1
and α = (−Re az + a1)/N , and by Proposition 4.3.9 using the notation of its
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statement. We have similar bounds for ‖Q̄
bz−b1

νQ ψ‖q1 and all these estimates imply
easily that there exists a constant depending on φ, ψ, a1, a0, b1, b0 such that

∀z ∈ S ln |〈Tzφ, ψ〉| ≤ C(1 + |Im z|).

For the estimate on the boundary of the strip, that is, z = j + iy, j = 0, 1, y ∈ R,
we see as in the proof of Theorem 4.4.9:

‖Tz‖L (Lpj ,Lqj ) ≤ ‖Q
iy

b1−b0
νQ

qj ‖L (Lqj )‖T‖L (L̇
pj
aj

,L̇
qj
bj

)
‖Riy

a0−a1
νR

pj ‖L (Lpj ).

Proposition 4.3.9 then implies

‖Tj+iy‖L (Lpj ,Lqj ) ≤ C‖T‖
L (L̇

pj
aj

,L̇
qj
bj

)
e
θR

a1−a0
νR

|y|
e
θQ

b0−b1
νR

|y|
,

where C, θR and θQ are positive constants obtained from the applications of
Proposition 4.3.9 to R and Q. We conclude the proof in the same way as for
Theorem 4.4.9. �

4.4.4 Operators acting on Sobolev spaces

In this section we show that left-invariant differential operators act continuously
on homogeneous and inhomogeneous Sobolev spaces. We will also show a similar
property for operators of type ν, Re ν = 0.

In the statements and in the proofs of this section, we keep the same nota-
tion for an operator defined on a dense subset of some Lp-space and its possible
bounded extensions to some Sobolev spaces in order to ease the notation.

Theorem 4.4.16. Let G be a graded Lie group.

1. Let T be a left-invariant differential operator of homogeneous degree νT . Then
for every p ∈ (1,∞) and s ∈ R, T maps continuously Lp

s+νT
(G) to Lp

s(G).
Fixing a positive Rockland operator R in order to define the Sobolev norms,
it means that

∃C = Cs,p,T > 0 ∀φ ∈ S(G) ‖Tφ‖Lp
s(G) ≤ C‖φ‖Lp

s+νT
(G).

2. Let T be a νT -homogeneous left-invariant differential operator. Then for every
p ∈ (1,∞) and s ∈ R, T maps continuously L̇p

s+νT
(G) to L̇p

s(G). Fixing a
positive Rockland operator R in order to define the Sobolev norms, it means
that

∃C = Cs,p,T > 0 ∀φ ∈ L̇p
s+νT

(G) ‖Tφ‖L̇p
s(G) ≤ C‖φ‖L̇p

s+νT
(G).

We start the proof of Theorem 4.4.16 with studying the case of T = Xj . This
uses the definition and properties of kernel of type 0, see Section 3.2.5.
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Lemma 4.4.17. Let R be a positive Rockland operator on a graded Lie group G
and Ia the kernel of its Riesz operator as in Corollary 4.3.11.

1. For any j = 1, . . . , n, XjIυj
is a kernel of type 0.

2. If κ is a kernel of type 0, then, for any j = 1, . . . , n, Xj

(
κ ∗ Iυj

)
is a kernel

of type 0 and, more generally, for any multi-index α ∈ Nn
0 , the kernel

Xα
(
κ ∗ I(∗)

α1

[υ1]
∗ . . . ∗ I(∗)

αn

[υn]

)

is of type 0.

3. If T is an operator of type 0, then, for any N ∈ N, RNTR−N
2 is an operator

of type 0 hence it is bounded on Lp(G), p ∈ (1,∞).

4. For any j = 1, . . . , n and for any N ∈ N0, RNXjR− υj
ν −N

2 is an operator of
type 0.

In Part 2, we have used the notation

f (∗)m = f ∗ . . . ∗ f︸ ︷︷ ︸
m times

Proof of Lemma 4.4.17. We adopt the notation of the statement. By Corollary
4.3.11 (i), Iυj is a kernel of type υj ∈ (0, Q) hence, by Lemma 3.2.33, XjIυj is a
kernel of type 0. This shows Part 1.

More generally, if κ is a kernel of type 0, then κ ∗ Iυj is a kernel of type υj
by Proposition 3.2.35 (ii) hence by Lemma 3.2.33, Xj(κ ∗ Iυj

) is a kernel of type
0. Iterating this procedure shows Part 2.

Let T be an operator of type 0. We denote by κ its kernel. Let N ∈ N.
The operator RN can be written as a linear combination of Xα, α ∈ Nn

0 with
[α] = νN . Using the spectral calculus of R to define and decompose R−N

2 , this
shows that the operator RNTR−N

2 can be written as a linear combination over

[α] = νN of the operators XαTR− υ1
ν α1

2 . . .R− υn
ν αn

2 whose kernel can be written

as Xα
(
κ ∗ I(∗)

α1

[υ1]
∗ . . . ∗ I(∗)

αn

[υn]

)
. Part 2 implies that the operator RNTR−N

2 is of

type 0. By Theorem 3.2.30, it is a bounded operator on Lp(G), p ∈ (1,∞). This
shows Part 3.

Part 4 follows from combining Parts 1 and 3. �

We can now finish the proof of Theorem 4.4.16.

Proof of Theorem 4.4.16. By Lemma 4.4.17, Part 4,RNXjR− υj
ν −N

2 is an operator
of type 0, hence bounded on Lp(G), p ∈ (1,∞). The transpose of this operator is

(RNXjR− υj
ν −N

2 )t = −R̄− υj
ν −N

2 XjR̄N ,



4.4. Sobolev spaces on graded Lie groups 235

since Xt
j = −Xj and Rt = R̄. By duality, this operator is Lp′

-bounded where
1
p′ +

1
p = 1. As R̄ is also a positive Rockland operator, see Lemma 4.1.11, we

can exchange the rôle of R and R̄. Hence we have obtained that the operators

RNXjR− υj
ν −N

2 and R− υj
ν −N

2 XjRN are bounded on Lp(G) for any p ∈ (1,∞)

and N ∈ N. This shows that Xj maps L̇p
υj+Nν to L̇p

Nν and L̇p
−Nν to L̇p

−υj−Nν

continuously. The properties of interpolation, cf. Proposition 4.4.15, imply that
Xj maps L̇p

υj+s to L̇p
s continuously for any s ∈ R, p ∈ (1,∞) and j = 1, . . . , n.

Interpreting any Xα as a composition of operators Xj shows Part (2) for any
T = Xα, α ∈ Nn

0 , with νT = [α]. As any νT -homogeneous left-invariant differential
operator is a linear combination of Xα, α ∈ Nn

0 , with νT = [α], this shows Part
(2).

Let us show Part (1). Let α ∈ Nn
0 . If s > 0, then by Theorem 4.4.3 (4) and

Part (2), we have for any φ ∈ S(G)

‖Xαφ‖Lp
s

� ‖Xαφ‖Lp + ‖Xαφ‖L̇p
s

� ‖φ‖L̇p
[α]

+ ‖φ‖L̇p
s+[α]

� ‖φ‖Lp
[α]

+ ‖φ‖Lp
s+[α]

� ‖φ‖Lp
s+[α]

.

This shows that Xα maps Lp
s+[α] to Lp

s continuously for any s > 0, p ∈ (1,∞) and

any α ∈ Nn
0 . The transpose (Xα)t of Xα is a linear combination of Xβ , [β] = [α],

and will also have the same properties. By duality, this shows that Xα maps Lp
−s

to Lp
−(s+[α]) continuously for any s > 0, p ∈ (1,∞) and any α ∈ Nn

0 . Together

with the properties of interpolation (cf. Theorem 4.4.9), this shows that Xα maps
Lp
s+[α] to Lp

s continuously for any s ∈ R, p ∈ (1,∞) and any α ∈ Nn
0 .

As any left invariant differential operator can be written as a linear combina-
tion of monomials Xα, this implies Part (1) and concludes the proof of Theorem
4.4.16. �

The ideas of the proofs above can be adapted to the proof of the following
properties for the operators of type 0:

Theorem 4.4.18. Let T be an operator of type ν ∈ C on a graded Lie group G
with Re ν = 0. Then for every p ∈ (1,∞) and s ∈ R, T maps continuously Lp

s(G)
to Lp

s(G) and L̇p
s(G) to L̇p

s(G). Fixing a positive Rockland operator R in order to
define the Sobolev norms, it means that there exists C = Cs,p,T > 0 satisfying

∀φ ∈ S(G) ‖Tφ‖Lp
s(G) ≤ C‖φ‖Lp

s(G)

and
∀φ ∈ L̇p

s ‖Tφ‖L̇p
s(G) ≤ C‖φ‖L̇p

s(G).

Proof. Let T be a operator of type νT ∈ C with Re νT = 0. Proceeding as in the
proof of Lemma 4.4.17 Part 3 yields that for any N ∈ N, the operator RNTR−N

2
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is of type νT . We can apply this to the transpose T t of T as well as the operator
T t is also of type ν. By Theorem 3.2.30, the operators RNTR−N

2 and RNT tR−N
2

are bounded on Lp(G). This shows that T maps L̇p
s to L̇p

s continuously for s = N
and s = −N , N ∈ N0. By interpolation, this holds for any s ∈ R and this shows
the statement for the homogeneous Sobolev spaces. If s > 0, then by Theorem
4.4.3 (4), using the continuity on homogeneous Sobolev spaces which has just
been proven, we have for any φ ∈ S(G)

‖Tφ‖Lp
s
� ‖Tφ‖Lp + ‖Tφ‖L̇p

s
� ‖φ‖Lp + ‖φ‖L̇p

s
� ‖φ‖Lp

s
.

This shows that T maps Lp
s to Lp

s continuously for any s > 0, p ∈ (1,∞). Applying
this to T t, by duality, we also obtain this property for s < 0. The case s = 0 follows
from Theorem 3.2.30. This concludes the proof of Theorem 4.4.18. �

Theorem 4.4.18 extends the result of Theorem 3.2.30, that is, the bounded-
ness on Lp(G) of an operator of type νT , Re νT = 0, from Lp-spaces to Sobolev
spaces. Let us comment on similar results in related contexts:

• In the case of Rn (and similarly for compact Lie groups), the continuity on
Sobolev spaces would be easy since Tκ would commute with the Laplace
operator but the homogeneous setting requires a more substantial argument.

• Theorem 4.4.18 was shown by Folland in [Fol75, Theorem 4.9] on any strat-
ified Lie group and for ν = 0. However, the proof in that context uses the
existence of a positive Rockland operator with a unique homogeneous fun-
damental solution, namely ‘the’ (any) sublaplacian. If we wanted to follow
closely the same line of arguments, we would have to assume that the group is
equipped with a Rockland operator with homogeneous degree ν with ν < Q,
see Remark 4.3.12. This is not always the case for a graded Lie group as
the example of the three dimensional Heisenberg group with gradation (3.1)
shows.

• The proof above is valid under no restriction in the graded case. Somehow
the use of the homogeneous fundamental solution in the stratified case is
replaced by the kernel of the Riesz potentials together with the properties of
the Sobolev spaces proved so far.

4.4.5 Independence in Rockland operators and integer orders

In this Section, we show that the homogeneous and inhomogeneous Sobolev spaces
do not depend on a particular choice of a Rockland operator. Consequently The-
orems 4.4.3, 4.4.9, 4.4.16, and 4.4.18, Corollaries 4.4.6 and 4.4.10, Propositions
4.4.8 and 4.4.13 and 4.4.15, hold independently of any chosen Rockland operator
R.

We will need the following property:
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Lemma 4.4.19. Let R be a Rockland operator on G of homogeneous degree ν and let
ℓ ∈ N0, p ∈ (1,∞). Then the space Lp

νℓ(G) is the collection of functions f ∈ Lp(G)
such that Xαf ∈ Lp(G) for any α ∈ Nn

0 with [α] = νℓ. Moreover, the map

φ �→
∑

[α]=νℓ

‖Xαφ‖p

is a norm on L̇p
νℓ(G) which is equivalent to the homogeneous Sobolev norm and

the map

φ �→ ‖φ‖p +
∑

[α]=νℓ

‖Xαφ‖p

is a norm on Lp
νℓ(G) which is equivalent to the Sobolev norm.

Proof of Lemma 4.4.19. Writing

Rℓ =
∑

[α]=ℓν

cα,ℓX
α

we have on one hand,

∀φ ∈ S(G) ‖Rℓφ‖p ≤ max |cα,ℓ|
∑

[α]=ℓν

‖Xαφ‖p. (4.43)

On the other hand, by Theorem 4.4.16 (2), for any α ∈ Nn
0 , the operator X

α maps
continuously L̇p

[α](G) to L̇p(G), hence

∃C > 0 ∀φ ∈ S(G)
∑

[α]=ℓν

‖Xαφ‖p ≤ C‖φ‖L̇p
[α]
.

This shows the property of Lemma 4.4.19 for homogeneous Sobolev spaces.
Adding ‖φ‖Lp on both sides of (4.43) implies by Theorem 4.4.3, Part (2):

∃C > 0 ∀φ ∈ S(G) ‖φ‖Lp
ℓν
≤ C

⎛
⎝‖φ‖Lp +

∑

[α]=ℓν

‖Xαφ‖p

⎞
⎠ .

On the other hand, by Theorem 4.4.16 (1), for any α ∈ Nn
0 , the operator X

α maps
continuously Lp

[α](G) to Lp(G), hence

∃C > 0 ∀φ ∈ S(G)
∑

[α]=ℓν

‖Xαφ‖p ≤ C‖φ‖Lp
[α]
.

This shows the property of Lemma 4.4.19 for inhomogeneous Sobolev spaces and
concludes the proof of Lemma 4.4.19. �
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One may wonder whether Lemma 4.4.19 would be true not only for integer
exponents of the form s = νℓ but for any integer s. In fact other inhomogeneous
Sobolev spaces on a graded Lie group were defined by Goodman in [Goo76, Section
III. 5.4] following this idea. More precisely the Lp Goodman-Sobolev space of order
s ∈ N0 is given via the norm

φ �−→
∑

[α]≤s

‖Xαφ‖p (4.44)

Goodman’s definition does not use Rockland operators but makes sense only for
integer exponents.

The Lp Goodman-Sobolev space of integer order s certainly contains Lp
s(G).

Indeed, proceeding almost as in the proof of Lemma 4.4.19, using Theorem 4.4.16
and Theorem 4.4.3, we have

∀s ∈ N0 ∃C = Cs > 0 ∀φ ∈ S(G)
∑

[α]≤s

‖Xαφ‖p ≤ C‖φ‖Lp
s
.

In fact, adapting the rest of the proof of Lemma 4.4.19, one could show easily
that the Lp Goodman-Sobolev space of order s ∈ N0 with s proportional to the
homogeneous degree ν of a positive Rockland operator coincides with our Sobolev
spaces Lp

s(G). Moreover, on any stratified Lie group, for any non-negative integer
s without further restriction, they would coincide as well, see [Fol75, Theorem
4.10].

However, this equality between Goodman-Sobolev spaces and our Sobolev
spaces is not true on any general graded Lie group. For instance this does not hold
on a graded Lie groups whose weights are all strictly greater than 1. Indeed the
Lp Goodman-Sobolev space of order s = 1 is Lp(G) which contains Lp

1(G) strictly
(see Theorem 4.4.3 (4)). An example of such a graded Lie group was given by the
gradation of the three dimensional Heisenberg group via (3.1).

We can now show the main result of this section, that is, that the Sobolev
spaces on graded Lie groups are independent of the chosen positive Rockland
operators.

Theorem 4.4.20. Let G be a graded Lie group and p ∈ (1,∞). The homogeneous
Lp-Sobolev spaces on G associated with any positive Rockland operators coincide.
The inhomogeneous Lp-Sobolev spaces on G associated with any positive Rockland
operators coincide. Moreover, in the homogeneous and inhomogeneous cases, the
Sobolev norms associated to two positive Rockland operators are equivalent.

Proof of Theorem 4.4.20. Positive Rockland operators always exist, see Remark
4.2.4 Let R1 and R2 be two positive Rockland operators on G of homogeneous
degrees ν1 and ν2, respectively. By Lemma 4.2.5, Rν2

1 and Rν1
2 are two positive

Rockland operators with the same homogeneous degree ν = ν1ν2. Their associated
homogeneous (respectively inhomogeneous) Sobolev spaces of exponent νℓ = ν1ν2ℓ
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for any ℓ ∈ N0 coincide and have equivalent norms by Lemma 4.4.19. By inter-
polation (see Proposition 4.4.15, respectively Theorem 4.4.9), this is true for any
Sobolev spaces of exponent s ≥ 0, and by duality (see Lemma 4.4.14, respectively
Lemma 4.4.7) for any exponent s ∈ R. �

Corollary 4.4.21. Let R(1) and R(2) be two positive Rockland operators on a graded
Lie group G with degrees of homogeneity ν1 and ν2, respectively. Then for any s ∈
C and p ∈ (1,∞), the operators (I +R(1))

s
ν1 (I +R(2))−

s
ν2 and (R(1))

s
ν1 (R(2))−

s
ν2

extend boundedly on Lp(G).

Proof of Corollary 4.4.21. Let us prove the inhomogeneous case first. For any a ∈
R, we view the operator (I+R(2)

p )−
a
ν2 as a bounded operator from Lp(G) to Lp

a(G)

and use the norm f �→ ‖(I +R(1)
p )

a
ν1 f‖p on Lp

a(G). This shows that the operator

(I + R(1))
s
ν1 (I + R(2))−

s
ν2 is bounded on Lp(G), p ∈ (1,∞) for s = a ∈ R. The

case of s ∈ C follows from Proposition 4.3.7.
Let us prove the homogeneous case. For any a ∈ R, we view the opera-

tor (R(2)
p )−

a
ν2 as a bounded operator from Lp(G) to L̇p

a(G) and use the norm

f �→ ‖(R(1)
p )

a
ν1 f‖p on L̇p

a(G). This shows that the operator (R(1))
s
ν1 (R(2))−

s
ν2 is

bounded on Lp(G), p ∈ (1,∞) for s = a ∈ R. The case of s ∈ C follows from
Proposition 4.3.9. �

Thanks to Theorem 4.4.20, we can now improve our duality result given in
Lemmata 4.4.7 and 4.4.14:

Proposition 4.4.22. Let Lp
s(G) and L̇p

s(G), p ∈ (1,∞) and s ∈ R, be the inhomo-
geneous and homogeneous Sobolev spaces on a graded Lie group G, respectively.

For any s ∈ R and p ∈ (1,∞), the dual space of Lp
s(G) is isomorphic to

Lp′

−s(G) via the distributional duality, and the dual space of L̇p
s(G) is isomorphic

to L̇p′

−s(G) via the distributional duality. Here p′ is the conjugate exponent of p if

p ∈ (1,∞), i.e. 1
p +

1
p′ = 1. Consequently the Banach spaces Lp

s(G) and L̇p
s(G) are

reflexive.

4.4.6 Sobolev embeddings

In this section, we show local embeddings between the (inhomogeneous) Sobolev
spaces and their Euclidean counterparts, and global embeddings in the form of an
analogue of the classical fractional integration theorems of Hardy-Littlewood and
Sobolev.

Local results

Recalling that G has a local topological structure of Rn, one can wonder what
is the relation between our Sobolev spaces Lp

s(G) and their Euclidean counter-
parts Lp

s(R
n). The latter can also be seen as Sobolev spaces associated by the
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described construction to the abelian group (Rn,+), with Rockland operator be-
ing the Laplacian on Rn.

By Proposition 3.1.28 the coefficients of vector fields Xj with respect to
the abelian derivatives ∂xk

are polynomials in the coordinate functions xℓ, and
conversely the coefficients of ∂xj

’s with respect to derivatives Xk are polynomials
in the coordinate functions xℓ’s. Hence, we can not expect any global embeddings
between Lp

s(G) and Lp
s(R

n).

It is convenient to define the local Sobolev spaces for s ∈ R and p ∈ (1,∞)
as

Lp
s,loc(G) := {f ∈ D′(G) : φf ∈ Lp

s(G) for all φ ∈ D(G)}. (4.45)

The following proposition shows that Lp
s,loc(G) contains Lp

s(G).

Proposition 4.4.23. For any φ ∈ D(G), p ∈ (1,∞) and s ∈ R, the operator f �→ fφ
defined for f ∈ S(G) extends continuously into a bounded map from Lp

s(G) to itself.
Consequently, we have

Lp
s(G) ⊂ Lp

s,loc(G).

Proof. The Leibniz’ rule for the Xj ’s and the continuous inclusions in Theorem
4.4.3 (4) imply easily that for any fixed α ∈ Nn

0 there exist a constant C = Cα,φ > 0
and a constant C ′ = C ′

α,φ > 0 such that

∀f ∈ D(G) ‖Xα(fφ)‖p ≤ C
∑

[β]≤[α]

‖Xβf‖p ≤ C ′‖f‖Lp
[α]

(G).

Lemma 4.4.19 yields the existence of a constant C ′′ = C ′′
α,φ > 0 such that

∀f ∈ D(G) ‖fφ‖Lp
ℓν(G) ≤ C ′′‖f‖Lp

ℓν(G)

for any integer ℓ ∈ N0 and any degree of homogeneity ν of a Rockland operator.
This shows the statement for the case s = νℓ. The case s > 0 follows by

interpolation (see Theorem 4.4.9), and the case s < 0 by duality (see Proposition
4.4.22). �

We can now compare locally the Sobolev spaces on graded Lie groups and
on their abelian counterpart:

Theorem 4.4.24 (Local Sobolev embeddings). For any p ∈ (1,∞) and s ∈ R,

Lp
s/υ1,loc

(Rn) ⊂ Lp
s,loc(G) ⊂ Lp

s/υn,loc
(Rn).

Above, Lp
s,loc(R

n) denotes the usual local Sobolev spaces, or equivalently the
spaces defined by (4.45) in the case of the abelian (graded) Lie group (Rn,+).
Recall that υ1 and υn are respectively the smallest and the largest weights of the
dilations. In particular, in the stratified case, υ1 = 1 and υn coincides with the
number of steps in the stratification, and with the step of the nilpotent Lie group
G. Hence in the stratified case we recover Theorem 4.16 in [Fol75].
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Proof of Theorem 4.4.24. It suffices to show that the mapping f �→ fφ defined
on D(G) extends boundedly from Lp

s/υ1
(Rn) to Lp

s(G) and from Lp
s(G) to

Lp
s/υn,loc

(Rn). By duality and interpolation (see Theorem 4.4.9 and Proposition

4.4.22), it suffices to show this for a sequence of increasing positive integers s.
For the Lp

s/υ1
(Rn) → Lp

s(G) case, we assume that s is divisible by the ho-

mogeneous degree of a positive Rockland operator. Then we use Lemma 4.4.19,
the fact that the Xα may be written as a combination of the ∂β

x with polynomial
coefficients in the xℓ’s and that max[β]≤s |β| = s/υ1.

For the case of Lp
s(G) → Lp

s/υn,loc
(Rn), we use the fact that the abelian

derivative ∂α
x , |α| ≤ s, may be written as a combination over the Xβ , |β| ≤ s, with

polynomial coefficients in the xℓ’s, that Xβ maps Lp → Lp
[β] boundedly together

with max|β|≤s[β] = sυn. �

Proceeding as in [Fol75, p.192], one can convince oneself that Theorem 4.4.24
can not be improved.

Global results

In this section, we show the analogue of the classical fractional integration theo-
rems of Hardy-Littlewood and Sobolev. The stratified case was proved by Folland
in [Fol75] (mainly Theorem 4.17 therein).

Theorem 4.4.25 (Sobolev embeddings). Let G be a graded Lie group with homo-
geneous dimension Q.

(i) If 1 < p < q <∞ and a, b ∈ R with

b− a = Q(
1

p
− 1

q
)

then we have the continuous inclusion

Lp
b ⊂ Lq

a,

that is, for every f ∈ Lp
b , we have f ∈ Lq

a and there exists a constant C =
Ca,b,p,q,G > 0 independent of f such that

‖f‖Lq
a
≤ C‖f‖Lp

b
.

(ii) If p ∈ (1,∞) and

s > Q/p

then we have the inclusion

Lp
s ⊂ (C(G) ∩ L∞(G)) ,
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in the sense that any function f ∈ Lp
s(G) admits a bounded continuous rep-

resentative on G (still denoted by f). Furthermore, there exists a constant
C = Cs,p,G > 0 independent of f such that

‖f‖∞ ≤ C‖f‖Lp
s(G).

Proof. Let us first prove Part (i). We fix a positive Rockland operatorR of homoge-
neous degree ν and we assume that b > a and p, q ∈ (1,∞) satisfy b−a = Q( 1p− 1

q ).

By Proposition 4.4.13 (5),

‖R
a
ν
q φ‖Lq ≤ C‖R

b
ν
p φ‖Lp .

We can apply this to (a, b) and to (0, b − a). Adding the two corresponding esti-
mates, we obtain

‖φ‖Lq + ‖R
a
ν
q φ‖Lq ≤ C

(
‖R

b−a
ν

p φ‖Lp + ‖R
b
ν
p φ‖Lp

)
.

Since b, a, and b−a are positive, by Theorem 4.4.3 (4), the left-hand side is equiv-
alent to ‖φ‖Lq

a
and both terms in the right-hand side are ≤ C‖φ‖Lp

b
. Therefore,

we have obtained that

∃C = Ca,b,p,q,R ∀φ ∈ S(G) ‖φ‖Lq
a
≤ C‖φ‖Lp

b
.

By density of S(G) in the Sobolev spaces, this shows Part (i).
Let us prove Part (ii). Let p ∈ (1,∞) and s > Q/p. By Corollary 4.3.13, we

know that
Bs ∈ L1(G) ∩ Lp′

(G),

where p′ is the conjugate exponent of p. For any f ∈ Lp
s(G), we have

fs := (I +Rp)
s
ν f ∈ Lp

and
f = (I +Rp)

− s
ν fs = fs ∗ Bs.

Therefore, by Hölder’s inequality,

‖f‖∞ ≤ ‖fs‖p‖Bs‖p′ = ‖Bs‖p′‖f‖Lp
s
.

Moreover, for almost every x, we have

f(x) =

∫

G

fs(y)Bs(y−1x)dy =

∫

G

fs(xz
−1)Bs(z)dz.

Thus for almost every x, x′, we have

|f(x)− f(x′)| =

∣∣∣∣
∫

G

(
fs(xz

−1)− fs(x
′z−1)

)
Bs(z)dz

∣∣∣∣
≤ ‖Bs‖p′‖fs(x ·)− fs(x

′ ·)‖p.
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As the left regular representation is continuous (see Example 1.1.2) we have

‖fs(x ·)− fs(x
′ ·)‖Lp(G) −→x′→x 0,

thus almost surely

|f(x)− f(x′)| −→x′→x 0.

Hence we can modify f so that it becomes a continuous function. This concludes
the proof. �

From the Sobolev embeddings (Theorem 4.4.25 (ii)) and the description of
Sobolev spaces with integer exponent (Lemma 4.4.19) the following property fol-
lows easily:

Corollary 4.4.26. Let G be a graded Lie group, p ∈ (1,∞) and s ∈ N. We assume
that s is proportional to the homogeneous degree ν of a positive Rockland operator,
that is, s

ν ∈ N, and that s > Q/p.

Then if f is a distribution on G such that f ∈ Lp(G) and Xαf ∈ Lp(G) when
α ∈ Nn

0 satisfies [α] = s, then f admits a bounded continuous representative (still
denoted by f). Furthermore, there exists a constant C = Cs,p,G > 0 independent
of f such that

‖f‖∞ ≤ C

⎛
⎝‖f‖p +

∑

[α]=s

‖Xαf‖p

⎞
⎠ .

The Sobolev embeddings, especially Corollary 4.4.26, enables us to define
Schwartz seminorms not only in terms of the supremum norm, but also in terms
of any Lp-norms:

Proposition 4.4.27. Let | · | be a homogeneous norm on a graded Lie group G. For
any p ∈ [1,∞], a > 0 and k ∈ N0, the mapping

S(G) ∋ φ �→ ‖φ‖S,a,k,p :=
∑

[α]≤k

‖(1 + | · |)aXαφ‖p

is a continuous seminorm on the Fréchet space S(G).

Moreover, let us fix p ∈ [1,∞] and two sequences {kj}j∈N, {aj}j∈N, of non-
negative integers and positive numbers, respectively, which go to infinity. Then the
family of seminorms ‖ · ‖S,aj ,kj ,p, j ∈ N, yields the usual topology on S(G).

Proof of Proposition 4.4.27. One can check easily that the property

∀1 ≤ p, q ≤ ∞, a > 0, k ∈ N0, ∃a′ > 0, k′ ∈ N0, C > 0,

‖ · ‖S,a,k,p ≤ ‖ · ‖S,a′,k′,q, (4.46)

is a consequence of the following observations (applied to Xαφ instead of φ):
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1. If p and q are finite, by Hölder’s inequality, we have

‖(1 + | · |)aφ‖p ≤ C‖(1 + | · |)a′

φ‖q

where C is a finite constant of the group G, p and q. In fact C is explicitly
given by

C = ‖(1 + | · |)−Q+1
r ‖r =

(
|B(0, 1)|

∫ ∞

0

(1 + ρ)−(Q+1)ρQ−1dρ

) 1
r

,

with r ∈ (1,∞) such that 1
p = 1

q + 1
r .

2. If p is finite and q =∞, we also have

‖(1 + | · |)aφ‖p ≤ C‖(1 + | · |)a+Q+1φ‖∞

where C = ‖(1 + | · |)−Q−1‖p is a finite constant.

3. In the case q is finite and p =∞, let us prove that

‖(1 + | · |)aφ‖∞ ≤ Cs,p

∑

[α]≤s

‖(1 + | · |)aXαφ‖p. (4.47)

Indeed first we notice that, by equivalence of the homogeneous quasi-norms
(see Proposition 3.1.35), we may assume that the quasi-norm is smooth away
from 0. We fix a function ψ ∈ D(G) such that

ψ(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2.

We have easily

‖(1 + | · |)aφ‖∞ ≤ Cψ (‖φψ‖∞ + ‖φ(1− ψ)| · |a‖∞) . (4.48)

By Corollary 4.4.26, there exist an integer s ∈ N such that

‖φψ‖∞ ≤ Cs,p

∑

[α]≤s

‖Xα(φψ)‖p.

By the Leibniz rule (which is valid for any vector field) and Hölder’s inequal-
ity, we have

‖Xα(φψ)‖p ≤ Cα

∑

[α1]+[α2]≤[α]

‖Xα1φ Xα2ψ‖p

≤ Cα,p

∑

[α1]+[α2]≤[α]

‖Xα1φ‖p‖Xα2ψ‖∞.
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Hence

‖φψ‖∞ ≤ Cs,p,ψ

∑

[α]≤s

‖Xαφ‖p. (4.49)

Following the same line of arguments, we have

‖φ(1− ψ)| · |a‖∞ ≤ Cs,p

∑

[α]≤s

‖Xα(φ(1− ψ)| · |a)‖p

≤ Cs,p

∑

[α1]+[α2]≤s

‖Xα1φ Xα2{(1− ψ)| · |a}‖p

≤ Cs,p

∑

[α1]+[α2]≤s

‖(1 + | · |)aXα1φ‖p‖(1 + | · |)−aXα2{(1− ψ)| · |a}‖∞.

All the ‖ · ‖∞-norms above are finite since Xα2{(1−ψ)| · |a}(x) = 0 if |x| ≤ 1
and for |x| ≥ 1,

|Xα2{(1− ψ)| · |a}(x)| ≤ Cα2

∑

[α3]+[α4]=[α2]

|Xα3(1− ψ)(x)| |Xα4 | · |a|(x)

≤ Cα2

∑

[α3]+[α4]=[α2]

‖Xα3(1− ψ)‖∞|x|a−[α4],

since Xα4 | · |a is a homogeneous function of degree a − [α4]. Hence we have
obtained

‖φ(1− ψ)| · |a‖∞ ≤ Cs,p,ψ

∑

[α]≤s

‖(1 + | · |)aXαφ‖p.

Together with (4.48) and (4.49), this shows (4.47).

4. If p = q is finite or infinite, (4.46) is trivial.

Hence Property (4.46) holds. We also have directly for p = q ∈ [1,∞] and
any 0 < a ≤ a′, k ≤ k′,

‖ · ‖S,a,k,p ≤ ‖ · ‖S,a′,k′,p.

Consequently we can assume a′ to be an integer in (4.46). This clearly implies that
any family of seminorms ‖·‖S,aj ,kj ,p, j ∈ N, yields the same topology as the family
of seminorms ‖ · ‖S,N,N,∞, N ∈ N. The latter is easily equivalent to the topology
given by the family of seminorms ‖ · ‖S(G),N defined in Section 3.1.9. This is the
usual topology on S(G). �

4.4.7 List of properties for the Sobolev spaces

In this section, we list the important properties of Sobolev spaces we have already
obtained and also give some easy consequences regarding the special case of p = 2.
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Theorem 4.4.28. Let G be a graded Lie group with homogeneous dimension Q.

1. Let p ∈ (1,∞) and s ∈ R. The inhomogeneous Sobolev space Lp
s(G) is a

Banach space satisfying

S(G) � Lp
s(G) ⊂ S ′(G).

The homogeneous Sobolev space L̇p
s(G) is a Banach space satisfying

(S(G) ∩Dom(Rs/ν
p )) � L̇p

s(G) � S ′(G).

Norms on the Banach spaces Lp
s(G) and L̇p

s(G) are given respectively by

φ �→ ‖(I +Rp)
s
ν φ‖Lp(G) and φ �→ ‖R

s
ν
p φ‖Lp(G),

for any positive Rockland operator R (whose homogeneous degree is denoted
by ν). All these homogeneous norms are equivalent, all these inhomogeneous
norms are equivalent.

The continuous inclusions Lp
a(G) ⊂ Lp

b(G) holds for any a ≥ b and
p ∈ (1,∞).

2. If s = 0 and p ∈ (1,∞), then L̇p
0(G) = Lp

0(G) = Lp(G) with ‖ · ‖L̇p
0(G) =

‖ · ‖Lp
0(G) = ‖ · ‖Lp(G).

3. If s > 0 and p ∈ (1,∞), then we have

Lp
s(G) = L̇p

s(G) ∩ Lp(G),

and the inhomogeneous Sobolev norm (associated with a positive Rockland
operator) is equivalent to

‖ · ‖Lp
s(G) ≍ ‖ · ‖Lp(G) + ‖ · ‖L̇p

s(G).

4. If T is a left-invariant differential operator of homogeneous degree νT , then
T maps continuously Lp

s+νT
(G) to Lp

s(G) for every s ∈ R, p ∈ (1,∞).

If T is a νT -homogeneous left-invariant differential operator, then T
maps continuously L̇p

s+νT
(G) to L̇p

s(G) for every s ∈ R, p ∈ (1,∞).

5. If 1 < p < q < ∞ and a, b ∈ R with b − a = Q( 1p − 1
q ), then we have the

continuous inclusions

L̇p
b ⊂ L̇q

a and Lp
b ⊂ Lq

a.

If p ∈ (1,∞) and s > Q/p then we have the following inclusion:

Lp
s ⊂ (C(G) ∩ L∞(G)) ,
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in the sense that any function f ∈ Lp
s(G) admits a bounded continuous rep-

resentative on G (still denoted by f). Furthermore, there exists a constant
C = Cs,p,G > 0 independent of f such that

‖f‖∞ ≤ C‖f‖Lp
s(G).

6. For p ∈ (1,∞) and any a, b, c ∈ R with a < c < b, there exists a positive
constant C = Ca,b,c such that we have for any f ∈ L̇p

b

‖f‖L̇p
c
≤ C‖f‖1−θ

L̇p
a
‖f‖θ

L̇p
b

and for any f ∈ Lp
b

‖f‖Lp
c
≤ C‖f‖1−θ

Lp
a
‖f‖θLp

b

where θ := (c− a)/(b− a).

7. (Gagliardo-Nirenberg inequality) If q, r ∈ (1,∞) and 0 < σ < s then there
exists C > 0 such that we have

∀f ∈ Lq(G) ∩ L̇r
s(G) ‖f‖L̇p

σ
≤ C‖f‖θLq‖f‖1−θ

L̇r
s

,

where θ := 1− σ
s and p ∈ (1,∞) is given via 1

p = θ
q + 1−θ

r .

8. Let s be an integer which is proportional to the homogeneous degree of a
positive Rockland operator. Let p ∈ (1,∞). Let f ∈ S ′(G).

The membership of f in Lp
s(G) is equivalent to f ∈ Lp(G) and Xαf ∈

Lp(G), α ∈ Nn
0 , [α] = s. Furthermore

φ �→ ‖φ‖p +
∑

[α]=νℓ

‖Xαφ‖p

is a norm on the Banach space Lp
s(G).

The membership of f in L̇p
s(G) is equivalent to Xαf ∈ Lp(G), α ∈ Nn

0 ,
[α] = s. Furthermore

φ �→
∑

[α]=νℓ

‖Xαφ‖p

is a norm on the Banach space L̇p
s(G).

9. (Interpolation) The inhomogeneous and homogeneous Sobolev spaces satisfy
the properties of interpolation in the sense of Theorem 4.4.9 and Proposition
4.4.15 respectively.

10. (Duality) Let s ∈ R. Let p ∈ (1,∞) and p′ its conjugate exponent. The dual

space of L̇p
s(G) is isomorphic to L̇p′

−s(G) via the distributional duality, and the

dual space of Lp
s(G) is isomorphic to L̇p′

−s(G) via the distributional duality,

Consequently, the Banach spaces Lp
s(G) and L̇p

s(G) are reflexive.
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Proof. Parts (1), (2), (3), and (6) follow from Theorem 4.4.3, Proposition 4.4.13
and Theorem 4.4.20.

Part (4) follows from Theorem 4.4.16 and Proposition 4.4.13.
Part (5) follows from Theorem 4.4.25 and Proposition 4.4.13 (5).
Part (7) follows from Parts (5) and (6).
Part (8) follows from Theorem 4.4.20.
For Part (9), see Theorem 4.4.9 and Proposition 4.4.15.
Part (10) follows from Lemmata 4.4.7 and 4.4.14 together with Theorem

4.4.20. �

Properties of L2
s(G)

Here we discuss some special feature of the case Lp(G), p = 2. Indeed L2(G) is
a Hilbert space where one can use the spectral analysis of a positive Rockland
operator.

Many of the proofs in Chapter 4 could be simplified if we had restricted
the study to the case Lp with p = 2. For instance, let us consider a positive
Rockland operator R and its self-adjoint extension R2 on L2(G). One can define
the fractional powers of R2 and I + R2 by functional analysis. Then one can
obtain the properties of the kernels of the Riesz and Bessel potentials with similar
methods as in Corollary 4.3.11.

In this case, one would not need to use the general theory of fractional powers
of an operator recalled in Section A.3. Even if it is not useful, let us mention that
the proof that R2 satisfies the hypotheses of Theorem A.3.4 is easy in this case:
it follows directly from the Lumer-Phillips Theorem (see Theorem A.2.5) together
with the heat semi-group {e−tR2}t>0 being an L2(G)-contraction semi-group by
functional analysis.

The proof of the properties of the associated Sobolev spaces L2
s(G) would

be the same in this particular case, maybe slightly helped occasionally by the
Hölder inequality being replaced by the Cauchy-Schwartz inequality. A noticeable
exception is that Lemma 4.4.19 can be obtained directly in the case Lp, p = 2,
from the estimates due to Helffer and Nourrigat (see Corollary 4.1.14).

The main difference between L2 and Lp Sobolev spaces is the structure of
Hilbert spaces of L2

s(G) whereas the other Sobolev spaces Lp
s(G) are ‘only’ Banach

spaces:

Proposition 4.4.29 (Hilbert space L2
s). Let G be a graded Lie group.

For any s ∈ R, L2
s(G) is a Hilbert space with the inner product given by

(f, g)L2
s(G) :=

∫

G

(I +R2)
s
ν f(x) (I +R2)

s
ν g(x)dx,

and L̇2
s(G) is a Hilbert space with the inner product given by

(f, g)L̇2
s(G) :=

∫

G

R
s
ν
2 f(x) R

s
ν
2 g(x)dx,
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where R is a positive Rockland operator of homogeneous degree ν.
If s > 0, an equivalent inner product on L2

s(G) is

(f, g)L2
s(G) :=

∫

G

f(x) g(x)dx +

∫

G

R
s
ν
2 f(x) R

s
ν
2 g(x)dx.

If s = νℓ with ℓ ∈ N0, an equivalent inner product on L2
s(G) is

(f, g) = (f, g)L2(G) +
∑

[α]=νℓ

(Xαf,Xαg)L2(G),

and an equivalent inner product on L̇2
s(G) is

(f, g) =
∑

[α]=νℓ

(Xαf,Xαg)L2(G).

Proposition 4.4.29 is easily checked, using the structure of Hilbert space of
L2(G) and, for the last property, simplifying the proof of Lemma 4.4.19.

4.4.8 Right invariant Rockland operators and Sobolev spaces

We could have started with right-invariant (homogeneous) Rockland operators R̃
instead of R. We discuss here some links between the two operators and their
Sobolev spaces.

Since both left and right invariant Rockland operators are differential op-
erators, we can relate them by Formulae (1.11) for the derivatives Xα and X̃α.
Then, given our analysis of R, we can give some immediate properties of the
right-invariant operator R̃:
Proposition 4.4.30. Let R be a positive Rockland operator. For any φ ∈ S(G),

R̃φ(x) = (Rt{φ(·−1)})(x−1) = (R̄{φ(·−1)})(x−1),

because Rt = R̄. Therefore, the spectral measure Ẽ of R̃ is given by

Ẽ(φ)(x) = (Ē{φ(·−1)})(x−1), φ ∈ L2(G), x ∈ G.

Consequently, the multipliers of R̃ and R are linked by

m(R̃)(φ)(x) = (m(R̄){φ(·−1)})(x−1). (4.50)

The operators R and R̃ commute strongly, that is, their spectral measures E
and Ẽ commute. Moreover, for functions f, g ∈ S ′(G) and a ∈ C, we have

Ra(f ∗ g) = f ∗ Rag,

R̃a(f ∗ g) = (R̃af) ∗ g,
(Raf) ∗ g = f ∗ R̃ag.
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We can give a right-invariant version of Definition 4.3.17:

Definition 4.4.31. Let R be a positive Rockland operator of homogeneous degree ν
and let s ∈ R. For any tempered distribution f ∈ S ′(G), we denote by (I+ R̃)s/νf
the tempered distribution defined by

〈(I + R̃)s/νf, φ〉 := 〈f, (I + ˜̄R)s/νφ〉, φ ∈ S(G).

The Sobolev spaces that we have introduced are based on the Sobolev spaces
corresponding to left-invariant vector fields and left-invariant positive Rockland
operators. We could have considered the right Sobolev spaces L̃p

s(G) defined via
the Sobolev norms

f �→ ‖(I + R̃)s/νf‖Lp .

The relations between left and right vector fields in (1.11) easily implies that
if f ∈ Lp(G) is such that Xαf ∈ Lp(G) then f̃ : x �→ f(x−1) is in Lp(G) and
satisfies X̃αf̃ ∈ Lp(G). By Lemma 4.4.19, we see that the map f �→ f̃ must map
continuously Lp

s → L̃p
s for any p ∈ (1,∞) and s a multiple of the homogeneous

degrees of positive Rockland operators.
More generally, the spectral calculus, see (4.50), implies

(I + R̃2)
s/νf(x) = (I +R2)

s/ν f̃(x−1), f ∈ S(G),

where, again, f̃(x) = f(x−1), and thus for any p ∈ (1,∞o),

‖(I + R̃p)
s/νf‖Lp(G) = ‖(I +Rp)

s/ν f̃‖Lp(G), f ∈ S(G).

This easily implies that f �→ f̃ maps continuously Lp
s → L̃p

s for any p ∈ (1,∞)

and any real exponent s ∈ R. This is also an involution:
˜̃
f = f . Hence the map

{
Lp
s(G) −→ L̃p

s(G)

f �−→ f̃

is an isomorphism of vector spaces.

Even if the left and right Sobolev spaces are isomorphic, they are not equal in
general. Note that in the commutative case of G = Rn, both left and right Sobolev
spaces coincide. It is also the case on compact Lie groups, where the Sobolev spaces
are associated with the Laplace-Beltrami operator (which is central) and coincide
with localisation of the Euclidean Sobolev spaces [RT10a]. This is no longer the
case in the nilpotent setting. Indeed, below we give an example of functions f
(necessarily not symmetric, that is, f̃ �= f), in some Lp

s(G) but not in L̃p
s(G).

Example 4.4.32. Let us consider the three dimensional Heisenberg group H1 and
the canonical basis X,Y, T of its Lie algebra (see Example 1.6.4). Then X =
∂x − y

2∂t whereas X̃ = ∂x + y
2∂t thus X̃ −X = y∂t.

The Sobolev spaces are then associated with the natural sub-Laplacian X2+
Y 2, see Example 6.1.1. Hence it is covered by the work of Folland [Fol75] on Sobolev
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spaces associated with sub-Laplacian on stratified Lie groups and consequently,
L2
1(G) is the space of functions f ∈ L2(H1) such that Xf and Y f are both in

L2(H1) [Fol75, Corollary 4.13].
One can find a smooth function φ ∈ C∞(R) such that φ, φ′ ∈ L2(R) but∫

R
|z|2|φ′(z)|2dz =∞. For instance, we consider φ = φ1 ∗ ψ where ψ is a suitable

smoothing function (i.e. ψ ∈ D(G) is valued in [0, 1] with a ‘small’ support around
0), and the graph of the function φ1 is given by isosceles triangles parametrised
by ℓ ∈ N, with vertex at points (ℓ, ℓβ), and base on the horizontal axis and with
length 2/ℓα. We then choose α, β ∈ R with 2β ∈ (−3,−1) and 2α > 2β + 1. We
also fix a smooth function χ : R → [0, 1] supported on [1/2, 2] with χ(1) = 1. We
define f ∈ C∞(R3) via

f(x, y, t) = φ
(yx

2
+ t

)
χ(x)χ(t).

One checks easily that f , Xf and Y f are square integrable hence f ∈ L2
1(H1).

However y∂tf is not square integrable. As X̃ −X = y∂tf , this shows that (−X +
X̃)f /∈ L2(H1) and X̃f can not be in L2 thus f is not in L̃2

1(H1).

4.5 Hulanicki’s theorem

We now turn our attention to Hulanicki’s theorem which will be useful in the next
chapter when we deal with pseudo-differential operators on graded Lie groups.
An important consequence of Hulanicki’s theorem is the fact that a Schwartz
multiplier in (the L2-self-adjoint extension of) a positive Rockland operator has
a Schwartz kernel. This section is devoted to the statement and the proof of
Hulanicki’s theorem and its consequence regarding Schwartz multiplier.

From now on, we will allow ourselves to keep the same notation R for a
positive Rockland operator and its self-adjoint extension R2 on L2(G) when no
confusion is possible. In particular, when we define functions of R2 (see Corollary
4.1.16), that is, a multiplier m(R2) defined using the spectral measure of R2 where
m ∈ L∞(R+) is a function, we may often write

m(R2) = m(R),

in order to ease the notation. Furthermore, we denote the corresponding right-
convolution kernel of this operator by

m(R)δo.

4.5.1 Statement

Hulanicki proved in [Hul84] that if multipliers m satisfy Marcinkiewicz properties,
then the kernels of m(R) satisfy certain estimates:
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Theorem 4.5.1 (Hulanicki). Let R be a positive Rockland operator on a graded Lie
group G. Let |·| be a fixed homogeneous quasi-norm on G. For any M1 ∈ N,M2 ≥ 0
there exist C = CM1,M2

> 0 and k = kM1,M2
∈ N0, k

′ = k′M1,M2
∈ N0 such that

for any m ∈ Ck[0,∞), we have

∑

[α]≤M1

∫

G

|Xαm(R)δo(x)| (1 + |x|)M2dx ≤ C sup
λ>0

ℓ=0,...,k
ℓ′=0,...,k′

(1 + λ)ℓ
′ |∂ℓ

λm(λ)|,

in the sense that if the right-hand side is finite then the left-hand side is also finite
and the inequality holds.

The main consequence of Theorem 4.5.1 is the following:

Corollary 4.5.2. Let R be a positive Rockland operator on a graded Lie group G.
If φ ∈ S(R) then the kernel φ(R)δo of φ(R) is Schwartz. Furthermore, the map
associating a multiplier function with its kernel

S(R) ∋ φ �−→ φ(R)δo ∈ S(G), (4.51)

is continuous between the Schwartz spaces.

The continuity of (4.51) means that for any continuous seminorm ‖ · ‖ on
S(G) there exist C > 0 and N ∈ N such that for any m ∈ S(R) we have

‖m(R)δo‖ ≤ C sup
x∈R,ℓ≤N

|(1 + |x|)N∂ℓm(x)|.

Examples of such Schwartz seminorms are ‖ · ‖S(G),N , N ∈ N, defined in Section
3.1.9, and ‖ · ‖S,a,k,p, a > 0, k ∈ N0, p ∈ [1,∞], defined in Proposition 4.4.27.

For completeness’ sake, we include the proofs of Theorem 4.5.1 and Corollary
4.5.2 below. Before this, let us notice that Corollary 4.5.2 implies that the heat
kernel of any Rockland operator is Schwartz. However, we will see that the proofs
of Theorem 4.5.1 and Corollary 4.5.2 rely on the properties of the Bessel potentials
which have been shown, in turn, using the properties of the heat kernel. Beside
the properties of the Bessel potentials, the proof uses the functional calculus of R
and the structure of G.

4.5.2 Proof of Hulanicki’s theorem

This section is devoted to the proof of Theorem 4.5.1 and can be skipped at first
reading.

We follow the essence of [Hul84], but we modify the original proof to take
into account our presentation of the properties of Rockland operators as well as to
bring some (small) simplifications. We also do not present some results obtained
in [Hul84] on groups of polynomial growth. One of these simplifications is the fact
that we fix a quasi-norm | · | which we assume to be a norm. Indeed, it is clear
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from the equivalence of quasi-norms (see Proposition 3.1.35) that it suffices to
prove Hulanicki’s theorem for one quasi-norm for it to hold for any quasi-norm.
As a homogeneous norm exists by Theorem 3.1.39, we may assume that | · | is
a norm without loss of generality. We could do without this but it simplifies the
constants in the next pages.

First step

The first step in the proof can be summarised with the following lemma:

Lemma 4.5.3. Let m : [0,+∞) → C be a function and let ℓo ∈ N. We define the
function F : (−∞, 1)→ C by

F (ξ) :=

{
m

(
ξ−

1
ℓo − 1

)
if 0 < ξ < 1,

0 if ξ ≤ 0,

and we have
∀λ ∈ [0,∞) m(λ) = F

(
(1 + λ)−ℓo

)
.

Furthermore, the following holds.

1. The function F extends to a continuous function on R if and only if m is
continuous on [0,∞) and limλ→+∞ m(λ) = 0.

2. The function F extends to a C1 function on R if and only if m is C1 on
[0,∞) with limλ→+∞ m(λ) = 0 and limλ→+∞(1 + λ)1+ℓom′(λ) = 0.

Let k ∈ N. If m ∈ Ck[0,+∞) and

lim
λ→+∞

(1 + λ)1+j+kℓo |m(j)(λ)| = 0 for j = 1, . . . , k′,

then the function F extends to a function in Ck(R)

3. Let k ∈ N and m ∈ Ck[0,∞). We assume that the suprema

sup
λ≥0

(1 + λ)2+j+kℓo |m(j)(λ)|, j = 0, . . . , k.

are finite. Then we can construct an extension to R, still denoted by F , such
that the function F ∈ Ck(R) is supported in [0, 2] and satisfies F̂ (0) = 0 and
for every ℓ ∈ Z,

∣∣∣F̂ (ℓ)
∣∣∣ ≤ C(1 + |ℓ|)−k sup

λ≥0
j=0,...,k

(1 + λ)1+j+kℓo |m(j)(λ)|,

where C = Ck,ℓo is a positive constant independent of m. Here F̂ (ℓ), ℓ ∈ Z,
denotes the Fourier coefficients of F in the sense of

F̂ (ℓ) :=

∫ π

−π

F (ξ)e−iξℓ dξ

2π
.
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Proof. Part (1) is easy to prove. Part (2) in the case of k = 1 follows easily from
the following observations.

• If ξ = (1 + λ)−ℓ0 , λ > 0 then

F (ξ)− F (0)

ξ
= (1 + λ)ℓom(λ).

• We can compute formally for ξ ∈ (0, 1):

F ′(ξ) =
− 1

ℓ o

ξ
1
ℓ o

+1
m′

(
ξ−

1
ℓ o − 1

)
,

and in particular if ξ = (1 + λ)−ℓ0 , λ > 0, then

F ′(ξ) = −1

ℓ o
(1 + λ)1+ℓom′(λ).

The general case of Part (2) follows from the following observation: F (k′)(ξ) is a
linear combination over j = 1, . . . , k′ of

ξ−
1
ℓo

−(k′−j)−j( 1
ℓo

+1)m(j)
(
ξ−

1
ℓ o − 1

)
= ξ−

1+j
ℓo

−k′

m(j)
(
ξ−

1
ℓ o − 1

)
.

The details are left to the reader.
Let us prove Part (3). Let m ∈ Ck[0,∞). Let Pk be the Taylor expansion

of m at 0, that is, Pk is the polynomial of degree k such that we have for λ > 0
small,

m(λ) = Pk(λ) + o(|λ|k).
We fix an arbitrary smooth function χ supported in [0, 2] and satisfying χ ≡ 1 on
[0, 1]. We construct an extension of F , still denoted F , by setting

F (ξ) :=

⎧
⎪⎪⎨
⎪⎪⎩

0 if ξ ≤ 0,

m
(
ξ−

1
ℓo − 1

)
if 0 < ξ < 1,

Pk

(
ξ−

1
ℓ o − 1

)
χ(ξ) if ξ ≥ 1.

We assume that the suprema given in the statement of Part 3 are finite. Clearly
F ∈ Ck(R) is supported in [0, 2]. The proof of Part 2 implies easily

‖F (k′)‖∞ ≤ C

k′∑

j=1

sup
λ≥0

(1 + λ)1+j+ℓok
′ |m(j)(λ)|, (4.52)

where the constant C = Ck′,ℓo,χ > 0 is independent on m.
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The Fourier coefficient of F at 0 is

F̂ (0) =

∫ π

−π

F (ξ)
dξ

2π

=

∫ 1

0

m(ξ−
1
ℓ o − 1)

dξ

2π
+

∫ 2

1

Pk

(
ξ−

1
ℓ o − 1

)
χ(ξ)

dξ

2π

=

∫ ∞

0

m(λ)
−ℓo
2π

dλ

(1 + λ)ℓo+1
+

∫ 2

1

Pk

(
ξ−

1
ℓ o − 1

)
χ(ξ)

dξ

2π
.

We can always assume that the function χ was chosen so that

∫ 2

1

Pk

(
ξ−

1
ℓ o − 1

)
χ(ξ)

dξ

2π
=

∫ ∞

0

m(λ)
ℓo
2π

dλ

(1 + λ)ℓo+1
.

Indeed, it suffices to replace χ by χ+ cχ1 where χ1 ∈ D(R) is supported in (1, 2)
and c a well chosen constant.

It is a simple exercise using integration by parts to show that the Fourier
coefficients may be estimated by

∀k′ = 0, . . . , k ∃C = Ck′ > 0 ∀ℓ ∈ Z |F̂ (ℓ)| ≤ C(1 + |ℓ|)−k′‖F (k′)‖∞.

This together with (4.52) concludes the proof of Part (3). �

Second step

The second step consists in noticing that, with the notation of Lemma 4.5.3,
studying the multiplierm(R) and using the Fourier series of F leads to consider the

operator eiℓ(I+R)−ℓo
and, more precisely, the properties of its convolution kernel.

Lemma 4.5.4. Let R be a positive Rockland operator on a graded Lie group G. Let
ℓo ∈ N and Fo(ξ) := eiξ − 1, ξ ∈ R. Then, for any ℓ ∈ Z, the convolution kernel
of Fo(ℓ(I +R)−ℓo) is an integrable function:

Fo(ℓ(I +R)−ℓo)δo ∈ L1(G).

Proof of Lemma 4.5.4. Since Fo(ℓξ) =
∑∞

j=1
(iℓξ)j

j! , we have at least formally

κℓ :=
{
Fo(ℓ(I +R)−ℓo)

}
δo

=
∞∑

j=1

(iℓ)j

j!
(I +R)−jℓoδ0 =

∞∑

j=1

(iℓ)j

j!
Bνjℓo ,

where Ba is the convolution kernel of the Bessel potentials, see Section 4.3.4, and
ν is the degree of homogeneity of R. In fact, by Corollary 4.3.11, we know that

∀a ∈ C+ Ba ∈ L1(G) and Bνjℓo = Bνℓo ∗ . . . ∗ Bνℓo := B∗jνℓo .
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Thus in the Banach algebra L1(G) endowed with the convolution product, the
series

∞∑

j=1

(iℓ)j

j!
B∗jνℓo =

∞∑

j=1

(iℓ)j

j!
Bνjℓo ,

is convergent in the L1-norm. It is then a routine exercise to justify that κℓ is in
L1(G) and is also the convolution kernel of the multiplier Fo(ℓ(I +R)−ℓo). �

Unfortunately the brute force estimate

‖Fo(ℓ(I +R)−ℓo)δo‖L1(G) ≤
∞∑

j=1

|ℓ|j
j!
‖Bνℓo‖jL1(G) = exp(‖Bνℓo‖L1(G)|ℓ|)− 1,

is exponential in ℓ and would be of no use for us. However, we notice that we can
already modify the proof above to show:

Lemma 4.5.5. We keep the notation of Lemma 4.5.4 and its proof. If | · | is a
homogeneous quasi-norm on G, then for each ℓ ∈ Z and ao > 0, the function
Fo(ℓ(I+R)−ℓo)δo is integrable against a weight of the form (1+ | · |)ao . Moreover,
if νℓo > Q/2, where Q is the homogeneous dimension of G, then the function
Fo(ℓ(I +R)−ℓo)δo is in L2(G).

Proof of Lemma 4.5.4. One checks easily that if ω : G → [1,∞) is a continuous
function satisfying

∃C = Cω ∀x, y ∈ G ω(xy) ≤ Cω(x)ω(y),

the subspace L1(w) of L1(G) of functions f which are integrable against w, is a
Banach algebra for the norm

‖f‖L1(ω) =

∫

G

|f(x)|ω(x)dx.

Examples of such ω’s are precisely weights of the form (1 + | · |)a with | · | being a
quasi-norm on G. By Lemma 4.3.15, for any a ∈ C+ and ao > 0,

Ba ∈ L1((1 + | · |)ao).

We keep the notation of the proof of Lemma 4.5.4 and proceed in the similar way
but using L1((1 + | · |)ao) instead of L1(G):

‖κℓ‖L1((1+|·|)ao ) ≤
∞∑

j=1

|ℓ|j
j!
‖Bνℓo‖jL1((1+|·|)ao ) = exp(‖Bνℓo‖L1((1+|·|)ao )|ℓ|)− 1,

which is finite.
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Let us now show that κℓ ∈ L2(G). We have

‖κℓ‖2 ≤
∞∑

j=1

|ℓ|j
j!
‖B∗jνℓo‖2

and

‖B∗jνℓo‖2 ≤ ‖Bνℓo‖1‖B
∗(j−1)
νℓo

‖2 ≤ . . . ≤ ‖Bνℓo‖j−1
1 ‖Bνℓo‖2.

We also know by Corollary 4.3.11 that Ba ∈ L2(G) whenever Re a > Q/2. Thus
in this case,

‖κℓ‖2 ≤
∞∑

j=1

|ℓ|j
j!
‖Bνℓo‖j−1

1 ‖Bνℓo‖2 <∞,

finishing the proof. �

Using only the properties of Banach algebras, we obtain again that

∫

G

|Fo(ℓ(I +R)−ℓo)δo|(1 + | · |)ao and

∫

G

|Fo(ℓ(I +R)−ℓo)δo|2,

explode exponentially with ℓ which is not good enough for our subsequent analysis.
However, we are going to show that

∫
G
|Fo(ℓ(I+R)−ℓo)δo|(1+ | · |)ao actually grows

polynomially in ℓ (see Lemma 4.5.6) and this is the crucial technical point in the
proof of Theorem 4.5.1.

Main technical lemma

Lemma 4.5.6. We keep the notation of Lemmata 4.5.4 and 4.5.5. We fix a homo-
geneous quasi-norm | · | on G and assume that νℓo > Q/2. Then for ao ≥ 0,

∫

G

(1 + |x|)ao |Fo(ℓ(I +R)−ℓo)δo(x)|dx ≤ C|ℓ|3(ao+
Q
2 +1), (4.53)

where C = Cao,ℓo,R,G,|·| is a positive constant independent of ℓ ∈ Z.

In the proof of Lemma 4.5.6 we will need the following easy lemma:

Lemma 4.5.7. If μ1, . . . , μ2m are 2m measures in M(G), then for any continuous
function φ,

∫

G

φ dμ1 ∗ . . . ∗ μ2m

=

∫

Gm

∫

G

φ d
{
μ2(y

−1
1 ·)

}
∗ . . . ∗

{
μ2m(y−1

m ·)
}
dμ1(y1) . . . dμ2m−1(ym),

whenever the right or the left hand side is finite.
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Here we have denoted by μ(y ·) the y-left-translated measure of a positive or
complex Borel measure μ, that is, the measure given by

∫

x∈G

φ(x)dμ1(yx) =

∫

G

φ(y−1x)dμ1(x), φ ∈ Cc(G).

Proof of Lemma 4.5.7. First let us observe that if μ1, . . . , μm are m measures in
M(G), then, recursively, one can show readily that

∫

G

φ d(μ1 ∗ . . . ∗ μm) =

∫

Gm

φ(x1 . . . xm) dμ1(x1) . . . dμm(xm). (4.54)

If μ1, . . . , μ2m are 2m measures in M(G), then applying (4.54) for these 2m mea-
sures yields

∫

G

φ d(μ1 ∗ . . . ∗ μ2m)

=

∫

G2m

φ(x1x2 . . . x2m−1x2m)

dμ1(x1) dμ2(x2) . . . dμ2m−1(x2m−1) dμ2m(x2m)

=

∫

G

(∫

Gm

φ(x′
2x

′
4 . . . x

′
2m)

dμ2(x
−1
1 x′

2)dμ4(x
−1
3 x′

4) . . . dμ2m(x′
2m−1x

−1
2m)

)

dμ1(x1) . . . dμ2m−1(x2m−1),

after the change of variables x′
2 = x1x2, . . . , x

′
2m = x2m−1x2m. Using (4.54), we

recognise an iterated convolution in the quantity in parenthesis. �

We now turn our attention to showing Lemma 4.5.6.

Proof of Lemma 4.5.6. By Theorem 3.1.39, we may assume that the homogeneous
quasi-norm | · | is also a norm, that is, we assume that the triangle inequality holds
with a constant = 1. Moreover, we notice that it suffices to prove (4.53) with
ℓ ∈ N. Indeed, as

κℓ := Fo(ℓ(I +R)−ℓo)δ0 = eiℓ(I+R)−ℓo
δ0 − δ0,

we have
κ̄ℓ = e−iℓ(I+R̄)−ℓo

δ0 − δ0 = Fo(−ℓ(I + R̄)−ℓo)δ0,

and κ0 = 0. Since

Fo(ℓξ) = eiℓξ − 1 = (eiξ)ℓ − 1 = (Fo(ξ) + 1)
ℓ − 1,

we have in the unital Banach algebra Cδ0 ⊕ L1(G),

κℓ = (κ1 + δo)
∗ℓ − δ0.
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Let us fix ℓ ∈ N. We can decompose

κ1 = f0 + f∞,

where f0 and f∞ are the integrable functions defined via

f0(x) := κ1(x)1|x|≤ℓ2 and f∞(x) := κ1(x)1|x|>ℓ2 . (4.55)

We can also write

κ1 + δ0 = μ0 + f∞ where μ0 := f0 + δ0.

We now develop the non-commutative convolution product in Cδ0 ⊕ L1(G),

(κ1 + δo)
∗ℓ = (μ0 + f∞)

∗ℓ
= (μ0 + f∞) ∗ . . . ∗ (μ0 + f∞)

=
∑

α,β

μ∗α1
0 ∗ f∗β1

∞ ∗ . . . ∗ μ∗αℓ
0 ∗ f∗βℓ

∞ ,

where the summation is over all sequences α = (α1, . . . , αℓ), β = (β1, . . . , βℓ), of 0
and 1 such that α1 + . . .+ αℓ + β1 + . . .+ βℓ = ℓ.

Let us fix two such sequences α and β. By Lemma 4.5.7 applied to

μ2j−1 = μ
∗αj

0 , and μ2j = f∗βj
∞ ,

and φ = ωao where the positive function ω ∈ C(G) is defined by

ω(x) := 1 + |x|, x ∈ G,

we have for any ao > 0,

∫

G

ωaodμ∗α1
0 ∗ f∗β1

∞ ∗ . . . ∗ μ∗αℓ
0 ∗ f∗βℓ

∞

=

∫

Gℓ

∫

G

ωao d
{
μ∗α1
0 (y−β1

1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}

df∗β1
∞ (y1) . . . df

∗βℓ
∞ (yℓ).

Let us also fix (y1, . . . , yℓ) ∈ Gℓ. We notice that for any μ ∈M(G) we have

(δ0(y ·)) ∗ μ = μ(y ·),

since for any φ ∈ Cc(G),

∫

G

φ d {(δ0(y ·)) ∗ μ} =
∫

G

φ(xz) dδ0(yx) dμ(z) =

∫

G

φ(y−1x) dμ(x).
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Therefore, if α1 = 0,
{
μ∗α1
0 (y−β1

1 ·)
}
∗
{
μ∗α2
0 (y−β2

2 ·)
}

=
{
δ0(y

−β1

1 ·)
}
∗
{
μ∗α2
0 (y−β2

2 ·)
}

=
{
μ∗α2
0 (y−β1

2 ·)
}
(y−β1

1 ·)

=
{
μ∗α2
0 (y−β1

2 y−β1

1 ·)
}
,

whereas if α1 = 1, we have
{
μ∗α1
0 (y−β1

1 ·)
}
∗
{
μ∗α2
0 (y−β2

2 ·)
}

=
{
δ0(y

−β1

1 ·)
}
∗
{
μ∗α2
0 (y−β2

2 ·)
}
+

{
f0(y

−β1

1 ·)
}
∗
{
μ∗α2
0 (y−β2

2 ·)
}

=
{
μ∗α2
0 (y−β1

2 y−β1

1 ·)
}
+

{
f0(y

−β1

1 ·)
}
∗
{
μ∗α2
0 (y−β2

2 ·)
}
.

Recursively, we find that
{
μ∗α1
0 (y−β1

1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}

=
∑

j:αj=1

{
f0(y

−β1

1 . . . y
−βj

j ·)
}
∗
{
μ
∗αj+1

0 (y
−βj+1

j+1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}

when α �= 0. If α = 0, we compute directly:
{
μ∗α1
0 (y−β1

1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}

=
{
δo(y

−β1

1 ·)
}
∗ . . . ∗

{
δo(y

−βℓ

ℓ ·)
}

= δo

(
y−βℓ

ℓ . . . y−β1

1 ·
)
,

so that
∫

G

ωao d
{
μ∗α1
0 (y−β1

1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}

= ωao(yβ1

1 . . . yβℓ

ℓ ) =
(
1 + |yβ1

1 . . . yβℓ

ℓ |
)ao

≤
(
1 + |yβ1

1 |+ . . .+ |yβℓ

ℓ |
)ao

≤
(
1 + ℓ max

j′=1,...,ℓ
|yβj′

j′ |
)ao

,

since the quasi-norm | · | is assumed to be a norm.
If αj �= 0, we notice that the measure given by
{
f0(y

−β1

1 . . . y
−βj

j ·)
}
∗
{
μ
∗αj+1

0 (y
−βj+1

j+1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}
, (4.56)

is compactly supported. Indeed recall that f0 is supported in B̄ℓ2 where we denote
by B̄R := {x ∈ G : |x| ≤ R} a closed ball of radius R about 0 for the chosen norm.
Therefore

suppμ0 ⊆ {0} ∪ supp f0 ⊆ B̄ℓ2 .
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The general properties

∀μ1, μ2 ∈M(G) supp(μ1 ∗ μ2) ⊂ (suppμ1)(suppμ2)

= {x1x2 : x1 ∈ suppμ1, x2 ∈ suppμ2},

and

∀μ ∈M(G), y ∈ G supp
(
μ(· y−1)

)
= (suppμ)y = {xy : x ∈ suppμ},

imply that the measure in (4.56) is supported in

B̄α1ℓ2y
β1

1 . . . B̄αj−1ℓ2y
βj−1

j−1 B̄αℓℓ2y
βℓ

ℓ . . . y
βj

j .

Using the properties of the norm | · |, it is easy to check that the above subset of
G is included in the closed ball about 0 of radius

(
ℓ∑

j′=1

αj′)ℓ
2 + (

ℓ∑

j′=1

βj′ |yj′ |) ≤ ℓ3 + ℓ max
j′=1,...,ℓ

|yj′ |,

since
∑ℓ

j′=1 αj′ and
∑ℓ

j′=1 βj′ are ≤ ℓ.

Note that if f is a measurable function supported in B̄R then

|
∫

G

ωao(x)f(x)dx| ≤
∫

|x|≤R

(1 + |x|)ao |f(x)|dx

≤ (1 +R)ao

∫

|x|≤R

f(x)dx

≤ (1 +R)ao |B̄R|1/2‖f‖2.

We apply this to the function f in (4.56) and R = ℓ3 + ℓmaxj′=1,...,ℓ |yj′ |. This
leads us to look at the L2-norm of this function which can be written as

f = T
μ
∗αℓ
0 (y

−βℓ
ℓ ·) . . . Tμ

∗αj+1
0 (y

−βj+1
j+1 ·)

(
f0(y

−β1

1 . . . y
−βj

j ·)
)
.

Here we have used our usual notation for the convolution operator Tκ : φ �→ φ ∗ κ
with right-convolution (distributional) kernel κ. Since such convolution operators
are left-invariant, we have

‖T
μ
∗α

j′

0 (y
−β

j′

j′
·)
‖L (L2(G)) = ‖Tμ

∗α
j′

0

‖L (L2(G)) = ‖Tμ0
‖αj′

L (L2(G)).

Again by left-invariance,
∥∥∥f0(y−β1

1 . . . y
−βj

j ·)
∥∥∥
L2(G)

= ‖f0‖L2(G) ≤ ‖κ1‖L2(G),

which is finite by Lemma 4.5.5 since we assume νℓo > Q/2. Therefore,

‖f‖2 ≤ ‖κ1‖L2(G)‖Tμ0‖
∑

j<j′≤ℓ αj′

L (L2(G)) .



262 Chapter 4. Rockland operators and Sobolev spaces

We have obtained that for any (y1, . . . , yℓ) ∈ Gℓ, α, β with α �= 0,

∣∣∣∣
∫

G

ωaod
{
f0(y

−β1

1 . . . y
−βj

j ·)
}
∗
{
μ
∗αj+1

0 (y
−βj+1

j+1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}∣∣∣∣

≤
∑

j:αj=1

(
1 + ℓ3 + ℓ max

j′=1,...,ℓ
|yj′ |

)ao

|B̄ℓ3+ℓmaxj′=1,...,ℓ |yj′ ||
1/2

‖Tμ0
‖
∑

j<j′≤ℓ αj′

L (L2(G)) ‖κ1‖L2(G)

≤ Cℓ

(
1 + ℓ3 + ℓ max

j′=1,...,ℓ
|yj′ |

)ao+Q/2

‖Tμ0
‖
∑

j<j′≤ℓ αj′

L (L2(G)) ,

with C = ‖κ1‖L2(G)|B̄1|1/2. We now integrate against df∗β1∞ (y1) . . . df
∗βℓ∞ (yℓ) to

obtain
∣∣∣∣
∫

G

ωaodμ∗α1
0 ∗ f∗β1

∞ ∗ . . . ∗ μ∗αℓ
0 ∗ f∗βℓ

∞

∣∣∣∣

≤
∫

Gℓ

∣∣∣∣
∫

G

ωao d
{
μ∗α1
0 (y−β1

1 ·)
}
∗ . . . ∗

{
μ∗αℓ
0 (y−βℓ

ℓ ·)
}∣∣∣∣

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ)
≤ C‖Tμ0

‖
∑

j<j′≤ℓ αj′

L (L2(G))

∫

Gℓ

ℓ

(
1 + ℓ3 + ℓ max

j′=1,...,ℓ
|yj′ |

)ao+Q/2

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ).

Let us estimate this last integral:

∫

Gℓ

ℓ

(
1 + ℓ3 + ℓ max

j′=1,...,ℓ
|yj′ |

)ao+Q/2

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ)

≤
∞∑

q=0

(
1 + ℓ3 + ℓ(q + 1)

)ao+Q/2
∫

q≤maxj′ |yj′ |<q+1

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ).

For each of these integrals, we see that either

∫

q≤maxj′ |yj′ |<q+1

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ) =
{

0 if β=0, q≥1 or β �=0, q<ℓ2,
1 if β=0, q=0,

or if β �= 0 and q ≥ ℓ2,

∫

q≤maxj′ |yj′ |<q+1

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ) ≤ ‖f∞‖|β|−1
1

∫

q≤|y|≤q+1

|κ1(y)|dy

≤ ‖f∞‖|β|−1
1 (1 + q)−a

∫

G

|κ1|ωa,
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for any a > 0 that will be suitably chosen. Indeed, by Lemma 4.5.5, this last
integral is finite. Hence if β �= 0, then

∫

Gℓ

ℓ

(
1 + ℓ3 + ℓ max

j′=1,...,ℓ
|yj′ |

)ao+Q/2

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ)

≤ ‖f∞‖|β|−1
1

(∫

G

|κ1|ωa

) ∞∑

q=ℓ2

ℓ
(
1 + ℓ3 + ℓ(q + 1)

)ao+Q/2
(1 + q)−a.

We choose a := 2(ao +Q/2 + 2) so that the sum

ℓ

∞∑

q=ℓ2

(
1 + ℓ3 + ℓ(q + 1)

)ao+Q/2
(1 + q)−a ≤ ℓ(1 + 2ℓ)ao+Q/2

∞∑

q=ℓ2

(q + 1)ao+Q/2−a

≤ ℓ(1 + 2ℓ)ao+Q/2

∫ ∞

ℓ2
xao+Q/2−adx ≤ ℓ(1 + 2ℓ)ao+Q/2 ℓ2(ao+Q/2−a+1)

ao +Q/2− a+ 1
,

is finite and bounded independently of ℓ. We set

Ca := max

⎛
⎝1,

( ∫

G

|κ1|ωa
)
max
ℓ∈N

∞∑

q=ℓ2

(
1 + ℓ3 + ℓ(q + 1)

)ao+Q/2
(1 + q)−a

⎞
⎠ .

We have obtained in the case α and β both non-zero:
∣∣∣∣
∫

G

ωaodμ∗α1
0 ∗ f∗β1

∞ ∗ . . . ∗ μ∗αℓ
0 ∗ f∗βℓ

∞

∣∣∣∣

≤ CCa

∑

j:αj=1

‖Tμ0
‖
∑

j<j′≤ℓ αj′

L (L2(G)) ‖f∞‖
|β|−1
1

≤ CCaℓmax(1, ‖Tμ0
‖L (L2(G)))

|α|‖f∞‖|β|−1
1 ,

whereas in the case α �= 0 and β = 0,
∣∣∣∣
∫

G

ωaodμ∗α1
0 ∗ f∗β1

∞ ∗ . . . ∗ μ∗αℓ
0 ∗ f∗βℓ

∞

∣∣∣∣ ≤ C
∑

j:αj=1

‖Tμ0‖
∑

j<j′≤ℓ αj′

L (L2(G)) (1 + ℓ3)ao+Q/2

≤ C(1 + ℓ3)ao+Q/2ℓmax(1, ‖Tμ0
‖L (L2(G)))

|α|,

and in the case β �= 0 and α = 0,
∣∣∣∣
∫

G

ωaodμ∗α1
0 ∗ f∗β1

∞ ∗ . . . ∗ μ∗αℓ
0 ∗ f∗βℓ

∞

∣∣∣∣

≤
∫

Gℓ

(
1 + ℓ max

j′=1,...,ℓ
|yβj′

j′ |
)ao

d|f∗β1
∞ |(y1) . . . d|f∗βℓ

∞ |(yℓ)

≤ C
∞∑

q=ℓ2

(1 + ℓq)
ao ‖f∞‖|β|−1

1

(∫

G

|κ1|ωa

)
(1 + q)−a

≤ CCa‖f∞‖|β|−1
1 .
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We can now sum over α and β to obtain

∫

G

|κℓ|ωao ≤
∑

β �=0

CCa‖f∞‖|β|−1
1

+
∑

α �=0

C(1 + ℓ3)ao+Q/2ℓmax(1, ‖Tμ0
‖L (L2(G)))

|α|

+
∑

α �=0
β �=0

CCaℓmax(1, ‖Tμ0
‖L (L2(G)))

|α|‖f∞‖|β|−1
1 .

We need to estimate the operator norm of

Tμ0
= I + Tκ1

− Tf∞ .

By functional calculus, the operator

I + Tκ1 = I + Fo((I +R)−ℓo) = exp(i(I +R)−ℓo),

has norm

‖I + Tκ1‖L (L2(G)) = ‖ exp(i(I +R)−ℓo)‖L (L2(G))

≤ sup
λ≥0
| exp(i(1 + λ)−ℓo)| ≤ 1.

For Tf∞ , we have

‖Tf∞‖L (L2(G)) ≤ ‖f∞‖L1(G).

Hence

‖Tμo
‖L (L2(G)) ≤ ‖I + Tκ1

‖L (L2(G)) + ‖Tf∞‖L (L2(G)) ≤ 1 + ‖f∞‖L1(G),

and

‖f∞‖1 +max(1, ‖Tμ0‖L (L2(G))) ≤ 1 + 2‖f∞‖1.

Let us also estimate

‖f∞‖L1(G) =

∫

|x|≥ℓ2
|κ1(x)|ω(x)

1

1 + |x|dx

≤ 1

1 + ℓ2

∫

G

|κ1|ω. (4.57)

By Lemma 4.5.5,

c′ :=

∫

G

|κ1|ω
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is finite. Thus we have obtained so far that
∫

G

|κℓ|ωao ≤ CCaℓ
∑

β �=0,α

(1 + 2‖f∞‖1)|α|‖f∞‖|β|−1
1

+CCa(1 + ℓ3)ao+
Q
2 +1

∑

α �=0

(1 + 2‖f∞‖1)|α|

≤ CCaℓ
∑

β �=0,α

(
1 +

2c′

1 + ℓ2

)|α| (
c′

1 + ℓ2

)|β|−1

+CCa(1 + ℓ3)ao+
Q
2 +1

∑

α �=0

(
1 +

2c′

1 + ℓ2

)|α|

≤ CCa(1 + ℓ3)ao+
Q
2 +1

∑

β,α

(
1 +

2c′

1 + ℓ2

)|α| (
c′

1 + ℓ2

)|β|

= CCa(1 + ℓ3)ao+
Q
2 +1

(
1 +

3c′

1 + ℓ2

)ℓ

.

Since

max
ℓ∈N

(
1 +

3c′

1 + ℓ2

)ℓ

<∞,

we have proved what we wanted, that is,
∫

G

|κℓ|ωao ≤ C ′(1 + ℓ3)ao+
Q
2 +1,

completing the proof of Lemma 4.5.6. �

The proof of Lemma 4.5.6 can be modified to obtain a similar property for
XαoFo(ℓ(I +R)−ℓo)δo:

Lemma 4.5.8. We keep the notation of Lemmata 4.5.4, 4.5.5 and 4.5.6. Then for
any αo ∈ Nn

0 with νℓo > [αo] +Q/2 and ao ≥ 0, we have
∫

G

(1 + |x|)ao |XαoFo(ℓ(I +R)−ℓo)δo(x)|dx ≤ C|ℓ|3(ao+
Q
2 +1), (4.58)

where C = Cαo,ao,ℓo,R,G,|·| is a positive constant independent of ℓ ∈ Z.

The proof of Lemma 4.5.8 follows the one of Lemma 4.5.6 but with the
derivatives Xαo now applied to the last term of the convolution products. These
convolution products have to be understood as convolutions between compactly
supported distributions and integrable functions since we replace the definition of
f0 and f∞ given in (4.55) by

f0 := κ1χ(ℓ
−1| · |′) and f∞ := κ1(1− χ)(ℓ−1| · |′),

where
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• χ ∈ D(R) is a non-negative smooth function satisfying χ(x) = 1 if x ∈ [−1, 1]
and χ(x) = 0 if x > 2,

• and | · |′ is a homogeneous norm which is smooth away from 0 (see Proposi-
tion 3.1.35 (i) or Remark 3.1.36).

We also need to replace ω = 1 + | · |ao with

ω(x) =

{
1 if |x| ≤ 1,
|x| if |x| ≥ 1,

in order to make sense of the distribution Xαoδ0 with support at 0 being applied
to the function ω which is smooth around 0. The conditions on the parameters
given in Lemma 4.5.8 and the following lemma ensure that the new quantities∫
G
|Xαoκ|2 and

∫
G
|Xαoκ|ωa appearing in the proof are finite.

Lemma 4.5.9. Let R be a Rockland operator of homogeneous degree ν on a graded
Lie group G and let Ba, a ∈ C+, be the kernels of its Bessel potentials.

1. If | · | is a homogeneous quasi-norm on G, b ≥ 0 and α ∈ Nn
0 with Re a+ b >

[α], then ∫

G

|x|b|XαBa(x)|dx <∞.

2. If α ∈ Nn
0 with Re a > [α] +Q/2, then

∫

G

|XαBa(x)|2dx <∞.

Proof of Lemma 4.5.9. For the first part, we generalise the first part of Lemma
4.3.15, that is,

∫

G

|x|b|XαBa(x)|dx ≤
1

|Γ(aν )|

∫ ∞

0

t
Re a
ν −1e−t

∫

G

|x|b|Xαht(x)|dx dt,

and using the homogeneity of the heat kernel (see (4.17)) and the change of vari-

ables y = t−
1
ν x, we get

∫

G

|x|b|Xαht(x)|dx =

∫

G

|t 1
ν y|bt− [α]

ν |Xαh1(y)|dy = cb,αt
b−[α]

ν ,

where cb,α = ‖|y|bXαh1(y)‖L1(dy) is a finite constant since h1 ∈ S(G). Thus,

∫

G

|x|b|XαBa(x)|dx ≤
cb,α
|Γ(aν )|

∫ ∞

0

t
Re a
ν −1+

b−[α]
ν e−tdt

is finite whenever Re a+ b− [α] > 0.
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For the second part of Lemma 4.5.9, we can not adapt the proof of the square
integrability of Ba since we can not relate Xαh̄(x) with (Xαh)(x−1). We proceed
differently. Let φ ∈ D(G). From the properties of the heat kernel and the definition
of Ba we have

Ba(x−1) = B̄a(x) = Bā(x)

and so
∣∣∣∣
∫

G

(XαBa)φ
∣∣∣∣ =

∣∣∣∣
∫

G

BaXαφ

∣∣∣∣
=

∣∣(Xαφ) ∗ B̄ā(0)
∣∣

≤
∥∥(Xαφ) ∗ B̄ā

∥∥
∞

≤ C
∥∥∥
(
I + R̄2

) s
ν (Xαφ) ∗ B̄ā

∥∥∥
2
,

by the Sobolev embeddings, see Theorem 4.4.25 for s > Q/2. But, since Bā is the

right-convolution kernel of the Bessel potential (I + R̄2)
−a
ν , we have

∥∥∥
(
I + R̄2

) s
ν (Xαφ) ∗ B̄ā

∥∥∥
2

=

∥∥∥∥
(
I + R̄2

) s−Re a
ν (Xαφ)

∥∥∥∥
2

≤ C ′
∥∥∥∥
(
I + R̄2

) s−Re a+[α]
ν φ

∥∥∥∥
2

,

by Theorem 4.4.16. Hence we have obtained

∣∣∣∣
∫

G

XαBaφ
∣∣∣∣ ≤ CC ′

∥∥∥∥
(
I + R̄2

) s−Re a+[α]
ν φ

∥∥∥∥
2

≤ C1‖φ‖2,

if s − Re a + [α] ≤ 0, from the Sobolev inclusions, see Theorem 4.4.3 (4). Hence,
under this condition, XαBa ∈ L2(G). �

Proceeding as in the proof of Lemma 4.5.5, Lemma 4.5.9 yields

• Xαoκℓ ∈ L1((1 + | · |)ao) if νℓo + ao > [αo],

• and Xαoκℓ ∈ L2(G) if νℓo > [αo] +Q/2.

The details of the proof of Lemma 4.5.8 are left to the interested reader.

Last step

We can now conclude the proof of Theorem 4.5.1.

End of the proof of Theorem 4.5.1. We fix ao ∈ N and αo ∈ Nn
0 . We consider

k ∈ N and ℓo to be chosen in terms of ao and αo. Let m ∈ Ck[0,∞) satisfying the



268 Chapter 4. Rockland operators and Sobolev spaces

hypotheses of Lemma 4.5.3 Part 3 for ℓo and k, and let F be the corresponding
function in Ck(R). Since suppF ⊂ [0, 2], we may develop F in the Fourier series:

F (ξ) =
∑

ℓ∈Z

F̂ (ℓ)eiξℓ =
∑

ℓ∈Z\{0}
F̂ (ℓ)eiξℓ, ξ ∈ (−π, π),

as F̂ (0) = 0. Since

0 = F (0) =
∑

ℓ∈Z\{0}
F̂ (ℓ),

we also have for any ξ ∈ [0, 2] that

F (ξ) =
∑

ℓ∈Z\{0}
F̂ (ℓ)(eiξℓ − 1).

This yields

m(λ) =
∑

ℓ∈Z\{0}
F̂ (ℓ)(eiℓ(1+λ)−ℓo − 1), λ ≥ 0,

and at least formally

m(R)δo =
∑

ℓ∈Z\{0}
F̂ (ℓ)κℓ, (4.59)

where κℓ := eiℓ(I+R)−ℓo
δ0 − δ0 as before.

By Lemma 4.5.8, if νℓo > [αo] +Q/2, then

∑

ℓ∈Z\{0}
|F̂ (ℓ)|

∫

G

(1 + |x|)ao |Xαoκℓ(x)|dx

≤ C
∑

ℓ∈Z\{0}
|F̂ (ℓ)||ℓ|3(ao+

Q
2 +1)

≤ CCk sup
λ∈R

j=0,...,k

(1 + |λ|)1+j+kℓo |m(j)(λ)|
∑

ℓ∈Z\{0}
(1 + |ℓ|)−k|ℓ|3(ao+

Q
2 +1),

see Lemma 4.5.3 for the estimates of |F̂ (ℓ)|. This last sum converges provided that
we have chosen k > 3(ao +

Q
2 + 1) + 2. We assume that we have chosen such ℓo

and k. One can now show easily that m(R)δo ∈ L1(G) and that (4.59) holds in
L1(G). Furthermore, Xαom(R)δo ∈ L1(G) and

∫

G

(1 + |x|)ao |Xαom(R)δ0(x)|dx ≤
∑

ℓ∈Z\{0}
|F̂ (ℓ)|

∫

G

(1 + |x|)ao |Xαoκℓ(x)|

≤ C ′
k sup

λ≥0
j=0,...,k

(1 + |λ|)1+j+kℓo |m(j)(λ)|.

This concludes the proof of Theorem 4.5.1. �
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4.5.3 Proof of Corollary 4.5.2

Let us show Corollary 4.5.2.

Proof of Corollary 4.5.2. Applying Theorem 4.5.1 to the restriction of m ∈ S(R)
to [0,∞), we have for any α and a > 0 that

‖m(R)δ0‖S,a,[α],1 ≤ C sup
λ≥0

j=0,...,k

(1 + |λ|)1+j+kℓo |m(j)(λ)|,

with k := 3(a+ Q
2 + 1) + 3 and ℓo the smallest integer such that νℓo > [α] +Q/2.

Clearly the right-hand side of this inequality is less than a S(R)-seminorm ofm, up
to a constant depending on this seminorm. By Proposition 4.4.27, this concludes
the proof of Corollary 4.5.2. �

We may simplify the proof of Corollary 4.5.2 by modifying the proof of The-
orem 4.5.1 and choosing F independently of k for m ∈ S(R). Indeed, it suffices to
set

F (ξ) :=

{
m

(
ξ−

1
ℓ o − 1

)
χ1(ξ) if ξ > 0,

0 if ξ ≤ 0,

where χ1 ∈ D(R) is supported in [−1, 2] and satisfies χ1 ≡ 1 on [0, 1] together

with F̂ (0) = 0.

Remark 4.5.10. Behind this technical point lays the fact that the spectrum of R2

is contained in [0,∞) thus we can modify any function m as we see fit on (−∞, 0)
without changing the operator m(R).

We had already used this idea in the proof of Theorem 4.5.1 indirectly, since
different extensions of the function F will lead to the same formula in (4.59).

Note that we may also modify the function m at 0, see Remark 4.2.8 (3), but
we did not use this point in the proofs of Theorem 4.5.1 or Corollary 4.5.2.
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Chapter 5

Quantization on graded Lie
groups

In this chapter we develop the theory of pseudo-differential operators on graded Lie
groups. Our approach relies on using positive Rockland operators, their fractional
powers and their associated Sobolev spaces studied in Chapter 4. As we have
pointed out in the introduction, the graded Lie groups then become the natural
setting for such analysis in the context of general nilpotent Lie groups.

The introduced symbol classes Sm
ρ,δ and the corresponding operator classes

Ψm
ρ,δ = OpSm

ρ,δ,

for (ρ, δ) with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1, have an operator calculus, in the sense that
the set

⋃
m∈R

Ψm
ρ,δ forms an algebra of operators, stable under taking the adjoint,

and acting on the Sobolev spaces in such a way that the loss of derivatives is
controlled by the order of the operator. Moreover, the operators that are elliptic
or hypoelliptic within these classes allow for a parametrix construction whose
symbol can be obtained from the symbol of the original operator.

During the construction of the pseudo-differential calculus ∪m∈RΨ
m
ρ,δ on

graded Lie groups in this chapter, there are several difficulties one has to over-
come and which do not appear in the case of compact Lie groups as described in
Chapter 2. The immediate one is the need to find a natural framework for dis-
cussing the symbols to which we will be associating the operators (quantization)
and we will do so in Section 5.1. In Section 5.2 we define symbol classes leading
to algebras of symbols and operators and discuss their properties. The symbol
classes that we introduce are based on a positive Rockland operator on the group
and contain all the left-invariant differential operators. As with Sobolev spaces,
the symbol classes can be shown to be actually independent of the choice of a
positive Rockland operator used in their definition. In Section 5.3 we show that
the multipliers of Rockland operators are in the introduced symbol classes. We
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272 Chapter 5. Quantization on graded Lie groups

investigate the behaviour of the kernels of operators corresponding to these sym-
bols in Section 5.4, both at 0 and at infinity and show, in particular, that they
are Calderón-Zygmund (in the sense of Coifman and Weiss, see Sections 3.2.3 and
A.4). The symbolic calculus is established in Section 5.5. In Section 5.7 we show
that the operators satisfy an analogue of the Calderón-Vaillancourt theorem. The
construction of parametrices for elliptic and hypoelliptic operators in the calculus
is carried out in Section 5.8.

Conventions

Throughout Chapter 5, G is always a graded Lie group, endowed with a family
of dilations with integer weights. Its homogeneous dimension is denoted by Q.
Also throughout, R will be a homogeneous positive Rockland operator of homo-
geneous degree ν. If G is a stratified Lie group, we can choose R = −L with L
a sub-Laplacian, or another homogeneous positive Rockland operator. Since it is
a left-invariant differential operator, we denote by π(R) the operator described
in Definition 1.7.4. Both R and π(R) and their properties have been extensively
discussed in Chapter 4, especially Section 4.1.

Finally, when we write
sup
π∈Ĝ

we always understand it as the essential supremum with respect to the Plancherel
measure on Ĝ.

5.1 Symbols and quantization

The global quantization naturally occurs on any unimodular Lie (or locally com-
pact) group of type 1 thanks to the Plancherel formula, see Subsection 1.8.2 for
the Plancherel formula. The quantization was first noticed by Michael Taylor in
[Tay86, Section I.3]. The case of locally compact type 1 groups was studied re-
cently in [MR15]. The case of the compact Lie groups was described in Section
2.2.1. Here we describe the particular case of graded nilpotent Lie groups, with an
emphasis on the technical meaning of the objects involved. A very brief outline of
the constructions of this chapter appeared in [FR14a].

Formally, for a family of operators σ(x, π) on Hπ parametrised by x ∈ G and

π ∈ Ĝ, we associate the operator T = Op(σ) given by

Tφ(x) :=

∫

Ĝ

Tr
(
π(x)σ(x, π)φ̂(π)

)
dμ(π). (5.1)

Again formally, the Fourier inversion formula implies that if σ(x, π) does not de-
pend on x and is the group Fourier transform of some function κ, i.e. if σ(x, π) =
κ̂(π), then Op(σ) is the convolution operator with right-convolution kernel κ, i.e.
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Op(σ)φ = φ∗κ. We would like this to be true not only for (say) integrable functions
κ but also for quite a large class of distributions, in order

to quantize Xα = Op(σ) by σ(x, π) = π(X)α,

with π(X) as in Definition 1.7.4.

The first problem is to make sense of the objects above. The dependence of
σ on x is not problematic for the interpretation in the formula (5.1), but we have
identified a unitary irreducible representation π with its equivalence class and the
families of operators may be measurable in π ∈ RepG but not defined for all
π ∈ Ĝ. More worryingly, we would like to consider collections of operators which
are unbounded, for instance such as π(X)α, π ∈ Ĝ. For these reasons, it may be
difficult to give a meaning to the formula (5.1) in general.

Thus, our first task is to define a large class of collections of operators σ(x, π),

x ∈ G, π ∈ Ĝ, for which we can make sense of the quantization procedure. We
will use the realisations

K(G), L∞(Ĝ), and LL(L
2(G))

of the von Neumann algebra of the group G described in Section 1.8.2. We will
also use their generalisations

Ka,b(G), L∞
a,b(Ĝ), and LL(L

2
a(G), L2

b(G))

which we define in Section 5.1.2. In order to do so we use a special feature of our
setting, namely the existence of positive Rockland operators and the corresponding
L2-Sobolev spaces.

5.1.1 Fourier transform on Sobolev spaces

In Section 4.3, we have discussed in detail the fractional powers of a positive
Rockland operator R and of the operator I+R. In the sequel, we will also need to
understand powers of the operators π1(I +R), π1 ∈ RepG. We now address this,
and use it to extend the group Fourier transform to the Sobolev spaces L2

a(G).

From now on we will keep the same notation for the operators R and π1(R)
(where π1 ∈ Rep (G)) and their respective self-adjoint extensions, see Proposition
4.1.15. We note that by Proposition 4.2.6 the operator π1(R) is also positive. We
can consider the powers of I + R and π1(I + R) = I + π1(R) as defined by the
functional calculus

(I +R) a
ν =

∫ ∞

0

(1 + λ)
a
ν dE(λ), π1(I +R)

a
ν =

∫ ∞

0

(1 + λ)
a
ν dEπ1

(λ),

where E and Eπ1
are the spectral measures of R and π1(R), respectively, and ν

is the homogeneous degree of R, see Corollary 4.1.16.
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Remark 5.1.1. If a/ν is a positive integer, there is no conflict of notation between

• the powers of π1(I+R) as the infinitesimal representation of π1 (see Definition
1.7.4) at I +R ∈ U(g)

• and the operator π1(I +R)
a
ν defined by functional calculus.

Indeed, if a = ν, the two coincide. If a = ℓν, ℓ ∈ N, then the operator π1(I +R)
a
ν

defined by functional calculus coincides with the ℓ-th power of π1(I+R). The case
a = 0 is trivial.

We can describe more concretely the operators π1(I +R)
a
ν , π1 ∈ RepG.

Lemma 5.1.2. Let R be a positive Rockland operator of homogeneous degree ν. As
in Corollary 4.3.11, we denote by Ba the right-convolution kernels of its Bessel
potentials (I +R)− a

ν , Re a > 0.

If a ∈ C with Re a < 0, then B−a is an integrable function and

∀π1 ∈ RepG π1(I +R)
a
ν = B̂−a(π1).

For any a ∈ C and any π1 ∈ RepG, the operator π1(I + R)
a
ν maps H∞

π1

onto H∞
π1

bijectively. Furthermore, the inverse of π1(I + R)
a
ν is π1(I + R)−

a
ν as

operators acting on H∞
π1
.

Proof. Let a ∈ C, Re a < 0. Then the Bessel potential (I + R) a
ν coincides with

the bounded operator with right-convolution kernel B−a ∈ L1(G), see Corollary
4.3.11. Therefore, (I +R) a

ν ∈ LL(L
2(G)) and

FG{(I +R)
a
ν f} = FG{f ∗ B−a} = B̂−af̂ , f ∈ L2(G).

Now we apply Corollary 4.1.16 with the bounded multiplier given by φ(λ) =
(1 + λ)

a
ν , λ ≥ 0. By Equality (4.5) in Corollary 4.1.16, we obtain

FG{(I +R)
a
ν f} = π(I +R) a

ν f̂ , f ∈ L2(G).

The injectivity of the group Fourier transform on K(G) yields that B̂−a(π) =

π(I +R) a
ν for any π ∈ Ĝ, and the first part of the statement is proved.

Let a ∈ C. We apply Corollary 4.1.16 with the multiplier given by φ(λ) =
(1+λ)

a
ν , λ ≥ 0. Although this multiplier is unbounded, simple modifications of the

proof show that Equality (4.5) in Corollary 4.1.16 still holds for f in the domain
of the operator. Recall that the domain of (I +R) a

ν contains S(G) by Corollary
4.3.16 and moreover (I +R) a

ν S(G) = S(G). Consequently, if π1 ∈ RepG, we have

π1{(I +R)
a
ν f}v = π1(I +R)

a
ν π1(f)v, f ∈ S(G), v ∈ Hπ1 ,

with π1(I +R)
a
ν defined spectrally. Recall that π1(f)v ∈ H∞

π1
when f ∈ S(G) by

Proposition 1.7.6 (iv), hence here π1{(I+R)
a
ν f}v ∈ H∞

π as well. By Lemma 1.8.19,
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π1(I+R)
a
ν mapsH∞

π1
toH∞

π1
. The spectral calculus implies that as operators acting

on H∞
π1
, we have

π1(I +R)
a
ν π1(I +R)−

a
ν = IH∞

π1
and π1(I +R)−

a
ν π1(I +R)

a
ν = IH∞

π1
.

Consequently, the inverse of π1(I + R)
a
ν is π1(I + R)−

a
ν as operators defined on

H∞
π1

and π1(I +R)
a
νH∞

π1
= H∞

π1
. �

Lemma 5.1.2 and Remark 4.1.17 now imply easily

Corollary 5.1.3. Let R be a positive Rockland operator of homogeneous degree ν.
For any a ∈ C, {π(I + R) a

ν : H∞
π → H∞

π , π ∈ Ĝ} is a measurable Ĝ-field of
operators acting on smooth vectors (in the sense of Definition 1.8.14).

Lemma 5.1.2 together with the Plancherel formula (see Section 1.8.2) and
Corollary 4.3.11 also imply

Corollary 5.1.4. Let R be a positive Rockland operator of homogeneous degree ν.
For any a ∈ R, we have

a > Q/2 =⇒ {π(I +R)− a
ν , π ∈ Ĝ} ∈ L2(Ĝ),

and also, for a > Q/2,

‖π(I +R)− a
ν ‖L2(Ĝ) = ‖B̂a(π)‖L2(Ĝ) = ‖Ba‖L2(G) <∞.

Note that an analogue of Corollary 5.1.4 for compact Lie groups may be
obtained by noticing that (2.15) yields

m > n/2 =⇒
∑

π∈Ĝ

dπ‖π(I− LG)
−m

2 ‖2
HS

=
∑

π∈Ĝ

d2π〈π〉−2m
<∞.

The following statement describes an important property of the field {π(I +
R) a

ν , π ∈ Ĝ}, in relation with the right Sobolev spaces (see Section 4.4.8 for right
Sobolev spaces):

Proposition 5.1.5. Let R be a positive Rockland operator on G of homogeneous
degree ν. Let also a ∈ R.

If f ∈ L̃2
a(G), then (I + R̃) a

ν f ∈ L2(G) and there exists a field of operators

{σπ : H∞
π → Hπ , π ∈ Ĝ} such that

{σππ(I +R)
a
ν : H∞

π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ), (5.2)

and for almost all π ∈ Ĝ,

FG{(I + R̃)
a
ν f}(π) = σππ(I +R)

a
ν . (5.3)

Conversely, if {σπ : H∞
π → Hπ , π ∈ Ĝ} satisfies (5.2) then there exists a

unique function f ∈ L̃2
a(G) satisfying (5.3).
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In Proposition 5.1.5, σππ(I + R)
a
ν is not obtained as the composition of

(possibly) unbounded operators as in Definition A.3.2. Instead, for σππ(I +R)
a
ν ,

it is viewed as the composition of a field of operators defined on smooth vectors
with a field of operators acting on smooth vectors, see Section 1.8.3.

In Proposition 5.1.5, we use the right Sobolev spaces associated with the
positive Rockland operator R. These spaces are in fact independent of the choice
of a positive Rockland operator used in their definition, see Sections 4.4.5 and 4.4.8.
Consequently, if (5.2) holds for one positive Rockland operator then (5.2) and (5.3)
hold for any positive Rockland operator and the Sobolev norm of f ∈ L2(G), using

one particular positive Rockland operator R, is equal to the L2(Ĝ)-norm of (5.2).

Proof of Proposition 5.1.5. If f ∈ L̃2
a(G), then by Theorem 4.4.3 (3) (see also

Section 4.4.8), we have that fa := (I+ R̃) a
ν f is in L2(G) and its Fourier transform

is a field of bounded operators (in fact in the Hilbert-Schmidt class). By Lemma
5.1.2, π(I +R)− a

ν maps H∞
π onto itself. Hence we can define

σπ := π(fa)π(I +R)−
a
ν ,

as an operator defined on H∞
π . One readily checks that the operators σπ, π ∈ Ĝ,

satisfy (5.2) and (5.3).

For the converse, if {σπ : H∞
π → Hπ : π ∈ Ĝ} satisfies (5.2) then we define

the function

L2(G) ∋ fa := F−1
G {σππ(I +R)

a
ν },

which is square integrable by the Plancherel theorem (see Theorem 1.8.11), and
the function

f := (I + R̃)− a
ν fa,

which will be in L̃2
a(G) by Theorem 4.4.3 (3). One readily checks that the function

f satisfies the properties described in the statement. �

We now aim at stating and proving a property similar to Proposition 5.1.5 for
the left Sobolev spaces. It will use the composition of a field with π(I+R) a

ν on the
left and this is problematic when we consider any general field σ = {σπ : H∞

π →
Hπ} without utilising the composition of unbounded operators as in Definition
A.3.2. To overcome this problem, we introduce the following notion:

Definition 5.1.6. Let π1 ∈ RepG and a ∈ R. We denote by Ha
π1

the Hilbert space
obtained by completion of H∞

π1
for the norm

‖ · ‖Ha
π1

: v �−→ ‖π1(I +R)
a
ν v‖Hπ1

:= ‖v‖Ha
π1
,

where R is a positive Rockland operator on G of homogeneous degree ν.
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We may call them the Hπ1 -Sobolev spaces. Note that in the case of the
Schrödinger representation for the Heisenberg group, they coincide with Shubin-
Sobolev spaces, see Section 6.4.3. More generally, if we realise an element π ∈ Ĝ
as a representation π1 acting on some L2(Rm) via the orbit methods, see Section
1.8.1, then we view the corresponding Sobolev spaces as tempered distributions:
Ha

π1
⊂ S ′(Rm).

The following lemma is a routine exercise.

Lemma 5.1.7. Let π1 ∈ RepG and a ∈ R.

1. If a = 0, then Ha
π1

= Hπ1 . If a > 0, we realise Ha
π1

as a subspace of Hπ1 and
it is the domain of the operator π1(I + R)

a
ν . If a < 0, we realise Ha

π1
as a

Hilbert space containing Hπ1
and the operator π1(I +R)

a
ν extends uniquely

to a bounded operator Ha
π1
→ Hπ1

.

2. For any a ∈ R, realising Ha
π1

as in Part 1, this space is independent of
the positive Rockland operator R and two positive Rockland operators yield
equivalent norms.

3. We have the continuous inclusions

a < b =⇒ Hb
π1
⊂ Ha

π1
.

For any a, b ∈ R, the operator π1(I +R)
a
ν maps Hb

π1
to Hb−a

π1
injectively and

continuously. In this way, Ha
π1

and H−a
π1

are in duality via

〈u, v〉Ha
π1

×H−a
π1

:= (π1(I +R)
a
ν u, π1(I + R̄)−

a
ν v̄)Hπ1

.

This duality extends the Hπ1
duality in the sense that

∀u ∈ Ha
π1
∩Hπ1 , v ∈ H−a

π1
∩Hπ1 〈u, v〉Ha

π1
×H−a

π1
= (u, v̄)Hπ1

.

4. If π2 is another strongly continuous representation such that π1 ∼T π2, that
is, T is a unitary operator satisfying Tπ1 = πT2, then T maps H∞

π1
to H∞

π2

bijectively by Lemma 1.8.12 and extends uniquely to an isometric operator
Ha

π1
→ Ha

π2
.

Lemma 5.1.7, especially Part 4, shows that Ĝ-fields with domain or range on
these Sobolev spaces make sense:

Definition 5.1.8. Let a ∈ R. A Ĝ-field of operators σ = {σπ : H∞
π → Hπ, π ∈ Ĝ}

defined on smooth vectors is defined on the Sobolev spaces Ha
π when for each

π1 ∈ RepG, the operator σπ1 is bounded on Ha
π1

in the sense that

∃C ∀v ∈ H∞
π1
‖σπ1

v‖Hπ1
≤ C‖v‖Ha

π1
.
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Thus, by density of H∞
π1

in Ha
π1
, σπ1 extends uniquely to a bounded operator

defined on Ha
π1

for which we keep the same notation σπ1
: Ha

π1
→ Hπ1

.

Example 5.1.9. For any positive Rockland operator of degree ν, the field {π(I +
R) a

ν , π ∈ Ĝ}, is defined on the Sobolev spaces Ha
π. This is an easy consequence of

Lemma 5.1.7, especially Part 3.

We will allow ourselves the shorthand notation

σ = {σπ : Ha
π → Hπ, π ∈ Ĝ},

to indicate that the Ĝ-field of operators is defined on the Sobolev spaces Ha
π.

Instead of Definition 5.1.8, we could also have defined Ĝ-fields of operators
defined on Ha

π-Sobolev spaces in a way similar to Definition 1.8.13 (where Ĝ-
fields of operators defined on smooth vectors were defined). Naturally, these two
viewpoints are equivalent since H∞

π1
is dense in Ha

π1
.

However, in order to define Ĝ-fields of operators with range in theHa
π-Sobolev

spaces, we have to adopt the latter viewpoint in the sense that we modify Defini-
tions 1.8.13 and 1.8.14 (in this way, we make no further assumptions on the fields
or on the Sobolev spaces):

Definition 5.1.10. Let a ∈ R.

• A Ĝ-field of operators defined on smooth vectors with range in the Sobolev
spaces Ha

π is a family of classes of operators {σπ, π ∈ Ĝ} where

σπ := {σπ1
: H∞

π1
→ Ha

π1
, π1 ∈ π}

for each π ∈ Ĝ viewed as a subset of RepG, satisfying for any two elements
σπ1 and σπ2 in σπ:

π1 ∼T π2 =⇒ σπ2T = Tσπ1 on H∞
π .

(Here we have kept the same notation for the intertwining operator T and
its unique extension between Sobolev spaces Ha

π1
→ Ha

π2
, see Lemma 5.1.7

Part 4.)

• It is measurable when for one (and then any) choice of realisation π1 ∈ π and

any vector vπ1
∈ Ha

π1
, as π runs over Ĝ, the resulting field {σπvπ, π ∈ Ĝ} is

μ-measurable whenever
∫
Ĝ
‖vπ‖2Ha

π
dμ(π) <∞. (Here we assume that all the

Ha
π-norms are realised via a fixed positive Rockland operator.)

Unless otherwise stated, a Ĝ-field of operators defined on smooth vectors
with range in the Sobolev spaces Ha

π is always assumed measurable. We will allow
ourselves the shorthand notation

σ = {σπ : H∞
π → Ha

π, π ∈ Ĝ}
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to indicate that the Ĝ-field of operators has range in the Sobolev space Ha
π.

Naturally, if a Ĝ-field of operators is defined on smooth vectors σ = {σπ :

H∞
π → Hπ, π ∈ Ĝ} with the usual range Hπ = H0

π, then it has range in the Sobolev
spaces Ha

π when for each π1 ∈ RepG and any v ∈ H∞
π1
, we have σπ1

v ∈ Ha
π1
.

Moreover, the following property of composition is easy to check: if σ1 has
range in Ha

π and σ2 is defined on Ha
π,

i.e. σ1 = {σ1,π : H∞
π → Ha

π, π ∈ Ĝ} and σ2 = {σ2,π : Ha
π → Hπ, π ∈ Ĝ},

then the following field

σ2σ1 := {σ2,πσ1,π : H∞
π → Hπ, π ∈ Ĝ}

makes sense as a Ĝ-field of operators defined on smooth vectors. This coincides
or extends the definition of composition of fields (the first one acting on smooth
vectors) given in Section 1.8.3.

We can apply this property of composition to σ = {σπ : H∞
π → Ha

π, π ∈ Ĝ}
and {π(I + R) a

ν , π ∈ Ĝ}, see Example 5.1.9 for the latter, to obtain the Ĝ-field
defined on smooth vectors by

π(I +R) a
ν σ = {π(I +R) a

ν σπ : H∞
π → Hπ, π ∈ Ĝ}. (5.4)

We can now state the proposition which will enable us to define the group
Fourier transform of a function in a left or right Sobolev space.

Proposition 5.1.11. Let a ∈ R.

(L) If f ∈ L2
a(G), then (I +R) a

ν f ∈ L2(G) and there exists a field of operators

{σπ : H∞
π → Ha

π , π ∈ Ĝ} such that

{π(I +R) a
ν σπ : H∞

π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ), (5.5)

FG{(I +R)
a
ν f}(π) = π(I +R) a

ν σπ, for almost all π ∈ Ĝ, (5.6)

where R is a positive Rockland operator on G of homogeneous degree ν.

Conversely, if {σπ : H∞
π → Ha

π , π ∈ Ĝ} satisfies (5.5) for one positive
Rockland operator R, then there exists a unique function f ∈ L2

a(G) satisfying
(5.6).

(R) If f ∈ L̃2
a(G), then the (unique) field σ obtained in Proposition 5.1.5 can be

extended uniquely into a field {σπ : Ha
π → Hπ , π ∈ Ĝ} defined on Ha

π.

Properties (L) and (R) are independent of the choice of R.
In Proposition 5.1.11, π(I + R) a

ν σπ is not obtained as the composition of
(possibly) unbounded operators as in Definition A.3.2 but is understood via (5.4).
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In Proposition 5.1.11, we use the left and right Sobolev spaces associated
with the positive Rockland operator R. These spaces are in fact independent of
the choice of a positive Rockland operator used in their definition, see Sections
4.4.5 and 4.4.8. Consequently, if (5.5) hold for one positive Rockland operator then
(5.5) and (5.6) hold for any positive Rockland operator and the Sobolev norm of
f ∈ L2(G), using one particular positive Rockland operator R, is equal to the

L2(Ĝ)-norm of (5.5).

Proof of Proposition 5.1.11. Property (L). If f ∈ L2
a(G), then by Theorem 4.4.3

(3), we have that fa := (I +R) a
ν f is in L2(G) and its Fourier transform is a field

of bounded operators (in fact in the Hilbert-Schmidt class). By (5.4) we can define
σ = {σπ : H∞

π → Ha
π} via σπ := π(I + R)− a

ν π(fa). One readily checks that the
field σ satisfies (5.2) and (5.3).

For the converse, if {σπ : H∞
π → Ha

π : π ∈ Ĝ} satisfies (5.2) then we define
the function

L2(G) ∋ fa := F−1
G {π(I +R)

a
ν σπ},

which is square integrable by the Plancherel theorem (see Theorem 1.8.11), and
the function

f := (I +R)− a
ν fa,

which will be in L2
a(G) by Theorem 4.4.3 (3). One readily checks that the function

f satisfies the properties described in the statement. This shows the property (L).
Property (R) follows easily from (5.2). �

From the proof above, one can check easily that if f ∈ L2
a(G) or L̃2

a(G) is also
in any of the spaces where the group Fourier transform has already been defined,
namely, L2(G) or K(G), then σ = {σπ : H∞

π → Hπ, π ∈ Ĝ} will coincide with
the group Fourier transform of f . Hence we can extend the definition of the group
Fourier transform to Sobolev spaces:

Definition 5.1.12. Let a ∈ R. The group Fourier transform of f ∈ L2
a(G) or f ∈

L̃2
a(G) is the field σ of operators defined on smooth vectors given in Proposition

5.1.11.

This leads us to define the following spaces of fields of operators:

Definition 5.1.13. (L) Let L2
a(Ĝ) denote the space of fields of operators σ with

range in Ha
π and satisfying (5.5), that is,

σ = {σπ : H∞
π → Ha

π , π ∈ Ĝ},
{π(I +R) a

ν σπ : H∞
π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ),

for one (and then any) positive Rockland operator of homogeneous degree ν.
We also set

‖σ‖L2
a(Ĝ) := ‖π(I +R)

a
ν σπ‖L2(Ĝ). (5.7)
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(R) Let L̃2
a(Ĝ) denote the space of fields of operators σ defined on Ha

π and satis-
fying (5.2), that is,

σ = {σπ : Ha
π → Hπ , π ∈ Ĝ},

{σππ(I +R)
a
ν : H∞

π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ),

for one (and then any) positive Rockland operator of homogeneous degree ν.
We also set

‖σ‖L̃2
a(Ĝ) := ‖σππ(I +R)

a
ν ‖L2(Ĝ).

It is a routine exercise, using Proposition 5.1.11 and the properties of the
Sobolev spaces (see Section 4.4), to show that

Proposition 5.1.14. Let a ∈ R. If R is a positive Rockland operator of homogeneous
degree ν, the map ‖ · ‖L2

a(Ĝ) given by (5.7) is a norm on the vector space L2
a(Ĝ).

Endowed with this norm, L2
a(Ĝ) is a Banach space which is independent of R.

Two norms corresponding to any two choices of Rockland operators via (5.7) are
equivalent.

The Fourier transform FG is an isomorphism between Banach spaces acting
from L2

a(G) onto L2
a(Ĝ). It coincides with the usual Fourier transform on L2(G)

for a = 0.

Let σ = {σπ, π ∈ Ĝ} be in L2
a(Ĝ). Then

{π(X)ασπ, π ∈ Ĝ}

is in L2
a−[α](Ĝ) for any α ∈ Nn

0 , and

{π(I +R)s/νσπ, π ∈ Ĝ}

is in L2
a−s(Ĝ) for any s ∈ R. Furthermore, if f = F−1

G σ ∈ L2
a(G) then

FG(X
αf)(π) = π(X)αf̂(π) and FG((I +R)s/νf)(π) = π(I +R)s/ν f̂(π).

We have similar results for the right Sobolev spaces. Furthermore the adjoint
map σ �→ σ∗ maps L2

a(Ĝ)→ L̃2
a(Ĝ) and L̃2

a(Ĝ)→ L2
a(Ĝ) isomorphically as Banach

spaces.

Recall that the tempered distributions Xαf and (I + R)s/νf used in the
statement just above are respectively defined via

〈Xαf, φ〉 = 〈f, {Xα}tφ〉, φ ∈ S(G), (5.8)

and
〈(I +R)s/νf, φ〉 = 〈f, (I + R̄)s/νφ〉, φ ∈ S(G). (5.9)
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For (5.9), see Definition 4.3.17. For (5.8), this is the composition of the formula
obtained for one vector field (with polynomial coefficients) by integration by parts.
See also (1.10) for the definition of {Xα}t.

In Corollary 1.8.3, we stated the inversion formula valid for any Schwartz
function on any connected simply connected Lie group. Here we weaken the hy-
pothesis using the Sobolev spaces in the context of a graded Lie group G:

Proposition 5.1.15 (Fourier inversion formula). Let f be in the left Sobolev space
L2
s(G) or in the right Sobolev space L̃2

s(G) with s > Q/2. Then for almost every

π ∈ RepG, the operator f̂(π) is trace class with

∫

Ĝ

Tr|f̂(π)|dμ(π) <∞. (5.10)

Furthermore, f is continuous on G, and for every x ∈ G we have

f(x) =

∫

Ĝ

Tr
(
π(x)f̂(π)

)
dμ(π) =

∫

Ĝ

Tr
(
f̂(π)π(x)

)
dμ(π). (5.11)

In the statement above, as s > Q/2 > 0, the field f̂ is in L2(Ĝ), it is
then a field of bounded operators (even in Hilbert-Schmidt classes) and so can be
composed on the left and the right with π(x). The (possibly infinite) traces

Tr
∣∣∣π1(x)f̂(π1)

∣∣∣ , Tr
∣∣∣f̂(π1)π1(x)

∣∣∣ and Tr
∣∣∣f̂(π1)

∣∣∣

are equal for π1 ∈ RepG as π1 is unitary. They are constant on the class of
π1 ∈ RepG in Ĝ and are, therefore, treated as depending on π ∈ Ĝ. They are
finite for μ-almost all π ∈ Ĝ in view of (5.10).

Note that (5.10) implies not only that the two expressions

∫

Ĝ

Tr
(
π(x)f̂(π)

)
dμ(π) and

∫

Ĝ

Tr
(
f̂(π)π(x)

)
dμ(π)

make sense but that they are also equal by the properties of the trace since π(x)
is bounded.

Proof of Proposition 5.1.15. Let R be a positive Rockland operator of homoge-
neous degree ν. Let f ∈ L2

s(G) with s > Q/2. We set

fs := (I +R) s
ν f ∈ L2(G).

The properties of the trace imply

Tr|f̂(π)| = Tr
∣∣∣π(I +R)− s

ν f̂s(π)
∣∣∣ ≤ ‖π(I +R)− s

ν ‖HS‖f̂s(π)‖HS.



5.1. Symbols and quantization 283

Integrating against the Plancherel measure, we obtain by the Cauchy-Schwartz
inequality ∫

Ĝ

Tr|f̂(π)|dμ(π) ≤ ‖π(I +R)− s
ν ‖L2(Ĝ)‖f̂s‖L2(Ĝ).

By Corollary 5.1.4, Cs := ‖π(I + R)− s
ν ‖L2(Ĝ) is a positive finite constant. Since

‖f̂s(π)‖L2(Ĝ) is equal to ‖f‖L2
s(G) which is finite, we have obtained (5.10).

Let φ ∈ S(G). By the Plancherel formula, especially (1.30), we have

(f, φ)L2(G) = (fs, (I +R)−
s
ν φ)L2(G)

=

∫

Ĝ

Tr
(
FG{fs}(π)

(
FG{(I +R)−

s
ν φ}(π)

)∗)
dμ(π)

=

∫

Ĝ

Tr
(
π(I +R) s

ν f̂(π) φ̂(π)∗π(I +R)− s
ν

)
dμ(π)

=

∫

Ĝ

Tr
(
f̂(π) φ̂(π)∗

)
dμ(π).

Note that the two functions fs and (I + R) s
ν φ are both square integrable so all

the traces above are finite.

We now fix a non-negative function χ ∈ D(G) with compact support con-
taining 0 and satisfying

∫
G
χ = 1. We apply what precedes to φ := χǫ given

by
χǫ(y) := ǫ−Qχ(ǫ−1y), ǫ > 0, y ∈ G,

and obtain

(f, χǫ)L2(G) =

∫

Ĝ

Tr
(
f̂(π) χ̂ǫ(π)

∗
)
dμ(π). (5.12)

Let us show that the right hand-side of (5.12) converges to

∫

Ĝ

Tr
(
f̂(π) χ̂ǫ(π)

∗
)
dμ(π) −→ǫ→0

∫

Ĝ

Tr
(
f̂(π)

)
dμ(π). (5.13)

Note that the right hand-side of (5.13) is finite by (5.10).
The integrand on the left-hand side is bounded by

∣∣∣Tr
(
f̂(π) χ̂ǫ(π)

∗
)∣∣∣ ≤ ‖χ̂ǫ(π)‖L (Hπ)Tr|f̂(π)|,

and
‖χ̂ǫ(π)‖L (Hπ) ≤ ‖χǫ‖L1(G) = ‖χ‖L1(G).

Hence ∣∣∣Tr
(
f̂(π) χ̂ǫ(π)

∗
)∣∣∣ ≤ ‖χ‖L1(G)Tr|f̂(π)|,

and the right-hand side is μ-integrable by (5.10).
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Let us show the convergence for every π ∈ Ĝ

Tr
(
f̂(π) χ̂ǫ(π)

∗
)
−→ǫ→0 Tr

(
f̂(π)

)
. (5.14)

In order to do this, we want to estimate the difference

∣∣∣Tr
(
f̂(π) χ̂ǫ(π)

∗
)
− Tr

(
f̂(π)

)∣∣∣ =
∣∣∣Tr

(
f̂(π) (χ̂ǫ(π)

∗ − I)
)∣∣∣

≤ ‖χ̂ǫ(π)
∗ − I‖L∞(Ĝ)Tr

∣∣∣f̂(π)
∣∣∣ .

Since

χ̂ǫ(π)
∗ =

∫

G

χǫ(y)π(y)dy =

∫

G

ǫ−Qχ(ǫ−1y)π(y)dy =

∫

G

χ(z)π(ǫz)dz,

and as
∫
G
χ = 1, we have

‖χ̂ǫ(π)
∗ − I‖L (Hπ) = ‖

∫

G

χ(z) (π(ǫz)− I) dz‖L (Hπ)

≤
∫

G

|χ(z)| ‖π(ǫz)− I‖L (Hπ)dz

≤ sup
z∈suppχ

‖π(ǫz)− I‖L (Hπ)

∫

G

|χ(z)|dz.

As π is strongly continuous and suppχ compact, we know that

sup
z∈suppχ

‖π(ǫz)− I‖L (Hπ) −→ǫ→0 0.

This implies the convergence in (5.14) for each π ∈ Ĝ.
We can now apply Lebesgue’s dominated convergence theorem to obtain the

convergence in (5.13).

By the Sobolev embeddings (see Theorem 4.4.25), f is continuous on G and
it is a simple exercise to show that the left hand-side of (5.12) converges to

(f, χǫ)L2(G) −→ǫ→0 f(0).

Hence we have obtained the inversion formula given in (5.11) at x = 0. Replacing
f by its left translation f(x ·) which is still in L2

s(G) with the same Sobolev norm,
it is then easy to obtain (5.11) for every x ∈ G.

For the case of f ∈ L̃2
s(G) with s > Q/2, we set fs := (I + R̃) s

ν f ∈ L2(G)
and we obtain similar properties as above, ending by using right translations to
obtain (5.11). �
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5.1.2 The spaces Ka,b(G), LL(L
2

a(G), L2

b(G)), and L∞

a,b(Ĝ)

In this section we describe the spaces Ka,b(G), LL(L
2
a(G), L2

b(G)) and L∞
a,b(Ĝ),

extending the notion of the group von Neumann algebras discussed in Section
1.8.2, to the setting of Sobolev spaces.

Definition 5.1.16 (Spaces LL(L
2
a(G), L2

b(G)) and Ka,b(G)). Let a, b ∈ R. We de-
note by

LL(L
2
a(G), L2

b(G))

the subspace of operators T ∈ L (L2
a(G), L2

b(G)) which are left-invariant.

We denote by

Ka,b(G)

the subspace of tempered distributions f ∈ S ′(G) such that the operator S(G) ∋
φ �→ φ ∗ f extends to a bounded operator from L2

a(G) to L2
b(G).

If a positive Rockland operator R of homogeneous degree ν is fixed, then the
Ka,b(G)-norm is defined for any f ∈ Ka,b(G), as the operator norm of φ �→ φ ∗ f
viewed as an operator from L2

a(G) to L2
b(G), i.e.

‖f‖Ka,b
:= ‖φ �→ φ ∗ f‖L (L2

a(G),L2
b(G)). (5.15)

Here we have considered the Sobolev norms φ �→ ‖(I + R) c
ν φ‖2 for c = a, b for

L2
a(G) and L2

b(G), respectively.

The vector space LL(L
2
a, L

2
b) is a Banach subspace of L (L2

a, L
2
b). Since the

Sobolev spaces L2
a(G) are independent of the choice of a positive Rockland operator

R (see Section 4.4.5), so are LL(L
2
a(G), L2

b(G)) and also Ka,b(G). However, the
norms on these spaces do depend on a choice of a positive Rockland operator R.

We may often write Ka,b instead of Ka,b(G) to ease the notation when no
confusion is possible.

We have the immediate properties:

Proposition 5.1.17. 1. If a = b = 0 then

K0,0 = K and LL(L
2
a, L

2
b) = LL(L

2).

The norms ‖ · ‖K0,0 and ‖ · ‖K (defined in (5.15) and in (1.37) respectively)
coincide. For any f ∈ K we have

‖f∗‖K = ‖f‖K where f∗(x) = f̄(x−1),

and

∀r > 0 ‖f ◦Dr‖K = r−Q‖f‖K.
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2. Fixing a positive Rockland operator R, the mapping f �→ ‖f‖Ka,b
defines

a norm on the vector space Ka,b which becomes a Banach space. Any two
positive Rockland operators produce equivalent norms on Ka,b.

3. Let a, b ∈ R. We have the continuous inclusion

Ka,b(G) ⊂ S ′(G).

Moreover if Tf denotes the convolution operator φ �→ φ ∗ f for f ∈ S ′(G),
then the following are equivalent:

f ∈ Ka,b ⇐⇒ Tf ∈ LL(L
2
a(G), L2

b(G))

⇐⇒ (I +R) b
ν Tf (I +R)−

a
ν ∈ LL(L

2(G))

⇐⇒ (I +R) b
ν (I + R̃)− a

ν f ∈ K(G),

where R is any positive Rockland operator of homogeneous degree ν.

4. For any c1, c2 ≥ 0 we have the inclusions

LL(L
2
a, L

2
b) ⊂ LL(L

2
a+c1 , L

2
b−c2)

and
Ka,b ⊂ Ka+c1,b−c2 .

5. If f ∈ Ka,b then Xαf ∈ Ka,b−[α] for any α ∈ Nn
0 and (I +R)s/νf ∈ Ka,b−s

for any s ∈ R. Furthermore, Xα and (I +R)s/ν are bounded on Ka,b:

‖Xαf‖Ka,b−[α]
≤ Ca,b,[α]‖f‖Ka,b

and
‖(I +R)s/νf‖Ka,b−s

≤ C ′
a,b,s‖f‖Ka,b

for some positive finite constants Ca,b,[α] and C ′
a,b,s independent of f .

If −a and b are in νN0, a norm equivalent to the Ka,b-norm is

f �−→
∑

[α]≤−a, [β]≤b

‖X̃αXβf‖K,

and if a′ ∈ [a, 0] and b′ ∈ [0, b] then

‖f‖Ka′,b′
≤ Ca,b,a′,b,R

∑

[α]≤−a, [β]≤b

‖X̃αXβf‖K.

The definitions of the tempered distributions Xαf and (I + R)s/νf were
recalled in (5.8) and (5.9) respectively. For the proper definition of the operators

(I +R) b
ν , (I + R̃)− a

ν , see Definitions 4.3.17 and 4.4.31.
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Proof of Proposition 5.1.17. Part (1) follows from the properties of the von Neu-
mann-algebras K(G) and LL(L

2(G)) as well as from the following two easy ob-
servations:

∀ψ ∈ L2(G) ‖ψ ◦Dr‖2 = r−
Q
2 ‖ψ‖2,

and for any f ∈ K, φ ∈ S(G) and r > 0,

φ ∗ (f ◦Dr) (x) = r−Q
((

φ ◦D 1
r

)
∗ f

)
(rx).

Part (2) is easy to check. Part (3) follows from the Schwartz kernel theorem, see
Corollary 3.2.1. Parts (4) and (5), follow easily from the properties of the Sobolev
spaces and Part (3). �

We now show that we can make sense of convolution of distributions in some
Ka,b(G)-spaces. The following lemma is almost immediate to check.

Lemma 5.1.18. Let f ∈ Ka,b(G) and g ∈ Kb,c(G) for a, b, c ∈ R, and let Tf : φ �→
φ ∗ f and Tg : φ �→ φ ∗ g be the associated operators. Then the operator TgTf is
continuous from L2

a(G) to L2
c(G) and its right-convolution kernel (as a continuous

linear operator from S(G) to S ′(G)) is denoted by h ∈ Ka,c(G).

If (fn) and (gn) are sequences of Schwartz functions converging to f in
Ka,b(G) and g in Kb,c(G), respectively, then h is the limit of fn ∗ gn in Ka,c(G).

Consequently, with the notation of the lemma above, h coincides with the
convolution of f with g whenever the convolution of f with g makes any techni-
cal sense, for instance, if the tempered distributions f and g (which are already
assumed to be in Ka,b(G) and Kb,c(G) respectively) satisfy

• f and g are locally integrable functions with |f | ∗ |g| ∈ L1(G),

• or at least one of the distributions f or g has compact support,

• or at least one of the distributions f or g is Schwartz.

Hence we may extend the notation and define:

Definition 5.1.19. If f ∈ Ka,b(G) and g ∈ Kb,c(G) for a, b, c ∈ R, and Tf : φ �→ φ∗f ,
Tg : φ �→ φ ∗ g are the associated operators, we denote by f ∗ g the distribution in
Ka,c(G) which is the right convolution kernel of TgTf .

We obtain easily the following properties:

Corollary 5.1.20. Let f ∈ Ka,b(G) and g ∈ Kb,c(G) for a, b, c ∈ R. Then we have
the following property of associativity for any φ ∈ S(G)

φ ∗ (f ∗ g) = (φ ∗ f) ∗ g,

and more generally for any h ∈ Kc,d(G) (where d ∈ R)

f ∗ (g ∗ h) = (f ∗ g) ∗ h,
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as convolutions of an element of Ka,b(G) with an element of Kb,d(G) for the left-
hand side, and of an element of Ka,c(G) with an element of Kc,d(G) for the right-
hand side.

The rest of this section is devoted to the definition of the group Fourier
transform of a distribution in Ka,b(G). We start by defining what will turn out to

be the image of the group Fourier transform on Ka,b(G). We recall that L∞(Ĝ)

is the space of measurable fields of operators on Ĝ which are uniformly bounded,
see Definition 1.8.8.

Definition 5.1.21. Let a, b ∈ R. We denote by L∞
a,b(Ĝ) the space of fields of opera-

tors σ = {σπ : H∞
π → Hb

π , π ∈ Ĝ} satisfying

∃C > 0 ∀φ ∈ S(G) ‖σφ̂‖L2
b(Ĝ) ≤ C‖φ‖L2

a(G). (5.16)

Here we assume that a positive Rockland operator has been fixed to define the
norms on L2

b(Ĝ) and L2
a(G).

For such a field σ, ‖σ‖L∞
a,b(Ĝ) denotes the infimum of the constant C > 0

satisfying (5.16).

We may sometimes abuse the notation and write ‖σπ‖L∞
a,b(Ĝ) when no con-

fusion is possible.
Note that as φ ∈ S(G), its group Fourier transform acts on smooth vectors,

see Example 1.8.18. Hence the composition σφ̂ above makes sense, see Section
1.8.3.

Naturally, the space L∞
a,b(Ĝ) introduced in Definition 5.1.21 is independent of

the choice of a Rockland operator used to define the norms on L2
b(Ĝ) and L2

a(G):

Lemma 5.1.22. If {σπ : H∞
π → Hb

π, π ∈ Ĝ} satisfies the condition in Definition
5.1.21 for one positive Rockland operator, then it satisfies the same property for
any positive Rockland operator. Moreover, if R1 and R2 are two positive Rockland
operators, and if ‖σ‖L∞

a,b,R1
(Ĝ) and ‖σ‖L∞

a,b,R2
(Ĝ) denote the corresponding infima,

then there exists C > 0 independent of σ such that

C−1‖σ‖L∞
a,b,R2

(Ĝ) ≤ ‖σ‖L∞
a,b,R1

(Ĝ) ≤ C‖σ‖L∞
a,b,R2

(Ĝ).

Proof. This follows easily from the independence of the Sobolev spaces on G and
Ĝ of the positive Rockland operators, see Section 4.4.5 and Proposition 5.1.14. �

If the field acts on smooth vectors, we can simplify Definition 5.1.21:

Lemma 5.1.23. Let σ = {σπ : H∞
π → H∞

π , π ∈ Ĝ} be a field acting on smooth

vectors. Then σ ∈ L∞
a,b(Ĝ) if and only if

{π(I +R) b
ν σπ π(I +R)−

a
ν : H∞

π → H∞
π , π ∈ Ĝ} ∈ L∞(Ĝ), (5.17)
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where R is a positive Rockland operator of degree ν, and in this case,

‖σ‖L∞
a,b(Ĝ) = ‖π(I +R)

b
ν σπ π(I +R)−

a
ν ‖L∞(Ĝ).

Proof. This follows easily from the density of S(G) in L2
b(G). �

Note that the composition in (5.17) makes sense as all the fields involved act
on smooth vectors. In Corollary 5.1.30, we will see a sufficient condition (which
will be useful later) for a field to be acting on smooth vectors.

We can now characterise the elements of Ka,b(G) in terms of L∞
a,b(Ĝ):

Proposition 5.1.24. Let a, b ∈ R.

(i) If σ ∈ L∞
a,b(Ĝ), then the operator Tσ : S(G)→ S ′(G) defined via

T̂σφ(π) := σπφ̂(π), φ ∈ S(G), π ∈ Ĝ, (5.18)

extends uniquely to an operator in L (L2
a, L

2
b). Moreover,

‖Tσ‖L (L2
a,L

2
b)

= ‖σ‖L∞
a,b(Ĝ), (5.19)

where the Sobolev norms are defined using a chosen positive Rockland oper-
ator R with homogeneous degree ν. The right convolution kernel f ∈ S ′(G)
of Tσ is in Ka,b(G).

(ii) Conversely, if f ∈ Ka,b(G) then there exists a unique σ ∈ L∞
a,b(Ĝ) such that

φ̂ ∗ f(π) = σπφ̂(π), φ ∈ S(G), π ∈ Ĝ. (5.20)

Furthermore, if f is also in any of the spaces where the group Fourier trans-
form has already been defined, namely any Sobolev space L2

a(G) or K(G),

then σ = {σπ, π ∈ Ĝ} will coincide with the group Fourier transform of f .

Proof. The properties of Tσ in Part (i) follow from the Plancherel theorem (The-
orem 1.8.11) and the density of S(G) in L2(G). The right convolution kernel
f ∈ S ′(G) of Tσ is in Ka,b(G) by Proposition 5.1.17.

Conversely, let f ∈ Ka,b(G). By assumption the operator Tf : S(G) ∋ φ �→
φ ∗ f admits a bounded extension from L2

a(G) to L2
b(G). Thus the operator (I +

R) b
ν Tf (I + R)−

a
ν is bounded on L2(G) and we denote by fa,b ∈ K(G) its right

convolution kernel. For any φ ∈ S(G), we have φa := (I + R) a
ν φ ∈ S(G) by

Corollary 4.3.16 thus φa ∗ fa,b ∈ L2(G) and we have

Tfφ ∈ L2
b(G) with Tfφ = (I +R)− b

ν (φa ∗ fa,b).

Consequently FG(Tfφ) ∈ L2
b(Ĝ) and

FG(Tfφ) = π(I +R)− b
ν f̂a,bφ̂a = π(I +R)− b

ν f̂a,bπ(I +R)
a
ν φ̂.
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One checks easily that {σπ : H∞
π → Hb

π, π ∈ Ĝ} defined via

σπ := π(I +R)− b
ν f̂a,b(π)π(I +R)

a
ν

is in L∞
a,b(Ĝ) and satisfies (5.20). The rest of the proof of Part (ii) follows easily

from the computations above and the uniqueness of the group Fourier transforms
already defined. �

Thanks to Proposition 5.1.24, we can extend the definition of the group
Fourier transform to Ka,b(G):

Definition 5.1.25 (The group Fourier transform on Ka,b(G)). The group Fourier

transform of f ∈ Ka,b(G) is the field of operators {σπ : H∞
π → Hb

π, π ∈ Ĝ} in

L∞
a,b(Ĝ) associated to f by Proposition 5.1.24, and we write

f̂(π) := π(f) := σπ, π ∈ Ĝ.

As the next example implies, any left-invariant vector field is in some Ka,b(G)
and their Fourier transform can be defined via Definition 5.1.25. As is shown in
the proof below, this coincides with the infinitesimal representation of the corre-
sponding element of U(g) defined in Section 1.7.

Example 5.1.26. Let α ∈ Nn
0 . The operator Xα is in L (L2

[α](G), L2(G)) and more

generally in L (L2
[α]+s(G), L2

s(G)) for any s ∈ R. Its right convolution kernel is the

distribution Xαδ0 defined via (see (5.8))

〈Xαδ0, φ〉 = 〈δ0, {Xα}tφ〉 = {Xα}tφ(0),

which is in K[α],0, and more generally in Ks+[α],s for any s ∈ R. Its group Fourier
transform is

FG(X
αδ0)(π) = π(Xα) = π(X)α

and coincides with the infinitesimal representation on U(g). It is in L∞
s+[α],s(Ĝ) for

any s ∈ R.

Proof. By Theorem 4.4.16, Xα maps L2
[α](G) continuously to L2(G) and, more

generally, L2
s+[α](G) continuously to L2

s(G).

By Proposition 1.7.6, we have for any φ ∈ S(G)

FG(X
αφ)(π) = π(Xα)φ̂(π) = π(X)αφ̂(π).

This shows that FG(X
αδ0) coincides with {π(Xα), π ∈ Ĝ}. �

As our next example shows, when multipliers in a positive Rockland operator
are in LL(L

2
s(G), L2

s−b(G)), the group Fourier transform of their right convolution
kernels can also be given via the functional calculus of the Rockland operators:
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Example 5.1.27. Let R be a positive Rockland operator of homogeneous degree
ν. Let m be a measurable function on [0,∞) satisfying

∃C > 0 ∀λ ≥ 0 |m(λ)| ≤ C(1 + λ)
b
ν .

Then the operator m(R) defined by the functional calculus of R extends uniquely
to an operator in LL(L

2
s+b(G), L2

s(G)) for any s ∈ R. Its right convolution kernel
m(R)δ0 is in Ks+b,s for any s ∈ R. Its group Fourier transform is

FG(m(R)δ0)(π) = m(π(R))

defined by the functional calculus of π(R). It is in L∞
s+b,s(Ĝ) for any s ∈ R. For a

fixed s ∈ R, we have

‖m(R)‖LL(L2
s+b(G),L2

s(G)) = ‖m(R)δ0‖Ks+b,s
= ‖m(π(R))‖L∞

s+b,s(Ĝ)

≤ sup
λ>0

(1 + λ)−
b
ν |m(λ)|,

if we realise the Sobolev norms with R.
We refer to Section 4.1.3 and Corollary 4.1.16 for the properties of the func-

tional calculus of R2 and π(R).
Proof. The function m1 given by

m1(λ) := m(λ)(1 + λ)−
b
ν , λ ≥ 0,

is measurable and bounded on [0,∞). The operator m1(R) defined by the func-
tional calculus of R is therefore bounded on L2(G) with

‖m1(R)‖L (L2(G)) ≤ sup
λ≥0
|m1(λ)|.

Again from the properties of the functional calculus of R, we also have

m(R) ⊃ m1(R)(I +R)
b
ν ,

in the sense of operators. Since Dom(I+R)b/ν ⊃ S(G) (see Corollary 4.3.16), this
shows that the domain of m(R) contains S(G) and that

m1(R) = m(R)(I +R)− b
ν on S(G).

The properties of the functional calculus of R yield for any s ∈ R,

‖m1(R)‖L (L2(G)) = ‖m1(R)‖L (L2
s(G))

= ‖m(R)(I +R)− b
ν ‖L (L2

s(G))

= ‖m(R)‖L (L2
s+b(G),L2

s(G)).
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By Corollary 4.1.16, the kernel ofm1(R) is the tempered distributionm1(R)δ0
with Fourier transform {m1(π(R)), π ∈ Ĝ}. Adapting the proof of Corollary 4.1.16,
we see that

m1(π(R)) = m(π(R))(I + π(R))− b
ν on H∞

π , π ∈ Ĝ.

It is now straightforward to check that the kernel of the operator m(R) is in Ks+b,s

and its Fourier transform is {m(π(R)), π ∈ Ĝ}. �

Naturally, any Schwartz function is in any Ka,b and one can readily estimate
the associated norm:

Example 5.1.28. If φ ∈ S(G), then for any a, b ∈ R, the operator Tφ : ψ �→ ψ ∗φ is

in L (L2
a(G), L2

b(G)), φ ∈ Ka,b and φ̂ ∈ L∞
a,b. If we fix a positive Rockland operator

R of homogeneous degree ν, then we have

‖Tφ‖L (L2
a(G),L2

b(G)) = ‖φ‖Ka,b
= ‖φ̂‖L∞

a,b
≤ ‖(I +R) b

ν (I + R̃)− a
ν φ‖L1(G) <∞,

where the norms on L (L2
a(G), L2

b(G)), Ka,b and L∞
a,b are defined with R.

With Definition 5.1.25, we can reformulate Proposition 5.1.24 and parts of
Proposition 5.1.17 and Corollary 5.1.20 as the following proposition.

Proposition 5.1.29. 1. Let a, b ∈ R. The Fourier transform FG maps Ka,b(G)

onto L∞
a,b(Ĝ). Furthermore, FG : Ka,b(G) → L∞

a,b(Ĝ) is an isomorphism
between Banach spaces. In particular, for f ∈ Ka,b(G),

‖f‖Ka,b
= ‖f̂‖L∞

a,b(Ĝ).

It coincides with the Fourier transform on K(G) for a = b = 0.

2. If σ1 ∈ L∞
a1,b1

(Ĝ) and σ2 ∈ L∞
a2,b2

(Ĝ) with b2 = a1, then their product σ1σ2

makes sense as the element of L∞
a2,b1

(Ĝ) given by the Fourier transform of

(F−1
G σ2) ∗ (F−1

G σ1).

In other words, if f1 ∈ Ka1,b1(Ĝ) and f2 ∈ Ka2,b2(Ĝ) with b2 = a1, then

the Fourier transform of f2 ∗ f1 ∈ Ka2,b1(Ĝ) is

FG(f2 ∗ f1) = FG(f1)FG(f2).

3. Let σ = {σπ : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ). Then we have for any α ∈ Nn
0 ,

{π(X)ασπ : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b−[α](Ĝ), (5.21)

and for any s ∈ R,

{π(I +R)s/νσπ : H∞
π → Hπ, π ∈ Ĝ} ∈ L2

a,b−s(Ĝ). (5.22)
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Furthermore, if f = F−1
G σ ∈ Ka,b(G) then

FG(X
αf)(π) = π(X)αf̂(π) and FG((I +R)s/νf)(π) = π(I +R)s/ν f̂(π).

The fields of operators in (5.21) and (5.22) are understood as compositions
of fields of operators in L∞

a2,b2
and L∞

a1,b1
with b2 = a1, see Part 2 and Examples

5.1.26 and 5.1.27.

With the help of Proposition 5.1.29, we can now give a usefull sufficient
condition for a field to act on smooth vectors and reformulate Corollary 4.4.10
into

Corollary 5.1.30. Let a, b ∈ R and let {γℓ, ℓ ∈ Z} be a sequence of real numbers

which tends to ±∞ as ℓ → ±∞. Let σ ∈ L∞
a+γℓ,b+γℓ

(Ĝ) for every ℓ ∈ Z. Then σ
is a field of operators acting on smooth vectors:

σ = {σπ : H∞
π → H∞

π , π ∈ Ĝ}.

Furthermore σ ∈ L∞
a+γ,b+γ(Ĝ) for every γ ∈ R and for any c ≥ 0, we have

sup
|γ|≤c

‖σ‖L∞
a+γ,b+γ(Ĝ) ≤ Cc max

(
‖σ‖L∞

a+γℓ,b+γℓ
(Ĝ), ‖σ‖L∞

a+γ−ℓ,b+γ−ℓ
(Ĝ)

)
,

where ℓ ∈ N0 is the smallest integer such that γℓ ≥ c and −γ−ℓ ≥ c.

Proof. By Proposition 5.1.29, π(X)ασ ∈ L∞
a+γℓ,b+γℓ−[α] for every α ∈ Nn

0 and

every ℓ ∈ Z. Thus choosing γℓ ≥ [α] − b, we have π(X)ασφ̂ ∈ L2(Ĝ) for every

φ ∈ S(G). Realising π ∈ Ĝ as a representation of G and fixing v ∈ H∞
π , this

implies that the mapping x �→ π(x)σπφ̂(π)v is smooth. Hence σπφ̂(π)v is smooth

and σφ̂ acts on smooth vectors. As this holds for every φ ∈ D(G), so does σ by
Lemma 1.8.19. We conclude with Corollary 4.4.10. �

We end this section with one more technical property:

Lemma 5.1.31. Let σ ∈ L∞
a,b(Ĝ) where a, b ∈ R. Let φ ∈ S(G). Then we have

σφ̂ ∈ L̃2
s(Ĝ) for any s ∈ R and

∫

Ĝ

Tr
∣∣∣σπφ̂(π)

∣∣∣ dμ(π) <∞. (5.23)

Setting f := F−1
G σ ∈ Ka,b, the function φ∗f is smooth and we have for any x ∈ G

the equality

φ ∗ f(x) =
∫

Ĝ

Tr
(
π(x)σπφ̂(π)

)
dμ(π).
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Remark 5.1.32. The composition σφ̂ makes sense since σ is defined on smooth
vectors and φ̂ acts on smooth vectors. The composition π(x)σππ(φ) makes sense

since π(x) is bounded and σφ̂ is bounded (even in Hilbert Schmidt classes) since

it is stated first that σφ̂ ∈ L̃2
s(Ĝ) for any s, hence in particular in L2(Ĝ).

Proof. Let Tσ be the operator with right convolution kernel f := F−1
G σ. Then

Tσ ∈ L (L2
a(G), L2

b(G)) and T ∗
σTσ extends to an operator in L (L2

a(G)). For any
φ ∈ S(G), the definition of the adjoint and the duality between Sobolev spaces
yield

‖Tσφ‖2L2(G) =
〈
T ∗
σTσφ, φ̄

〉
L2

a(G)×L2
−a(G)

≤ ‖T ∗
σTσ‖L (L2

a(G))‖φ‖L2
a(G)‖φ‖L2

−a(G).

This last expression is finite since T ∗
σTσ ∈ L (L2

a(G)) and S(G) ⊂ L2
s′(G) for any

s′ ∈ R. Thus Tσφ ∈ L2(G) and its Fourier transform is σφ̂ ∈ L2(Ĝ). For any

s ∈ R, we may replace φ with φs = (I +R)s/νφ ∈ S(G) and σφ̂s ∈ L2(Ĝ) yields

σφ̂ ∈ L2
s(Ĝ).

Applying Proposition 5.1.15 to σφ̂ ∈ L̃2
s(Ĝ) for some s > Q/2, we obtain

(5.23). Note that f := F−1
G σ is a tempered distribution so φ ∗ f is smooth (see

Lemma 3.1.55). The group Fourier transform of φ ∗ f is σφ̂ by Proposition 5.1.29
Part 2 and Example 5.1.28. We now conclude with the inversion formula given in
Proposition 5.1.15. �

5.1.3 Symbols and associated kernels

In this section we aim at establishing a one-to-one correspondence between a
collection σ of operators parametrised by G × Ĝ and a function κ; this function
will turn out to be the kernel of the operator naturally associated to σ. For the
abstract setting behind measurable fields of operators and some of their properties
we refer to Section B.1.6, especially to Proposition B.1.17, as well as Section 1.8.3.

Definition 5.1.33 (Symbols). A symbol is a field of operators {σ(x, π) : H∞
π →

Hπ, π ∈ Ĝ} depending on x ∈ G, satisfying for each x ∈ G

∃a, b ∈ R σ(x, ·) := {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ).

Here we use the usual identifications of a strongly continuous irreducible
unitary representation from RepG with its equivalence class in Ĝ, and of a field
of operators acting on the smooth vectors parametrised by Ĝ with its equivalence
class with respect to the Plancherel measure μ.

We will usually assume that the symbols are uniformly regular in x:
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Definition 5.1.34 (Continuous and smooth symbols).

• A symbol {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be continuous in x ∈ G

whenever there exists a, b ∈ R such that

∀x ∈ G σ(x, ·) := {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ),

and the map x �→ σ(x, ·) is continuous from G ∼ Rn to the Banach space

L∞
a,b(Ĝ).

• A symbol σ = {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be smooth in x ∈ G

whenever it is a field of operators depending smoothly in x ∈ G (see Remark

1.8.16) and, for every β ∈ Nn
0 , the field {∂β

xσ(x, π) : H∞
π → Hπ, π ∈ Ĝ} is

continuous.

Important note: In the sequel, whenever we talk about symbols (on graded Lie
groups), we always mean the symbols which are smooth in x ∈ G in the sense of
Definition 5.1.34 unless stated otherwise.

For a symbol as in Definition 5.1.34, we will usually write

σ = {σ(x, π), (x, π) ∈ G× Ĝ},

but we may sometimes abuse the notation and refer to the symbol simply as
σ(x, π).

Lemma 5.1.35. If σ = {σ(x, π), (x, π) ∈ G× Ĝ} is a symbol, then

κx := F−1
G {σ(x, ·)}

is a tempered distribution and the map

G ∋ x �−→ κx ∈ S ′(G)

is smooth.

In other words,
κ ∈ C∞(G,S ′(G)).

Here C∞(G,S ′(G)) denotes the set of smooth functions from G to S ′(G).

Proof. As σ is a smooth symbol, for every β ∈ Nn
0 , there exists aβ , bβ ∈ R such that

G ∋ x �→ ∂β
xσ(x, ·) ∈ L∞

aβ ,bβ
(Ĝ) is continuous. By Proposition 5.1.29, composing

this with F−1
G implies that G ∋ x �→ ∂β

xκx ∈ Kaβ ,bβ is continuous. Since the
inclusion Kaβ ,bβ ⊂ S ′(G) is continuous, this implies that each map G ∋ x �→
∂β
xκx ∈ S ′(G) is continuous. Hence G ∋ x �→ κx ∈ S ′(G) is smooth. �
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Definition 5.1.36 (Associated kernels). If σ is a symbol, then the tempered distri-
bution

κx := F−1
G {σ(x, ·)} ∈ S ′(G)

is called its associated kernel, sometimes its right convolution kernel, or just a
kernel. We may also call the smooth map G ∋ x �→ κx ∈ S ′(G) or the map
(x, y) �→ κx(y) = κ(x, y) the kernel associated with σ.

The smoothness of the map x �→ σ(x, ·) implies easily:

Lemma 5.1.37. If σ = {σ(x, π)} is a symbol with kernel κx then for any β ∈ Nn
0 ,

Xβσ := {Xβ
xσ(x, π)}, X̃βσ := {X̃β

xσ(x, π)}, and ∂β
xσ := {∂β

xσ(x, π)},

are symbols with respective kernels

Xβ
xκx, X̃β

xκx, and ∂β
xκx.

Examples of symbols are the symbols in the classes Sm
ρ,δ(G) defined later on.

Here are more specific examples of symbols which do not depend on x ∈ G.

Example 5.1.38. If f ∈ Ka,b(G), then f̂ = {f̂(π) : H∞
π → Hπ, π ∈ Ĝ} is a symbol

with kernel f .

The following are particular instances of this case:

• δ̂0 = I = {I : H∞
π → H∞

π , π ∈ Ĝ} is a symbol and its kernel is the Dirac
measure δ0.

• For any α ∈ Nn
0 , {π(X)α : H∞

π → H∞
π , π ∈ Ĝ} is a symbol with kernel

Xαδ0, see Example 5.1.26. It acts on smooth vectors, see Example 1.8.17, or
alternatively Example 5.1.26 together with Corollary 5.1.30.

• If R is a positive Rockland operator of homogeneous degree ν and if m is a
measurable function on [0,∞) satisfying

∃C > 0 ∀λ ≥ 0 |m(λ)| ≤ C(1 + λ)b/ν ,

then {m(π(R)) : H∞
π → Hπ, π ∈ Ĝ} is a symbol with kernel m(R)δ0, see

Example 5.1.27. By Corollary 5.1.30, this symbol also acts on smooth vectors

{m(π(R)) : H∞
π → H∞

π , π ∈ Ĝ}.

5.1.4 Quantization formula

With the notion of symbol explained in Section 5.1.3, our quantization makes
sense:
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Theorem 5.1.39 (Quantization). The quantization defined by formula (5.1) makes
sense for any symbol σ = {σ(x, π)}. More precisely, for any φ ∈ S(G) and x ∈ G,
we have

Op(σ)φ(x) =

∫

Ĝ

Tr
(
π(x)σ(x, π)φ̂(π)

)
dμ(π) = φ ∗ κx(x), (5.24)

where κx denotes the kernel of σ. The integral over Ĝ in (5.24) is well-defined
and absolutely convergent. We also have Op(σ)φ ∈ C∞(G). Furthermore, the
quantization mapping σ �→ Op(σ) is one-to-one and linear.

Proof. Lemma 5.1.31 (see also Remark 5.1.32) implies that the integral in (5.24)
is well defined, absolutely convergent and is equal to φ ∗ κx(x).

By Lemma 3.1.55, for each x ∈ G, the function φ ∗ κx is smooth. By Lemma
5.1.35, x �→ κx ∈ S ′(G) is smooth. Hence by composition, x �→ φ∗κx(x) is smooth.

The quantization is clearly linear. Since the kernel is in one-to-one linear
correspondence with the operator, and by Lemma 5.1.35 also with the symbol,
the quantization σ �→ Op(σ) is one-to-one. �

Definition 5.1.40 (Notation). If an operator T is given by the formula (5.24) with
symbol σ(x, π), so that T = Op(σ), we will also write

σ = σT or σ(x, π) = σT (x, π) or even σ = Op−1(T ).

This notation is justified since the quantization given by (5.24) is one-to-one by
Theorem 5.1.39.

The operators associated with the symbols given in Example 5.1.38 are the
ones alluded to in the introduction of this Section:

Continued Example 5.1.38: If f ∈ Ka,b(G), then Op(f̂) is the convolution operator
φ �→ φ ∗ f with the right convolution kernel f .

The following are particular instances of this case:

• Op(I) = I and, more generally, for any α ∈ Nn
0 , Op(π(X)α) = Xα.

These relations can also be expressed as

σI(x, π) = IHπ
and σXα(x, π) = π(X)α.

• If R is a positive Rockland operator of homogeneous degree ν and if m is a
measurable function on [0,∞) satisfying

∃C > 0 ∀λ ≥ 0 |m(λ)| ≤ C(1 + λ)b/ν ,

then Op(m(π(R))) = m(R).
In these examples, the symbols are independent of x. However it is easy to

produce x-dependent symbols out of them using the following two observations.
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• If σ = {σ(x, π), (x, π) ∈ G × Ĝ} is a symbol and c : G → C is a smooth

function, then cσ := {c(x)σ(x, π), (x, π) ∈ G× Ĝ} is a symbol.

• If σ = {σ(x, π), (x, π) ∈ G × Ĝ} and τ = {τ(x, π), (x, π) ∈ G × Ĝ} are two

symbols, then so is their sum σ + τ = {σ(x, π) + τ(x, π), (x, π) ∈ G× Ĝ}.
Remark 5.1.41. 1. The observations just above together with Example 5.1.38

and its continuation above imply that any differential operator of the form

∑

[α]≤M

cα(x)X
α with smooth coefficients cα (5.25)

may be quantized, in the sense that
∑

[α]≤M cα(x)π(X)α is a (smooth) sym-
bol and we have

∑

[α]≤M

cα(x)X
α = Op

⎛
⎝ ∑

[α]≤M

cα(x)π(X)α

⎞
⎠ .

The differential calculus is, by definition, the space of differential oper-
ators of the form

∑

|α|≤d

bα(x)∂
α
x with smooth coefficients bα,

or, equivalently, of the form (5.25), see (3.1.5). Hence, we have obtained
that the differential calculus may be quantized. This could be viewed as ‘the
minimum requirement’ for a notion of symbol and quantization on a manifold.

2. In order to achieve this, we had to consider and use fields of operators de-
fined on smooth vectors in our definition of symbol. Indeed, for instance, the
symbol associated to a left-invariant vector field X is {π(X)} while π(X) are
defined on H∞

π but is not bounded on Hπ.

This technicality has also the following advantage when we apply our
theory in the setting of the Heisenberg group Hno

in Chapter 6. Realising

(almost all of) its dual group Ĥno
via Schrödinger representations, the spaces

of smooth vectors will coincide with the Schwartz space S(Rno). In this con-
text, the symbols will be operators acting on S(Rno) (which are smoothly
parametrised by points in Hno).

3. With our notion of symbols and quantization, we also obtain part of the
functional calculus of any Rockland operators. More precisely, if R is a pos-
itive Rockland operator, we obtain all the operators of the form m(R) with
m : [0,∞) → C a measurable function of (at most) polynomial growth at
infinity.
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4. The symbol classes that we have introduced are based on the quantization
relying on writing the operators as operators with right-convolution ker-
nels. There is an obvious parallel theory of quantization and of the corre-
sponding symbols and their classes suited for problems based on the right-
invariant operators. With natural modifications we could have considered
at the same time right-invariant vector fields in Part (1) above and a quan-
tization involving left-convolution kernels of operators, i.e. writing the same
operators but now in the form φ �→ κx ∗φ. As an outcome, with natural mod-
ifications we would obtain a parallel theory with the same parallel collection
of results to those presented here.

Op(σ) as a limit of nice operators

The operators we have obtained as Op(σ) for symbols σ are limits of ‘nice opera-
tors’ in the following sense:

Lemma 5.1.42. If σ = {σ(x, π)} is a symbol, we can construct explicitly a family
of symbols σǫ = {σǫ(x, π)}, ǫ > 0, in such a way that

1. the kernel κǫ(x, y) of σǫ is smooth in both x and y, and compactly supported
in x,

2. if φ ∈ S(G) then Op(σǫ)φ ∈ D(G), and

3. Op(σǫ)φ −→
ǫ→0

Op(σ)φ uniformly on any compact subset of G.

Proof of Lemma 5.1.42. We fix a number p such that p/2 is a positive integer
divisible by all the weights υ1, . . . , υn. Therefore, if | · |p is the quasi-norm given
by (3.21), then the mapping x �→ |x|pp is a p-homogeneous polynomial. We also fix
χo ∈ C∞

c (R) with χo ≥ 0, χo = 1 on [1/2, 2] and χo = 0 outside of [1/4, 4]. For
any ǫ > 0, we write

χǫ(x) := χo(ǫ|x|pp).
Clearly χǫ ∈ D(G).

If π ∈ Ĝ, we denote by |π| the distance between the co-adjoint orbits corre-
sponding to π and 1.

Applying the orbit method, one can construct explicitly for each π ∈ Ĝ a basis
(vℓ,π)

∞
ℓ=1 formed by smooth vectors and such that the field of vectors Ĝ ∋ π �→ vℓ,π

is measurable. We denote by projǫ,π the orthogonal projection on the subspaces
spanned by v1,π, . . . , vℓ,π where ℓ is the smallest integer such that ℓ > ǫ−1.

We consider for any ǫ ∈ (0, 1) the mapping

σǫ(x, π) := χǫ(x)1|π|≤ǫ−1σ(x, π) ◦ projǫ,π.

By Definition 5.1.36, the symbol and the kernel are related by

FG(κǫ,x)(π) = σǫ(x, π).
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By the Fourier inversion formula (1.26), the corresponding kernel is

κǫ,x(y) = κǫ(x, y) = χǫ(x)

∫

|π|≤ǫ−1

Tr
(
σ(x, π) projǫ,ππ(y)

)
dμ(π),

which is smooth in x and y and compactly supported in x.

The corresponding operator is Op(σǫ), given for any φ ∈ S(G) and x ∈ G by

Op(σǫ)φ(x) =

∫

Ĝ

Tr
(
π(x)σǫ(x, π)φ̂(π)

)
dμ(π)

= χǫ(x)

∫

|π|≤ǫ−1

Tr
(
π(x)σ(x, π) projǫ,πφ̂(π)

)
dμ(π).

It is also given by

Op(σǫ)φ(x) = φ ∗ κǫ,x(x).

Clearly Op(σǫ)φ is smooth and compactly supported.

Since

Ĝ ∋ π �→ Tr
∣∣∣σ(x, π)φ̂(π)

∣∣∣

is integrable against μ, using the dominated convergence theorem, we obtain easily
the uniform convergence of Op(σǫ)φ to Op(σ)φ on any compact set. �

5.2 Symbol classes Sm
ρ,δ and operator classes Ψm

ρ,δ

In Section 5.2, we will define and study classes of symbols Sm
ρ,δ = Sm

ρ,δ(G). By
applying the quantization procedure described in Section 5.1, we will then obtain
the corresponding classes of operators

Ψm
ρ,δ = Op(Sm

ρ,δ).

In Section 5.5, we will show that this collection of operators ∪m∈RΨ
m
ρ,δ forms an

algebra and satisfies the usual properties expected from a symbolic calculus.

Before defining symbol classes, we need to define difference operators.

5.2.1 Difference operators

On compact Lie groups the difference operators were defined as acting on Fourier
coefficients, see Definition 2.2.6. Its adaptation to our setting leads us to (densely)
defined difference operators on Ka,b(G) viewed as fields.
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Definition 5.2.1. For any q ∈ C∞(G), we set

Δq f̂(π) := q̂f(π) ≡ π(qf),

for any distribution f ∈ D′(G) such that f ∈ Ka,b and qf ∈ Ka′,b′ for some
a, b, a′, b′ ∈ R.

Recall that if f ∈ D′(G) and q ∈ C∞(G), then the distribution qf ∈ D′(G)
is defined via

〈qf, φ〉 := 〈f, qφ〉, φ ∈ D(G), (5.26)

which makes sense since qφ ∈ D(G). In Definition 5.2.1, we assume that the two
distributions f and qf are in ∪a′′,b′′∈RKa′′,b′′ . Note that, as all the definitions of
group Fourier transform coincide, different values for the parameters a, b, a′, b′ in
Definition 5.2.1 yield the same fields of operators {f̂(π) : H∞

π → Hπ, π ∈ Ĝ} and
{q̂f(π) : H∞

π → Hπ, π ∈ Ĝ}. This justifies our use of the notation Δq without
reference to the parameters a, b, a′, b′.

Remark 5.2.2. In general, it is not possible to define an operator Δq on a single

π, and it has to be viewed as acting on the ‘whole’ fields parametrised by Ĝ.
For example, already on the commutative group (Rn,+), the difference operators
corresponding to coordinate functions will satisfy

Δαφ̂(ξ) =

(
1

i

∂

∂ξ

)α

φ̂(ξ), ξ ∈ Rn,

with appropriately chosen functions q, thus involving derivatives in the dual vari-
able, see Example 5.2.6. Furthermore if q is not a coordinate function but for
instance a (non-zero) smooth function with compact support, the corresponding
difference operator is not local.

Also, on the Heisenberg group Hno
(see Example 1.6.4), taking q = t the

central variable, and πλ the Schrödinger representations (see Section 6.3.2), then
Δt is expressed using derivatives in λ, see Lemma 6.3.6 and Remark 6.3.7.

Let us fix a basis of g. For the notation of the following proposition we refer
to Section 3.1.3 where the spaces of polynomials on homogeneous Lie groups have
been discussed, with the set W defined in (3.60). We will define the difference
operators associated with the polynomials appearing in the Taylor expansions:

Proposition 5.2.3. 1. For each α ∈ Nn
0 , there exists a unique homogeneous poly-

nomial qα of degree [α] satisfying

∀β ∈ Nn
0 Xβqα(0) = δα,β =

{
1 if β = α,
0 otherwise.

2. The polynomials qα, α ∈ Nn
0 , form a basis of P. Furthermore, for each M ∈

W, the polynomials qα, [α] = M , form a basis of P[α]=M .
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3. The Taylor polynomial of a suitable function f at a point x ∈ G of homoge-
neous degree M ∈ W is

P
(f)
x,M (y) =

∑

[α]≤M

qα(y)X
αf(x). (5.27)

4. For any α ∈ Nn
0 , we have for any x, y ∈ G,

qα(xy) =
∑

[α1]+[α2]=[α]

cα1,α2
qα1

(x)qα2
(y)

for some coefficients cα1,α2
∈ R independent of x and y. Moreover, we have

cα1,0 =

{
1 if α1 = α
0 otherwise

, c0,α2 =

{
1 if α2 = α
0 otherwise

.

Proof. For each M ∈ W , by Corollary 3.1.31, there exists a unique polynomial
qα ∈ P=M satisfying Xβqα(0) = δα,β for every β ∈ Nn

0 with [β] = M , therefore for
every β ∈ Nn

0 . This shows parts (1) and (2). Part (3) follows from the definition
of a Taylor polynomial.

It remains to prove Part (4). For this it suffices to consider qα(xy) as a
polynomial in x and in y, using the bases (qα1(x)) and (qα2(y)). Therefore, qα(xy)
can be written as a finite linear combination of qα1

(x)qα2
(y). Since

qα((rx)(ry)) = r[α]qα(xy),

this forces this linear combination to be over α1, α2 ∈ Nn
0 satisfying [α1] + [α2] =

[α]. The conclusions about the coefficients follow by setting y = 0 and then x = 0,
see also (3.14). �

In the case of (Rn,+) the polynomials qα are the usual normalised monomials
(α1! . . . αn!)

−1xα. But it is not usually the case on other groups:

Example 5.2.4. On the three dimensional Heisenberg group H1 where a point is
described as (x, y, t) ∈ R3 (see Example 1.6.4), we compute directly that for degree
1 we have

q(1,0,0) = x, q(0,1,0) = y,

and for degree 2,

q(2,0,0) = x2, q(0,2,0) = y2, q(1,1,0) = xy, q(0,0,1) = t− 1

2
xy.

Definition 5.2.5. For each α ∈ Nn
0 , the difference operators are

Δα := Δq̃α , α ∈ Nn
0 ,

where
q̃α(x) := qα(x

−1)

and qα ∈ P=[α] is defined in Proposition 5.2.3.
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The difference operators generalise the Euclidean derivatives with respect to
the Fourier variable on (Rn,+) in the following sense:

Example 5.2.6. Let us consider the abelian group G = (Rn,+). We identify R̂n

with Rn. If the Fourier transform of a function φ ∈ S(Rn) is given by

FGφ(ξ) = (2π)−
n
2

∫

Rn

e−ix·ξφ(x)dx, ξ ∈ Rn,

then

ΔαFGφ(ξ) =

∫

Rn

e−ix·ξ(−x)αφ(x)dx =

(
1

i

∂

∂ξ

)α

FGφ(ξ).

Thus, Δα coincide with the operators Dα =
(

1
i

∂
∂ξ

)α

usually appearing in the

Fourier analysis on Rn.

Example 5.2.7. Δ0 is the identity operator on each Ka,b(G).

Example 5.2.8. For I = δ̂o = {I : H∞
π → H∞

π , π ∈ Ĝ} and any α ∈ Nn
0\{0}, we

have ΔαI = 0.

Proof. We know that I = δ̂0 (see Example 5.1.38). The distribution q̃αδ0 is defined
by

〈q̃αδ0, φ〉 = 〈δ0, q̃αφ〉, φ ∈ D(G),

see (5.26). Since
〈δ0, q̃αφ〉 = (q̃αφ)(0) = q̃α(0) φ(0) = 0

we must have qδ0 = 0. Therefore, ΔαI = q̂δ0 = 0. �

More generally, we have

Lemma 5.2.9. Let α, β ∈ Nn
0 . Then the symbol {π(X)β : H∞

π → H∞
π , π ∈ Ĝ} (see

Example 5.1.38) satisfies

Δαπ(X)β = 0 if [α] > [β].

If [α] ≤ [β], then Δαπ(X)β is a linear combination depending only on α, β, of the
terms π(X)β2 with [β2] = [β]− [α], that is,

Δαπ(X)β =
∑

[α]+[β2]=[β]

π(X)β2 .

Proof of Lemma 5.2.9. We see that Δαπ(X)β is the group Fourier transform of
the distribution q̃αX

βδ0 defined via

〈q̃αXβδ0, φ〉 = 〈Xβδ0, q̃αφ〉 = {Xβ}t{q̃αφ}(0)

for any φ ∈ D(G), see Example 5.1.38. This is so as long as we prove that q̃αX
βδ0

is in some Ka,b. Let us find another expression for this distribution. As {Xβ}t is
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a [β]-homogeneous left-invariant differential operators, by the Leibniz formula for
vector fields, we have

{Xβ}t{q̃αφ} =
∑

[β1]+[β2]=[β]

Xβ1 q̃α Xβ2φ.

We easily see that Xβ1 q̃α ∈ P=[α]−[β1] and, therefore, by Part (2) of Proposition
5.2.3 we have

Xβ1 q̃α =
∑

[α′]=[α]−[β1]

q̃α′ .

Hence we have obtained

{Xβ}t{q̃αφ} =
∑

[β1]+[β2]=[β]
[α′]=[α]−[β1]

q̃α′ Xβ2φ,

and

〈q̃αXβδ0, φ〉 =
∑

[β1]+[β2]=[β]
[α′]=[α]−[β1]

(q̃α′Xβ2φ)(0) =
∑

[β1]+[β2]=[β]
0=[α]−[β1]

Xβ2φ(0),

with the convention that the sum is zero if there are no such β1, β2. Thus

q̃αX
βδ0 =

∑

[β1]+[β2]=[β]
[α]=[β1]

Xβ2δ0.

Since Xβ2δ0 ∈ K[β2],0 (see Example 5.1.26), we see that q̃αX
βδ0 ∈ K[β],0. Further-

more, taking the group Fourier transform we obtain

Δαπ(X)β =
∑

[β1]+[β2]=[β]
[α]=[β1]

π(X)β2 .

This sum is zero if there are no such β1, β2, for instance if [β] < [α]. �

Let us collect some properties of the difference operators.

Proposition 5.2.10. (i) For any α ∈ Nn
0 , the operator Δα is linear, its domain

of definition contains FG(S(G)) and ΔαFG(S(G)) ⊂ FG(S(G)).

(ii) For any α1, α2 ∈ Nn
0 , there exist constants cα1,α2,α ∈ R, with α ∈ Nn

0 such
that [α] = [α1] + [α2], so that for any φ ∈ S(G), we have

Δα1

(
Δα2 φ̂

)
= Δα2

(
Δα1 φ̂

)
=

∑

[α]=[α1]+[α2]

cα1,α2,αΔ
αφ̂,

where the sum is taken over all α ∈ Nn
0 satisfying [α] = [α1] + [α2].
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(iii) For any α ∈ Nn
0 , there exist constants cα,α1,α2 ∈ R, α1, α2 ∈ Nn

0 , with [α1] +
[α2] = [α], such that for any φ1, φ2 ∈ S(G), we have

Δα
(
φ̂1 φ̂2

)
=

∑

[α1]+[α2]=[α]

cα,α1,α2
Δα1 φ̂1 Δα2 φ̂2, (5.28)

where the sum is taken over all α1, α2 ∈ Nn
0 satisfying [α1] + [α2] = [α].

Moreover,

cα,α1,0 =

{
1 if α1 = α
0 otherwise

, cα,0,α2
=

{
1 if α2 = α
0 otherwise

.

The coefficients cα1,α2,α in (ii) and cα,α1,α2
in (iii) are different in general.

We interpret Formula (5.28) as the Leibniz formula.

Proof. Since the Schwartz space is stable under multiplication by polynomials,
q̃αφ is Schwartz for any φ ∈ S(G), and Δαφ̂(π) = π(q̃αφ). This shows (i).

For Part (ii), we see that the polynomial qα1
qα2

is homogeneous of degree
[α1]+ [α2]. Since {qα, [α] = M} is a basis of P=M by Proposition 5.2.3, there exist
constants cα1,α2,α ∈ R, α1, α2 ∈ Nn

0 with [α1] + [α2] = [α], satisfying

qα1
qα2

=
∑

[α1]+[α2]=[α]

cα1,α2,α qα.

Therefore

Δα1

(
Δα2 φ̂(π)

)
= π(q̃α1 q̃α2φ) =

∑

[α1]+[α2]=[α]

cα1,α2,απ(q̃αφ)

=
∑

[α1]+[α2]=[α]

cα1,α2,αΔ
αφ̂(π).

This and the equality q̃α1
q̃α2

= q̃α2
q̃α1

show (ii).

Let us prove (iii). By Proposition 5.2.3 (4),

q̃α(x) (φ2 ∗ φ1)(x) =

∫

G

qα(x
−1y y−1) φ2(y) φ1(y

−1x) dy

=
∑

[α1]+[α2]=[α]

cα1,α2

∫

G

qα2
(y−1)φ2(y) qα1

(x−1y)φ1(y
−1x) dy

=
∑

[α1]+[α2]=[α]

cα1,α2
(q̃α2

φ2) ∗ (q̃α1
φ1),

with constants depending on α, α1, α2. Taking the Fourier transform implies the
formula (5.28), with conclusions on coefficients following from Proposition 5.2.3.

�

We will see that the difference operators Δα defined in Definition 5.2.5 appear
in the general asymptotic formulae for adjoint and product of pseudo-differential
operators in our context, see Sections 5.5.3 and 5.5.2.
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5.2.2 Symbol classes Sm
ρ,δ

In this section we define the symbol classes Sm
ρ,δ = Sm

ρ,δ(G) of symbols on a graded
Lie group G and discuss their properties. We use the notation for the symbol
classes similar to the familiar ones on the Euclidean space and also on compact
Lie groups.

Let us give the formal definition of our symbol classes.

Definition 5.2.11. Let m, ρ, δ ∈ R with 0 ≤ ρ ≤ δ ≤ 1. Let R be a positive
Rockland operator of homogeneous degree ν. A symbol

σ = {σ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is called a symbol of order m and of type (ρ, δ) whenever, for each α, β ∈ Nn
0 and

γ ∈ R, we have

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

γ,ρ[α]−m−δ[β]+γ
(Ĝ) <∞. (5.29)

The symbol class Sm
ρ,δ = Sm

ρ,δ(G) is the set of symbols of order m and of type (ρ, δ).

By Corollary 5.1.30, the symbols Xβ
xΔ

ασ are fields acting on smooth vectors.
By Lemma 5.1.23, we can reformulate (5.29) as

sup
x∈G,π∈Ĝ

‖π(I +R) ρ[α]−m−δ[β]+γ
ν Xβ

xΔ
ασ(x, π)π(I +R)− γ

ν ‖L (Hπ) <∞. (5.30)

Recall that, as usual, the supremum in π in (5.30) has to be understood as the
essential supremum with respect to the Plancherel measure.

Clearly, the converse holds: if σ is a symbol such that Xβ
xΔ

ασ are fields
acting on smooth vectors for which (5.30) holds, then σ is in Sm

ρ,δ.

We note that condition (5.30) requires one to fix a positive Rockland operator

R in order to fix the norms of L∞
a′,b′(Ĝ). However, the resulting class Sm

ρ,δ does not
depend on the choice of R, see Lemma 5.1.22.

If a positive Rockland operator R of homogeneous degree ν is fixed, then we
set for σ ∈ Sm

ρ,δ and a, b, c ∈ N0,

‖σ‖Sm
ρ,δ,a,b,c

:= sup
|γ|≤c

[α]≤a, [β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

γ,ρ[α]−m−δ[β]+γ
(Ĝ).

This quantity is also equal to

‖σ‖Sm
ρ,δ,a,b,c

= sup
x∈G, π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

,

where we define for any symbol σ, a, b, c ∈ N0, and (x, π) ∈ G× Ĝ (fixed)

‖σ(x, π)‖Sm
ρ,δ,a,b,c

:= sup
|γ|≤c

[α]≤a, [β]≤b

‖π(I +R) ρ[α]−m−δ[β]+γ
ν Xβ

xΔ
ασ(x, π)π(I +R)− γ

ν ‖L (Hπ).



5.2. Symbol classes Sm
ρ,δ and operator classes Ψm

ρ,δ 307

Here, as always, the supremum has to be understood as the essential supremum
with respect to the Plancherel measure.

Before making some comments, let us say that the classes of symbols we have
just defined have the usual structures of symbol classes.

Proposition 5.2.12. The symbol class Sm
ρ,δ is a vector space independent of any

Rockland operator R used in (5.29) to consider the L∞
γ,ρ[α]−m−δ[β]+γ(Ĝ)-norms.

We have the continuous inclusions

m1 ≤ m2, δ1 ≤ δ2, ρ1 ≥ ρ2 =⇒ Sm1

ρ1,δ1
⊂ Sm2

ρ2,δ2
. (5.31)

We fix a positive Rockland operator R. For any m ∈ R, ρ, δ ≥ 0, the resulting
maps ‖ · ‖Sm

ρ,δ,a,b,c
, a, b, c ∈ N0, are seminorms over the vector space Sm

ρ,δ which
endow Sm

ρ,δ with the structure of a Fréchet space.

We may replace the family of seminorms ‖ · ‖Sm
ρ,δ,a,b,c

, a, b, c ∈ N0, by

σ �−→ sup
[α]≤a,
[β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

γℓ,ρ[α]−m−δ[β]+γℓ
(Ĝ), a, b ∈ N0, ℓ ∈ Z,

where the sequence {γℓ, ℓ ∈ Z} of real numbers satisfies γℓ −→
ℓ→±∞

±∞.

Two different positive Rockland operators give equivalent families of semi-
norms. The topology on Sm

ρ,δ is independent of the choice of the Rockland operator
R.
Proof. Using Corollary 5.1.30 and Lemma 5.1.22, this is a routine exercise. �

Remark 5.2.13. Let us make some comments about Definition 5.2.11:

1. In the abelian case, that is, Rn endowed with the addition law, and R = −L
with L being the Laplace operator, Sm

ρ,δ boils down to the usual Hörmander
class, in view of the difference operators corresponding to the derivatives, see
Example 5.2.6.

2. In the case of compact Lie groups with R being the (positive) Laplacian,
a similar definition leads to the one considered in (2.26) since the operator
π(I+R) is scalar. However, here, in the case of non-abelian graded Lie groups,
the operator R can not have a scalar Fourier transform.

3. The presence of the parameter γ is included to facilitate proving that the
space of symbols ∪m∈RS

m
ρ,δ, with suitable restrictions on ρ, δ, forms an algebra

of operators later on. It already has enabled us to see that the symbols are
fields of operators acting on smooth vectors and therefore can be composed
without using the composition of unbounded operators (in Definition A.3.2).

We will see in Theorem 5.5.20 that in fact we can remove this γ. By
this we mean that a symbol σ is in Sm

ρ,δ if and only if the condition in (5.29)
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holds for any α, β ∈ Nn
0 and γ = 0. Furthermore, the seminorms ‖ · ‖Sm

ρ,δ,a,b,0
,

a, b ∈ N0, yield the topology of Sm
ρ,δ.

4. We could have used other families of difference operators instead of the Δα’s
to define the symbol classes Sm

ρ,δ. For instance, we could have used any family
of difference operators associated with a family {pα}α∈Nn

0
of homogeneous

polynomials on G which satisfy

• for each α ∈ Nn
0 , pα is of homogeneous degree [α],

• and {pα}α∈Nn
0
is a basis of P(G).

Indeed, in this case, the following properties hold.

- Any q̃α is a linear combination of pβ , [β] = [α].

- Conversely, any pα is a linear combination of q̃β , [β] = [α].

Thus,

- any Δα is a linear combination of Δpβ
, [β] = [α].

- Conversely, any Δpα
is a linear combination of Δβ , [β] = [α].

It is then easy to see that a symbol σ is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 and γ ∈ R,

sup
x∈G
‖Xβ

xΔpασ(x, ·)‖L∞
γ,ρ[α]−m−δ[β]+γ

(Ĝ) <∞.

Note that this implies that the symbol class Sm
ρ,δ does not depend on

a particular choice of realisation of G through a basis of g (of eigenvectors
for the dilations) but only on the graded Lie group G and its homogeneous
structure.

For such a family Δpα
, the same proof as for Proposition 5.2.10 shows

a Leibniz formula in the sense of (5.28).

Although we could use ‘easier’ difference operators to define our symbol
classes, for instance Δxα , α ∈ Nn

0 , we choose to present our analysis with the
difference operators Δα given in Definition 5.2.5. Note that the asymptotic
formulae for composition and adjoint in (5.57) and (5.60) will be expressed
in terms of the difference operators Δα and derivatives Xα

x .

Note that the change of difference operators explained just above is lin-
ear, whereas in the compact case, one can use many more difference operators
to define the symbol classes Sm

ρ,δ, see Section 2.2.2.

The type (1, 0) can be thought of as the basic class of symbols and the
types (ρ, δ) as its generalisations. There are certain limitations on the parame-
ters (ρ, δ) coming from reasons similar to the ones in the Euclidean settings. For
type (1, 0), we set

Sm := Sm
1,0,
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and

‖σ(x, π)‖Sm
1,0,a,b,c

= ‖σ(x, π)‖a,b,c, ‖σ‖Sm
1,0,a,b,c

= ‖σ‖a,b,c, etc. . . .

We also define the class of smoothing symbols

Definition 5.2.14. We set

S−∞ :=
⋂

m∈R

Sm.

One checks easily that

S−∞ =
⋂

m∈R

Sm
ρ,δ,

independently of ρ and δ as long as 0 ≤ δ ≤ ρ ≤ 1 and ρ �= 0. Moreover, S−∞

is equipped with the topology of projective limit induced by ∩m∈RS
m
ρ,δ, again

independently of ρ and δ.

We will see in Corollary 5.4.10 that the symbols in S−∞ really deserve to be
called smoothing.

5.2.3 Operator classes Ψm
ρ,δ

The pseudo-differential operators of order m ∈ R ∪ {−∞} and type (ρ, δ) are
obtained by the quantization

Op(σ)φ(x) =

∫

Ĝ

Tr
(
π(x)σ(x, π)φ̂(π)

)
dμ(π),

justified in Theorem 5.1.39, from the symbols of the same order and type, that is,

Ψm
ρ,δ := Op(Sm

ρ,δ).

They inherit a structure of topological vector spaces from the classes of symbols,

‖Op(σ)‖Ψm
ρ,δ,a,b,c

:= ‖σ‖Sm
ρ,δ,a,b,c

.

For type (1, 0), we set as for the corresponding symbol classes:

Ψm := Ψm
1,0.
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Continuity on S(G)

By Theorem 5.1.39, any operator in the operator classes defined above maps
Schwartz functions to smooth functions. Let us show that in fact it acts con-
tinuously on the Schwartz space:

Theorem 5.2.15. Let T ∈ Ψm
ρ,δ where m ∈ R, 1 ≥ ρ ≥ δ ≥ 0. Then for any

φ ∈ S(G), Tφ ∈ S(G). Moreover the operator T act continuously on S(G): for
any seminorm ‖ ·‖S(G),N there exist a constant C > 0 and a seminorm ‖ ·‖S(G),N ′

such that for every φ ∈ S(G),

‖Tφ‖S(G),N ≤ C‖φ‖S(G),N ′ .

The constant C can be chosen as C1‖T‖Ψm
ρ,δ,a,b,c

where C1 is a constant of and the

seminorm ‖ · ‖Ψm
ρ,δ,a,b,c

depend on G, m, ρ, δ, and on the seminorm ‖ · ‖S(G),N .

In other words, the mapping T �→ T from Ψm
ρ,δ to the space L (S(G)) of

continuous operators on S(G) is continuous (it is clearly linear).

Our proof of Theorem 5.2.15 will require the following preliminary result on
the right convolution kernels:

Proposition 5.2.16. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx

denote its associated kernel. If m < −Q/2 then for any x ∈ G, the distribution κx

is square integrable and

‖κx‖L2(G) ≤ C sup
π∈Ĝ

‖π(I +R)−m
ν σ(x, π)‖L (Hπ),

‖κx‖L2(G) ≤ C sup
π∈Ĝ

‖σ(x, π)π(I +R)−m
ν ‖L (Hπ),

with C = Cm > 0 a finite constant independent of σ and x.

The proof below will show that we can choose Cm = ‖B−m‖L2(G) the L
2-norm

of the right-convolution kernel of the Bessel potential of the positive Rockland
operator R.
Proof of Proposition 5.2.16. We write

‖σ(x, π)‖HS = ‖π(I +R)m
ν π(I +R)−m

ν σ(x, π)‖HS
≤ ‖π(I +R)m

ν ‖HS‖π(I +R)
−m
ν σ(x, π)‖L (Hπ),

which shows

‖σ(x, π)‖HS ≤ sup
π1∈Ĝ

‖π1(I +R)
−m
ν σ(x, π1)‖L (Hπ1

)‖π(I +R)
m
ν ‖HS.

Squaring and integrating against the Plancherel measure, we obtain
∫

Ĝ

‖σ(x, π)‖2
HS
dμ(π) ≤ sup

π1∈Ĝ

‖π1(I+R)
−m
ν σ(x, π1)‖2L (Hπ1 )

∫

Ĝ

‖π(I+R)m
ν ‖2

HS
dμ(π).
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By the Plancherel formula and Corollary 5.1.4, if m < −Q/2, we have

C2
m :=

∫

Ĝ

‖π(I +R)m
ν ‖2

HS
dμ(π) = ‖B−m‖2L2(G) <∞.

This gives the first estimate in the statement. For the second estimate, we write

σ(x, π) = σ(x, π)π(I +R)−m
ν π(I +R)m

ν ,

and adapt the ideas above. �

We can now prove Theorem 5.2.15.

Proof of Theorem 5.2.15. Let T ∈ Ψm
ρ,δ where m ∈ R, 1 ≥ ρ ≥ δ ≥ 0. Then for

any φ ∈ S(G), Tφ is smooth by Theorem 5.1.39.
Let κ : (x, y) �→ κx(y) be the kernel associated with T . Let R be a positive

Rockland operator of homogeneous degree ν. The properties of R (see Sections
4.3 and 4.4.8) yield for any φ ∈ S(G) and x ∈ G that

Tφ(x) =

∫

G

φ(y)κx(y
−1x)dy

=

∫

G

[
(I +R)−N{(I +R)Nφ}(y)

]
κx(y

−1x)dy

=

∫

G

{(I +R)Nφ}(y) {(I + R̃)−Nκx}(y−1x)dy,

thus, by the Cauchy-Schwartz inequality,

|Tφ(x)| ≤ ‖(I +R)Nφ‖L2(G)‖(I + R̃)−Nκx‖L2(G).

Since FG{(I + R̃)−Nκx}(π) = σ(x, π)π(I +R)−N yields a symbol in Sm−Nν
ρ,δ , by

Proposition 5.2.16, we have

‖(I + R̃)−Nκx‖L2(G) ≤ C sup
π∈Ĝ

‖σ(x, π)π(I +R)−N‖L (Hπ),

whenever m−Nν < −Q/2. Note that in this case,

sup
π∈Ĝ

‖σ(x, π)π(I +R)−N‖L (Hπ) ≤ ‖σ‖Sm
ρ,δ,0,0,|m|‖π(I +R)−N+m

ν ‖L (Hπ),

and by functional calculus

‖π(I +R)−N+m
ν ‖L (Hπ) ≤ sup

λ≥0
(1 + λ)−N+m

ν ≤ 1.

Thus if we choose N ∈ N0 such that N > (m+ Q
2 )/ν, then

|Tφ(x)| ≤ C‖σ‖Sm
ρ,δ,0,0,|m|‖(I +R)Nφ‖L2(G).
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This shows that Tφ is bounded.
Let β ∈ Nn

0 . Using the Leibniz property of vector fields, we easily obtain

XβTφ(x) =
∑

[β1]+[β2]=[β]

cβ1,β2,β

∫

G

φ(y)Xβ1
x1=xX

β2

x2=y−1xκx1(x2)dy.

As above, we can insert powers of I +R. Noticing that the symbol

FG{(I + R̃)−N
x1

Xβ1
x1=xX

β2κx1
} = π(X)β2Xβ1

x σ(x, π)π(I +R)−N

is in S
m+δ[β1]+[β2]−Nν
ρ,δ , we proceed as above to obtain

∣∣XβTφ(x)
∣∣ ≤ C1

∑

[β1]+[β2]=[β]

‖(I +R)Nφ‖L2(G)‖π(X)β2Xβ1
x σ(x, π)π(I+R)−N‖L2(Ĝ)

≤ C2‖σ‖Sm
ρ,δ,0,[β],|m|+[β]‖(I +R)Nφ‖L2(G).

as long as N > (m+ [β] + Q
2 )/ν.

Let α ∈ Nn
0 . Proceeding as in the proof of Proposition 5.2.3 (4), we can write

(xy)α =
∑

[α1]+[α2]=[α]

c′α,α1,α2
qα1

(x) qα2
(y).

Using this, we easily obtain

xαTφ(x) =

∫

G

(y y−1x)αφ(y)κx(y
−1x)dy

=
∑

[α1]+[α2]=[α]

c′α,α1,α2

∫

G

qα1(y)φ(y)qα2(y
−1x)κx(y

−1x)dy.

Noticing that

FG{(I + R̃)−N{qα2κx} = {Δα2σ(x, ·)} π(I +R)−N ∈ S
m−Nν−ρ[α2]
ρ,δ ,

we can now proceed as in the first paragraph above to obtain

|xαTφ(x)| ≤ C1

∑

[α1]+[α2]=[α]

‖(I +R)Ny {qα1φ}‖2‖(I + R̃)−N{qα2κx}‖2

≤ C2‖σ(x, π)‖Sm
ρ,δ,[α],0,|m|+ρ[α]

∑

[α1]≤[α]

‖(I +R)Ny {qα1φ}‖2

as long as N > (m+Q/2)/ν.
We can combine the two paragraphs above to show that for any α, β ∈ Nn

0 ,
we have

∣∣xαXβTφ(x)
∣∣ ≤ C‖σ(x, π)‖Sm

ρ,δ,[α],[β],|m|+[β]+ρ[α]

∑

[α1]≤[α]

‖(I +R)Ny {qα1φ}‖2,
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as long as N > (m+ [β] +Q/2)/ν. By Lemma 3.1.56, we have

∑

[α1]≤[α]

‖(I +R)Ny {qα1
φ}‖2 ≤ C ′‖φ‖S(G),N ′

for some N ′ ∈ N depending on N and α, and Tφ is a Schwartz function. Further-
more, these estimates also imply the rest of Theorem 5.2.15. �

Theorem 5.2.15 shows that composing two operators in (possibly different)
Ψm

ρ,δ makes sense as the composition of operators acting on the Schwartz space.
We will see that in fact, the composition of T1 ∈ Ψm1

ρ,δ with T2 ∈ Ψm2

ρ,δ is T1T2 in

Ψm1+m2

ρ,δ , see Theorem 5.5.3.
We will see that our classes of pseudo-differential operators are stable under

taking the formal L2-adjoint, see Theorem 5.5.12. This together with Theorem
5.2.15 will imply the continuity of our operators on the space S ′(G) of tempered
distributions, see Corollary 5.5.13.

Returning to our exposition, before proving that the introduced classes of
symbols ∪m∈RS

m
ρ,δ and of the corresponding operators ∪m∈RΨ

m
ρ,δ are stable under

composition and taking the adjoint, let us give some examples.

5.2.4 First examples

As it should be, ∪m∈RΨ
m contains the left-invariant differential operators. More

precisely, the following lemma implies that
∑

[β]≤m cβX
β ∈ Ψm. The coefficients

cα here are constant and it is easy to relax this condition with each function cα
being smooth and bounded together with all of its left derivatives.

Lemma 5.2.17. For any βo ∈ Nn
0 , the operator Xβo = Op(π(X)β0) is in Ψ[βo].

Proof. By Lemma 5.2.9, we have

Δαπ(X)βo =

⎧
⎨
⎩

0 if [α] > [βo],∑
[α]+[β2]=[βo]

π(X)β2 if [α] ≤ [βo].

Recall that, by Example 5.1.26, {π(X)β , π ∈ Ĝ} ∈ L∞
γ+[β],γ(Ĝ) for any

γ ∈ R, β ∈ Nn
0 . So {Δαπ(X)βo , π ∈ Ĝ} is zero if [α] > [βo] whereas it is in

L∞
γ+[βo]−[α],γ(Ĝ) for any γ ∈ R if [α] ≤ [βo]. �

Remark 5.2.18. Lemma 5.2.17 implies that ∪m∈RΨ
m contains the left-invariant

differential calculus, that is, the space of left-invariant differential operators.

One could wonder whether it also contains the right-invariant differential
calculus, since we can quantize any differential operator, see Remark 5.1.41 (1).
This is false in general, see Example 5.2.19 below. Thus, if one is interested in
dealing with problems based on the setting of right-invariant operators one can
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use the corresponding version of the theory based on the right-invariant Rockland
operator, see Remark 5.1.41 (4).

Example 5.2.19. Let us consider the three dimensional Heisenberg group H1 and
the canonical basis X,Y, T of its Lie algebra (see Example 1.6.4). Then the right
invariant vector field X̃ can not be in ∪m∈RΨ

m.

Proof of the statement in Example 5.2.19 . We have already seen that any opera-
tor A ∈ Ψm acts continuously on the Schwartz space, cf. Theorem 5.2.15. We will
see later (see Corollary 5.7.2) that it also acts on Sobolev spaces with a loss of
derivative controlled by its order m. By this, we mean that, if an operator A in
Ψm is homogeneous of degree νA, then we must have

∀s ∈ R ∃C > 0 ∀f ∈ S(G) ‖Af‖L2
s−m
≤ C‖f‖L2

s
,

and when s+m and s are non-negative, we realise the Sobolev norm as ‖f‖L2
s
=

‖f‖L2 + ‖R s
ν f‖L2 for some positive Rockland operator of degree ν, cf. Theorem

4.4.3 Part (2). Applying the inequality to dilated functions f ◦ Dr and letting
r →∞ yield that m ≥ νA.

Applying this to the case of X̃ shows that if X̃ were in some Ψm then m ≥ 1
and X̃ would map L2

1 to L2
1−m hence to L2 continuously. We have already shown

in the proof of Example 4.4.32 that this is not possible. �

An example of a smoothing operator is given via convolution with a Schwartz
function:

Lemma 5.2.20. Let κ ∈ S(G). We denote by Tκ : φ �→ φ ∗ κ the corresponding
convolution operator. Its symbol σTκ is independent of x and is given by

σTκ(π) = κ̂(π).

Furthermore, the mapping

S(G) ∋ κ �→ Tκ ∈ Ψ−∞

is continuous.

Proof. For the first part, see Example 5.1.38 and its continuation.

For any κ ∈ S(G), we have q̃ακ ∈ S(G) for any α ∈ Nn
0 , and

(I +R)a(I + R̃)bκ ∈ S(G)

for any a, b ∈ N (see also (4.34) and Proposition 4.4.30). For any m ∈ R, γ ∈ R
and α ∈ Nn

0 , we have by (1.38)

‖Δακ̂‖L∞
γ,[α]−m+γ

(Ĝ) = ‖π(I +R) [α]−m+γ
ν Δαπ(κ)π(I +R)− γ

ν ‖L∞(Ĝ)

≤ ‖(I +R) [α]−m+γ
ν (I + R̃)− γ

ν {q̃ακ}‖L1(G).
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As κ ∈ S(G), this L1-norm is finite and this shows that σTκ ∈ Ψ−∞. More precisely,
this L1-norm is less or equal to

{
‖Bγ‖1‖(I +R)a{q̃ακ}‖1 if γ and [α]−m+γ

ν > 0 and a = ⌈ [α]−m+γ
ν ⌉,

‖B− [α]−m+γ
ν
‖1‖(I + R̃)b{q̃ακ}‖1 if γ and [α]−m+γ

ν < 0 and b = ⌈−γ
ν ⌉,

where ⌈x⌉ denotes the smallest integer > x and Bγ is the right-convolution kernel
of the Bessel potential of R, see Corollary 4.3.11. By Proposition 4.4.27, these
quantities can be estimated by Schwartz seminorms. �

More generally, the operators and symbols with kernels ‘depending on x’ but
satisfying the following property are smoothing:

Lemma 5.2.21. Let κ : (x, y) �→ κx(y) be a smooth function on G × G such that,
for each multi-index β ∈ Nn

0 and each Schwartz seminorm ‖·‖S(G),N , the following
quantity

sup
x∈G
‖Xβ

xκx‖S(G),N <∞,

is finite.
Then the symbol σ given via σ(x, π) = κ̂x(π) is smoothing. Furthermore for

any seminorm ‖ · ‖Sm,a,b,c, there exists C > 0 and β ∈ Nn
0 , N ∈ N0 such that

‖σ‖Sm,a,b,c ≤ C sup
x∈G
‖Xβ

xκx‖S(G),N .

Proof of Lemma 5.2.21. By (1.38), we have

sup
π∈Ĝ

‖σ(x, π)‖L (Hπ) = sup
π∈Ĝ

‖κ̂x(π)‖L (Hπ) ≤ ‖κx‖L1(G).

More generally, for any γ1, γ2 ∈ R, denoting by N1, N2 ∈ N0 integers such that
γ1 ≤ N1 γ2 ≤ N2, we have

sup
π∈Ĝ

‖π(I +R)γ1Xβ
xΔ

ασ(x, π) π(I +R)γ2‖L (Hπ)

≤ sup
π∈Ĝ

‖π(I +R)N1Xβ
xΔ

ασ(x, π) π(I +R)N2‖L (Hπ)

= sup
π∈Ĝ

‖FG{(I +R)N1(I + R̃)N2Xβ
x qακx}(π)‖L (Hπ)

≤ ‖(I +R)N1(I + R̃)N2qαX
β
xκx‖L1(G).

This last L1-norm is, up to a constant, less or equal than a Schwartz seminorm of
Xβ

xκx, see Section 3.1.9. This implies the statement. �

In Theorem 5.4.9, we will see that the converse holds, that is, that any
smoothing operator has an associated kernel as in Lemma 5.2.21.
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5.2.5 First properties of symbol classes

We summarise in the next theorem some properties of the symbol classes which
follow from their definition.

Theorem 5.2.22. Let 1 ≥ ρ ≥ δ ≥ 0.

(i) Let σ ∈ Sm
ρ,δ have kernel κx and order m ∈ R.

1. For every x ∈ G and γ ∈ R,

q̃αX
βκx ∈ Kγ,ρ[α]−m−δ[β]+γ .

2. If βo ∈ Nn
0 then the symbol {Xβo

x σ(x, π), (x, π) ∈ G× Ĝ} is in S
m+δ[βo]
ρ,δ

with kernel Xβo
x κx, and

‖Xβo
x σ(x, π)‖

S
m+δ[βo]
ρ,δ ,a,b,c

≤ Cb,βo‖σ(x, π)‖Sm
ρ,δ,a,b+[βo],c.

3. If αo ∈ Nn
0 then the symbol {Δαoσ(x, π), (x, π) ∈ G× Ĝ} is in S

m−ρ[αo]
ρ,δ

with kernel q̃αoκx, and

‖Δαoσ(x, π)‖
S

m−ρ[αo]
ρ,δ ,a,b,c

≤ Ca,αo
‖σ(x, π)‖Sm

ρ,δ,a+[αo],b,c.

4. The symbol
σ∗ := {σ(x, π)∗, (x, π) ∈ G× Ĝ}

is in Sm
ρ,δ with kernel κ∗

x given by

κ∗
x(y) = κ̄x(y

−1),

and

‖σ(x, π)∗‖Sm
ρ,δ,a,b,c

=

sup
|γ|≤c

[α]≤a, [β]≤b

‖π(I +R)− γ
ν Xβ

xΔ
ασ(x, π)π(I +R) ρ[α]−m−δ[β]+γ

ν ‖L (Hπ).

(ii) Let σ1 ∈ Sm1

ρ,δ and σ2 ∈ Sm2

ρ,δ have kernels κ1x and κ2x, respectively. Then

σ(x, π) := σ1(x, π)σ2(x, π)

defines the symbol σ in Sm
ρ,δ, m = m1 + m2, with kernel κ2x ∗ κ1x with the

convolution in the sense of Definition 5.1.19. Furthermore,

‖σ(x, π)‖Sm
ρ,δ,a,b,c

≤ C‖σ1(x, π)‖Sm1
ρ,δ ,a,b,c+ρa+|m2|+δb‖σ2(x, π)‖Sm2

ρ,δ ,a,b,c,

where the constant C = Ca,b,c,m1,m2 > 0 does not depend on σ1, σ2.
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Note that, in Part (ii), the composition σ(x, π) := σ1(x, π)σ2(x, π) may be
understood as the composition of two fields of operators acting on smooth vectors
as well as the composition of σ1(x, ·) ∈ L∞

γ1,γ1−m1
(Ĝ) with σ2(x, ·) ∈ L∞

γ2,γ2−m2
(Ĝ)

for any choice of γ1, γ2 ∈ R such that γ1 −m1 = γ2.

Proof. Properties (1), (2), (3), and (4) of (i) are straightforward to check.

Let us prove Part (ii). By Property (1) of (i), or by the definition of symbol
classes,

κjx ∈ Kγj ,−mj+γj for any γj ∈ R, j = 1, 2,

thus choosing γ = γ2 and γ1 = −m2 + γ2, we have by Corollary 5.1.20

κ2x ∗ κ1x ∈ Kγ,−m+γ for any γ ∈ R.

Its group Fourier transform is

π(κ1x)π(κ2x) = σ1(x, π)σ2(x, π) = σ(x, π).

Therefore, σ is a symbol with kernel κ2x ∗ κ1x.

Let α, β ∈ Nn
0 and γ ∈ R. From the Leibniz rules for Δα (see Proposition

5.2.10) and Xβ , the operator

π(I +R) ρ[α]−m−δ[β]+γ
ν Xβ

xΔ
ασ(x, π)π(I +R)− γ

ν ,

is a linear combination over β1, β2, α1, α2 ∈ Nn satisfying [β1] + [β2] = [β], [α1] +
[α2] = [α], of terms

π(I +R) ρ[α]−m−δ[β]+γ
ν Xβ1

x Δα1σ1(x, π)X
β2
x Δα2σ2(x, π)π(I +R)−

γ
ν ,

whose operator norm is bounded by

‖π(I +R) ρ[α]−m−δ[β]+γ
ν Xβ1

x Δα1σ1(x, π)π(I +R)−
ρ[α2]−m2−δ[β2]+γ

ν ‖L (Hπ)

‖π(I +R)
ρ[α2]−m2−δ[β2]+γ

ν Xβ2
x Δα2σ2(x, π)π(I +R)−

γ
ν ‖L (Hπ).

This shows that the inequality between the seminorms of σ, σ1 and σ2 given in
(ii) holds. Consequently σ is a symbol of order m = m1 +m2 and of type (ρ, δ),
and (ii) is proved. �

A direct consequence of Part (ii) of Theorem 5.2.22 is that the symbols in
the introduced symbol classes form an algebra:

Corollary 5.2.23. Let 1 ≥ ρ ≥ δ ≥ 0. The collection of symbols
⋃

m∈R
Sm
ρ,δ forms

an algebra.
Furthermore, if σ0 ∈ S−∞ and σ ∈ Sm

ρ,δ is of order m ∈ R, then σ0σ and

σσ0 are also in S−∞.
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The fact that the symbol classes
⋃

m∈R
Sm
ρ,δ form an algebra does not imply

directly the same property for the operator classes
⋃

m∈R
Ψm

ρ,δ since our quanti-
zation is not an algebra morphism, that is, Op(σ1σ2) is not equal in general to
Op(σ1)Op(σ2). However, we will show that indeed

⋃
m∈R

Ψm
ρ,δ is an algebra of

operators, cf. Theorem 5.5.3, and we will often use the following property:

Lemma 5.2.24. Let σ1 and σ2 be as in Theorem 5.2.22, (ii). We assume that σ2

does not depend on x: σ2 = {σ2(π) : π ∈ Ĝ}. Then

σ(x, π) := σ1(x, π)σ2(π)

defines the symbol σ in Sm
ρ,δ, m = m1 +m2 and

Op(σ) = Op(σ1)Op(σ2)

Proof. We keep the notation of the statement. Let κ1x and κ2 be the convolution
kernels of σ1 and σ2 respectively. Hence κ2 is a function on G independent of x.
By Theorem 5.2.22(ii), κ2 ∗ κ1x is the convolution kernel of σ, thus

∀φ ∈ S(G) Op(σ)(φ)(x) = φ ∗ (κ2 ∗ κ1x).

As φ ∗ κ2 = Op(σ2)φ, this implies easily that Op(σ) is the composition of Op(σ1)
with Op(σ2). �

The following will also be useful, for instance in the estimates for the kernels
in Section 5.4.1.

Corollary 5.2.25. Let 1 ≥ ρ ≥ δ ≥ 0. Let σ ∈ Sm
ρ,δ have kernel κx. If β1 and β2 are

in Nn
0 , then

{π(X)β1σ(x, π)π(X)β2 , (x, π) ∈ G× Ĝ} ∈ S
m+[β1]+[β2]
ρ,δ

with kernel Xβ1
y X̃β2

y κx(y). Furthermore, for any a, b, c there exists C = Ca,b,c,β1,β2

independent of σ such that

‖π(X)β1σ(x, π)π(X)β2‖Sm
ρ,δ,a,b,c

≤ C‖σ‖Sm
ρ,δ,a,b,c+ρa+[β1]+[β2]+δb.

If β2 = 0, for any a, b, c there exists C = Ca,b,c,β1 independent of σ such that

‖π(X)β1σ‖Sm
ρ,δ,a,b,c

≤ C‖σ‖Sm
ρ,δ,a,b,c

.

Proof. The first part follows directly from Theorem 5.2.22 Part (ii) together with
Lemma 5.2.17.

We need to show a better estimate for β2 = 0. Let α, βo ∈ Nn
0 . By the Leibniz

formula (see (5.28)), we have

Xβo
x Δα{π(X)β1σ(x, π)}

=
∑

[α1]+[α2]=[α]

cα,α1,α2{Δα1π(X)β1} {Xβo
x Δα2σ(x, π)}.
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Hence, denoting mo := m+ δ[βo], we have

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Xβo
x Δα{π(X)β1σ(x, π)}π(I +R)− γ

ν ‖L (Hπ)

≤ C
∑

[α1]+[α2]=[α]

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Δα1π(X)β1π(I +R)−
ρ[α2]−mo+γ

ν ‖L (Hπ)

‖π(I +R)
ρ[α2]−mo+γ

ν Xβo
x Δα2σ(x, π)π(I +R)− γ

ν ‖L (Hπ).

As {π(X)β1} ∈ S
[β1]
1,0 by Lemma 5.2.17, each quantity

sup
|γ|≤c,π∈Ĝ

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Δα1π(X)β1π(I +R)−
ρ[α2]−mo+γ

ν ‖L (Hπ) <∞

is finite for any c > 0 and α1, α2 ∈ Nn
0 such that [α1] + [α2] = [α]. This implies

sup
|γ|≤c,π∈Ĝ

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Xβo
x Δα{π(X)β1σ(x, π)}π(I +R)− γ

ν ‖L (Hπ)

≤ C ′
∑

[α2]≤[α]

sup
|γ|≤c

π∈Ĝ

‖π(I +R)
ρ[α2]−mo+γ

ν Xβo
x Δα2σ(x, π)π(I +R)− γ

ν ‖L (Hπ).

Taking the supremum over [α] ≤ a and [β] ≤ b yields the stated estimate. �

5.3 Spectral multipliers in positive Rockland operators

In this section we show that multipliers in positive Rockland operators belong to
the introduced symbol classes Ψm.

The main result is stated in Proposition 5.3.4. This will allow us to use the
Littlewood-Paley decompositions associated with a positive Rockland operator,
and therefore will enter most of the subsequent proofs.

5.3.1 Multipliers in one positive Rockland operator

The precise class of multiplier functions that we consider is the following:

Definition 5.3.1. Let Mm be the space of functions f ∈ C∞(R+) such that the
following quantities for all ℓ ∈ N0 are finite:

‖f‖Mm,ℓ
:= sup

λ>0, ℓ′=0,...,ℓ
(1 + λ)−m+ℓ′ |∂ℓ′

λ f(λ)|.

In other words, the class of functions f that appears in the definition above
are the functions which are smooth on R+ = (0,∞) and have the symbolic be-
haviour at infinity of the Hörmander class Sm

1,0(R) on the real line. However, we
rather prefer the notationMm in order not to create any confusion between these
classes and the classes Sm

ρ,δ(G) defined on the group G.
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Example 5.3.2. For any m ∈ R, the function λ �→ (1 + λ)m is inMm.

It is a routine exercise to check thatMm endowed with the family of maps
‖·‖Mm,ℓ

, ℓ ∈ N0, is a Fréchet space. Furthermore, it satisfies the following property.

Lemma 5.3.3. If f1 ∈Mm1 and f2 ∈Mm2 then f1f2 ∈Mm1+m2 with

‖f1f2‖Mm1+m2,ℓ
≤ Cℓ‖f1‖Mm1,ℓ

‖f2‖Mm2,ℓ
.

Proof. This follows from the Leibniz formula for |∂ℓ′(f1f2)| and from the following
inequality which holds for λ > 0 and ℓ′1, ℓ

′
2 ≤ ℓ:

(1 + λ)−m1−m2+ℓ′1+ℓ′2 |∂ℓ′1
λ f1(λ)| |∂ℓ′2

λ f2(λ)| ≤ ‖f1‖Mm1,ℓ
‖f2‖Mm2,ℓ

,

which implies the claim. �

The main property of this section is

Proposition 5.3.4. Let m ∈ R and let R be a positive Rockland operator of homoge-
neous degree ν. If f ∈Mm

ν
, then f(R) is in Ψm and its symbol {f(π(R)), π ∈ Ĝ}

satisfies

∀a, b, c ∈ N0 ∃ℓ ∈ N, C > 0 : ‖f(π(R))‖a,b,c ≤ C‖f‖Mm
ν
,ℓ,

with ℓ and C independent of f .

Proof. First let us show that it suffices to show Proposition 5.3.4 for m < −ν. If
f ∈Mm

ν
with m ≥ −ν, then we define

• m2 ≥ ν such that m2

ν is the smallest integer strictly larger than m
ν ,

• f1(λ) := (1 + λ)−
m2
ν f(λ) and f2(λ) := (1 + λ)

m2
ν .

By Example 5.3.2 and Lemma 5.3.3, we see that f1 ∈ Mm1
ν

with m1 = m −m2.

By Lemma 5.2.17, we see that f2(π(R)) ∈ Sm2 . If Proposition 5.3.4 holds for
m1 < −ν, then we can apply it to f1 and hence f1(π(R)) ∈ Sm1 . Thus the
product

f(π(R)) = f1(π(R))f2(π(R))
is in Sm1+m2 = Sm.

Therefore, as claimed above, it suffices to show Proposition 5.3.4 for m < −ν.
Now we show that we may assume that f is supported away from 0. Indeed,

if f ∈Mm
ν
, we extend it smoothly to R and we write

f = fχo + f(1− χo),

where χo ∈ D(R) is identically 1 on [−1, 1]. Since fχo ∈ D(R), by Hulanicki’s
theorem (cf. Corollary 4.5.2), the kernel of (fχo)(R) is Schwartz and by Lemma
5.2.20, we have (fχo)(R) ∈ Ψ−∞ with suitable inequalities for the seminorms.
Thus we just have to prove the result for f(1 − χo) which is supported in [1,∞)
where λ ≍ 1 + λ. The statement then follows from the following lemma. �
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Showing Proposition 5.3.4 boils then down to

Lemma 5.3.5. Let m < −ν. If f ∈ C∞(R) is supported in [1,∞) and satisfies

∀ℓ ∈ N0 ∃Cℓ ∀λ ≥ 1 |∂ℓ
λf(λ)| ≤ Cℓ|λ|

m
ν −ℓ,

then f(R) ∈ Ψm, and for any a, b, c ∈ N0 we have

‖f(R)‖Ψm,a,b,c ≤ C sup
λ≥1,ℓ′=0,...,ℓ

|λ|−m
ν +ℓ′ |∂ℓ′

λ f(λ)|,

with ℓ = ℓm,a,b,c ∈ N and C = Cm,a,b,c > 0 independent of f .

The proof of Lemma 5.3.5 relies on the following consequence of Hulanicki’s
theorem (see Theorem 4.5.1).

Lemma 5.3.6. Let R be a positive Rockland operator on a graded Lie group G.
Let m ∈ D(R) and αo ∈ Nn

0 . We denote by m(R)δ0 the kernel of the multiplier
m(R) and we set

κ(x) := xαom(R)δ0(x).
The function κ is Schwartz.

For any p ∈ (1,∞), N ∈ N and a ∈ R with 0 ≤ a ≤ Nν, there exist C > 0
and k ∈ N such that for any φ ∈ S(G),

‖RN (φ ∗ κ)‖p ≤ C sup
λ>0

ℓ=0,...,k

(1 + λ)k|∂ℓ
λm(λ)| ‖R

a
ν
p φ‖Lp(G).

Proof of Lemma 5.3.6. By Hulanicki’s Theorem 4.5.1 or Corollary 4.5.2, κ ∈ S(G).

It suffices to prove the result withXα, [α] = Nν, instead ofRN . By Corollary
3.1.30, we can write Xα as a finite sum of X̃βpα,β with pα,β a homogeneous
polynomial of homogeneous degree [β]− [α] ≥ 0. We then have

Xα(φ ∗ κ) = φ ∗Xακ =
∑

φ ∗ (X̃βpα,βκ) =
∑

(Xβφ) ∗ (pα,βκ).

Therefore, by Proposition 4.4.30,

‖Xα(φ ∗ κ)‖p ≤
∑
‖(R−[β]+a

ν Xβφ) ∗ (R̃ [β]−a
ν pα,βκ)‖p

≤
∑
‖R−[β]+a

ν Xβφ‖p‖R̃
[β]−a

ν pα,βκ‖1.

By Theorem 4.4.16, Part 2,

‖R−[β]+a
ν Xβφ‖p ≤ C‖R a

ν φ‖p.

And we have
‖R̃ [β]−a

ν pα,βκ‖1 = ‖R [β]−a
ν p̃α,β κ̃‖1,
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see Section 4.4.8. By Theorem 4.3.6, since [β] ≥ [α] = Nν ≥ a, we obtain

‖R [β]−a
ν p̃α,β κ̃‖1 ≤ C‖p̃α,β κ̃‖1−

[β]−a
νN

1 ‖RN p̃α,β κ̃‖
[β]−a
νN

1 .

Note that because of (4.8), we have

κ̃(x) := (−1)|αo|xαom̄(R)δ0(x).

By Hulanicki’s theorem (see Theorem 4.5.1), ‖p̃α,β κ̃‖1 and ‖R b
ν p̃α,β κ̃‖1 are

� sup
λ>0

ℓ=0,...,k

(1 + λ)k|∂ℓ
λm(λ)|,

for a suitable k, therefore this is also the case for ‖R̃ [β]−a
ν pα,βκ‖1.

Combining all these inequalities shows the desired result. �

Proof of Lemma 5.3.5. Let f be as in the statement. We need to show for any
α ∈ Nn

0 that the convolution operator with right convolution kernel q̃αf(R)δ0
maps L2

γ(G) boundedly to L2
[α]−m+γ(G) for any γ ∈ R. It is sufficient to prove this

for γ in a sequence going to +∞ and −∞ (see Proposition 5.2.12) and, in fact,
only for a sequence of positive γ since

(q̃αf(R)δ0)∗ = (−1)|α|q̃αf̄(R)δ0.

At the end of the proof, we will see that, because of the equivalence between the
Sobolev norms, it actually suffices to prove that for a fixed γ in this sequence, the
operators given by

φ �−→ φ ∗ (q̃αf(R)δ0) and φ �−→ R [α]−m+γ
ν

({
R− γ

ν φ
}
∗ (q̃αf(R)δ0)

)
, (5.32)

are bounded on L2(G). So, we first prove this by decomposing f and applying the
Cotlar-Stein lemma.

We fix a dyadic decomposition: there exists a non-negative function η ∈ D(R)
supported in [1/2, 2] and satisfying

∀λ ≥ 1 1 =
∑

j∈N0

ηj(λ) where ηj(λ) := η(2−jλ).

We set for j ∈ N0 and λ ≥ 1,

fj(λ) := λ−m
ν f(λ)ηj(λ),

f (j)(λ) := fj(2
jλ),

gj(λ) := λ
m
ν f (j)(λ).
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One obtains easily that for any j ∈ N0 and ℓ ∈ N0, we have

∂ℓfj(λ) =
∑

ℓ1+ℓ2+ℓ3=ℓ

λ−m
ν −ℓ1 (∂ℓ2f)(λ) 2−jℓ3(∂ℓ3η)(2−jλ),

|∂ℓfj(λ)| ≤ Cℓ sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|
∑

ℓ1+ℓ2+ℓ3=ℓ

λ−ℓ1λ−ℓ22−jℓ3 |(∂ℓ3η)(2−jλ)|,

where
∑

stands for a linear combination of its terms with some constants. As η

is supported in [1/2, 2] and since λ ≍ 2j , we have

λ−ℓ1λ−ℓ22−jℓ3 ≍ 2−jℓ1+ℓ2+ℓ3 ,

so that ∑

ℓ1+ℓ2+ℓ3=ℓ

λ−ℓ1λ−ℓ22−jℓ3 |(∂ℓ3η)(2−jλ)| ≤ Cℓ,η2
−jℓ.

Therefore, we have obtained

|∂ℓfj(λ)| ≤ Cℓ sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)| 2−jℓ.

Hence, for each j ∈ N0, f
(j) is smooth and supported in [1/2, 2], and satisfies for

any ℓ ∈ N0 the estimate

|∂ℓf (j)(λ)| = |2jℓ∂ℓfj(λ)| ≤ Cℓ sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|.

Consequently, each gj is smooth and supported in [1/2, 2], and satisfies

∀ℓ ∈ N0 sup
λ∈[ 12 ,2]

ℓ′=0,...,ℓ

|∂ℓ′gj(λ)| ≤ Cℓ sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|. (5.33)

Clearly f(λ) is the sum of the terms

2j
m
ν gj(2

−jλ) = f(λ)ηj(λ)

over j ∈ N0 and this sum is uniformly locally finite with respect to λ. Furthermore,
since the functions f and gj are continuous and bounded, the operators f(R) and
gj(2

−jR) defined by the functional calculus are bounded on L2(G) by Corollary
4.1.16. Therefore, we have in the strong operator topology of L (L2(G)) that

f(R) =
∞∑

j=0

2j
m
ν gj(2

−jR),
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and in K(G) or S ′(G) that

f(R)δo =

∞∑

j=0

2j
m
ν gj(2

−jR)δo.

We fix α ∈ Nn
0 . For each j ∈ N0, by Hulanicki’s theorem (see Corollary 4.5.2),

gj(2
−jR)δo is Schwartz, thus so is

Kj := 2j
m
ν q̃αgj(2

−jR)δo

and also (see (4.8))

K∗
j =: K∗

j (x) = K̄j(x
−1) = (−1)|α|2j m

ν q̃αḡj(2
−jR)δo(x−1).

We claim that for any a, b ∈ R satisfying

• either b ∈ νN0 and a ∈ [0, b)

• or b ≥ 0 and a < ⌊b/ν⌋
there exist ℓ ∈ N and C > 0 such that for all j ∈ N0, we have

‖R̃− a
νR b

ν Kj‖K ≤ C(2
j
ν )m−[α]−a+b sup

λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|, (5.34)

and the same is true for R− a
ν R̃ b

ν K∗
j .

Let us prove this claim. By homogeneity (see (4.3)), we see that

gj(2
−jR)δo(x) = (2−

j
ν )−Qgj(R)δo(2

j
ν x),

thus

Kj(x) = 2j
m
ν (2

j
ν )−[α]q̃α(2

j
ν x) (2−

j
ν )−Qgj(R)δo(2

j
ν x)

= (2
j
ν )m−[α]+Q (q̃αgj(R)δo) (2

j
ν x).

More generally, by Part (7) of Theorem 4.3.6 for R and consequently for R̃ (see
(4.50)) we have

R̃− a
νR b

ν Kj = (2
j
ν )m−[α]+Q−a+b

(
R̃− a

νR b
ν {q̃αgj(R)δo}

)
◦D

2
j
ν
,

whenever it makes sense (that is, Kj is in the L2-domain of R b
ν such that R b

ν Kj

is in the L2-domain of R̃− a
ν ). Consequently, by Proposition 5.1.17 (1), with norms

possibly infinite, we have

‖R̃− a
νR b

ν Kj‖K = (2
j
ν )m−[α]−a+b

∥∥∥R̃− a
νR b

ν {q̃αgj(R)δo}
∥∥∥
K
.
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Since (R̃− a
νR b

ν Kj)
∗ = R̃ b

νR− a
ν K∗

j for any a, b whenever it makes sense, or by the
same argument as above, we also have

‖R̃− a
νR b

ν K∗
j ‖K = (2

j
ν )m−[α]−a+b

∥∥∥R̃− a
νR b

ν {q̃αḡj(R)δo}
∥∥∥
K
.

Therefore, if b ∈ νN0 and a ∈ [0, b), by Lemma 5.3.6, there exist ℓ = ℓa,b ∈ N such
that

∥∥∥R̃− a
νR b

ν {q̃αgj(R)δo}
∥∥∥
K
≤ Ca,b sup

λ>0
ℓ′=0,...,ℓ

(1 + λ)ℓ|∂ℓ′

λ gj(λ)|

≤ Ca,b sup
λ>0

ℓ′=0,...,ℓ

|∂ℓ′

λ gj(λ)|,

since each gj is supported in [1/2, 2]. As gj satisfies (5.33), we have shown Claim
(5.34) in the case b ∈ νN0 and a ∈ [0, b).

If a < ⌊b/ν⌋ then we can apply the result we have just obtained to ν(⌊b/ν⌋)
and ν⌈b/ν⌉. Using Theorem 4.3.6 we then have for any φ ∈ S(G), with θ :=
⌊ bν ⌋⌈ bν ⌉−1, that

‖R b
ν φ‖2 ≤ C‖R⌊ b

ν ⌋φ‖1−θ
2 ‖R⌈ b

ν ⌉φ‖θ2

≤ C

⎛
⎜⎝ sup

λ>0
ℓ′=0,...,ℓ

|∂ℓ′

λ gj(λ)| ‖R
a
ν φ‖2

⎞
⎟⎠

1−θ+θ

,

for some ℓ. This shows Claim (5.34) in the case a < ⌊b/ν⌋.
We set Tj : S(G) ∋ φ �→ φ ∗Kj . We want to apply the Cotlar-Stein lemma

(Theorem A.5.2) to two families of L2(G)-bounded operators: first to Tj , j ∈ N0,
and then to

Tj,β,γ : φ �−→ φ ∗ R β
ν R̃− γ

ν Kj , j ∈ N0.

where γ ∈ νN is such that β := [α]−m+ γ > 0.

Let us check the hypothesis of the Cotlar-Stein lemma for Tj . By Claim (5.34)
for a = b = 0, there exists ℓ ∈ N0 such that for any j, k ∈ N0,

max
(
‖T ∗

j Tk‖L (L2(G)), ‖TjT
∗
k ‖L (L2(G))

)

≤ Cmax
(
‖T ∗

j ‖L (L2(G))‖Tk‖L (L2(G)), ‖Tj‖L (L2(G))‖T ∗
k ‖L (L2(G))

)

≤ C2
j+k
ν (m−[α])(sup

λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|)2

≤ C2
|j−k|

ν (m−[α])(sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|)2,
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since m− [α] < 0.

Let us check the hypothesis of the Cotlar-Stein lemma for Tj,β,γ . By Propo-
sition 4.4.30 the right convolution kernel of the operator T ∗

j,β,γTk,β,γ is given by

(R β
ν R̃− γ

ν Kk) ∗ (R̃
β
νR− γ

ν K∗
j ) = (R̃− γ

νR γ
ν Kk) ∗ (R̃

2β−γ
ν R− γ

ν K∗
j ).

Therefore, its operator norm is

‖T ∗
j,β,γTk,β,γ‖L (L2(G)) ≤ ‖R̃− γ

νR γ
ν Kk‖K‖R̃

2β−γ
ν R− γ

ν K∗
j ‖K.

≤ 2
k
ν (m−[α]−γ+γ)2

j
ν (m−[α]−γ+2β−γ)

⎛
⎜⎝sup

λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|

⎞
⎟⎠

2

,

for some ℓ, thanks to Claim (5.34) with a = b = γ ∈ νN and with b = 2β − γ =
2[α]− 2m+ γ and a = γ. So we have obtained

‖T ∗
j,β,γTk,β,γ‖L (L2(G)) ≤ 2

k−j
ν (m−[α])

⎛
⎜⎝sup

λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|

⎞
⎟⎠

2

.

Since the adjoint of T ∗
j,β,γTk,β,γ is T ∗

k,β,γTj,β,γ , we may replace k − j above by
|k − j|.

We proceed in a similar way for the operator norm of Tj,β,γT
∗
k,β,γ whose right

convolution kernel is

(R β
ν R̃− γ

ν K∗
k) ∗ (R̃

β
νR− γ

ν Kj) = (R 2β−γ
ν R̃− γ

ν K∗
k) ∗ (R̃

γ
νR−γ

ν Kj).

Therefore, we obtain

max
(
‖T ∗

j,β,γTk,β,γ‖L (L2(G)), ‖Tj,β,γT
∗
k,β,γ‖L (L2(G))

)

≤ C2
|k−j|

ν (m−[α])(sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|)2.

By the Cotlar-Stein lemma (see Theorem A.5.2),
∑

Tj and
∑

j Tj,β,γ con-

verge in the strong operator topology of L (L2(G)) and the resulting operators
have operator norms, up to a constant, less or equal than

sup
λ≥1,ℓ≤k

λ−m
ν +ℓ |∂ℓ

λf(λ)|.

Clearly
∑

Tj and
∑

j Tj,β,γ coincide on S(G) with the operators in (5.32), respec-
tively. Using the equivalence between the two Sobolev norms (Theorem 4.4.3, Part
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4), this implies

‖φ ∗ (q̃αf(R)δ0)‖L2
β(G) ≤ C

(
‖φ ∗ (q̃αf(R)δ0)‖2 + ‖R

β
ν (φ ∗ (q̃αf(R)δ0) ‖2

)

≤ C sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|
(
‖φ‖2 + ‖R

γ
ν φ‖2

)

≤ C sup
λ≥1
ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|‖φ‖L2
γ(G).

We have obtained that the convolution operator with the right convolution
kernel q̃αf(R)δ0 maps L2

γ(G) boundedly to L2
m−[α]+γ(G) for any γ ∈ νN such that

m− [α] + γ > 0, with operator norm less or equal than

sup
λ≥1,ℓ′≤ℓ

λ−m
ν +ℓ′ |∂ℓ′

λ f(λ)|,

up to a constant, with ℓ depending on γ. This concludes the proof of Lemma
5.3.5. �

Hence the proof of Proposition 5.3.4 is now complete.
Looking back at the proof of Proposition 5.3.4, we see that we can assume

that f depends on x ∈ G in the following way:

Corollary 5.3.7. Let R be a positive Rockland operator of homogeneous degree ν.
Let m ∈ R and 0 ≤ δ ≤ 1. Let

f : G× R+ ∋ (x, λ) �→ fx(λ) ∈ C

be a smooth function. We assume that for every β ∈ Nn
0 , X

β
x fx ∈ Mm+δ[β]

ν
. Then

σ(x, π) = fx(π(R)) defines a symbol σ in Sm
1,δ which satisfies

∀a, b, c ∈ N0 ∃ℓ ∈ N, C > 0 : ‖σ‖Sm
1,δ,a,b,c

≤ C sup
[β]≤b

‖Xβ
x fx‖Mm+δ[β]

ν

,ℓ,

with ℓ and C independent of f .

5.3.2 Joint multipliers

To a certain extent, we can tensorise the property in Proposition 5.3.4. But we need
to define the tensorisation of the spaceMm and the multipliers of two Rockland
operators.

First, we define the spaceMm1 ⊗Mm2 of functions f ∈ C∞(R+×R+) such
that

‖f‖Mm1⊗Mm2 ,ℓ
:= sup

λ1,λ2>0
ℓ′1,ℓ

′
2=0,...,ℓ

(1 + λ1)
−m1+ℓ′1(1 + λ2)

−m2+ℓ′2 |∂ℓ′1
λ1
∂
ℓ′2
λ2
f(λ1, λ2)|,
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is finite for every ℓ ∈ N0. It is a routine exercise to check thatMm1 ⊗Mm2 is a
Fréchet space.

Secondly, we observe that if L and R are two Rockland operators on G which
commute strongly, meaning that their spectral measures EL and ER commute,
then we can define their common spectral measure EL,R via

EL,R(B1 ×B2) := EL(B1)ER(B2), for B1, B2 Borel subsets of R,

and we can also define the multipliers in L and R by

f(L,R) :=
∫

R+×R+

f(λ1, λ2)dEL,R(λ1, λ2),

for any f ∈ L∞(R+ × R+).

Corollary 5.3.8. Let L and R be two positive Rockland operators on G of respective
degrees νL and νR. We assume that L and R commute strongly, that is, their
spectral measures EL and ER commute. If f ∈ Mm1

νL

⊗Mm2
νR

then f(L,R) is in

Ψm1+m2 . Furthermore, we have for any a, b, c ∈ N0,

‖f(L,R)‖Ψm1+m2 ,a,b,c ≤ C‖f‖Mm1
νL

⊗Mm2
νR

,ℓ,

where ℓ and C > 0 are independent of f .

Proof. By uniqueness, the spectral measure EL,R is invariant under left transla-

tions. Denoting by π(EL,R) for π ∈ Ĝ its group Fourier transform, we see that the
group Fourier transform of a multiplier f(L,R) for f ∈ L∞(R+ × R+) is

π(f(L,R)) =
∫

R+×R+

f(λ1, λ2)dπ(EL,R)(λ1, λ2),

since it is true for a function f of the form f(λ1, λ2) = f1(λ1)f2(λ2) with f1, f2 ∈
L∞(R+), by Corollary 5.3.7.

We fix η ∈ C∞(R) supported in [− 1
2 ,

1
2 ] such that

∀λ′ ∈ R
∑

j′∈Z

η(λ′ + j′) = 1.

We also fix another function η̃ ∈ C∞(R) supported in [−1, 1] such that η̃ = 1 on
[− 1

2 ,
1
2 ]. For any j′, k′ ∈ Z, we define ψj′,k′ ∈ C∞(R) by

ψj′,k′(λ′) := e−ik′(λ′−j′)η̃(λ′ − j′).

It is easy to show that for any ℓ′ ∈ N0 there exists C = Cℓ′ > 0 such that

∀j′, k′ ∈ Z ‖ψj′,k′‖Mm,ℓ′ ≤ C(1 + |k′|)ℓ′(1 + |j′|)−m+ℓ′ .
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Since the symbols form an algebra (see Section 5.2.5), and by Proposition 5.3.4,
writing m = m1 +m2, we have for any j1, j2, k1, k2 ∈ Z:

‖ψj1,k1
(π(L))ψj2,k2

(π(R))‖Sm,a,b,c

≤ C‖ψj1,k1
(π(L))‖Sm1 ,a1,b1,c1‖ψj2,k2

(π(R))‖Sm2 ,a2,b2,c2

≤ C(1 + |k1|)ℓ1(1 + |j1|)−
m1
νL

+ℓ1(1 + |k2|)ℓ2(1 + |j2|)−
m2
νR

+ℓ2 (5.35)

for some ℓ1, ℓ2 ∈ N0.

Let f be as in the statement. We extend f to a smooth function supported
in (−1,∞)2 and decompose it as a locally finite sum:

f =
∑

j∈Z2

fj where fj(λ) = f(λ)η(λ1 − j′1)η(λ2 − j′2), λ = (λ1, λ2).

For each j ∈ Z, we view fj(·+j) as a smooth function supported in [−1, 1]×[−1, 1]
and we expand it in the Fourier series

fj(λ+ j) =
∑

k∈Z2

cj,ke
−ik·λ.

The hypothesis on f implies that for any ℓ1, ℓ2 ∈ N0, we have

|cj,k| ≤ Cℓ1,ℓ2‖f‖Mm1
νL

⊗Mm2
νR

,ℓ1+ℓ2(1 + |k1|)−ℓ1(1 + |k2|)−ℓ2 × (5.36)

×(1 + |j1|)
m1
νL

−ℓ1(1 + |j2|)
m2
νR

−ℓ2 .

We have obtained that (taking different ℓ’s)
∑

j,k∈Z2

|cj,k|‖ψj1,k1
‖Mm1

νL

,ℓ1‖ψj2,k2
‖Mm2

νR

,ℓ2 <∞.

We have therefore obtained the following decomposition of f in the Fréchet
spaceMm1

νL

⊗Mm2
νR

,

f(λ1, λ2) =
∑

j,k∈Z2

cj,kψj1,k1
(λ1)ψj2,k2

(λ2).

And so for any a, b, c with ℓ1, ℓ2 as in (5.35),

‖f(π(L), π(R))‖Sm,a,b,c ≤
∑

j,k∈Z2

|cj,k|‖ψj1,k1
(π(L))ψj2,k2

(π(R))‖Sm,a,b,c

≤
∑

j,k∈Z2

|cj,k|C(1 + |k1|)ℓ1(1 + |j1|)−
m1
νL

+ℓ1(1 + |k2|)ℓ2(1 + |j2|)−
m2
νR

+ℓ2

≤ C‖f‖Mm1
νL

⊗Mm2
νR

,ℓ1+ℓ2+4,

by (5.37) with ℓ1 + 2 and ℓ2 + 2. This shows that f(π(L), π(R)) ∈ Sm and the
desired inequalities for the seminorms. �
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Corollary 5.3.8 could be generalised by considering a finite family of positive
Rockland operators which commute strongly between themselves (i.e. with com-
muting spectral measures), with symbols possibly depending on x in a similar way
to Corollary 5.3.7.

5.4 Kernels of pseudo-differential operators

In this section we obtain estimates for the kernels of operators in the classes Ψm
ρ,δ

(cf. Section 5.4.1) and some consequences for smoothing operators (cf. Section
5.4.2) and for operators of Calderón-Zygmund type in the calculus (cf. Section
5.4.4). We will also show the Lp boundedness of Ψ0 in Section 5.4.4.

For technical reasons which will become apparent in Section 5.5.2, we will
also consider the seminorms:

‖σ‖Sm,R
ρ,δ ,a,b := sup

(x,π)∈G×Ĝ
[α]≤a,[β]≤b

‖ΔαXβ
xσ(x, π)π(I +R)−

m−ρ[α]+δ[β]
ν ‖L (Hπ), (5.37)

whereR is a positive Rockland operator of homogeneous degree ν. The superscript
R indicates that the powers of I+R are ‘on the right’. As for the Sm

ρ,δ-seminorms,
this is a seminorm which is equivalent to a similar seminorm for another positive
Rockland operator.

5.4.1 Estimates of the kernels

This section is devoted to describing the behaviour of the kernel of an operator
with symbol in the class Sm

ρ,δ. As usual in this chapter, G is a graded Lie group of
homogeneous dimension Q. Our results in this section may be summarised in the
following theorem.

Theorem 5.4.1. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0, ρ �= 0. Then

its associated kernel κ : (x, y) �→ κx(y) is smooth on G × (G\{0}). We also fix a
homogeneous quasi-norm | · | on G.

(i) Away from 0, κx has a Schwartz decay:

∀M ∈ N ∃C > 0, a, b, c ∈ N : ∀(x, y) ∈ G×G

|y| > 1 =⇒ |κx(y)| ≤ C supπ∈Ĝ ‖σ(x, π)‖Sm
ρ,δ,a,b,c

|y|−M .

(ii) Near 0, we have

– if Q+m > 0, κx behaves like |y|−Q+m
ρ : there exists C > 0 and a, b, c ∈ N

such that

∀(x, y) ∈ G× (G\{0}) |κx(y)| ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

|y|−Q+m
ρ ;
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– if Q +m = 0, κx behaves like ln |y|: there exists C > 0 and a, b, c ∈ N
such that

∀(x, y) ∈ G× (G\{0}) |κx(y)| ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

ln |y|;

– if Q+m < 0, κx is continuous on G and bounded:

sup
z∈G
|κx(z)| ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,0,0,0

.

Moreover, it is possible to replace the seminorm ‖ · ‖Sm
ρ,δ,a,b,c

in (i) and (ii)

with a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b given in (5.37).

Remark 5.4.2. Using Theorem 5.2.22 (i) Parts (3) and (2), and Corollary 5.2.25,
we obtain similar properties for Xβ1

y X̃β2
y (Xβo

x q̃α(y)κx(y)).

We start the proof of Theorem 5.4.1 with consequences of Proposition 5.2.16
as preliminary results on the right convolution kernels and then proceed to analy-
sing the behaviour of these kernels both at zero and at infinity.

Proposition 5.2.16 has the following consequences:

Corollary 5.4.3. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx denote

its associated kernel.

1. If α, β1, β2, βo ∈ Nn
0 are such that

m− ρ[α] + [β1] + [β2] + δ[βo] < −Q/2,

then the distribution Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z)) is square integrable and for

every x ∈ G we have

∫

G

∣∣∣Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z))

∣∣∣
2

dz ≤ C sup
π∈Ĝ

‖σ(x, π)‖2Sm
ρ,δ,a,b,c

where a = [α], b = [βo], c = ρ[α]+[β1]+[β2]+δ[βo] and C = Cm,α,β1,β2,βo > 0
is a constant independent of σ and x. If β1 = 0 then we may replace the
seminorm ‖ · ‖Sm

ρ,δ,a,b,c
with a seminorm ‖ · ‖Sm,R

ρ,δ ,a,b given in (5.37).

2. For any α, β1, β2, βo ∈ Nn
0 satisfying

m− ρ[α] + [β1] + [β2] + δ[βo] < −Q,

the distribution z �→ Xβ1
z X̃β2

z Xβo
x q̃α(z)κx(z) is continuous on G for every

x ∈ G and we have

sup
z∈G

∣∣∣Xβ1
z X̃β2

z

{
Xβo

x q̃α(z)κx(z)
}∣∣∣ ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,[α],[βo],[β2],
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where C = Cm,α,β1,β2,βo > 0 is a constant independent of σ and x. If β1 =
0 then we may replace the seminorm ‖ · ‖Sm

ρ,δ,[α],[βo],[β2] with the seminorm

‖ · ‖Sm,R
ρ,δ ,[α],[βo]

, see (5.37).

Consequently, if ρ > 0 then the map κ : (x, y) �→ κx(y) is smooth on
G× (G \{0}).

Proof. Part (1) follows from Proposition 5.2.16 together with Theorem 5.2.22 (i)
Parts (3) and (2), and Corollary 5.2.25 . Now by the Sobolev inequality in Theorem
4.4.25 (ii), if the right-hand side of the following inequality is finite:

sup
z∈G

∣∣∣Xβ1
z X̃β2

z

{
Xβo

x q̃α(z)κx(z)
}∣∣∣ ≤ C

∥∥∥(I+Rz)
s
ν Xβ1

z X̃β2
z

{
Xβo

x q̃α(z)κx(z)
}∥∥∥

L2(dz)
,

for s > Q/2, then the distribution

z �→ Xβ1
z X̃β2

z

{
Xβo

x q̃α(z)κx(z)
}

is continuous and the inequality of Part (2) holds. By Theorem 4.4.16,

∥∥∥(I +Rz)
s
ν Xβ1

z X̃β2
z

{
Xβo

x q̃α(z)κx(z)
}∥∥∥

L2(dz)

≤ C
∥∥∥(I +R)

s+[β1]
ν (I + R̃)

[β2]
ν

{
Xβo

x q̃α(z)κx(z)
}∥∥∥

L2(dz)

≤ C
∥∥∥π(I +R)

s+[β1]
ν Xβo

x Δασ(x, π)π(I +R)
[β2]
ν

∥∥∥
L2(Ĝ)

,

by the Plancherel formula (1.28). By Proposition 5.2.16 (together with Theorem
5.2.22 (ii)) as long as

m+ s+ [β1]− ρ[α] + δ[βo] + [β2] < −Q/2,

since

(I +R)
s+[β1]

ν (I + R̃)
[β2]
ν

{
Xβo

x q̃α(z)κx(z)
}

is the kernel of the symbol

π(I +R)
s+[β1]

ν Xβo
x Δασ(x, π)π(I +R)

[β2]
ν ,

we have
∥∥∥π(I +R)

s+[β1]
ν Xβo

x Δασ(x, π)π(I +R)
[β2]
ν

∥∥∥
L2(Ĝ)

≤ C‖σ(x, π)‖Sm
ρ,δ,[α],[βo],[β2],

if s+ [β1] ≤ ρ[α]−m− δ[βo]− [β2]. This shows Part (2). �
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Estimates at infinity

We will now prove better estimates for the kernel than the ones stated in Corollary
5.4.3. First let us show that the kernel has a Schwartz decay away from the origin.

Proposition 5.4.4. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx denote

its associated kernel.

We assume that ρ > 0 and we fix a homogeneous quasi-norm | · | on G. Then
for any M ∈ R and any α, β1, β2, βo ∈ Nn

0 there exist C > 0 and a, b, c ∈ N
independent of σ such that for all x ∈ G and z ∈ G satisfying |z| ≥ 1, we have

∣∣∣Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z))

∣∣∣ ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

|z|−M .

Furthermore, if β1 = 0 then we may replace the seminorm ‖ · ‖Sm
ρ,δ,a,b,c

with a

seminorm ‖ · ‖Sm,R
ρ,δ ,a,b given in (5.37).

Proof. We start by proving the stated result for α = β1 = β2 = βo = 0 and for
the homogeneous quasi-norm | · |p given by (3.21). Here p > 0 is a positive number
to be chosen suitably. We also fix a number bo > 0 and a function ηo ∈ C∞(R)
valued in [0, 1] with ηo ≡ 0 on (−∞, 1

2 ] and ηo ≡ 1 on [1,∞). We set

η(x) := ηo(b
−p
o |x|pp).

Therefore, η is a smooth function on G such that η(z) = 1 if |z|p ≥ bo. Conse-
quently,

sup
|z|p≥bo

∣∣|z|Mp κx(z)
∣∣ ≤ sup

z∈G

∣∣|z|Mp κx(z)η(z)
∣∣

≤ C
∑

[β′]≤⌈Q/2⌉

∥∥∥Xβ′

z

{
|z|Mp κx(z)η(z)

}∥∥∥
L2(G,dz)

(5.38)

by the Sobolev inequality in Theorem 4.4.25.

We study each term separately. We assume that p/2 is a positive integer
divisible by all the weights υ1, . . . , υn and we introduce the polynomial

|z|pp =

n∑

j=1

|zj |
p
υj

and its inverse, so that

Xβ′

z

{
|z|Mp κx(z)η(z)

}
= Xβ′

z

{
|z|Mp |z|−p

p |z|ppκx(z) η(z)
}

=
∑

[β′
1]+[β′

2]=[β′]

X
β′
1

z

{
|z|Mp |z|−p

p η(z)
}
X

β′
2

z

{
|z|ppκx(z)

}
,
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where
∑

means taking a linear combination, that is, a sum involving some con-
stants. We observe that, using a polar change of coordinates,

‖Xβ′
1

z

{
|z|Mp |z|−p

p η(z)
}
‖L2(G,dz) <∞

as long as 2(M−p− [β′
1])+Q−1 < −1. We assume that p has been chosen so that

2(M − p) +Q < 0. Therefore, all these L2-norms can be viewed as constants. By
the Cauchy-Schwartz inequality and the properties of Sobolev spaces, we obtain

‖Xβ′

z

{
|z|Mp κx(z)η(z)

}
‖L2(G,dz) ≤ C

∑

[β′
2]≤[β′]

‖Xβ′
2

z

{
|z|ppκx(z)

}
‖L2(G,dz)

≤ C
∑

[β′
2]≤[β′]

∑

[α]≤p

‖Xβ′
2

z {q̃ακx} ‖2,

since |z|pp =
∑n

j=1 z
p
υj

j is a polynomial of homogeneous degree p. Therefore, by
Corollary 5.4.3 Part (1), we get

‖Xβ′

z

{
|z|Mp κx(z)η(z)

}
‖L2(G,dz) ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,p,0,ρp+[β′]

if ρp−m > Q/2+[β′]. We choose p accordingly. Combining this with (5.38) yields

sup
|z|p≥bo

∣∣|z|Mp κx(z)
∣∣ ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,p,0,ρp+⌈Q/2⌉.

Therefore, we have obtained the result for the homogeneous norm | · |p and α =
β1 = β2 = βo = 0.

The full result follows for any homogeneous norm and indices α, β1, β2, βo

from the equivalence of any two homogeneous norms and by Theorem 5.2.22 (i)
Parts (3) and (2), and Corollary 5.2.25. �

Remark 5.4.5. 1. During the proof of Proposition 5.4.4, we have obtained the
following statement which is quantitatively more precise. We keep the setting
of Proposition 5.4.4. Then for any M ∈ R and bo > 0, there exists C =
CM,bo,m > 0 such that

sup
|z|p≥bo

∣∣|z|Mp κx(z)
∣∣ ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,p,0,ρp+⌈Q/2⌉,

where p ∈ N is the smallest positive integer such that p/2 is divisible by all
the weights υ1, . . . , υn and p > max(Q/2 +M, 1

ρ (m+Q+ 1)).

2. Combining Part (1) above, Theorem 5.2.22 (i) Parts (3) and (2), and Corol-
lary 5.2.25, it is possible (but not necessarily useful) to obtain a concrete
expression for the numbers a, b, c appearing in Proposition 5.4.4, in terms of
m, ρ, δ, α, β1, β2, βo and of Q.

Furthermore, the same statement is true for |z| ≥ bo for an arbitrary
lower bound bo > 0. However, the constant C may depend on bo.
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Estimates at the origin

We now prove a singular estimate for the kernel near the origin which is (therefore)
not covered by Corollary 5.4.3 (2).

Proposition 5.4.6. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx denote

its associated kernel.
We assume that ρ > 0 and we fix a homogeneous quasi-norm | · | on G. Then

for any α, β1, β2, βo ∈ Nn
0 with Q +m + δ[βo] − ρ[α] + [β1] + [β2] ≥ 0 there exist

a constant C > 0 and computable integers a, b, c ∈ N0 independent of σ such that
for all x ∈ G and z ∈ G\{0}, we have that if

Q+m+ δ[βo]− ρ[α] + [β1] + [β2] > 0,

then∣∣∣Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z))

∣∣∣ ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

|z|−
Q+m+δ[βo]−ρ[α]+[β1]+[β2]

ρ ,

and if
Q+m+ δ[βo]− ρ[α] + [β1] + [β2] = 0,

then ∣∣∣Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z))

∣∣∣ ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

ln |z|.

In both estimates, if β1 = 0 then we may replace the seminorm ‖ · ‖Sm
ρ,δ,a,b,c

with

a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b given in (5.37).

During the proof of Proposition 5.4.6, we will need the following technical
lemma which is of interest on its own.

Lemma 5.4.7. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let η ∈ D(R) and

co > 0. We also fix a positive Rockland operator R of homogeneous degree ν with
corresponding seminorms for the symbol classes Sm

ρ,δ.

Then for any ℓ ∈ N0, the symbols given by

σL,ℓ(x, π) := η(2−ℓcoπ(R))σ(x, π) and σR,ℓ(x, π) := σ(x, π)η(2−ℓcoπ(R)),
are in S−∞. Moreover, for any m1 ∈ R and a, b, c ∈ N0, there exists a constant
C = Cm,m1,ρ,δ,a,b,c,η,co > 0 such that for any ℓ ∈ N0 we have

‖σL,ℓ(x, π)‖Sm1
ρ,δ ,a,b,c ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

2ℓ
co
ν (m−m1).

The same holds for σR,ℓ(x, π), but with a possibly different seminorm on the right
hand side.

Only for σR,ℓ(x, π), we also have for the seminorm ‖·‖Sm,R
ρ,δ ,a,b given in (5.37),

the estimate

‖σR,ℓ(x, π)‖Sm1,R

ρ,δ ,a,b
≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm,R
ρ,δ ,a,b2

ℓ co
ν (m−m1).
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Proof of Lemma 5.4.7. For each ℓ ∈ N0, the symbol η(2−ℓcoπ(R)) is in S−∞ by
Proposition 5.3.4. Therefore, by Theorem 5.2.22 (ii) and the inclusions (5.31), σL,ℓ

and σR,ℓ are in S−∞.

Let us fix αo, βo ∈ Nn
0 and γ ∈ R. By the Leibniz formula (see (5.28)),

π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x ΔαoσL,ℓπ(I +R)−

γ
ν

= π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x Δαo

{
η(2−ℓcoπ(R))σ(x, π)

}
π(I +R)− γ

ν

=
∑

[α1]+[α2]=[αo]

cα1,α2
π(I +R)

ρ[αo]−m1−δ[βo]+γ
ν Δα1η(2−ℓcoπ(R))

Xβo
x Δα2σ(x, π)π(I +R)− γ

ν .

Therefore, taking the operator norm, we obtain

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x ΔαoσL,ℓπ(I +R)−

γ
ν ‖

≤ C
∑

[α1]+[α2]=[αo]

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Δα1η(2−ℓcoπ(R))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖

‖π(I +R)
ρ[α2]−m−δ[βo]+γ

ν Xβo
x Δα2σ(x, π)π(I +R)− γ

ν ‖
≤ C‖σ(x, π)‖Sm

ρ,δ,[αo],[βo],|γ|
∑

[α1]+[α2]=[αo]

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Δα1η(2−ℓcoπ(R))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖.

By Proposition 5.3.4,

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Δα1η(2−ℓcoπ(R))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖
≤ C‖η(2−ℓco ·)‖Mm2

ν
,k,

for some k, where m2 is such that

[α1]−m2 = ρ[αo]−m1 − δ[βo] + γ − (ρ[α2]−m− δ[βo] + γ),

that is,

m2 = m1 −m+ [α1](1− ρ).

Now, we can estimate

‖η(2−ℓco ·)‖Mm2
ν

,k = sup
λ>0, k′=0,...,k

(1 + λ)k
′−m2

ν ∂k′

λ (η(2−ℓcoλ))

= sup
λ>0, k′=0,...,k

(1 + λ)k
′−m2

ν 2−ℓcok
′

(∂k′

η)(2−ℓcoλ)

≤ C2−ℓco
m2
ν .
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Therefore,

∑

[α1]+[α2]=[αo]

‖π(I +R)
ρ[α]−m1+γ

ν Δα1η(2−ℓcoπ(L))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖

≤ C
∑

[α1]+[α2]=[αo]

2−ℓco
m1−m+[α1](1−ρ)

ν ≤ C2−ℓco
m1−m

ν ,

and we have shown that

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x ΔαoσL,ℓπ(I +R)−

γ
ν ‖

≤ Cαo
‖σ(x, π)‖Sm

ρ,δ,[αo],[βo],|γ|2
−ℓco

m1−m
ν .

The desired property for σL,ℓ follows easily. The property for σR,ℓ may be obtained
by similar methods and its proof is left to the reader. �

Proof of Proposition 5.4.6. By Theorem 5.2.22 (i) Parts (3) and (2), and Corollary
5.2.25, it suffices to show the statement for α = β1 = β2 = βo = 0. By equivalence
of homogeneous quasi-norms (Proposition 3.1.35), we may assume that the homo-
geneous quasi-norm is | · |p given by (3.21) where p > 0 is such that p/2 is the
smallest positive integer divisible by all the weights υ1, . . . , υn. Since κx decays
faster than any polynomial away from the origin (more precisely see Proposition
5.4.4), it suffices to prove the result for |z|p < 1.

So let σ ∈ Sm
ρ,δ with Q +m ≥ 0. By Lemma 5.4.11 (to be shown in Section

5.4.2) we may assume that the kernel κ : (x, y) �→ κx(y) of σ is smooth on G×G
and compactly supported in x. By Proposition 5.4.4 it is also Schwartz in y.

We fix a positive Rockland operator R of homogeneous degree ν and a dyadic
decomposition of its spectrum: we choose two functions η0, η1 ∈ D(R) supported
in [−1, 1] and [1/2, 2], respectively, both valued in [0, 1] and satisfying

∀λ > 0

∞∑

ℓ=0

ηℓ(λ) = 1,

where for ℓ ∈ N we set
ηℓ(λ) := η1(2

−(ℓ−1)νλ).

For each ℓ ∈ N0, the symbol ηℓ(π(R)) is in S−∞ by Proposition 5.3.4 and its kernel
ηℓ(R)δ0 is Schwartz by Corollary 4.5.2. Furthermore, by the functional calculus,∑N

ℓ=0 ηℓ(R) converges in the strong operator topology of L (L2(G)) to the identity

operator I as N →∞, and thus
∑N

ℓ=0 ηℓ(R)δ0 converges in K(G) and in S ′(G) to
the Dirac measure δ0 at the origin as N →∞.

By Theorem 5.2.22 (ii), the symbol σℓ given by

σℓ(x, π) := σ(x, π)ηℓ(π(R)), (x, π) ∈ G× Ĝ,
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is in S−∞. The kernel associated with σℓ is κℓ given by

κℓ(x, y) = κℓ,x(y) = (ηℓ(R)δ0) ∗ κx(y).

For each x, we have κℓ,x ∈ S(G). The sum
∑N

ℓ=0 κℓ,x converges in S ′(G) to κx as
N →∞ since

N∑

ℓ=0

Op(σℓ(x, ·)) = Op(σ(x, ·))
N∑

ℓ=0

ηℓ(R)

converges to Op(σ(x, ·)) in the strong operator topology of L (L2(G), L2
−m(G)).

This convergence is in fact stronger. Indeed, by Lemma 5.4.7,

‖σℓ‖Sm1
ρ,δ ,a,b,c ≤ C sup

π∈Ĝ

‖σ‖Sm
ρ,δ,a

′,b′,c′2
ℓ(m−m1),

thus ∑

ℓ∈N

‖σℓ‖Sm1
ρ,δ ,a,b,c <∞

if m1 > m. Consequently, the sum
∑

ℓ σℓ is convergent in Sm1

ρ,δ and, fixing x ∈ G,
the sum

∑
ℓ supz∈S |κℓ,x(z)| is convergent where S is any compact subset of G\{0}

by Proposition 5.4.4 or more precisely the first part in Remark 5.4.5. Necessarily,
the limit of

∑
ℓ σℓ is σ and the limit of

∑
ℓ κℓ,x for the uniform convergence on

any compact subset of G\{0} is κx with

|κx(z)| ≤
∞∑

ℓ=0

|κℓ,x(z)|, z ∈ G\{0}.

By Corollary 5.4.3 (2), for any m1 < −Q and r ∈ N0, we have

sup
z∈G
|z|prp |κℓ,x(z)| ≤ C

∑

[α]=pr

sup
π∈Ĝ

‖Δασℓ(x, π)‖Sm1
ρ,δ ,0,0,0

≤ Ccσ,r2
ℓ(m−m1−ρpr) (5.39)

by Lemma 5.4.7 and its proof, with cσ,r := supπ∈Ĝ ‖σ(x, π)‖Sm
ρ,δ,pr,0,0

.

We write |z|p ∼ 2−ℓo in the sense that ℓo ∈ N0 is the only integer satisfying
|z|p ∈ (2−(ℓo+1), 2−ℓo ].

Let us assume that Q+m > 0. We use (5.39) with r = 0 and m1 such that
m−m1 = (Q+m)/ρ. In particular,

m1 = m(1− 1

ρ
)− Q

ρ
< −Q.

The sum over ℓ = 0, . . . , ℓo − 1, can be estimated as

ℓo−1∑

ℓ=0

|κℓ,x(z)| ≤
ℓo−1∑

ℓ=0

Ccσ,02
ℓ(m−m1) ≤ cσ,02

ℓo(m−m1)

≤ Ccσ,0|z|
−Q+m

ρ
p .
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We now choose r ∈ N and m1 < −Q such that

m−m1 − ρpr < 0 and pr(1− ρ) +m−m1 =
Q+m

ρ
.

More precisely, we set r := ⌈(m+Q)/(ρp)⌉, that is, r is the largest integer strictly
greater than (m + Q)/(ρp), while m1 is defined by the equality just above; in
particular,

m−m1 >
Q+m

ρ
− (1− ρ)

Q+m

ρ
thus m1 < −Q.

We may use (5.39) and sum over ℓ = ℓo, ℓo + 1 . . . , to get

∞∑

ℓ=ℓo

|z|prp |κℓ,x(z)| ≤ Ccσ,r

∞∑

ℓ=ℓo

2ℓ(m−m1−ρpr) ≤ Ccσ,r2
ℓo(m−m1−ρpr).

Therefore, we obtain

∞∑

ℓ=ℓo

|κℓ,x(z)| ≤ Ccσ,r2
ℓo(m−m1−ρpr)|z|−pr

p

≤ Ccσ,r|z|−pr−(m−m1−ρpr)
p = Ccσ,r|z|

−Q+m
ρ

p .

This yields the desired estimate for κx when Q+m < 0.
Let us assume that Q +m = 0. Using (5.39) with r = 0 and m1 = −m, we

obtain

ℓo−1∑

ℓ=0

|κℓ,x(z)| ≤
ℓo−1∑

ℓ=0

Ccσ,02
ℓ(m−m1) ≤ cσ,0ℓo

≤ Ccσ,0 ln |z|p.

Proceeding as above for the sum over ℓ ≥ ℓo, we obtain that
∑∞

ℓ=ℓo
|κℓ,x(z)| is

bounded. This yields the desired estimate for κx in the case Q+m = 0. �

Remark 5.4.8. It is possible to obtain a concrete expression for the numbers a, b, c
appearing in Proposition 5.4.6, in terms of m, ρ, δ, α, β1, β2, βo and of Q.

5.4.2 Smoothing operators and symbols

The kernel estimates obtained in Section 5.4.1 allow us to characterise smoothing
operators in terms of their kernels. Moreover they also imply that the operators
in Ψ−∞ map the tempered distribution to smooth functions and enable the con-
struction of sequences of smoothing operators converging in Ψm

ρ,δ
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Theorem 5.4.9. 1. If T ∈ Ψ−∞, then its associated kernel κ : (x, y) �→ κx(y) is a
smooth function on G×G such that for each x ∈ G, y �→ κx(y) is Schwartz.
Moreover, for each multi-index β ∈ Nn

0 and each Schwartz seminorm ‖ ·
‖S(G),N , there exist a constant C > 0 and a seminorm ‖ · ‖Sm,a,b,c (both
independent of T ) such that

sup
x∈G
‖Xβ

xκx‖S(G),N ≤ C‖σ‖Sm,a,b,c.

The converse is true, see Lemma 5.2.21.

2. If T ∈ Ψ−∞, then T extends to a continuous mapping from S ′(G) to C∞(G)
via

Tf(x) = f ∗ κx(x)

where f ∈ S ′(G), x ∈ G, and κx is the kernel associated with T .

Furthermore, for any compact subset K ⊂ G and any multi-index β ∈
Nn

0 , there exists a constant C > 0 and a seminorm ‖ · ‖S′(G),N such that

sup
x∈K
|∂βTf(x)| ≤ C‖f‖S′(G),N .

Moreover C can be chosen as C1‖σ‖Sm,a,b,c, and C1 > 0 and N can be chosen
independently of f and T .

Part 1 may be rephrased as stating that the map between the smoothing
operators and their associated kernels is a Fréchet isomorphism between Ψ−∞

and the space C∞
b (G,S(G)) of functions κ ∈ C∞(G×G) satisfying

sup
x∈G
‖Xβ

xκx‖S(G),N <∞.

Here C∞
b (G,S(G)) is endowed with the Fréchet structure given via the seminorms

κ �−→ max
[β]≤N

sup
x∈G
‖Xβ

xκx‖S(G),N <∞, N ∈ N0.

Part 2 may be rephrased as stating that the mapping T �→ T from Ψ−∞ to
the space L (S ′(G), C∞(G)) of linear continuous mappings from S ′(G) to C∞(G)
is continuous (it is clearly linear).

Proof. Part 1 follows easily from Theorem 5.4.1 and Remark 5.4.2. By Lemma
3.1.55, for any tempered distribution f ∈ S ′(G), the function f ∗ κx is smooth on
G and the function x �→ f ∗ κx(x) is smooth on G. Hence T extends to S ′(G) and
Tf ∈ C∞ if f ∈ S ′(G).

Note that Lemma 3.1.55 also implies the existence of a positive constant C
and N ∈ N0 such that

|f ∗ κx(z)| ≤ C(1 + |z|)N‖f‖S′(G),N‖κx‖S(G),N .
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Using the Leibniz property for vector fields, one checks easily that for any
multi-index β ∈ Nn

0 , we have

Xβ(Tf)(x) =
∑

[β1]+[β2]=[β]

cβ,β1,β2X
β1
x1=x(f ∗Xβ2

x2=xκx2
)(x1).

Thus, proceeding as above, passing from left derivatives to the right, and using
Lemma 3.1.55, we get

|Xβ(Tf)(x)| ≤ C
∑

[β1]+[β2]=[β]

(1 + |x|)[β1]|(X̃β1
x1=x(f ∗ (Xβ2

x2=xκx2))(x1)|

≤ C
∑

[β1]+[β2]=[β]

(1 + |x|)[β1]|(X̃β1
x1=xf) ∗ (Xβ2

x2=xκx2)(x1)|

≤ C
∑

[β1]+[β2]=[β]

(1 + |x|)[β1]+N‖X̃β1f‖S′(G),N‖Xβ2
x2=xκx2‖S(G),N

≤ C(1 + |x|)N2‖f‖S′(G),N1
‖Xβ2

x2=xκx2
‖S(G),N

with a new constant C > 0 and integers N2, N1, N ∈ N0. This shows that f �→ Tf
is continuous from S ′(G) to C∞(G).

Using Part 1, the inequality above also shows the continuity of T �→ T from
Ψ−∞ to the space of continuous mappings from S ′(G) to C∞(G). This concludes
the proof of Theorem 5.4.9. �

Using the stability of taking the adjoint, reasoning by duality from Part 2
of Theorem 5.4.9, will yield the fact that smoothing operators map distributions
with compact support to Schwartz functions, see Corollary 5.5.13.

Note that the proof of Part 2 of Theorem 5.4.9 yields the more precise result:

Corollary 5.4.10. If T ∈ Ψ−∞ and f ∈ S ′(G), then Tf is smooth and all its
left-derivatives XβTf , β ∈ Nn

0 , have polynomial growth. More precisely, for any
multi-index β ∈ Nn

0 , there exist a constant C > 0, and integer M ∈ N0 and a
seminorm ‖ · ‖S′(G),N such that

|XβTf(x)| ≤ C(1 + |x|)M‖f‖S′(G),N .

Moreover C can be chosen as C1‖σ‖Sm,a,b,c, and C1 > 0 and N,M can be chosen
independently of f and T .

5.4.3 Pseudo-differential operators as limits of smoothing opera-
tors

In the proof of Lemma 5.1.42, for a given symbol σ, we constructed a sequence of
symbols σǫ such that Op(σǫ) is a sequence of ‘nice operators’ converging towards
Op(σ) in a certain sense. If we assume that σ ∈ Sm

ρ,δ, then we can construct
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a sequence of smoothing operators with a convergence in Ψm
ρ,δ described in the

next lemma and its corollary. These operators are therefore ‘nice’ since they have
Schwartz associated kernels in the sense of Theorem 5.4.9.

Lemma 5.4.11. Let 1 ≥ ρ ≥ δ ≥ 0. If σ = {σ(x, π)} is in Sm
ρ,δ, then we can con-

struct a family σǫ = {σǫ(x, π)}, ǫ > 0, in S−∞, satisfying the following properties:

1. For each ǫ > 0, the x-support of each σǫ is compact, or in other words,
the function x �→ supπ∈Ĝ ‖σ(x, π)‖L (Hπ) is zero outside a compact set in
G. Hence the kernel κǫ : (x, y) �→ κǫ,x(y) associated with each symbol σǫ is
Schwartz on G×G and compactly supported in x.

2. For any seminorm ‖ · ‖Sm1
ρ,δ ,a,b,c, there exist a constant C = Ca,b,c,m,m1ρ,δ > 0

such that

∀ǫ ∈ (0, 1) ‖σǫ‖Sm1
ρ,δ ,a,b,c ≤ C‖σ‖Sm

ρ,δ,a,b,c
ǫ

m1−m
ν ,

and when m ≤ m1,

∀ǫ ∈ (0, 1) ‖σǫ − σ‖Sm1
ρ,δ ,a,b,c ≤ C‖σ‖Sm

ρ,δ,a,b,c+ρaǫ
m1−m

ν .

Here ν is the degree of homogeneity of the positive Rockland operator used to
define the seminorms.

Consequently, when m < m1, the convergence σǫ → σ as ǫ → 0 holds
in Sm1

ρ,δ .

3. If φ ∈ S(G) then Op(σǫ)φ ∈ D(G) and the convergence

Op(σǫ)φ −→
ǫ→0

Op(σ)φ

holds uniformly on any compact subset of G and also in S(G).

Remark 5.4.12. As the construction will show, the symbols σǫ are constructed
independently of the order m ∈ R.

Proof of Lemma 5.4.11. We consider the function χǫ on G constructed in Lemma
5.1.42. Let η ∈ D(R) be such that η ≡ 1 on [0, 1]. Let R be a positive Rockland
operator. Let σ ∈ Sm

ρ,δ. We set

σǫ(x, π) = χǫ(x)σ(x, π)η(ǫ π(R)).

Arguing as in Lemma 5.4.7 and its proof yields that

{σ(x, π)η(ǫ π(R)), (x, π) ∈ G× Ĝ}

is in S−∞. Moreover, for any m1 ∈ R and a, b, c ∈ N0, there exists a constant
C = Cm,m1,ρ,δ,a,b,c,η > 0 such that for any ℓ ∈ N0 we have

‖σ(x, π)η(ǫ π(R))‖Sm1
ρ,δ ,a,b,c ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

ǫ
m1−m

ν .
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From this, it is clear that Property (1) and the first estimate in Property (2) hold.
Let us prove the second estimate in Property (2). We notice that

‖π(I +R)−
m1
ν (σ(x, π)η(ǫ π(R))− σ(x, π)) ‖L (Hπ)

= ‖π(I +R)−
m1
ν σ(x, π) (η(ǫ π(R))− I) ‖L (Hπ)

≤ ‖π(I +R)−
m1
ν σ(x, π)π(I +R)

m1−m
ν ‖L (Hπ)

‖π(I +R)
m−m1

ν (η(ǫ π(R))− I) |L (Hπ),

and the spectral calculus properties (cf. Corollary 4.1.16) imply

sup
π∈Ĝ

‖π(I +R)
m−m1

ν (η(ǫ π(R))− I) ‖L (Hπ)

= ‖(I +R)
m−m1

ν (η(ǫR)− I) ‖L (L2(G)) ≤ sup
λ>0

(1 + λ)
m−m1

ν |η(ǫλ)− 1|.

One checks easily that

sup
λ>0

(1 + λ)
m−m1

ν |η(ǫλ)− 1| ≤ ‖η − 1‖∞ sup
λ>ǫ−1

(1 + λ)
m−m1

ν

≤ t(1 + ǫ−1)
m−m1

ν ≤ Cǫ
m1−m

ν ,

provided that m−m1 ≤ 0. Hence

sup
(x,π)∈G×Ĝ

‖π(I +R)−
m1
ν (σ(x, π)η(ǫ π(R))− σ(x, π)) ‖L (Hπ)

≤ C‖σ‖Sm
ρ,δ,0,0,|m1−m|ǫ

m1−m
ν .

More generally, we can introduce derivatives in x and difference operators and use
the Leibniz properties (cf. Proposition 5.2.10):

Xβ
xΔ

α (σ(x, π)η(ǫ π(R))− σ(x, π))

=
∑

[α1]+[α2]=[α]

cα,α1,α2
Xβ

xΔ
α1σ(x, π) Δα2(η(ǫ π(R))− I),

so that the quantity

‖π(I +R)
−m1+ρ[α]−δ[β]−γ

ν Xβ
xΔ

α (σ(x, π)η(ǫ π(R))− σ(x, π))π(I +R) γ
ν ‖L (Hπ)

is, up to a constant, less or equal to the sum over [α1] + [α2] = [α] of

‖π(I +R)
−m1+ρ[α]−δ[β]−γ

ν Xβ
xΔ

α1σ(x, π)π(I +R)
m1−m−ρ[α2]+γ

ν ‖L (Hπ)

×‖π(I +R)−
m1−m−ρ[α2]+γ

ν Δα2(η(ǫ π(R))− I)π(I +R) γ
ν ‖L (Hπ).



344 Chapter 5. Quantization on graded Lie groups

Applying Proposition 5.3.4, we obtain

‖π(I +R)−
m1−m−ρ[α2]+γ

ν Δα2(η(ǫ π(R))− I)π(I +R) γ
ν ‖L (Hπ) ≤ Cǫ

m−m1
ν .

Collecting the estimates and taking the supremum over [α] ≤ a, [β] ≤ b, |γ| ≤
c yield the second estimate in Property (2).

Property (3) follows from Property (2) and the continuity of σ �→ Op(σ)
from Sm1

ρ,δ to L (S(G)), see Theorem 5.2.15. �

Keeping the notation of Lemma 5.4.11, we can also show that the kernels κǫ

converge in some sense towards the kernel of σ. In order to make this more precise,
let us define the space C∞

b (G,S ′(G)) as the space of functions x �→ κx ∈ S ′(G)
such that for each x ∈ G, y �→ κx(y) is a tempered distribution and, for any
β ∈ Nn

0 , the map x �→ Xβ
xκx is continuous and bounded on G. This definition is

motivated by the following property:

Lemma 5.4.13. If σ ∈ Sm
ρ,δ then its associated kernel κ = κ(σ) is in C∞

b (G,S ′(G))
defined above. Furthermore, the map

σ �→ κ(σ)

from Sm
ρ,δ to C∞

b (G,S ′(G)) is continuous.

Naturally, we have endowed C∞
b (G,S ′(G)) with the structure of Fréchet

space given by the seminorms

κ �−→ max
[β]≤N

sup
x∈G
‖Xβ

xκx‖S′(G),N , N ∈ N0.

Proof of Lemma 5.4.13. By Lemma 5.1.35, if σ is a symbol then its kernel is in
C∞(G,S ′(G)). Adapting slightly its proof yields

sup
x∈G
‖Xβ

xκx‖S′(G) ≤ C sup
x∈G
‖Xβ

xσ(x, ·)‖L∞
0,−m−δ[β]

(Ĝ).

As the inverse Fourier transform is one-to-one and continuous from L∞
0,−m−δ[β](Ĝ)

to S ′(G), this shows the continuity of the map σ �→ κ(σ) from Sm
ρ,δ to C

∞
b (G,S ′(G)).

�

We can now express the convergence in distribution of the sequence of kernels
κǫ constructed in the proof of Lemma 5.4.11:

Corollary 5.4.14. We keep the notation of Lemma 5.4.11. The sequence of kernels
κǫ converges towards the kernel κ associated with σ in C∞

b (G,S ′(G)). If ρ > 0,
the convergence is also uniform on any compact subset of G× (G\{0}).
Proof. The statement follows from the convergence of σǫ to σ in Sm1

ρ,δ for m1 < m
by Part 2 of Lemma 5.4.11, together with Lemma 5.4.13 for the first part and
Corollary 5.4.3 for the second part. �
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5.4.4 Operators in Ψ0 as singular integral operators

From the kernel estimates obtained in Section 5.4.1, one can show easily that the
operators in Ψ0 are Calderón-Zygmund, and generalise this to some classes Ψm

ρ,δ,

see Theorem 5.4.16. We are then led to study the L2-boundedness.
First let us notice that thanks to the kernel estimates, our operators admit

a representation as singular integrals in the following sense:

Lemma 5.4.15. Let κx be the kernel associated with T ∈ Ψm
ρ,δ with m ∈ R and

1 ≥ ρ ≥ δ ≥ 0 with ρ �= 0. For any f ∈ S ′(G) and any x0 ∈ G such that f ≡ 0 on
a neighbourhood of x0, the integral

∫

G

f(y)κx0
(y−1x0)dy

makes distributional sense and defines a smooth function at x0.
This coincides with Tf if f ∈ S(G).

Proof. Let T and κx be as in the statement. Let f ∈ S ′(G) and x0 ∈ G. We
assume that there exists a bounded open set Ω2 containing x0 and where f ≡ 0.
Let Ω � Ω1 � Ω2 be open subsets of Ω2 such that x0 ∈ Ω, Ω̄ ⊂ Ω1, and Ω̄1 ⊂ Ω2.
We can find χ1, χ ∈ D(G) such that χ1 ≡ 1 on Ω1 but χ1 ≡ 0 outside Ω2, χ ≡ 1
on Ω but χ ≡ 0 outside Ω1. At least formally, we have

χ(x)

∫

G

f(y)κx(y
−1x)dy =

∫

G

f(y) χ(x)(1− χ1)(y)κx(y
−1x)dy,

since f ≡ 0 on {χ1 = 1}. Clearly the function (x, y) �→ χ(x)(1− χ1)(y) is smooth
on G × G and supported away from the diagonal {(x, y) ∈ G × G : x = y}. By
Theorem 5.4.1, the function

y �−→ χ(x)(1− χ1)(y)κx(y
−1x),

is Schwartz and this yields a smooth mapping G→ S(G) (which is also compactly
supported). The rest of the statement follows easily. �

In Corollary 5.5.13, we will see that an operator in Ψm
ρ,δ extends naturally

to S ′(G). Lemma 5.4.15 and its proof above will then imply that the operator
admits a singular representation for any tempered distribution in the sense that
the following formula makes sense and holds

Tf(x) =

∫

G

f(y)κx(y
−1x)dy,

for any f ∈ S ′(G) and any x ∈ G such that f ≡ 0 on a neighbourhood of x. We
will not use this.

We can now give sufficient condition for operator in some Ψm
ρ,δ to be Calderón-

Zygmund.
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Theorem 5.4.16. 1. If T ∈ Ψ0 then the operator T is Calderón-Zygmund in the
sense of Definition 3.2.15.

2. If T ∈ Ψm
ρ,δ with

m ≤ (ρ− 1)Q,

1 ≥ ρ ≥ δ ≥ 0 and ρ �= 0, then the operator T is Calderón-Zygmund in the
sense of Definition 3.2.15.
In Parts 1 and 2, the constants appearing in the Definition 3.2.15 are γ = 1

and, up to constants of the group, given by seminorms of T ∈ Ψm
ρ,δ.

Proof. We fix a homogeneous quasi-norm | · | on G.
Let T ∈ Ψ0. We denote by κ its associated kernel. Then its integral kernel κo

is formally given via κo(x, y) = κx(y
−1x). By Theorem 5.4.1, for any two distinct

points y, x ∈ G, we have

|κo(x, y)| = |κx(y
−1x)| ≤ C|y−1x|−Q.

Using Remark 5.4.2 as well and the Leibniz property for vector fields, we obtain

|(Xj)xκo(x, y)| ≤ |(Xj)x1=xκx1(y
−1x)|+ |(Xj)x2=xκx(y

−1x2)| ≤ C|y−1x|−(Q+υj),

and
|(Xj)yκo(x, y)| ≤ |(X̃j)z=y−1xκx(z)| ≤ C|y−1x|−(Q+υj).

Hence κo satisfies the hypotheses of Lemma 3.2.19. This shows Part 1.

Let us now assume that T ∈ Ψm
ρ,δ. Again, let κ be its associated kernel. Let

χ ∈ C∞(G) be supported in the unit ball {x ∈ G : |x| ≤ 1} and such that χ ≡ 1
on {x ∈ G : |x| ≤ 1/2}. By Theorem 5.4.1 and Remark 5.4.2 together with Lemma
5.2.21, the operator given by φ �→ φ∗{(1−χ)κ} is smoothing (as ρ �= 0) hence it is
a Calderón-Zygmund operator by Part 1. Thus we just have to study the operator
φ �→ φ ∗ {χκ}. Its integral kernel is κo given via

κo(x, y) = χ(y−1x)κx(y
−1x).

Proceeding as above, in particular by Theorem 5.4.1, we have

|κo(x, y)| = |(χκx)(y
−1x)| � |y−1x|−Q+m

ρ ,

|(Xj)yκo(x, y)| = |(X̃j)z=y−1xκx(z)| � |y−1x|−
Q+m+υj

ρ ,

and κo is supported on {(x, y) ∈ G : |y−1x| ≤ 1} where we have

|(Xj)xκo(x, y)| ≤ |(Xj)x1=xκx1
(y−1x)|+ |(Xj)x2=xκx(y

−1x2)|

� |y−1x|−
Q+m+δυj

ρ + |y−1x|−
Q+m+υj

ρ � |y−1x|−Q+m
ρ − δ

ρυj

� |y−1x|−
Q+m+υj

ρ ,

since |y−1x| ≤ 1. Hence if (Q+m)/ρ ≤ Q, we can apply Lemma 3.2.19. �
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In order to apply the singular integrals theorem (Theorem A.4.4), we still
need to show that the operators are L2-bounded. In the case (ρ, δ) = (1, 0), it is
not very difficult to adapt the Euclidean case to show that the operators in Ψ0

are L2-bounded.

Theorem 5.4.17. If T ∈ Ψ0 then T extends to a bounded operator on L2(G).
Furthermore, there exist constants C > 0 and a, b, c ∈ N0 of the group such that

∀f ∈ S(G) ‖Tf‖L2(G) ≤ C‖T‖Ψm,a,b,c‖f‖L2(G).

During the proof of Theorem 5.4.17, we will need the following observation:

Lemma 5.4.18. The collection of operators Ψ0 is invariant under left translations
in the sense that

T ∈ Ψ0 =⇒ ∀xo ∈ G τxo
Tτ−1

xo
∈ Ψ0, where τxo

: f �→ f(xo ·).

Furthermore, if κx is the kernel of T and σ = Op−1(T ) is its symbol, then the
operator τxoTτ

−1
xo

has κxox as kernel and σ(xox, π) as symbol, and

‖T‖Ψ0,a,b,c = ‖τxo
Tτ−1

xo
‖Ψ0,a,b,c.

Proof of Lemma 5.4.18. Let T ∈ Ψ0 and let κx be its kernel. Then

τxoTτ
−1
xo

f(x) = T (τ−1
xo

f)(xox) = (τ−1
xo

f) ∗ κxox(xox)

=

∫

G

f(x−1
o y)κxox(y

−1xox)dy

=

∫

G

f(z)κxox(z
−1x)dz

after the change of variable z = x−1
o y. Therefore

τxo
Tτ−1

xo
f(x) = f ∗ κxox(x).

Since FG(κxox)(π) = σ(xox, π) if σ denotes the symbol of T , we see that κxox is the

kernel associated to the symbol {σ(xox, π), (x, π) ∈ G× Ĝ} and the corresponding
operator is τxo

Tτ−1
xo

. The rest of the statement follows easily. �

Proof of Theorem 5.4.17. The proof follows the Euclidean case as given in [Ste93,
ch. VI §2]. Let T ∈ Ψ0 and let σ = Op−1(T ) be its symbol. We claim that it
suffices to show Theorem 5.4.17 under the additional assumption that the kernel
κ associated with σ is smooth in x and Schwartz in y, and such that G ∋ x �→
κx ∈ S(G) is smooth. Indeed, this would imply that Theorem 5.4.17 is proved
for each operator Tǫ = Op(σǫ) where σǫ is as in Lemma 5.4.11. The properties
(2) and (3) in Lemma 5.4.11 allow to pass through the limit as ǫ → 0 and imply
then the theorem. This shows our earlier claim and hence we may assume that
G ∋ x �→ κx ∈ S(G) is smooth.
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We fix | · | to be the homogeneous quasi-norm | · |p given by (3.21), where
p > 0 is such that p/2 is the smallest positive integer divisible by all the weights
υ1, . . . , υn. The balls are defined by B(xo, r) := {x ∈ G : |x−1xo| < r}. We denote
by Co ≥ 1 a constant such that for all x, y ∈ G, we have

|xy| ≤ Co(|x|+ |y|) and |y| ≤ |x|
2

=⇒ ||xy| − |x|| ≤ Co|y|,

see the triangle inequality in Proposition 3.1.38 and its converse (3.26).

Let f ∈ S(G) and let us write it as

f = f1 + f2,

where f1 and f2 are two smooth functions supported in B(0, 4Co) and outside of
B(0, 2Co), respectively, and satisfying |f1|, |f2| ≤ |f |.

First, we claim that there exists a constant C > 0 of the group such that
∫

B(0,1)

|Tf1(x)|2dx ≤ C‖σ‖2S0,0,⌈Q/2⌉,0 ‖f1‖2L2(G). (5.40)

Let us prove this. We fix a function χ ∈ D(G) which is identically 1 on B(0, 1).
Then ∫

B(0,1)

|Tf1(x)|2dx ≤
∫

B(0,1)

|χ(x) f1 ∗ κx(x)|2dx

≤
∫

B(0,1)

sup
z∈G
|χ(z) f1 ∗ κz(x)|2dx.

We now use the Sobolev inequality in Theorem 4.4.25 to get

sup
z∈G
|χ(z) f1 ∗ κz(x)|2 ≤ C

∑

[α]≤⌈Q/2⌉

∫

G

|Xα
z {χ(z) f1 ∗ κz(x)}|2 dz.

Since
Xα

z {χ(z) f1 ∗ κz(x)} = f1 ∗Xα
z {χ(z)κz}(x),

we have obtained∫

B(0,1)

|Tf1(x)|2dx ≤
∫

B(0,1)

C
∑

[α]≤⌈Q/2⌉

∫

G

|f1 ∗Xα
z {χ(z)κz}(x)|2 dzdx

= C
∑

[α]≤⌈Q/2⌉

∫

G

∫

B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dxdz,

by Fubini’s property. But the integral over B(0, 1) can be estimated using Planche-
rel’s Theorem (see Theorem 1.8.11) by

∫

B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dx ≤ ‖f1 ∗Xα

z {χ(z)κz}‖22

≤ ‖π(Xα
z {χ(z)κz})‖2L∞(Ĝ)

‖f1‖22.
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Now the Leibniz formula for Xα
z gives

‖π(Xα
z {χ(z)κz})‖L (L2(G)) ≤

∑

[α1]+[α2]=[α]

cα1,α2
‖π (Xα1χ(z)Xα2

z κz}) ‖L (L2(G))

≤ Cα max
[β]≤[α]

‖π
(
Xβ

z κz}
)
‖L (L2(G))

∑

[α1]≤[α]

|Xα1χ(z)|.

Since π
(
Xβ

z κz

)
= Xβ

z σ(z, π), we have obtained

∫

B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dx

≤ C max
[β]≤[α]

‖Xβ
z σ(z, π)‖2L∞(Ĝ)

‖f1‖22
∑

[α1]≤[α]

|Xα1χ(z)|2.

Therefore,

∫

B(0,1)

|Tf1(x)|2dx ≤ C
∑

[α]≤⌈Q/2⌉

∫

G

∫

B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dxdz

≤ C max
[β]≤⌈Q/2⌉

sup
z∈G
‖Xβ

z σ(z, π)‖2L∞(Ĝ)
‖f1‖22.

This concludes the proof of Claim (5.40).

Secondly, we claim that for any r ∈ N, there exists a constant C = Cr > 0
such that

∫

B(0,1)

|Tf2(x)|2dx ≤ C‖σ‖2S0,pr,0,pr ‖(1 + | · |)−prf2‖2L2(G). (5.41)

Let us prove this. We write

Tf2(x) =

∫

y/∈B(0,2Co)

f2(y)|y−1x|−pr(| · |prκx)(y
−1x)dy.

If x ∈ B(0, 1) and y /∈ B(0, 2Co), then

|y−1| − |y−1x| ≤ Co|x| ≤ Co thus |y−1x| ≥ |y| − Co ≥
1

2
|y| ≥ 1

4
(1 + |y|),

and

|Tf2(x)| ≤
∫

y/∈B(0,2Co)

|f2(y)|
(
1

4
(1 + |y|)

)−pr ∣∣(| · |prκx)(y
−1x)

∣∣ dy

≤ 4pr‖(1 + | · |)−prf2‖L2(G) ‖(| · |prκx)‖L2(G) ,



350 Chapter 5. Quantization on graded Lie groups

after having used the Cauchy-Schwartz inequality. Integrating the square of the
left-hand side over x ∈ B(0, 1), and taking the supremum over x ∈ B(0, 1) of the
right-hand side, we obtain

∫

B(0,1)

|Tf2(x)|2dx ≤ 42pr sup
x∈B(0,1)

‖| · |prκx‖2L2(G) ‖(1 + | · |)−prf2‖2L2(G). (5.42)

Now writing |z|prp =
∑

[α]=pr cαq̃α(z), we have

‖| · |prκx‖2L2(G) ≤ Cr

∑

[α]=pr

‖q̃ακx‖2L2(G)

and since by Corollary 5.4.3 (1), if [α] > Q/2,

‖q̃ακx‖2L2(G) ≤ Cα sup
π∈Ĝ

‖σ(x, π)‖2Sm
ρ,δ,[α],0,[α]

,

we have obtained that if pr > Q/2, then

sup
x∈B(0,1)

‖| · |prκx‖2L2(G) ≤ Cr‖σ‖2S0,pr,0,pr.

This and (5.42) show Claim (5.41).

Now, combining together Claims (5.40) and (5.41), we obtain

∫

B(0,1)

|Tf(x)|2dx ≤ Cr‖T‖2Ψ0,pr,⌈Q/2⌉,pr ‖(1 + | · |)−prf‖2L2(G),

and this is so for any f ∈ S(G). Therefore, by Lemma 5.4.18 (and its notation),
we have for any xo ∈ G, that

∫

B(xo,1)

|Tf(x)|2dx =

∫

|x−1
o x|<1

|Tf(x)|2dx =

∫

B(0,1)

|Tf(xox
′)|2dx′

=

∫

B(0,1)

|τxo
(Tf)(x′)|2dx′ =

∫

B(0,1)

|(τxo
Tτ−1

xo
)(τxo

f)(x′)|2dx′

≤ Cr‖τxo
Tτ−1

xo
‖2Ψ0,pr,⌈Q/2⌉,pr ‖(1 + | · |)−prτxo

f‖2L2(G)

= Cr‖T‖2Ψ0,pr,⌈Q/2⌉,pr ‖(1 + | · |)−prτxof‖2L2(G).

Integrating over xo ∈ G, we obtain for the left hand side,

∫

G

∫

B(xo,1)

|Tf(x)|2dxdxo =

∫

G

∫

G

1|x−1
o x|<1|Tf(x)|2dxdxo

=

∫

G

∫

G

1|y|<1|Tf(x)|2dxdy = |B(0, 1)|‖Tf‖22,
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and for the last term in the right hand side,
∫

G

‖(1 + | · |)−prτxof‖2L2(G)dxo =

∫

G

∫

G

∣∣(1 + |x|)−prf(xox)
∣∣2 dxdxo

= ‖f‖22
∫

G

(1 + |x|)−2prdx.

Assuming −2pr +Q < 0, this last integral is finite.
We have obtained that if r > Q/2p (for instance r = ⌈Q/2p⌉) then pr > Q/2

and
|B(0, 1)|‖Tf‖22 ≤ C‖T‖2Ψ0,pr,⌈Q/2⌉,pr‖f‖22.

This concludes the proof of Theorem 5.4.17. �

Remark 5.4.19. More precisely we have obtained that if T ∈ Ψ0, then

‖Tf‖2 ≤ C‖T‖Ψ0,pr,⌈Q/2⌉,pr‖f‖2,

where r := ⌈ Q2p⌉, and p ∈ R is such that p/2 is the smallest positive integer divisible
by all the weights υ1, . . . , υn.

Theorem 5.4.16 and Theorem 5.4.17 show that any operator of order 0 and of
type (1,0) satisfies the hypotheses of the singular integrals theorem, see Sections
3.2.3 and A.4. Therefore, we have the following corollary:

Corollary 5.4.20. If T ∈ Ψ0 then T extends to a bounded operator on Lp(G) for
any p ∈ (1,∞). Furthermore, there exist constants a, b, c ∈ N0 such that

∀p ∈ (1,∞) ∃C > 0 ∀f ∈ S(G) ‖Tf‖Lp(G) ≤ C‖T‖Ψ0,a,b,c‖f‖Lp(G).

5.5 Symbolic calculus

In this section we present elements of the symbolic calculus of operators with
symbols in the classes Sm

ρ,δ. In particular, we will discuss asymptotic sums of
symbols, adjoints, and compositions.

5.5.1 Asymptotic sums of symbols

We now establish a nilpotent analogue of the asymptotic sum of symbols of de-
creasing orders going to −∞.

Theorem 5.5.1. We assume 1 ≥ ρ ≥ δ ≥ 0. Let {σj}j∈N0 be a sequence of symbols
such that σj ∈ S

mj

ρ,δ with mj strictly decreasing to −∞. Then there exists σ ∈ Sm0

ρ,δ ,

unique modulo S−∞, such that

∀M ∈ N σ −
M∑

j=0

σj ∈ S
mM+1

ρ,δ . (5.43)
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Definition 5.5.2. Under the hypotheses and conclusions of Theorem 5.5.1, we write

σ ∼
∑

j

σj .

Proof. We keep the notation of the statement. We also fix a positive Rockland
operator R of homogeneous degree ν on G. Let χ ∈ C∞(R) with χ|(−∞,1/2) = 0
and χ|[1,∞) = 1. We fix t ∈ (0, 1).

Let us check that for any seminorm ‖ · ‖Sm0
ρ,δ ,a,b,c, there exists a constant

C = Ca,b,c > 0 such that for any t ∈ (0, 1) and any j ∈ N, we have

‖σj(x, π)χ(tπ(R))‖Sm0
ρ,δ ,a,b,c ≤ C‖σj(x, π)‖Sm0

ρ,δ ,a,b,c+ρa+m0−mj
t
m0−mj

ν . (5.44)

Indeed, from the Leibniz formula (see Formula (5.28)), we obtain easily

‖π(I +R)
ρ[αo]−m0−δ[βo]+γ

ν Xβo
x Δαo (σj(x, π)χ(tπ(R)))π(I +R)−

γ
ν ‖L (Hπ)

�
∑

[α1]+[α2]=[αo]

‖π(I +R)
ρ[αo]−m0−δ[βo]+γ

ν Xβo
x Δα1σj(x, π)

Δα2χ(tπ(R)) π(I +R)− γ
ν ‖L (Hπ)

�
∑

[α1]+[α2]=[αo]

‖σj(x, π)‖Sm0
ρ,δ ,[α1],[βo],ρ([αo]−[α1])+m0−mj+|γ|

‖π(I +R)
ρ[α2]−m0+mj+γ

ν Δα2χ(tπ(R))π(I +R)− γ
ν ‖L (Hπ).

By the functional calculus, we have

‖π(I +R)
ρ[α2]−m0+mj+γ

ν Δα2χ(tπ(R))π(I +R)− γ
ν ‖L (Hπ)

≤ ‖π(I +R)
[α2]−m0+mj+γ

ν Δα2χ(tπ(R))π(I +R)− γ
ν ‖L (Hπ)

� sup
k′≤k
λ>0

(1 + λ)
−m0+mj

ν +k′ |∂k′

λ {χ(tλ)}| � t
m0−mj

ν ,

by Proposition 5.3.4 for some k ∈ N0. This shows (5.44).

Let us choose strictly increasing sequences {aℓ}, {bℓ} and {cℓ} of positive
integers. For each ℓ there exists Cℓ > 0 such that for any j ∈ N and t ∈ (0, 1), we
have

‖σj(x, π)χ(tπ(R))‖Sm0
ρ,δ ,aℓ,bℓ,cℓ

≤ Cℓ‖σj(x, π)‖Sm0
ρ,δ ,aℓ,bℓ,cℓ+ρaℓ+m0−mj

t
m0−mj

ν .

We may assume that the constants Cℓ are increasing with ℓ.

We now choose a decreasing sequence of numbers {tj} such that for any
j ∈ N,

tj ∈ (0, 2−j) and Cj sup
x∈G
π∈Ĝ

‖σj(x, π)‖Sm0
ρ,δ ,aj ,bj ,cj+ρaj+m0−mj

t
m0−mj

ν
j ≤ 2−j .
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For any j ∈ N, we define the symbols

σ̃j(x, π) := σj(x, π)χ(tjπ(R)).

For any ℓ ∈ N, the sum

∞∑

j=0

‖σ̃j‖Sm0
ρ,δ ,aℓ,bℓ,cℓ

≤
ℓ∑

j=0

‖σ̃j‖Sm0
ρ,δ ,aℓ,bℓ,cℓ

+

∞∑

j=ℓ+1

2−j ,

is finite. Since Sm0

ρ,δ is a Fréchet space, we obtain that

σ :=
∞∑

j=0

σ̃j ,

is a symbol in Sm0

ρ,δ .

Starting the sequence at mM+1, the same proof gives

∞∑

j=M+1

σ̃j ∈ S
mM+1

ρ,δ .

By Proposition 5.3.4, each symbol given by (1 − χ)(tjπ(R)) is in S−∞. Thus by
Theorem 5.2.22 (ii) and the inclusions (5.31), each symbol given by σj(x, π)(1 −
χ)(tjπ(R)) is in S−∞. Therefore, the symbol given by

σ(x, π)−
M∑

j=0

σj(x, π) =

M∑

j=0

σj(x, π)(1− χ)(tjπ(R)) +
∞∑

j=M+1

σ̃j(x, π),

is in S
mM+1

ρ,δ . This shows (5.43) for σ.
If τ is another symbol as in the statement of the theorem, then for any

M ∈ N,

σ − τ =

⎛
⎝σ −

M∑

j=0

σj

⎞
⎠−

⎛
⎝τ −

M∑

j=0

σj

⎞
⎠

is in SmM+1 . Thus σ − τ ∈ S−∞. �

We note that the proof above does not produce a symbol σ depending con-
tinuously on {σj}, the same as in the abelian case.

5.5.2 Composition of pseudo-differential operators

In this section, we show that the class of operators ∪m∈RΨ
m
ρ,δ is an algebra:
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Theorem 5.5.3. Let 1 ≥ ρ ≥ δ ≥ 0 with δ �= 1 and m1,m2 ∈ R. If T1 ∈ Ψm1

ρ,δ and
T2 ∈ Ψm2

ρ,δ are two pseudo-differential operators of type (ρ, δ), then their composi-

tion T1T2 is in Ψm1+m2

ρ,δ . Moreover, the mapping

(T1, T2) �→ T1T2

is continuous from Ψm1

ρ,δ ×Ψm2

ρ,δ to Ψm1+m2

ρ,δ .

Since any operator in Ψm
ρ,δ maps S(G) to itself continuously (see Theorem

5.2.15), the composition of any two operators in Ψm1

ρ,δ and Ψm2

ρ,δ defines an operator
in L (S(G)).

Let us start the proof of Theorem 5.5.3 with observing that the symbol
of T1T2 is necessarily known and unique at least formally or under favourable
conditions such as between smoothing operators:

Lemma 5.5.4. Let σ1 and σ2 be two symbols in S−∞ and let κ1 and κ2 be their
associated kernels. We set

κx(y) :=

∫

G

κ2,xz−1(yz−1)κ1,x(z)dz, x, y ∈ G.

Then σ(x, π) = π(κx) defines a smooth symbol σ in the sense of Definition 5.1.34.
Furthermore, it satisfies

Op(σ1)Op(σ2) = Op(σ).

and

σ(x, π) =

∫

G

κ1,x(z)π(z)
∗σ2(xz

−1, π) dz, (5.45)

In particular, if σ2(x, π) is independent of x then σ1 ◦ σ2 = σ1σ2.

We will often write
σ := σ1 ◦ σ2.

Proof of Lemma 5.5.4. We keep the notation of the statement. Clearly κ : (x, y) �→
κx(y) is smooth on G×G, compactly supported in x. Furthermore, κx is integrable
in y since

∫

G

|κx(y)|dy ≤
∫

G

∫

G

|κ2(xz
−1, yz−1)κ1(x, z)|dzdy

≤
∫

G

∫

G

|κ2,xz−1(w)|dw |κ1(x, z)|dz

≤ max
x′∈G

∫

G

|κ2,x′(w)|dw
∫

G

|κ1,x(z)|dz.

Therefore, σ(x, π) = π(κx) defines a symbol σ in the sense of Definition 5.1.33.
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Using the Leibniz formula iteratively, one obtains easily that for any βo ∈ Nn
0 ,

X̃βo
x κx(y) is a linear combination of

∫

G

X̃β2

x2=xz−1κ2,x2
(yz−1)X̃β1

x1=xκ1,x1
(z)dz, [β1] + [β2] = [βo].

Hence proceeding as above

∫

G

|X̃βo
x κx(y)|dy �

∑

[β1]+[β2]=[βo]

max
x2∈G

∫

G

|X̃β2
x2
κ2,x2(w)|dw

∫

G

|X̃β1
x κ1,x(z)|dz.

This together with the link between abelian and right-invariant derivatives (see
Section 3.1.5, especially 3.17) implies easily that σ is a smooth symbol in the sense
of Definition 5.1.34.

The properties of κ1 and κ2 (see Theorem 5.4.9) justify the equalities

Op(σ1)Op(σ2)φ(x) =

∫

G

T2φ(y)κ1,x(y
−1x)dy

=

∫

G

∫

G

φ(z)κ2,y(z
−1y)κ1,x(y

−1x)dzdy

=

∫

G

∫

G

φ(z)κ2,xw−1(z−1xw−1)κ1,x(w)dzdw

=

∫

G

φ(z)κx(z
−1x)dz = φ ∗ κx(x),

with the change of variables y−1x = w. This yields T1T2 = Op(σ). We have then
finally

σ(x, π) = κ̂x(π) =

∫

G

κx(y)π(y)
∗dy

=

∫

G

∫

G

κ2,xz−1(yz−1)κ1,x(z)π(z)
∗π(yz−1)∗dydz

=

∫

G

κ1,x(z)π(z)
∗σ2(xz

−1, π) dz,

after an easy change of variable. �

From Lemma 5.5.4 and its proof, we see that if T = Op(σ1)Op(σ2) then
the symbol σ of T is not σ1σ2 in general, unless the symbol {σ2(x, π)} does not
depend on x ∈ G for instance. However, we can link formally σ with σ1 and σ2

in the following way: using the vector-valued Taylor expansion (see (5.27)) for
σ2(x, π) in the variable x, we have

σ2(xz
−1, π) ≈

∑

α

qα(z
−1)Xα

x σ2(x, π),
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Thus, implementing this in the expression (5.45), we obtain informally

σ(x, π) ≈
∫

G

κ1,x(z)π(z)
∗
∑

α

qα(z
−1)Xα

x σ2(x, π) dz

=
∑

α

∫

G

qα(z
−1)κ1,x(z)π(z)

∗dz Xα
x σ2(x, π)

=
∑

α

Δασ1(x, π) X
α
x σ2(x, π).

We will show that in fact these formal manipulations effectively give the asym-
potitcs, see Corollary 5.5.8. From Theorem 5.2.22, we know that if σ1 ∈ Sm1

ρ,δ ,
σ2 ∈ Sm2

ρ,δ then

Δασ1 Xα
x σ2 ∈ S

m1+m2−(ρ−δ)[α]
ρ,δ . (5.46)

The main problem with the informal approach above is that one needs to estimate
the remainder

σ1 ◦ σ2 −
∑

[α]≤M

Δασ1 Xα
x σ2.

We will first show how to estimate this remainder in the case of ρ > δ using the
following property.

Lemma 5.5.5. We fix a positive Rockland operator of homogeneous degree ν. Let
m1,m2 ∈ R, 1 ≥ ρ ≥ δ ≤ 0 with ρ �= 0 and δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We
assume that

{
m2+δ(cβ0

+υn)

1−δ ≤ νM1 < M −Q−m1 − δ[β0] + ρ(Q+ υ1),

m2 + δ(cβ0
+ υn +M) ≤ νM1 < −Q−m1 − δ[β0] + ρ(Q+M),

(5.47)

where

cβ0
:= max

[β02]≤[β0]
[β′]≥[β02], |β′|≥|β02|

[β′].

If M ≥ νM1, only the second condition may be assumed.
Then there exist a constant C > 0, and two pseudo-norms ‖ · ‖

S
m1,R

ρ,δ ,a1,b1
,

‖ · ‖Sm2
ρ,δ ,0,b2,0

, such that for any σ1, σ2 ∈ S−∞ and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ1 ◦ σ2(x, π)−

∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

)
‖L (Hπ)

≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,0,b2,0
.

In the proof of Lemma 5.5.5, we will use the following easy consequence of
the estimates of the kernels given in Theorem 5.2.22.
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Lemma 5.5.6. Let σ ∈ Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0 with ρ �= 0. We denote by κx

its associated kernel. For any γ ∈ R, if γ + Q > max(m+Q
ρ , 0) then there exist a

constant C > 0 and a seminorm ‖ · ‖Sm
ρ,δ,a,b,c

such that

∫

G

|z|γ |κx(z)|dz ≤ C‖σ‖Sm
ρ,δ,a,b,c

.

We may replace ‖ · ‖Sm
ρ,δ,a,b,c

with ‖ · ‖Sm,R
ρ,δ ,a,b.

Proof of Lemma 5.5.6. We keep the notation and the statement and write

∫

G

|z|γ |κx(z)|dz =

∫

|z|≥1

+

∫

|z|<1

.

The estimate for large |z| given in Theorem 5.4.1 easily implies that the integral∫
|z|≥1

is bounded up to a constant of γ, m, ρ, δ, by a seminorm of σ. The estimate

for small |z| yield

∫

|z|≤1

|z|γ |κx(z)|dz �

⎧
⎪⎨
⎪⎩

∫
|z|≤1

|z|γ−m+Q
ρ dz if m+Q > 0,∫

|z|≤1
|z|γ | ln |z||dz if m+Q = 0,∫

|z|≤1
|z|γdz if m+Q < 0.

Using the polar change of coordinates yields the result. �

Proof of Lemma 5.5.5, case β0 = 0. By Lemma 5.5.4 and the observations that
follow, we have

σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

=

∫

G

κ1,x(z)π(z)
∗

⎛
⎝σ2(xz

−1, π)−
∑

[α]≤M

qα(z
−1)Xα

x σ2(x, π)

⎞
⎠ dz

=

∫

G

κ1,x(z)π(z)
∗Rσ2(·,π)

x,M (z−1)dz,

where R
σ2(·,π)
x,M denotes the remainder of the (vector-valued) Taylor expansion of

v �→ σ2(xv, π) of order M at 0. We now introduce powers of π(I +R) near π(z)∗

π(z)∗ = π(z)∗π(I +R)M1π(I +R)−M1 =
∑

[β]≤νM1

π(z)∗π(X)βπ(I +R)−M1

and we notice that

π(z)∗π(X)β = (−1)|β|
(
π(X)βπ(z)

)∗
= (−1)|β|

(
X̃β

z π(z)
)∗

. (5.48)
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We integrate by parts and obtain

σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

=
∑

[β1]+[β2]≤νM1

∫

G

X̃β1
z1=zκ1,x(z1)π(z)

∗X̃β2
z2=zR

π(I+R)−M1σ2(·,π)
x,M (z−1

2 )dz

=
∑

[β1]+[β2]≤νM1

∫

G

X̃β1
z1=zκ1,x(z1)π(z)

∗Rπ(I+R)−M1Xβ2σ2(·,π)
x,M−[β2]

(z−1)dz

by Lemma 3.1.50. Taking the operator norm, we have

‖σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)‖L (Hπ)

�
∑

[β1]+[β2]≤νM1

∫

G

|X̃β1
z1=zκ1,x(z1)| ‖Rπ(I+R)−M1Xβ2σ2(·,π)

x,M−[β2]
(z−1)‖L (Hπ)dz.

The adapted statement of Taylor’s estimates remains valid for vector-valued func-
tion, see Theorem 3.1.51 and Remark 3.1.52 (3), so we have

‖Rπ(I+R)−M1Xβ2σ2(·,π)
x,M−[β2]

(z−1)‖L (Hπ)

�
∑

|γ|≤⌈(M−[β2])+⌋+1
[γ]>(M−[β2])+

|z|[γ] sup
x1∈G

‖π(I +R)−M1Xγ
x1
Xβ2

x1
σ2(x1, π)‖L (Hπ).

We have obtained that

‖σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)‖L (Hπ)

�
∑

[γ]>(M−[β2])+
|γ|≤⌈(M−[β2])+⌋+1

∫

G

|z|[γ]|X̃β1
z1=zκ1,x(z1)|dz

sup
x1∈G

‖π(I +R)−M1Xγ
x1
Xβ2

x1
σ2(x1, π)‖L (Hπ).

If M − [β2] ≤ 0, the integrals above are finite by Lemma 5.5.6 and the suprema
are bounded by a Sm2

ρ,δ -seminorm in σ2 when

{
m1 + [β1] +Q < ρ(Q+ υ1)
−νM1 +m2 + δ(υn + [β2]) ≤ 0

,

and it suffices {
m1 + νM1 −M +Q < ρ(Q+ υ1)
−νM1 +m2 + δ(υn + νM1) ≤ 0

.
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If M − [β2] > 0, the integrals above are finite by Lemma 5.5.6 and the suprema
are bounded by a Sm2

ρ,δ -seminorm in σ2 when

{
m1 + [β1] +Q < ρ(Q+ [γ])
−νM1 +m2 + δ([γ] + [β2]) ≤ 0

,

and it suffices {
m1 + νM1 +Q < ρ(Q+M)
−νM1 +m2 + δ(υn +M) ≤ 0

.

Our conditions on M and M1 ensure that the sufficient conditions above are
satisfied. Collecting the various estimates yields the statement in the case ρ �= 0
and β0 = 0. �

Proof of Lemma 5.5.5, general case. Using Formula (5.45), the Leibniz property
for left invariant vector fields easily implies that

Xβ0
x σ1 ◦ σ2(x, π) =

∑

[β01]+[β02]=[β0]

∫

G

Xβ01
x κ1,x(z)π(z)

∗Xβ02
x2=xσ2(x2z

−1, π) dz.

Proceeding as in the case β0 = 0, we have

Xβ0
x

⎛
⎝σ1 ◦ σ2(x, π)−

∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

⎞
⎠

=
∑

[β01]+[β02]=[β0]

∫

G

Xβ01
x κ1,x(z)π(z)

∗R
Xβ02

x2=xσ2(x2 ·,π)
0,M (z−1) dz.

Introducing the powers of π(I +R), each integral on the right-hand side above is
equal to

∑

[β1]+[β2]≤νM1

∫

G

X̃β1
z1=zX

β01
x κ1,x(z1)π(z)

∗

R
π(I+R)−M1Xβ02

x2=xX
β2σ2(x2 ·,π)

0,M−[β2]
(z−1) dz, (5.49)

by Corollary 3.1.53. We use a more precise version for the Taylor remainder than
in the proof of the case β0 = 0:

‖Rπ(I+R)−M1Xβ02
x2=xX

β2σ2(x2 ·,π)
0,M−[β2]

(z−1)‖L (Hπ)

≤ CM

∑

[γ]>(M−[β2])+
|γ|≤⌈(M−[β2])+⌋+1

|z|[γ]S(z,M1, γ, β02, β2),

where S(z,M1, γ, β02, β2) denotes the supremum

S(z,M1, γ, β02, β2) := sup
|y|≤η⌈M⌋+1|z|

‖π(I +R)−M1Xβ
y X

β02
x2=xX

β2
y σ2(x2y, π)‖L (Hπ).
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For any reasonable function f : G→ C, the definitions of left and right-invariant
vector fields imply

Xβ
x f(xy) = X̃β

y f(xy) (5.50)

and the properties of left or right-invariant vector fields (see Section 3.1.5) then
yield

Xβ
x f(xy) = X̃β

y f(xy) =
∑

|β′|≤|β|
[β′]≥[β]

Qβ,β′(y)Xβ′

y f(xy), (5.51)

where Qβ,β′ are ([β′]− [β])-homogeneous polynomials. Therefore

S(z,M1, γ, β02, β2) �
∑

[β′
02]≥[β02]

|β′
02|≤|β02|

|z|[β′
02]−[β02]S̃(M1, [γ] + [β′

02] + [β2]),

where S̃(M1, [β0]) denotes the supremum

S̃(M1, [β0]) := sup
[γ′]=[β0]

sup
x1∈G

‖π(I +R)−M1Xγ′

x1
σ2(x1, π)‖L (Hπ).

We then obtain that (5.49) is bounded up to a constant by

∑

[β1]+[β2]≤νM1

∫

G

|X̃β1
z1=zX

β01
x κ1,x(z1)|

∑

[γ]>(M−[β2])+
|γ|≤⌈(M−[β2])+⌋+1

|z|[γ]

∑

[β′
02]≥[β02]

|β′
02|≤|β02|

|z|[β′
02]−[β02]S̃(M1, [γ] + [β′

02] + [β2]) dz.

We conclude in the same way as in the case β0 = 0. �

To take into account the difference operator, we will use the following obser-
vation.

Lemma 5.5.7. Let σ1, σ2 ∈ S−∞. For any α ∈ Nn
0 , Δ

α(σ1 ◦ σ2) is a linear com-
bination independent of σ1, σ2 of (Δα1σ1) ◦ (Δα2σ2), over α1, α2 ∈ Nn

0 satisfying
[α1] + [α2] = [α]. It is the same linear combination as in the Leibniz rule (5.28).

Proof of Lemma 5.5.7. We keep the notation of Lemma 5.5.4 and adapt the proof
of the Leibniz rule for Δα given in Proposition 5.2.10. By Proposition 5.2.3 (4),
we have

q̃α(y)κx(y) =

∫

G

q̃α(yz
−1z)κ2,xz−1(yz−1)κ1,x(z)dz

=
∑

[α1]+[α2]=[α]

∫

G

q̃α2(yz
−1)κ2,xz−1(yz−1) q̃α1(z)κ1,x(z)dz,

where
∑

denotes a linear combination. Lemma 5.5.4 implies easily the statement.
�
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Proof of Theorem 5.5.3 with ρ > δ. We assume ρ > δ. We fix a positive Rockland
operator R of homogeneous degree ν. Let us show that for any α0, β0 ∈ Nn

0 , and
M0 ∈ N, there exists M ≥ M0, a constant C > 0 and seminorms ‖ · ‖

S
m1,R

ρ,δ ,a1,b1
,

‖ · ‖Sm2
ρ,δ ,a2,b2,c2

such that for any σ1, σ2 ∈ S−∞ we have

∥∥Xβ0
x Δα0τM (x, π) π(I +R)−

m−(ρ−δ)M0−ρ[α0]+δ[β0]
ν

∥∥
L (Hπ)

≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,a2,b2,c2
, (5.52)

where we have denoted m = m1 +m2 and

τM := σ1 ◦ σ2 −
∑

[α]≤M

Δασ1X
α
x σ2.

By Lemma 5.5.7, it suffices to show (5.52) only for α0 = 0.
Let β0 ∈ N0 and M0 ∈ N. We fix m′

2 := −m1 + (ρ− δ)M0 − δ[β0]. As ρ > δ,
we can find M ≥ max(M0, υ1) such that

(−Q−m1 − δ[β0] + ρ(Q+M))− (m′
2 + δ(cβ0 + υn +M)) ≥ ν.

This shows that we can findM1 satisfying the second condition in (5.47) form1,m
′
2

and therefore also the first. Hence we can apply Lemma 5.5.5 to M,M1 and the

symbols σ1 and σ2π(I+R)−
m−(ρ−δ)M0+δ[β0]

ν , with orders m1 and m′
2. The left-hand

side of (5.52) is then bounded up to a constant by

‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2π(I +R)−

m−(ρ−δ)M0+δ[β0]
ν ‖

S
m′

2
ρ,δ ,0,b2,0

� ‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,0,b2,c2
.

Hence (5.52) is proved.
Using (5.46), classical considerations imply that (5.52) yield that for any

M0 ∈ N0, and any seminorm ‖ · ‖
S

m−M0(ρ−δ),R

ρ,δ ,a,b
, there exist a constant C > 0 and

two seminorms ‖ · ‖
S

m1,R

ρ,δ ,a1,b1
, ‖ · ‖Sm2

ρ,δ ,a2,b2,c2
such that for any σ1, σ2 ∈ S−∞ we

have

‖τM0‖Sm−M0(ρ−δ),R

ρ,δ ,a,b
≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,a2,b2,c2
. (5.53)

In Section 5.5.4, we will see that for any seminorm ‖ · ‖Sm̃
ρ,δ,ã,b̃,c̃

there exist a

constant C > 0 and a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b such that

∀σ ∈ S−∞ ‖σ‖Sm̃
ρ,δ,ã,b̃,c̃

≤ C‖σ‖Sm̃,R
ρ,δ ,a,b. (5.54)

Inequalities (5.54) together with (5.53) and Lemma 5.4.11 (to pass from S−∞ to
Sm1

ρ,δ , S
m2

ρ,δ ) conclude the proof of Theorem 5.5.3 in the case ρ > δ. �
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Note that the proof of the case ρ > δ above also shows:

Corollary 5.5.8. We assume 1 ≥ ρ > δ ≥ 0. If σ1 ∈ Sm1

ρ,δ and σ2 ∈ Sm2

ρ,δ , then there
exists a unique symbol σ in Sm

ρ,δ, m = m1 +m2, such that

Op(σ) = Op(σ1)Op(σ2). (5.55)

Moreover, for any M ∈ N0, we have

{σ −
∑

[α]≤M

Δασ1 Xα
x σ2} ∈ S

m−(ρ−δ)M
ρ,δ . (5.56)

Furthermore, the mapping
{

Sm
ρ,δ −→ S

m−(ρ−δ)M
ρ,δ

σ �−→ {σ −∑
[α]≤M Δασ1 Xα

x σ2}
,

is continuous.

Consequently, we can also write

σ ∼
∞∑

j=0

⎛
⎝ ∑

[α]=j

Δασ1 Xα
x σ2

⎞
⎠ , (5.57)

in the sense of an asymptotic expansion as in Definition 5.5.2.

The case ρ = δ is more delicate to prove but relies on the same kind of
arguments as above. If ρ = δ, the asymptotic formula (5.56) does not bring any
improvement and, in this sense, is not interesting.

We will need the following variation of the properties given in Lemma 5.5.6
obtained using Corollary 5.4.3 instead of Theorem 5.4.1.

Lemma 5.5.9. Let σ ∈ Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. We denote by κx its associated

kernel. Let γ ≥ 0 and m < −Q. Then there exist a constant C > 0 and a seminorm
‖ · ‖Sm

ρ,δ,a,b,c
such that

∫

G

|z|γ |κx(z)|dz ≤ C‖σ‖Sm
ρ,δ,a,b,c

.

We may replace ‖ · ‖Sm
ρ,δ,a,b,c

with ‖ · ‖Sm,R
ρ,δ ,a,b

Proof of Lemma 5.5.9. By Part 2 of Corollary 5.4.3, z �→ |κx(z)| is a continuous
bounded function if m− ργ < −Q hence the integral

∫
|z|<1

|z|γ |κx(z)|dz is finite.

By the Cauchy-Schwartz inequality, we have

∫

|z|>1

|z|γ |κx(z)|dz ≤
√∫

|z|>1

|z|−Q− 1
2

√∫

|z|>1

|z|2γ+Q+ 1
2 |κx(z)|2dz

�
∑

[α]=M

‖q̃ακx‖L2(G),
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where M/2 ∈ N is the smallest integer divisible by υ1, . . . , υn satisfying M ≥
2γ+Q+ 1

2 , having chosen (3.21) with p = M for quasi-norm. By Part 1 of Corollary
5.4.3, the sum above is finite when m− ρM < −Q/2, which holds true. �

Using Lemma 5.5.9 instead of Lemma 5.5.6 in the proof of Lemma 5.5.10
produces the following result.

Lemma 5.5.10. We fix a positive Rockland operator of homogeneous degree ν. Let
m1 ∈ R, 1 ≥ ρ ≥ δ ≤ 0 with δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We assume that
{

m1 + νM1 < −Q
−νM1 +m2 + δ(cβ0 + υn +max(νM1,M)) ≤ 0

,

where
cβ0 := max

[β02]≤[β0]
[β′]≥[β02], |β′|≥|β02|

[β′].

Then there exist a constant C > 0, and two seminorms ‖ · ‖
S

m1,R

ρ,δ ,a1,b1
, ‖ ·

‖Sm2
ρ,δ ,0,b2,0

, such that for any σ1, σ2 ∈ S−∞ and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ1 ◦ σ2(x, π)−

∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

)
‖L (Hπ)

≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,0,b2,0
.

The details of the proof of Lemma 5.5.10 are left to the reader. The first
inequality in the statement just above shows that we will require the ability to
choosem1 as negative as one wants. We can do this thanks to the following remark:

Lemma 5.5.11. Let σ1, σ2 ∈ S−∞. For any X ∈ g and any σ1, σ2 ∈ S−∞, we have

(σ1π(X)) ◦ σ2 = σ1 ◦ (Xxσ2) + σ1 ◦ (π(X)σ2).

More generally, for any β ∈ Nn
0 , we have

{σ1π(X)β} ◦ σ2 =
∑

[β1]+[β2]=[β]

σ1 ◦ {π(X)β1Xβ2
x σ2},

where
∑

denotes a linear combination independent of σ1, σ2.

Note that in the expression above, π(X)β1 and Xβ2
x commute.

Proof of Lemma 5.5.7. We keep the notation of Lemma 5.5.4. Using integration
by parts and the Leibniz formula, we obtain

(σ1π(X)) ◦ σ2 (x, π) =

∫

G

X̃z1=zκ1,x(z1)π(z)
∗σ2(xz

−1, π) dz

= −
∫

G

κ1,x(z)
(
X̃z1=zπ(z1)

∗σ2(xz
−1, π) + π(z)∗X̃z2=zσ2(xz

−1
2 , π)

)
dz

=

∫

G

κ1,x(z)
(
π(z)∗π(X)σ2(xz

−1, π) + π(z)∗Xx2=xz−1σ2(x2, π)
)
dz.
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This shows the first formula. The next formula is obtained recursively. �

We can now sketch the proof of Theorem 5.5.3 in the case ρ = δ.

Sketch of the proof of Theorem 5.5.3 with ρ = δ. We assume ρ = δ ∈ [0, 1). Writ-
ing σ1 = σ1π(I + R)−Nπ(I + R)N and using Lemma 5.5.11, it suffices to prove
(5.52) for m1 as negative as one wants. We proceed as in the proof of the case ρ > δ
replacing Lemma 5.5.5 with Lemma 5.5.10. The details are left to the reader. �

5.5.3 Adjoint of a pseudo-differential operator

Here we prove that the classes Ψm
ρ,δ are stable under taking the formal adjoints of

operators.

Theorem 5.5.12. We assume 1 ≥ ρ ≥ δ ≥ 0 with δ �= 1 and m ∈ R. If T ∈ Ψm
ρ,δ

then its formal adjoint T ∗ is also in Ψm
ρ,δ. Moreover, the mapping T �→ T ∗ is

continuous on Ψm
ρ,δ.

Recall that the formal adjoint of an operator T : S(G) → S ′(G) is the
operator T ∗ : S(G)→ S ′(G) defined by

∀φ, ψ ∈ S(G)

∫

G

Tφ(x) ψ(x) dx =

∫

G

φ(x) T ∗ψ(x) dx.

We observe that the operator T = Op(σ) ∈ Ψm
ρ,δ maps S(G) to itself contin-

uously (see Theorem 5.2.15) and therefore has a formal adjoint T ∗.
Before beginning the proof of Theorem 5.5.12, let us point out some of its

consequences.

Corollary 5.5.13. 1. We assume 1 ≥ ρ ≥ δ ≥ 0 with δ �= 1, and m ∈ R.

Any T ∈ Ψm
ρ,δ extends uniquely to a continuous operator on S ′(G). Fur-

thermore the mapping T �→ T from Ψm
ρ,δ to the space L (S ′(G)) of continuous

operators on S ′(G) is linear and continuous.

2. Any smoothing operator T ∈ Ψ−∞ maps continuously the space E ′(G) of
compactly supported distributions to the Schwartz space S(G). Furthermore
the mapping T �→ T from Ψ−∞ to the space L (E ′(G),S(G)) of continuous
mappings from E ′(G) to S(G) is linear and continuous.

Proof of Corollary 5.5.13. We admit Theorem 5.5.12 (whose proof is given below).
The statement then follows by classical arguments of duality and Theorem 5.2.15
for Part 1, and Part 2 of Theorem 5.4.9 for Part 2. �

Let us start the proof of Theorem 5.5.12 by observing that the symbol σ(∗)

of the adjoint T ∗ of T = Op(σ) is necessarily known and unique at least formally
or under favourable conditions such as in the case of a smoothing operator:
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Lemma 5.5.14. Let σ ∈ S−∞ and let κ : (x, y) �→ κx(y) be its associated kernel.
We set

κ(∗)
x (y) := κ̄xy−1(y−1), x, y ∈ G.

Then κ(∗) : (x, y) �→ κ
(∗)
x (y) is smooth on G×G and for every α ∈ Nn

0 , x �→ Xακ
(∗)
x

is continuous from G to S(G).

The symbol σ(∗) defined via

σ(∗)(x, π) := FG(κ
(∗)
x )(π), (x, π) ∈ G× Ĝ,

is a smooth symbol in the sense of Definition 5.1.34 and satisfies

(Op(σ))∗ = Op(σ(∗)).

In particular, if σ does not depend on x, then σ(∗) = σ∗.

Note that this operation is an involution since

κx(y) = κ̄
(∗)
xy−1(y

−1).

Recall that if σ = {σ(x, π), (x, π) ∈ G× Ĝ} then we have defined the adjoint
symbol

σ∗ = {σ(x, π)∗, (x, π) ∈ G× Ĝ},

(see Theorem 5.2.22). Hence we may write

σ∗(x, π) := σ(x, π)∗.

Proof of Lemma 5.5.14. By Corollary 3.1.30, we have

Xβo
x {κ(∗)

x (y)} = Xβo
x {κ̄xy−1(y−1)} = (−1)|βo|X̃βo

y1=y−1{κ̄xy1
(y−1)}

= (−1)|βo|
∑

|β|≤|βo|, [β]≥[βo]

Qβo,β(y
−1)Xβ

y1=y−1{κ̄xy1
(y−1)}

= (−1)|βo|
∑

|β|≤|βo|, [β]≥[βo]

Qβo,β(y
−1)Xβ

x1=xy−1{κ̄x1
(y−1)},

where the Qβo,β ’s are ([βo] − [β])-homogeneous polynomials. The regularity of κ

described in Theorem 5.4.9 implies that κ(∗) : (x, y) �→ κ
(∗)
x (y) is smooth in x and

y (but maybe not compactly supported in x), and it is also Schwartz in y in such

a way that all the mappings G ∋ x �→ Xα
x κ

(∗)
x ∈ S(G) are continuous. Clearly

σ(∗)(x, π) = π(κ
(∗)
x ) defines a smooth symbol σ(∗).
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Let φ, ψ ∈ S(G) and let x ∈ G. The regularity of κ described in Theorem
5.4.9 justifies easily the following computations:

∫

G

(Op(σ)φ)(x)ψ(x)dx =

∫

G

φ ∗ κx(x)ψ̄(x)dx =

∫

G

∫

G

φ(z)κx(z
−1x)ψ̄(x)dzdx

=

∫

G

∫

G

φ(z)κ̄
(∗)
x(z−1x)−1((z

−1x)−1)ψ̄(x)dzdx

=

∫

G

∫

G

φ(z)κ
(∗)
z (x−1z)ψ(x)dzdx

=

∫

G

φ(z)ψ ∗ κ(∗)
z (z)dz.

This shows that Op(σ)∗ψ(z) = ψ ∗ κ(∗)
z (z). �

In general, σ(∗) is not the adjoint σ∗ of the symbol σ, unless for instance
it does not depend on x ∈ G. However, we can perform formal considerations to
link σ(∗) with σ∗ in the following way: using the Taylor expansion for κ∗

x in x (see
equality (5.27)), we obtain

κ(∗)
x (y) = κ∗

xy−1(y) ≈
∑

α

qα(y
−1)Xα

x κ
∗
x(y) =

∑

α

q̃α(y)X
α
x κ

∗
x(y).

Thus, taking the group Fourier transform at π ∈ Ĝ, we get

σ(∗)(x, π) = π(κ(∗)
x ) ≈

∑

α

π(q̃α(y)X
α
x κ

∗
x(y)) =

∑

α

ΔαXα
x σ(x, π)

∗.

From Theorem 5.2.22 we know that if σ ∈ Sm
ρ,δ then

ΔαXα
x σ(x, π)

∗ ∈ S
m−(ρ−δ)[α]
ρ,δ . (5.58)

From these formal computations we see that the main problem is to estimate the
remainder coming from the use of the Taylor expansion. This is the purpose of the
following technical lemma.

Lemma 5.5.15. We fix a positive Rockland operator of homogeneous degree ν. Let
m ∈ R, 1 ≥ ρ ≥ δ ≥ 0 with ρ �= 0 and δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We
assume that M ≥ νM1 and (ρ − δ)M + ρQ > m + δ[β0] + νM1 + Q. Then there
exist a constant C > 0, and a seminorm ‖ · ‖Sm

ρ,δ,a,b,0
, such that for any σ ∈ S−∞

and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ(∗)(x, π)−

∑

[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ) ≤ C‖σ‖Sm

ρ,δ,a,b,0
.
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Proof of Lemma 5.5.15, case β0 = 0. By Lemma 5.5.14 and the observations that
follow, we have

σ(∗)(x, π)−
∑

[α]≤M

ΔαXα
x σ

∗(x, π)

=

∫

G

⎛
⎝κ∗

xz−1(z)−
∑

[α]≤M

qα(z
−1)Xα

x κ
∗
x(z)

⎞
⎠π(z)∗dz

=

∫

G

R
κ∗
x(z)

x,M (z−1)π(z)∗dz,

where R
κ∗
x(z)

x,M denotes the remainder of the (vector-valued) Taylor expansion of
v �→ κ∗

xv(z) of order M at 0. Using (5.48), we can integrate by parts to obtain
(
σ(∗)(x, π)−

∑

[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1

=
∑

[β1]+[β2]≤νM1

∫

G

X̃β1
z1=zR

X̃β2
z2=zκ

∗
x(z2)

x,M (z−1
1 )π(z)∗dz

=
∑

[β1]+[β2]≤νM1

∫

G

R
X̃β2

z2=zX
β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)π(z)∗dz.

Taking the operator norm, we have

‖
(
σ(∗)(x, π)−

∑

[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ)

�
∑

[β1]+[β2]≤νM1

∫

G

|RX̃β2
z2=zX

β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)|dz.

For |z| < 1, we will use Taylor’s theorem, see Theorem 3.1.51:

|RX̃β2
z2=zX

β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)| �

∑

|γ|≤⌈(M−[β1])+⌋+1
[γ]>(M−[β1])+

|z|[γ] sup
x1∈G

|Xγ
z X̃

β2
z2=zX

β1
x1
κ∗
x1
(z2)|,

together with the estimate for z near the origin given in Theorem 5.4.1. The link
between left and right derivatives, see (1.11), implies

sup
x1∈G

|Xγ
z X̃

β2
z2=zX

β1
x1
κ∗
x1
(z2)| = sup

x1∈G
|Xγ

zX
β2
z2=zX

β1
x1
κx1(z2)|.

Proceeding as in the proof of Lemma 5.5.6, we obtain that the integral
∫

|z|<1

|RX̃β2
z2=zX

β1
x κ∗

x(z2)

x,M−[β1]
(z−1)|dz

�
∑

|γ|≤⌈(M−[β1])+⌋+1
[γ]>(M−[β1])+

∫

|z|<1

|z|[γ] sup
x1∈G

|Xγ
x1
Xβ2

z2=zX
β1
x1
κx1

(z2)|dz
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is finite whenever [γ] + Q > (m + [β2] + δ([γ] + [β1]) + Q)/ρ with the indices
as above. These conditions are implied by the hypotheses of the statement. The
estimates for z large given in Theorem 5.4.1 show directly that the integral

∫

|z|>1

|RX̃β2
z2=zX

β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)|dz,

is finite. Collecting the various estimates yields the statement in the case ρ �= 0
and β0 = 0. �

Proof of Lemma 5.5.15, general case. We proceed as above and introduce the de-
rivatives with respect to x. We obtain

Xβ0
x

(
σ(∗)(x, π)−

∑

[α]≤M

ΔαXα
x σ

∗(x, π)
)
=

∫

G

R
Xβ0

x κ∗
x ·(z)

0,M (z−1)π(z)∗dz.

And adding (I +R)M1 , we have

Xβ0
x

(
σ(∗)(x, π)−

∑

[α]≤M

ΔαXα
x σ

∗(x, π)
)
(I +R)M1

=
∑

[β1]+[β2]≤νM1

∫

G

R
X̃β2

z2=zX
β1
x1

Xβ0
x κ∗

xx1
(z2)

x1=0,M−[β1]
(z−1)π(z)∗dz.

Taking the operator norm, we have

‖Xβ0
x

(
σ(∗)(x, π)−

∑

[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ)

�
∑

[β1]+[β2]≤νM1

∫

G

|RX̃β2
z2=zX

β1
x1

Xβ0
x κ∗

xx1
(z2)

x1=0,M−[β1]
(z−1)|dz.

For |z| < 1, we use the more precise version of Taylor’s theorem than in the case
β0 = 0:

|RX̃β2
z2=zX

β1
x1

Xβ0
x κ∗

xx1
(z2)

x,M−[β1]
(z−1)|

�
∑

|γ|≤⌈(M−[β1])+⌋+1
[γ]>(M−[β1])+

|z|[γ] sup
|y|≤η⌈(M−[β1])+⌋+1|z|

|Xγ
y X̃

β2
z2=zX

β1
y Xβ0

x κ∗
xy(z2)|.

We proceed as in the proof of Lemma 5.5.5, that is, we use (5.51) to obtain

sup
|y|≤η⌈(M−[β1])+⌋+1|z|

|Xγ
y X̃

β2
z2=zX

β1
y Xβ0

x κ∗
xy(z2)|

�
∑

[β′
0]≥[β0]

|β′
0|≤|β0|

|z|[β′
0]−[β0] sup

x1∈G
[γ0]=[γ]+[β′

0]

|Xγ0
x1
X̃β2

z2=zκ
∗
x1
(z2)|.

We conclude by adapting the case β0 = 0. �
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To take into account the difference operator, we will use the following obser-
vation.

Lemma 5.5.16. For any α ∈ Nn
0 and σ ∈ S−∞, Δασ(∗) can be written as a linear

combination (independent of σ) of {Δα′

σ}(∗) over α′ ∈ Nn
0 , [α

′] = [α]. This is
the same linear combination as when writing Δασ∗ as a linear combination of
{Δα′

σ}∗.
Proof of Lemma 5.5.16. For σ ∈ S−∞, let κσ be the kernel associated with the
symbol σ and similarly for any other symbol.

Let us prove Part 1. We have

{q̃ακσ(∗),x}(y) = q̃α(y)κ̄σ,xy−1(y−1).

As q̄α is a [α]-homogeneous polynomial, by Proposition 5.2.3, q̃α is a linear com-
bination of q̃α′ over multi-indices α′ ∈ Nn

0 satisfying [α′] = [α]. Hence

{q̃ακσ(∗),x}(y) =
∑

[α′]=[α]

q̃α′κσ,xy−1(y−1) =
∑

[α′]=[α]

{q̃α′κσ}(∗)(y),

where
∑

means taking a linear combination. Taking the Fourier transform, we
obtain

FG{q̃ακσ(∗),x}(π) = Δασ(∗)(x, π) =
∑

[α′]=[α]

{Δα′

σ}(∗).

�

We can now prove Theorem 5.5.12 in the case ρ > δ.

Proof of Theorem 5.5.12 with ρ > δ. We assume ρ > δ. We fix a positive Rockland
operator of homogeneous degree ν. Let us show that for any α0, β0 ∈ Nn

0 , and
M0 ∈ N, there exists M ≥ M0, a constant C > 0 and a seminorm ‖ · ‖Sm

ρ,δ,a1,b1,0,

such that for any σ ∈ S−∞ we have

∥∥Xβ0
x Δα0τM (x, π) π(I +R)−

m−(ρ−δ)M0−ρ[α0]+δ[β0]
ν

∥∥
L (Hπ)

≤ C‖σ‖Sm
ρ,δ,a1,b1,0, (5.59)

where we have denoted τM := σ(∗) − ∑
[α]≤M ΔαXα

x σ
∗. By Lemma 5.5.16, it

suffices to show (5.59) only for α0 = 0.
Let β0 ∈ N0 and M0 ∈ N. Let M1 ∈ N0 be the smallest non-negative integer

such that

−m− (ρ− δ)M0 + δ[β0]

ν
≤M1.

We choose M ≥ max(M0, νM1) such that (ρ− δ)M + ρQ > m+ δ[β0] + νM1 +Q.
This is possible as ρ > δ. Then (5.59) follows from the application of Lemma 5.5.15
to M,M1 and the symbol σ.
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Using (5.58), classical considerations imply that (5.59) yields that for any
M0 ∈ N0, and any seminorm ‖ · ‖

S
m−M0(ρ−δ),R

ρ,δ ,a,b
, there exist a constant C > 0 and

a seminorm ‖ · ‖Sm
ρ,δ,a1,b1,0, such that for any σ1, σ2 ∈ S−∞ we have

‖τM0
‖
S

m−M0(ρ−δ),R

ρ,δ ,a,b
≤ C‖σ‖Sm

ρ,δ,a1,b1,0.

We can then conclude as in the proof of Theorem 5.5.3 in the case ρ > δ. �

In fact, we have obtained a much more precise result:

Corollary 5.5.17. We assume 1 ≥ ρ > δ ≥ 0. If σ ∈ Sm
ρ,δ, then there exists a unique

symbol σ(∗) in Sm
ρ,δ such that

(Op(σ))∗ = Op(σ(∗)).

Furthermore, for any M ∈ N0,

{σ(∗)(x, π)−
∑

[α]≤M

Xα
xΔ

ασ∗(x, π)} ∈ S
m−(ρ−δ)M
ρ,δ .

Moreover, the mapping
{

Sm
ρ,δ −→ S

m−(ρ−δ)M
ρ,δ

σ �−→ {σ(∗)(x, π)−∑
[α]≤M Xα

xΔ
ασ∗(x, π)} ,

is continuous.

Consequently, we can also write

σ(∗) ∼
∞∑

j=0

⎛
⎝ ∑

[α]=j

Xα
xΔ

ασ∗

⎞
⎠ , (5.60)

where the asymptotic was defined in Definition 5.5.2.

As for composition, in the case ρ = δ, the asymptotic formula does not bring
any improvement and, in this sense, is not interesting. The proof of this case is
more delicate to prove but relies on the same kind of arguments as above. Using
Lemma 5.5.9 instead of Lemma 5.5.6 in the proof of Lemma 5.5.15 produces the
following result:

Lemma 5.5.18. We fix a positive Rockland operator of homogeneous degree ν. Let
m ∈ R, 1 ≤ ρ ≤ δ ≤ 0 with δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We assume that

M ≥ νM1 and m+ δ(M + cβ0) + νM1 < −Q,

where
cβ0

:= max
[β′

0]≤[β0]

[β′]≥[β′
0], |β′|≥|β′

0|

[β′].
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Then there exist a constant C > 0, and a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b, such that for any

σ ∈ S−∞ and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ(∗)(x, π)−

∑

[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ) ≤ C‖σ‖Sm,R

ρ,δ ,a,b.

The details of the proof of Lemma 5.5.18 are left to the reader. The conditions
in the statement just above show that we will require the ability to choose m as
negative as one wants. We can do this thanks to the following remark.

Lemma 5.5.19. For any σ ∈ S−∞ and any X ∈ g, we have

{π(X)σ}(∗) = −σ(∗)(x, π) π(X)− {Xxσ}(∗)(x, π).

More generally, for any β ∈ Nn
0 , we have

{π(X)βσ}(∗) =
∑

[β1]+[β2]=[β]

{Xβ1
x σ}(∗)π(X)β2 ,

where
∑

denotes a linear combination independent of σ1, σ2.

Proof of Lemma 5.5.19. We keep the notation of Lemma 5.5.14. The kernel of
σ(∗)π(X) is given via

X̃yκ
(∗)
x (y) = X̃y{κ̄xy−1(y−1)} = −Xx1=xy−1 κ̄x1(y

−1)−Xy2=y−1 κ̄xy−1(y2),

having used (5.50) and the Leibniz property for vector fields. Hence we recognise:

X̃yκ
(∗)
x (y) = −(Xxκx)

(∗)(y)− (Xκx)
(∗)(y),

and
σ(∗)π(X) = −(Xxσ)

(∗) − (π(X)σ)(∗).

This shows the first formula. The second formula is obtained recursively. �

We can now show sketch the proof of Theorem 5.5.3 in the case ρ = δ.

Sketch of the proof of Theorem 5.5.3 with ρ = δ. We assume ρ = δ ∈ [0, 1). Writ-
ing σ = π(I+R)Nπ(I+R)−Nσ and using Lemma 5.5.19, it suffices to prove (5.59)
for m as negative as one wants. We proceed as in the proof of the case ρ > δ
replacing Lemma 5.5.15 with Lemma 5.5.18. The details are left to the reader. �

5.5.4 Simplification of the definition of Sm
ρ,δ

In this section, we show that it is possible to choose γ = 0 in the definition
of symbols as it was pointed out in Remark 5.2.13 Part (3). This simplifies the
definition of the symbol classes Sm

ρ,δ given in Definition 5.2.11. We will also show
a pivotal argument in the proof of Theorems 5.5.3 and 5.5.12, namely Inequalities
(5.54).
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Theorem 5.5.20. Let m, ρ, δ ∈ R with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1.

(L) A symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is in L∞
0,ρ[α]−m−δ[β](Ĝ) uniformly in x ∈ G, that is,

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

0,ρ[α]−m−δ[β]
(Ĝ) <∞. (5.61)

Furthermore, the family of seminorms

σ �−→ ‖σ‖Sm
ρ,δ,a,b,0

= sup
[α]≤a
[β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

0,ρ[α]−m−δ[β]
(Ĝ), a, b ∈ N0,

yields the topology of Sm
ρ,δ.

(R) A symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is in L∞
m+δ[β]−ρ[α],0(Ĝ) uniformly in x ∈ G, that is,

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

m+δ[β]−ρ[α],0
(Ĝ) <∞. (5.62)

Furthermore, the family of seminorms

σ �−→ ‖σ‖Sm,R
ρ,δ ,a,b = sup

[α]≤a
[β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

m+δ[β]−ρ[α],0
(Ĝ), a, b ∈ N0,

yields the topology of Sm
ρ,δ.

In other words,

(R) a symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is defined on smooth vectors and satisfy

sup
x∈G,π∈Ĝ

‖Xβ
xΔ

ασ(x, ·)π(I +R) ρ[α]−m−δ[β]
ν ‖L (Hπ) <∞

for one (and then any) positive Rockland operator R of homogeneous degree
ν (as the symbol is given by a field of operators defined on smooth vectors,
and since π(I +R) s

ν acts on smooth vectors, this condition makes sense);
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(L) a symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hρ[α]−m−δ[β]

π , (x, π) ∈ G× Ĝ}

is defined on smooth vectors and has range in Hρ[α]−m−δ[β]
π , and satisfies

sup
x∈G,π∈Ĝ

‖π(I +R) ρ[α]−m−δ[β]
ν Xβ

xΔ
ασ(x, ·)‖L (Hπ) <∞

for one (and then any) positive Rockland operator R of homogeneous degree
ν. The notion of a field having range in a Sobolev space Hs

π is described in
Definition 5.1.10 and allows us to compose on the left with π(I +R) s

ν with
s = ρ[α]−m− δ[β] here, see (5.4).

Naturally, the condition does not depend on the choice of the positive Rockland
operator R.

Theorem 5.5.20 makes it considerably easier to check whether a symbol is
in one of our symbol classes. However using the definition ‘with any γ’ has the
advantages

1. that we see easily that the symbols are fields of operators acting on smooth
vectors,

2. that we see easily that the symbols in Sm
ρ,δ, m ∈ R, form an algebra (cf.

Theorem 5.2.22),

3. and that the properties for the multipliers in R in Proposition 5.3.4 are for
the definition ‘with any γ’.

While showing Theorem 5.5.20, we will also finish the proofs of Theorems
5.5.3 and 5.5.12. Indeed, an important argument used in the proof of Theorems
5.5.3 and 5.5.12 (i.e. the properties of stability under composition and taking the
adjoint) is Inequality (5.54) which can easily be seen as equivalent to Part 2 of
Theorem 5.5.20.

Before showing Theorem 5.5.20, let us summarise what has been shown in
the proofs of Theorems 5.5.3 and 5.5.12 up to before the use of Inequality (5.54):

‖σ1 ◦ σ2‖Sm1+m2,R

ρ,δ ,a,b
� ‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,a2,b2,c2
, (5.63)

‖σ(∗)‖Sm,R
ρ,δ ,a,b � ‖σ‖Sm

ρ,δ,a
′,b′,0; (5.64)

these estimates are valid for any σ, σ1, σ2 ∈ S−∞ in the sense that for any seminorm
on the left hand side, one can find seminorms on the right.

Proof of Theorem 5.5.20. Using Estimate (5.64) together with the properties of
taking the adjoint and of the difference operators together, one checks easily that
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the two families of seminorms {‖ · ‖Sm,R
ρ,δ ,a,b, a, b ∈ N} and {‖ · ‖Sm

ρ,δ,a,b,0
, a, b ∈

N} yield the same topology on S−∞ and that taking the adjoint of a symbol is
continuous for this topology. Consequently, for any γ ∈ R, any symbol σ ∈ S−∞

and any seminorm ‖ · ‖Sm,R
ρ,δ ,a,b, we have

‖π(I +R) γ
ν σ‖Sm+γ,R

ρ,δ ,a,b � ‖σ∗π(I +R) γ
ν ‖Sm+γ,R

ρ,δ ,a1,b1
� ‖σ∗‖Sm,R

ρ,δ ,a2,b2
,

having used (5.63) and the fact that π(I +R) γ
ν ∈ Sγ . As taking the adjoint is a

continuous operator for the Sm,R-topology, we have obtained

‖π(I +R) γ
ν σ‖Sm+γ,R

ρ,δ ,a,b � ‖σ‖Sm,R
ρ,δ ,a3,b3

.

One checks easily that

∀a, b, c ∈ N0 ‖σ‖Sm
ρ,δ,a,b,c

≤ max
|γ|≤c

‖π(I +R) γ
ν σ‖Sm+γ,R

ρ,δ ,a,b,

whereas
∀a, b ∈ N0 ‖σ‖Sm,R

ρ,δ ,a,b ≤ ‖σ‖Sm
ρ,δ,a,b,|m|+ρa+δb.

This easily implies that the topologies on S−∞ coming from the two families of
seminorms {‖ · ‖Sm

ρ,δ,a,b,c
, a, b, c ∈ N0} and {‖ · ‖Sm,R

ρ,δ ,a,b, a, b ∈ N0} coincide. This
together with Lemma 5.4.11 (to pass from S−∞ to Sm

ρ,δ) concludes the proof of
Theorem 5.5.20. �

5.6 Amplitudes and amplitude operators

In this section, we discuss the notion of an amplitude extending that of the symbol,
to functions/operators depending on both space variables x and y. This allows
for another way of writing pseudo-differential operators as amplitude operators,
analogous to Formula (2.27) in the case of compact groups. However, as in the
classical theory, or as in Theorem 2.2.15 in the case of compact groups, we can
show that amplitude operators with symbols in suitable amplitude classes reduce
to pseudo-differential operator with symbols in corresponding symbol classes, with
asymptotic formulae relating amplitudes to symbols.

5.6.1 Definition and quantization

Following the Euclidean and compact cases, it is natural to define amplitudes in
the following way, extending the notion of symbols from Definitions 5.1.33 and
5.1.34:

Definition 5.6.1. An amplitude is a field of operators

{A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ}
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depending on x, y ∈ G, satisfying for each x, y ∈ G

∃a, b ∈ R A(x, y, ·) := {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ).

• An amplitude {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be continuous in

x, y ∈ G whenever there exists a, b ∈ R such that

∀x, y ∈ G A(x, y, ·) := {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ),

and the map (x, y) �→ A(x, y, ·) is continuous from G×G ∼ Rn × Rn to the

Banach space L∞
a,b(Ĝ).

• An amplitude A = {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be smooth

in x, y ∈ G whenever it is a field of operators depending smoothly on
(x, y) ∈ G × G (see Remark 1.8.16) and, for every β1, β2 ∈ Nn

0 , the field

{∂β1
x ∂β2

y A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} is continuous.

Clearly if an amplitude A = {A(x, y, π)} does not depend on y, that is,
A(x, y, π) = σ(x, π), then it defines a symbol σ = {σ(x, π)}. More generally any
amplitude A = {A(x, y, π)} defines a symbol σ given by σ(x, π) = A(x, x, π). In
Section 5.6.2, we will define amplitude classes and give other examples of ampli-
tudes.

Similarly to the symbol case, one can associate a kernel with an amplitude:

Definition 5.6.2. Let A be an amplitude. For each (x, y) ∈ G×G, let κx,y ∈ S ′(G)
be the unique distribution such that

FG(κx,y)(π) = A(x, y, π).

The map G×G ∋ (x, y) �→ κx,y ∈ S ′(G) is called its kernel.

As in the symbol case, the map G × G ∋ (x, y) �→ κx,y ∈ S ′(G) is smooth,
see Lemma 5.1.35 for the proof of this as well as for the existence and uniqueness
of κx,y in the case of symbols.

Before defining the amplitude quantization, we need to open a (quick) paren-
thesis to describe the following property from distribution theory:

Lemma 5.6.3. Let G × G ∋ (x, y) �→ κx,y ∈ S ′(G) be a continuous mapping. For
each x, we consider the distribution κ̃x defined by

∫

G

κ̃x(y)φ(y)dy = lim
ǫ→0

∫

G×G

κx,w(y
−1x)φ(y)ψǫ(wy

−1)dydw,

where φ ∈ D(G), ψ1 ∈ D(G),
∫
G
ψ1 = 1 and ψǫ(z) = ǫ−Qψ(ǫ−1z), ǫ > 0.

Indeed this limit exists and is independent of the choice of ψ1.
This defines a continuous map G ∋ x �−→ κ̃x ∈ D′(G).
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Proof of Lemma 5.6.3. Since κx,y ∈ S ′(G), there exists a seminorm ‖ · ‖S(G),N

such that

∀φ ∈ S(G) |〈κx,y, φ〉| ≤ Cx,y,N‖φ‖S(G),N .

Furthermore, since the map G×G ∋ (x, y) �→ κx,y ∈ S ′(G) is smooth, we obtain
that the constant Cx,y,N = ‖κx,y‖S′(G),N can be chosen locally uniform with
respect to x and y. Furthermore, fixing two compacts K1 and K2 of G, there
exists a seminorm ‖ · ‖S(G),N (depending on K1 and K2) such that the map

((x, y), (x′, y′)) ∈ (K1 ×K2)× (K1 ×K2) �→ ‖κx,y − κx′,y′‖S′(G),N ,

is uniformly continuous. This is easily proved using a cover of the compactsK1×K2

by balls of sufficiently small radius, and the continuity at each centre of these balls.

For any ψ1 ∈ D(G), ǫ > 0 and x ∈ G, we define the distribution Tψ1,ǫ,x by

Tψ1,ǫ,x(φ) :=

∫

G×G

κx,w(y
−1x)φ(y)ψǫ(wy

−1)dydw,

where φ ∈ D(G) is supported in a fixed compact K ⊂ G. Using the change of
variable from w to z with z = ǫ−1(wy−1), so that w = (ǫz)y, we obtain

Tψ1,ǫ,x(φ) =

∫

G×G

κx,(ǫz)y(y
−1x)φ(y)ψ1(z)dydz.

Therefore, for any ǫ1, ǫ2 ∈ (0, 1), we get

|(Tψ1,ǫ1,x − Tψ1,ǫ2,x)(φ)|

=

∣∣∣∣
∫

G×G

(
κx,(ǫ1z)y(y

−1x)− κx,(ǫ2z)y(y
−1x)

)
φ(y)ψ1(z)dydz

∣∣∣∣
≤ sup

z∈suppψ1
y∈suppφ

‖κx,(ǫ1z)y − κx,(ǫ2z)y‖S′(G),N‖φ‖S(G),N‖ψ1‖L1(G),

where ‖ · ‖S(G),N is chosen with respect to the compact sets

{x} and {(ǫz)y, ǫ ∈ [0, 1], z ∈ suppψ1, y ∈ K2}.

This shows that the scalar sequence (Tψ1,ǫ,x(φ)) converges as ǫ→ 0 and that the
linear map

ψ1 ∈ D(G) �−→ lim
ǫ→0

Tψ1,ǫ,x(φ), (5.65)

extends continuously to L1(Ko) → C for any compact Ko ⊂ G. Thus the map
given in (5.65) is given by integration against a locally bounded function on G.
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Let us show that the map given in (5.65) is invariant under left or right
translation. Indeed, modifying the argument above we obtain

∣∣∣Tψ1,ǫ,x(φ)− Tψ1(·y−1
o ),ǫ,x(φ)

∣∣∣

=

∣∣∣∣
∫

G×G

(
κx,(ǫz)y − κx,(ǫ(zyo))y

)
(y−1x)φ(y)ψ1(z)dydz

∣∣∣∣
≤ sup

z∈suppψ1
y∈suppφ

‖κx,(ǫz)y − κx,(ǫ(zyo))y‖S′(G),N‖φ‖S(G),N‖ψ1‖L1(G)

for a suitable seminorm ‖ · ‖S(G),N , (depending locally on yo). Since the two se-
quences ((ǫz)y)ǫ>0 and ((ǫ(zyo))y)ǫ>0 converge to y in G, we see that

lim
ǫ→0

Tψ1,ǫ,x(φ) = lim
ǫ→0

Tψ1(·y−1
o ),ǫ,x(φ),

and the same is true for right translation. Therefore, the locally bounded function
given by the mapping (5.65) is a constant which we denote by T0,x(φ):

lim
ǫ→0

Tψ1,ǫ,x(φ) = T0,x(φ)

∫

G

ψ1.

One checks easily that T0,x(φ), φ ∈ D(G), suppφ ⊂ K, defines a distribution
κ̃x ∈ D′(G) which is therefore independent of ψ1. Refining the argument given
above shows that κ̃x ∈ D′(G) depends continuously on x ∈ G. �

If G × G ∋ (x, y) �→ κx,y ∈ S ′(G) is a continuous mapping, we will allow
ourselves to denote the distribution defined in Lemma 5.6.3 by

κ̃x(y) := κx,y(y
−1x).

This closes our parenthesis about distribution theory.

We can now define the operator

T = AOp(A)

associated with an amplitude A = {A(x, y, π)} with amplitude kernel κx,y, by

Tφ(x) :=

∫

G

φ(y)κx,y(y
−1x)dy, φ ∈ D(G), x ∈ G. (5.66)

The quantization defined by formula (5.66) makes sense for any amplitude A =
{A(x, y, π)}. Clearly the quantization mapping A �→ AOp(A) is linear. However,
as in the Euclidean or compact cases, it is injective but not necessarily 1-1 since
different amplitudes may lead to the same operator, in contrast to the situation
for symbols, cf. Theorem 5.1.39.
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Remark 5.6.4. If an amplitude A = {A(x, y, π)} does not depend on y, that is,
A(x, y, π) = σ(x, π), then the corresponding symbol σ = {σ(x, π)} yield the same
operator:

AOp(A) = Op(σ)

since in this case the amplitude κx,y is a function/distribution κx independent of
y which coincides with the kernel of the symbol σ.

As in the symbol case in Lemma 5.1.42, we may see AOp(A) as a limit of
nice operators in the following sense:

Lemma 5.6.5. If A = {A(x, y, π)} is an amplitude, we can construct explicitly a
family of amplitudes Aǫ = {Aǫ(x, y, π)}, ǫ > 0, in such a way that

1. the kernel κǫ,x,y(z) of Aǫ is smooth in both x, y and z, and compactly sup-
ported in x and y,

2. the associated kernel κ̃ǫ,x(y) = κǫ,x,y(y
−1x) is smooth and compactly sup-

ported in both x, y,

3. if φ ∈ S(G) then AOp(Aǫ)φ ∈ D(G), and

4. AOp(Aǫ)φ −→
ǫ→0

AOp(A)φ uniformly on any compact subset of G.

Proof of Lemma 5.6.5. We use the same notation χǫ ∈ D(G), |π| and projǫ,π as
in the proof of Lemma 5.1.42. We consider for any ǫ ∈ (0, 1) the amplitude given
by

Aǫ(x, y, π) := χǫ(x)χǫ(y)1|π|≤ǫ−1A(x, y, π) ◦ projǫ,π.
By Definition 5.6.2 and the Fourier inversion formula (1.26), the corresponding
kernel is

κǫ,x,y(z) = χǫ(x)χǫ(y)

∫

|π|≤ǫ−1

Tr
(
A(x, y, π) projǫ,ππ(z)

)
dμ(π),

which is smooth in x, y and z and compactly supported in x and y. The rest follows
easily. �

There is a simple relation between the amplitudes of an operator and its
adjoint, much simpler than in the symbol case:

Proposition 5.6.6. Let A be an amplitude. Then B given by

B(x, y, π) := A(y, x, π)∗

is also an amplitude. Furthermore, the formal adjoint of the operator T = AOp(A)
is T ∗ = AOp(B). If {κx,y(z)} is the kernel of A, then the kernel of B is given via
(x, y, z) �→ κ̄y,x(z

−1).



5.6. Amplitudes and amplitude operators 379

Proof. On one hand, from the amplitude quantization in (5.66), we compute for
φ, ψ ∈ D(G), that

(Tφ, ψ) =

∫

G

∫

G

φ(y)κx,y(y
−1x)ψ̄(x)dy dx = (φ, T ∗ψ),

therefore

T ∗ψ(y) =

∫

G

κ̄x,y(y
−1x)ψ(x)dx

or, equivalently,

T ∗ψ(x) =

∫

G

κ̄y,x(x
−1y)ψ(y)dy.

One the other hand, the amplitude kernel for B is κ′
x,y satisfying

π(κ′
x,y) = B(x, y, π) = A(y, x, π)∗ = π(κy,x)

∗ = π(κ∗
y,x),

with κ∗
y,x(z) = κ̄y,x(z

−1), and therefore,

κ′
x,y(z) = κ∗

y,x(z) = κ̄y,x(z
−1).

By (5.66), this implies that T ∗ = AOp(B). �

5.6.2 Amplitude classes

Again similarly to the symbol case, we may define the amplitude classesASm
ρ,δ. This

is done in analogy to Definition 5.2.11 for symbols and its equivalent reformulation
in (5.29).

Definition 5.6.7. Let m, ρ, δ ∈ R with 1 ≥ ρ ≥ δ ≥ 1. An amplitude A is called
an amplitude of order m and of type (ρ, δ) whenever, for each α, β ∈ Nn

0 and

γ ∈ R, the field {Xβ1
x Xβ2

y ΔαA(x, y, π)} is in L∞
γ,ρ[α]−m−δ([β1]+[β2])+γ(Ĝ) uniformly

in (x, y) ∈ G, i.e. if

sup
x,y∈G

‖Xβ1
x Xβ2

y ΔαA(x, y, ·)‖L∞
γ,ρ[α]−m−δ([β1]+[β2])+γ

(Ĝ) <∞. (5.67)

In this case, proceeding in a similar way to Sm
ρ,δ in Section 5.2.2, we see

that the fields of operators Xβ1
x Xβ2

y ΔαA(x, y, ·) act on smooth vectors and (5.67)
implies

sup
x,y∈G

π∈Ĝ

‖π(I +R)
ρ[α]−m−δ([β1]+[β2])+γ

ν Xβ1
x Xβ2

y ΔαA(x, y, ·)π(I +R)− γ
ν ‖L (Hπ) <∞.

(5.68)
The converse also holds.
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The amplitude class ASm
ρ,δ = ASm

ρ,δ(G) is the set of amplitudes of order m
and of type (ρ, δ). We also define

AS−∞ :=
⋂

m∈R

ASm
ρ,δ,

the class of smoothing amplitudes. As in the case of symbols, the class AS−∞ is
independent of ρ and δ and can be denoted just by AS−∞.

It is a routine exercise to check that each amplitude class ASm
ρ,δ is a vector

space and that we have the inclusions

m1 ≤ m2, δ1 ≤ δ2, ρ1 ≥ ρ2 =⇒ ASm1

ρ1,δ1
⊂ ASm2

ρ2,δ2
. (5.69)

We assume that a positive Rockland operator R of degree ν is fixed. If A is
an amplitude and a, b, c ∈ [0,∞), we set

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

:= sup
|γ|≤c

[α]≤a, [β1],[β2]≤b

‖π(I +R)
ρ[α]−m−δ([β1]+[β2])+γ

ν Xβ1
x Xβ2

y ΔαA(x, y, π)π(I +R)− γ
ν ‖L (Hπ),

and

‖A‖ASm
ρ,δ,a,b,c

:= sup
(x,y)∈G×G, π∈Ĝ

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

.

Again, one checks easily that the resulting maps ‖ · ‖Sm
ρ,δ,a,b,c

, a, b, c ∈ [0,∞), are
seminorms over the vector space ASm

ρ,δ. Furthermore, taking a, b, c as non-negative
integers, they endow ASm

ρ,δ with the structure of a Fréchet space. The class of

smoothing amplitudes AS−∞ is then equipped with the topology of projective
limit. Similarly to the case of symbols in Proposition 5.2.12, two different positive
Rockland operators give equivalent families of seminorms.

The inclusions given in (5.69) are continuous for these topologies.

Symbols in Sm
ρ,δ are examples of amplitudes in ASm

ρ,δ which do not depend
on y. Conversely, if an amplitude A = {A(x, y, π)} in ASm

ρ,δ does not depend on y,
that is, A(x, y, π) = σ(x, π), then it defines a symbol σ = {σ(x, π)} in Sm

ρ,δ. More
generally we check easily:

Lemma 5.6.8. If A = {A(x, y, π)} is in ASm
ρ,δ, then the symbol σ given by

σ(x, π) := A(x, x, π)

is in Sm
ρ,δ.

A wider class of examples is given by the following property which can be
shown by an easy adaption of Proposition 5.3.4 and Corollary 5.3.7:
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Corollary 5.6.9. Let R be a positive Rockland operator of degree ν. Let m ∈ R and
0 ≤ δ < 1. Let f : G × G × R+ ∋ (x, y, λ) �→ fx,y(λ) ∈ C be a smooth function.
We assume that for every β1, β2 ∈ Nn

0 , we have

Xβ1
x Xβ2

y fx,y ∈Mm+δ([β1]+[β2])
ν

,

whereM is as in Definition 5.3.1. Then

A(x, y, π) = fx,y(π(R))

defines an amplitude A in ASm
1,δ which satisfies

∀a, b, c ∈ N0 ∃ℓ ∈ N, C > 0

‖A‖ASm
1,δ,a,b,c

≤ C sup[β1],[β2]≤b ‖Xβ1
x Xβ2

y fx,y‖Mm+δ[β1+β2]
ν

,ℓ,

with ℓ and C independent of f .

This can also be generalised easily to multipliers in a finite family of strongly
commuting positive Rockland operators.

5.6.3 Properties of amplitude classes and kernels

One can readily prove properties for the amplitudes similar to the ones already
established for symbols. Here we note that although the subsequent properties
would follow also from Theorem 5.6.14 in the sequel and from the correspond-
ing properties of symbols in Section 5.2.5, we now indicate what can be shown
concerning amplitudes and their classes by a simple adaptation of proofs of the
corresponding properties for symbols.

Proceeding as in Section 5.2.5, we also have the following properties for the
amplitude classes:

Proposition 5.6.10. Let 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1.

(i) Let A ∈ ASm
ρ,δ have kernel κx,y. Then we have the following properties.

1. For every x, y ∈ G and γ ∈ R, q̃αXβ1
x Xβ2

y κx,y ∈ Kγ,ρ[α]−m−δ[β1+β2]+γ ,
where we recall the notation q̃α(x) = qα(x

−1).

2. If β1, β2 ∈ Nn
0 then the amplitude {Xβ1

x Xβ2
y A(x, y, π), (x, y, π) ∈ G ×

G× Ĝ} is in AS
m+δ[β1+β2]
ρ,δ with kernel Xβ1

x Xβ2
y κx,y, and

‖Xβ1
x Xβ2

y A(x, y, π)‖AS
m+δ[β1+β2]

ρ,δ ,a,b,c
≤ C‖A(x, y, π)‖ASm

ρ,δ,a,b+[β1+β2],c,

with C = Cb,β1,β2 .
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3. If αo ∈ Nn
0 then the amplitude {ΔαoA(x, y, π), (x, y, π) ∈ G×G× Ĝ} is

in AS
m−ρ[αo]
ρ,δ with kernel q̃αo

κx,y, and

‖ΔαoA(x, π)‖
S

m−ρ[αo]
ρ,δ ,a,b,c

≤ Ca,αo‖A(x, π)‖Sm
ρ,δ,a+[αo],b,c.

4. The symbol {A(x, y, π)∗, (x, π) ∈ G × G × Ĝ} is in ASm
ρ,δ with kernel

κ∗
x,y given by κ∗

x,y(z) = κ̄y,x(z
−1), and

‖A(x, y, π)∗‖ASm
ρ,δ,a,b,c

=

sup
|γ|≤c

[α]≤a, [β1],[β2]≤b

‖π(I+R)− γ
ν Xβ1

x Xβ2
y ΔαA(x, y, π)π(I+R)

ρ[α]−m−δ([β1]+[β2])+γ
ν ‖L (Hπ).

(ii) Let A1 ∈ ASm1

ρ,δ and A2 ∈ ASm2

ρ,δ have kernels κ1,x,y and κ2,x,y, respectively.
Then

A(x, y, π) := A1(x, y, π)A2(x, y, π)

defines the amplitude A in Sm
ρ,δ, m = m1+m2, with kernel κ2,x,y ∗κ1,x,y with

the convolution in the sense of Definition 5.1.19. Furthermore,

‖A(x, y, π)‖Sm
ρ,δ,a,b,c

≤ C‖A1(x, y, π)‖Sm1
ρ,δ ,a,b,c+ρa+|m2|+δb‖A2(x, y, π)‖Sm2

ρ,δ ,a,b,c,

where the constant C = Ca,b,c > 0 does not depend on A1,A2.

A direct consequence of Part (ii) of Proposition 5.6.10 is that the amplitudes
in the introduced amplitude classes form an algebra:

Corollary 5.6.11. Let 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. The collection of symbols⋃
m∈R

ASm
ρ,δ forms an algebra.

Furthermore, if A0 ∈ AS−∞ is smoothing and A ∈ ASm
ρ,δ is of order m ∈ R,

then A0A and AA0 are also in AS−∞.

Another consequence of Part (ii) together with Lemma 5.2.17 gives the fol-
lowing property:

Corollary 5.6.12. Let 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. Let A ∈ ASm
ρ,δ have kernel κx,y. If

β and β̃ are in Nn
0 , then

{π(X)βAπ(X)β̃ , (x, π) ∈ G× Ĝ} ∈ AS
m+[β]+[β̃]
ρ,δ

with kernel Xβ
z X̃

β̃
z κx,y(z). Furthermore, for any a, b, c there exists C = Ca,b,c

independent of A such that

‖π(X)βAπ(X)β̃‖ASm
ρ,δ,a,b,c

≤ C‖A‖ASm
ρ,δ,a,b,c+ρa+[β]+[β̃]+δb.
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Proceeding as in Section 5.4.1, taking into account the dependence in x and
y, we obtain

Proposition 5.6.13. Let A = {A(x, y, π)} be in ASm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx,y

denote its associated kernel.

1. If α, β1, β2, βo, β
′
o ∈ Nn

0 are such that

m− ρ[α] + [β1] + [β2] + δ([βo] + [β′
o]) < −Q/2,

then the distribution Xβ1
z X̃β2

z (Xβo
x X

β′
o

y q̃α(z)κx,y(z)) is square integrable and
for every x ∈ G we have

∫

G

∣∣∣Xβ1
z X̃β2

z (Xβo
x X

β′
o

y q̃α(z)κx,y(z))
∣∣∣
2

dz ≤ C sup
π∈Ĝ

‖A(x, π)‖2ASm
ρ,δ,a,b,c

where a = [α], b = [βo] + [β′
o], c = ρ[α] + [β1] + [β2] + δ([βo] + [β′

o]) and
C = Cm,α,β1,β2,βo,β′

o
> 0 is a constant independent of A and x, y.

2. For any α, β1, β2, βo, β
′
o ∈ Nn

0 satisfying

m− ρ[α] + [β1] + [β2] + δ([βo] + [β′
o]) < −Q,

the distribution z �→ Xβ1
z X̃β2

z Xβo
x X

β′
o

y q̃α(z)κx,y(z) is continuous on G for
every (x, y) ∈ G×G and we have

sup
z∈G

∣∣∣Xβ1
z X̃β2

z

{
Xβo

x X
β′
o

y q̃α(z)κx,y(z)
}∣∣∣ ≤ C sup

π∈Ĝ

‖A(x, π)‖ASm
ρ,δ,[α],[βo]+[β′

o],[β2],

where C = Cm,α,β1,β2,βo,β′
o
> 0 is a constant independent of A and x, y.

We now assume ρ > 0. Then the map κ : (x, y, z) �→ κx,y(z) is smooth
on G × G × (G \{0}). Fixing a homogeneous quasi-norm | · | on G, we have the
following more precise estimates:

at infinity: For any M ∈ R and any α, β1, β2, βo, β
′
o ∈ Nn

0 there exist C > 0 and
a, b, c ∈ N independent of A such that for all x ∈ G and z ∈ G satisfying
|z| ≥ 1, we have

∣∣∣Xβ1
z X̃β2

z (Xβo
x X

β′
o

y q̃α(z)κx,y(z))
∣∣∣ ≤ C sup

π∈Ĝ

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

|z|−M .

at the origin: For any α, β1, β2, βo, β
′
o ∈ Nn

0 with Q+m+δ([βo]+[β′
o])−ρ[α]+[β1]+

[β2] ≥ 0 there exist a constant C > 0 and computable integers a, b, c ∈ N0

independent of A such that for all x ∈ G and z ∈ G\{0}, we have, if

Q+m+ δ([βo] + [β′
o])− ρ[α] + [β1] + [β2] > 0,
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then
∣∣∣Xβ1

z X̃β2
z (Xβo

x X
β′
o

y q̃α(z)κx,y(z))
∣∣∣

≤ C sup
π∈Ĝ

‖A(x, π)‖ASm
ρ,δ,a,b,c

|z|−
Q+m+δ([βo]+[β′

o])−ρ[α]+[β1]+[β2]

ρ ,

and if
Q+m+ δ([βo] + [β′

o])− ρ[α] + [β1] + [β2] = 0,

then
∣∣∣Xβ1

z X̃β2
z (Xβo

x X
β′
o

y q̃α(z)κx,y(z))
∣∣∣ ≤ C sup

π∈Ĝ

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

ln |z|.

5.6.4 Link between symbols and amplitudes

Symbols can be viewed as amplitudes which do not depend on the second variable
of the group. Then Sm

ρ,δ ⊂ ASm
ρ,δ and, by Remark 5.6.4, we have the inclusion

Ψm
ρ,δ = Op(Sm

ρ,δ) ⊂ AOp(ASm
ρ,δ).

The next theorem shows the converse, namely, that the class of operators
AOp(ASm

ρ,δ) is included in Ψm
ρ,δ. Therefore this will show that the amplitude quan-

tization of ASm
ρ,δ coincides with the symbol quantization of Sm

ρ,δ.

Theorem 5.6.14. Let A ∈ ASm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0, δ �= 1. Then AOp(A) is in

Ψm
ρ,δ, that is, there exists a (unique) symbol σ ∈ Sm

ρ,δ such that

AOp(A) = Op(σ).

Furthermore, for any M ∈ N0, the map
{

ASm
ρ,δ −→ S

m−(ρ−δ)(M+1)
ρ,δ

A �−→ σ(x, π)−∑
[α]≤M ΔαXα

y A(x, y, π)|y=x
,

is continuous. If ρ > δ, we have the asymptotic expansion

σ(x, π) ∼
∑

α

ΔαXα
y A(x, y, π)|y=x.

The proof of Theorem 5.6.14 is in essence close to the proofs of product and
adjoint of operators in ∪m∈RΨ

m
ρ,δ, see Theorems 5.5.12 and 5.5.3. As for these

theorems, it is helpful to understand formally the steps of the rigorous proof.

From the amplitude quantization in (5.66), we see that if AOp(A) can be
written as Op(σ), then, denoting by κσ,x the symbol kernel and by κA,x,y the
amplitude kernel, we have

AOp(A)(φ)(x) =
∫

G

φ(y)κA,x,y(y
−1x)dy =

∫

G

φ(xz−1)κA,x,xz−1(z)dz
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whereas

Op(σ)(φ)(x) =

∫

G

φ(y)κσ,x(y
−1x)dy =

∫

G

φ(xz−1)κσ,x(z)dz.

Therefore, formally we must have

κA,x,xz−1(z) = κσ,x(z)
(
or equivalently κA,x,y(y

−1x) = κσ,x(y
−1x)

)
.

Using the Taylor expansion in y = xz−1 for κA,x,y at x, we have (again formally)

κσ,x(z) = κA,x,xz−1(z) ≈
∑

α

q̃α(z)X
α
y κA,x,y(z)|y=x. (5.70)

Note that the group Fourier transform in z of each term in the sum above is

Fz∈G{q̃α(z)Xα
y=xκA,x,y(z)}(π) = ΔαXα

y=xFz∈G{κA,x,y(z)}(π)
= ΔαXα

y=xA(x, y, π).

Taking the group Fourier transform in z on both sides of (5.70), we obtain still
formally that

σ(x, π) ≈
∑

α

ΔαXα
y A(x, y, π)|y=x.

As in the proofs of Theorems 5.5.12 and 5.5.3, the crucial point is to control the
remainder while using Taylor’s expansion. The method is similar as in the proof
of Theorem 5.5.12 and the adaptation is easy and left to the reader.

Note that Theorem 5.6.14 together with Proposition 5.6.6 give another proof
of Theorem 5.5.12. This is not surprising given the similarity between the proof
of Theorems 5.6.14 and 5.5.12.

5.7 Calderón-Vaillancourt theorem

In this section, we prove the analogue of the Calderón-Vaillancourt theorem, now
in the setting of graded Lie groups. This extends the L2-boundedness of operators
in the class Ψ0

1,0 given in Theorem 5.4.17 to the classes Ψ0
ρ,δ.

Theorem 5.7.1. Let T ∈ Ψ0
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. Then T extends to a

bounded operator on L2(G).

Moreover, there exist a constant C > 0 and a seminorm ‖ · ‖Ψ0
ρ,δ,a,b,c

with

computable integers a, b, c ∈ N0 independent of T such that

∀φ ∈ S(G) ‖Tφ‖L2(G) ≤ C‖T‖Ψ0
ρ,δ,a,b,c

‖φ‖L2(G).

Before showing Theorem 5.7.1, let us mention that together with the pseudo-
differential calculus, it implies the following boundedness on Sobolev spaces L2

s.
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Corollary 5.7.2. Let T ∈ Ψm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. Then for any s ∈ R,

the operator T extends to a continuous operator from L2
s(G) to L2

s−m(G):

∀φ ∈ S(G) ‖Tφ‖L2
s−m(G) ≤ Cs,m,ρ,δ‖T‖Ψm

ρ,δ,a,b,c
‖φ‖L2

s(G),

with some (computable) integers a, b, c depending on s,m, ρ, δ.

Proof of Corollary 5.7.2. Let R be a positive Rockland operator. By the compo-
sition theorem (e.g. Theorem 5.5.3), we have

(I +R)−m+s
ν T (I +R)− s

ν ∈ Ψ0
ρ,δ.

Therefore, by Theorem 5.7.1, we have

‖(I +R)−m+s
ν T (I +R)− s

ν φ‖L (L2(G) � ‖(I +R)−m+s
ν T (I +R)− s

ν ‖Ψ0
ρ,δ,a1,b1,c1

� ‖T‖Ψm
ρ,δ,a2,b2,c2 ,

by Theorem 5.5.3. �

Remark 5.7.3. Combining the results obtained so far, for each (ρ, δ) with 1 ≥ ρ ≥
δ ≥ 0 and δ �= 1, we have therefore obtained an operator calculus, in the sense that
the set

⋃
m∈R

Ψm
ρ,δ forms an algebra of operators, stable under taking the adjoint,

and acting on the Sobolev spaces in such a way that the loss of derivatives in L2

is controlled by the order of the operator.

Note that the L2-boundedness in the case (ρ, δ) = (1, 0) was already proved
by different methods, see Theorem 5.4.17 and its proof. With the same proof as in
the corollary above, one obtains easily boundedness for Lp-Sobolev spaces in this
case:

Corollary 5.7.4. Let T ∈ Ψm
1,0. Then for any s ∈ R and p ∈ (1,∞) the operator T

extends to a continuous operator from Lp
s(G) to Lp

s−m(G):

∀φ ∈ S(G) ‖Tφ‖Lp
s−m(G) ≤ Cs,m,ρ,δ‖T‖Ψm

ρ,δ,a,b,c
‖φ‖Lp

s(G),

with some (computable) integers a, b, c depending on s,m, ρ, δ.

Proof of Corollary 5.7.4. As above, (I + R)−m+s
ν T (I + R)− s

ν ∈ Ψ0 therefore, by
Corollary 5.4.20 we have

‖(I +R)−m+s
ν T (I +R)− s

ν φ‖L (Lp(G)) � ‖(I +R)−m+s
ν T (I +R)− s

ν ‖Ψ0,a1,b1,c1

� ‖T‖Ψ0,a2,b2,c2 ,

by Theorem 5.5.3. �

The rest of this section is devoted to the proof of the Calderón-Vaillancourt
Theorem, that is, Theorem 5.7.1. In Section 5.7.2, we prove the result for ρ = δ = 0.
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The proof will rely on an analogue on G of the familiar decomposition of Rn into
unit cubes presented in Section 5.7.1. The case ρ = δ ∈ (0, 1) will be proved in
Section 5.7.4 and its proof relies on the case ρ = δ = 0 and on a bilinear estimate
proved in Section 5.7.3. The case of ρ = δ ∈ [0, 1) will then be proved and this will
imply Theorem 5.7.1 thanks to the continuous inclusions between symbol classes
(see (5.31)).

5.7.1 Analogue of the decomposition into unit cubes

In this section, we present an analogue of the dyadic cubes, more precisely we con-
struct a useful covering of the general homogeneous Lie group G by unit balls and
the corresponding partition of unity with a number of advantageous properties.
The proof is an adaptation of [FS82, Lemma 7.14].

Lemma 5.7.5. Let | · | be a fixed homogeneous quasi-norm on the homogeneous Lie
group G. We denote by Co ≥ 1 a constant for the triangle inequality

∀x, y ∈ G |xy| ≤ Co(|x|+ |y|). (5.71)

Denoting by B(x,R) the | · |-ball centred at point x with radius R,

B(x,R) := {y ∈ G : |x−1y| < R},

there exists a maximal family {B(xi,
1

2Co
)}∞i=1 of disjoint balls of radius 1

2Co
, and

we choose one such family. Then the following properties hold:

1. The balls {B(xi, 1)}∞i=1 cover G.

2. For any C ≥ 1, no point of G belongs to more than ⌈(4C2
oC)Q⌉ of the balls

{B(xi, C)}∞i=1.

3. There exists a sequence of functions χi ∈ D(G), i ∈ N, such that each χi is
supported in B(xi, 2) and satisfies 0 ≤ χi ≤ 1 while we have

∑∞
i=1 χi = 1.

Moreover, for any β ∈ Nn
0 , X

βχi is uniformly bounded in i ∈ N.

4. For any p1 > Q+ 1, we have

∃Cp1
> 0 ∀io ∈ N

∞∑

i=1

(1 + |x−1
io

xi|)−p1 ≤ Cp1
<∞.

Remark 5.7.6. The conclusion of Part (4) is rough but will be sufficient for our
purposes. We note, however, that if the quasi-norm in Lemma 5.7.5 is actually a
norm, i.e. if the constant Co in (5.71) is equal to one, Co = 1, then the conclusion
of Part (4) of Lemma 5.7.5 holds true for all p1 > Q. This will be proved together
with the lemma.
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Proof of Lemma 5.7.5 and of Remark 5.7.6. If x ∈ G then by maximality there
exists i such that the distance from x to B(xi,

1
2Co

) is < 1/(2Co). Denoting by y

a point in B̄(xi,
1

2Co
) which realises the distance, we have

|x−1
i x| ≤ Co(|x−1

i y|+ |y−1x|) < Co

(
1

2Co
+

1

2Co

)
= 1.

This proves Part (1).

If x is in all the balls B(xiℓ , C), ℓ = 1, . . . , ℓo, then

∀y ∈ ∪ℓoℓ=1B(xiℓ , C) ∃ℓ ∈ [1, ℓo] |x−1y| ≤ Co(|x−1xiℓ |+ |x−1
iℓ

y|) ≤ Co2C.

This shows that B(x, 2CoC) contains ∪ℓoℓ=1B(xiℓ , C) and, therefore, it must contain

the disjoint balls ∪ℓoℓ=1B(xiℓ ,
1

2Co
). Taking the Haar measure and denoting c1 :=

|B(0, 1)|, we have

| ∪ℓoℓ=1 B(xiℓ ,
1

2Co
)| = ℓoc1

(
1

2Co

)Q

≤ |B(x, 2CoC)| = (2CoC)
Q
c1.

This proves Part (2).

Let us fix χ ∈ D(G) satisfying 0 ≤ χ ≤ 1 with χ = 1 on B(0, 1) and χ = 0
on B(0, 2). The sum

∑∞
i′=1 χ(x

−1
i′ ·) is locally finite by Part (2); it is a smooth

function with values between 1 and ⌈(4C2
o × 2)Q⌉. We define

χi(x) :=
χ(x−1

i x)∑∞
i′=1 χ(x

−1
i′ x)

.

This gives Part (3).

To prove Part (4), we fix a point xio and observe that if x ∈ G is in one of
the balls B(xi,

1
2Co

) with |x−1
io

xi| ∈ [ℓ, ℓ+1) for some ℓ ∈ N, let us say B(xi1 ,
1

2Co
),

then

|x−1
io

x| ≤ Co(|x−1
i1

x|+ |x−1
io

xi1 |) ≤ Co(
1

2Co
+ ℓ+ 1).

This yields the inclusion

⊔|x−1
io

xi|∈[ℓ,ℓ+1)B(xi,
1

2Co
) ⊂ B(xio , Co(

1

2Co
+ ℓ+ 1)).

The measure of the left hand side is c1(2Co)
−Qcard{i : |x−1

io
xi| ∈ [ℓ, ℓ + 1)} and

the measure of the right hand side is c1(Co(
1

2Co
+ ℓ+ 1))Q. Therefore,

card{i : |x−1
io

xi| ∈ [ℓ, ℓ+ 1)} ≤ cℓQ.
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Now we decompose

∞∑

i=1

(1 + |x−1
io

xi|)−p1 =
∑

|x−1
i xio |<1

(1 + |x−1
io

xi|)−p1 +

∞∑

ℓ=1

∑

|x−1
i xio |∈[ℓ,ℓ+1)

(1 + |x−1
io

xi|)−p1 .

By Part (2) the first sum on the right hand side is ≤ ⌈(4C2
o )

Q⌉ whereas from the
observation just above, the second sum is ≤ ∑∞

ℓ=0(1 + ℓ)−p1c′(1 + ℓ)Q. This last
sum being convergent whenever −p1 +Q < −1, Part (4) is proved.

Let us finally prove Remark 5.7.6, that is, Part (4) of the lemma for p1 > Q
provided that Co = 1. This will follow by the same argument as above if we can
show a refined estimate

card{i : |x−1
io

xi| ∈ [ℓ, ℓ+ 1)} ≤ cℓQ−1.

We claim that this estimate holds true. Since Co = 1, we can estimate

|x−1
io

x| ≥ |x−1
io

xi1 | − |x−1
i1

x| > ℓ− 1

2Co
= ℓ− 1

2
.

We also have Co(
1

2Co
+ ℓ+ 1) = ℓ+ 3

2 . Consequently, we have the inclusion

⊔|x−1
io

xi|∈[ℓ,ℓ+1)B(xi,
1

2Co
) ⊂ B(xio , ℓ+

3

2
)\B(xio , ℓ−

1

2
),

with the measure on the right hand side being c1(ℓ+
3
2 )

Q− c1(ℓ− 1
2 )

Q. Therefore,

card{i : |x−1
io

xi| ∈ [ℓ, ℓ+ 1)} ≤ cℓQ−1,

so that the required claim is proved. �

5.7.2 Proof of the case S0

0,0

This section is devoted to the proof of the following result which is a particular case
of Theorem 5.7.1. We also give an explicit estimate on the number of derivatives
and differences of the symbol needed for the L2-boundedness.

Proposition 5.7.7. Let T ∈ Ψ0
0,0. Then T extends to a bounded operator on L2(G).

Furthermore, if we fix a positive Rockland operator R (in order to define the semi-
norms on Ψm

ρ,δ) then

∀φ ∈ S(G) ‖Tφ‖L2(G) ≤ C‖T‖Ψ0
0,0,a,b,c

‖φ‖L2(G),

where C > 0 and a, b, c ∈ N0 are independent of T . In particular, this estimate
holds with a = rpo, b = rν + ⌈Q2 ⌉, c = rν, where ν is the degree of R, po/2 is the
smallest positive integer divisible by υ1, . . . , υn, and r ∈ N0 is the smallest integer
such that rpo > Q+ 1.
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Throughout Section 5.7.2, we fix the homogeneous norm | · | = | · |po given
by (3.21), where po/2 is the smallest positive integer divisible by υ1, . . . , υn. We
fix a maximal family {B(xi,

1
2Co

)}∞i=1 of disjoint balls and a sequence of functions
(χi)

∞
i=1 so that the properties of Lemma 5.7.5 hold. We also fix ψ0, ψ1 ∈ D(R)

supported in [−1, 1] and [1/2, 2], respectively, such that 0 ≤ ψ0, ψ1 ≤ 1 and

∀λ ≥ 0

∞∑

j=0

ψj(λ) = 1 with ψj(λ) := ψ1(2
−(j−1)λ), j ∈ N.

Let us start the proof of Proposition 5.7.7. Let σ ∈ S0
0,0.

For each I = (i, j) ∈ N× N0, we define

σI(x, π) := χi(x)σ(x, π)ψj(π(R)).

We denote by TI and κI the corresponding operator and kernel.

Roughly speaking, the parameters i and j correspond to localising in space
and frequency, respectively. The localisation in space corresponds to the covering
of G by the balls centred at the xi’s, while the localisation in frequency is deter-
mined by the spectral projection of R to the L2(G)-eigenspaces corresponding to
eigenvalues close to each 2j .

It is not difficult to see that each TI is bounded on L2(G):

Lemma 5.7.8. Each operator TI is bounded on L2(G).

Since σI is localised both in space and in frequency, we may use one of the
two localisations.

Proof of Lemma 5.7.8 using frequency localisation. Let α, β ∈ Nn
0 . By the Leibniz

formulae for difference operators (see Proposition 5.2.10) and for vector fields, we
have

Xβ
xΔ

ασI(x, π) =
∑

[β1]+[β2]=[β]
[α1]+[α2]=[α]

Xβ1
x χi(x) X

β2
x Δα1σ(x, π) Δα2ψj(π(R)).

Therefore,

‖π(I +R) [α]+γ
ν Xβ

xΔ
ασI(x, π)π(I +R)−

γ
ν ‖L (Hπ)

≤ C
∑

[β2]≤[β]
[α1]+[α2]=[α]

‖π(I +R) [α]+γ
ν Xβ2

x Δα1σ(x, π) Δα2ψj(π(R))π(I +R)−
γ
ν ‖L (Hπ)

≤ C
∑

[β2]≤[β]
[α1]+[α2]=[α]

‖π(I +R) [α]+γ
ν Xβ2

x Δα1σ(x, π)π(I +R)−
[α2]+γ

ν ‖L (Hπ)

‖π(I +R)
[α2]+γ

ν Δα2ψj(π(R))π(I +R)−
γ
ν ‖L (Hπ).
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Therefore, by Lemma 5.4.7, we obtain

‖σI‖S0
1,0,a,b,c

≤ ‖σ‖S0
0,0,a,b,c+a2

ja/ν .

This shows that the operator TI is in Ψ0 and is therefore bounded on L2(G) by
Theorem 5.4.17. �

Proof of Lemma 5.7.8 using space localisation. Another proof is to apply the fol-
lowing lemma since the symbol σI(x, π) has compact support in x. �

Lemma 5.7.9. Let σ(x, π) be a symbol (in the sense of Definition 5.1.33) supported
in x ∈ S, and assume that S is compact. Then the operator norm of the associated
operator on L2(G) is

‖Op(σ)‖L (L2(G)) ≤ C|S|1/2 sup
x∈G

[β]≤⌈Q
2 ⌉

‖Xβ
xσ(x, π)‖L∞(Ĝ).

Proof of Lemma 5.7.9. Let T = Op(σ) and let κx be the associated kernel. We
have by the Sobolev inequality in Theorem 4.4.25,

|Tφ(x)|2 = |φ ∗ κx(x)|2 ≤ sup
xo∈G

|φ ∗ κxo
(x)|2

≤ C
∑

[β]≤⌈Q
2 ⌉

∥∥φ ∗Xβ
xo
κxo(x)

∥∥2

L2(dxo)
.

Hence

‖Tφ‖2L2(G) ≤ C
∑

[β]≤⌈Q
2 ⌉

∫

G

∫

G

|φ ∗Xβ
xo
κxo(x)|2dxodx

≤ C
∑

[β]≤⌈Q
2 ⌉

∫

G

‖φ ∗Xβ
xo
κxo‖2L2(dx)dxo

≤ C|S| sup
xo∈G,[β]≤⌈Q

2 ⌉

∥∥φ ∗Xβ
xo
κxo

(x)
∥∥2

L2(dx)
.

Now by Plancherel’s Theorem,

∥∥φ ∗Xβ
xo
κxo

(x)
∥∥
L2(dx)

≤ ‖φ‖L2(dx) ‖Xβ
xo
σ(xo, π)‖L∞(Ĝ).

This implies that the L2-operator norm of T is

≤ C|S|1/2 sup
xo∈G,[β]≤⌈Q

2 ⌉
‖Xβ

xo
σ(xo, π)‖L∞(Ĝ),

and concludes the proof of Lemma 5.7.9. �
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Let us go back to the proof of Proposition 5.7.7. The approach is to apply
the following version of Cotlar’s lemma:

Lemma 5.7.10 (Cotlar’s lemma here). Suppose that r ∈ N0 is such that rpo > Q+1
and that there exists Ar > 0 satisfying for all (I, I ′) ∈ N× N0:

max
(
‖TIT

∗
I′‖L (L2(G)), ‖T ∗

I TI′‖L (L2(G))

)
≤ Ar2

−|j−j′|r(1 + |x−1
i′ xi|)−rpo .

Then T = Op(σ) is L2-bounded with operator norm ≤ C
√
Ar.

Lemma 5.7.10 can be easily shown, adapting for instance the proof given in
[Ste93, ch. VII §2] using Part (4) of Lemma 5.7.5. Indeed, the numbering of the
sequence of operators to which the Cotlar-Stein lemma (see Theorem A.5.2) is
applied is not important, and the condition rpo > Q+ 1 is motivated by Lemma
5.7.5, Part (4). This is left to the reader.

Lemma 5.7.11 which follows gives the operator norm for TIT
∗
I′ and T ∗

I TI′ .
Combining Lemmata 5.7.10 and 5.7.11 gives the proof of Proposition 5.7.7.

Lemma 5.7.11. 1. For any r ∈ N0, the operator norm of TIT
∗
I′ on L2(G) is

‖TIT
∗
I′‖L (L2(G)) ≤ Cr1|j−j′|≤1(1 + |x−1

i′ xi|)−rpo‖σ‖2
S0
0,0,rpo,⌈Q

2 ⌉,0.

2. For any r ∈ N0, the operator norm of T ∗
I TI′ on L2(G) is

‖T ∗
I TI′‖L (L2(G)) ≤ Cr1|x−1

i′
xi|≤4Co

2−|j−j′|r‖σ‖2
S0
0,0,0,rν+⌈Q

2 ⌉,rν .

In the proof of Lemma 5.7.11, we will also use the symbols σi, i ∈ N, given
by

σi(x, π) := χi(x) σ(x, π),

and the corresponding operators Ti = Op(σi) and kernels κi. We observe that σi is
compactly supported in x, therefore by Lemma 5.7.9, the operator Ti is bounded
on L2(G).

Proof of Lemma 5.7.11 Part (1). We have (see the end of Lemma 5.5.4)

TI = Op(σI) = Ti ψj(R),

thus

TIT
∗
I′ = Tiψj(R)ψj′(R)T ∗

i′ .

Since ψj(R)ψj′(R) = (ψjψj′)(R), this is 0 if |j−j′| > 1. Let us assume |j−j′| ≤ 1.
We set

Ti′j′j := Ti′ ◦ (ψjψj′)(R) = Op (σi′ ◦ (ψjψj′) (π(R))) ,
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see again the end of Lemma 5.5.4. Therefore TIT
∗
I′ = TiT

∗
i′j′j , and we have by the

Sobolev inequality in Theorem 4.4.25,

|TIT
∗
I′φ(x)| =

∣∣∣∣
∫

G

T ∗
i′j′jφ(z) κix(z

−1x)dz

∣∣∣∣

≤ sup
xo

∣∣∣∣
∫

G

T ∗
i′j′jφ(z) κixo

(z−1x)dz

∣∣∣∣ 1x∈B(xi,2)

≤ C
∑

[β]≤⌈Q
2 ⌉

∥∥∥∥Xβ
xo

∫

G

T ∗
i′j′jφ(z)κixo(z

−1x)dz

∥∥∥∥
L2(dxo)

1x∈B(xi,2).

Hence,

‖TIT
∗
I′φ‖L2 ≤ C

∑

[β]≤⌈Q
2 ⌉

∥∥∥∥
∫

G

T ∗
i′j′jφ(z)X

β
xo
κixo

(z−1x)dz 1x∈B(xi,2)

∥∥∥∥
L2(dxodx)

.

The idea of the proof is to use a quantity which will help the space localisa-
tion; so we introduce this quantity 1+ |z−1x|rpo and its inverse, where the integer
r ∈ N is to be chosen suitably. Notice that for the inverse we have

(1 + |z−1x|rpo)−1 ≤ Cr(1 + |z−1x|)−rpo ≤ Cr(1 + |x−1
i′ xi|)−rpo ,

for any z ∈ suppχi′ and x ∈ B(xi, 2). Therefore, we obtain

∥∥∥∥
∫

G

T ∗
i′j′jφ(z)X

β
xo
κixo

(z−1x)dz 1x∈B(xi,2)

∥∥∥∥
L2(dxodx)

=

∥∥∥∥
∫

G

T ∗
i′j′jφ(z)

1 + |z−1x|rpo

1 + |z−1x|rpo
Xβ

xo
κixo(z

−1x)dz 1x∈B(xi,2)

∥∥∥∥
L2(dxo,dx)

≤ C(1 + |x−1
i′ xi|)−rpo

∥∥T ∗
i′j′jφ(z1)

∥∥
L2(dz1)∥∥(1 + |z−1

2 x|rpo)Xβ
xo
κixo

(z−1
2 x) 1x∈B(xi,2)

∥∥
L2(dz2,dxo,dx)

by the observation just above and the Cauchy-Schwartz inequality. The last term
can be estimated as

∥∥(1 + |z−1
2 x|rpo)Xβ

xo
κixo

(z−1
2 x) 1x∈B(xi,2)

∥∥
L2(dz2,dxo,dx)

≤ |B(xi, 2)| sup
xo∈G

∥∥(1 + |z′|rpo)Xβ
xo
κixo(z

′)
∥∥
L2(dz′)

≤ C sup
xo∈G

rpo∑

[α]=0

∥∥Xβ
xo
Δασi(xo, π)

∥∥
L∞(Ĝ)

by the Plancherel theorem and Theorem 5.2.22, since |z′|rpo can be written as a
linear combination of q̃α(z), [α] = rpo. Combining the estimates above, we have
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obtained

‖TIT
∗
I′φ‖L2 ≤ C(1 + |x−1

i′ xi|)−rpo
∥∥T ∗

i′j′jφ
∥∥
L2 sup

xo∈G
[β′]≤⌈Q

2 ⌉,[α]≤rpo

∥∥∥ΔαXβ′

xo
σ(xo, π)

∥∥∥
L∞(Ĝ)

.

The supremum is equal to ‖σ‖S0
0,0,rpo,⌈Q

2 ⌉,0. So we now want to study the operator

norm of T ∗
i′j′j , which is equal to the operator norm of Ti′j′j . Since the symbol of

Ti′j′j is localised in space we may apply Lemma 5.7.9 and obtain

‖T ∗
i′j′j‖L (L2(G)) = ‖Ti′j′j‖L (L2(G)) = ‖Op (σi (ψjψj′) (π(R))) ‖L (L2(G))

≤ C|B(xi, 2)|1/2 sup
x∈G

[β]≤⌈Q/2⌉

‖Xβ
x {χi(x)σ(x, π) (ψjψj′) (π(R))} ‖L∞(Ĝ)

≤ C sup
x∈G, π∈Ĝ
[β]≤⌈Q/2⌉

∑

[β1]+[β2]=[β]

|Xβ1χi(x)| ‖Xβ2
x σ(x, π)‖L (Hπ)‖ (ψjψj′) (π(R)) ‖L (Hπ)

≤ C sup
x∈G, π∈Ĝ
[β2]≤⌈Q/2⌉

‖Xβ2
x σ(x, π)‖L (Hπ) = C‖σ‖S0

0,0,0,⌈Q/2⌉,0,

since the Xβ2χi’s are uniformly bounded on G and over i.
Thus, we have obtained

‖TIT
∗
I′φ‖L2 ≤ C(1 + |x−1

i′ xi|)−rpo‖σ‖S0
0,0,0,⌈Q/2⌉,0 ‖φ‖L2 ‖σ‖S0

0,0,rpo,⌈Q
2 ⌉,0,

and this concludes the proof of the first part of Lemma 5.7.11. �

Proof of Lemma 5.7.11 Part (2). Recall that each κIx(y) is supported, with re-
spect to x, in the ball B(xi, 2). We compute easily that the kernel of T ∗

I TI′ is

κI∗I′(x,w) =

∫

G

κI′xz−1(wz−1)κ∗
Ixz−1(z)dz.

Therefore, κI∗I′ is identically 0 if there is no z such that xz−1 ∈ B(xi, 2)∩B(xi′ , 2).
So if |x−1

i′ xi| > 4Co (which implies B(xi, 2)∩B(xi′ , 2) = ∅) then T ∗
I TI′ = 0. So we

may assume |x−1
i′ xi| ≤ 4Co.

The idea of the proof is to use a quantity which will help the frequency
localisation; so we introduce this quantity (I + R)r and its inverse, where the
integer r ∈ N is to be chosen suitably. We can write

T ∗
I TI′ = T ∗

I Ti′ψj′(R) = T ∗
I Ti′(I +R)r (I +R)−rψj′(R).

By the functional calculus (see Corollary 4.1.16),

‖(I +R)−rψj′(R)‖L (L2(G)) = sup
λ≥0

(1 + λ)−rψj′(λ) ≤ Cr2
−j′r.
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Thus we need to study T ∗
I Ti′(I +R)r. We see that its kernel is

κx(w) =

∫

G

(I + R̃)rκi′xz−1(wz−1)κ∗
Ixz−1(z)dz

=

∫

G

(I + R̃)rκi′xw−1z(z)κ
∗
Ixw−1z(z

−1w)dz.

We introduce (I +R)r(I +R)−r on the first term of the integrand acting on the
variable of κi′xw−1z, and then integrate by parts to obtain

κx(w) =
∑

[β1]+[β2]+[β3]=rν

∫

G

Xβ1
z1=z(I +R)−r(I + R̃)rκi′xw−1z1(z)

Xβ2
z2=zX

β3
z3=zκ

∗
Ixw−1z2

(z−1
3 w)dz

=
∑

[β1]+[β2]+[β3]=rν

∫

G

Xβ1

z1=xw−1z(I +R)−r(I + R̃)rκi′z1(z)

Xβ2

z2=xw−1z(X
β3κIz2)

∗(z−1w)dz.

Re-interpreting this in terms of operators, we obtain

T ∗
I Ti′(I +R)r =

∑

[β1]+[β2]+[β3]=rν

Op
(
π(Xβ3)Xβ2

x σI(x, π)
)∗

Op
(
π(I +R)−rXβ1

x σi′(x, π)π(I +R)r
)
.

By Lemma 5.7.9,

‖Op
(
π(I +R)−rXβ1

x σi′(x, π)π(I +R)r
)
‖L (L2(G))

≤ C sup
x∈G

[β]≤⌈Q
2 ⌉

‖π(I +R)−rXβ
xX

β1
x σi′(x, π)π(I +R)r‖L∞(Ĝ)

≤ ‖σ‖S0
0,0,0,[β1]+⌈Q

2 ⌉,rν ,

and

‖Op
(
π(Xβ3)Xβ2

x σI(x, π)
)
‖L (L2(G))

≤ sup
[β]≤⌈Q

2 ⌉
‖π(Xβ3)Xβ

xX
β2
x σi(x, π)ψj(π(R))‖L∞(Ĝ)

≤ sup
[β]≤⌈Q

2 ⌉
‖π(Xβ3)π(I +R)−

[β3]
ν ‖L∞(Ĝ) ×

×‖π(I +R)
[β3]
ν Xβ+β2

x σi(x, π)π(I +R)−
[β3]
ν ‖L∞(Ĝ) ×

×‖π(I +R)
[β3]
ν ψj(π(R))‖L∞(Ĝ)

≤ Cβ2
j
[β3]
ν ‖σ‖S0

0,0,0,[β2]+⌈Q
2 ⌉,[β3]

,
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by Lemma 5.4.7. Hence we have obtained

‖T ∗
I TI′‖L (L2(G)) ≤ Cr2

−j′r
∑

[β1]+[β2]+[β3]=rν

‖σ‖2
S0
0,0,0,rν+⌈Q

2 ⌉,rν2
j
[β3]
ν

≤ Cr2
(j−j′)r‖σ‖2

S0
0,0,0,rν+⌈Q

2 ⌉,rν .

This shows Part 2 of Lemma 5.7.11 up to the fact that we should have −|j − j′|
instead of (j− j′) but this can be deduced easily by reversing the rôle of I and I ′,
and using ‖T‖L (L2(G)) = ‖T ∗‖L (L2(G)). �

This concludes the proof of Lemma 5.7.11. Therefore, by Lemma 5.7.10,
Proposition 5.7.7 is also proved.

5.7.3 A bilinear estimate

In this section, we prove a bilinear estimate which will be the major ingredient in
the proof of the L2-boundedness for operators of orders 0 in the case ρ = δ ∈ (0, 1)
in Section 5.7.4.

Note that if f, g ∈ S(G) and if γ ∈ N0 then the Leibniz properties to-
gether with the properties of the Sobolev spaces (cf. Theorem 4.4.28, especially
the Sobolev embeddings in Part (5)) imply

‖(I +R)γ(fg)‖L2(G) �
∑

[β1]+[β2]≤νγ

‖Xα1f Xα2g‖L2(G)

�
∑

[β1]+[β2]≤νγ

‖Xα1f‖L∞(G)‖Xα2g‖L2(G)

�
∑

[β1]+[β2]≤νγ

‖Xα1f‖Hs(G)‖Xα2g‖L2(G)

� ‖f‖Hs+νγ(G)‖g‖Hνγ(G),

where s > Q/2. As usual,R is a positive Rockland operator of homogeneous degree
ν; we denote by E its spectral decomposition, see Corollary 4.1.16. Consequently,
if f, g are localised in the spectrum of R in the sense that f = E(Ii)f , g = E(Ij)g,
where Ii, Ij are the dyadic intervals given via

Ij := (2j−2, 2j), j ∈ N, and I0 := [0, 1), (5.72)

we obtain easily

‖(I +R)γ(fg)‖L2(G) � ‖f‖L2(G)‖g‖L2(G)2
(γ+ s

ν )max(i,j). (5.73)

Our aim in this section is to prove a similar result but for γ ≪ 0:
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Proposition 5.7.12. Let R be a positive Rockland operator of homogeneous degree
ν. As usual, we denote by E its spectral decomposition. There exists a constant
C > 0 such that for any γ ∈ R with γ + Q/(2ν) < 0, for any i, j ∈ N0 with
|i− j| > 3, we have

∀f, g ∈ L2(G) f = E(Ii)f and g = E(Ij)g

=⇒ ‖(I +R)γ(fg)‖L2(G) ≤ C‖f‖L2‖g‖L22(γ+
Q
2ν )max(i,j).

The intervals Ii, Ij were defined via (5.72). The proof of Proposition 5.7.12
relies on the following lemma:

Lemma 5.7.13. Let R be a positive Rockland operator. As in Corollary 4.1.16, for
any strongly continuous unitary representation π1 on G, Eπ1

denotes the spectral
decomposition of π1(R). There exists a ‘gap’ constant a ∈ N such that for any
i, j, k ∈ N0 with k < j − a and i ≤ j − 4, we have

∀τ, π ∈ Ĝ Eτ⊗π(Ii)
(
Eτ (Ij)⊗ Eπ(Ik)

)
= 0.

and

∀τ, π ∈ Ĝ
(
Eτ (Ij)⊗ Eπ(Ik)

)
Eτ⊗π(Ii) = 0.

Proof of Lemma 5.7.13. We keep the notation of the statement. We also set

Hπ1,j := Eπ1
(Ij), j ∈ N0,

for any strongly continuous unitary representation π1 on G. We can write R as a
linear combination

R =
∑

[α]=ν

cαX
α,

for some complex coefficients cα. For any strongly continuous unitary representa-
tion π1, we have

π1(R) =
∑

[α]=ν

cαπ1(X)α.

Let τ, π ∈ Ĝ. We consider the strongly continuous unitary representation
π1 = τ ⊗ π. For any X ∈ g, its infinitesimal representation is given via π1(X) =
Xx=0{π1(x)}, see Section 1.7. Consequently, we have for any u ∈ Hτ , v ∈ Hπ,

π1(X)(u, v) = Xx=0π1(x)(u, v)

= Xx=0τ(x)u⊗ π(x)v

= τ(X)u⊗ v + u⊗ π(X)v.

In other words,

(τ ⊗ π)(X) = τ(X)⊗ IHπ + IHτ ⊗ π(X).



398 Chapter 5. Quantization on graded Lie groups

We obtain iteratively

(τ ⊗ π)(X)α = τ(X)α ⊗ IHπ
+ IHτ

⊗ π(X)α +
∑

[β1]+[β2]=[α]
0<[β1],[β2]<[α]

τ(X)β1 ⊗ π(X)β2 ,

where
∑

denotes a linear combination which depends only on α ∈ Nn
0 and on the

structure of G but not on τ, π ∈ Ĝ. This easily implies

(τ ⊗ π)(R) =
∑

[α]=ν

cα(τ ⊗ π)(X)α

= τ(R)⊗ IHπ + IHτ ⊗ π(R) +
∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

τ(X)β1 ⊗ π(X)β2 ,

where
∑

denotes a linear combination which depends only on R and on the
structure of G but not on π, τ . Hence there exists a constant C > 0 independent
of π, τ such that for any u ∈ Hτ , v ∈ Hπ, we have

‖(τ ⊗ π)(R)(u⊗ v)‖Hτ⊗π
≥ ‖τ(R)u‖Hτ

‖v‖Hπ
− ‖u‖Hτ

‖π(R)v‖Hπ

−C
∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

‖τ(X)β1u‖Hτ
‖π(X)β2v‖Hπ

.

If u ∈ Hτ,j then from the properties of the functional calculus of τ(R), we have

‖τ(R)u‖Hτ
∈ ‖u‖Hτ

Ij .

Furthermore, the properties of the functional calculus of R and τ(R) yield

‖τ(X)β1u‖Hτ
≤ ‖τ(X)β1Eτ (Ij)‖L (Hτ )‖u‖Hτ

,

and, as Xβ1R− [β1]
ν is bounded on L2(G) by Theorem 4.4.16, we have

‖τ(X)β1Eτ (Ij)‖L (Hτ ) ≤ ‖Xβ1E(Ij)‖L (L2(G))

≤ ‖Xβ1R− [β1]
ν ‖L (L2(G))‖R

[β1]
ν E(Ij)‖L (L2(G))

� 2j
[β1]
ν .

We have similar inequalities for v ∈ Hπ,k. For any unit vectors u ∈ Hτ,j and
v ∈ Hπ,k with j, k ∈ N, we then have

‖(τ ⊗ π)(R)(u⊗ v)‖Hτ⊗π ≥ 2j−2 − 2k − C1

∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

2
j[β1]+k[β2]

ν ,
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where the constant C1 depends only on R and on the structure of G. We notice
that

∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

2
j[β1]+k[β2]

ν = 2j
∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

2
[β2]
ν (k−j) ≤ 2jC ′2−aυ1 ,

if k − j ≤ −a. Here C ′ is a constant which depends on the structure of G and on
ν. We choose a ∈ N the smallest integer such that

CC ′2−aυ1+2 < 1/2 and 2−a+3 < 1/2.

Note that a depends only on the structure of G and on R. When k − j ≤ −a, we
have obtained

‖(τ ⊗ π)(R)(u⊗ v)‖Hτ⊗π
≥ 2j−2 − 2k − C2jC ′2−aυ1

= 2j−2(1− CC ′2−aυ1+2)− 2k

> 2j−3 − 2j−a > 2j−4.

This implies that u⊗ v can not be in Hτ⊗R,π for i ∈ N0 such that 2i ≤ 2j−4. This
shows the first equality of the statement when i, j, k ∈ N. The case of k = 0 or
i = 0 requires to modify slightly some constants above and is left to the reader.
This shows the first equality of the statement and the second follows by taking
the adjoint. This concludes the proof of Lemma 5.7.13. �

Proof of Proposition 5.7.12. We keep the notation of Proposition 5.7.12 and Lem-
ma 5.7.13. We notice that it suffices to prove the statement for large enough
max(i, j) and that the rôles of i and j are symmetric. Hence we may assume that
i ≤ j − 4 and that j ≥ a where a is the ‘gap’ constant of Lemma 5.7.13

Let f, g ∈ L2(G) such that f = E(Ii)f and g = E(Ij)g. The inverse formula
for g yields

(I +R)γ(fg)(x) =
∫

Ĝ

Tr
(
π(g)(I +R)γx{f(x)π(x)}

)
dμ(π).

We also have π(g) = Eπ(Ij)π(g). By the Cauchy-Schwartz inequality and the
Plancherel formula, we obtain

|(I +R)γ(fg)(x)|2 ≤ ‖g‖2L2(G)

∫

Ĝ

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdμ(π).

Integrating on both side over x ∈ G, we have

‖(I +R)γ(fg)‖2L2(G) ≤ ‖g‖2L2

∫

Ĝ

∫

G

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdxdμ(π).
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For each π ∈ Ĝ, we fix an orthonormal basis of Hπ, so that we can write the
Hilbert-Schmidt norm as the square of the coefficients of a (possibly infinite di-
mensional) matrix. The Plancherel formula then yields

∫

G

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdx

=
∑

kl

∫

G

|[Eπ(Ij)(I +R)γx{f(x)π(x)}]kl|2dx

=
∑

kl

∫

Ĝ

‖F [Eπ(Ij)(I +R)γfπ]kl (τ)‖2HS(Hτ )
dμ(τ),

where

F [Eπ(Ij)(I +R)γfπ]kl (τ)

=

∫

G

(I +R)γx {f(x)[Eπ(Ij)π(x)]kl} τ(x)∗dx

= τ(I +R)γ
∫

G

f(x)[Eπ(Ij)π(x)]kl τ(x)
∗dx

=

[
Eπ(Ij)⊗ τ(I +R)γ

∫

G

f(x)(π ⊗ τ∗)(x)dx

]

kl,·
.

Here the notation [·]kl,· means considering the (kl)-coefficients in Hπ in the tensor
product over Hπ ⊗Hτ . We recognise

∫

G

f(x)(π ⊗ τ∗)(x)dx = (π∗ ⊗ τ)(f)

thus
∑

kl

‖F [Eπ(Ij)(I +R)γfπ]kl(τ)‖2HS(Hτ )

= ‖ (Eπ(Ij)⊗ τ(I +R)γ) ((π∗ ⊗ τ)(f)) ‖2
HS(Hπ⊗Hτ )

.

So far, we have obtained
∫

Ĝ

∫

G

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdxdμ(π)

=

∫

Ĝ

∫

Ĝ

‖ (Eπ(Ij)⊗ τ(I +R)γ) ((π∗ ⊗ τ)(f)) ‖2
HS(Hπ⊗Hτ )

dμ(τ)dμ(π)

= ‖‖ (Eπ(Ij)⊗ τ(I +R)γ) ((π∗ ⊗ τ)(f)) ‖HS(Hπ⊗Hτ )‖2L2(dμ(τ),dμ(π)).

We fix a dyadic decomposition, that is, we fix ψ0, ψ1 ∈ D(R) supported in
(−1, 1) and (1/2, 2), respectively, valued in [0, 1] and such that

∀λ ≥ 0

∞∑

k=0

ψk(λ) = 1 with ψk(λ) = ψ1(2
−(k−1)λ) if k ∈ N.
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The series
∑

k ψk(τ(R)) converges to IHτ in the strong operator topology and we
can apply the following general property:

‖(B ⊗ C)A‖HS(Hπ⊗Hτ )

≤
∞∑

k=0

‖Eτ (Ik)C‖L (Hτ )‖(B ⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ ),

to B = Eπ(Ij), C = τ(I +R)γ , and

A = (π∗ ⊗ τ)(f).

We keep momentarily this notation for A and C. As ‖Eτ (Ik)C‖L (Hτ ) � 2γk, we
have obtained

‖‖ (Eπ(Ij)⊗ τ(I +R)γ)A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π))

�

∞∑

k=0

2γk‖‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π)).

Now

A = ((π∗ ⊗ τ)(f)) = Eπ∗⊗τ (Ii) ((π
∗ ⊗ τ)(f)) ,

thus we can apply Lemma 5.7.13 and the sum over k above is in fact from k ≥ j−a.
We claim that

‖‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π)) � ‖f‖L2(G)2
k Q

2ν . (5.74)

Collecting the equalities and estimates above, (5.74) would then imply

‖(I +R)γ(fg)‖2L2(G) � ‖g‖2L2‖f‖2L2(G)

∞∑

k=j−a

2k(γ+
Q
2ν ),

and would conclude the proof of Proposition 5.7.12.

Hence it just remains to prove (5.74). Natural properties of tensor product
and functional calculus yield

‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )

≤ ‖Eπ(Ij)‖L (Hπ)‖ (IHπ
⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )

≤ ‖ (IHπ
⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ ).

We notice that

(IHπ
⊗ ψk(τ(R)))A =

∫

G

f(x)(π ⊗ ψk(τ(R))τ∗)(x)dx,
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and introducing an orthonormal basis on Hτ ,

[(IHπ
⊗ ψk(τ(R)))A]·,l′k′ =

∫

G

f(x) [ψk(τ(R))]l′k′ π(x)dx

= F [fψk(τ(R))]l′k′ (π
∗) = F{[fψk(τ(R))]l′k′ ( ·−1)}(π).

Therefore we have

‖‖ (IHπ
⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖2L2(dμ(τ),dμ(π))

=

∫

Ĝ

∑

k′l′

∫

Ĝ

‖F [fψk(τ(R))]l′k′ (π
∗)‖2

HS(Hπ)
dμ(π)dμ(τ)

=

∫

Ĝ

∑

k′l′

∥∥[fψk(τ(R))]l′k′ ( ·−1)
∥∥2

L2(G)
dμ(τ),

having applied the Plancherel formula in π. Simple manipulations yield

∑

k′l′

∥∥[fψk(τ(R))]l′k′ ( ·−1)
∥∥2

L2(G)
=

∑

k′l′

‖[fψk(τ(R))]l′k′‖2L2(G)

=
∑

k′l′

∫

G

|f(x) [ψk(τ(R))]l′k′ |2dx

=

∫

G

|f(x)|2dx
∑

k′l′

| [ψk(τ(R))]l′k′ |2

= ‖f‖2L2(G)‖ψk(τ(R))‖2HS(Hτ )
.

Integrating over τ ∈ Ĝ, we can apply the Plancherel formula and obtain

∫

Ĝ

∑

k′l′

∥∥[fψk(τ(R))]l′k′ ( ·−1)
∥∥2

L2(G)
dμ(τ) = ‖f‖2L2(G)‖ψk(R)δ0‖2L2(G).

Using the properties of dilations, we have for any k ∈ N:

‖ψk(R)δ0‖L2(G) = 2
Q
2

k−1
ν ‖ψ1(R)δ0‖L2(G).

Collecting the equalities and inequalities above yields that the left-hand side of
(5.74) is

‖‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π))

≤ ‖f‖L2(G)2
Q
2

k−1
ν ‖ψ1(R)δ0‖L2(G).

By Hulanicki’s theorem, see Corollary 4.5.2, ‖ψ1(R)δ0‖L2(G) is a finite constant.
This shows (5.74) and concludes the proof of Proposition 5.7.12. �
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5.7.4 Proof of the case S0

ρ,ρ

In this section, we prove the L2-boundedness of operators in Ψ0
ρ,ρ with ρ ∈ (0, 1):

Proposition 5.7.14. Let σ ∈ S0
ρ,ρ with ρ ∈ (0, 1). Then Op(σ) is bounded on L2(G)

and the operator norm is, up to a constant, less than a seminorm of σ ∈ S0
ρ,ρ;

the parameters of the seminorm depend on ρ but not on σ and could be computed
explicitly.

The rest of this section is devoted to the proof of Proposition 5.7.14. The
strategy is broadly similar to the one in [Ste93, ch VII §2.5] for the Euclidean case.
Technically, this means using analogous rescaling arguments but also replacing
certain integrations by parts on the (Euclidean) Fourier side with the bilinear
estimate obtained in Proposition 5.7.12.

Strategy of the proof

We fix a dyadic decomposition, that is, we fix ψ0, ψ1 ∈ D(R) supported in (−1, 1)
and (1/2, 2), respectively, valued in [0, 1] and such that

∀λ ≥ 0
∞∑

j=0

ψj(λ) = 1 with ψj(λ) = ψ1(2
−(j−1)λ) if j ∈ N.

Let σ ∈ S0
ρ,ρ. We define

σj(x, π) := σ(x, π)ψj(π(R)) and Tj := Op(σj) = Tψj(R),

where T = Op(σ).
It is clear that TjT

∗
i = T (ψjψi)(R)T ∗ is zero if |j − i| > 1 and the strategy

of the proof is to apply the crude version of the Cotlar-Stein Lemma, see Propo-
sition A.5.3. We will first prove that the operator norms of the Tj ’s are uniformly
bounded in j by a S0

ρ,ρ-seminorm, see Lemma 5.7.15. Then we will show that there
exist a constant C > 0 and a S0

ρ,ρ-seminorm such that

∑

|i−j|>3

‖T ∗
j Ti‖L (L2(G)) ≤ C‖σ‖2S0

ρ,ρ,a,b,c
. (5.75)

These two claims together with Proposition A.5.3 and Remark A.5.4 imply that the
series

∑
j Tj ∈ L (L2(G)) converges in the strong operator topology of L (L2(G))

and that the operator norm of the sum is � ‖σ‖S0
ρ,ρ,a,b,c

. As Op(σ) =
∑

j Tj in
the strong operator topology, this will conclude the proof of Proposition 5.7.14.

Step 1

Let us show that the operator norms of the Tj ’s are uniformly bounded with
respect to j:
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Lemma 5.7.15. The operator Tj = Op(σj) is bounded on L2(G) with operator norm
≤ C‖σ‖S0

ρ,ρ,a,b,c
with a, b, c as in Proposition 5.7.7.

The proof of Lemma 5.7.15 uses the following result which is of interest on
its own. In particular, it describes the action of the dilations on Ĝ.

Lemma 5.7.16. Let σ be a symbol with kernel κx and operator T = Op(σ). Let
r > 0. We define the operator

Tr : S(G) ∋ φ �−→ (Tφ(r ·)) (r−1·).
Then (with operator norm possibly infinite)

‖T‖L (L2(G)) = ‖Tr‖L (L2(G)).

Furthermore, the symbol of Tr is

σr := Op−1(Tr) given by σr(x, π) := σ
(
r−1x, π(r)

)
,

where the representation π(r) is defined by

π(r)(y) := π(ry).

The kernel of σr is r−Qκr−1x(r
−1·). Moreover, we have

FG(κ)(π
(r)) = FG

(
r−Qκ(r−1·)

)
(π),

Δα
{
FG(κ)(π

(r))
}

= r[α] {ΔαFG(κ)} (π(r)),

f(π(r)(R)) = f(rνπ(R)),
for any α ∈ Nn

0 , any positive Rockland operator R of homogeneous degree ν, and
any reasonable functions f and κ (for instance f measurable bounded and κ in
some Ka,b).

Proof of Lemma 5.7.16. We keep the notation of the statement. The property
‖T‖L (L2(G)) = ‖Tr‖L (L2(G)) follows easily from ‖φ(r·)‖2 = r−Q/2‖φ‖2. We com-
pute

(Tφ(r ·)) (r−1x) =

∫

G

φ(ry) κr−1x(y
−1r−1x)dy

=

∫

G

φ(z) κr−1x(r
−1z−1r−1x)r−Qdz

= φ ∗
(
r−Qκr−1x(r

−1·)
)
(x).

Therefore, the kernel of the operator Tr is r−Qκr−1x(r
−1·). The computation of

its symbol follows from

FG

(
r−Qκ(r−1·)

)
(π) =

∫

G

r−Qκ(r−1x)π(x)∗dx

=

∫

G

κ(y)π(ry)∗dx = FG(κ)(π
(r)).
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The difference operator applied to the above expression is

Δα
{
FG(κ)(π

(r))
}

= Δα
{
FG

(
r−Qκ(r−1·)

)
(π)

}

= FG

(
q̃α(·) r−Qκ(r−1·)

)
(π)

= r[α]
{
FG

(
r−Q(q̃ακ)(r

−1·)
)
(π)

}

= r[α] {ΔαFG(κ)} (π(r)).

The kernels of the operators f(R) and f(rνR) are respectively f(R)δo and
r−Qf(R)δo(r−1·) (see (4.3) in Corollary 4.1.16, and Example 3.1.20 for the ho-
mogeneity of δo). Since the group Fourier transform of the former is f(π(R)), the
group Fourier transform of the latter is f(rνπ(R)) = f(π(r)(R)). �

We can now show Lemma 5.7.15 using the rescaling arguments (together with
the lemma above) and the case ρ = δ = 0.

Proof of Lemma 5.7.15. Using the Leibniz formula in Proposition 5.2.10, we first
estimate

‖π(I +R) γ
ν Xβo

x Δαoσj(x, π)π(I +R)−
γ
ν ‖L (Hπ)

≤ Cαo

∑

[α1]+[α2]=[αo]

‖π(I +R) γ
ν Xβo

x Δα1σ(x, π)π(I +R)
ρ([α1]−[βo])−γ

ν ‖L (Hπ)

qquad ‖π(I +R)−
ρ([α1]−[βo])−γ

ν Δα2ψj(π(R))π(I +R)−
γ
ν ‖L (Hπ)

≤ Cαo
‖σ‖S0

ρ,ρ,[αo],[βo],|γ|
∑

[α1]+[α2]=[αo]

2−j ν
ρ

[α2]+ρ([α1]−[βo])
ν

≤ Cαo
‖σ‖S0

ρ,ρ,[αo],[βo],|γ|2
−j([αo]−[βo]), (5.76)

by Lemma 5.4.7.
For each j ∈ N0, we define the symbol σ′

j given by setting

σ′
j(x, π) := σj

(
2−jρx, π(2jρ)

)
.

By Lemma 5.7.16, the corresponding operator T ′
j := Op(σ′

j) satisfies

(T ′
jφ)(x) =

(
Tjφ(2

jρ·)
)
(2−jρx).

Lemma 5.7.16 and Proposition 5.7.7 imply that

‖Tj‖L (L2(G)) = ‖T ′
j‖L (L2(G)) ≤ C‖σ′

j‖S0
0,0,a,b,c

, (5.77)

with a, b, c as in Proposition 5.7.7. So we are led to compute ‖σ′
j‖S0

0,0,a,b,c
. By

Lemma 5.7.16, we have

Xβo
x Δαoσ′

j(x, π) = 2−jρ[βo]2jρ[αo]Xβo

xo=2−jρxΔ
αo

πo=π(2jρ)
σj(xo, πo)

= 2jρ([αo]−[βo])π(I + 2jρR)− γ
ν

(
πo(I +R)

γ
ν Xβo

xo=2−jρxΔ
αoσj(xo, πo)πo(I +R)−

γ
ν

)
πo=π(2jρ)

π(I + 2jρR) γ
ν ,
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so that

‖π(I +R) γ
ν Xβo

x Δαoσ′
j(x, π)π(I +R)−

γ
ν ‖L (Hπ)

≤ 2jρ([αo]−[βo])‖π(I +R) γ
ν π(I + 2jρR)− γ

ν ‖L (Hπ)

‖
(
πo(I +R)

γ
ν Xβo

xo=2−jρxΔ
αoσj(xo, πo)πo(I +R)−

γ
ν

)
πo=π(2jρ)

‖L (Hπ)

‖π(I + 2jρR) γ
ν π(I +R)− γ

ν ‖L (Hπ).

By the functional calculus (Corollary 4.1.16),

‖π(I +R) γ
ν π(I + 2jρR)− γ

ν ‖L (Hπ) ≤ sup
λ≥0

(
1 + λ

1 + 2jρλ

) γ
ν

≤ C2−jρ γ
ν ,

‖π(I + 2jρR) γ
ν π(I +R)− γ

ν ‖L (Hπ) ≤ sup
λ≥0

(
1 + 2jρλ

1 + λ

)γν

≤ C2jρ
γ
ν ,

for any j ∈ N0. Thus, we have obtained

‖π(I +R) γ
ν Xβo

x Δαoσ′
j(x, π)π(I +R)−

γ
ν ‖L (Hπ)

≤ C2jρ([αo]−[βo]) sup
xo∈G, πo∈Ĝ

‖πo(I +R)
γ
ν Xβo

xo
Δαoσj(xo, πo)πo(I +R)−

γ
ν ‖L (Hπ)

≤ C‖σ‖S0
ρ,ρ,[αo],[βo],|γ|,

because of (5.76). Taking the supremum over π ∈ Ĝ, x ∈ G, [αo] ≤ a, [βo] ≤ b and
|γ| ≤ c yields

‖σ′
j‖S0

0,0,a,b,c
≤ C‖σ‖S0

ρ,ρ,a,b,c
.

With (5.77), we conclude that ‖Tj‖L (L2(G)) ≤ C‖σ‖S0
ρ,ρ,a,b,c

. �

Step 2

Now let us prove Claim (5.75). This relies on the bilinear estimate obtained in
Proposition 5.7.12.

Proof of Claim (5.75). For each i ∈ N0, we denote by κi,x the kernel associated
with σi. Then one computes easily the integral kernel Kji(x, y) of the operator
T ∗
j Ti, that is,

(T ∗
j Ti)f(x) =

∫

G

Kji(x, y)f(y)dy, f ∈ S(G),

with

Kji(x, y) =

∫

G

κ̄j,z(x
−1z)κi,z(y

−1z)dz.
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By Schur’s lemma [Ste93, §2.4.1], we have

‖T ∗
j Ti‖L (L2(G)) ≤ max

(
sup
x∈G

∫

G

|Kji(x, y)|dy, sup
y∈G

∫

G

|Kji(x, y)|dx
)
,

� ‖T ∗
j Ti‖Ψ2

ρ,ρ,a,b,c
+ max

|y−1x|≤1
|Kji(x, y)|,

since the estimates at infinity for the kernels of a pseudo-differential operator
obtained in Theorem 5.4.1 for ρ �= 0 yield

|Kji(x, y)| � ‖T ∗
j Ti‖Ψ2

ρ,ρ,a1,b1,c1 |y−1x|−N

for any N ∈ N0. (We have assumed that a quasi-norm | · | has been fixed on
G.) The properties of composition and of taking the adjoint of pseudo-differential
operators (see Theorems 5.5.3 and 5.5.12) together with Lemma 5.4.7 yield

‖T ∗
j Ti‖Ψ2

ρ,ρ,a1,b1,c1 � ‖σj‖S1
ρ,ρ,a2,b2,c2‖σi‖S1

ρ,ρ,a3,b3,c3 � ‖σ‖2S0
ρ,ρ,a4,b4,c4

2−
i+j
ν .

We now analyse max|y−1x|≤1 |Kji(x, y)|. So let x, y ∈ G with |y−1x| ≤ 1. We
fix a function χ ∈ D(G) which is a smooth version of the indicatrix function of the
ball B(0, 10) = {z ∈ G : |x−1z| < 10} about 0 with radius 10, that is, we assume
that χ ≡ 1 on B(0, 10) and χ ≡ 0 on B(0, 11). Let us assume that the quasi-
norm is in fact a norm, that is, it satisfies the triangle inequality ‘with constant
1’ (although we could give a proof without this restriction, it simplifies the choice
of constants and therefore avoids dwelling on unimportant technical points). We
can always decompose

Kji(x, y) =

∫

z∈G

κ̄j,z(x
−1z)κi,z(y

−1z)
(
χ(x−1z) + (1− χ(x−1z)

)
dz

= I1 + I2.

We first estimate the second integral via

|I2| � ‖σj‖S1
ρ,ρ,a5,b5,c5‖σi‖S1

ρ,ρ,a6,b6,c6

∫

|x−1z|>10

|x−1z|−N1 |y−1z|−N1dz.

having used the estimates at infinity for the kernels of a pseudo-differential op-
erator obtained in Theorem 5.4.1 for ρ �= 0. As |y−1x| ≤ 1, the last integral is
just a finite constant if we choose N1 = Q + 1 for instance. We estimate the
S1
ρ,ρ-seminorms with Lemma 5.4.7 and we obtain then

|I2| � ‖σ‖2S0
ρ,ρ,a7,b7,c7

2−
i+j
ν .

We now estimate the integral I1:

I1 =

∫

G

κ̄j,z(x
−1z)κi,z(y

−1z)χ(x−1z)dz.
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It is of the form
∫
G
f(z, z)dz for a given function f on G × G. Simple formal

manipulations yield for any N ∈ N0

∫

G

f(z, z)dz =

∫

G

(I +R)Nz2=z(I +R)−N
z2 f(z, z2)dz

=

∫

G

(I + R̄)Nz1=z(I +R)−N
z2=zf(z1, z2)dz,

having used integration by parts or equivalently Rt = R̄, since R is essentially
self-adjoint. Hence, we obtain formally in our case

I1 =

∫

G

(I + R̄)Nz1=z(I +R)−N
z2=z

{
κ̄j,z1(x

−1z2)κi,z1(y
−1z2)χ(x

−1z1)
}
dz,

where N ∈ N0 is to be fixed later. Note that the expression in z1 is supported in
B(x1, 11), hence so is the integrand in z. This produces the following estimate

|I1| ≤
∫

|x−1z2|≤11

S(z2)dz2

where S(z2) is the supremum

S(z2) = sup
z1∈G

∣∣(I + R̄)Nz1(I +R)−N
z2

{
κ̄j,z1(x

−1z2)κi,z1(y
−1z2)χ(x

−1z1)
}∣∣

�
∥∥∥(I + R̄)N+

s0
ν

z1 (I +R)−N
z2 κ̄j,z1(x

−1z2)κi,z1(y
−1z2)χ(x

−1z1)
∥∥∥
L2(dz1)

�
∑

[β01]+[β02]
≤νN+s0

∥∥(I +R)−N
z2 {Xβ01

z1 κ̄j,z1(x
−1z2) X

β02
z1 κi,z1(y

−1z2)}
∥∥
L2(B(x,11),dz1)

,

by the properties of the Sobolev spaces, see Theorem 4.4.28, especially the Sobolev
embedding in Part (5). Here s0 ∈ νN denotes the smallest integer multiple of ν
such that s0

ν > Q/2. By the Cauchy-Schwartz inequality, as B(x, 11) has finite
volume independent of x, we obtain

|I1| �
∑

[β01]+[β02]
≤νN+s0

∥∥(I +R)−N
z2 {Xβ01

z1 κ̄j,z1(x
−1z2) X

β02
z1 κi,z1(y

−1z2)}
∥∥
L2(B(x,11)2,dz1dz2)

� sup
z1∈B(x,11)

[β01]+[β02]≤νN+s0

∥∥(I +R)−N
z2 {Xβ01

z1 κ̄j,z1(x
−1z2) X

β02
z1 κi,z1(y

−1z2)}
∥∥
L2(dz2)

.

Choosing N > Q
2ν , we can apply Proposition 5.7.12 to the L2-norm above, so that

∥∥(I +R)−N
z2 {Xβ01

z1 κ̄j,z1(x
−1z2) X

β02
z1 κi,z1(y

−1z2)}
∥∥
L2(dz2)

�
∥∥Xβ01

z1 κ̄j,z1(z2)
∥∥
L2(dz2)

∥∥Xβ02
z1 κi,z1(z2)

∥∥
L2(dz2)

2(−N+ Q
2ν )max(i,j).
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By Corollary 5.4.3, we have
∥∥Xβ01

z1 κ̄j,z1(z2)
∥∥
L2(dz2)

� ‖Xβ01
x σj‖Sm′

ρ,ρ,a7,b7,c7
,

where m′ is a number such that m′ < −Q/2, for instance m′ := −1 − Q/2. By
Lemma 5.4.7, we have (with ρ = δ)

‖Xβ01
x σj‖Sm′

ρ,ρ,a7,b7,c7
� ‖σ‖S0

ρ,ρ,a8,b8,c82
−j

m′−δ[β01]
ν .

We have similar estimates for
∥∥Xβ02

z1 κi,z1(z2)
∥∥
L2(dz2)

, thus

max
[β01]+[β02]
≤νN+s0

∥∥Xβ01
z1 κ̄j,z1(z2)

∥∥
L2(dz2)

∥∥Xβ02
z1 κi,z1(z2)

∥∥
L2(dz2)

� ‖σ‖2S0
ρ,ρ,a9,b9,c9

max
[β01]+[β02]
≤νN+s0

2−j
m′−δ[β01]

ν 2−i
m′−δ[β02]

ν

� ‖σ‖2S0
ρ,ρ,a9,b9,c9

2max(i,j)(−2m′+δ(N+s0)).

The estimates above show that the first formal manipulations on I1 are justified
and we obtain

|I1| � ‖σ‖2S0
ρ,ρ,a9,b9,c9

2max(i,j)(−(1−δ)N−2m′+s0+
Q
2ν ).

Consequently, we have

max
|y−1x|≤1

|Kji(x, y)| � ‖σ‖2S0
ρ,ρ,a,b,c

(
2−

i+j
ν + 2max(i,j)(−(1−δ)N−2m′+s0+

Q
2ν )

)
,

thus

‖T ∗
j Ti‖L (L2(G)) � ‖σ‖2S0

ρ,ρ,a,b,c

(
2−

i+j
ν + 2max(i,j)(−(1−δ)N−2m′+s0+

Q
2ν )

)
.

As δ = ρ ∈ (0, 1), we can choose N such that −(1 − δ)N − 2m′ + s0 +
Q
2ν < −1.

Summing over i > j + 3 and using the symmetry of the rôle played by i and j
yield (5.75). �

Hence we have shown Proposition 5.7.14 and this concludes the proof of
Theorem 5.7.1.

5.8 Parametrices, ellipticity and hypoellipticity

In this section, we obtain statements regarding ellipticity and hypoellipticity which
are similar to the compact case presented in Section 2.2.3 where the Laplacian has
the role of the positive Rockland operator. However, on nilpotent Lie groups, since
Ĝ is not discrete and the representations are often not (and can be almost never)
finite dimensional, the precise hypotheses become more technical to present.
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5.8.1 Ellipticity

Roughly speaking, we define the ellipticity by requiring that the symbol is invert-
ible for ‘high frequencies’. These ‘high frequencies’ are determined with respect to
the spectral projection E of a positive Rockland operator R, and its group Fourier
transform Eπ, see Corollary 4.1.16.

We will use the following shorthand notation:

H∞
π,Λ := Eπ(Λ,+∞)H∞

π . (5.78)

Since Eπ(Λ,∞) = FG(1(Λ,∞)(R)δ0) yields a symbol acting on smooth vectors (see
Examples 5.1.27 and 5.1.38), H∞

π,Λ is a subspace of H∞
π .

We can now define our notion of ellipticity:

Definition 5.8.1. Let R be a positive Rockland operator of homogeneous degree
ν. Let σ be a symbol given by fields of operators acting on smooth vectors, i.e.
σ(x, ·) = {σ(x, ·) : H∞

π → H∞
π , π ∈ Ĝ} is in some L∞

a,b(Ĝ) for each x ∈ G.
The symbol σ is said to be elliptic with respect to R of elliptic order mo

if there is Λ ∈ R such that for any γ ∈ R, x ∈ G, μ-almost all π ∈ Ĝ, and any
u ∈ H∞

π,Λ we have

∀γ ∈ R ‖π(I +R) γ
ν σ(x, π)u‖Hπ

≥ Cγ‖π(I +R)
γ
ν π(I +R)mo

ν u‖Hπ
. (5.79)

with Cγ = Cσ,R,mo,Λ,γ independent of (x, π) ∈ G× Ĝ and u ∈ H∞
π,Λ.

We will say that the symbol σ or the corresponding operator Op(σ) is
(R,Λ,mo)-elliptic, or elliptic of elliptic order mo, or just elliptic.

The notation H∞
π,Λ was defined in (5.78). As H∞

π,Λ is a subspace of H∞
π and

since π(I +R) γ
ν and σ(x, ·) are fields of operators acting on smooth vectors, the

expression in the norm of the left-hand side of (5.79) makes sense.
In our elliptic condition in Definition 5.8.1, σ is a symbol in the sense of

Definition 5.1.33 which is given by fields of operators acting on smooth vectors. It
will be natural to consider symbols in the classes Sm

ρ,δ to construct parametrices,
see Proposition 5.8.5 and Theorem 5.8.7.

Our definition of ellipticity requires a property of ‘x-uniform partial injectiv-

ity’. Of course, we note that π(I +R) γ
ν π(I +R)mo

ν = π(I +R) γ+mo
ν .

Naturally, we will see shortly in Corollary 5.8.4 that it suffices to check (5.79)
for a sequence of real numbers {γℓ, ℓ ∈ Z} which tends to ±∞ as ℓ→ ±∞.

Our first examples of elliptic operators are provided by positive Rockland
operators:

Proposition 5.8.2. Let R be a positive Rockland operator of homogeneous degree
ν. Then we have the following properties.

1. The operator (I + R)mo
ν , for any mo ∈ R, is elliptic with respect to R of

elliptic order mo.
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2. If f1 and f2 are complex-valued (smooth) functions on G such that

inf
x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

then the differential operator f1(x) + f2(x)R is (R,Λ, ν)-elliptic.
3. The operator E(Λ,∞)R, for any Λ > 0, is (R,Λ, ν)-elliptic.

More generally, if f is a complex-valued function on G such that infG |f |
> 0, then f(x)E(Λ,∞)R is (R,Λ, ν)-elliptic.

4. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2, Then the operator
ψ(R)R is (R,Λ2, ν)-elliptic.

More generally, if f is a complex-valued function on G such that infG |f |
> 0, then f(x)ψ(R)R is (R,Λ2, ν)-elliptic.

Proof. The symbols involved in the statement are multipliers in R. By Example
5.1.27 and Corollary 5.1.30, the corresponding symbols are symbols in the sense of
Definition 5.1.33 which are given by fields of operators acting on smooth vectors.
Hence it remains just to check the condition in (5.79).

Part (1) is easy to check using the functional calculus of π(R).

Let us prove Part (2). Let Λ, f1, f2, and m be as in the statement. The
properties of the functional calculus for π(R) yield that, for each x ∈ G fixed and
u ∈ H∞

π,Λ we have

π(I +R) γ
ν π(I +R)u = φx(π(R))π(I +R)

γ
ν (f1(x) + f2(x)π(R))u,

where φx ∈ L∞[0,∞) is given by

φx(λ) =
1 + λ

f1(x) + f2(x)λ
1λ≥Λ.

Our assumption implies that φx is bounded on [0,∞) with

C := sup
x∈G
‖φx‖∞ =

(
inf

x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

)−1

<∞.

The property of the functional calculus for π(R) yields

∀x ∈ G ‖φx(π(R))‖L (Hπ) ≤ C.
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Thus we have

‖π(I +R) γ
ν π(I +R)u‖Hπ

= ‖φx(π(R))π(I +R)
γ
ν (f1(x) + f2(x)π(R))u‖Hπ

≤ C‖π(I +R) γ
ν (f1(x) + f2(x)π(R))u‖Hπ

.

This proves Part (2).

Let us prove Part (3). The properties of the functional calculus for π(R) yield

π(I +R)u = φ(π(R))Eπ(Λ,∞)π(R)u,

where φ ∈ L∞[0,∞) is given by

φ(λ) =
1 + λ

λ
1(Λ,∞)(λ).

Moreover,

‖π(I +R)1+ γ
ν u‖Hπ

= ‖φ(π(R))π(I +R) γ
ν Eπ(Λ,∞)π(R)u‖Hπ

≤ ‖φ‖∞‖π(I +R)
γ
ν Eπ(Λ,∞)π(R)u‖Hπ

.

Since C = ‖φ‖−1
∞ is a finite positive constant, we have obtained

C‖π(I +R)1+ γ
ν u‖Hπ

≤ ‖π(I +R) γ
ν Eπ(Λ,∞)π(R)u‖Hπ

.

This shows that E(Λ,∞)R, is elliptic.
If f is as in the statement, we proceed as above, replacing φ by

φx(λ) =
1 + λ

f(x)λ
1(Λ,∞)(λ),

and C such that C−1 is equal to the right-hand side of the estimate

‖φx‖∞ ≤
1

infG |f |
sup
λ≥Λ

1 + λ

λ
:= C−1.

This shows Part (3).

For Part (4), we proceed as in Part (3) replacing 1(Λ,∞) by ψ(λ) and Λ by
Λ2. �

The next lemma is technical. It states that we can construct a partial inverse
of an elliptic symbol. The analogue for scalar-valued symbols would be obvious: if
|a(x, ξ)| does not vanish for |ξ| > Λ then we can consider 1|ξ|>Λ1/a(x, ξ). However,
in the context of operator-valued symbols, we need to proceed with caution.
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Lemma 5.8.3. Let σ be a symbol (R,Λ,mo)-elliptic as in Definition 5.8.1.
For any v ∈ H∞

π , if there is a vector u ∈ H∞
π,Λ such that σ(x, π)u = v then

this u is necessarily unique. In this sense σ(x, π) is invertible on H∞
π,Λ and we can

set

Eπ(Λ,∞)σ(x, π)−1(v) :=

{
u if v = σ(x, π)u, u ∈ H∞

π,Λ,

0 if H∞
π ∋ v ⊥ σ(x, π)H∞

π,Λ.
(5.80)

This yields the symbol (in the sense of Definition 5.1.33) given by fields of operators
acting on smooth vectors

{Eπ(Λ,∞)σ(x, π)−1 : H∞
π → H∞

π , (x, π) ∈ G× Ĝ}. (5.81)

Furthermore, for every γ,

‖Eπ(Λ,∞)σ(x, π)−1‖L∞
γ,γ+mo

(Ĝ) ≤ C−1
γ , (5.82)

where Cγ is the constant appearing in (5.79) of Definition 5.8.1.
If σ is continuous in the sense of Definition 5.1.34, then the symbol in (5.81)

is continuous in the sense of Definition 5.1.34. If σ is smooth, then the symbol
in (5.81) is continuous and depends smoothly on x ∈ G in the sense of Remark
1.8.16.

Proof. Recall that Eπ(Λ,∞) = FG(1(Λ,∞)(R)δ0) yields a symbol acting on smooth
vectors, see Examples 5.1.27 and 5.1.38.

If v = σ(x, π)u where u ∈ H∞
π,Λ, then, using (5.79), we have

‖π(I +R)mo+γ
ν u‖Hπ ≤ C−1

γ ‖π(I +R)
γ
ν σ(x, π)u‖Hπ = C−1

γ ‖π(I +R)
γ
ν v‖Hπ .

It is now easy to check {Eπ(Λ,∞)σ(x, π)−1, (x, π) ∈ G × Ĝ} is a symbol in the
sense of Definition 5.1.33 and that the estimates in (5.82) hold.

If σ is continuous, then one checks easily that the map

G ∋ x �→ Eπ(Λ,∞)σ(x, π)−1 ∈ L∞
γ,γ+mo

(Ĝ)

is continuous. Consequently {Eπ(Λ,∞)σ(x, π)−1, (x, π) ∈ G× Ĝ} is continuous.
If σ is smooth, then {Eπ(Λ,∞)σ(x, π)−1, (x, π) ∈ G× Ĝ} depends smoothly

in x ∈ G, see Remark 1.8.16. �

Corollary 5.8.4. Let R be a positive Rockland operator of homogeneous degree ν.
The symbol σ satisfies (5.79) for each γ ∈ R if and only if σ satisfies (5.79) for a
sequence of real numbers {γℓ, ℓ ∈ Z} which tends to ±∞ as ℓ→ ±∞.

We may choose the constants Cγ such that max|γ|≤c Cγ in (5.79) is finite for
any c ≥ 0.
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Proof. From the proof of Lemma 5.8.3, we see that σ satisfies (5.79) for γ if and
only if

sup
x∈G
‖Eπ(Λ,∞)σ(x, π)−1‖L∞

γ,γ+mo
(Ĝ) <∞

is finite. The conclusion follows from Corollary 4.4.10. �

The next statement says that if a symbol in some Sm
ρ,δ is elliptic and if the

elliptic order is equal to the order m of the symbol, then we can define a symbol
in S−m

ρ,δ using the operator Eπ(Λ,∞)σ(x, π)−1 defined via (5.80). This will be the
main ingredient in the construction of a parametrix, see the proof of Theorem
5.8.7.

Proposition 5.8.5. Assume 1 ≥ ρ ≥ δ ≥ 0. Let σ ∈ Sm
ρ,δ be a symbol which is

(R,Λ,m)-elliptic with respect to a positive Rockland operator R. If ψ ∈ C∞(R) is
such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying Λ < Λ1 < Λ2, then the symbol

{ψ(π(R))σ−1(x, π) , (x, π) ∈ G× Ĝ},

given by

ψ(π(R))σ−1(x, π) := ψ(π(R))Eπ(Λ1,∞)σ(x, π)−1,

is in S−m
ρ,δ . Moreover, for any ao, bo ∈ N0, we have

‖ψ(π(R))σ−1(x, π)‖S−m
ρ,δ ,ao,bo,0

≤ C
∑

a′
1,a

′
2≤ao

b′1,b
′
2≤bo

max
|γ|≤ρao+δbo

C
a′
1+b′1+1

γ,σ,Λ1
‖σ(x, π)‖a

′
2+b′2

Sm
ρ,δ,ao,bo,|m|,

where C > 0 is a positive constant depending on ao, bo, ψ, and where the constant
Cγ,σ,Λ1 was given in (5.79).

The following lemma is helpful in the proof of Proposition 5.8.5. Indeed, in
the case of Rn, if a cut-off function ψ(ξ) on the Fourier side is constant for |ξ| > Λ
(Λ large enough), then its derivatives are ∂α

ξ ψ(ξ) = 0 if |ξ| > Λ. In our case, we can
not say anything in general. If we use ψ(π(R)) as ‘a cut-off in frequency’ with ψ as
in Proposition 5.8.5 for example, it is not true in general that its (Δα-)derivatives
will vanish on Eπ(Λ,∞) or will be of the form ψ1(π(R)). However, we can show
that these derivatives are smoothing:

Lemma 5.8.6. Let ψ ∈ C∞(R) satisfy ψ|[Λ,+∞) = 1 for some Λ ∈ R. Then for any
α ∈ Nn

0\{0}, the symbol given by Δαψ(π(R)) is smoothing, i.e. is in S−∞.
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Proof of Lemma 5.8.6. Let α ∈ Nn
0\{0}. Then ΔαI = 0 by Example 5.2.8. There-

fore

Δαψ(π(R)) = −Δα(1− ψ)(π(R)).
As 1−ψ is a smooth function such that supp(1−ψ)∩[0,∞) is compact, the symbol
(1− ψ)(π(R)) is smoothing. Hence so is Δα(1− ψ)(π(R)) and Δαψ(π(R)). �

Proof of Proposition 5.8.5. Recall that by the Leibniz formula (Proposition 5.2.10),
we have

Δαo (σ1σ2) =
∑

[α1]+[α2]=[αo]

cα1,α2
Δα1σ1 Δα2σ2,

with

cα1,0 =

{
1 if α1 = αo

0 otherwise
, c0,α2 =

{
1 if α2 = αo

0 otherwise
.

It is also easy to see that

Xβo(f1f2) =
∑

[β1]+[β2]=[βo]

c′β1,β2
Xβ1f1 Xβ2f2,

with

c′β1,0 =

{
1 if β1 = αo

0 otherwise
, c′0,β2

=

{
1 if β2 = βo

0 otherwise
.

Let σ = σ(x, π) ∈ Sm
ρ,δ and ψ ∈ C∞(R) as in the statement. By Lemma 5.8.3,

the continuous symbol

{Eπ(Λ,∞)σ(x, π)−1 : H∞
π → H∞

π , (x, π) ∈ G× Ĝ},

depends smoothly on x ∈ G. Hence so does the continuous symbol σo defined via

σo(x, π) := ψ(π(R))σ−1(x, π).

Since ψ(π(R)) commutes with powers of π(I +R) and

‖ψ(π(R))‖L (Hπ) ≤ ‖ψ‖∞,

we have

‖π(I +R)m
ν σo(x, π)‖L (Hπ)

≤ ‖ψ‖∞‖π(I +R)
m
ν

{
Eπ(Λ,∞)σ(x, π)−1

}
‖L (Hπ)

= ‖ψ‖∞C−1
0 ,

where by Lemma 5.8.3, C0 is the finite constant intervening in the ellipticity
condition for γ = 0 in (5.79). More generally, in this proof, Cγ denotes the constant
depending on γ in (5.79), see also Corollary 5.8.4.
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By Proposition 5.3.4, ψ(π(R)) ∈ S0. We also see that

ψ(π(R)) = σo(x, π)σ(x, π). (5.83)

Hence for any left-invariant vector field X we have

0 = Xxψ(π(R))
= Xxσo(x, π) σ(x, π) + σo(x, π) Xxσ(x, π).

Thus
Xxσo(x, π)σ(x, π) = −σo(x, π) Xxσ(x, π),

and since σ(x, π) is invertible on Eπ(Λ1,∞)H∞
π ,

Xxσo(x, π) = −σo(x, π) {Xxσ(x, π)} E(Λ1,∞)σ−1(x, π).

Assuming that X is homogeneous of degree d, we can take the operator norm and
estimate

‖π(I +R)m−δd
ν Xxσo(x, π)‖L (Hπ)

≤ ‖π(I +R)m−δd
ν σo(x, π)π(I +R)

δd
ν ‖L (Hπ)

‖π(I +R)− δd
ν Xxσ(x, π)π(I +R)−

m
ν ‖L (Hπ)

‖π(I +R)m
ν

{
Eπ(Λ1,∞)σ(x, π)−1

}
‖L (Hπ)

≤ ‖ψ‖∞C−1
−δdC

−1
0 ‖σ(x, π)‖Sm

ρ,δ,0,d,|−m|.

Recursively on d=[βo], we can show similar properties forXβo
x

{
ψ(π(R))σ(x, π)−1

}
,

and obtain

‖ψ(π(R))σ(x, π)−1‖S−m
ρ,δ ,0,bo,0

≤ Cbo,‖ψ‖∞

∑

b′1,b
′
2≤bo

max
|γ|≤δbo

C
−(b′1+1)
γ ‖σ(x, π)‖b

′
2

Sm
ρ,δ,0,bo,|m|.

We can proceed in a parallel way for difference operators. Indeed, for any
αo ∈ Nn

0 with |αo| = 1, we apply Δαo to both sides of (5.83) and obtain

Δαo{ψ(π(R))} = Δαoσo(x, π) σ(x, π) + σo(x, π) Δ
αo{σ(x, π)},

thus

Δαoσo(x, π) = Δαo{ψ(π(R))}E(Λ1,∞)σ−1(x, π)

−σo(x, π) {Δαoσ(x, π)} E(Λ1,∞) σ−1(x, π).

Then
‖π(I +R) ρ[αo]+m

ν Δαoσo(x, π)‖L (Hπ) ≤ N1 +N2,
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with

N1 = ‖π(I +R) ρ[αo]+m
ν Δαo{ψ(π(R))}E(Λ1,∞)σ−1(x, π)‖L (Hπ),

N2 = ‖π(I +R) ρ[αo]+m
ν σo(x, π) {Δαoσ(x, π)} E(Λ1,∞) σ−1(x, π)‖L (Hπ).

For the first norm, we see that

N1 ≤ ‖π(I +R) ρ[αo]+m
ν Δαo{ψ(π(R))}π(I +R)−m

ν ‖L (Hπ)

‖π(I +R)m
ν E(Λ1,∞)σ−1(x, π)‖L (Hπ)

≤ CψC
−1
0 ,

since Δαo{ψ(π(R))} ∈ S−∞ by Lemma 5.8.6. For the second norm, we see that

N2 ≤ ‖π(I +R) ρ[αo]+m
ν σo(x, π)π(I +R)−

ρ[αo]
ν ‖L (Hπ)

‖π(I +R) ρ[αo]
ν Δαoσ(x, π)π(I +R)−m

ν ‖L (Hπ)

‖π(I +R)m
ν E(Λ1,∞) σ−1(x, π)‖L (Hπ)

≤ ‖ψ‖∞C−1
ρ[αo]

C−1
0 ‖σ‖Sm

ρ,δ,[αo],0,|m|.

Recursively on [αo], we can show similar properties for Δαo
{
ψ(π(R))σ(x, π)−1

}
,

and obtain

‖σo(x, π)‖S−m
ρ,δ ,ao,0,0

≤ Cao,ψ

∑

a′
1,a

′
2≤ao

max
|γ|≤ρao

C
−(a′

1+1)
γ ‖σ(x, π)‖a

′
2

Sm
ρ,δ,ao,0,|m|.

More generally, we have

Xβo
x Δαo {ψ(π(R))} =

∑

[α1]+[α2]=[αo]
[β1]+[β2]=[βo]

c′β1,β2
cα1,α2 Xβ1

x Δα1σo(x, π)

Xβ2
x Δα2σ(x, π).

Because of the very first remark of this proof, we obtain XβoΔαoσo in terms of
Xβ′

Δα′

σo with [β′] < [βo] and [α′] < [αo] and of some derivatives of ψ(π(R)) and
σ. If we assume that we can control all the seminorms ‖σo‖S−m

ρ,δ ,a,b,c with a < [αo],

b < [βo] and any c ∈ R, then we can proceed as above introducing powers of I+R
to obtain the estimate for the seminorms of ψ(π(R))σ(x, π)−1. Recursively this
shows Proposition 5.8.5. �

5.8.2 Parametrix

In the next theorem, we show that our notion of ellipticity implies the construction
of a parametrix.
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Theorem 5.8.7. Let σ ∈ Sm
ρ,δ be elliptic of elliptic order m with 1 ≥ ρ > δ ≥ 0.

We can construct a left parametrix B ∈ Ψ−m
ρ,δ for the operator A = Op(σ), that is,

there exists B ∈ Ψ−m
ρ,δ such that

BA− I ∈ Ψ−∞.

Comparing with two-sided parametrices in the case of compact Lie groups
(Theorem 2.2.17), this parametrix is one-sided. It was also the case in [CGGP92].

Proof. We can adapt the proof in [Tay81, §0.4] to our setting. Let ψ ∈ C∞(R) be
such that ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1 for some Λ1,Λ2 ∈ R with Λ < Λ1 < Λ2.
By Proposition 5.8.5,

ψ(π(R))σ−1(x, π) ∈ S−m
ρ,δ .

Since ψ(π(R)) = ψ(π(R))σ−1(x, π)σ(x, π), by Corollary 5.5.8,

Op
(
ψ(π(R))σ−1(x, π)

)
A = ψ(R) modΨ

−(ρ−δ)
ρ,δ ;

now ψ(R) = I− (1− ψ)(R) and (1− ψ) ∈ D([0,∞)) so (1− ψ)(R) ∈ Ψ−∞. This
shows

Op
(
ψ(π(R))σ−1(x, π)

)
A = I modΨ

−(ρ−δ)
ρ,δ .

So we have

Op
(
ψ(π(R))σ−1(x, π)

)
A = I− U with U ∈ Ψ

−(ρ−δ)
ρ,δ .

By Theorem 5.5.1, there exists T ∈ Ψ0
ρ,δ such that

T ∼ I + U + U2 + . . .+ U j + . . .

By Theorem 5.5.3,

B := T Op
(
ψ(π(R))σ−1

)
∈ Ψ−m

ρ,δ .

Therefore, we obtain

BA = T (I− U) = I modΨ−∞,

completing the proof. �

It is not difficult to construct the following examples of elliptic operators
satisfying Theorem 5.8.7 out of any Rockland operator. Indeed, combining Propo-
sition 5.3.4 or Corollary 5.3.8 together with Proposition 5.8.2 yield

Example 5.8.8. Let R be a positive Rockland operator of homogeneous degree ν.

1. For any m ∈ R, the operator (I +R)m
ν ∈ Ψm is elliptic with respect to R of

elliptic order m.
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2. If f1 and f2 are complex-valued smooth functions on G such that

inf
x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

and such that Xα1f1, X
α2f2 are bounded for each α1, α2 ∈ Nn

0 , then the
differential operator

f1(x) + f2(x)R ∈ Ψν

is (R,Λ, ν)-elliptic.
3. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2, Then the operator
ψ(R)R ∈ Ψν is (R,Λ2, ν)-elliptic.

More generally, if f is a smooth complex-valued function on G such that
infG |f | > 0 and that Xαf is bounded on G for every α ∈ Nn

0 , then

f(x)ψ(R)R ∈ Ψν

is elliptic with respect to R of elliptic order ν.

Hence all the operators in Example 5.8.8 admit a left parametrix.

We will see other concrete examples of elliptic differential operators on the
Heisenberg group in Section 6.6.1, see Example 6.6.2.

In fact we can prove the existence of left parametrices for symbols which are
elliptic with an elliptic order lower than their order. Indeed, we can modify the
hypothesis of the ellipticity in Section 5.8.1 to obtain the analogue of Hörmander’s
theorem about hypoellipticity involving lower order terms, similar to Theorem
2.2.18 in the compact case.

Theorem 5.8.9. Let σ ∈ Sm
ρ,δ with 1 ≥ ρ > δ ≥ 0. We assume that σ is elliptic with

respect to a positive Rockland operator R in the sense of Definition 5.8.1, and that
its elliptic order is mo ≤ m.

We also assume that the following hypothesis on the lower order terms holds:
there is Λ ∈ R such that for any γ ∈ R, x ∈ G, μ-almost all π ∈ Ĝ, and any
u ∈ H∞

π,Λ, we have

‖π(I +R) ρ[α]−δ[β]+γ
ν

{
ΔαXβσ(x, π)

}
π(I +R)− γ

ν u‖Hπ

≤ C ′
α,β,γ‖σ(x, π)u‖Hπ

, (5.84)

with C ′
α,β,γ = C ′

α,β,γ,σ,R,mo,Λ,γ independent of (x, π) ∈ G× Ĝ and u ∈ H∞
π,Λ.

Then we can construct a left parametrix B ∈ Ψ−mo

ρ,δ for the operator A =

Op(σ), that is, there exists B ∈ Ψ−mo

ρ,δ such that

BA− I ∈ Ψ−∞.
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Proceeding as in Corollary 5.8.4, we can show easily that it suffices to assume
(5.79) and (5.84) for a countable sequence γ which goes to +∞ and −∞.

Proof. Let ψ ∈ C∞(R) be such that ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1 for some
Λ1,Λ2 ∈ R with Λ < Λ1 < Λ2. Proceeding as in the proof of Proposition 5.8.5, we
see that

σo(x, π) := ψ(π(R))σ−1(x, π) ∈ S−mo

ρ,δ ,

with similar estimates for the seminorms of σo and σ.

With similar ideas, using (5.84), we claim that, for any multi-index βo ∈ Nn
0 ,

we have
Xβoσ(x, π) σo(x, π) ∈ S

δ[βo]
ρ,δ .

Indeed, from the proof of Proposition 5.8.5, we know that

Xσo = −σo Xσ E(Λ,∞)σ−1,

hence

X
(
Xβoσ(x, π) σo(x, π)

)
= XXβoσ(x, π) σo(x, π) +Xβoσ(x, π) Xσo(x, π)

= XXβoσ(x, π) σo(x, π)−Xβoσ(x, π) σo Xσ E(Λ,∞)σ−1,

and we can use the hypothesis (5.84) on each term to control the Sm
ρ,δ-seminorms

of the expression on the right-hand side. For the difference operators, from the
proof of Proposition 5.8.5, we know with |αo| = 1, that

Δαoσo = Δαoψ(π(R)) E(Λ,∞)σ−1 − σo Δαoσ E(Λ,∞)σ−1.

Hence

Δαo
{
Xβoσ(x, π) σo(x, π)

}

= XβoΔαoσ(x, π) σo(x, π) +Xβoσ(x, π) Δαoσo(x, π)

= XβoΔαoσ(x, π) σo(x, π)−Xβoσ(x, π) σo Δαoσ E(Λ,∞)σ−1

+Xβoσ(x, π) Δαoψ(π(R)) ψo(π(R))σ−1,

where ψo ∈ C∞(R) is a fixed smooth function such that ψo|[Λ1,∞) = 1 and
ψo|(−∞,Λ1/2) = 0. While we can use the hypothesis (5.84) on the first two terms,
we use Lemma 5.8.6 for the last term which is then smoothing. Proceeding recur-
sively as in the proof of Proposition 5.8.5, we obtain the estimates for the sum on
the right-hand side.

We now define recursively

σn(x, π) :=

⎛
⎝ ∑

0<[α]≤n

Δασn−[α]X
ασ

⎞
⎠σo, n = 1, 2, . . .
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It is easy to check that each symbol σn(x, π) is in S
−mo−n(ρ−δ)
ρ,δ and that as in the

compact case,

Op(σo)Op(σ)− I −Op(σ1)Op(σ)− . . .−Op(σn)Op(σ) ∈ Ψm−m0−n
ρ,δ .

Therefore, the operator B ∈ Ψ−mo

ρ,δ whose symbol is given by the asymptotic sum

σo −
∑∞

j=1 σj is a left parametrix for A = Op(σ). �

We will see a concrete example of hypoelliptic differential operators on the
Heisenberg group in Section 6.6.2, see Example 6.6.4.

We now note the following generalisation of Proposition 5.8.5 that we have
already used in the proof of Theorem 5.8.9.

Proposition 5.8.10. Assume 1 ≥ ρ ≥ δ ≥ 0. Let σ ∈ Sm
ρ,δ be a symbol which is

(R,Λ,mo)-elliptic with respect to a positive Rockland operator R. If ψ ∈ C∞(R)
is such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying Λ < Λ1 < Λ2, then the symbol

{ψ(π(R))σ−1(x, π) , (x, π) ∈ G× Ĝ},

given by
ψ(π(R))σ(x, π)−1 := ψ(π(R))Eπ(Λ1,∞)σ−1(x, π),

is in S−mo

ρ,δ . Moreover, for any ao, bo ∈ N0, we have

‖ψ(π(R))σ−1(x, π)‖S−mo
ρ,δ ,ao,bo,0

≤ C
∑

a′
1,a

′
2≤ao

b′1,b
′
2≤bo

max
|γ|≤ρao+δbo

C
a′
1+b′1+1

γ,σ,Λ1
‖σ(x, π)‖a

′
2+b′2

Sm
ρ,δ,ao,bo,|m|,

where C > 0 is a positive constant depending on ao, bo, ψ, and where the constant
Cγ,σ,Λ1

was given in (5.79).

Here the elliptic order mo and the symbol order m are different but the same
results holds: one can construct a symbol ψ(π(R))σ−1(x, π) ∈ S−mo

ρ,δ . The proof is
easily obtained by generalising the proof of Proposition 5.8.5.

We now show that Theorem 5.8.7 has a partial inverse.

Proposition 5.8.11. Suppose that the operator A = Op(σ) ∈ Ψm
ρ,δ, with 1 ≥ ρ >

δ ≥ 0, admits a left parametrix B ∈ Ψ−m
ρ,δ , i.e. BA− I ∈ Ψ−∞. Then σ is elliptic

of order m, that is, there exist a positive Rockland operator R of homogeneous
degree ν, and Λ ∈ R such that for any γ ∈ R, x ∈ G, μ-almost all π ∈ Ĝ, and any
u ∈ H∞

π,Λ we have

‖π(I +R) γ
ν σ(x, π)u‖Hπ ≥ Cγ‖π(I +R)

γ
ν π(I +R)m

ν u‖Hπ .
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Moreover, if this property holds for one positive Rockland operator then it holds
for any Rockland operator.

Proof. Let A and B be as in the statement. Let σ and τ be their respective
symbols. Then the symbol

ε := τσ − I

= (τσ −Op−1(BA))− (I−Op−1(BA)),

is in S
−(ρ−δ)
ρ,δ , and we can write

π(I +R)m+γ
ν τσ = π(I +R)m+γ

ν + ǫ0π(I +R)−
ρ−δ
ν π(I +R)m+γ

ν ,

where
ε0 := π(I +R)m+γ

ν επ(I +R) ρ−δ
ν −m+γ

ν ∈ S0
ρ,δ.

For any u ∈ H∞
π , (x, π) ∈ G× Ĝ, we thus have

‖π(I +R)m+γ
ν τ(x, π)σ(x, π)u‖Hπ

= ‖
(
π(I +R)m+γ

ν + ǫ0(x, π)π(I +R)−
ρ−δ
ν π(I +R)m+γ

ν

)
u‖Hπ

.

We can bound the left hand side by

‖π(I +R)m+γ
ν τ(x, π)σ(x, π)u‖Hπ

≤ ‖π(I +R)m+γ
ν τ(x, π)π(I +R)− γ

ν ‖L (Hπ)‖π(I +R)
γ
ν σ(x, π)u‖Hπ

≤ ‖τ‖S−m
0,0,|γ|

‖π(I +R) γ
ν σ(x, π)u‖Hπ

,

and the right hand side below by

‖
(
π(I +R)m+γ

ν + ǫ0(x, π)π(I +R)−
ρ−δ
ν π(I +R)m+γ

ν

)
u‖Hπ

≥ ‖π(I +R)m+γ
ν u‖Hπ − ‖ǫ0(x, π)π(I +R)−

ρ−δ
ν π(I +R)m+γ

ν u‖Hπ

≥ ‖π(I +R)m+γ
ν u‖Hπ

−‖ǫ0(x, π)‖L (Hπ)‖π(I +R)−
ρ−δ
ν π(I +R)m+γ

ν u‖Hπ .

Hence if u ∈ E(Λ,∞)H∞
π where Λ ≥ 0 then

‖τ‖S−m
0,0,|γ|

‖π(I +R) γ
ν σ(x, π)u‖Hπ

≥ ‖π(I +R)m+γ
ν u‖Hπ

−‖ǫ0(x, π)‖L (Hπ)(1 + Λ)−
ρ−δ
ν ‖π(I +R)m+γ

ν u‖Hπ
.

Clearly τ �≡ 0 and ‖τ‖S−m
0,0,|γ|

�= 0. Furthermore

‖ǫ0(x, π)‖L (Hπ) ≤ ‖ǫ0‖S0
ρ,δ,0,0,0

<∞,
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hence we can choose Λ ≥ 0 such that

‖ǫ0(x, π)‖L (Hπ)(1 + Λ)−
ρ−δ
ν ≤ ‖ǫ0‖S0

ρ,δ,0,0,0
(1 + Λ)−

ρ−δ
ν ≤ 1

2
,

in view of ρ > δ. We have therefore obtained for u ∈ E(Λ,∞)H∞
π with the chosen

Λ, that

‖π(I +R) γ
ν σ(x, π)u‖Hπ ≥

1

2‖τ‖S−m
0,0,|γ|

‖π(I +R)m+γ
ν u‖Hπ ,

which is the required statement. �

5.8.3 Subelliptic estimates and hypoellipticity

The existence of a parametrix yields subelliptic estimates:

Corollary 5.8.12. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. If A ∈ Ψm
ρ,δ is elliptic of order

m, then A satisfies the following subelliptic estimates

∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(G) ‖f‖L2
s+m
≤ C

(
‖Af‖L2

s
+ ‖f‖L2

−N

)
.

If A ∈ Ψm
ρ,δ is elliptic of order mo and satisfies the hypotheses of Theorem 5.8.9,

then A satisfies the subelliptic estimates

∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(G) ‖f‖L2
s+mo

≤ C
(
‖Af‖L2

s
+ ‖f‖L2

−N

)
.

In the case (ρ, δ) = (1, 0), assume that A ∈ Ψm is either elliptic of order m0 = m
or is elliptic of some order m0 and satisfies the hypotheses of Theorem 5.8.9. Then
A satisfies the subelliptic estimates

∀s ∈ R ∀N ∈ R ∀p ∈ (1,∞) ∃C > 0 ∀f ∈ S(G)

‖f‖Lp
s+mo

≤ C
(
‖Af‖Lp

s
+ ‖f‖Lp

−N

)
.

In the estimates above, ‖ ·‖Lp
s
denotes any (fixed) Sobolev norm, for example

obtained from a (fixed) positive Rockland operator.

Proof. By Theorem 5.8.7 or Theorem 5.8.9, A admits a left parametrix B, i.e.
BA− I = R ∈ Ψ−∞. By using the boundedness on Sobolev spaces from Corollary
5.7.2, we get

‖f‖L2
s+mo

≤ ‖BAf‖L2
s+mo

+ ‖Rf‖L2
s+mo

≤ C(‖Af‖L2
s
+ ‖f‖L2

−N
).

In the case (ρ, δ) = (1, 0), the last statement follows from Corollary 5.7.4 with
Sobolev Lp-boundedness instead. �
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Local hypoelliptic properties

Our construction of parametrices implies the following local property:

Proposition 5.8.13. Let A ∈ Ψm
ρ,δ with m ∈ R, 1 ≥ ρ > δ ≥ 0. We assume that the

operator A is elliptic of order m0 and that

• either m = m0,

• or m > m0 and in this case A satisfies the hypotheses of Theorem 5.8.9.

Then the singular support of any f ∈ S ′(G) is contained the singular support of
Af ,

sing supp f ⊂ sing suppAf,

that is, if Af coincides with a smooth function on any open subset of G, then f is
also smooth there.

Consequently, if A is a differential operator, then it is hypoelliptic.

The notion of hypoellipticity for a differential operator with smooth coeffi-
cients is explained in Appendix A.1.

Proposition 5.8.13 follows easily from the following property:

Lemma 5.8.14. Let A ∈ Ψm
ρ,δ with m ∈ R, 1 ≥ ρ > δ ≥ 0. We assume that there

exists an open set Ω such that the symbol of A satisfies the elliptic condition in
(5.79) for any x ∈ Ω only. We also assume that

• either m = m0,

• or m > m0 and in this case A satisfies the hypotheses of Theorem 5.8.9 with
x ∈ Ω.

If f ∈ S ′(G) and if Ω′ is an open subset of Ω where Af is smooth, i.e.
Af ∈ C∞(Ω′), then f ∈ C∞(Ω′).

The proof requires to revisit the construction of parametrices ‘to make it
local’.

Proof of Lemma 5.8.14. We keep the hypotheses and notation of the statement.
As the properties are essentially local, we may assume that the open subsets Ω,Ω′

are open bounded and that there exists an open subset Ω1 such that Ω̄′ ⊂ Ω1

and Ω̄1 ⊂ Ω. Let χ ∈ D(G) be such that χ ≡ 1 on Ω′ and χ ≡ 0 outside Ω1. The
symbol of the operator A′ := χ(x)A is given via χ(x)σ(x, π). An easy modification
of the proof of Proposition 5.8.5 implies that the symbol given by

χ(x)ψ(π(R))σ(x, π)−1

is in S−m0

ρ,δ (here ψ is a function as in Proposition 5.8.5). Adapting the proof of

Theorem 5.8.7 or Theorem 5.8.9, we construct an operator B ∈ Ψ−m0

ρ,δ such that

BA′ = χ(x) +R with R ∈ Ψ−∞.
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Let χ1 ∈ D(G) be such that χ1 ≡ 1 on Ω1 and χ1 ≡ 0 outside Ω. Let
f ∈ S ′(G). As A admits a singular integral representation, see Lemma 5.4.15
and its proof, the function x �→ χ(x) A{(1 − χ1)f}(x) is smooth and compactly
supported. Let us assume that Af is smooth on Ω′. Since we have for any x ∈ G

A′{χ1f}(x) = χ(x) Af(x)− χ(x) A{(1− χ1)f}(x),

the function A′{χ1f} is necessarily smooth and compactly supported on G, i.e.
A′{χ1f} ∈ D(G). Applying B, we have BA′{χ1f} ∈ S(G) by Theorem 5.2.15. By
Corollary 5.5.13. R{χ1f} ∈ S(G) since the distribution χ1f ∈ E ′(G) has compact
support. Hence χ1f = BA′{χ1f} − R{χ1f} must be in S(G). This shows that f
is smooth on Ω′. �

Global hypoelliptic-type properties

Our construction of parametrix is global. Hence we also obtain the following global
property:

Proposition 5.8.15. Let A ∈ Ψm
ρ,δ with m ∈ R, 1 ≥ ρ > δ ≥ 0. We assume that the

operator A is elliptic of order m0 and that

• either m = m0,

• or m > m0 and in this case A satisfies the hypotheses of Theorem 5.8.9.

If f ∈ S ′(G) and Af ∈ S(G), then f is smooth and all its left-derivatives
(hence also right-derivatives and abelian derivatives) have polynomial growth. More
precisely, for any multi-index β ∈ Nn

0 , there exists a constant C > 0, an integer
M ∈ N0 and seminorms ‖ · ‖S′(G),N1

, ‖ · ‖S(G),N2
such that for any f ∈ S ′(G) with

Af ∈ S(G), we have

|Xβf(x)| ≤ C
(
(1 + |x|)M‖f‖S′(G),N1

+ ‖Af‖S(G),N2

)
, x ∈ G.

Proof. We keep the hypotheses and notation of the statement. By Theorem 5.8.7
or Theorem 5.8.9, A admits a left parametrix B, i.e. BA− I ∈ Ψ−∞. By Corollary
5.4.10, (BA − I)f is smooth with polynomial growth. As Af ∈ S(G), B(Af) ∈
S(G) by Theorem 5.2.15. Thus

f = −(BA− I)f +B(Af)

is smooth with polynomial growth. The estimate follows easily from the ones in
Corollary 5.4.10 and Theorem 5.2.15. �

Examples

Hence we have obtained hypoellipticity and subelliptic estimates for the operators
in Examples 5.8.8.
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Corollary 5.8.16. Let R be a positive Rockland operator of homogeneous degree ν
and let p ∈ (1,∞).

1. If f1 and f2 are complex-valued smooth functions on G such that

inf
x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

and such that Xα1f1, Xα2f2 are bounded for each α1, α2 ∈ Nn
0 , then the

differential operator
f1(x) + f2(x)R

satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀ϕ ∈ S(G)

‖ϕ‖Lp
s+ν
≤ C

(
‖(f1 + f2R)ϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
,

and is (locally) hypoelliptic. It is also globally hypoelliptic in the sense of
Proposition 5.8.15.

2. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2. Let also f1 be a smooth
complex-valued function on G such that

inf
G
|f1| > 0

and that Xαf1 is bounded on G for each α ∈ Nn
0 . Then the operator

f1(x)ψ(R)R ∈ Ψν

satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∃C > 0 ∀N ∈ R ∀ϕ ∈ S(G)

‖ϕ‖Lp
s+ν
≤ C

(
‖f1ψ(R)Rϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
,

and is (locally) hypoelliptic. It is also globally hypoelliptic in the sense of
Proposition 5.8.15.
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Chapter 6

Pseudo-differential operators on
the Heisenberg group

The Heisenberg group was introduced in Example 1.6.4. It was our primal ex-
ample of a stratified Lie group, see Section 3.1.1. Due to the importance of the
Heisenberg group and of its many realisations, we start this chapter by sketching
various descriptions of the Heisenberg group. We also describe its dual via the well
known Schrödinger representations. Eventually, we particularise our general ap-
proach given in Chapter 5 to the Heisenberg group. Among other things, we show
that using the (Euclidean) Weyl quantization, the analysis of pseudo-differential
operators on the Heisenberg group can be reduced to considering scalar-valued
symbols parametrised not only by the elements of the Heisenberg group but also
by a parameter λ ∈ R\{0}; such symbols will be called λ-symbols. The correspond-
ing classes of symbols are of Shubin-type but with an interesting dependence on
λ which we explore in detail in this chapter; such classes will be called λ-Shubin
classes. Some results of this chapter have been announced in the authors’ paper
[FR14b], this chapter contains their proofs.

In [BFKG12a], a pseudo-differential calculus on the Heisenberg group was
developed with a different approach (but related results) from our work presented
here.

There is an important change of notation concerning the Heisenberg group in
this chapter. In Example 1.6.4, where the Heisenberg group Hno

was introduced,
we used the index no as its subscript because the index n was already used to
denote quantities associated with the homogeneous groups. However, throughout
Chapter 6, general groups will hardly appear, so we can simplify the notation by
denoting the Heisenberg group by Hn instead of Hno

, so that the notation change
is

Hno −→ Hn

© The Editor(s) (if applicable) and The Author(s) 2016 
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We emphasise that n is the index here (not the dimension): the topological dimen-
sion on Hn is 2n+ 1, and its homogeneous dimension is 2n+ 2.

6.1 Preliminaries

In this section, we discuss several aspects of the Heisenberg group, hopefully shed-
ding some light on its importance and general structure.

6.1.1 Descriptions of the Heisenberg group

We remind the reader that the Heisenberg group Hn was defined in Example 1.6.4
in the following way: the Heisenberg group Hn is the manifold R2n+1 endowed with
the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ +
1

2
(xy′ − x′y)), (6.1)

where (x, y, t) and (x′, y′, t′) are in Rn × Rn × R ∼ Hn.

In the formula above as in the whole chapter, we adopt the following con-
vention: if x and y are two vectors in Rn for some n ∈ N, then xy denotes their
standard scalar product

xy =

n∑

j=1

xjyj if x = (x1, . . . , xn), y = (y1, . . . , yn).

First we remark that the factor 1
2 in the group law given by (6.1) is irrelevant

in the following sense. Let α ∈ R∗ = R\{0}. Consider the group H(α)
n endowed

with the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ +
1

α
(xy′ − x′y)).

Then the groups H(α)
n and Hn = H(2)

n are isomorphic via

{
Hn −→ H(α)

n

(x, y, t) �−→ (x, y, 2
α t)

.

In the same way, consider the polarised Heisenberg group H̃n (or Hpol
n ) endowed

with the law

(x, y, t)(x′, y′, t′) := (x+ x′, y + y′, t+ t′ + xy′).

Then the groups H̃n and Hn are isomorphic via

{
Hn −→ H̃n

(x, y, t) �−→ (x, y, t+ 1
2xy)

.
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Note that the Heisenberg group Hn can be also viewed as a matrix group. For
simplicity, we consider n = 1, in which case the group H̃1 is isomorphic to T3, the
group of 3-by-3 upper triangular real matrices with 1 on the diagonal:

⎧
⎪⎪⎨
⎪⎪⎩

H̃1 −→ T3

(x, y, t) �−→

⎡
⎣

1 x t
0 1 y
0 0 1

⎤
⎦ .

All the statements above can be readily checked by a straightforward computation.
Combining two isomorphisms above, we obtain the identification H1 −→ H̃1 −→
T3 given by ⎧

⎪⎪⎨
⎪⎪⎩

H1 −→ T3

(x, y, t) �−→

⎡
⎣

1 x t+ 1
2xy

0 1 y
0 0 1

⎤
⎦ .

Although we will not use it, let us mention a couple of other important
appearances of the Heisenberg group. The Heisenberg group can be also realised
as a group of transformations; for example, for each

h = (x, y, t) ∈ H1,

the affine (holomorphic) map given by

φh : C×C ∋ (z1, z2) �−→ (z1 + x+ iy, z2 + t+ 2iz1(x− iy) + i(x2 + y2)) ∈ C×C,

sends the (Siegel) domain

U := {(z1, z2) ∈ C× C : Im z2 > |z1|2} (= SU(2, 1)/U(2))

to itself, and the (Shilov) boundary of U ,

bU := {(z1, z2) ∈ C× C : Im z2 = |z1|2},

also to itself. One can check that H1 ∋ h �→ φh defines an action of H1 on U and
on bU . Furthermore, the action of H1 on bU is simply transitive. A Cayley type
transform

(w1, w2) �−→ (z1, z2) with z1 =
w1

1 + w2
, z2 = i

1− w2

1 + w2
,

is a biholomorphic bijective mapping which sends U onto the unit complex ball
of C2. It also send bU to the unit complex sphere S3, more precisely onto S3\{S}
where S = (0,−1) is the south pole (which may be viewed as the image of ∞).
Hence the Heisenberg group acts simply transitively on S3\{S}.
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We can also mention here that the group U(n) acts naturally by automor-
phisms on Hn leading to the interpretation of (U(n), Hn) as a nilpotent Gelfand
pair with strong relation to the theory of commutative convolution algebras. For
example, such analysis can be used to characterise Gelfand (spherical) transforms
of K-invariant Schwartz functions on Hn for a group K ⊂ U(n) ([BJR98]), or view
them as Schwartz functions on the Gelfand spectrum ([ADBR09]).

6.1.2 Heisenberg Lie algebra and the stratified structure

The Lie algebra hn of Hn is identified with the vector space of left-invariant vector
fields. Its canonical basis is given by the left-invariant vector fields

Xj = ∂xj
− yj

2
∂t, Yj = ∂yj

+
xj

2
∂t, j = 1, . . . , n, and T = ∂t. (6.2)

For comparison, the corresponding right-invariant vector fields are

X̃j = ∂xj +
yj
2
∂t, Ỹj = ∂yj −

xj

2
∂t, j = 1, . . . , n, and T̃ = ∂t. (6.3)

The canonical commutation relations are

[Xj , Yj ] = T, j = 1, . . . , n,

and T is the centre of hn. This shows that the Lie algebra hn and the Lie group
Hn are nilpotent of step 2. Hence the Heisenberg group Hn described above in
Section 6.1.1, that is, R2n+1 endowed with the group law given in (6.1), is the
connected simply connected (step-two nilpotent) Lie group whose Lie algebra is
hn and which is realised via the exponential mapping together with the canonical
basis. This means that the element (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t) of Hn can
be written as

(x, y, t) = expHn
(x1X1 + . . .+ xnXn + y1Y1 + . . .+ ynYn + tT ).

We fix
dxdydt = dx1 . . . dxndy1 . . . dyndt

as the Lebesgue measure on Hn, see Proposition 1.6.6. Therefore, we may be free
to write formulae like

∫

Hn

· · · dxdydt =
∫

R2n+1

· · · dxdydt.

The Heisenberg Lie algebra is stratified via hn = V1⊕V2, where V1 is linearly
spanned by the Xj ’s and Yj ’s, while V2 = RT . Since the Heisenberg Lie algebra is
stratified via hn = V1 ⊕ V2, the natural dilations on the Lie algebra are given by

Dr(Xj) = rXj and Dr(Yj) = rYj , j = 1, . . . , n, and Dr(T ) = r2T, (6.4)
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see Section 3.1.2. We keep the same notation Dr for the dilations on the group
Hn. They are therefore given by

Dr(x, y, t) = r(x, y, t) = (rx, ry, r2t), (x, y, t) ∈ Hn, r > 0.

We also keep the same notation Dr for the dilations on the universal enveloping
algebra U(hn) induced by Property (6.4).

Note that the homogeneous dimension of Hn is Q = 2n+ 2. This is also the
homogeneous degree of the Lebesgue measure dxdydt.

Example 6.1.1. The sub-Laplacian

L :=
n∑

j=1

(X2
j + Y 2

j ) (6.5)

=

n∑

j=1

(
∂xj
− yj

2
∂t

)2

+
(
∂yj

+
xj

2
∂t

)2

,

is homogeneous of degree 2 since

Dr(L) = r2L.

Remark 6.1.2. The ‘canonical’ positive Rockland operator in this setting is

R = −L.

We will also use the mapping Θ : Hn → Hn given by

Θ(x, y, t) := (x,−y,−t).
One checks easily that for any (x, y, t), (x′, y′, t′) ∈ Hn, we have

Θ
(
(x, y, t)(x′, y′, t′)

)
= Θ(x, y, t) Θ(x′, y′, t′) and Θ

(
Θ(x, y, t)

)
= (x, y, t).

Therefore, Θ is a group automorphism and an involution. Furthermore, it is clear
that it commutes with the dilations:

∀r > 0 Θ ◦Dr = Dr ◦Θ.

We keep the same notation for the corresponding Lie algebra morphism and
we have

Θ(Xj) = Xj , Θ(Yj) = −Yj , j = 1, . . . , n, Θ(T ) = −T. (6.6)

6.2 Dual of the Heisenberg group

In this section we will analyse the unitary dual of the Heisenberg group Hn. For
our purposes, it will be more convenient to work with the Schrödinger representa-
tions. This will lead to the group Fourier transform parametrised by λ in (6.19).
Such group Fourier transforms yield operators acting on the representation space
L2(Rn). The latter can be, in turn, analysed using the Weyl quantization on Rn

that appears naturally.
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6.2.1 Schrödinger representations πλ

The Schrödinger representations of the Heisenberg group Hn are the infinite di-
mensional unitary representations of Hn, where, as usual, we allow ourselves to
identify unitary representations with their unitary equivalence classes. They are
parametrised by the co-adjoint orbits (see Section 1.8.1) and more concretely by
λ ∈ R\{0}. We denote these representations πλ. Each πλ acts on the Hilbert space

Hπλ
= L2(Rn)

in the way we now describe. An element of L2(Rn) will very often be denoted as
a function h of the variable u = (u1, . . . , un) ∈ Rn.

First let us define π1 corresponding to λ = 1. It is the representation of the
group Hn acting on L2(Rn) via

π1(x, y, t)h(u) := ei(t+
1
2xy)eiyuh(u+ x),

for h ∈ L2(Rn) and (x, y, t) ∈ Hn. Here xy denotes the scalar product in Rn of
x and y, and similarly for yu. Consequently its infinitesimal representation (see
Section 1.7) is given by

⎧
⎨
⎩

π1(Xj) = ∂uj
(differentiate with respect to uj), j = 1, . . . , n,

π1(Yj) = iuj , (multiplication by iuj), j = 1, . . . , n,
π1(T ) = iI, (multiplication by i).

(6.7)

The Schrödinger representations πλ on the group are realised in this mono-
graph using

πλ :=

{
π1 ◦D√

λ if λ > 0,
π−λ ◦Θ if λ < 0,

that is,

πλ(x, y, t)h(u) = eiλ(t+
1
2xy)ei

√
λyuh(u+

√
|λ|x), (6.8)

for h ∈ L2(Rn) and (x, y, t) ∈ Hn where we use the following convention:

√
λ := sgn(λ)

√
|λ| =

{ √
λ if λ > 0,

−
√
|λ| if λ < 0.

(6.9)

We observe that for any λ ∈ R\{0} and r > 0,

πλ ◦Θ = π−λ and πλ ◦Dr = πr2λ, (6.10)

and this is true for the group representation πλ on Hn and for its corresponding
infinitesimal representation on the Lie algebra hn and on the universal enveloping
algebra U(hn). As usual we keep the same notation, here πλ for the corresponding
infinitesimal representation.
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Lemma 6.2.1. The infinitesimal representation of πλ acts on the canonical basis
of hn via

πλ(Xj) =
√
|λ|∂uj , πλ(Yj) = i

√
λuj , j = 1, . . . , n, and πλ(T ) = iλI, (6.11)

using the convention in (6.9).

Proof. Formulae (6.11) can be computed easily from (6.8). Here we show that they
also follow from Properties (6.7) and (6.10). Indeed we have for λ > 0

⎧
⎨
⎩

πλ(Xj) = π1(D√
λ(Xj)) =

√
λπ1(Xj) =

√
λ∂uj

j = 1, . . . , n,

πλ(Yj) = π1(D√
λ(Yj)) =

√
λπ1(Yj) =

√
λiuj , j = 1, . . . , n,

πλ(T ) = π1(D√
λ(T )) = λπ1(T ) = iλ,

and thus for λ < 0

⎧
⎨
⎩

πλ(Xj) = π−λ(Θ(Xj)) = π−λ(Xj) =
√
|λ|∂uj

j = 1, . . . , n,

πλ(Yj) = π−λ(Θ(Yj)) = −π−λ(Yj) = −
√
|λ|iuj , j = 1, . . . , n,

πλ(T ) = π−λ(Θ(T )) = −π−λ(T ) = −(−λ)i = iλ,

proving (6.11) in both cases. �

Consequently, the group Fourier transform of the sub-Laplacian

L =

n∑

j=1

(X2
j + Y 2

j )

is

πλ(L) = |λ|
n∑

j=1

(∂2
uj
− u2

j ). (6.12)

A direct characterisation implies that the space of smooth vectors of πλ is

H∞
πλ

= S(Rn).

This is true more generally for any representation of a connected simply connected
nilpotent Lie group realised on some L2(Rm) via the orbit method, see [CG90,
Corollary 4.1.2].

6.2.2 Group Fourier transform on the Heisenberg group

We could have realised the equivalence classes [πλ] of Schrödinger representa-
tions in various ways. For instance by composing with the unitary operator Uλ :
L2(Rn) → L2(Rn) given by Uf(x) = |λ|n2 f(

√
λx), one would have obtained a

slightly different, although equivalent, representation. Another realisation is with
the Bargmann representations, see, e.g., [Tay86]. Our choice of representation πλ
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to represent its equivalence class will prove useful in relation with the Weyl-Shubin
calculus on Rn later, see Section 6.5.

The group Fourier transform of a function κ ∈ L1(Hn) at π1 is

FHn
(κ)(π1) = π1(κ) =

∫

Hn

κ(x, y, t)π1(x, y, t)
∗dxdydt,

that is, the operator on L2(Rn) given by

π1(κ)h(u) =

∫

Hn

κ(x, y, t)ei(−t+ 1
2xy)e−iyuh(u− x)dxdydt.

We now fix the notation concerning the Euclidean Fourier transform and recall
some facts about the Weyl quantization on Rn.

The Euclidean Fourier transform

In order to give a nicer expression for the operator FHn(κ)(π1), we adopt here the
following notation for the Euclidean Fourier transform on RN :

FRN f(ξ) = (2π)−
N
2

∫

RN

f(x)e−ixξdx, (6.13)

where ξ ∈ RN and f : RN → C is for instance integrable. With our choice of
notation and normalisation, the mapping FRN extends unitarily to a mapping on
L2(RN ) and

FRN (f)(x) = F−1
RN (f)(−x).

Let us also recall the Fourier inversion formula for a (e.g. Schwartz) function
f : Rn → C: ∫

RN

∫

RN

ei(u−v)ξf(v)dvdξ = (2π)Nf(u). (6.14)

In our context N will be equal to 2n+ 1.

Unfortunately, due to our choice of notation π for the representations, in the
formulae in the sequel π will appear both as a representation and as the constant
π = 3.1415926... However, as powers of this 2π will appear mostly as constants in
front of integrals it should not lead to major confusion.

The (Euclidean) Weyl quantization

Let us also set some notation regarding the Weyl quantization on Rn. If a is a
symbol, that is, a reasonable function on Rn × Rn, then the Weyl quantization
associates to a the operator

OpW (a) ≡ a(D,X)
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given by

OpW (a)f(u) = (2π)−n

∫

Rn

∫

Rn

ei(u−v)ξa(ξ,
u+ v

2
)f(v)dvdξ, (6.15)

where f ∈ S(Rn) and u ∈ Rn.

Example 6.2.2. Particular examples are

OpW (1) = I, OpW (ξj) =
1

i
∂uj , OpW (uj) = uj ,

and

OpW (ξkuj) =
1

2i
(∂uk

uj + uj∂uk
).

The composition of two Weyl-quantized operators is

OpW (a) ◦OpW (b) = OpW (a ⋆ b), (6.16)

where (see, e.g., [Ler10])

a ⋆ b(ζ, u) = (2π)−2n4n
∫

Rn

∫

Rn

∫

Rn

∫

Rn

e−2i{(ξ−ζ)(y−u)−(η−ζ)(x−u)}

a(ξ, x) b(η, y) dξdηdxdy,

and asymptotically

a ⋆ b ∼
∞∑

m′=0

cm′,n

∑

|α1|+|α2|=m′

(−1)|α2|

α1!α2!

((
1

i
∂ξ

)α1

∂α2
x a

)((
1

i
∂ξ

)α2

∂α1
x b

)
, (6.17)

with c0,n0 = 1 and, in fact,

a ⋆ b ∼ ab+
1

2i
{a, b}+ . . . where {a, b} =

n∑

j=1

(
∂a

∂ξj

∂b

∂uj
− ∂a

∂uj

∂b

∂ξj

)
.

This formula can already be checked on the basic examples given in Example 6.2.2
and on the following property:

Lemma 6.2.3. Let a be a symbol. Then we have

(aduj)
(
OpW (a)

)
≡ ujOpW (a)−OpW (a)uj = OpW (i∂ξja),(

ad∂uj

) (
OpW (a)

)
≡ ∂uj

OpW (a)−OpW (a)∂uj
= OpW (∂uj

a).
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Proof. Let f ∈ S(Rn) and u ∈ Rn. Then we have

(aduj)
(
OpW (a)

)
f(u) = ujOpW (a)f(u)−OpW (a)(ujf)(u)

= uj(2π)
−n

∫

Rn

∫

Rn

ei(u−v)ξa(ξ,
u+ v

2
)f(v)dvdξ

−(2π)−n

∫

Rn

∫

Rn

ei(u−v)ξa(ξ,
u+ v

2
)vjf(v)dvdξ

= (2π)−n

∫

Rn

∫

Rn

ei(u−v)ξa(ξ,
u+ v

2
)(uj − vj)f(v)dvdξ

= (2π)−n

∫

Rn

∫

Rn

1

i
∂ξj

{
ei(u−v)ξ

}
a(ξ,

u+ v

2
)f(v)dvdξ

= (2π)−n

∫

Rn

∫

Rn

ei(u−v)ξi∂ξj

{
a(ξ,

u+ v

2
)

}
f(v)dvdξ,

after integration by parts. This shows the first equality.

For the second one, we compute

∂uj
OpW (a)f(u) = (2π)−n

∫

Rn

∫

Rn

∂uj

{
ei(u−v)ξa(ξ,

u+ v

2
)

}
f(v)dvdξ.

Since

∂uj

{
ei(u−v)ξ a(ξ,

u+ v

2
)

}
= −

{
∂vj

ei(u−v)ξ
}
a(ξ,

u+ v

2
)

+
1

2
ei(u−v)ξ{∂uja}(ξ,

u+ v

2
),

we compute using integration by parts

∫

Rn

∫

Rn

∂uj

{
ei(u−v)ξa(ξ,

u+ v

2
)

}
f(v)dvdξ

= −
∫

Rn

∫

Rn

{
∂vj

ei(u−v)ξ
}
a(ξ,

u+ v

2
)f(v)dvdξ

+

∫

Rn

∫

Rn

ei(u−v)ξ 1

2
{∂uja}(ξ,

u+ v

2
)f(v)dvdξ

=

∫

Rn

∫

Rn

ei(u−v)ξ∂vj

{
a(ξ,

u+ v

2
)f(v)

}
dvdξ

+

∫

Rn

∫

Rn

ei(u−v)ξ 1

2
{∂uj

a}(ξ, u+ v

2
)f(v)dvdξ.

Now

∂vj

{
a(ξ,

u+ v

2
)f(v)

}
=

1

2
{∂uj

a}(ξ, u+ v

2
)f(v) + a(ξ,

u+ v

2
)∂vjf(v),
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thus
∫

Rn

∫

Rn

∂uj

{
ei(u−v)ξa(ξ,

u+ v

2
)

}
f(v)dvdξ

=

∫

Rn

∫

Rn

ei(u−v)ξ{∂uja}(ξ,
u+ v

2
)f(v)dvdξ

+

∫

Rn

∫

Rn

ei(u−v)ξa(ξ,
u+ v

2
)∂vjf(v)dvdξ.

We have obtained

∂uj
OpW (a)f(u)

= (2π)−n

∫

Rn

∫

Rn

ei(u−v)ξ{∂uj
a}(ξ, u+ v

2
)f(v)dvdξ

+(2π)−n

∫

Rn

∫

Rn

ei(u−v)ξa(ξ,
u+ v

2
)∂vjf(v)dvdξ.

Therefore, we have
(
ad∂uj

) (
OpW (a)

)
f(u) = ∂ujOpW (a)f(u)−OpW (a)(∂ujf)(u)

= (2π)−n

∫

Rn

∫

Rn

ei(u−v)ξ{∂uj
a}(ξ, u+ v

2
)f(v)dvdξ

= OpW (∂uja)f(u).

This shows the second equality. �

The operator FHn
(κ)(π1)

Going back to π1(κ) ≡ κ̂(π1) and using the well-known properties of the Euclidean
Fourier transform FR2n+1 , for instance see (6.14), it is not difficult to turn into
rigorous computations the following calculations:

π1(κ)h(u) =

∫

R2n+1

κ(x, y, t)ei(−t+ 1
2xy)e−iyuh(u− x)dxdydt

=

∫

R2n+1

∫

R2n+1

(2π)−
2n+1

2 FR2n+1(κ)(ξ, η, τ)eitτeiyηeixξ

ei(−t+ 1
2xy)e−iyuh(u− x)dξdηdτdxdydt

=
√
2π

∫

Rn×Rn

FR2n+1(κ)(ξ, u− x

2
, 1)eixξh(u− x)dξdx

=
√
2π

∫

Rn×Rn

FR2n+1(κ)(ξ, u− u− v

2
, 1)eiξ(u−v)h(v)dξdv,

after the change of variable v = u−x. Comparing this last expression with (6.15),
we see that

π1(κ)h(u) =
√
2π

∫

Rn

∫

Rn

eiξ(u−v)FR2n+1(κ)(ξ,
u+ v

2
, 1)h(v)dξdv,
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may be written as

π1(κ) = (2π)
2n+1

2 OpW [FR2n+1(κ)(·, ·, 1)] = (2π)
2n+1

2 FR2n+1(κ)(D,X, 1). (6.18)

More generally, we could compute in the same way πλ(κ) or use the following
computational remarks.

Lemma 6.2.4. Let λ ∈ R\{0}. With the convention given in (6.9) we obtain

πλ(κ) = |λ|−(n+1)πsgn(λ)1

(
κ ◦D

1/
√

|λ|

)
(6.19)

= (2π)
2n+1

2 OpW
[
FR2n+1(κ)(

√
|λ| ·,

√
λ ·, λ)

]
, (6.20)

or, equivalently,

πλ(κ)h(u)

=

∫

R2n+1

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x)dxdydt (6.21)

= (2π)
2n+1

2

∫

Rn×Rn

ei(u−v)ξFR2n+1(κ)(
√
|λ| ξ,

√
λ

u+ v

2
, λ)h(v)dvdξ.(6.22)

We also have
πλ(κ) = π−λ(κ ◦Θ), (6.23)

and for r > 0, Q = 2n+ 2,

πλ(r
Qκ ◦Dr) = πr−2λ(κ). (6.24)

For any X ∈ U(hn) and r > 0, we have

πλ(Dr−1X) = πr−2λ(X). (6.25)

Here U(hn) stands for the universal enveloping algebra of the Lie algebra hn,
see Section 1.3.

Proof of Lemma 6.2.4. By (6.8), we have for h ∈ L2(Rn) and (x, y, t) ∈ Hn,

πλ(x, y, t)
∗h(u) = πλ

(
(x, y, t)−1

)
h(u) = πλ(−x,−y,−t)h(u)

= eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x).

Thus

πλ(κ)h(u) =

∫

Hn

κ(x, y, t) πλ(x, y, t)
∗h(u) dxdydt

=

∫

R2n+1

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x)dxdydt.
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This is Formula (6.21).
For Formula (6.23), since by (6.10) we have π−λ = πλ ◦Θ for any λ ∈ R\{0},

we see that

πλ(κ) =

∫

Hn

κ(x, y, t)πλ(x, y, t)
∗dxdydt

=

∫

Hn

κ(x, y, t)π−λ

(
Θ(x, y, t)

)∗
dxdydt

=

∫

Hn

κ
(
Θ(x, y, t)

)
π−λ(x, y, t)

∗dxdydt = π−λ(κ ◦Θ),

after the change of variables given by Θ, which has the Jacobian equal to 1. We
proceed in the same way for formula (6.24)

πλ(r
Qκ ◦Dr) =

∫

Hn

κ ◦Dr(x, y, t)πλ(x, y, t)
∗rQdxdydt

=

∫

Hn

κ(x, y, t)πλ

(
D−1

r (x, y, t)
)∗
dxdydt

=

∫

Hn

κ(x, y, t)πr−2λ(x, y, t)
∗dxdydt = πr−2λ(κ),

after the change of variable given by Dr, using (6.10).

For any X ∈ U(hn) and κ ∈ S(G), recalling Dr−1X from (6.4), then using

(Xκ) ◦Dr = (Dr−1X)(κ ◦Dr) (6.26)

and (6.24), we have

πr−2λ(X)πr−2λ(κ) = πr−2λ(Xκ)

= πλ(r
Q(Xκ) ◦Dr)

= πλ(r
Q(Dr−1X)(κ ◦Dr))

= πλ(Dr−1X)πλ(r
Qκ ◦Dr)

= πλ(Dr−1X)πr−2λ(κ),

and this shows (6.25).
Thus Formulae (6.25), (6.24) and (6.23) hold for any λ ∈ R\{0}.
Let us assume λ > 0. Using πλ = π1 ◦D√

λ we see that

πλ(κ) =

∫

Hn

κ(x, y, t)π1

(
D√

λ(x, y, t)
)∗
dxdydt

=

∫

Hn

κ
(
D1/

√
λ(x, y, t)

)
π1(x, y, t)

∗λ−(n+1)dxdydt

= λ−(n+1)π1

(
κ ◦D1/

√
λ

)
,
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and this gives Formula (6.19) for λ > 0. But Formula (6.18) gives here

π1

(
κ ◦D1/

√
λ

)
= (2π)n+

1
2OpW

[
FR2n+1(κ ◦D1/

√
λ)(·, ·, 1)

]
.

Since a simple change of variable in R2n+1 yields

FR2n+1

(
κ ◦D1/

√
λ

)
= λn+1

(
FR2n+1(κ)

)
◦D√

λ, (6.27)

we obtain Formula (6.20) for any λ > 0.

For λ < 0, we use Formula (6.23) and the case λ > 0, that is,

πλ(κ) = π−λ(κ ◦Θ)

= (−λ)−(n+1)π1

(
κ ◦Θ ◦D1/

√
−λ

)

= (−λ)−(n+1)π1

(
κ ◦D1/

√
−λ ◦Θ

)

= (−λ)−(n+1)π−1

(
κ ◦D1/

√
−λ

)
.

Hence Formula (6.19) is proved for any λ < 0. Here, Formula (6.18) and the
relation FR2n+1(κ ◦Θ) = FR2n+1(κ) ◦Θ with (6.27) give

π1

(
κ ◦Θ ◦D1/

√
−λ

)
= (2π)n+

1
2OpW

[
FR2n+1(κ ◦Θ ◦D1/

√
−λ)(·, ·, 1)

]

= (2π)n+
1
2 (−λ)n+1

(
FR2n+1(κ)

)
◦Θ ◦D√

−λ(·, ·, 1),

we obtain Formula (6.20) for any λ < 0. �

From Lemma 6.2.4 or from (6.11), we see that

πλ(Xj) = OpW (i
√
|λ|ξj) and πλ(Yj) = OpW (i

√
λuj). (6.28)

Remark 6.2.5. This was already noted in [Tay84, BFKG12a]. However in [Tay84],
the Fourier transform on Rn is chosen to be non-unitarily defined by

ξ �−→
∫

Rn

f(x)e−ixξdx, f ∈ S(Rn).

Remark 6.2.6. The Schwartz space on the Heisenberg group Hn, realised as we
have done, is defined as S(R2n+1), see Section 3.1.9. The characterisation of the
Fourier image of the (full) Schwartz space on Hn is a difficult problem analysed
by Geller in [Gel80]. See also the more recent paper [ADBR13].
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6.2.3 Plancherel measure

The dual Ĥn of the Heisenberg group Hn may be described together with its
Plancherel measure by the orbit method, see Section 1.8.1. Here we obtain a con-
crete formula for the Plancherel measure μ of the Heisenberg group Hn using well
known properties of Euclidean analysis together with our choice of representatives
for the elements of Ĥn, especially the Schrödinger representations πλ.

Proposition 6.2.7. Let f ∈ S(Hn). Then for each λ ∈ R\{0} the operator f̂(πλ)
acting on L2(Rn) is the Hilbert-Schmidt operator with integral kernel

Kf,λ : Rn × Rn −→ C,

given by

Kf,λ(u, v) = (2π)n+
1
2

∫

Rn

ei(u−v)ξFR2n+1(f)(
√
|λ|ξ,

√
λ
u+ v

2
, λ)dξ,

and Hilbert-Schmidt norm

‖f̂(πλ)‖HS(L2(Rn)) = (2π)
3n+1

2 |λ|−n
2 ‖FR2n+1(f)(·, ·, λ)‖L2(R2n)

= (2π)
3n+1

2 |λ|−n
2

(∫

Rn

∫

Rn

|FR2n+1(f)(ξ, w, λ)|2dξdw
) 1

2

.

Furthermore, we have
∫

Hn

|f(x, y, t)|2dxdydt = cn

∫

λ∈R\{0}
‖f̂(πλ)‖2HS(L2(Rn))|λ|ndλ,

where cn = (2π)−(3n+1).

In particular, Proposition 6.2.7 implies that the Plancherel measure μ on the
Heisenberg group is supported in {[πλ], λ ∈ R\{0}}, see (6.29). Moreover, we have

dμ(πλ) ≡ cn|λ|ndλ, λ ∈ R\{0}.

The constant cn depends on our choice of realisation of πλ ∈ [πλ].

Proof of Proposition 6.2.7. By (6.22), we have for h ∈ L2(Rn) and u ∈ Rn,

f̂(πλ)h(u) = (2π)n+
1
2

∫

Rn

∫

Rn

ei(u−v)ξFR2n+1(f)(
√
|λ|ξ,

√
λ
u+ v

2
, λ)h(v)dvdξ

=

∫

Rn

Kf,λ(u, v)h(v)dv,

where Kf,λ is the integral kernel of f̂(πλ) hence given by

Kf,λ(u, v) = (2π)n+
1
2

∫

Rn

ei(u−v)ξFR2n+1(f)(
√
|λ|ξ,

√
λ
u+ v

2
, λ)dξ.
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Using the Euclidean Fourier transform (see (6.13) for our normalisation of FRn),
we may rewrite this as

Kf,λ(u, v) = (2π)
3
2n+

1
2FRn

{
FR2n+1(f)(

√
|λ| ·,

√
λ
u+ v

2
, λ)

}
(v − u).

The L2(Rn × Rn)-norm of the integral kernel is

∫

Rn×Rn

|Kf,λ(u, v)|2dudv

= (2π)3n+1

∫

Rn×Rn

|FRn

{
FR2n+1(f)(

√
|λ| ·,

√
λ
u+ v

2
, λ)

}
(v − u)|2dudv

= (2π)3n+1

∫

Rn

∫

Rn

|FRn

{
FR2n+1(f)(

√
|λ| ·, w2, λ)

}
(w1)|2|λ|−

n
2 dw1dw2,

after the change of variable (w1, w2) = (v−u,
√
λu+v

2 ). The (Euclidean) Plancherel
formula on Rn in the variable w1 (with dual variable ξ1) then yields

∫

Rn×Rn

|Kf,λ(u, v)|2dudv

= (2π)3n+1

∫

Rn

∫

Rn

|FR2n+1(f)(
√
|λ|ξ1, w2, λ)|2|λ|−

n
2 dξ1dw2

= (2π)3n+1|λ|−n

∫

Rn

∫

Rn

|FR2n+1(f)(ξ, w2, λ)|2dξdw2,

after the change of variable ξ =
√
|λ|ξ1. Since f ∈ S(Hn), this quantity is fi-

nite. Since the integral kernel of f̂(πλ) is square integrable, the operator f̂(πλ) is
Hilbert-Schmidt and its Hilbert-Schmidt norm is the L2-norm of its integral kernel
(see, e.g., [RS80, Theorem VI.23]). This shows the first part of the statement.

To finish the proof, we now integrate each side of the last equality against
|λ|ndλ and then use again the (Euclidean) Plancherel formula on R2n+1 in the
variable (ξ, w2, λ). We obtain

∫

R\{0}

∫

Rn×Rn

|Kf,λ(u, v)|2dudv |λ|ndλ

= (2π)3n+1

∫

R\{0}

∫

Rn

∫

Rn

|FR2n+1(f)(ξ, w2, λ)|2dξdw2dλ

= (2π)3n+1

∫

R2n+1

|f(x, y, t)|2dxdydt.

This concludes the proof of Proposition 6.2.7. �

It follows from the Plancherel formula in Proposition 6.2.7 that the Schrö-
dinger representations πλ, λ ∈ R\{0}, are almost all the representations of Hn
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modulo unitary equivalence. ‘Almost all’ here refers to the Plancherel measure
μ = cn|λ|ndλ on Ĥn. The other representations are finite dimensional and in fact
1-dimensional. They are given by the unitary characters of Hn

χw : (x, y, t) �→ ei(xw1+yw2), w = (w1, w2) ∈ Rn × Rn ∼ R2n.

See also Example 1.8.1 for the link with the orbit method.

We can summarise this paragraph by writing

Ĥn = {[πλ], λ ∈ R\{0}}
⋃{

[χw], w ∈ R2n
} μ a.e.

= {[πλ], λ ∈ R\{0}} . (6.29)

6.3 Difference operators

In this section we compute the difference operators Δxj
, Δyj

, and Δt which are
the operators defined via

Δxj κ̂(πλ) := πλ(xjκ),

Δyj κ̂(πλ) := πλ(yjκ),

Δtκ̂(πλ) := πλ(tκ).

General properties of such difference operators have been analysed in Section 5.2.1.
Here we aim at providing explicit expressions for them in the setting of the Heisen-
berg group Hn.

6.3.1 Difference operators ∆xj
and ∆yj

We start with the difference operators with respect to x and y.

Lemma 6.3.1. For any j = 1, . . . , n,

Δxj
|πλ

=
1

iλ
ad (πλ(Yj)) =

1√
|λ|

aduj ,

Δyj |πλ
= − 1

iλ
ad (πλ(Xj)) = −

1

i
√
λ
ad∂uj .

By this we mean that for any κ in some Ka,b(Hn) such that xjκ is in some
Ka′,b′(Hn) or yjκ in some Ka′,b′(Hn) for Δxj or Δyj , respectively, we have for
all h ∈ S(Rn) that

(
Δxj κ̂(πλ)

)
h (u) =

1√
|λ|

(uj (κ̂(πλ)h) (u)− (κ̂(πλ)(ujh)) (u)) ,

(
Δyj

κ̂(πλ)
)
h (u) =

1

i
√
λ

(
−∂uj

{κ̂(πλ)h} (u) + κ̂(πλ){∂uj
h} (u)

)
.
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Proof. Although we could just use direct computations, we prefer to use the fol-
lowing observations. Firstly we have by (6.2) and (6.3) that

Yj − Ỹj = xj∂t = ∂txj and X̃j −Xj = yj∂t = ∂tyj .

Secondly for any κ1 in some Ka,b(Hn),

πλ(∂tκ1) = πλ(Tκ1) = πλ(T )πλ(κ1) = iλπλ(κ1), (6.30)

as T = ∂t and using (6.11). Therefore, these two observations yield

πλ(xjκ) =
1

iλ
πλ (∂txjκ) =

1

iλ
πλ

(
(Yj − Ỹj)κ

)

=
1

iλ

(
πλ(Yjκ)− πλ(Ỹjκ)

)

=
1

iλ
(πλ(Yj)πλ(κ)− πλ(κ)πλ(Yj)) ,

and

πλ(yjκ) =
1

iλ
πλ (∂tyjκ) =

1

iλ
πλ

(
(X̃j −Xj)κ

)

=
1

iλ
(πλ(κ)πλ(Xj)− πλ(Xj)πλ(κ)) .

Using Lemma 6.2.1, we have obtained the expressions for Δyj and Δxj given in
the statement. �

Above and also below, we use the formula for the symbols of right derivatives,
for example, πλ(Ỹjκ) = πλ(κ)πλ(Yj), see Proposition 1.7.6, (iv).

Before giving some examples of applications of the difference operators Δxj

and Δyj , let us make a couple of remarks.

Remark 6.3.2. 1. The formulae in Lemma 6.3.1 respect the properties of the
automorphism Θ. Indeed, using (6.23) we have
(
Δxj

κ̂(π)
)
|π=π−λ

= (x̂jκ(π)) |π=π−λ
= π−λ(xjκ) = πλ ((xjκ) ◦Θ)

= πλ (xj κ ◦Θ) = Δxj κ̂ ◦Θ(πλ) = Δxj (κ̂(π−λ)) ,(
Δyj κ̂(π)

)
|π=π−λ

= (ŷjκ(π)) |π=π−λ
= π−λ(yjκ) = πλ ((yjκ) ◦Θ)

= πλ (−yj κ ◦Θ) = −Δyj
κ̂ ◦Θ(πλ) = −Δyj

(κ̂(π−λ)) .

This can also be viewed directly from the formulae in Lemma 6.3.1:

(
Δxj

κ̂(π)
)
|π=π−λ

=
1√
| − λ|

aduj (κ̂(π−λ)) = Δxj
(κ̂(π−λ)) ,

(
Δyj

κ̂(π)
)
|π=π−λ

= − 1

i
√
−λ

ad∂uj
= −Δyj

(κ̂(π−λ)) .
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2. The formulae in Lemma 6.3.1 respect the properties of the dilations Dr. This
time using (6.24), we have
(
Δxj

κ̂(π)
)
|π=πr−2λ

= (x̂jκ(π)) |π=πr−2λ
= πr−2λ(xjκ) = πλ

(
rQ(xjκ) ◦Dr

)

= r πλ

(
rQxj κ ◦Dr

)
= r Δxj

(κ̂(πr−2λ)) .

This can also be viewed directly from the formulae in Lemma 6.3.1:

(
Δxj κ̂(π)

)
|π=πr−2λ

=
1√
|r−2λ|

(aduj) (κ̂(πr−2λ))

= r ×
(

1√
|λ|

(aduj) (κ̂(πr−2λ))

)

= r Δxj
(κ̂(πr−2λ)) .

In exactly the same two ways we obtain for Δyj
that

(
Δyj κ̂(π)

)
|π=πr−2λ

= rΔyj (κ̂(πr−2λ)) .

Lemmata 6.3.1 and 6.2.3 imply:

Corollary 6.3.3. If κ̂(πλ) = OpW (aλ) and aλ = {aλ(ξ, u)}, then

Δxj κ̂(πλ) = OpW

(
i√
|λ|

∂ξjaλ

)
,

Δyj κ̂(πλ) = OpW
(

i√
λ
∂ujaλ

)
.

If κ̂(πλ) = OpW (aλ) and aλ = {aλ(ξ, u)} as in the statement above, we will
often say that aλ is the λ-symbol.

Up to now, we analysed the difference operators applied to a ‘general’ group
Fourier transform of a distribution κ (provided that the difference operators made
sense, see Definition 5.2.1 and the subsequent discussion). This is equivalent to
applying difference operators acting on symbols, see Section 5.1.3. In what follows,
we particularise this to some known symbols, mainly to the one in Example 5.1.26,
that is, to π(A) where A is a left-invariant differential operator such as A = Xj , Yj

or T .
We now give some explicit examples.

Example 6.3.4. We already know that Δxj I = 0, see Example 5.2.8. We can
compute

Δxj
πλ(Xk) = −δjkI, Δxj

πλ(Yk) = 0 and Δxj
πλ(T ) = 0, (6.31)

and
Δxj

πλ(L) = −2πλ(Xj). (6.32)
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Proof. By Lemma 6.3.1,

Δxj
πλ(Xk) =

1

iλ
ad (πλ(Yj))πλ(Xk) =

1

iλ
[πλ(Yj), πλ(Xk)]

=
1

iλ
πλ[Yj , Xk],

since πλ is a representation of the Lie algebra g. Similarly,

Δxjπλ(Yk) =
1

iλ
ad (πλ(Yj))πλ(Yk) =

1

iλ
πλ[Yj , Yk],

Δxj
πλ(T ) =

1

iλ
ad (πλ(Yj))πλ(T ) =

1

iλ
πλ[Yj , T ].

By the canonical commutation relations, we have

[Yj , Xk] = −δjkT, [Yj , Yk] = 0 and [Yj , T ] = 0.

Since πλ(T ) = iλI, we obtain (6.31).

In the same way, we have

Δxj
πλ(Xk)

2 =
1

iλ
πλ[Yj , X

2
k ] and Δxj

πλ(Y
2
k ) =

1

iλ
πλ[Yj , Y

2
k ].

Using the canonical commutation relations, we see that Yj and Yk commute in
the Lie algebra g thus Yj and Y 2

k commute in the enveloping Lie algebra U(g):
[Yj , Y

2
k ] = 0. Again using the canonical commutation relation we compute

[Yj , X
2
k ] = −2δjkXkT,

since

YjX
2
k = YjXkXk = (−δjkT +XkYj)Xk

= −δjkTXk +Xk(−δjkT +XkYj)

= −2δjkXkT +X2
kYj .

Therefore,

Δxj
πλ(Xk)

2 =
1

iλ
πλ(−2δjkXkT ) =

−2δjk
iλ

πλ(XkT ) =
−2δjk
iλ

πλ(Xk)πλ(T )

=
−2δjk
iλ

πλ(Xk)(iλ) = −2δjkπλ(Xk),

and Δxj
πλ(Y

2
k ) = 0. This implies (6.32). �

Example 6.3.5. We already know that Δyj
I = 0, see Example 5.2.8. We can com-

pute

Δyj
πλ(Xk) = 0, Δyj

πλ(Yk) = −δjkI and Δyj
πλ(T ) = 0, (6.33)

and
Δyj

πλ(L) = −2πλ(Yj). (6.34)
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Proof. Proceeding as in the proof of Example 6.3.4, we have

Δyjπλ(Xk) = − 1

iλ
ad (πλ(Xj))πλ(Xk) = −

1

iλ
πλ[Xj , Xk],

Δyjπλ(Yk) = − 1

iλ
ad (πλ(Xj))πλ(Yk) = −

1

iλ
πλ[Xj , Yk],

Δyjπλ(T ) = − 1

iλ
ad (πλ(Xj))πλ(T ) = −

1

iλ
πλ[Xj , T ],

and this together with the canonical commutation relations and πλ(T ) = iλI, yield
(6.33).

For the second part of Example 6.3.5, we have

Δyjπλ(Xk)
2 = − 1

iλ
πλ[Xj , X

2
k ] and Δyjπλ(Y

2
k ) = −

1

iλ
πλ[Xj , Y

2
k ],

and using the canonical commutation relations we compute [Xj , X
2
k ] = 0 whereas

[Xj , Y
2
k ] = 2δjkYkT,

since

XjY
2
k = XjYkYk = (δjkT + YkXj)Yk

= δjkTYk + Yk(δjkT + YkXj)

= 2δjkYkT + Y 2
k Xj .

Therefore

Δyjπλ(Yk)
2 = − 1

iλ
πλ(2δjkYkT ) = −2δjkπλ(Yk) and Δyjπλ(X

2
k) = 0.

This implies (6.34). �

6.3.2 Difference operator ∆t

Naturally, very important information will be contained in the difference operator
corresponding to multiplication by t.

Lemma 6.3.6. We have

Δt|πλ
= i∂λ +

1

2

n∑

j=1

Δxj
Δyj
|πλ

+
i

2λ

n∑

j=1

{
πλ(Yj)Δyj

|πλ
+Δxj

|πλ
πλ(Xj)

}
.

By this we mean that for any κ in some Ka,b(Hn) such that tκ is in some Ka′,b′(Hn),
we have

Δtπλ(κ) = i∂λπλ(κ) +
1

2

n∑

j=1

ΔxjΔyjπλ(κ)

+
i

2λ

n∑

j=1

{
πλ(Yj)Δyjπλ(κ) + Δxjπλ(κ)πλ(Xj)

}
,
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or, rewriting this with the equivalent notation κ̂(πλ) as before,

Δtκ̂(πλ) = i∂λκ̂(πλ) +
1

2

n∑

j=1

ΔxjΔyj κ̂(πλ)

+
i

2λ

n∑

j=1

{
πλ(Yj)Δyj κ̂(πλ) + Δxj κ̂(πλ)πλ(Xj)

}
.

Before giving some examples of applications of the difference operator Δt,
let us make a couple of remarks.

Remark 6.3.7. 1. This lemma shows that the difference operators act on the
field of operators {πλ(κ), λ ∈ R\{0}}, rather than on ‘one’ πλ(κ) for an
individual λ, see Remark 5.2.2.

2. In a similar way as in Remark 6.3.2, the formula in Lemma 6.3.6 respects the
properties of the automorphism Θ and the dilations Dr. Indeed, using (6.23)
we have

(Δtκ̂(π)) |π=π−λ
=

(
t̂κ(π)

)
|π=π−λ

= π−λ(tκ) = πλ ((tκ) ◦Θ)

= πλ (−t κ ◦Θ) = −Δtκ̂ ◦Θ(πλ) = −Δt (κ̂(π−λ)) ,

that is
(Δtκ̂(π)) |π=π−λ

= −Δt (κ̂(π−λ)) . (6.35)

For the dilations, using (6.24), we have

(Δtκ̂(π)) |π=πr−2λ
=

(
t̂κ(π)

)
|π=πr−2λ

= πr−2λ(tκ) = πλ

(
rQ(tκ) ◦Dr

)

= r2πλ

(
rQt κ ◦Dr

)
= r2Δt (κ̂(πr−2λ)) .

that is
(Δtκ̂(π)) |π=πr−2λ

= r2Δt (κ̂(πr−2λ)) . (6.36)

Formulae (6.35) and (6.36) can also be viewed directly from the formula in
Lemma 6.3.6:

(Δtκ̂(π)) |π=π−λ
= i∂λ1=−λ{πλ1

(κ)}+ 1

2

n∑

j=1

{Δxj
Δyj

π(κ)}π=π−λ

+
i

−2λ
n∑

j=1

{π(Yj)Δyj
π(κ) + Δxj

π(κ)π(Xj)}π=π−λ
, (6.37)

(Δtκ̂(π)) |π=πr−2λ
= i∂λ1=r−2λ{πλ1(κ)}+

1

2

n∑

j=1

{ΔxjΔyjπ(κ)}π=πr−2λ

+
i

2r−2λ

n∑

j=1

{π(Yj)Δyjπ(κ) + Δxjπ(κ)π(Xj)}π=πr−2λ
. (6.38)
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For the first terms in the right hand side in (6.37) and (6.38) we have easily
that

∂λ1=−λπλ1
(κ) = −∂λ{π−λ(κ)},

∂λ1=r−2λπλ1
(κ) = r2∂λ{πr−2λ(κ)}.

From Remark 6.3.2 we know that
⎧
⎪⎪⎨
⎪⎪⎩

(
Δxj κ̂(π)

)
|π=π−λ

= Δxj (κ̂(π−λ))(
Δyj κ̂(π)

)
|π=π−λ

= −Δyj (κ̂(π−λ))(
Δxj κ̂(π)

)
|π=πr−2λ

= rΔxj (κ̂(πr−2λ))(
Δyj κ̂(π)

)
|π=πr−2λ

= rΔyj (κ̂(πr−2λ))

(6.39)

so we have for the second term of the right hand side in (6.37) and (6.38)
respectively:

n∑

j=1

{Δxj
Δyj

π(κ)}π=π−λ
= −

n∑

j=1

Δxj
Δyj

(κ̂(π−λ)) ,

n∑

j=1

{Δxj
Δyj

π(κ)}π=πr−2λ
= r2

n∑

j=1

Δxj
Δyj

(κ̂(πr−2λ)) .

Now viewing Xj and Yj as elements of the Lie algebra and left invariant
vector fields, we see using (6.23) and (6.6) that

π−λ(Xj) = π−λ(Θ(Xj)) = π−λ(Xj ◦Θ) = πλ(Xj),

π−λ(Yj) = −π−λ(Θ(Yj)) = −π−λ(Yj ◦Θ) = −πλ(Yj),

and, using (6.25) and (6.4), we obtain

πr−2λ(Xj) = πλ(Dr−1Xj) = r−1πλ(Xj),

πr−2λ(Yj) = πλ(Dr−1Yj) = r−1πλ(Yj).

So from this and (6.39) we obtain for the third terms of the right hand side
in (6.35) and in (6.36) that

i

−2λ
n∑

j=1

{π(Yj)Δyj
π(κ) + Δxj

π(κ)π(Xj)}π=π−λ

= − i

2λ

n∑

j=1

π−λ(Yj)Δyj
π−λ(κ) + Δxj

π−λ(κ)π−λ(Xj),

i

2r−2λ

n∑

j=1

{π(Yj)Δyjπ(κ) + Δxjπ(κ)π(Xj)}π=πr−2λ

= r2
i

2λ

n∑

j=1

πr−2λ(Yj)Δyjπr−2λ(κ) + Δxjπr−2λ(κ)π−λ(Xj).
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Collecting the new expressions for the three terms of the right hand sides in
(6.35) and in (6.36) we obtain a new proof for Equalities (6.35) and (6.36).

Proof of Lemma 6.3.6. Let κ be in some Ka,b(Hn) and h ∈ S(Rn). We start by
differentiating with respect to λ the expression from Lemma 6.2.4:

πλ(κ)h(u) =

∫

Hn

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x)dxdydt,

and obtain

∂λ {πλ(κ)h(u)} =
∫

Hn

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyu

([
i(−t+ 1

2
xy)− i

yu

2
√
|λ|

]
h(u−

√
|λ|x)− 1

2
√
λ
x∇h(u−

√
|λ|x)

)
dxdydt;

indeed with our convention we have

x∇h =

n∑

j=1

xj∂ujh, and ∂λ{
√
λ} = 1

2
√
|λ|

, ∂λ{
√
|λ|} = 1

2
√
λ
.

We can now interpret the formula above in the light of difference operators as

∂λπλ(κ) = iπλ((−t+
1

2
xy)κ) +

n∑

j=1

{
− iuj

2
√
|λ|

πλ(yjκ)−
1

2
√
λ
πλ(xjκ)∂uj

}

= −iΔtπλ(κ) +
i

2

n∑

j=1

Δxj
Δyj

πλ(κ)

− 1

2λ

n∑

j=1

{
πλ(Yj)

(
Δyjπλ(κ)

)
+

(
Δxjπλ(κ)

)
πλ(Xj)

}
,

using (6.11). �

We already know that

ΔtI = 0 and Δtπλ(Xk) = Δtπλ(Yk) = 0, (6.40)

see Example 5.2.8 and Lemma 5.2.9, but we can also test it with the formula given
in Lemma 6.3.6. We also obtain the following (more substantial) examples:

Example 6.3.8. We can compute

Δtπλ(T ) = −I, (6.41)

and
Δtπλ(L) = 0. (6.42)
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Proof. Since
πλ(T ) = iλI

(see Lemma 6.2.1), we compute directly ∂λπλ(T ) = iI. By (6.31) and (6.33), we
know

Δyj
πλ(T ) = Δxj

πλ(T ) = 0,

thus we have obtained (6.41) by Lemma 6.3.6. Furthermore, by (6.12), we have

∂λπλ(L) = sgn(λ)

n∑

j=1

(
∂2
uj
− u2

j

)
=

1

λ
πλ(L)

and by (6.32) and (6.34)

n∑

j=1

{
πλ(Yj)Δyjπλ(L) + Δxjπλ(L)πλ(Xj)

}

= −
n∑

j=1

{πλ(Yj)2πλ(Yj) + 2πλ(Xj)πλ(Xj) = −2πλ(L)} ,

and also by Example 6.3.4, we get

ΔxjΔyjπλ(L) = −Δxj2πλ(Yj) = 0.

Combining all these equalities together with Lemma 6.3.6 yields (6.42). �

Note that (6.42) can also be obtained from (6.40) and the Leibniz formula
(in the sense of (5.28)) for Δt.

In terms of λ-symbols, we obtain

Corollary 6.3.9. If κ̂(πλ) ≡ πλ(κ) = OpW (aλ) with aλ = {aλ(ξ, u)}, then

Δtκ̂ (πλ) = iOpW
(
∂̃λ,ξ,uaλ

)
,

where

∂̃λ,ξ,u := ∂λ −
1

2λ

n∑

j=1

(
uj∂uj

+ ξj∂ξj
)
. (6.43)

Proof. Using formulae (6.28), Corollary 6.3.3 and the properties of the Weyl cal-
culus (see especially the composition formula in (6.16)), we obtain easily that

πλ(Yj)Δyj
πλ(κ) = OpW

(
i
√
λuj

)
OpW

( −1
i
√
λ
∂uj

aλ

)

= −OpW (uj)OpW
(
∂uj

aλ
)

= −OpW
(
uj∂uj

aλ −
1

2i
∂ξj∂uj

aλ

)
,
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and

Δxj
πλ(κ)πλ(Xj) = OpW

(
−1

i
√
|λ|

∂ξjaλ

)
OpW

(
i
√
|λ|ξj

)

= −OpW
(
∂ξjaλ

)
OpW (ξj)

= −OpW
(
(∂ξjaλ)ξj −

1

2i
∂uj

∂ξjaλ

)
,

thus

πλ(Yj)Δyj
πλ(κ) + Δxj

πλ(κ)πλ(Xj)

= −OpW
(
uj∂uj

aλ −
1

2i
∂ξj∂uj

aλ

)
−OpW

(
(∂ξjaλ)ξj −

1

2i
∂uj

∂ξjaλ

)
.

= OpW
(
−uj∂uj

aλ − ξj∂ξjaλ +
1

i
∂ξj∂uj

aλ

)
.

We also have

Δxj
Δyj

πλ(κ) = OpW

(
−1

i
√
|λ|

∂ξj
−1
i
√
λ
∂uj

aλ

)

= − 1

λ
OpW

(
∂ξj∂ujaλ

)
. (6.44)

Bringing these equalities in the formula for Δt in Lemma 6.3.6, we obtain

Δtπλ(κ) = i∂λπλ(κ) +
1

2

n∑

j=1

ΔxjΔyjπλ(κ)

+
i

2λ

n∑

j=1

{
πλ(Yj)Δyj

πλ(κ) + Δxj
πλ(κ)πλ(Xj)

}

= iOpW (∂λaλ) +
1

2

n∑

j=1

− 1

λ
OpW

(
∂ξj∂uj

aλ
)

+
i

2λ

n∑

j=1

OpW
(
−uj∂uj

aλ − ξj∂ξjaλ +
1

i
∂ξj∂uj

aλ

)

= OpW

⎛
⎝i∂λaλ −

i

2λ

n∑

j=1

(
uj∂ujaλ + ξj∂ξjaλ

)
⎞
⎠ .

This completes the proof. �
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6.3.3 Formulae

Here we summarise the formulae obtained so far in Sections 6.3.1 and 6.3.2. Let
us recall our convention regarding square roots (6.9) setting

√
λ := sgn(λ)

√
|λ| =

{ √
λ if λ > 0

−
√
|λ| if λ < 0

.

For the Schrödinger infinitesimal representation we have obtained (see (6.11),
(6.12) and (6.28)) that

πλ(Xj) =
√
|λ|∂uj = OpW

(
i
√
|λ|ξj

)

πλ(Yj) = i
√
λuj = OpW

(
i
√
λuj

)

πλ(T ) = iλI = OpW (iλ)

πλ(L) = |λ|∑j(∂
2
uj
− u2

j ) = OpW
(
|λ|∑j(−ξ2j − u2

j )
)

while for difference operators (cf. Lemmata 6.3.1 and 6.3.6) we have

Δxj |πλ
= 1

iλad (πλ(Yj)) = 1√
|λ|

aduj

Δyj |πλ
= − 1

iλad (πλ(Xj)) = − 1
i
√
λ
ad∂uj

Δt|πλ
= i∂λ+

1
2

∑n
j=1 ΔxjΔyj |πλ

+ i
2λ

∑n
j=1

{
πλ(Yj)|πλ

Δyj+Δxj |πλ
πλ(Xj)

}

and in terms of λ-symbols, that is, with

κ̂(πλ) ≡ πλ(κ) = OpW (aλ) and aλ = {aλ(ξ, u)},
(cf. Corollaries 6.3.3 and 6.3.9):

Δxj
πλ(κ) = iOpW

(
1√
|λ|

∂ξjaλ

)

Δyj
πλ(κ) = iOpW

(
1√
λ
∂uj

aλ

)

Δtπλ(κ) = iOpW
(
∂̃λ,ξ,uaλ

)

= iOpW
(
(∂λ − 1

2λ

∑n
j=1{uj∂uj

+ ξj∂ξj})aλ
)

(6.45)

In Examples 6.3.4, 6.3.5, 6.3.8 together with (6.40), we have also obtained

πλ(Xk) πλ(Yk) πλ(T ) πλ(L)
Δxj

−δj=k 0 0 −2πλ(Xj)
Δyj

0 −δj=k 0 −2πλ(Yj)
Δt 0 0 −I 0

The equalities given in the following lemma concern another normalisation of
the Weyl symbol which is motivated by (6.20) and by the fact that the expressions
of the right-hand sides in (6.45), in particular for the operator ∂̃λ,ξ,u, become then
very simple:
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Lemma 6.3.10. Let aλ = {aλ(ξ, u)} be a family of Weyl symbols depending smoothly
on λ �= 0. If ãλ is the renormalisation obtained via

aλ(ξ, u) = ãλ(
√
|λ|ξ,

√
λu), (6.46)

then

{∂̃λ,ξ,uaλ} (ξ, u) = {∂λãλ}(
√
|λ|ξ,

√
λu),

1√
|λ|
{∂ξjaλ} (ξ, u) = {∂ξj ãλ}(

√
|λ|ξ,

√
λu),

1√
λ
{∂uj

aλ} (ξ, u) = {∂uj
ãλ}(

√
|λ|ξ,

√
λu).

Proof. We see that

ãλ(ξ, u) = aλ

(
1√
|λ|

ξ,
1√
λ
u

)
,

thus

∂λãλ(ξ, u) = (∂λaλ)

(
1√
|λ|

ξ,
1√
λ
u

)

−
n∑

j=1

ξj

2λ
√
|λ|

(
∂ξjaλ

)
(

1√
|λ|

ξ,
1√
λ
u

)

−
n∑

j=1

uj

2|λ|
√
|λ|

(
∂uj

aλ
)
(

1√
|λ|

ξ,
1√
λ
u

)
,

and

{∂λãλ}
(√
|λ|ξ,

√
λu

)
= (∂λaλ)(ξ, u)

−
n∑

j=1

(√
|λ|ξj

2λ
√
|λ|

∂ξjaλ(ξ, u) +

√
λuj

2|λ|
√
|λ|

∂ujaλ(ξ, u)

)

= ∂λaλ(ξ, u)−
1

2λ

n∑

j=1

(
ξj∂ξjaλ(ξ, u) + uj∂ujaλ(ξ, u)

)

= ∂̃λ,ξ,uaλ(ξ, u).

This shows the first stated equality. The other two are easy. �

Lemma 6.3.10 and the formulae already obtained yield

Δxj
πλ(κ) = iOpW

(
∂ξj ãλ

)
,

Δyj
πλ(κ) = iOpW

(
∂uj

ãλ
)
,

Δtπλ(κ) = iOpW (∂λãλ) ,
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where the λ-symbol aλ of πλ(κ), that is, πλ(κ) = OpW (aλ), has been rescaled via
(6.46), i.e.

aλ(ξ, u) = ãλ(
√
|λ|ξ,

√
λu).

Recall that
aλ(ξ, u) = (2π)

2n+1
2 FR2n+1(κ)(

√
|λ|ξ,

√
λu, λ),

see (6.20), so

ãλ(ξ, u) = (2π)
2n+1

2 FR2n+1(κ)(ξ, u, λ).

The above formulae in terms of the rescaled λ-symbols look neat. The draw-
back of using this rescaling is that one rescales the Weyl quantization:

κ̂(πλ) = OpW (aλ) = OpW
(
ãλ

(√
|λ| ·,

√
λ ·

))
.

Since our aim is to study the group Fourier transform on Hn, it is more natural
to study the Weyl-symbol aλ without any rescaling.

In fact, the following two sections are devoted to understanding κ̂ ≡ {πλ(κ)}
as a family of Weyl pseudo-differential operators parametrised by λ ∈ R\{0}. The
Weyl quantization will force us to work on the λ-symbol aλ directly, and not on
its rescaling ãλ.

This will lead to defining a family of symbol classes parametrised by λ ∈
R\{0} for the λ-symbols aλ. This will be done via a family of Hörmander metrics
parametrised by λ ∈ R\{0}. Importantly the structural bounds of these metrics
will be uniform with respect to λ. The resulting symbol classes will be called
λ-Shubin classes.

6.4 Shubin classes

In this Section, we recall elements of the Weyl-Hörmander pseudo-differential cal-
culus and the associated Sobolev spaces, and we apply this to obtain the Shubin
classes of symbols and the associated Sobolev spaces. The dependence in a pa-
rameter λ will be of particular importance to us. We will call the resulting symbol
classes the λ-Shubin classes.

6.4.1 Weyl-Hörmander calculus

Here we present the main elements of the Weyl-Hörmander calculus that will be
relevant for our analysis. For more details on the underlying general theory, we
can refer, for instance, to [Ler10].

We consider Rn and identify its cotangent bundle T ∗Rn with R2n. The canon-
ical symplectic form on R2n is ω defined by

ω(T, T ′) = x · ξ′ − x′ · ξ, T = (ξ, x), T ′ = (ξ′, x′) ∈ R2n.
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Definition 6.4.1. If q is a positive quadratic form on R2n, then we define its con-
jugate qω by

∀T ∈ R2n qω(T ) := sup
T ′∈R2n\{0}

|ω(T, T ′)|2
q(T ′)

,

and its gain factor by

Λq := inf
T∈R2n\{0}

qω(T )

q(T )
.

Definition 6.4.2. A metric is a family of positive quadratic forms

g = {gX , X ∈ R2n}

depending smoothly on X ∈ R2n.

• The metric g is uncertain when ∀X ∈ R2n, ΛgX ≥ 1.

• The metric g is slowly varying when there exists a constant C̄ > 0 such that
we have for any X,X ′ ∈ R2n:

gX(X −X ′) ≤ C̄−1 =⇒ sup
T∈R2n\{0}

(
gX(T )

gX′(T )
+

gX′(T )

gX(T )

)
≤ C̄.

• The metric g is temperate when there are constants C̄ > 0 and N̄ > 0 such
that we have for any X,X ′ ∈ R2n and T ∈ R2n\{0}:

gX(T )

gX′(T )
≤ C̄(1 + gωX(X −X ′))N̄ .

A metric g is of Hörmander type if it is uncertain, slowly varying and tem-
perate. In this case the constants C̄ and N̄ appearing above and any constant
depending only on them are called structural.

Proposition 6.4.3. A metric g = {gX , X ∈ R2n} is slowly varying if and only if
there exist constants C, r > 0 such that we have for any X,Y ∈ R2n that

gX(Y −X) ≤ r2 =⇒ ∀T gY (T ) ≤ CgX(T ). (6.47)

Proof. If g is slowly varying then it satisfies (6.47). Conversely, let us assume
(6.47). Necessarily C ≥ 1 since we can take X = Y in (6.47). If gX(Y − X) ≤
C−1r2, then gX(Y −X) ≤ r2 and, applying (6.47) with T = Y −X, we obtain

gY (Y −X) ≤ CgX(Y −X) ≤ r2,

thus re-applying (6.47) (but at gY ), we have gX(T ) ≤ CgY (T ) for all T . This
shows that g is slowly varying. �
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Remark 6.4.4. If g satisfies (6.47) with constant C > 1 and r > 0 then g is slowly
varying with a constant C̄ = min(C−1r2, 2C).

Example 6.4.5. Let φ be a positive smooth function on R2n which is Lipschitz on
R2n. We denote by T �→ |T |2 the canonical (Euclidean) quadratic form on R2n.
The metric g given by

gX(T ) = φ(X)−2|T |2

is slowly varying.

Proof. Let us assume gX(Y −X) ≤ r2 for a constant r > 0 to be determined. This
means |Y −X| ≤ rφ(X). Since φ is Lipschitz on R2n, denoting by L its Lipschitz
constant, we have

φ(X) ≤ φ(Y ) + L|X − Y | ≤ φ(Y ) + Lrφ(X),

thus
(1− Lr)φ(X) ≤ φ(Y ).

Hence if we choose r > 0 so that 1− Lr > 0, we have obtained

∀T gY (T ) ≤ CgX(T ),

with C = (1 − Lr)−1. This shows that gX satisfies (6.47) and is therefore slowly
varying. �

Remark 6.4.6. If φ is L-Lipschitz then g given in Example 6.4.5 satisfies (6.47)
with any r ∈ (0, L−1) and a corresponding C = (1− Lr)−1.

Definition 6.4.7. Let g be a metric of Hörmander type. A positive function M de-
fined on R2n is a g-weight when there are structural constants C̄ ′ and N̄ ′ satisfying
for any X,Y ∈ R2n:

gX(X − Y ) ≤ C̄ ′−1 =⇒ M(X)

M(Y )
+

M(Y )

M(X)
≤ C̄ ′,

and
M(X)

M(Y )
≤ C̄(1 + gωX(X − Y ))N̄

′

.

It is easy to check that the set of g-weights forms a group for the usual
multiplication of positive functions.

Definition 6.4.8 (Hörmander symbol class S(M, g)). Let g be a metric of Hör-
mander type and M a g-weight on R2n. The symbol class S(M, g) is the set of
functions a ∈ C∞(R2n) such that for each integer ℓ ∈ N0, the quantity

‖a‖S(M,g),ℓ := sup
ℓ′≤ℓ,X∈R

2n

gX(Tℓ′ )≤1

|∂T1 . . . ∂Tℓ′
a(X)|

M(X)

is finite.
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Here ∂Ta denotes the quantity (da, T ).

The following properties are well known [Ler10, Chapters 1 and 2]:

Theorem 6.4.9. Let g be a metric of Hörmander type and let M,M1,M2 be g-
weights.

1. The symbol class S(M, g) is a vector space endowed with a Fréchet topology
via the family of seminorms ‖ · ‖S(M,g),ℓ, ℓ ∈ N0.

2. If a ∈ S(M, g) then the symbol b defined by

OpW b =
(
OpWa

)∗

is in S(M, g) as well. Furthermore, for any ℓ ∈ N0 there exist a constant
C > 0 and a integer ℓ′ ∈ N0 such that

‖b‖S(M,g),ℓ ≤ C‖a‖S(M,g),ℓ′ .

The constant C and the integer ℓ′ may be chosen to depend on ℓ and on the
structural constants and to be independent of g,M and a.

3. If a1 ∈ S(M1, g) and a2 ∈ S(M2, g) then the symbol b defined by

OpW b =
(
OpWa1

) (
OpWa2

)
,

is in S(M1M2, g). Furthermore, for any ℓ ∈ N0 there exist a constant C > 0
and two integers ℓ1, ℓ2 ∈ N0 such that

‖b‖S(M1M2,g),ℓ ≤ C‖a1‖S(M1,g),ℓ1‖a2‖S(M2,g),ℓ2 .

The constant C and the integers ℓ1, ℓ2 may be chosen to depend on ℓ and on
the structural constants and to be independent of g,M1,M2 and a1, a2.

Definition 6.4.10 (Sobolev spaces H(M, g)). Let g be a metric of Hörmander type
and M a g-weight on R2n. We denote by H(M, g) the set of all tempered distribu-
tions f on Rn such that for any symbol a ∈ S(M, g) we have OpW (a)f ∈ L2(Rn).

Theorem 6.4.11. Let g be a metric of Hörmander type on R2n.

1. The space H(1, g) coincides with L2(Rn). Furthermore, there exist a struc-
tural constant C > 0 and a structural integer ℓ ∈ N0 such that for any symbol
a ∈ S(1, g), we have

‖OpW (a)‖L (L2(Rn)) ≤ C‖a‖S(1,g),ℓ.

2. Let M1,M2 be g-weights. For any a ∈ S(M1, g), the operator OpW (a) maps
continuously H(M2, g) to H(M2M

−1
1 , g). Furthermore, there exist a constant

C > 0 and an integer ℓ ∈ N0 such that

‖OpW (a)‖
L (H(M2,g),H(M2M

−1
1 ,g)) ≤ C‖a‖S(M1,g),ℓ.

The constant C and the integers ℓ may be chosen to depend only on the
structural constants of g,M1,M2 and to be independent of g,M and a.
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6.4.2 Shubin classes Σm
ρ (R

n) and the harmonic oscillator

It is well known (and can be readily checked) that the metric

dξ2 + du2

(1 + |u|2 + |ξ|2)ρ ,

is of Hörmander type with corresponding weights (1 + |u|2 + |ξ|2)m/2 for m ∈ R.
This will be also shown later in the proof of Proposition 6.4.21. For m ∈ R and
ρ ∈ (0, 1], we denote by Σm

ρ (Rn) the corresponding symbol class, often called the
Shubin classes of symbols on Rn:

Σm
ρ (Rn) := S

(
(1 + |u|2 + |ξ|2)m/2,

dξ2 + du2

(1 + |u|2 + |ξ|2)ρ
)
.

This means that a symbol a ∈ C∞(R2n) is in Σm
ρ (Rn) if and only if for any

α, β ∈ Nn
0 there exists a constant C = Cα,β > 0 such that

∀(ξ, u) ∈ R2n |∂α
ξ ∂

β
ua(ξ, u)| ≤ C

(
1 + |ξ|2 + |u|2

)m−ρ(|α|+|β|)
2 .

The class Σm
ρ (Rn) is a vector subspace of C∞(Rn ×Rn) which becomes a Fréchet

space when endowed with the family of seminorms

‖a‖Σm
ρ ,N = sup

(ξ,u)∈R
n×R

n

|α|,|β|≤N

(
1 + |ξ|2 + |u|2

)−m−ρ(|α|+|β|)
2 |∂α

ξ ∂
β
ua(ξ, u)|,

where N ∈ N0. We denote by

ΨΣm
ρ (Rn) := OpW (Σm

ρ (Rn))

the corresponding class of operators and by ‖ · ‖ΨΣm
ρ ,N the corresponding semi-

norms.

We have the inclusions

ρ1 ≥ ρ2 and m1 ≤ m2 =⇒ ΨΣm1
ρ1

(Rn) ⊂ ΨΣm2
ρ2

(Rn).

Example 6.4.12. The operators ∂uj = OpW (iξj), j = 1, . . . , n, or multiplication

by uk = OpW (uk), k = 1, . . . , n, are two operators in ΨΣ1
1(R

n).

Standard computations also show:

Example 6.4.13. For each m ∈ R, the symbol bm, where

b(ξ, u) =
√
1 + |u|2 + |ξ|2,

is in Σm
1 (Rn).
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The following is well known and can be viewed more generally as a conse-
quence of the Weyl-Hörmander calculus (see Theorem 6.4.9)

Theorem 6.4.14. • The class of operators ∪m∈RΨΣm
ρ (Rn) forms an algebra of

operators stable by taking the adjoint. Furthermore, the operations

ΨΣm
ρ (Rn) −→ ΨΣm

ρ (Rn)
A �−→ A∗

and
ΨΣm1

ρ (Rn)×ΨΣm2
ρ (Rn) −→ ΨΣm1+m2

ρ (Rn)
(A,B) �−→ AB

are continuous.

• The operators in ΨΣ0
ρ(R

n) extend boundedly to L2(Rn). Furthermore, there
exist C > 0 and N ∈ N such that if A ∈ ΨΣ0

ρ(R
n) then

‖A‖L (L2(Rn)) ≤ C‖A‖ΨΣm
ρ ,N .

From Example 6.4.12, it follows that the (positive) harmonic oscillator

Q :=

n∑

j=1

(−∂2
uj

+ u2
j ), (6.48)

is in ΨΣ2
1(R

n).

Note that from now on Q denotes the harmonic oscillator and not the homo-
geneous dimension as in all previous chapters.

We keep the same notation for Q and for its self-adjoint extension as an un-
bounded operator on L2(Rn). The harmonic oscillator Q is a positive (unbounded)
operator on L2(Rn). Its spectrum is

{2|ℓ|+ n, ℓ ∈ Nn
0},

where |ℓ| = ℓ1+. . .+ℓn. The eigenfunctions associated with the eigenvalues 2|ℓ|+n
are

hℓ : x = (x1, . . . , xn) �−→ hℓ1(x1) . . . hℓn(xn),

where each hj , j = 0, 1, 2 . . . , is a Hermite function, that is,

hj(τ) = (−1)j e
τ2

2√
2jj!
√
π

dj

dτ j
e−τ2

, τ ∈ R.

The Hermite functions are Schwartz, i.e. hj ∈ S(R). With our choice of normalisa-
tion, the functions hj , j = 0, 1, . . . , form an orthonormal basis of L2(R). Therefore,
the functions hℓ form an orthonormal basis of L2(Rn). For each s ∈ R, we define
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the operator (I + Q)s/2 using the functional calculus, that is, in this case, the
domain of (I +Q)s/2 is the space of functions

Dom(I +Q)s/2 = {h ∈ L2(Rn) :
∑

ℓ∈Nn
0

(2|ℓ|+ n)s|(hℓ, h)L2(Rn)|2 <∞},

and if h ∈ Dom(I +Q)s/2 then

(I +Q)s/2h =
∑

ℓ∈Nn
0

(2|ℓ|+ n)s/2(hℓ, h)L2(Rn)hℓ.

6.4.3 Shubin Sobolev spaces

In this section, we study Shubin Sobolev spaces. Many of their properties, espe-
cially their equivalent characterisations, are well known. Their proofs are quite
easy but often omitted in the literature. Thus we have chosen to sketch their
demonstrations.

The Shubin Sobolev spaces below are a special case of Sobolev spaces for
measurable fields on representation spaces, see Definition 5.1.6.

Our starting point will be the following definition for the Shubin Sobolev
spaces:

Definition 6.4.15. Let s ∈ R. The Shubin Sobolev space Qs(Rn) is the subspace of
S ′(Rn) which is the completion of Dom(I +Q)s/2 for the norm

‖h‖Qs
:= ‖(I +Q)s/2h‖L2(Rn).

They satisfy the following properties:

Theorem 6.4.16. 1. The space Qs(Rn) is a Hilbert space endowed with the ses-
quilinear form

(g, h)Qs
=

(
(I +Q)s/2g, (I +Q)s/2h

)
L2(Rn)

.

We have the inclusions

S(Rn) ⊂ Qs1(R
n) ⊂ Qs2(R

n) ⊂ S ′(Rn), s1 > s2.

We also have

L2(Rn) = Q0(R
n) and S(Rn) =

⋂

s∈R

Qs(R
n).

2. The dual of Qs(Rn) may be identified with Q−s(Rn) via the distributional
duality form 〈g, h〉 =

∫
Rn gh.
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3. If s ∈ N0, Qs(Rn) coincides with

Qs(R
n) = {h ∈ L2(Rn) : uα∂β

uh ∈ L2(Rn) ∀α, β ∈ Nn
0 , |α|+ |β| ≤ s}.

Furthermore, the norm given by

‖h‖(int)Qs
=

∑

|α|+|β|≤s

‖uα∂β
uh‖L2(Rn),

is equivalent to ‖ · ‖Qs .

4. For any s ∈ R, Qs(Rn) coincides with the completion (in S ′(Rn)) of the
Schwartz space S(Rn) for the norm

‖h‖(b)Qs
= ‖OpW (bs)h‖L2(Rn),

where b was given in Example 6.4.13. The norm ‖ · ‖(b)Qs
extended to Qs(Rn)

is equivalent to ‖ · ‖Qs .

5. For any s ∈ R, the Shubin Sobolev space Qs(Rn) coincides with the Sobolev
space associated with the following metric weight (see Definition 6.4.10)

Qs(R
n) = H

(
(1 + |u|2 + |ξ|2)s/2, dξ2 + du2

1 + |u|2 + |ξ|2
)
.

6. For any s ∈ R, the operators OpW (b−s)(I + Q)s/2 and (I + Q)s/2OpW (b−s)
are bounded and invertible on L2(Rn).

7. The complex interpolation between the spaces Qs0(R
n) and Qs1(R

n) is

(Qs0(R
n),Qs1(R

n))θ = Qsθ (R
n), sθ = (1− θ)s0 + θs1, θ ∈ (0, 1).

Before giving the proof of Theorem 6.4.16, let us recall the definition of
complex interpolation:

Definition 6.4.17 (Complex interpolation). Let X0 and X1 be two subspaces of a
vector space Z. We assume that X0 and X1 are Banach spaces with norms denoted
by | · |j , j = 0, 1.

Let Z be the space of the functions f defined on the strip S̄ = {0 ≤ Re z ≤
1} and valued in X0 + X1 such that f is continuous on S̄ and holomorphic in
S = {0 < Re z < 1}. For f ∈ Z we define the quantity (possibly infinite)

‖f‖Z := sup
y∈R

{|f(iy)|0, |f(1 + iy)|1}.

The complex interpolation space of exponent θ ∈ (0, 1) is the space (X0, X1)θ
of vectors v ∈ X0 + X1 such that there exists f ∈ Z satisfying f(θ) = v and
‖f‖Z <∞.

The space (X0, X1)θ is a subspace of Z; it is a Banach space when endowed
with the norm given by

|v|θ := inf{‖f‖Z : f ∈ Z and f(θ) = v}.
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We also refer to Appendix A.6 for the notion of analytic interpolation.

Proof of Theorem 6.4.16. From Definition 6.4.15, it is easy to prove that the space
Qs(Rn) is a Hilbert space, that it is included in S ′(Rn) and thatQ0(Rn) = L2(Rn).
It is a routine exercise left to the reader that the dual of Qs(Rn) is Q−s(Rn) via
the distributional duality (Part (2)) and that the spaces Qs(Rn) decrease with
s ∈ R.

Let us prove the complex interpolation property of Part (7). We may assume
s1 > s0. For h ∈ Qsθ , we consider the function

f(z) := (I +Q)
−(zs1+(1−z)s0)+sθ

2 h,

and we check easily that

f(θ) = h, ‖f(iy)‖Qs0
= ‖f(1 + iy)‖Qs1

= ‖h‖Qsθ
∀y ∈ R.

This shows that Qsθ is continuously included in (Qs0(R
n),Qs1(R

n))θ. By duality
of the complex interpolation and of the Qs(Rn), we obtain the reverse inclusion
and Part (7) is proved.

Let us prove Part (4). For any s ∈ R, the operator OpW (bs) maps S(Rn)

to itself and the mapping ‖ · ‖(b)Qs
as defined in Part (4) is a norm on S(Rn). We

denote its completion in S ′(Rn) by Q(b)
s (Rn). From the properties of the calculus it

is again a routine exercise left to the reader that the dual of Q(b)
s (Rn) is Q(b)

−s(R
n)

via the distributional duality and that the spaces Q(b)
s (Rn) decrease with s ∈ R.

We can prove the following property about interpolation between theQ(b)(Rn)
spaces which is analogous to Part (7):

(Q(b)
s0 (R

n),Q(b)
s1 (R

n))θ = Q(b)
sθ

(Rn), sθ = (1− θ)s0 + θs1, θ ∈ (0, 1). (6.49)

Indeed we may assume s1 > s0. For h ∈ Q(b)
sθ , we consider the function

f(z) = ez(sz−sθ)OpW
(
b−sz+sθ

)
h where sz = (1− z)s0 + zs1.

Clearly f(θ) = h. Furthermore,

‖f(iy)‖(b)Qs1
= |eiy(siy−sθ)|‖OpW (bs1)OpW

(
b−siy+sθ

)
h‖L2(Rn)

≤ e−y2(s1−s0)‖OpW (bs1)OpW
(
b−siy+sθ

)
OpW (b−sθ )‖L (L2(Rn))

‖h‖(b)Qsθ
, (6.50)

and

‖f(1 + iy)‖(b)Qs0
= |e(1+iy)(s1+iy−sθ)|‖OpW (bs0)OpW

(
b−s1+iy+sθ

)
h‖L2(Rn)

≤ es1−sθ−y2(s1−s0)‖OpW (bs0)OpW
(
b−s1+iy+sθ

)
OpW (b−sθ )‖L (L2(Rn))

‖h‖(b)Qsθ
. (6.51)



464 Chapter 6. Pseudo-differential operators on the Heisenberg group

From the calculus we obtain that the two operator norms on L2(Rn) in (6.50)
and (6.51) are bounded by a constant of the form C(1 + |y|)N where C > 0 and

N ∈ N0 are independent of y. This shows that Q(b)
sθ is continuously included in

(Q(b)
s0 (R

n),Q(b)
s1 (R

n))θ. By duality of the complex interpolation and of the spaces
Qs(Rn), we obtain the reverse inclusion and (6.49) is proved.

Let us show that the spaces Q(b)
s (Rn) and Qs(Rn) coincide. First let us

assume s ∈ 2N0. We have for any h ∈ Q(b)
s (Rn):

‖h‖Qs ≤ ‖(I +Q)s/2OpW (b−s)‖L(L2(Rn))‖h‖(b)Qs
.

As Q ∈ ΨΣ2
1(R

n), by Theorem 6.4.14, the operator (I + Q)s/2OpW (b−s) is in
ΨΣ0

1 and thus is bounded on L2(Rn). We have obtained a continuous inclusion of

Q(b)
s (Rn) into Qs(Rn). Conversely, we have for any h ∈ Qs(Rn) that

‖h‖(b)Qs
≤ ‖OpW (bs)(I +Q)−s/2‖L(L2(Rn))‖h‖Qs

.

The inverse of OpW (bs)(I + Q)−s/2 is (I + Q)s/2(OpW (bs))−1 since the opera-
tors I + Q and OpW (bs) are invertible. Moreover, for the same reason as above,
(I +Q)s/2(OpW (bs))−1 is bounded on L2(Rn). By the inverse mapping theorem,
OpW (bs)(I + Q)−s/2 is bounded on L2(Rn). This shows the reverse continuous
inclusion. We have proved

Q(b)
s (Rn) = Qs(R

n)

with equivalence of norms for s ∈ 2N0 and this implies that this is true for any

s ∈ R by the properties of duality and interpolation for Q(b)
s (Rn) and Qs(Rn).

This shows Part (4) and implies Parts (5) and (6).

Let us show that, for each s ∈ N0, the space Qs(Rn) coincides with the space

Q(int)
s (Rn) of functions h ∈ L2(Rn) such that the tempered distributions uα∂β

uh
are in L2(Rn) for every α, β ∈ Nn

0 such that |α| + |β| ≤ s. Endowed with the

norm ‖ · ‖(int)Qs
defined in Part (3), Q(int)

s (Rn) is a Banach space. We have for any

h ∈ Qs(Rn) = Q(b)
s (Rn)

‖h‖(int)Qs
≤

∑

|α|+|β|≤s

‖uα∂β
uOpW (b−s)‖L(L2(Rn))‖h‖(b)Qs

.

Since the operators uα∂β
uOpW (b−s) are in ΨΣ

|α|+|β|−s
1 (Rn) thus continuous on

L2(Rn) when |α| + |β| ≤ s, we see that Qs(Rn) is continuously included in

Q(int)
s (Rn). For the converse, we separate the cases s even and odd. If s ∈ 2N0

then we have easily that

‖h‖Qs = ‖
(
I +

∑

j

(−∂2
uj

+ u2
j )
)s/2

h‖L2(Rn)

≤ Cs

∑

|α|+|β|≤s

‖uα∂β
uh‖L2(Rn) = Cs‖h‖(int)Qs

.
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Now if s ∈ 2N0 + 1, we have, since OpW (b−1)(I +Q)1/2 is bounded and invertible
(see Part (6) already proven),

‖h‖Qs = ‖(I +Q)s/2h‖L2(Rn) ≤ C‖OpW (b−1)(I +Q)1/2(I +Q)s/2h‖L2(Rn)

≤ C‖OpW (b−1)(I +
∑

j

−∂2
uj

+ u2
j )

(s+1)/2h‖L2(Rn)

≤ Cs

∑

|α|+|β|≤s+1

‖OpW (b−1)xα∂β
xh‖L2(Rn)

≤ Cs

∑

|α′|+|β′|≤s

‖uα′

∂β′

u h‖L2(Rn) = Cs‖h‖(int)Qs
,

by the property of the calculus. Therefore, for s even and odd, Q(int)
s (Rn) is

continuously included in Qs(Rn). As we have already proven the reverse inclusion,
the equality holds and Part (3) is proved. This implies

⋂

s∈R

Qs(R
n) = S(Rn)

and Part (1) is now completely proved. �

These Sobolev spaces enable us to characterise the operators in the calculus.
We allow ourselves to use the shorthand notation

(adu)α1 := (adu1)
α11 . . . (adun)

α1n ,

and
(ad∂u)

α2 := (ad∂u1)
α21 . . . (ad∂un)

α2n .

Theorem 6.4.18. We assume that ρ ∈ (0, 1]. Let A : S(Rn) → S ′(Rn) be a linear
continuous operator such that all the operators

(adu)α1(ad∂u)
α2A, α1, α2 ∈ Nn

0 ,

are in L (L2(Rn),Q−m+ρ(|α1|+|α2|)) in the sense that they extend to continuous
operators from L2(Rn) to Q−m+ρ(|α1|+|α2|). Then A ∈ ΨΣm

ρ (Rn). Moreover, for
any ℓ ∈ N, there exist a constant C and an integer ℓ′, both independent of A, such
that

‖A‖ΨΣm
ρ ,ℓ ≤ C

∑

|α1|+|α2|≤ℓ′

‖(adu)α1(ad∂u)
α2A‖L (L2(Rn),Q−m+ρ(|α1|+|α2|)).

Note that the converse is true, that is, given A ∈ ΨΣm
ρ then

∀α1, α2 ∈ Nn
0 (adu)α1(ad∂u)

α2A ∈ L (L2(Rn),Q−m+ρ(|α1|+|β|), ).
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This is just a consequence of the properties of the calculus.

The proof of Theorem 6.4.18 relies on the following characterisation of the
class of symbols

Σ0
0(R

n) := S(1, dξ2 + du2).

Theorem 6.4.19 (Beals’ characterisation of Σ0
0(R

n)). Let A : S(Rn) → S ′(Rn) be
a linear continuous operator such that all the operators

(adu)α1(ad∂u)
α2A, α1, α2 ∈ Nn

0 ,

are in L (L2(Rn)) in the sense that they extend to continuous operators on L2(Rn).
Then there exits a unique function a = {a(ξ, x)} ∈ Σ0

0(R
n) such that A = OpW (a).

Moreover, for any ℓ ∈ N, there exist a constant C and an integer ℓ′, both indepen-
dent of A, such that

‖a‖Σ0
0,ℓ
≤ C

∑

|α1|+|α2|≤ℓ′

‖(adu)α1(ad∂u)
α2A‖L (L2(Rn)).

The converse is true, that is, given a ∈ Σ0
0(R

n) then A = OpW (a) satisfies

∀α1, α2 ∈ Nn
0 (adu)α1(ad∂u)

α2A ∈ L (L2(Rn)).

We admit Beals’ theorem stated in Theorem 6.4.19, see the original article
[Bea77a] for the proof.

For the sake of completeness we prove Theorem 6.4.18. This proof can also
be found in [Hel84a, Théorème 1.21.1].

Sketch of the proof of Theorem 6.4.18. Let A be as in the statement and b as in
Example 6.4.13. We write

Bs := OpW (bs)

and

Aα1,α2 := (adu)α1(ad∂u)
α2A, α1, α2 ∈ Nn

0 .

We set s := m − ρ(|α1| + |α2|). Then B−1
s Aα1,α2 ∈ L (L2(Rn)). Moreover,

we have

ad∂u1

(
B−1

s Aα1,α2

)
=

(
ad∂u1

(
B−1

s

))
Aα1,α2 +B−1

s ad∂u1 (Aα1,α2) ;

the first operator of the right-hand side is in L (L2(Rn),Q1(Rn)) whereas the
second is in L (L2(Rn),Qρ(Rn)). Proceeding recursively, we obtain that the op-
erator B−1

m−ρ(|α1|+|α2|)Aα1,α2 satisfies the hypothesis of Beals’ Theorem (Theorem

6.4.19). Therefore, there exists cα1,α2
∈ Σ0

0(R
n) such that

B−1
m−ρ(|α1|+|α2|)Aα1,α2 = OpW (cα1,α2)
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or, equivalently,

Aα1,α2 = OpW (aα1,α2) with aα1,α2 = bm−ρ(|α1|+|α2|) ⋆ cα1,α2 .

We have A = OpW (a0,0) and

OpW (aα1,α2
) = Aα1,α2

= (adu)α1(ad∂u)
α2A

= (adu)α1(ad∂u)
α2OpW (a0,0)

= OpW
(
i|α1|∂α1

ξ ∂α2
u a0,0

)
,

by Lemma 6.2.3, thus
aα1,α2

= i|α1|∂α1

ξ ∂α2
u a0,0.

Consequently a ∈ Σm
ρ . �

Looking back at the proof, we see that it can be slightly improved in the
following way:

Corollary 6.4.20. We assume that ρ ∈ (0, 1]. Let A : S(Rn) → S ′(Rn) be a linear
continuous operator.

The operator A is in ΨΣm
ρ (Rn) if and only if there exists γo ∈ R such that

for each α1, α2 ∈ Nn
0 we have

(adu)α1(ad∂u)
α2A ∈ L (Qγo

(Rn),Q−m+ρ(|α1|+|α2|)+γo
).

In this case this property is true for every γ ∈ R, that is, for each γ ∈ R and
α1, α2 ∈ Nn

0 , we have

(adu)α1(ad∂u)
α2A ∈ L (Qγ(R

n),Q−m+ρ(|α1|+|α2|)+γ).

Moreover, for any ℓ ∈ N, there exist a constant C and an integer ℓ′, both indepen-
dent of A, such that

‖A‖ΨΣm
ρ ,ℓ ≤ C

∑

|α1|+|α2|≤ℓ′

‖(adu)α1(ad∂u)
α2A‖L (Qγ(Rn),Q−m+ρ(|α1|+|α2|)+γ).

Sketch of the proof of Corollary 6.4.20. We keep the notation of the proof of The-
orem 6.4.18. Let A be as in the statement and let s := m − ρ(|α1| + |α2|). Then
B−1

s+γo
Aα1,α2

Bγo
∈ L (L2(Rn)). Moreover, we have

ad∂u1

(
B−1

s+γo
Aα1,α2

Bγo

)
=

(
ad∂u1

(
B−1

s+γo

))
Aα1,α2

Bγo

+B−1
s+γo

ad∂u1
(Aα1,α2

)Bγo

+B−1
s+γo

Aα1,α2Bγo B−1
γo

(ad∂u1Bγo) ;

the first operator of the right-hand side is in L (L2(Rn),Q1(Rn)), the second is
in L (L2(Rn),Qρ(Rn)) and the third is in L (L2(Rn)). Proceeding recursively, we
obtain that B−1

s+γo
Aα1,α2

Bγo
satisfies the hypothesis of Theorem 6.4.19. We then

conclude as in the proof of Theorem 6.4.18. �



468 Chapter 6. Pseudo-differential operators on the Heisenberg group

6.4.4 The λ-Shubin classes Σm
ρ,λ(R

n)

The Shubin metric depending on a parameter λ ∈ R\{0} is the metric g(λ) on R2n

defined via

g
(ρ,λ)
ξ,u (dξ, du) :=

( |λ|
1 + |λ|(1 + |ξ|2 + |u|2)

)ρ

(dξ2 + du2).

The associated positive function M (λ) on R2n is defined via

M (λ)(ξ, u) :=
(
1 + |λ|(1 + |ξ|2 + |u|2)

) 1
2 .

These λ-families of metrics and weights were first introduced in [BFKG12a] in
the case ρ = 1. The authors of [BFKG12a] realised that, placing λ as above, the
structural constants may be chosen independently of λ:

Proposition 6.4.21. For each λ ∈ R\{0}, the metric g(ρ,λ) is of Hörmander type
(see Definition 6.4.2) and the function M (λ) is a g(ρ,λ)-weight (see Definition
6.4.7). Furthermore, if ρ ∈ (0, 1] is fixed, then the structural constants for g(ρ,λ)

and for M (λ) can be chosen independent of λ.

The proof of Proposition 6.4.21 follows the proof of the case ρ = 1 given in
[BFKG12a, Proposition 1.20].

Proof of Proposition 6.4.21. The conjugate of g
(ρ,λ)
ξ,u is (g

(ρ,λ)
ξ,u )ω given by

(g
(ρ,λ)
ξ,u )ω(dξ, du) =

(
1 + |λ|(1 + |ξ|2 + |u|2)

|λ|

)ρ

(dξ2 + du2).

The gain is then

Λ
g
(ρ,λ)
ξ,u

=

(
1 + |λ|(1 + |ξ|2 + |u|2)

|λ|

)2ρ

.

We have for any ρ, λ, ξ, u:

Λ
g
(ρ,λ)
ξ,u

≥
(
1 + |λ|
|λ|

)2ρ

≥ 1.

This proves the uniform uncertain property in Definition 6.4.2.

To show that the metric gρ,λ is slowly varying, we notice that it is of the
form φ(X)−2|T |2 as in Example 6.4.5 with

φ(X) =

(
1 + |λ|(1 + |X|2)

|λ|

)ρ/2

.
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We compute the gradient of φ and obtain

|∇Xφ| = ρ|λ|1− ρ
2 |X|(1 + |λ|(1 + |X|2)) ρ

2−1

≤

⎧
⎪⎨
⎪⎩

ρ
(

|λ|
1+|λ|

)1− ρ
2 ≤ ρ if |X| ≤ 1,

ρ
(

|λ||X|2
1+|λ||X|2

)1− ρ
2 |X|1−2(1− ρ

2 ) ≤ ρ if |X| > 1.

So φ is ρ-Lipschitz on R2n. Therefore, gρ,λ is slowly varying with a constant C̄
independent of λ (see Example 6.4.5 as well as Remarks 6.4.4 and 6.4.6).

Let us prove that gρ,λ is temperate. For any X,Y ∈ R2n we have

|Y |2 ≤ 2|X|2 + 2|X − Y |2;

thus
1 + |λ|(1 + |Y |2)
1 + |λ|(1 + |X|2) ≤ 2 + 2

|λ|
1 + |λ|(1 + |X|2) |X − Y |2. (6.52)

Now

|λ| ≤ 1 + |λ|(1 + |X|2) thus

( |λ|
1 + |λ|(1 + |X|2)

)1+ρ

≤ 1,

and
|λ|

1 + |λ|(1 + |X|2) ≤
(
1 + |λ|(1 + |X|2)

|λ|

)ρ

.

Plugging this into (6.52), we obtain

1 + |λ|(1 + |Y |2)
1 + |λ|(1 + |X|2) ≤ 2 + 2

(
1 + |λ|(1 + |X|2)

|λ|

)ρ

|X − Y |2.

Taking the ρth power yields

g
(ρ,λ)
X (T )

g
(ρ,λ)
Y (T )

=

(
1 + |λ|(1 + |Y |2)
1 + |λ|(1 + |X|2)

)ρ

≤ 2ρ
(
1 +

(
1 + |λ|(1 + |X|2)

|λ|

)ρ

|X − Y |2
)ρ

= 2ρ
(
1 + (g

(ρ,λ)
X )ω(X − Y )

)ρ

.

This shows that g(ρ,λ) is temperate with constant independent of λ.

So far we have shown that g(ρ,λ) is a metric of Hörmander type. Following
the same computations, it is not difficult to show that M (λ) are g-weights with
constants independent of λ. This concludes the proof of Proposition 6.4.21. �
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Let ρ ∈ (0, 1] be a fixed parameter.

For each parameter λ ∈ R\{0}, we define the λ-Shubin classes by

Σm
ρ,λ(R

n) := S
((

M (λ)
)m

, g(ρ,λ)
)
,

where we have used the Hörmander notation to define a class of symbols in terms
of a metric and a weight, see Definition 6.4.8.

Here this means that Σm
ρ,λ(R

n) is the class of functions a ∈ C∞(Rn × Rn)
such that for each N ∈ N0, the quantity

‖a‖Σm
ρ,λ,N

:= sup
(ξ,u)∈R

n×R
n

|α|,|β|≤N

|λ|−ρ
|α|+|β|

2

(
1 + |λ|(1 + |ξ|2 + |u|2)

)−m−ρ(|α|+|β|)
2 |∂α

ξ ∂
β
ua(ξ, u)|,

is finite. This also means that a symbol a = {a(ξ, u)} is in Σm
ρ,λ(R

n) if and only if
it satisfies

∀α, β ∈ Nn
0 ∃C = Cα,β > 0 ∀(ξ, u) ∈ Rn × Rn

|∂α
ξ ∂

β
ua(ξ, u)| ≤ C|λ|ρ |α|+|β|

2

(
1 + |λ|(1 + |ξ|2 + |u|2)

)m−ρ(|α|+|β|)
2 . (6.53)

The class of symbols Σm
ρ,λ(R

n) is a vector subspace of C∞(Rn × Rn) which
becomes a Fréchet space when endowed with the family of seminorms ‖ · ‖Σm

ρ,λ,N
,

N ∈ N0. We denote by

ΨΣm
ρ,λ(R

n) := OpW (Σm
ρ,λ(R

n))

the corresponding class of operators, and by ‖ · ‖ΨΣm
ρ,λ,N

the corresponding semi-

norms on the Fréchet space ΨΣm
ρ,λ(R

n).

It is clear that all the spaces of the same order m and parameter ρ coincide
in the sense that

∀λ �= 0 Σm
ρ,λ(R

n) = Σm
ρ,1(R

n) = Σm
ρ (Rn), (6.54)

and the same is true for ΨΣm
ρ,λ(R

n) = ΨΣm
ρ (Rn). However, the seminorms

‖ · ‖Σm
ρ,λ,N

and ‖ · ‖ΨΣm
ρ,λ,N

carry the dependence on λ. This dependence on λ will be crucial for our purposes.
From the general properties of metrics of Hörmander type (see Theorem 6.4.9 and
Proposition 6.4.21), we readily obtain the following ‘λ-uniform’ calculus.

Proposition 6.4.22. 1. If, for each λ ∈ R\{0}, we are given a symbol aλ =
{aλ(ξ, u)} in Σm

ρ,λ(R
n) such that

∀N ∈ N0 sup
λ �=0
‖aλ‖Σm

ρ,λ,N
<∞, (6.55)
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then each symbol bλ defined by

OpW bλ =
(
OpWaλ

)∗

is in Σm
ρ,λ(R

n) as well. Furthermore, for any ℓ ∈ N0 there exist a constant
C > 0 and a integer ℓ′ ∈ N0 such that for any λ �= 0

‖bλ‖Σm
ρ,λ,ℓ
≤ C‖aλ‖Σm

ρ,λ,ℓ
′ .

The constant C and the integer ℓ′ may be chosen to depend on ℓ,m, n and to
be independent of λ and a.

2. If, for each λ ∈ R\{0}, we are given two symbols a1,λ = {a1,λ(ξ, u)} in
Σm1

ρ,λ(R
n) and a2,λ = {a2,λ(ξ, u)} in Σm2

ρ,λ(R
n) such that

∀N ∈ N0 sup
λ �=0
‖a1,λ‖Σm1

ρ,λ,N
<∞ and sup

λ �=0
‖a2,λ‖Σm2

ρ,λ,N
<∞,

then each symbol bλ defined by

OpW bλ =
(
OpWa1,λ

) (
OpWa2,λ

)
,

is in Σm1+m2

ρ,λ (Rn). Furthermore, for any ℓ ∈ N0 there exist a constant C > 0
and two integers ℓ1, ℓ2 ∈ N0 such that

‖bλ‖Σm1+m2
λ ,ℓ

≤ C‖a1,λ‖Σm1
ρ,λ,ℓ1

‖a2,λ‖Σm2
ρ,λ,ℓ2

.

The constant C and the integers ℓ1, ℓ2 may be chosen to depend on ℓ,m1,m2, n
and to be independent of λ and a1,λ, a2,λ.

We will say that a family of symbols aλ = {aλ(ξ, u)}, λ ∈ R\{0}, which
satisfies Property (6.55) is λ-uniform in Σm

ρ,λ(R
n). The corresponding family of

operators via the Weyl quantization is said to be λ-uniform in ΨΣm
ρ,λ(R

n).

Let us give some useful examples of such families of operators.

Example 6.4.23. The families of symbols given by

πλ(Xj) = i
√
|λ|ξj , πλ(Yj) = i

√
λuj and πλ(T ) = iλ

are λ-uniform in Σ1
1,λ(R

n), Σ1
1,λ(R

n), and Σ2
1,λ(R

n), respectively.

In particular, the constant operator πλ(T ) = iλ has to be considered as being
of order 2 because of the dependence on λ.

Proof. We want to estimate the supremum over λ �= 0 of each of the seminorms

‖πλ(Xj)‖ΨΣ1
1,λ,N

= ‖i
√
|λ|ξj‖Σ1

1,λ,N
and ‖πλ(Yj)‖ΨΣ1

1,λ,N
= ‖i
√
λuj‖Σ1

1,λ,N
.
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We compute directly for N = 0:

sup
λ �=0
‖i
√
|λ|ξj‖Σ1

1,λ,0
= sup

λ �=0,(ξ,u)∈Rn×Rn

√
|λ||ξj |√

1 + |λ|(1 + |ξ|2 + |u|2)
<∞,

sup
λ �=0
‖i
√
λuj‖Σ1

1,λ,0
= sup

λ �=0,(ξ,u)∈Rn×Rn

√
|λ||uj |√

1 + |λ|(1 + |ξ|2 + |u|2)
<∞,

and

sup
|α|+|β|=1

(ξ,u)∈R
n×R

n

|∂α
ξ ∂

β
u{

√
|λ|ξj}| = sup

|α|+|β|=1
(ξ,u)∈R

n×R
n

|∂α
ξ ∂

β
u{
√
λuj}| =

√
|λ|,

therefore

sup
λ �=0
‖i
√
|λ|ξj‖Σ1

1,λ,1
<∞ and sup

λ �=0
‖i
√
λuj‖Σ1

1,λ,1
<∞.

Since all the higher derivatives ∂α
ξ ∂

β
u with |α|+ |β| > 1 of the symbols i

√
|λ|ξj and

i
√
λuj are zero, we obtain that the families of symbols given by πλ(Xj), πλ(Yj),

are λ-uniform in Σ1
1,λ(R

n).

For πλ(T ) = OpW (iλ), we see that

‖iλ‖Σ2
1,λ,0

= sup
(ξ,u)∈Rn×Rn

|iλ|
1 + |λ|(1 + |ξ|2 + |u|2) <∞,

and since iλ is a constant, its derivatives are zero and the family of symbols given
by πλ(T ), is λ-uniform in Σ2

1,λ(R
n). �

As a consequence of Example 6.4.23 and Proposition 6.4.22, we also have

Example 6.4.24. The family of operators

πλ(L) =
n∑

j=1

{
πλ(Xj)

2 + πλ(Yj)
2
}
= −|λ|Q

is λ-uniform in ΨΣ2
1,λ(R

n).

Standard computations also show:

Example 6.4.25. For each m ∈ R, the family of symbols bmλ , λ ∈ R\{0}, where

bλ(ξ, u) =
√

1 + |λ|(1 + |u|2 + |ξ|2),

is λ-uniform in ΨΣm
1,λ(R

n).
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6.4.5 Commutator characterisation of λ-Shubin classes

In this section, we characterise the λ-Shubin classes in terms of commutators and
continuity on the Shubin Sobolev spaces.

First we need to understand some properties of the Sobolev spaces associated
with the λ-dependent metric used to define the λ-Shubin symbols.

Proposition 6.4.26. 1. For each λ ∈ R\{0} and s ∈ R, the Sobolev space corre-
sponding to g(1,λ) and (M (λ))

s
coincides with the Shubin Sobolev space:

H
(
(M (λ))

s
, g(1,λ)

)
= Qs(R

n).

2. The following define norms on Qs(Rn) equivalent to ‖ · ‖Qs
:

‖h‖Qs,λ
:= ‖(I + |λ|Q)s/2h‖L2(Rn),

‖h‖(bλ)Qs,λ
:= ‖OpW (bsλ)h‖L2(Rn),

where bλ was defined in Example 6.4.25. Moreover, in the case s ∈ N0, we
also have an equivalent norm

‖h‖(int)Qs,λ
:=

∑

|α|+|β|≤s

|λ| |α|+|β|
2 ‖uα∂β

uh‖L2(Rn).

3. Furthermore, for each s ∈ R there exists a constant C1 = C1,s > 0 such that

∀λ ∈ R\{0}, h ∈ Qs(R
n) C−1

1 ‖h‖Qs,λ
≤ ‖h‖(bλ)Qs,λ

≤ C1‖h‖Qs,λ
,

and for each s ∈ N0 there exists a constant C2 = C2,s > 0 such that

∀λ ∈ R\{0}, h ∈ Qs(R
n) C−1

2 ‖h‖Qs,λ
≤ ‖h‖(int)Qs,λ

≤ C2‖h‖Qs,λ
.

Naturally, in Part (2), the constants in the equivalences between each of the

norms ‖ · ‖Qs,λ
, ‖ · ‖(int)Qs,λ

, ‖ · ‖(bλ)Qs,λ
, and the norm ‖ · ‖Qs

, depend on λ.

Proof of Proposition 6.4.26. Part (1) follows easily from (6.54), Definition 6.4.10,
Theorem 6.4.16 especially Part (5).

Using the Shubin calculus ∪mΨΣm
1 , it is not difficult to see that the norms

‖ · ‖(b)Qs
and ‖ · ‖(bλ)Qs,λ

are equivalent.

The fact that the norms ‖·‖Qs,λ
, ‖·‖(bλ)Qs,λ

and, if s ∈ N0, ‖·‖(int)Qs,λ
, are equivalent

with λ-uniform constants comes from following the same proof as Theorem 6.4.16
but using the seminorms of ∪mΣm

1,λ. This is left to the reader and concludes the
proof of Proposition 6.4.26. �
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Theorem 6.4.27. We assume that ρ ∈ (0, 1]. Let Aλ : S(Rn)→ S ′(Rn), λ ∈ R\{0},
be a family of linear continuous operators.

We assume that for every α1, α2 ∈ Nn
0 all the operators

|λ|−
|α1|+|α2

2 (adu)α1(ad∂u)
α2Aλ, λ ∈ R\{0},

are λ-uniformly in L (L2(Rn),Q−m+ρ(|α1|+|α2|)). This means that

sup
λ∈R\{0}

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Aλ‖L (L2(Rn),Q−m+ρ(|α1|+|α2|)) <∞. (6.56)

Then Aλ ∈ ΨΣm
ρ,λ(R

n). Moreover, for any ℓ ∈ N, there exist a constant C and an
integer ℓ′, both independent of {Aλ′} and λ, such that

‖Aλ‖ΨΣm
ρ,λ,ℓ
≤ C

∑

|α1|+|α2|≤ℓ′

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Aλ‖L (L2(Rn),Q−m+ρ(|α1|+|α2|)).

Proof. The proof follows exactly the same steps as the proof of Theorem 6.4.18
using the calculi ∪mΣm

ρ,λ(R
n) to give the uniformity in λ. This is left to the reader.

�

The converse is true from the λ-Shubin calculus: if Aλ : S(Rn) → S ′(Rn),
λ ∈ R\{0}, is uniformly in ΨΣm

ρ,λ(R
n) in the sense that

∀N ∈ N0 sup
λ∈R\{0}

‖Aλ‖ΨΣm
ρ,λ,N

<∞, (6.57)

then (6.56) holds for every α1, α2 ∈ Nn
0 .

Proceeding as for Corollary 6.4.20, we obtain

Corollary 6.4.28. We assume that ρ ∈ (0, 1]. Let Aλ : S(Rn)→ S ′(Rn), λ ∈ R\{0},
be a family of linear continuous operators.

The family of operators {Aλ, λ ∈ R\{0}} is uniformly in ΨΣm
ρ,λ(R

n) in the
sense of (6.57) if and only if there exists γo ∈ R such that for each α1, α2 ∈ Nn

0 ,

sup
λ∈R\{0}

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Aλ‖L (Qγo (R

n),Q−m+ρ(|α1|+|α2|)+γo )
<∞.

In this case this property is also true for every γ ∈ R. Moreover, for any
γ ∈ R and ℓ ∈ N, there exist a constant C and an integer ℓ′, both independent of
{Aλ′} and λ, such that

‖Aλ‖ΨΣm
ρ,λ,ℓ

≤ C
∑

|α|+|α2|≤ℓ′

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Aλ‖L (Qγ(Rn),Q−m+ρ(|α1|+|α2|)+γ).
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6.5 Quantization and symbol classes Sm
ρ,δ on the Heisen-

berg group

We recall that in Section 5.2.2 we have introduced symbol classes Sm
ρ,δ(G) for

general graded Lie groups G. In particular, this yields symbol classes Sm
ρ,δ(Hn)

for the particular case of G = Hn. In this section, working with Schrödinger
representations πλ, we obtain a characterisation of these symbol classes Sm

ρ,δ(Hn)
in terms of scalar-valued symbols which will depend on the parameter λ ∈ R\{0};
these symbols will be called λ-symbols. The dependence on λ will be of crucial
importance here.

We start by adapting the notation of the general construction described in
Chapter 5 to the case of the Heisenberg group Hn. It will be convenient to change
slightly the notation with respect to the general case. Firstly we want to keep
the letter x for denoting part of the coordinates of the Heisenberg group and we
choose to denote the general element of the Heisenberg group by, e.g.,

g = (x, y, t) ∈ Hn.

Secondly we may define a symbol as parametrised by

σ(g, λ) := σ(g, πλ), (g, λ) ∈ Hn × R\{0}.

Thirdly we modify the indices α ∈ N2n+1
0 in order to write them as

α = (α1, α2, α3),

with

α1 = (α1,1, . . . , α1,n) ∈ Nn
0 , α2 = (α2,1, . . . , α2,n) ∈ Nn

0 , α3 ∈ N0.

The homogeneous degree of α is then

[α] = |α1|+ |α2|+ 2α3.

6.5.1 Quantization on the Heisenberg group

Here we summarise the quantization formula of Section 5.1.3 and its consequences
in the particular setting of the Heisenberg group Hn.

As introduced in Definition 5.1.33, a symbol is given by a field of operators

σ = {σ(g, λ) : S(Rn)→ L2(Rn), (g, λ) ∈ Hn × (R\{0})},

satisfying (quite weak) properties so that the quantization makes sense. More
rigorously, we require that, for each β ∈ N2n+1

0 , the map g �−→ ∂β
g σ(g, λ) is

continuous from Hn to some L∞
a,b(Ĥn).
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Recall now, that on the Heisenberg group Hn, the Plancherel measure is
given by cn|λ|ndλ (see Proposition 6.2.7). By Theorem 5.1.39, the quantization of
a symbol σ as above is the operator

A = Op(σ)

given by

Aφ(g) = cn

∫

R\{0}
Tr

(
πλ(g) σ(g, λ) φ̂(πλ)

)
|λ|ndλ, (6.58)

for any φ ∈ S(Hn) and g = (x, y, t) ∈ Hn.

Note that, by (1.5), we have

ϕ̂(πλ)πλ(g) = FHn(ϕ(g ·))(πλ),

thus the properties of the trace imply that

Tr
(
πλ(g)σ(g, λ)φ̂(πλ)

)
= Tr (σ(g, λ) FHn(ϕ(g ·))(πλ)) . (6.59)

Furthermore, by (6.20), we have

FHn
(ϕ(g ·))(πλ) = (2π)

2n+1
2 OpW

[
FR2n+1(ϕ(g ·))(

√
|λ| ·,

√
λ ·, λ)

]
. (6.60)

This formula shows that the Weyl quantization is playing an important role in the
quantization (6.58) due to its close relation to the group Fourier transform on the
Heiseneberg group.

Now, for each (g, λ) ∈ Hn×(R\{0}), each operator σ(g, λ) : S(Rn)→ L2(Rn)
in the symbol σ can also be written as the Weyl quantization of some symbol on
the Euclidean space Rn, depending on (g, λ). In other words, we can think of the
symbol σ as

σ(g, λ) = OpW (ag,λ) , (6.61)

where a = {a(g, λ, ξ, u) = ag,λ(ξ, u)} is a function on Hn×R\{0}×Rn×Rn. This
scalar-valued symbol a will be called the λ-symbol of the operator A in (6.58).

In other words, the symbol of the operator A acting on the Heisenberg group
is σ, related to A by the quantization formula (6.58). For each (g, λ), the symbol
σg,λ is itself an operator mapping the Schwartz space S(Rn) to L2(Rn). So, the
λ-symbol a of the operator A is given by the collection of the Weyl symbols ag,λ
of σ(g, λ).

Note that if A ∈ Ψm
ρ,δ, then its symbol acts on smooth vectors so σg,λ is itself

an operator mapping the Schwartz space S(Rn) to itself, for each (g, λ).
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Consequently, using (6.59), we can rewrite our quantization given in (6.58),
now using only Euclidean objects, as

Aϕ(g) (6.62)

= c′n

∫

R\{0}

Tr
(
πλ(g) OpW (ag,λ) OpW

[
FR2n+1(ϕ)(

√
|λ| ·,

√
λ ·, λ)

])
|λ|ndλ

= c′n

∫

R\{0}

Tr
(
OpW (ag,λ) OpW

[
FR2n+1(ϕ(g ·))(

√
|λ| ·,

√
λ ·, λ)

])
|λ|ndλ,

with c′n = cn(2π)
n+ 1

2 = (2π)−2n− 1
2 .

In Definition 5.2.11 we have introduced the symbol classes Sm
ρ,δ(G) for general

graded Lie groups G. Now, in the particular case G = Hn of the Heisenberg
group, using the relation (6.61) between symbols σ and a, we can ask the following
question:

what does the condition σ ∈ Sm
ρ,δ(Hn) mean in terms of the λ-symbol ag,λ?

This question will be answered in the following sections.

6.5.2 An equivalent family of seminorms on Sm
ρ,δ = Sm

ρ,δ(Hn)

We now follow Definition 5.2.11 to define the symbol class

Sm
ρ,δ = Sm

ρ,δ(Hn).

As positive Rockland operator, we will use R = −L where L is the (canonical)

sub-Laplacian given in (6.5). We realise almost all the elements of Ĥn via their
representatives given by the Schrödinger representations πλ, λ ∈ R\{0}, which all
act on

Hπλ
= L2(Rn),

see Section 6.2. Therefore, our symbol class on Hn is defined by the following
family of seminorms

‖σ‖Sm
ρ,δ,a,b,c

:= sup
λ∈R\{0}, g∈Hn

‖σ(g, λ)‖Sm
ρ,δ,a,b,c

, a, b, c ∈ N0,

where

‖σ(g, λ)‖Sm
ρ,δ,a,b,c

:= sup
[α]≤a

[β]≤b, |γ|≤c

‖πλ(I− L)
ρ[α]−m−δ[β]+γ

2 Xβ
g Δ

ασ(g, λ)πλ(I− L)−
γ
2 ‖L (L2(Rn)).
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Here the difference operators Δα correspond to the family of operators Δq̃α where
the qα’s are the polynomials appearing in the Taylor expansion. See Example 5.2.4
for some explicit formulae.

By Remark 5.2.13 (4), we can also use the canonical basis

xα1yα2tα3 , α = (α1, α2, α3) ∈ N2n+1 = Nn
0 × Nn

0 × N0,

where

xα1 = xα11
1 . . . xα1n

n , yα2 = yα21
1 . . . yα2n

n .

We define

Δ′α := Δxα1yα2 tα3 , α ∈ N2n+1.

In this case, for any α, β ∈ N2n+1
0 , we have

Δ′α+β
= Δ′αΔ′β .

An equivalent family of seminorms on Sm
ρ,δ using the difference operators Δ′α is

given by

‖σ‖′Sm
ρ,δ,a,b,c

:= sup
λ∈R\{0}, g∈Hn

‖σ(g, λ)‖′Sm
ρ,δ,a,b,c

, a, b, c ∈ N0,

where

‖σ(g, λ)‖′Sm
ρ,δ,a,b,c

:= sup
[α]≤a

[β]≤b, |γ|≤c

‖πλ(I− L)
ρ[α]−m−δ[β]+γ

2 Xβ
g Δ

′ασ(g, λ)πλ(I− L)−
γ
2 ‖L (L2(Rn)).

Although the difference operators which intervene in the asymptotic expansions
of the composition and the adjoint properties are the difference operators Δα, the
operators Δ′

α are more handy for the computations to follow.

6.5.3 Characterisation of Sm
ρ,δ(Hn)

In this section we describe the symbol classes Sm
ρ,δ(Hn) from Section 5.2.2 (more

specifically, from Definition 5.2.11) in terms of scalar-valued λ-symbols. More pre-
cisely, we show that the symbols σ = {σ(g, λ)} in Sm

ρ,δ are all of the form

σ(g, λ) = OpW (ag,λ(ξ, u)), (6.63)

with the λ-symbol ag,λ satisfying some properties described below in terms of the

family of λ-Shubin classes described in Section 6.4.4 and of the operator ∂̃λ,ξ,u
defined in (6.43).
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Theorem 6.5.1. Let m, ρ, δ ∈ R with 1 ≥ ρ ≥ δ ≥ 0, ρ �= 0, δ �= 1. If σ = {σ(g, λ)}
is in Sm

ρ,δ then there exists a unique smooth function a = {a(g, λ, ξ, u) = ag,λ(ξ, u)}
on Hn × R\{0} × Rn × Rn such that

σ(g, λ) = OpW (ag,λ) , (6.64)

with ∂̃α3

λ,ξ,uX
β
g ag,λ ∈ Σ

m−2ρα3+δ[β]
ρ,λ (Rn) for each (g, λ) ∈ Hn × R\{0} satisfying

sup
(g,λ)∈Hn×R\{0}

‖∂̃α3

λ,ξ,uX
β
g ag,λ‖Σm−2ρα3+δ[β]

ρ,λ (Rn),N
<∞, (6.65)

for every N ∈ N0. More precisely, for every N ∈ N0 there exist C > 0 and a, b, c
such that

sup
(g,λ)∈Hn×R\{0}

‖∂̃α3

λ,ξ,uX
β
g ag,λ‖Σm−2ρα3+δ[β]

ρ,λ (Rn),N
≤ C‖σ‖Sm

ρ,λ(Hn),a,b,c.

Conversely, if a = {a(g, λ, ξ, u) = ag,λ(ξ, u)} is a smooth function on Hn ×
R\{0} × Rn × Rn satisfying (6.65) for every N ∈ N0, then there exists a unique
symbol σ ∈ Sm

ρ,δ such that (6.64) holds. Furthermore, for every a, b, c there exists
C > 0 and N ∈ N0 such that

‖σ‖Sm
ρ,λ(Hn),a,b,c ≤ C sup

(g,λ)∈Hn×R\{0}
‖∂̃α3

λ,ξ,uX
β
g ag,λ‖Σm−2ρα3+δ[β]

ρ,λ (Rn),N
.

In other words, Theorem 6.5.1 shows that

σ ∈ Sm
ρ,δ(Hn)

is equivalent to
σ(g, λ) = OpW (ag,λ),

for each (g, λ) with ag,λ ∈ C∞(R2n) satisfying

∀α ∈ N2n+1
0 ∃C > 0 ∀(g, λ) ∈ Hn×(R\{0}) ∀(ξ, u) ∈ R2n

|∂α1

ξ ∂α2
u ∂̃α3

λ,ξ,uX
β
g ag,λ(ξ, u)| ≤ C|λ|ρ

|α1|+|α2|
2

(
1 + |λ|(1 + |ξ|2 + |u|2)

)m−ρ[α]+δ[β]
2 .

Choosing a rescaled Weyl symbol as in Lemma 6.3.10, we see that

σ ∈ Sm
ρ,δ(Hn)

is equivalent to

σ(g, λ) = OpW
(
ãg,λ(

√
|λ|ξ,

√
λu)

)
,

for each (g, λ) with ãg,λ ∈ C∞(R2n) satisfying

∀α ∈ N2n+1
0 ∃C > 0 ∀(g, λ) ∈ Hn×(R\{0}) ∀(ξ, u) ∈ R2n

|∂α1

ξ ∂α2
u ∂α3

λ Xβ
g ãg,λ(ξ, u)| ≤ C

(
1 + |λ|+ |ξ|2 + |u|2

)m−ρ[α]+δ[β]
2 .



480 Chapter 6. Pseudo-differential operators on the Heisenberg group

Note that, by (6.20),

ãg,λ(ξ, u) = (2π)
2n+1

2 FR2n+1(κg)(ξ, u, λ)

where {κg(x, y, t)} is the kernel of the symbol {σ(g, λ)}, i.e.
σ(g, λ) = πλ(κg),

(see Definition 5.1.36).

Proof of Theorem 6.5.1. Let σ ∈ Sm
ρ,δ. This means that for each α, β ∈ N2n+1

0 and
γ ∈ R we have

πλ(I− L)
ρ[α]−m−δ[β]+γ

2 Xβ
g Δ

′ασ(g, λ)πλ(I− L)−
γ
2 ∈ L (L2(Rn)),

with operator norm uniformly bounded with respect to λ, or equivalently, (see the
formulae in Section 6.3.3),

|λ|−
|α1|+|α2

2 ‖(adu)α1(ad∂u)
α2Xβ

g Δ
′
3
α3σ(g, λ)h‖Qρ[α]−m−δ[β]+γ,λ

≤ C‖h‖Qγ,λ

with C = Cα,β,γ independent of λ. Taking γ = 0, we see that the λ-family of
Xβ

g Δ
′
3
α3σ(g, λ) satisfies the hypotheses of Theorem 6.4.27. For β = α3 = 0, this

shows that σ(g, λ) = OpW (ag,λ) with ag,λ ∈ Σm
ρ,λ uniformly in λ. For any β and

α3, this shows that the λ-family of

Xβ
g Δ

′
3
α3σ(g, λ) = iα3OpW (Xβ

g ∂̃
α3

λ,ξ,uag,λ)

(see the formulae in Section 6.3.3, or equivalently Corollary 6.3.9) also satisfies

the hypotheses of Theorem 6.4.27. Therefore, Xβ
g ∂̃

α3

λ,ξ,uag,λ is in Σ
m−2ρ[α3]+δ[β]
ρ,λ

uniformly in λ. This proves the first part of the statement.
The converse follows from the Shubin calculi depending on λ. �

The proof above shows that we can always assume γ = 0 in the definition of
a class of symbols. But we could have fixed any γ and use Corollary 6.4.28 instead
of Theorem 6.4.27 in the proof above. This shows:

Corollary 6.5.2. A symbol σ = {σ(g, λ)} is in Sm
ρ,δ if and only if there exists one

γ ∈ R such that for every α, β ∈ N2n+1
0 the quantity

sup
λ∈R\{0}

‖πλ(I− L)
ρ[α]−m−δ[β]+γ

2 Xβ
g Δ

′ασ(g, λ)πλ(I− L)−
γ
2 ‖L (L2(Rn)) (6.66)

is finite.
In this case the quantity (6.66) is finite for every γ ∈ R and α, β ∈ Nn

0 .

Furthermore, for any γo ∈ R fixed, an equivalent family of seminorms for
Sm
ρ,δ is given by

σ �−→ sup
λ∈R\{0},[α]≤a, [β]≤b

‖πλ(I− L)
ρ[α]−m−δ[β]+γo

2 Xβ
g Δ

′ασ(g, λ)πλ(I− L)−
γo
2 ‖L (L2(Rn))

with a, b ∈ N0.
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6.6 Parametrices

In this section, we present conditions for the ellipticity and hypoellipticity in the
setting of the Heisenberg group as a special case of those presented in Sections 5.8.1
and 5.8.3. In particular, we can also derive conditions in terms of the λ-symbols
discussed in Section 6.5.3.

6.6.1 Condition for ellipticity

We start by providing conditions on the λ-symbol ensuring that the assumptions
for the ellipticity in Definition 5.8.1 and in Theorem 5.8.7 are satisfied.

Theorem 6.6.1. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Let σ = {σ(g, λ)} be in Sm
ρ,δ(Hn)

with
σ(g, λ) = OpW (ag,λ)

as in Theorem 6.5.1. Assume that there are R ∈ R and C > 0 such that for any
(ξ, u) ∈ R2n and λ �= 0 satisfying |λ|(|ξ|2 + |u|2) ≥ R we have

|ag,λ(ξ, u)| ≥ C
(
1 + |λ|(1 + |ξ|2 + |u|2)

)m
2 . (6.67)

Then there exists Λ such that σ is (−L,Λ,m)-elliptic in the sense of Definition
5.8.1. Thus it satisfies the hypotheses of Theorem 5.8.7 and we can construct a left
parametrix B ∈ Ψ−m

ρ,δ for the operator A = Op(σ), that is, there exists B ∈ Ψ−m
ρ,δ

such that
BA− I ∈ Ψ−∞.

Proof. Let χ ∈ C∞(R) be such that 0 ≤ χ ≤ 1 with χ = 0 on (−∞, R) and χ = 1
on [2R,+∞). We set for any (ξ, u) ∈ R2n and λ �= 0

bλ,g(ξ, u) :=
χ(|λ|(|ξ|2 + |u|2))

ag,λ(ξ, u)
.

Using the properties of a, one check easily that this defines a symbol bλ,g with
bλ,g ∈ Σ−m

ρ,λ , and more precisely for every N ∈ N0 there exist C > 0 and a, b, c all
independent on λ or g such that

sup
(g,λ)∈Hn×R\{0}

‖∂̃α3

λ,ξ,uX
β
g bg,λ‖Σ−m−2ρα3+δ[β]

ρ,λ (Rn),N
≤ C‖σ‖Sm

ρ,λ,a,b,c
:= C ′.

By the properties of uniform families of Weyl-Hörmander metrics (see Proposition
6.4.22), we have

OpW (bλ,g)OpW (ag,λ) = OpW (χ(|λ|(|ξ|2 + |u|2))) + Eλ,g = I + Ẽλ,g (6.68)

with

‖∂̃α3

λ,ξ,uX
β
g Eλ,g‖ΨΣ

−ρ−2ρα3+δ[β]

ρ,λ (Rn),N
≤ C1‖σ‖Sm,a1,b1,c1 := C ′

1, (6.69)
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and similarly for the ‘error’ term Ẽλ,g. Also we have

‖πλ(I− L)
m
2 OpW (bλ,g)‖L (L2(Rn)) ≤ C2‖σ‖Sm,a2,b2,c2 := C ′

2. (6.70)

In Estimates (6.69) and (6.70), the constants C1 and C2, and the parameters
a1, b1, c1, a2, b2, c2 do not depend on λ, g or σ. By (6.70), we have

C ′
2‖OpW (ag,λ)u‖L2(Rn) ≥ ‖πλ(I− L)

m
2 OpW (bλ,g)OpW (ag,λ)u‖L2(Rn).

We now use (6.68) on the right hand-side and the reverse triangle inequality to
obtain

‖πλ(I− L)
m
2 OpW (bλ,g)OpW (ag,λ)u‖L2(Rn)

= ‖πλ(I− L)
m
2

(
I + Ẽλ,g

)
u‖L2(Rn)

≥ ‖πλ(I− L)
m
2 u‖L2(Rn) − ‖πλ(I− L)

m
2 Ẽλ,gu‖L2(Rn).

We can write the last term as

‖πλ(I− L)
m
2 Ẽλ,gu‖L2(Rn) = ‖Uλ,gπλ(I− L)

m−ρ
2 u‖L2(Rn).

with Uλ,g := πλ(I−L)
m
2 Ẽλ,gπλ(I−L)

−m+ρ
2 of order 0 and, therefore, bounded on

L2(Rn) satisfying

‖Uλ,g‖L (L2(Rn)) ≤ C3‖σ‖Sm
ρ,δ,a3,b3,c3 := C ′

3.

Let us consider Λ ∈ R and u ∈ S(Rn) with u ∈ Eπλ
(Λ,∞)L2(Rn), then

‖πλ(I− L)
m−ρ

2 u‖L2(Rn) ≤ (1 + max(Λ, 0))−
ρ
2 ‖πλ(I− L)

m
2 u‖L2(Rn),

thus

‖Uλ,gπλ(I− L)
m−ρ

2 u‖L2(Rn)

≤ C ′
3‖πλ(I− L)

m−ρ
2 u‖L2(Rn)

≤ C ′
3(1 + max(Λ, 0))−

ρ
2 ‖πλ(I− L)

m
2 u‖L2(Rn).

We choose Λ ∈ R such that

C ′
3(1 + max(Λ, 0))−

ρ
2 ≤ 1

2
,

for example for Λ > 0, the smallest Λ satisfying the equality. We have obtained

‖πλ(I− L)
m
2 Ẽλ,gu‖2 = ‖Uλ,gπλ(I− L)

m−ρ
2 u‖2 ≤

1

2
‖πλ(I− L)

m
2 u‖2.

Collecting the estimates, we obtain

C ′
2‖OpW (ag,λ)u‖2 ≥ ‖πλ(I− L)

m
2 OpW (bλ,g)OpW (ag,λ)u‖2

≥ ‖πλ(I− L)
m
2 u‖2 − ‖πλ(I− L)

m
2 Ẽλ,gu‖2 ≥

1

2
‖πλ(I− L)

m
2 u‖2.

This shows that σ satisfies (5.79) for −L, Λ and m. �



6.6. Parametrices 483

From the proof, it follows that the choice of Λ depends on ρ, δ, and a bound
for a (computable) seminorm of σ in Sm

ρ,δ.
We have already proved that, for instance, I−L is elliptic for −L, see Propo-

sition 5.8.2.
Here is another example.

Example 6.6.2. On H1, if m ∈ 2N is an even integer, then the operator Xm +
iY m + Tm/2 ∈ Ψm is elliptic with respect to −L and of elliptic order m.

Proof. The symbol of Xm + iY m + Tm/2 is

σ(λ) = πλ(X)m + iπλ(Y )m + πλ(T )
m
2

=
(
OpW (i

√
|λ|ξ)

)m

+ i
(
OpW (i

√
λu)

)m

+ (iλ)
m
2 ,

by (6.28) and (6.11). Hence its λ-symbol is

aλ(ξ, u) =
(
i
√
|λ|ξ

)m

+ i
(
i
√
λu

)m

+ (iλ)
m
2

= (−1)m
2 |λ|m2

(
ξm + ium + (−(sgnλ)i)m

2

)
.

Clearly aλ satisfies the condition of Theorem 6.6.1. �

6.6.2 Condition for hypoellipticity

We have also proved a general result regarding hypoellipticity in Theorem 5.8.9
(in the sense of the existence of a left parametrix). In the case of the Heisenberg
group, we obtain the following sufficient condition on the scalar-valued symbol:

Theorem 6.6.3. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Let σ = {σ(g, λ)} be in Sm
ρ,δ(Hn)

with
σ(g, λ) = OpW (ag,λ)

as in Theorem 6.5.1.
We assume that there is mo < m such that σ satisfies for a given R, for any

(ξ, u) ∈ R2n such that |λ|(|ξ|2 + |u|2) ≥ R, the inequalities

|ag,λ(ξ, u)| ≥ C
(
1 + |λ|(1 + |ξ|2 + |u|2)

)mo
2 (6.71)

and

|∂α1

ξ ∂α2
u ∂̃α3

λ,ξ,uX
β
g ag,λ(ξ, u)|

≤ Cα,β |λ|ρ
|α1|+|α2|

2

(
1 + |λ|(1 + |ξ|2 + |u|2)

)−ρ[α]+δ[β]
2 |ag,λ(ξ, u)|. (6.72)

Then σ(g, λ) satisfies the hypotheses of Theorem 5.8.9 for −L and mo. There-
fore, we can construct a left parametrix B ∈ Ψ−mo

ρ,δ for the operator A = Op(σ),

that is, there exists B ∈ Ψ−mo

ρ,δ such that

BA− I ∈ Ψ−∞.
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In (6.71) and (6.72), the constants C and Cα,β are assumed to be independent
of λ, ξ, u or g.

For each fixed λ ∈ R\{0}, the conditions (6.71) and (6.72) are very close to
Shubin’s in [Shu87, §25.1]. However Theorem 6.6.3 asks for these conditions to be
satisfied uniformly in λ ∈ R\{0}.

The proof is in essence an adaptation of the proof of Theorem 6.6.1.

Proof. We choose χ and define bλ,g as in the proof of Theorem 6.6.1. This time,
bλ,g is in Σ−mo

ρ,δ , with

sup
(g,λ)∈Hn×R\{0}

‖∂̃α3

λ,ξ,uX
β
g bg,λ‖Σ−mo−2ρα3+δ[β]

ρ,λ (Rn),N
≤ C‖σ‖Sm

ρ,λ,a,b,c
,

and

‖πλ(I− L)
mo
2 OpW (bλ,g)‖L (L2(Rn)) ≤ C2‖σ‖Sm

ρ,λ,a2,b2,c2 := C ′
2. (6.73)

In the proof of Theorem 6.6.1, we developed the product OpW (bλ,g)OpW (ag,λ)
at order 0, but here we now develop it up to order M such that the error term is
of strictly negative order:

OpW (bλ,g)OpW (ag,λ) =
M∑

m′=0

OpW (dm′,λ,g) + Eλ,g, (6.74)

where (see (6.17))

dm′,λ,g := cm′,n

∑

|α1|+|α2|=m′

(−1)|α2|

α1!α2!

((
1

i
∂ξ

)α1

∂α2
x bλ,g

)((
1

i
∂ξ

)α2

∂α1
x ag,λ

)
.

To fix the idea, we choose M ∈ N0 the smallest integer such that

m−mo − 2(M + 1)ρ ≤ −ρ.

Using (6.17) and the properties of uniform families of Weyl-Hörmander metrics
(see Proposition 6.4.22), the error term satisfies

‖∂̃α3

λ,ξ,uX
β
g Eg,λ‖ΨΣ

−ρ−2ρα3+δ[β]

ρ,λ (Rn),N
≤ C1‖σ‖Sm,a1,b1,c1 := C ′

1. (6.75)

For the term of order 0, we see that

d0,λ,g = χ(|λ|(|ξ|2 + |u|2) = 1 + (χ− 1)(|λ|(|ξ|2 + |u|2),

and clearly the symbol (χ−1)(|λ|(|ξ|2+|u|2) is smoothing. For the term of positive
order m′ > 0, we can write

dm′,λ,g = cm′,nd̃m′,λ,g + rm′,λ,g,
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where

d̃m′,λ,g := χ(|λ|(|ξ|2 + |u|2)
∑

|α1|+|α2|=m′

(−1)|α2|

α1!α2!

((
1

i
∂ξ

)α1

∂α2
x

{
1

ag,λ

})((
1

i
∂ξ

)α2

∂α1
x ag,λ

)
,

and the small reminder contains all the χ-derivatives, that is, is of the form

rm′,λ,g =
∑

α′′
1 ,α

′′
2

0<α′′
1 +α′′

2 ≤2M

((
∂
α′′

1

ξ ∂
α′′

2
x

)
χ(|λ|(|ξ|2 + |u|2)

)(
. . .

)
.

Clearly the derivatives of the χ’s are smoothing. One can check that the conditions
on the symbol a imply that d̃m′,λ,g is of order −2m′ρ. For example,

∣∣∣∣∂ξ1ag,λ∂ξ1
1

ag,λ

∣∣∣∣ =
∣∣∣∣
∂ξ1ag,λ
ag,λ

∣∣∣∣
2

≤ C1,0|λ|ρ
(
1 + |λ|(1 + |ξ|2 + |u|2)

)−ρ
.

We also write

χ(|λ|(|ξ|2 + |u|2) = 1 + (χ− 1)(|λ|(|ξ|2 + |u|2),

and the symbol (χ− 1)(|λ|(|ξ|2 + |u|2) is smoothing.

We now incorporate all the terms of order ≤ −ρ in a new error term. Indeed,
the considerations above show that we can now write

OpW (bλ,g)OpW (ag,λ) = I + Ẽλ,g,

with Ẽλ,g satisfying similar estimates to (6.69).
The end of the proof is now identical to the one of Theorem 6.6.1 with m

replaced by mo. �

Modifying Example 6.6.2, we have the following example of hypoelliptic oper-
ators in the sense that they satisfy the hypotheses of Theorem 5.8.9, and therefore
admit a left parametrix.

Example 6.6.4. On H1, if m,mo ∈ 2N are two even integers such that m ≥ m0,
then the operators

Xm + iY mo + Tmo/2 ∈ Ψm and Xmo + iY m + Tmo/2 ∈ Ψm

satisfy the hypotheses of Theorem 5.8.9 for −L and mo.

Proof. The symbols of

A1 := Xm + iY mo + Tmo/2 and A2 := Xmo + iY m + Tmo/2,
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are

σA1
(λ) = πλ(X)m + iπλ(Y )mo + πλ(T )

mo
2

=
(
OpW (i

√
|λ|ξ)

)m

+ i
(
OpW (i

√
λu)

)mo

+ (iλ)
mo
2 ,

σA2(λ) = πλ(X)mo + iπλ(Y )m + πλ(T )
mo
2

=
(
OpW (i

√
|λ|ξ)

)mo

+ i
(
OpW (i

√
λu)

)m

+ (iλ)
mo
2 ,

by (6.28) and (6.11). Hence their λ-symbols are

aA1,λ(ξ, x) =
(
i
√
|λ|ξ

)m

+ i
(
i
√
λu

)mo

+ (iλ)
mo
2 ,

aA2,λ(ξ, x) =
(
i
√
|λ|ξ

)mo

+ i
(
i
√
λu

)m

+ (iλ)
mo
2 .

From this, it is not difficult to see that aAj ,λ, j = 1, 2 satisfy

|λ|max(|ξ|, |u|) ≥ 1 =⇒ |aAj ,λ(ξ, u)| ≥ C|λ|mo (max(|ξ|, |u|)mo + 1) ,

thus they also satisfy (6.71). The other condition in (6.72) of Theorem 6.6.3 is
easy to check. �

6.6.3 Subelliptic estimates and hypoellipticity

The sufficient conditions for ellipticity in Theorem 6.6.1, or at least the existence
of left parametrix (see Theorem 6.6.3) yield sufficient conditions for subelliptic
estimates and hypoellipticity. More precisely, Corollary 5.8.12 and Propositions
5.8.13 and 5.8.15 imply:

Corollary 6.6.5. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. Let σ = {σ(g, λ)} be in Sm
ρ,δ(Hn)

with σ(g, λ) = OpW (ag,λ) as in Theorem 6.5.1.

(i) Assume that there are R ∈ R and C > 0 such that for any (ξ, u) ∈ R2n and
λ �= 0 satisfying |λ|(|ξ|2 + |u|2) ≥ R, we have (6.67), that is,

|ag,λ(ξ, u)| ≥ C
(
1 + |λ|(1 + |ξ|2 + |u|2)

)m
2 .

Then A = Op(σ) = Op(OpW (ag,λ)) is (locally) hypoelliptic. It is also globally
hypoelliptic in the sense of Proposition 5.8.15. The operator A also satisfies
the following subelliptic estimates

∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(Hn)

‖f‖L2
s+m
≤ C

(
‖Af‖L2

s
+ ‖f‖L2

−N

)
.
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(ii) We assume that there is mo < m such that σ satisfies for a given R, for any
(ξ, u) ∈ R2n such that |λ|(|ξ|2+ |u|2) ≥ R, the inequalities (6.71) and (6.72),
that is,

|ag,λ(ξ, u)| ≥ C
(
1 + |λ|(1 + |ξ|2 + |u|2)

)mo
2 ,

and

|∂α1

ξ ∂α2
u ∂̃α3

λ,ξ,uX
β
g ag,λ(ξ, u)|

≤ Cα,β |λ|ρ
|α1|+|α2|

2

(
1 + |λ|(1 + |ξ|2 + |u|2)

)−ρ[α]+δ[β]
2 |ag,λ(ξ, u)|.

Then A = Op(σ) = Op(OpW (ag,λ)) is (locally) hypoelliptic. It is also globally
hypoelliptic in the sense of Proposition 5.8.15. The operator A also satisfies
the following subelliptic estimates

∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(Hn)

‖f‖L2
s+mo

≤ C
(
‖Af‖L2

s
+ ‖f‖L2

−N

)
.

(iii) In the case (ρ, δ) = (1, 0), assume that A ∈ Ψm is either elliptic of order
m0 = m or is elliptic of some order m0 and satisfies the hypotheses of Parts
(i) or (ii), respectively. Then A satisfies the subelliptic estimates

∀s ∈ R ∀N ∈ R ∀p ∈ (1,∞) ∃C > 0 ∀f ∈ S(Hn)

‖f‖Lp
s+mo

≤ C
(
‖Af‖Lp

s
+ ‖f‖Lp

−N

)
.

In the estimates above, ‖ ·‖Lp
s
denotes any (fixed) Sobolev norm, for example

obtained from a (fixed) positive Rockland operator R, such as R = −L.

Examples

We proceed by giving examples, applying Corollary 5.8.12 to obtain subelliptic
estimates for some of the examples of operators encountered in previous sections.
First, naturally, we can apply Corollary 6.6.5 to Examples 6.6.2 and 6.6.4, which
we now continue.

Example 6.6.2, continued: On H1, if m ∈ 2N is an even integer, then the operator
Xm + iY m + Tm/2 is hypoelliptic and satisfies the following estimate

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(H1)

‖f‖Lp
s+m
≤ C

(
‖(Xm + iY m + Tm/2)f‖Lp

s
+ ‖f‖Lp

−N

)
.

Example 6.6.4, continued: Let m,mo ∈ 2N be two even integers such that m ≥ m0.
Then the differential operators Xm + iY mo + Tmo/2 and Xmo + iY m + Tmo/2 on
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H1 are hypoelliptic and satisfy the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(H1)

‖f‖Lp
s+m
≤ C

(
‖(Xm + iY mo + Tmo/2)f‖Lp

s
+ ‖f‖Lp

−N

)
.

and

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(H1)

‖f‖Lp
s+m
≤ C

(
‖(Xmo + iY m + Tmo/2)f‖Lp

s
+ ‖f‖Lp

−N

)
.

We can also obtain the hypoellipticity and subelliptic estimates for the elliptic
operators in Corollary 5.8.16 choosing first the Rockland operator R = −L:
Corollary 6.6.6. As usual, L denotes the canonical sub-Laplacian on the Heisenberg
group Hn (see (6.5)).

1. If f1 and f2 are complex-valued smooth functions on Hn such that

inf
x∈Hn,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

and such that Xα1f1, X
α2f2 are bounded on Hn for each α1, α2 ∈ Nn

0 , then
the differential operator f1(x) − f2(x)L is (locally) hypoelliptic. It is also
globally hypoelliptic in the sense of Proposition 5.8.15. This operator also
satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀ϕ ∈ S(Hn)

‖ϕ‖Lp
s+2
≤ C

(
‖f1ϕ− f2Lϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
.

2. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2. Let also f1 be a
continuous complex-valued function on Hn such that infHn

|f1| > 0 and that
Xαf1 is bounded on Hn for each α ∈ Nn

0 . Then the operator f1(x)ψ(−L)L is
(locally) hypoelliptic. It is also globally hypoelliptic in the sense of Proposition
5.8.15. This operator also satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀ϕ ∈ S(Hn)

‖ϕ‖Lp
s+2
≤ C

(
‖f1ψ(−L)Lϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
.
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We could also use Corollary 5.8.16 with other Rockland operators, such as
R = L2 or R = L2 + T 2. In this case, it would yield:

Corollary 6.6.7. Let R = L2 or R = L2 + T 2 where L denotes the canonical
sub-Laplacian on the Heisenberg group Hn and T is the central derivative.

1. If f1 and f2 are complex-valued smooth functions on Hn such that

inf
x∈Hn,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

and such that Xα1f1, X
α2f2 are bounded on Hn for each α1, α2 ∈ Nn

0 , then
the differential operator f1(x) + f2(x)R is (locally) hypoelliptic. It is also
globally hypoelliptic in the sense of Proposition 5.8.15. This operator also
satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀ϕ ∈ S(Hn)

‖ϕ‖Lp
s+4
≤ C

(
‖f1ϕ+ f2Rϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
.

2. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2. Let also f1 be a contin-
uous complex-valued function on Hn such that infHn

|f1| > 0 and that Xαf1
is bounded on Hn for each α ∈ Nn

0 . Then the operator f1(x)ψ(R)R ∈ Ψ4 is
(locally) hypoelliptic. It is also globally hypoelliptic in the sense of Proposition
5.8.15. This operator also satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀ϕ ∈ S(Hn)

‖ϕ‖Lp
s+4
≤ C

(
‖f1ψ(R)Rϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
.
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Appendix A

Miscellaneous

In this chapter we collect a number of analytic tools that are used at some point
in the monograph. These are all well-known, and we present them without proofs
providing references to relevant sources when needed. Thus, here we make short
expositions of topics including local hypoellipticity and solvability, operator semi-
groups, fractional powers of operators, singular integrals, almost orthogonality,
and the analytic interpolation.

A.1 General properties of hypoelliptic operators

In this section, we recall the definition and first properties of locally hypoelliptic
operators. We will also point out the useful duality between local solvability and
local hypoellipticity in Theorem A.1.3.

Roughly speaking, a differential operator L is (locally) hypoelliptic if when-
ever u and f are distributions satisfying Lu = f , u must be smooth where f is
smooth. Usually, we omit the word ‘local’ and just speak of hypoellipticity. More
precisely:

Definition A.1.1. Let Ω be an open subset of Rn and let L be a differential op-
erator on Ω with smooth coefficients. Then L is said to be hypoelliptic if, for any
distribution u ∈ D′(Ω) and any open subset Ω′ of Ω, the condition Lu ∈ C∞(Ω′)
implies that u ∈ C∞(Ω′).

This definition extends to an open subset of a smooth manifold.

Of course elliptic operators such as Laplace operators are hypoelliptic. Less
obvious examples are provided by the celebrated Hörmander’s Theorem on sums
of squares of vector fields [Hör67a] which we recall here even if we will not use it
in this monograph:

Theorem A.1.2 (Hörmander sum of squares). Let Xo, X1, . . . , Xp be smooth real-
valued vector fields on an open set Ω ⊂ Rn, and let co ∈ C∞(Ω). We assume

© The Editor(s) (if applicable) and The Author(s) 2016 

V. Fischer, M. Ruzhansky, Quantization on Nilpotent Lie Groups, Progress in Mathematics 314, 

DOI 10.1007/978-3-319-29558-9 

491



492 Appendix A. Miscellaneous

that the vector fields Xo, X1, . . . , Xp satisfy Hörmander’s condition, that is, the
Lie algebra generated by {Xo, X1, . . . , Xp} is of dimension n at every point of Ω.
Then the operator X2

1 + . . .+X2
p +Xo + c is hypoelliptic on Ω.

This extends to smooth manifolds.

Consequently any sub-Laplacian (see Definition 4.1.6) on a stratified Lie
group is hypoelliptic on the whole group since any basis of the first stratum satisfies
Hörmander’s condition.

Hörmander’s condition in Theorem A.1.2 is sufficient but not necessary for
the hypoellipticity of sums of squares, thus allowing for sharper versions, see e.g.
[BM95].

In the following sense, local hypoellipticity is dual to local solvability:

Theorem A.1.3. Let L be hypoelliptic on Ω. Then Lt is locally solvable at every
point of Ω.

Let us briefly recall the definitions of the local solvability and of transpose:

Definition A.1.4. Let L be a linear differential operator with smooth coefficients
on Ω. We say that L is locally solvable at x ∈ Ω if x has an open neighbourhood
V in Ω such that, for every function f ∈ D(V ) there is a distribution u ∈ D′(V )
satisfying Lu = f on V .

Definition A.1.5. The transpose of a differential operator L with smooth coeffi-
cients on an open subset Ω of Rn is the operator, denoted by Lt, given by

∀φ, ψ ∈ D(Ω) 〈Lφ, ψ〉 = 〈φ, Ltψ〉.

This extends to manifolds.

Note that if
Lf(x) =

∑

|α|≤m

aα(x)∂
αf(x),

then
Ltf(x) =

∑

|α|≤m

∂α
(
aα(x)f(x)

)
=

∑

|α|≤m

bα(x)∂
αf(x),

where the bα’s are linear combinations of derivatives of the aα’s, in particular they
are smooth functions.

We will need the following property:

Theorem A.1.6 (Schwartz-Trèves). Let L be a differential operator with smooth
coefficients on an open subset Ω of Rn. We assume that L and Lt are hypoelliptic
on Ω ⊂ Rn. Then the D′(Ω) and C∞(Ω) topologies agree on

NL(Ω) = {f ∈ D′(Ω) : Lf = 0}.

For its proof, we refer to [Tre67, Corollary 1 in Ch. 52].
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A.2 Semi-groups of operators

In this section we discuss operator semi-groups and their infinitesimal generators.

Definition A.2.1. Suppose that for every t ∈ (0,∞), there is an associated bounded
linear operator Q(t) on a Banach space X in such a way that

∀s, t > 0 Q(s+ t) = Q(s)Q(t).

Then the family {Q(t)}t>0 is called a semi-group of operators on X .
If we have for every x ∈ X , that

‖Q(t)x− x‖X −→
t→0

0,

then the semi-group is said to be strongly continuous.
If the operator norm of each Q(t) is less or equal to one, ‖Q(t)‖L (X ) ≤ 1,

then the semi-group is called a contraction semi-group.

Let {Q(t)}t>0 be a semi-group of operators on X . If x ∈ X is such that
1
ǫ (Q(ǫ)x− x) converges in the norm topology of X as ǫ → 0, then we denote its
limit by Ax and we say that x is in the domain Dom(A) of A. Clearly Dom(A) is
a linear subspace of X and A is a linear operator on Dom(A) ⊂ X. This operator
is essentially A = Q′(0).

Definition A.2.2. The operator A defined just above is called the infinitesimal
generator of the semi-group {Q(t)}t>0.

We now collect some properties of semi-groups and their generators.

Proposition A.2.3. Let {Q(t)}t>0 be a strongly continuous semi-group with in-
finitesimal generator A. We also set Q(0) := I, the identity operator. Then

1. there are constants C, γ such that for all t ∈ [0,∞),

‖Q(t)‖L (X ) ≤ Ceγt;

2. for every x ∈ X , the map [0,∞) ∋ t �→ Q(t)x ∈ X is continuous;

3. the operator A is closed with dense domain;

4. the differential equation

∂tQ(t)x = Q(t)Ax = AQ(t)x,

holds for every x ∈ Dom(A) and t ≥ 0;

5. for every x ∈ X and t > 0,

Q(t)x = lim
ǫ→0

exp(tAǫ)x,
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where

Aǫ =
1

ǫ
(Q(ǫ)− I) and exp(tAǫ) =

∞∑

k=0

1

k!
(tAǫ)

k;

furthermore the convergence is uniform on every compact subset of [0,∞);

6. if λ ∈ C and Reλ > γ (where γ is any constant such that (1) holds), the
integral

R(λ)x =

∫ ∞

0

e−λtQ(t)x dt,

defines a bounded linear operator R(λ) on X ( often called the resolvent of
the semi-group {Q(t)}) whose range is Dom(A) and which inverts λI−A. In
particular, the spectrum of A lies in the half plane {λ : Reλ ≤ γ}.

For the proof, see e.g. Rudin [Rud91, §13.35].

Theorem A.2.4 (Hille-Yosida). A densely defined operator A on a Banach space
X is the infinitesimal generator of a strongly continuous semi-group {Q(t)}t>0 if
and only if there are constants C, γ such that

∀λ > γ, m ∈ N ‖(λI−A)−m‖ ≤ C(λ− γ)−m.

The constant γ can be taken as in Proposition A.2.3.

For the proof of the Hille-Yosida Theorem, see e.g [Rud91, §13.37].
In this case the operators of the semi-group {Q(t)}t>0 generated by A are

denoted by

Q(t) = etA.

Theorem A.2.5 (Lumer-Phillips). A densely defined operator A on a Banach space
X is the infinitesimal generator of a strongly continuous contraction semi-group
{Q(t)}t>0 if and only if

• A is dissipative, i.e.

∀λ > 0, x ∈ Dom(A) ‖(λI−A)x‖ ≥ λ‖x‖;

• there is at least one λo such that A− λoI is surjective.

For the proof of the Lumer-Phillips Theorem, see [LP61].

For this monograph, the facts given in this section will be enough. We refer
for the general theory of semi-groups to the fundamental work of Hille and Phillips
[HP57], or to later expositions e.g. by Davies [Dav80] or Pazy [Paz83].
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A.3 Fractional powers of operators

Here we summarise the definition of fractional powers for certain operators. We
refer the interested reader to the monograph of Martinez and Sanz [MCSA01] and
all the explanations and historical discussions therein.

Let A : Dom(A) ⊂ X → X be a linear operator on a Banach space X . In
order to present only the part of the theory that we use in this monograph, we
make the following assumptions

(i) The operator A is closed and densely defined.

(ii) The operator A is injective, that is, A is one-to-one on its domain.

(iii) The operator A is Komatsu-non-negative, that is, (−∞, 0) is included in the
resolvent ρ(A) of A and

∃M > 0 ∀λ > 0 ‖(λ+A)−1‖ ≤Mλ−1.

Remark A.3.1. This implies (cf. [MCSA01, Proposition 1.1.3 (iii)]) that for all
n,m∈N, Dom(An) is dense in X , and Range(Am) as well as Dom(An)∩Range(Am)
are dense in the closure of Range(A).

The powers An, n ∈ N, are defined using iteratively the following definition:

Definition A.3.2. The product of two (possibly) unbounded operators A and B
acting on the same Banach space X is as follows. A vector x is in the domain of
the operator AB whenever x is in the domain of B and Bx is in the domain of A.
In this case (AB)(x) = A(Bx).

Remark A.3.3. Note that if an operator A satisfies (i), (ii) and (iii), then it is also
the case for I +A.

Following Balakrishnan (cf. [MCSA01, Section 3.1]), the (Balakrishnan) op-
erators Jα, α ∈ C+ := {z ∈ C, Re z > 0}, are (densely) defined by the following:

• If 0 < Reα < 1, Dom(Jα) := Dom(A) and for φ ∈ Dom(A),

Jαφ :=
sinαπ

π

∫ ∞

0

λα−1(λI +A)−1Aφdλ.

• If Reα = 1, Dom(Jα) := Dom(A2) and for φ ∈ Dom(A2),

Jαφ :=
sinαπ

π

∫ ∞

0

λα−1

[
(λI +A)−1 − λ

λ2 + 1

]
Aφdλ+ sin

απ

2
Aφ.

• If n < Reα < n+ 1, n ∈ N, Dom(Jα) := Dom(An+1) and for φ ∈ Dom(A),

Jαφ := Jα−nAnφ.
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• If Reα = n+ 1, n ∈ N, Dom(Jα) := Dom(An+2) and for φ ∈ Dom(An+2),

Jαφ := Jα−nAnφ.

We now define fractional powers distinguishing between three different cases:

Case 0: A is bounded.

Case I: A is unbounded and 0 ∈ ρ(A), that is, the resolvent of A contains zero; in
other words, A−1 is bounded.

Case II: A is unbounded and 0 ∈ σ(A), that is, the spectrum of A contains zero.

The fractional powers Aα, α ∈ C+, are defined in the following way (cf.
[MCSA01, Section 5.1]):

Case 0: A being bounded, Jα is bounded and we define Aα := Jα, α ∈ C+.

Case I: A−1 being bounded, we can use Case 0 to define (A−1)α which is injective;
then we define

Aα :=
[
(A−1)α

]−1
(α ∈ C+).

Case II: Using Case I for A+ ǫI, ǫ > 0, we define

Aα := lim
ǫ→0

(A+ ǫI)α (α ∈ C+);

that is, the domain of Aα is composed of all the elements φ ∈ Dom [(A+ ǫI)α],
ǫ > 0 close to zero, and such that (A+ǫI)φ is convergent for the norm topology
of X as ǫ→ 0; the limit defines Aαφ.

In all cases, Jα is closable and we have (cf. [MCSA01, Theorem 5.2.1]):

Aα = (A+ λI)nJα(A+ λI)−n (α ∈ C+, λ ∈ ρ(−A), n ∈ N).

Hence Aα, α ∈ C+, can be understood as the maximal domain operator which
extends Jα and commutes with the resolvent of A (in other words commutes
strongly with A).

We can now define the powers for complex numbers also with non-positive
real parts (cf. [MCSA01, Section 7.1]):

• Given α ∈ C+, the operators Aα, α ∈ C+, are injective, and we can define

A−α := (Aα)−1.

• Given τ ∈ R, we define

Aiτ := (A+ I)2A−1A1+iτ (A+ I)−2.
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We now collect properties of fractional powers.

Theorem A.3.4. Let A : Dom(A) ⊂ X → X be a linear operator on a Banach
space X . Assume that the operator A satisfies Properties (i), (ii) and (iii), and
define its fractional powers Aα as above.

1. For every α ∈ C, the operator Aα is closed and injective with (Aα)−1 = A−α.
In particular, A0 = I.

2. For α ∈ C+, the operator Aα coincides with the closure of Jα.

3. If A has dense range and for all τ ∈ R, Aiτ is bounded, then there exist C > 0
and θ ∈ (0, π) such that

∀τ ∈ R ‖Aiτ‖L (X ) ≤ Ceθτ .

Given τ ∈ R\{0}, if Aiτ is bounded then Dom(Aα) ⊂ Dom(Aα+iτ ) for
all α ∈ R. Conversely, if Dom(Aα) ⊂ Dom(Aα+iτ ) for all α ∈ R\{0}, then
Aiτ is bounded.

4. For any α, β ∈ C, we have AαAβ ⊂ Aα+β, and if Range(A) is dense in X
then the closure of AαAβ is Aα+β.

5. Let αo ∈ C+.

• If φ ∈ Range(Aαo) then φ ∈ Dom(Aα) for all α ∈ C with 0 < −Reα <
Reαo and the function α �→ Aαφ is holomorphic in {α ∈ C : −Reαo <
Reα < 0}.
• If φ ∈ Dom(Aαo) then φ ∈ Dom(Aα) for all α ∈ C with 0 < Reα <

Reαo and the function α �→ Aαφ is holomorphic in {α ∈ C : 0 <
Reα < Reαo}.

• If φ ∈ Dom(Aαo) ∩ Range(Aαo) then φ ∈ Dom(Aα) for all α ∈ C with
|Reα| < Reαo and the function α �→ Aαφ is holomorphic in {α ∈ C :
−Reαo < Reα < Reαo}.

6. If α, β ∈ C+ with Reβ > Reα, then

∃C = CA,α,β > 0 ∀φ ∈ Dom(Aβ) ‖Aαφ‖X ≤ C‖φ‖1−
Reα
Re β

X ‖Aβφ‖
Reα
Re β

X .

7. If B∗ denotes the dual of an operator B on X , then (Aα)∗ = (A∗)α.

8. For α ∈ C+ and ǫ > 0, Dom [(A+ ǫI)α] = Dom(Aα).

9. Let τ ∈ R. Let Siτ be the strong limit of (A+ ǫI)iτ as ǫ → 0+, with domain
Dom(Siτ ) = {φ ∈ Dom

[
(A+ ǫ)iτ

]
: ∃ limǫ→0+(A+ ǫ)iτφ}. Then Siτ is clos-

able and the closure of (the graph of) J iτ is included in the closure of (the
graph of) Siτ which is included in (the graph of) Aiτ .

In particular, if A has dense domain and range, then the closure of Siτ

is Aiτ .
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10. Let us assume that A generates an equibounded semi-group {e−tA}t>0 on X ,
that is,

∃M ∀t > 0 ‖e−tA‖X ≤M. (A.1)

If 0 < Reα < 1 and φ ∈ Range(A) then

A−αφ =
1

Γ(α)

∫ ∞

0

tα−1e−tAφ dt, (A.2)

in the sense that limN→∞
∫ N

0
converges in the X -norm.

Moreover, if {e−tA}t>0 is exponentially stable, that is,

∃M,μ > 0 ∀t > 0 ‖e−tA‖L (X ) ≤Me−tμ,

then Formula (A.2) holds for all α ∈ C+ and φ ∈ X , and the integral con-
verges absolutely:

∫∞
0
‖tα−1e−tAφ‖Xdt <∞.

References for these results are in [MCSA01] as follows:

(1) Corollary 5.2.4 and Section 7.1;

(2) Corollary 5.1.12;

(3) Proposition 8.1.1, Section 7.1 and Corollary 7.1.2;

(4) Theorem 7.1.1;

(5) Proposition 7.1.5 with its proof, and Corollary 5.1.13;

(6) Corollary 5.1.13;

(7) Corollary 5.2.4 for α ∈ C+, consequently for any α ∈ C;

(8) Theorem 5.1.7;

(9) Theorem 7.4.6;

(10) Lemma 6.1.5.

In Theorem A.3.4 Part (10), Γ denotes the Gamma function. Let us recall
briefly its definition. For each α ∈ C+, it is defined by the convergent integral

Γ(α) :=

∫ ∞

0

tα−1e−tdt.

A direct computation gives Γ(1) =
∫∞
0

e−tdt = 1 and an integration by parts yields
the functional equation αΓ(α) = Γ(α + 1). Hence the Gamma function coincides
with the factorial in the sense that if α ∈ N, then the equality Γ(α) = (α − 1)!
holds. It is easy to see that Γ is analytic on the half plane {Reα > 0}. Because
of the functional equation, it admits a unique analytic continuation to the whole
complex plane except for non-positive integers where it has simple pole. We keep
the same notation Γ for its analytic continuation.
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For Re z > 0, we have the Sterling estimate

Γ(z) =

√
2π

z

(z
e

)z

(1 +O(
1

z
)). (A.3)

Also, the following known relation will be of use to us,

∫ 1

t=0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
, Rex > 0, Re y > 0. (A.4)

We will use Part (6) also in the following form: let α, β, γ ∈ C with Reα <
Reβ and Reα ≤ Re γ ≤ Reβ; then there exists C = Cα,β,γ,A > 0 such that for
any f ∈ Dom(Aα) with Aαf ∈ Dom(Aβ−α), we have

‖Aγf‖X ≤ C‖Aαf‖1−θ
X ‖Aβf‖θX where θ :=

Re (γ − α)

Re (β − α)
.

A.4 Singular integrals (according to Coifman-Weiss)

The operators appearing ‘in practice’ in the theory of partial differential equations
on Rn often have kernels κ satisfying the following properties:

1. the restriction of κ(x, y) to (Rn
x × Rn

y )\{x = y} coincides with a smooth
function κo = κo(x, y) ∈ C∞((Rn

x × Rn
y )\{x = y});

2. away from the diagonal x = y, the function κo decays rapidly;

3. at the diagonal, κo is singular but not completely wild: κo and some of its
first derivatives admit a control of the form |κo(x, y)| ≤ Cx|x− y|k for some
power k ∈ (−∞,∞) with Cx varying slowly in x.

These types of operators include all the (Hörmander, Shubin, semi-classical, . . . )
pseudo-differential operators, and these types of operators appear when looking
for fundamental solutions or parametrices of differential operators.

In general, we want our operator T to map continuously some well-known
functional space to another. For example, we are looking for conditions to ensure
that our operator extends to a bounded operator from Lp to Lq. This is the subject
of the theory of singular integrals on Rn, especially when the power k above equals
−n. In the classical Euclidean case, we refer to the monograph [Ste93] by Stein
for a detailed presentation of this theory.

Here, let us present the main lines of the generalisation of the theory of
singular integrals to the setting of ‘spaces of homogeneous type’ where there is no
(apparent) trace of a group structure. This generalisation is relevant for us since
examples of such spaces are compact manifolds and homogeneous nilpotent Lie
groups. We omit the proofs, referring to [CW71a, Chapitre III] for details.
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Definition A.4.1. A quasi-distance on a set X is a function d : X × X → [0,∞)
such that

1. d(x, y) > 0 if and only if x �= y;

2. d(x, y) = d(y, x);

3. there exists a constant K > 0 such that

∀x, y, z ∈ X d(x, z) ≤ K (d(x, y) + d(y, z)) .

We call
B(x, r) := {y ∈ G : d(x, y) < r},

the quasi-ball of radius r around x.

Definition A.4.2. A space of homogeneous type is a topological space X endowed
with a quasi-distance d such that

1. The quasi-balls B(x, r) form a basis of open neighbourhood at x;

2. homogeneity property

there exists N ∈ N such that for every x ∈ X and every r > 0 the ball
B(x, r) contains at most N points xi such that d(xi, xj) > r/2.

The constants K in Definition A.4.1 and N in Definition A.4.2 are called the
constants of the space of homogeneous type X.

Some authors (like in the original text of [CW71a]) prefer using the vocab-
ulary pseudo-norms, pseudo-distance, etc. instead of quasi-norms, quasi-distance,
etc. In this monograph, following e.g. both Stein [Ste93] and Wikipedia, we choose
the perhaps more widely adapted convention of the term quasi-norm.

Examples of spaces of homogeneous type:

1. A homogeneous Lie group endowed with the quasi-distance associated to any
homogeneous quasi-norm (see Lemma 3.2.12).

2. The unit sphere Sn−1 in Rn with the quasi-distance

d(x, y) = |1− x · y|α,

where α > 0 and x · y =
∑n

j=1 xjyj is the real scalar product of x, y ∈ Rn.

3. The unit sphere S2n−1 embedded in Cn with the quasi-distance

d(z, w) = |1− (z, w)|α,

where α > 0 and (z, w) =
∑n

j=1 zjw̄j .

4. Any compact Riemannian manifold.
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The proof that these spaces are effectively of homogeneous type comes easily
from the following lemma:

Lemma A.4.3. Let X be a topological set endowed with a quasi-distance d satisfying
(1) of Definition A.4.2.

Assume that there exist a Borel measure μ on X satisfying

0 < μ (B(x, r)) ≤ Cμ
(
B(x,

r

2
)
)
<∞. (A.5)

Then X is a space of homogeneous type.

The condition (A.5) is called the doubling condition. For instance, the Rie-
mannian measure of a Riemannian compact manifold or the Haar measure of a
homogeneous Lie group satisfy the doubling condition; we omit the proof of these
facts, as well as the proof of Lemma A.4.3.

Let (X, d) be a space of homogeneous type. The hypotheses are ‘just right’ to
obtain a covering lemma. We assume now that X is also equipped with a measure
μ satisfying the doubling condition (A.5). A maximal function with respect to the
quasi-balls may be defined. Then given a level, any function f can be decomposed
‘in the usual way’ into good and bad functions f = g+

∑
j bj . The Euclidean proof

of the Singular Integral Theorem can be adapted to obtain

Theorem A.4.4 (Singular integrals). Let (X, d) be a space of homogeneous type
equipped with a measure μ satisfying the doubling condition given in (A.5).

Let T be an operator which is bounded on L2(X):

∃Co ∀f ∈ L2 ‖Tf‖2 ≤ Co‖f‖2. (A.6)

We assume that there exists a locally integrable function κ on (X × X)\
{(x, y)∈X×X : x=y} such that for any compactly supported function f ∈L2(X),
we have

∀x /∈ suppf Tf(x) =

∫

X

κ(x, y)f(y)dμ(y).

We also assume that there exist C1, C2 > 0 such that

∀y, yo ∈ X

∫

d(x,yo)>C1d(y,yo)

|κ(x, y)− κ(x, yo)|dμ(x) ≤ C2. (A.7)

Then for all p, 1 < p ≤ 2, T extends to a bounded operator on Lp because

∃Ap ∀f ∈ L2 ∩ Lp ‖Tf‖p ≤ Ap‖f‖p;

for p = 1, the operator T extends to a weak-type (1,1) operator since

∃A1 ∀f ∈ L2 ∩ L1 μ{x : |Tf(x)| > α} ≤ A1
‖f‖1
α

;

the constants Ap, 1 ≤ p ≤ 2, depend only on Co, C1 and C2.
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Remark A.4.5. 1. In the statement of the fundamental theorem of singular in-
tegrals on spaces of homogeneous types, cf. [CW71a, Théorème 2.4 Chapitre
III], the kernel κ is assumed to be square integrable in L2(X ×X). However,
the proof requires only that the kernel κ is locally integrable away from the
diagonal, beside the L2-boundedness of the operator T . We have therefore
chosen to state it in the form given above.

2. Following the constants in the proof of [CW71a, Théorème 2.4 Chapitre III],
we find

A2 = C1 and A1 = C(C2
1 + C3),

where C is a constant which depends only on the constants of the space of
homogeneous type. The constants Ap for p ∈ (1, 2) are obtained via the con-
stants appearing in the Marcinkiewicz interpolation theorem (see e.g. [DiB02,
Theorem 9.1]):

Ap =
2p

(2− p)(1− p)
Aδ

1A
1−δ
2 with δ = 2(

1

p
− 1

2
).

Let us discuss the two main hypotheses of Theorem A.4.4.

About Condition (A.7) in the Euclidean case. As explained at the beginning of
this section, we are interested in ‘nice’ kernels κo(x, y) with a control of the form
|κo(x, y)| ≤ Cx|x−y|k with a particular interest for k = −n, and similar estimates
for their derivatives with power −n−1. Hence they should satisfy Condition (A.7).
They are called Calderón-Zygmund kernels, which we now briefly recall:

Calderón-Zygmund kernels on Rn

A Calderón-Zygmund kernel on Rn is a measurable function κo defined on (Rn
x ×

Rn
y )\{x = y} satisfying for some γ, 0 < γ ≤ 1, the inequalities

|κo(x, y)| ≤ A|x− y|−n,

|κo(x, y)− κo(x
′, y)| ≤ A

|x− x′|γ
|x− y|n+γ

if |x− x′| ≤ |x− y|
2

,

|κo(x, y)− κo(x, y
′)| ≤ A

|y − y′|γ
|x− y|n+γ

if |y − y′| ≤ |x− y|
2

.

Sometimes the condition of Calderón-Zygmund kernels refers to a smooth
function κo defined on (Rn

x × Rn
y )\{x = y} satisfying

∀α, β ∃Cα,β

∣∣∂α
x ∂

β
y κo(x, y)

∣∣ ≤ Cα,β |x− y|−n−α−β .

For a detailed discussion, the reader is directed to [Ste93, ch.VII].
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A Calderón-Zygmund operator on Rn is an operator T : S(Rn) → S ′(Rn)
such that the restriction of its kernel κ to (Rn

x × Rn
y )\{x = y} is a Calderón-

Zygmund kernel κo. In other words, T : S(Rn)→ S ′(Rn) is a Calderón-Zygmund
operator if there exists a Calderón-Zygmund kernel κo satisfying

Tf(x) =

∫

Rn

κo(x, y)f(y)dy,

for f ∈ S(Rn) with compact support and x ∈ Rn outside the support of f .

The Calderón-Zygmund conditions imply Condition (A.7) for the operator T
and its formal adjoint T ∗ but they are not sufficient to imply the L2-boundedness
for which some additional ‘cancellation’ conditions are needed.

About Condition (A.6). The difficulty with applying the main theorem of singular
integrals (i.e. Theorem A.4.4) is often to know that the operator is L2-bounded.
The next section explains the Cotlar-Stein lemma which may help to prove the
L2-boundedness in many cases.

A.5 Almost orthogonality

On Rn, a convolution operator (for the usual convolution) is bounded on L2(Rn)
if and only if the Fourier transform of its kernel is bounded. Similar result is
valid on compact Lie groups, see (2.23), and more generally on any Hausdorff
locally compact separable group, see the decomposition of group von Neumann
algebras in the abstract Plancherel theorem in Theorem B.2.32. For operators
on spaces without readily available Fourier transform or with no control on the
Fourier transform of its kernel, or for non-convolution operators this becomes more
complicated (however, see Theorem 2.2.5 for the case of non-invariant operators
on compact Lie groups).

Fortunately, the space L2 is a Hilbert space and to prove that an operator is
bounded on L2, it suffices to do the same for TT ∗ (or T ∗T ). The reason that this
observation is useful in practice is that if T is formally representable by a kernel
κ (see Schwartz kernel theorem, Theorem 1.4.1), then T ∗T is representable by the
kernel ∫

κ(z, x)κ(z, y) dz;

the latter kernel is often better than κ because the integration can have a smooth-
ing effect and/or can take into account the cancellation properties of κ. This
remark alone does not always suffice to prove the L2-boundedness. Sometimes
some ‘smart’ decomposition T =

∑
k Tk of the operator is needed and again the

properties of a Hilbert space may help.

The next statement is an easy case of ‘exact’ orthogonality:
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Proposition A.5.1. Let H be a Hilbert space and let {Tk, k ∈ Z} be a sequence of
linear operators on H. We assume that the operators {Tk} are uniformly bounded:

∃C > 0 ∀k ∈ Z ‖Tk‖L (H) ≤ C,

and that
∀j �= k T ∗

j Tk = 0 and TjT
∗
k = 0. (A.8)

Then the series
∑

k∈Z
Tk converges in the strong operator norm topology to an

operator S satisfying ‖S‖L (H) ≤ C.

Note that (A.8) is equivalent to

∀j �= k (kerTj)
⊥ ⊥ (kerTk)

⊥ and ImTj ⊥ ImTk.

Proof. Let v ∈ H and N ∈ N. Since the images of the Tj ’s are orthogonal, the
Pythagoras equality implies

‖
∑

|j|≤N

Tjv‖2 =
∑

|j|≤N

‖Tjv‖2.

Denoting by Pj the orthogonal projection onto (kerTj)
⊥, we have

‖Tjv‖ = ‖TjPjv‖ ≤ C‖Pjv‖,

since ‖Tj‖L (H) ≤ C. Thus

‖
∑

|j|≤N

Tjv‖2 ≤ C2
∑

|j|≤N

‖Pjv‖2.

As the kernels of the Tj ’s are mutually orthogonal, we have

∑

|j|≤N

‖Pjv‖2 ≤ ‖v‖2.

We have obtained that
‖

∑

|j|≤N

Tjv‖2 ≤ C2‖v‖2,

for any N ∈ N and v ∈ H. The constant C here is the uniform bound of the
operator norms of the Tj ’s and is independent of v orN . The same proof shows that
the sequence (

∑
|j|≤N Tjv)N∈N is Cauchy when v is in a finite number of (kerTj)

⊥.

This allows us to define the operator S on the dense subspace
∑

j(kerTj)
⊥. The

conclusion follows. �

In practice, the orthogonality assumption above is rather demanding, and is
often substituted by a condition of ‘almost’ orthogonality:
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Theorem A.5.2 (Cotlar-Stein lemma). Let H be a Hilbert space and {Tk, k ∈ Z}
be a sequence of linear operators on H. We assume that we are given a sequence
of positive constants {γj}∞j=−∞ with

A =
∞∑

j=−∞
γj <∞.

If for any i, j ∈ Z,

max
(
‖T ∗

i Tj‖L (H), ‖TiT
∗
j ‖L (H)

)
≤ γ2

i−j ,

then the series
∑

k∈Z
Tk converges in the strong operator topology to an operator

S satisfying ‖S‖L (H) ≤ A.

For the proof of the Cotlar-Stein lemma, see e.g. [Ste93, Ch. VII §2], and for
its history see Knapp and Stein [KS69].

When working on groups, one sometimes has to deal with operators mapping
the L2-space on the group to the L2-space on its unitary dual. This requires one
to use the version of Cotlar’s lemma for operators mapping between two different
Hilbert spaces. In this case, the statement of Theorem A.5.2 still holds, for an
operator T : H → G, provided we take the operator norms T ∗

i Tj and TiT
∗
j in

appropriate spaces. For details, we refer to [RT10a, Theorem 4.14.1].

The following crude version of the Cotlar lemma will be also useful to us:

Proposition A.5.3 (Cotlar-Stein lemma; crude version). Let H be a Hilbert space
and {Tk, k ∈ Z} be a sequence of linear operators on H. We assume that

TiT
∗
j = 0 if i �= j. (A.9)

We also assume that the operators Tk, k ∈ Z, are uniformly bounded,

i.e. sup
k∈Z

‖Tk‖L (H) <∞, (A.10)

and that the following sum is finite

∑

i �=j

‖T ∗
i Tj‖L (H) <∞. (A.11)

Then the series
∑

k∈Z
Tk converges in the strong operator topology to an operator

S satisfying

‖S‖2
L (H) ≤ 2max

⎛
⎝sup

k∈Z

‖Tk‖2L (H),
∑

i �=j

‖T ∗
i Tj‖L (H)

⎞
⎠ .
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For the proof of this statement, see [Ste93, Ch. VII §2.3].
Remark A.5.4. The condition (A.9) can can be relaxed slightly with the following
modifications.

For instance, (A.9) can be replaced with

T ∗
i Tj = 0 if i �= j have the same parity.

(This condition appears often when considering dyadic decomposition.) Indeed,
applying Proposition A.5.3 to {T2k+1}k∈Z and to {T2k}k∈Z, we obtain that the
series

∑
k Tk =

∑
k T2k+

∑
k T2k+1 converges in the strong operator norm topology

to an operator S satisfying

‖S‖L (H) ≤ 21/2 × 2×max

⎛
⎝sup

k∈Z

‖Tk‖L (H),
(
2

∑

i−j∈2N

‖T ∗
i Tj‖L (H)

)1/2
⎞
⎠ .

More generally, (A.9) can be replaced with

T ∗
i Tj = 0 for |i− j| > a,

where a ∈ N is a fixed positive integer. It suffices to apply Proposition A.5.3
to each {Tak+b}k∈Z for b = 0, . . . , a − 1. Then the series

∑
Tk =

∑
0≤b<a Tak+b

converges in the strong operator norm topology to an operator S satisfying

‖S‖L (H) ≤ 21/2 × a×max

⎛
⎝sup

k
‖Tk‖L (H),

(
2

∑

i−j>a

‖T ∗
i Tj‖L (H)

)1/2
⎞
⎠ .

A.6 Interpolation of analytic families of operators

Let (M,M, μ) and (N,N , ν) be measure spaces. We suppose that to each z ∈ C
in the strip

S := {z ∈ C : 0 ≤ Re z ≤ 1},
there corresponds a linear operator Tz from the space of simple functions in L1(M)
to measurable functions on N , in such a way that (Tzf)g is integrable on N
whenever f is a simple function in L1(M) and g is a simple function in L1(N).
(Recall that a simple function is a measurable function which takes only a finite
number of values.)

We assume that the family {Tz}z∈S is admissible in the sense that the map-
ping

z �→
∫

N

(Tzf)g dν

is analytic in the interior of S, continuous on S, and there exists a constant a < π
such that

e−a|Im z| ln

∣∣∣∣
∫

N

(Tzf)g dν

∣∣∣∣ ,
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is uniformly bounded from above in the strip S.

Theorem A.6.1. Let {Tz}z∈S be an admissible family as above. We assume that

‖Tiyf‖q0 ≤M0(y)‖f‖p0 and ‖T1+iyf‖q1 ≤M1(y)‖f‖p1 ,

for all simple functions in L1(M) where 1 ≤ pj , qj ≤ ∞, and functions Mj(y),
j = 1, 2 are independent of f and satisfy

sup
y∈R

e−b|y| lnMj(y) <∞,

for some b < π. Then if 0 ≤ t ≤ 1, there exists a constant Mt such that

‖Ttf‖qt ≤Mt‖f‖pt ,

for all simple functions f in L1(M), provided that

1

pt
= (1− t)

1

p0
+ t

1

p1
and

1

qt
= (1− t)

1

q0
+ t

1

q1
.

For the proof of this theorem, we refer e.g. to [SW71, ch. V §4].
Remark A.6.2. The following remarks are useful.

• The constant Mt depends only on t and on a, b,M0(y),M1(y), but not on T .

• From the proof, it appears that, if N = M = Rn is endowed with the usual
Borel structure and the Lebesgue measures, one can require the assumptions
and the conclusion to be on simple functions f with compact support.

We also refer to Definition 6.4.17 for the notion of the complex interpolation
(which requires stronger estimates).
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Appendix B

Group C∗ and von Neumann
algebras

In this chapter we make a short review of the machinery related to group von
Neumann algebras that will be useful for setting up the Fourier analysis in other
parts of book, in particular in Section 1.8.2. We try to make a short and concise
presentation of notions and ideas without proofs trying to make the presentation
as informal as possible. All the material presented in this chapter is well known
but is often scattered over the literature in different languages and with different
notation. Here we collect what is necessary for us giving references along the
exposition. The final aim of this chapter is to introduce the notion of the von
Neumann algebra of the group (or the group von Neumann algebra) and describe
its main properties.

B.1 Direct integral of Hilbert spaces

We start by describing direct integrals of Hilbert spaces. For more details and
overall proofs we can refer to more classical literature such as Bruhat [Bru68] or
to more modern exposition of Folland [Fol95, p. 219].

B.1.1 Convention: Hilbert spaces are assumed separable

All the Hilbert spaces considered in this chapter are separable, unless stated oth-
erwise. Let us recall the definition and some properties of separable spaces.

Definition B.1.1. A topological space is separable if its topology admits a countable
basis of neighbourhoods.

When a topological space is metrisable, being separable is equivalent to hav-
ing a (countable) sequence which is dense in the space.
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Moreover, a separable Hilbert space of infinite dimension is unitarily equiv-
alent to the Hilbert space of square integrable complex sequences: that is, to

ℓ2(N0) = {(xj)j∈N0
,

∞∑

j=0

|xj |2 <∞}.

Naturally a separable Hilbert space of finite dimension n is unitarily equivalent to
Cn.

We can refer e.g. to Rudin [Rud91] for different topological implications of
the separability.

B.1.2 Measurable fields of vectors

Here we recall the definitions of measurable fields of Hilbert spaces, of vectors and
of operators.

Definition B.1.2. Let Z be a set and let (Hζ)ζ∈Z is a family of vector spaces (on the
same field) indexed by Z. Then

∏
ζ∈Z Hζ denotes the direct product of (Hζ)ζ∈Z ,

that is, the set of all tuples v = (v(ζ))ζ∈Z with v(ζ) ∈ Hζ for each ζ ∈ Z. It
is naturally endowed with a structure of a vector space with addition and scalar
multiplication being performed componentwise.

An element of
∏

ζ∈Z Hζ , that is, a tuple v = (v(ζ))ζ∈Z , may be called a field
of vectors parametrised by Z, or, when no confusion is possible, a vector field.

We will use this definition for a measurable space Z. In practice, for the set Γ
in the following definition, we may also choose Γ ⊂∏

ζ∈Z H∞
ζ in view of G̊arding’s

theorem (see Proposition 1.7.7).

Definition B.1.3. Let Z be a measurable space and μ a positive sigma-finite mea-
sure on Z. A μ-measurable field of Hilbert spaces over Z is a pair E =

(
(Hζ)ζ∈Z ,Γ

)

where (Hζ)ζ∈Z is a family of (separable) Hilbert spaces indexed by Z and where
Γ ⊂∏

ζ∈Z Hζ satisfies the following conditions:

(i) Γ is a vector subspace of
∏

ζ∈Z Hζ ;

(ii) there exists a sequence (xℓ)ℓ∈N of elements of Γ such that for every ζ ∈ Z,
the sequence (xℓ(ζ))ℓ∈N spans Hζ (in the sense that the subspace formed by
the finite linear combination of the xℓ(ζ), ℓ ∈ N, is dense in Hζ);

(iii) for every x ∈ Γ, the function ζ �→ ‖x(ζ)‖Hζ
is μ-measurable;

(iv) if x ∈∏
ζ∈Z Hζ is such that for every y ∈ Γ, the function

Z ∋ ζ �→ (x(ζ), y(ζ))Hζ

is measurable, then x ∈ Γ.
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Under these conditions, the elements of Γ are called the measurable vector
fields of E . We always identify two vector fields which are equal almost everywhere.
This means that we identify two elements x and x′ of Γ when, for every y ∈ Γ,
the two mappings

Z ∋ ζ �→ (x(ζ), y(ζ))Hζ
and Z ∋ ζ �→ (x′(ζ), y(ζ))Hζ

,

can be identified as measurable functions.
A vector field x is square integrable if x ∈ Γ and

∫
Z
‖x(ζ)‖2Hζ

dμ(ζ) <∞. One
may write then

x =

∫ ⊕

Z

x(ζ)dμ(ζ).

The set of square integrable vector fields form a (possibly non-separable)
Hilbert space denoted by

H :=

∫ ⊕

Z

Hζdμ(ζ),

and called the direct integral of the Hζ . The inner product is given via

(x|y)H =

∫ ⊕

Z

(x(ζ)|y(ζ)Hζ
dμ(ζ), x, y ∈ H.

B.1.3 Direct integral of tensor products of Hilbert spaces

After a brief recollection of the definitions of tensor products, we will be able to
analyse the direct integral of tensor products of Hilbert spaces, as well as their
decomposable operators.

Definition of tensor products

Here we define firstly the algebraic tensor product of two vector spaces, and sec-
ondly the tensor products of Hilbert spaces.

Definition B.1.4. Let V and W be two complex vector spaces.
The free space generated by V and W is the vector space F(V ×W ) linearly

spanned by V ×W , that is, the space of finite C-linear combinations of elements
of V ×W .

The algebraic tensor product of V and W is the quotient of F(V ×W ) by its
subspace generated by the following elements

(v1, w) + (v2, w)− (v1 + v2, w), (v, w1) + (v, w2)− (v, w1 + w2),

c(v, w)− (cv, w), c(v, w)− (v, cw),

where v, v1, v2 are arbitrary elements of V , w,w1, w2 are arbitrary elements of W ,
and c is an arbitrary complex number.

The equivalence class of an element (v, w) ∈ V ×W ⊂ F(V ×W ) is denoted
v ⊗ w.
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The algebraic tensor product of V and W is naturally a complex vector space
which we will denote in this monograph by

V
alg
⊗ W.

The algebraic tensor product has the following universal property (which
may be given as an alternate definition):

Proposition B.1.5 (Universal property). Let V , W and X be (complex) vector
spaces and let Ψ : V ×W → X be a bilinear mapping. Then there exists a unique

map Ψ̃ : V
alg
⊗ W → X such that

Ψ = Ψ̃ ◦ π

where π : V ×W → V
alg
⊗ W is the map defined by π(v, w) = v ⊗ w.

More can be said when the complex vector spaces are also Hilbert spaces.
Indeed one checks easily:

Lemma B.1.6. Let H1 and H2 be Hilbert spaces. Then the mapping defined on

H1

alg
⊗ H2 via

(u1 ⊗ v1, u2 ⊗ v2) := (u1, u2)(v1, v2), u1, u2 ∈ H1, v1, v2 ∈ H2,

is a complex inner product on H1

alg
⊗ H2.

This shows that H1

alg
⊗ H2 is a pre-Hilbert space.

Definition B.1.7. The tensor product of the Hilbert spaces H1 and H2 is the com-

pletion of H1

alg
⊗ H2 for the natural sesquilinear form from Lemma B.1.6. It is

denoted by H1 ⊗H2.

Naturally we have the universal property of tensor products of Hilbert spaces:

Proposition B.1.8 (Universal property). Let H1, H2 and H be Hilbert spaces and
let Ψ : H1×H2 → H be a continuous bilinear mapping. Then there exists a unique
continuous map Ψ̃ : H1 ⊗H2 → H such that

Ψ = Ψ̃ ◦ π

where π : H1 ×H2 → H1 ⊗H2 is the map defined by π(v, w) = v ⊗ w.

Tensor products of Hilbert spaces as Hilbert-Schmidt spaces

The tensor product of two Hilbert spaces may be identified with a space of Hilbert
Schmidt operators in the following way. To any vector w ∈ H2, we associate the
continuous linear form on H2

w∗ : v �−→ (v, w)H2 .
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Conversely any element of H∗
2, that is, any continuous linear form on H2, is of this

form. To any u ∈ H1 and v ∈ H2, we associate the rank-one operator

Ψu,v :

{
H∗

2 −→ H1

w∗ �−→ w∗(v)u

Lemma B.1.9. With the notation above, the continuous bilinear mapping

Ψ : H1 ×H2 → HS(H∗
2,H1)

extends to an isometric isomorphism of Hilbert spaces

Ψ̃ : H1 ⊗H2 → HS(H∗
2,H1).

Moreover, if T1 ∈ L (H1) and T2 ∈ L (H2), then the operator T1 ⊗ T2 defined via

(T1 ⊗ T2)(v1 ⊗ v2) := (T1v1)⊗ (T2v2), v1 ∈ H1, v2 ∈ H2,

is in L (H1 ⊗H2) and corresponds to the bounded operator

Ψ̃(T1 ⊗ T2)Ψ̃
−1 :

{
HS(H∗

2,H1) −→ HS(H∗
2,H1)

A �−→ T1AT2
.

Recall that the scalar product of HS(H∗
2,H1) is given by

(T1, T2)HS(H∗
2 ,H1)

=
∑

j

(T1f
∗
j , T2f

∗
j )H1 .

where (f∗
j )j∈N is any orthonormal basis of H∗

2.

Proof. By Proposition B.1.8, Ψ leads to a continuous linear mapping Ψ̃ : H1 ⊗
H2 → HS(H∗

2,H1). The image of Ψ̃ contains the rank-one operators, thus all
the finite ranked operators which form a dense subset of HS(H∗

2,H1). Thus Ψ̃ is
surjective.

If (f∗
j )j∈N is an orthonormal basis of H∗

2, we can compute easily the scalar
product between Ψu1,v1 and Ψu2,v2 :

(Ψu1,v1
,Ψu2,v2)HS(H∗

2 ,H1)
=

∑

j

(Ψu1,v1f
∗
j ,Ψu2,v2

f∗
j )H1

=
∑

j

(f∗
j (v1)u1, f

∗
j (v2)u2)H1

= (u1, u2)H1

∑

j

f∗
j (v1)f

∗
j (v2)

= (u1, u2)H1

∑

j

(v1, fj)(v2, fj) = (u1, u2)H1
(v1, v2)H2

.

This implies that the mapping Ψ̃ : H1 ⊗H2 → HS(H∗
2,H1) is an isometry.

For the last part of the statement, one checks easily that

(T1Ψu,vT2)(w
∗) = w∗(T2v) T1u,

concluding the proof. �
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Let us apply this to H1 = H and H2 = H∗.

Corollary B.1.10. Let H be a Hilbert space. The Hilbert space given by the tensor
product H⊗H∗ of Hilbert spaces is isomorphic to HS(H) via

u⊗ v∗ ←→ Ψu,v, Ψu,v(w) = (w, v)Hu.

Via this isomorphism, the bounded operator T1 ⊗ T ∗
2 where T1, T2 ∈ L (H),

corresponds to the bounded operator

Ψ̃(T1 ⊗ T2)Ψ̃
−1 :

{
HS(H) −→ HS(H)

A �−→ T1AT ∗
2

.

Direct integral of tensor products of Hilbert spaces

Let μ be a positive sigma-finite measure on a measurable space Z and E =(
(Hζ)ζ∈Z ,Γ

)
a μ-measurable field of Hilbert spaces over Z. Then

E⊗ :=
(
(Hζ ⊗H∗

ζ)ζ∈Z ,Γ⊗ Γ∗)

is a μ-measurable field of Hilbert spaces over Z.
Identifying each tensor product Hζ ⊗H∗

ζ with HS(Hζ), see Corollary B.1.10,
we may write ∫ ⊕

Z

Hζ ⊗H∗
ζdμ(ζ) ≡

∫ ⊕

Z

HS(Hζ)dμ(ζ).

Furthermore if x ∈
∫ ⊕
Z
Hζ ⊗H∗

ζdμ(ζ) then

‖x‖2 =

∫

Z

‖x(ζ)‖2
HS(Hζ)

dμ(ζ).

B.1.4 Separability of a direct integral of Hilbert spaces

In this chapter, we are always concerned with separable Hilbert spaces (see Section
B.1.1). A sufficient condition to ensure the separability of a direct integral is that
the measured space is standard (the definition of this notion is recalled below):

Proposition B.1.11. Keeping the setting of Definition B.1.3, if (Z, μ) is a standard

space, then
∫ ⊕
Z
Hζdμ(ζ) is a separable Hilbert space.

For the proof we refer to Dixmier [Dix96, §II.1.6].
Definition B.1.12. A measurable space Z is a standard Borel space if Z is a Polish
space (i.e. a separable complete metrisable topological space) and the considered
sigma-algebra is the Borel sigma-algebra of Z (i.e. the smallest sigma-algebra
containing the open sets of Z).
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These Borel spaces have a simple classification: they are isomorphic (as Borel
spaces) either to a (finite or infinite) countable set, or to [0, 1]. For these and other
details see, for instance, Kechris [Kec95, Chapter II, Theorem 15.6] and its proof.

Definition B.1.13. A positive measure μ on a measure space Z is a standard mea-
sure if μ is sigma-finite, (i.e. there exists a sequence of mutually disjoint measurable
sets Y1, Y2, . . . such that μ(Yj) <∞ and Z = Y1 ∪ Y2 ∪ . . .) and there exists a null
set E such that Z\E is a standard Borel space.

In this monograph, we consider only the setting described in Proposition
B.2.24 which is standard.

B.1.5 Measurable fields of operators

Let Z be a measurable space and μ a positive sigma-finite measure on Z. The
main application for our analysis of these constructions will be in Section 1.8.3
dealing with measurable fields of operators over Ĝ.

Definition B.1.14. Let E =
(
(Hζ)ζ∈Z ,Γ

)
be a μ-measurable field of Hilbert spaces

over Z. A μ-measurable field of operators over Z is a collection of operators
(T (ζ))ζ∈Z such that T (ζ) ∈ L (Hζ) and for any x ∈ Γ, the field (T (ζ)x(ζ))ζ∈Z is
measurable. If furthermore the function ζ �→ ‖T (ζ)‖L (Hζ) is μ-essentially bounded,
then the field of operators (T (ζ))ζ∈Z is essentially bounded.

Let us continue with the notation of Definition B.1.14. Let (T (ζ))ζ∈Z be an
essentially bounded field of operators. Then we can define the operator T on the
Hilbert space H =

∫ ⊕
Z
Hζdμ(ζ) via (Tx)(ζ) := T (ζ)x(ζ). Clearly the operator T

is linear and bounded. It is often denoted by

T :=

∫ ⊕

Z

T (ζ)dμ(ζ).

Naturally two fields of operators which are equal up to a μ-negligible set yield
the same operator on H and may be identified. Furthermore the operator norm of
T ∈ L (H) is

‖T‖L (H) = sup
ζ∈Z
‖T (ζ)‖L (Hζ),

where sup denotes here the essential supremum with respect to μ.

Definition B.1.15. An operator on H as above, that is, obtained via

T :=

∫ ⊕

Z

T (ζ)dμ(ζ)

where (T (ζ))ζ∈Z is an essentially bounded field of operators, is said to be decom-
posable.

The set of decomposable operators form a subspace of L (H) stable by com-
position and taking the adjoint.
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B.1.6 Integral of representations

In the following definition, μ is a positive sigma-finite measure on a measurable
space Z, A is a separable C∗-algebra, and G is a (Hausdorff) locally compact
separable group. For further details on the constructions of this section we refer
to Dixmier [Dix77, §8]. For the definition of representations of C∗-algebras see
Definition B.2.16.

Definition B.1.16. Let E =
(
(Hζ)ζ∈Z ,Γ

)
be a μ-measurable field of Hilbert spaces

over Z. A μ-measurable field of representations of A, resp. G, is a μ-measurable
field of operator (T (ζ))ζ∈Z (see Definition B.1.14) such that for each ζ ∈ Z,
T (ζ) = πζ is a representation of A, resp. a unitary continuous representation of
G, in Hζ .

In this case, for each x ∈ G, we can define the operator

π(x) :=

∫ ⊕

Z

πζ(x)dμ(ζ) acting on H :=

∫ ⊕

Z

Hζdμ(ζ).

One checks easily that this yields a representation π of A, resp. a unitary contin-
uous representation of G, on H denoted by

π :=

∫ ⊕

Z

πζdμ(ζ),

often called the integral of the representations (πζ)ζ∈Z .

The following technical properties give sufficient conditions for two integrals
of representations to yield equivalent representations. Again A is a separable C∗-
algebra and G a (Hausdorff) locally compact separable group.

Proposition B.1.17. Let μ1 and μ2 be two positive sigma-finite measures on mea-

surable spaces Z1 and Z2 respectively. For j = 1, 2, let Ej =
(
(H(j)

ζj
)ζj∈Zj

,Γj

)
be

a μj-measurable field of Hilbert spaces over Zj and let (π
(j)
ζj

) be a measurable field
of representations of A, resp. of unitary continuous representations of G.

We assume that μ1 and μ2 are standard. We also assume that there exist a
Borel μ1-negligible part E1 ⊂ Z1, a Borel μ2-negligible part E2 ⊂ Z2 and a Borel

isomorphism η : Z1\E1 → Z2\E2 which transforms μ1 to μ2 and such that π
(1)
ζ1

and π
(2)
η(ζ1)

are equivalent for any ζ1 ∈ Z1\E1. Then there exists a unitary mapping

from H(1) :=
∫ ⊕
Z1
H(1)

ζ1
dμ1(ζ1) onto H(2) :=

∫ ⊕
Z2
H(2)

ζ2
dμ2(ζ2) which intertwines the

representations of A, resp. the unitary continuous representations of G,

π(1) :=

∫ ⊕

Z1

π
(1)
ζ1

dμ1(ζ1) and π(2) :=

∫ ⊕

Z2

π
(2)
ζ2

dμ2(ζ2).
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B.2 C∗- and von Neumann algebras

The main reference for this section are Dixmier’s books [Dix81, Dix77], Arveson
[Arv76] or Blackadar [Bla06]. For a more basic introduction to C∗-algebras and
elements of the Gelfand theory see also Ruzhansky and Turunen [RT10a, Chapter
D].

B.2.1 Generalities on algebras

Here we recall the definitions of an algebra, together with its possible additional
structures (involution, norm) and sets usually associated with it (spectrum, bi-
commutant).

Algebra

Let us start with the definition of an algebra over a field.
Let A be a vector space over a field K equipped with an additional binary

operation
A×A −→ A,
(x, y) �−→ x · y.

It is an algebra over K when the binary operation (then often called the product)
satisfies:

• left distributivity: (x+ y) · z = x · z + y · z for any x, y, z ∈ A,
• right distributivity: z · (x+ y) = z · x+ z · y for any x, y, z ∈ A,
• compatibility with scalars: (ax) · (by) = (ab)(x · y) for any x, y ∈ A and

a, b ∈ K.

The algebra A is said to be unital when there exists a unit, that is, an element
1 ∈ A such that x · 1 = 1 · x = x for every x ∈ A.

A subspace Y ⊂ A is a sub-algebra of A whenever y1 · y2 ∈ Y for any
y1, y2 ∈ Y.

Commutant and bi-commutant

We will need the notion of commutant:

Definition B.2.1. Let M be a subset of the algebra A. The commutant of M is
the set denoted by M′ of the elements which commute with all the elements of
M, that is,

M′ := {x ∈ A : xm = mx forall m ∈M}.
The bi-commutant ofM is the commutant of the commutant ofM, that is,

M′′ := (M′)′.
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Keeping the notation of Definition B.2.1, one checks easily that a commutant
M′ is a sub-algebra of A. It contains the unit if A is unital. Furthermore, in any
case,M⊂M′′.

Involution and norms

We consider now algebras endowed with an involution:

Definition B.2.2. Let A be an algebra over the complex numbers C. It is called an
involutive algebra or a ∗-algebra when there exists a map ∗ : A → A which is

• sesquilinear (that is, (ax+ by)∗ = āx∗ + b̄y∗ for every x, y ∈ A and a, b ∈ C),

• involutive (that is, (x∗)∗ = x for every x ∈ A).
In this case, x∗ may be called the adjoint of x ∈ A. An element x ∈ A is hermitian
if x∗ = x. An element x ∈ A is unitary if xx∗ = x∗x = 1.

Example B.2.3. Let A be a ∗-algebra. If M is a subset of A stable under the
involution (that is, m∗ ∈ M for every m ∈ M), then its commutant M′ is a
∗-subalgebra of A.
Definition B.2.4. A normed involutive algebra is an involutive algebra A endowed
with a norm ‖ · ‖ such that

‖x∗‖ = ‖x‖
for each x ∈ A. If, in addition, A is ‖ · ‖-complete, then A is called an involutive
Banach algebra.

The notions of (involutive, normed involutive / involutive Banach) sub-
algebra and morphism between (involutive / normed involutive / involutive Ba-
nach) algebras follow naturally. Furthermore if A is a (involutive / normed involu-
tive / involutive Banach) non unital algebra, then there exists a unique (involutive
/ normed involutive / involutive Banach) unital algebra Ã = A⊕C1, up to isomor-
phism, which contains A as a (involutive, normed involutive / involutive Banach)
sub-algebra.

Examples

Example B.2.5. The complex field A = C is naturally a unital commutative invo-
lutive Banach algebra.

Example B.2.6. Let X be a locally compact space and let A = Co(X) be the space
of continuous functions f : X → C vanishing at infinity, that is, for every ǫ > 0,
there exists a compact neighbourhood out of which |f | < ǫ. Then A is a commu-
tative involutive Banach algebra when endowed with pointwise multiplication and
involution f �→ f̄ . When X is a singleton, this reduces to Example B.2.5.
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Example B.2.7. If η is a positive measure on a measurable space X and if A is the
space of η-essentially bounded functions f : X → C, that is,A = L∞(X, η), thenA
is a unital commutative involutive Banach algebra when endowed with pointwise
multiplication and involution f �→ f̄ . When X is a singleton, this reduces to
Example B.2.5.

Recall that all the Hilbert spaces we consider are separable.

Example B.2.8. The space L (H) of continuous linear operators on a Hilbert space
H is naturally a unital involutive Banach algebra for the usual structure. This
means that the product is given by the composition of operators (A,B) �→ AB,
the involution by the adjoint and the norm by the operator norm. The unit is the
identity mapping IH = I : v �→ v.

Example B.2.9. If G is a locally compact (Hausdorff) group which is unimodular,
then L1(G) is naturally an involutive Banach algebra where the product is given
by the convolution and the involution f �→ f∗ by f∗(x) = f̄(x−1). If G is separable
then L1(G) is separable.

Example B.2.9 can be generalised to locally compact groups which are not
necessarily unimodular. First, let us recall the following definitions:

Definition B.2.10. Let G be a locally compact (Hausdorff) group. Let us fix a left
Haar measure dx. We also denote by |E| the volume of a Borel set for this measure.
Then there exists a unique function Δ such that

|Ex| = Δ(x)|E|

for any Borel set E and x ∈ G. It is called the modular function of G and is
independent of the chosen left Haar measure. It is a group homomorphism G →
(R+,×).

If the modular function is constant then Δ ≡ 1 and G is said to be unimod-
ular.

Remark B.2.11. Any Lie group is a separable locally compact (Hausdorff) group.
Any compact (Hausdorff) group is necessarily a locally compact (Hausdorff) group
and it is also unimodular. Any abelian locally compact (Hausdorff) group is uni-
modular. Any nilpotent or semi-simple Lie group is unimodular.

Example B.2.12. If G is a locally compact (Hausdorff) group then L1(G) is natu-
rally an involutive Banach algebra often called the group algebra. The product is
given by the convolution and the involution f �→ f∗ by

f∗(x) = f̄(x−1)Δ(x)−1,

where Δ is the modular function (see Definition B.2.10).
The space M(G) of complex measures on G is also naturally an involutive

Banach algebra and L1(G) may be viewed as a closed involutive sub-algebra. The
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algebra M(G) always admits the Dirac measure δe at the neutral element of the
group as unit.

Note that L1(G) is unital if and only if G is discrete and in this case L1(G) =
M(G).

B.2.2 C∗-algebras

In this subsection we briefly review the notion of C∗-algebra and its main prop-
erties. We can refer to Ruzhansky and Turunen [RT10a, Chapter D] for a longer
exposition.

Definition B.2.13. A C∗-algebra is an involutive Banach algebra A such that

‖x‖2 = ‖x∗x‖

for every x ∈ A.
Example B.2.14. Examples B.2.5, B.2.6, B.2.7, and B.2.8 are C∗-algebras.

Remark B.2.15. 1. If we choose a Hilbert space H of finite dimension n in Ex-
ample B.2.8, the Banach algebra L (H) ∼ L (Cn) ∼ Cn×n is a C∗-algebra
if endowed with the operator norm, but is not a C∗-algebra when equipped
with the Euclidean norm of Cn2

for instance.

2. Example B.2.6 is fundamental in the sense that one can show that any com-
mutative C∗-algebra A is isomorphic to Co(X), where X is the spectrum of
A, that is, the set of non-zero complex homomorphisms with its usual topol-
ogy. Moreover the isomorphism often called the Gelfand-Fourier transform is
∗-isometric. For further details see e.g. Rudin [Rud91] but with a different
vocabulary.

3. In the non-commutative setting, the previous point may be generalised via
the Gelfand-Naimark theorem: this theorem states that any C∗-algebra is
∗-isometric to a closed sub-*-algebra of L (H) for a suitable Hilbert space H.
Note that Example B.2.8 give the precise structure of L (H) and shows that
a closed sub-*-algebra of L (H) is indeed a C∗-algebra. The proof is based on
the Gelfand-Naimark-Segal construction, see e.g. Arveson [Arv76] for more
precise statements.

The general definition of the spectrum of a (not necessarily commutative)
C∗ algebra is more involved than in the commutative case (Remark B.2.15 (2)):

Definition B.2.16 (Representations of C∗-algebras). Let A be a C∗-algebra.

A representation of A is a continuous mapping A → L (H) for some Hilbert
space H, this mapping being a homomorphism of involutive algebras. Two repre-
sentations πj : A → L (Hj), j = 1, 2, of A, are unitarily equivalent if there exists
a unitary operator U : H1 → H2 such that Uπ1(x) = π2(x)U for every x ∈ A. A
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representation π : A → L (H) is irreducible if the only subspaces of H which are
invariant under π, that is, under every π(x), x ∈ A, are trivial: {0} and H.

The dual (or spectrum) of A is the set of unitary irreducible representations

of A modulo unitary equivalence. It is denoted by Â.
Remark B.2.17. The dual of a C∗-algebra is equipped with the hull-kernel topology
due to Jacobson, and, if it is separable, with a structure of measurable space due
to Mackey, see Dixmier [Dix77, §3].

B.2.3 Group C∗-algebras

In general, the group algebra of a locally compact (Hausdorff) group G, that is,
the involutive Banach algebra L1(G) in Example B.2.12, is not a C∗ algebra (see
Remark B.2.26 below). The group C∗ algebra is the C∗-enveloping algebra of
L1(G), meaning that it is a ‘small’ C∗ algebra containing L1(G) and built in the
following way.

First, let us mention that many authors, for instance Jacques Dixmier, prefer
to use for the Fourier transform

πD(f) :=

∫

G

π(x)f(x)dx, f ∈ L1(G), (B.1)

instead of π(f) defined via

π(f) =

∫

G

π(x)∗f(x)dx, f ∈ L1(G), (B.2)

which we adopt in this monograph, starting from (1.2), see Remark 1.1.4 for the
explanation of this choice.

An advantage of using πD would be that it yields a morphism of involutive
Banach algebras from L1(G) to L (Hπ) as one checks readily:

Lemma B.2.18. Let π be a unitary continuous representation of G. Then πD is a
(non-degenerate) representation of the involutive Banach algebra L1(G):

∀f, g ∈ L1(G) πD(f ∗ g) = πD(f)πD(g), πD(f)∗ = πD(f∗),

and

‖πD(f)‖L (Hπ) ≤ ‖f‖L1(G).

For the proof, see Dixmier [Dix77, Proposition 13.3.1].
The choice of the Fourier transform in (B.2) made throughout this mono-

graph, yields in contrast

∀f, g ∈ L1(G) π(f ∗ g) = π(g)π(f)
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and still
π(f)∗ = π(f∗), ‖π(f)‖L (Hπ) ≤ ‖f‖L1(G).

The main advantage of our choice of Fourier transform is the fact that the Fourier
transform of left-invariant operators will act on the left, as is customary in har-
monic analysis, see our presentation of the abstract Plancherel theorem in Section
1.8.2.

Definition B.2.19. On L1(G), we can define ‖ · ‖∗ via

‖f‖∗ := sup
π
‖πD(f)‖L (Hπ), f ∈ L1(G),

where the supremum runs over all continuous unitary irreducible representations
π of the group G.

One checks easily that ‖ · ‖∗ is a seminorm on L1(G) which satisfies

‖f‖∗ ≤ ‖f‖L1 <∞.

One can show that it is in fact also a norm on L1(G), see Dixmier [Dix77, §13.9.1].
Definition B.2.20. The group C∗-algebra is the Banach space obtained by comple-
tion of L1(G) for the norm ‖ · ‖∗. It is often denoted by C∗(G).

Remark B.2.21. Choosing the definition of ‖ · ‖∗ using πD as above or using our
usual Fourier transform leads to the same C∗-algebra of the group. Indeed one
checks easily that the adjoint of the operator π(f) acting on Hπ is πD(f̄):

π(f) = πD(f̄)∗ = πD(f̄∗) and ‖π(f)‖L (Hπ) = ‖πD(f̄)‖L (Hπ), (B.3)

for all f ∈ L1(G).

Naturally C∗(G) is a C∗-algebra and there are natural one-to-one corre-
spondences between the representation theories of the group G, of the involutive
Banach algebra L1(G), and of the C∗-algebra C∗(G) in the following sense:

Lemma B.2.22. If π is a continuous unitary representation of G, then f �→ πD(f)
defined via (B.1) is a non-degenerate ∗-representation of L1(G) which extends
naturally to C∗(G). Conversely any non-degenerate ∗-representation of L1(G) or
C∗(G) arise in this way.

Hence
‖f‖∗ = sup

π
‖π(f)‖L (Hπ), f ∈ L1(G),

where the supremum runs over all representations π of the involutive Banach al-
gebra L1(G) or over all representations π of the C∗-algebra C∗(G).

For the proof see Dixmier [Dix77, §13.3.5 and §13.9.1].
Definition B.2.23. The dual of the group G is the set Ĝ of (continuous) irreducible
unitary representations of G modulo equivalence, see (1.1).
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Given the correspondence explained in Lemma B.2.22, Ĝ can be identified

with the dual of C∗(G) and inherit the structure that may occur on Ĉ∗(G), see
Remark B.2.17.

In particular, Ĝ inherits a topology, called the Fell topology, corresponding
to the hull-kernel (Jacobson) topology on C∗(G), see e.g. Folland [Fol95, §7.2],
Dixmier [Dix77, §18.1 and §3]. If G is separable, then C∗(G) is separable, see

[Dix77, §13.9.2], and Ĝ also inherits the Mackey structure of measurable space.

Proposition B.2.24. Let G be a separable locally compact group of type I. Then its
dual Ĝ is a standard Borel space. Moreover the Mackey structure coincides with
the sigma-algebra associated with the Fell topology.

For the definition of groups of type I, see Dixmier [Dix77, §13.9.4] or Folland
[Fol95, §7.2]. See also hypothesis (H) in Section 1.8.2 for a relevant discussion. For
the definition of the Plancherel measure, see (1.28), as well as Dixmier [Dix77,
Definition 8.8.3] or Folland [Fol95, §7.5].
References for the proof of Proposition B.2.24. As G is of type I and separable,
its group C∗-algebra C∗(G) is of type I, postliminar and separable, see Dixmier
[Dix77, §13.9]. Hence the Mackey Borel structure on the spectrum of this C∗-
algebra (cf. [Dix77, §3.8]) is a standard Borel space by Dixmier [Dix77, Proposition
4.6.1]. �

Reduced group C∗-algebra

Although we do not use the following in this monograph, let us mention that one
can also define another ‘small’ C∗ algebra which contains L1(G).

Let us recall that the left regular representation πL is defined on the group
via

πL(x)φ(y) := φ(x−1y), x, y ∈ G, φ ∈ L2(G). (B.4)

This leads to the representation of L1(G) given by

(πL)D(f)φ =

∫

G

f(x)πL(x)φ dx =

∫

G

f(x)φ(x−1·) dx = f ∗ φ, (B.5)

which may be extended onto the closure (πL)D(L1(G)) of (πL)D(L1(G)) for the
operator norm, see Lemma B.2.22. This closure is naturally a C∗-algebra, often
called the reduced C∗-algebra of the group and denoted by C∗

r (G). Equivalently,
C∗

r (G) may be realised as the closure of L1(G) for the norm given by

‖f‖C∗
r
= ‖(πL)D(f)‖L (L2(G)) = {‖f ∗ φ‖L2 , φ ∈ L2(G) with ‖φ‖L2 = 1}.

The ‘full’ and reduced C∗ algebras of a group may be different. When they are
equal, that is, C∗

r (G) = C∗(G), then the group G is said to be amenable. Amenabil-
ity can be described in many other ways. The advantage of considering the ‘full’



524 Appendix B. Group C∗ and von Neumann algebras

C∗-algebra of a group is the one-to-one correspondence between the representa-
tions theories of G, L1(G), and C∗(G).

The groups considered in this monograph, that is, compact groups and nilpo-
tent Lie groups, are amenable.

Pontryagin duality

Although we do not use it in this monograph, let us recall briefly the Pontryagin
duality, as this may be viewed as one of the historical motivation to develop the
theory of (noncommutative) C∗-algebras.

The case of a locally compact (Hausdorff) abelian (≡ commutative) group
G is described by the Pontryagin duality, see Section 1.1. In this case, the group
algebra L1(G) (see Example B.2.9) is an abelian involutive Banach algebra. Its

spectrum Ĝ may be identified with the set of the continuous characters of G and
is naturally equipped with the structure of a locally compact (Hausdorff) abelian
group. The group G is amenable, that is, the full and reduced group C∗-algebras
coincide: C∗(G) = C∗

r (G). Moreover, the Fourier-Gelfand transform (see Remark

B.2.15 (2)) extends into an isometry of C∗-algebra from C∗(G) onto Co(Ĝ).

Example B.2.25. In the particular example of the abelian group G = Rn, the dual
Ĝ may also be identified with Rn and the Fourier-Gelfand transform in this case
is the (usual) Euclidean Fourier transform FRn .

The group C∗-algebra C∗(Rn) = C∗
r (R

n) may be viewed as a subspace of
S ′(Rn) which contains L1(Rn). Recall that, by the Riemann-Lebesgue Theorem
(see e.g. [RT10a, Theorem 1.1.8]), the Euclidean Fourier transform FRn maps
L1(Rn) to Co(Rn), and one can show that

C∗(Rn) = F−1
Rn Co(R

n).

Remark B.2.26. Note that the inclusion FRn(L1(Rn)) ⊂ Co(Rn) is strict. Indeed
for n > 1, the kernel of the Bochner Riesz means F−1

Rn {
√

1− |ξ|21|ξ|≤1} is not in
L1(Rn) but its Fourier transform is in Co(Rn). For n = 1, see e.g. Stein and Weiss
[SW71, Ch 1, §4.1].

B.2.4 Von Neumann algebras

Let us recall the von Neumann bi-commutant theorem:

Theorem B.2.27. Let L (H) be the space of continuous linear operators on a Hilbert
space H with its natural structure (see Example B.2.8). Let M be a ∗-subalgebra
of L (H) containing the identity mapping I. Then the following are equivalent:

(i) M is equal to its bi-commutant (in the sense of Definition B.2.1):

M =M′′.
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(ii) M is closed in the weak-operator topology, i.e. the topology given by the family
of seminorms {T �→ (Tv,w)H, v, w ∈ H}.

(iii) M is closed in the strong-operator topology, i.e. the topology on L (H) given
by the family of seminorms {T �→ ‖Tv‖H, v ∈ H}.
This leads to the notion of a von Neumann algebra where we take the above

equivalent properties as its definition:

Definition B.2.28. We keep the notation of Theorem B.2.27. A von Neumann
algebra in H is a ∗-subalgebra M of L (H) which satisfies any of the equivalent
properties (i), (ii), or (iii) in Theorem B.2.27.

Note that the operator-norm topology on L (H) is stronger than the strong-
operator topology, which in turn is stronger than the weak-operator topology. Thus
a von Neumann algebra in H is a ∗-subalgebra of L (H) closed for the operator-
norm topology, hence is a C∗-subalgebra of L (H) and a C∗-algebra itself. Among
C∗-algebras, the von Neumann algebras are the C∗-algebras which are realised
as a closed ∗-subalgebra of L (H) and furthermore satisfy any of the equivalent
properties (i), (ii), or (iii) in Theorem B.2.27.

It is also possible to define the von Neumann algebras abstractly as the C∗-
algebras having a predual, see e.g. Sakai [Sak98].

Example B.2.29. Naturally L (H) and CIH are von Neumann algebras in H.
Example B.2.30. If η is a positive and sigma-finite measure on a locally compact
space X, then A = L∞(X, η) is a commutative unital C∗-algebra (see Example
B.2.7). The operator of pointwise multiplication

L∞(X, η) ∋ f �→ Tf ∈ L (L2(X,μ)), Tf (φ) = fφ,

is an isometric (∗-algebra) morphism. This yields a C∗-algebra isomorphism from
A = L∞(X, η) onto an abelian von Neumann algebra acting on the separable
Hilbert space L2(X,μ).

Conversely any abelian von Neumann algebra on a separable Hilbert space
may be realised in the way described in Example B.2.30, see Dixmier [Dix96,
§I.7.3].

The main example of von Neumann algebras of interest for us is the one
associated with a group. This is explained in the next subsection.

B.2.5 Group von Neumann algebra

In this section we follow Dixmier [Dix77, §13]. The main application of these con-
structions are in Section 1.8.2, see Definition 1.8.7 and the subsequent discussion.

Now, first let us define the (isomorphic) left and right von Neumann algebras
of a (Hausdorff) locally compact group G.
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The left, resp. right, von Neumann algebra of G is the von Neumann alge-
bra VNL(G), resp. VNR(G), in L2(G) generated by the left, resp. right, regular
representation. This means that VNL(G) is the smallest von Neumann algebra
containing all the operators πL(x), x ∈ G, where πL is defined in (B.4), i.e.

πL(x)φ(y) := φ(x−1y), x, y ∈ G, φ ∈ L2(G).

Let us recall that the right regular representation πR is given by

πR(x)φ(y) = Δ(x)
1
2φ(yx).

Here Δ denotes the modular function (see Definition B.2.10).
One checks easily that the isomorphism U of L2(G) given by

Uφ(y) = Δ(y)
1
2φ(y−1), φ ∈ L2(G), y ∈ G,

intertwines πL and πR:

∀x ∈ G UπL(x) = πR(x)U.

Thus one is sometimes allowed to speak of ‘the regular representation’ and ‘the
group von Neumann algebra’. However, in this subsection, we will keep making
the distinction between left and right regular representations.

Let us assume that the group G is also separable. In this case, the group von
Neumann algebra can be described further.

Clearly VNL(G), resp. VNR(G), is the smallest von Neumann algebra con-
taining all the operators (πL)D(f), f ∈ Cc(G), resp. (πR)D(f), f ∈ Cc(G), see
[Dix77, §13.10.2]. Here Cc(G) denotes the space of continuous functions with com-
pact support on G. For the definitions of (πL)D(f) and (πR)D , see (B.5) and (B.1).
This easily implies that VNL(G), resp. VNR(G), is the smallest von Neumann al-
gebra containing all the operators (πL)D(f), resp. (πR)D(f), where f runs over
L1(G) or C∗(G).

Applying the commutation theorem (cf. Dixmier [Dix96, Ch 1, §5.2]) to the
quasi-Hilbertian algebra Cc(G) ([Eym72, p. 210]) we see that

VNL(G) = (VNR(G))′ and VNR(G) = (VNL(G))′.

See Definition B.2.1 for the definition of the commutant. This implies

Proposition B.2.31. The group von Neumann algebra coincides with the invariant
bounded operators in the following sense:

• VNL(G) is the space LR(L
2(G)) of operators in L (L2(G)) which commute

with πR(x), for all x ∈ G,

• VNR(G) is the space LL(L
2(G)) of operators in L (L2(G)) which commute

with πL(x), for all x ∈ G:
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VNL(G) = LR(L
2(G)) and VNR(G) = LL(L

2(G)).

Denoting by J the involutive anti-automorphism on L2(G) given by

J(φ)(x) := φ̄(x−1)Δ(x)−
1
2 , φ ∈ L2(G), x ∈ G,

we also have

J VNL(G) J = VNR(G) and J VNR(G) J = VNL(G).

Under our hypotheses, it is possible to describe the group von Neumann
algebra as a space of convolution operators, see Eymard [Eym72, Theorem 3.10
and Proposition 3.27]. In the special case of Lie groups, this is a consequence of
the Schwartz kernel theorem, see Corollary 3.2.1 and its right-invariant version.

B.2.6 Decomposition of group von Neumann algebras and abstract
Plancherel theorem

The full abstract version of the Plancherel theorem allows us to decompose not
only the Hilbert space L2(G) (thus obtaining the Plancherel formula) but also the
operators in VNR(G) and VNL(G):

Theorem B.2.32 (Plancherel theorem). We assume that the (Hausdorff locally
compact separable) group G is also unimodular and of type I and that a (left)
Haar measure has been fixed.

Then there exist

• a positive sigma-finite measure μ on Ĝ,

• a μ-measurable field of unitary continuous representations (πζ)ζ∈Ĝ of G on

the μ-measurable field of Hilbert spaces (Hζ)ζ∈Ĝ,

• and a unitary map W from L2(G) onto

∫ ⊕

Ĝ

(Hζ ⊗H∗
ζ) dμ(ζ) ≡

∫ ⊕

Ĝ

HS(Hζ) dμ(ζ),

(see Subsection B.1.3)

such that W satisfies the following properties:

1. If φ ∈ L2(G), then Wφ =
∫ ⊕
Ĝ

vζdμ(ζ) where each vζ is a Hilbert-Schmidt
operator on Hζ and we have

WJφ =

∫ ⊕

Ĝ

v∗ζ dμ(ζ), where (Jφ)(x) = φ̄(x−1).
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2. For any f ∈ L1(G) (or C∗(G)), the operators (πR)D(f) and (πL)D(f) acting
on L2(G) are transformed via W into the decomposable operators (in the

sense of Definition B.1.15) on
∫ ⊕
Ĝ
(Hζ ⊗H∗

ζ)dμ(ζ),

W {(πL)D(f)}W−1 =

∫ ⊕

Ĝ

(πζ)D(f)⊗ IH∗
ζ
dμ(ζ),

and

W {(πR)D(f)}W−1 =

∫ ⊕

Ĝ

IHζ
⊗ (πdual

ζ )D(f) dμ(ζ).

See (B.1) for the notation (π)D, and here πdual
ζ denotes the dual representa-

tion to πζ which acts on H∗
ζ via

(πdual
ζ (x))v∗ : w �→ (πζ(x

−1)w, v)Hζ
.

3. If T is a bounded operator on L2(G) which commutes with πL(x), for all
x ∈ G, that is, T ∈ VNR(G) = LL(L

2(G)), then T is transformed via
W into a decomposable operator (in the sense of Definition B.1.15) on the

Hilbert space
∫ ⊕
Ĝ
(Hζ ⊗H∗

ζ)dμ(ζ) of the form

WTW−1 =

∫ ⊕

Ĝ

Tζ ⊗ IH∗
ζ
dμ(ζ).

Conversely any decomposable operator of this type yields an operator in
LL(L

2(G)). Hence we may summarise this by writing

VNR(G) = LL(L
2(G)) = W−1

∫ ⊕

Ĝ

L (Hζ)⊗ C dμ(ζ) W.

Similarly

VNL(G) = LR(L
2(G)) = W−1

∫ ⊕

Ĝ

C⊗L (H∗
ζ) dμ(ζ) W.

A consequence of Points 1. and 2. is that if f ∈ L1(G) ∩ L2(G), then (πζ)D(f) ∈
HS(Hζ) for almost every ζ ∈ Ĝ and

Wf =

∫ ⊕

Ĝ

(πζ)D(f)dμ(ζ) thus ‖f‖2L2(G) =

∫

Ĝ

‖(πζ)D(f)‖2HS(Hζ)
dμ(ζ).

The measure μ is standard (in the sense of Definition B.1.13, see also Propo-
sition B.2.24) and unique modulo equivalence (see Proposition B.1.17).
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Reference for the proof of Theorem B.2.32. For the Plancherel measure being
standard, see Dixmier [Dix77, Proposition 18.7.7 and Theorems 8.8.1 and 8.8.2].
For the Plancherel theorem expressed in terms of the canonical fields, see [Dix77,
18.8.1 and 18.8.2]. �

The main application of the above theorem for us is Theorem 1.8.11.

Definition B.2.33. The measure μ is called the Plancherel measure (associated to
the fixed Haar measure).

A different choice of the Haar measure would lead to a different Plancherel
measure. Up to this choice, the Plancherel measure is unique. Proposition B.1.17
then implies that we do not need to specify the choice of a measurable field of
continuous representations.

In our monograph, our group Fourier transform and Dixmier’s defined in
(B.2) and (B.1) respectively, are related via (B.3). This implies that the statement
of Theorem B.2.32 remains valid if we replace firstly (π)D with our definition of
the group Fourier transform and, secondly, W with the isometric isomorphism

W̃ : L2(G)→
∫ ⊕

Ĝ

HS(Hζ)dμ(ζ)

given by
W̃φ := W (φ ◦ inv) where inv(x) = x−1.

In particular, if φ ∈ L2(G) then

W̃φ =

∫ ⊕

Ĝ

φζdμ(ζ), (B.6)

and we understand (φζ)ζ∈Ĝ as the group Fourier transform of φ. If T ∈ LL(L
2(G))

then it may be decomposed by

W̃TW̃−1 =

∫ ⊕

Ĝ

Tζ ⊗ IH∗
ζ
dμ(ζ),

which means that if φ ∈ L2(G) with (B.6), then

W̃ (Tφ) =

∫ ⊕

Ĝ

Tζφζdμ(ζ).

Theorem B.2.32 is reformulated in Theorem 1.8.11 with our choice of group
Fourier transform.

We end this appendix with the following observation. Comparing closely the
contents of Chapter 1 and Chapter B, there is a small discrepancy about the sep-
arability of Hilbert spaces. Indeed, in Chapter B, all the Hilbert spaces on which
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the representations act are assumed separable, see Section B.1.1, whereas the sep-
arability of the Hilbert spaces is not mentioned in Chapter 1. This leeds however
to no contradiction when considering a continuous irreducible unitary represen-
tation π of a Hausdorff locally compact separable group G on a Hilbert space
Hπ. Indeed, in this case, this yields a continuous non-degenerate representation of
L1(G) on Hπ as in Lemma B.2.18. As L1(G) is separable [Dix77, §13.2.4] and π
is irreducible, one can easily adapt the arguments in [Dix77, §2.3.3] to show that

Hπ is separable. Consequently, the dual Ĝ of a Hausdorff locally compact sepa-
rable group G may be defined as in Section 1.1 as the equivalence classes of the
continuous unitary representations, without stating the hypothesis of separability
on the representation spaces.



B.2. C∗- and von Neumann algebras 531

Schrödinger representations and Weyl quantization

Here we summarise the choices of normalisations and give some relations
between the Schrödinger representations πλ, λ ∈ R\0, of the Heisenberg group Hn

and the Weyl quantization on L2(Rn). Detailed justifications and some proofs are
given in Section 6.2.

Euclidean Fourier transform (for f ∈ S(RN ) and ξ ∈ RN )

FRN f(ξ) = (2π)−
N
2

∫

RN

f(x)e−ixξdx

Weyl quantization (for f ∈ S(RN ) and u ∈ RN )

OpW (a)f(u) = (2π)−N

∫

RN

∫

RN

ei(u−v)ξa(ξ,
u+ v

2
)f(v)dvdξ

The useful convention for abbreviating the expressions below is
√
λ := sgn(λ)

√
|λ| =

{ √
λ if λ > 0,

−
√
|λ| if λ < 0.

(B.7)

Schrödinger representations (for (x, y, t) ∈ Hn, h ∈ L2(Rn), and u ∈ Rn)

πλ(x, y, t)h(u) = eiλ(t+
1
2xy)ei

√
λyuh(u+

√
|λ|x)

Notation for the group Fourier transform

πλ(κ) ≡ κ̂(πλ) =

∫

Hn

κ(x, y, t) πλ(x, y, t)
∗ dxdydt

Relation between Schrödinger representation and Weyl quantization

πλ(κ) = (2π)
2n+1

2 OpW
[
FR2n+1(κ)(

√
|λ| ·,

√
λ ·, λ)

]

or, with more details,

πλ(κ)h(u) =

∫

Hn

κ(x, y, t) πλ(x, y, t)
∗h(u) dxdydt

=

∫

R2n+1

κ(x, y, t)eiλ(−t+ 1
2xy)e−i

√
λyuh(u−

√
|λ|x)dxdydt

= (2π)
2n+1

2

∫

Rn

∫

Rn

ei(u−v)ξFR2n+1(κ)(
√
|λ|ξ,

√
λ
u+ v

2
, λ)h(v)dvdξ.

Plancherel formula
∫

Hn

|f(x, y, t)|2dxdydt = cn

∫

λ∈R\{0}
‖f̂(πλ)‖2HS(L2(Rn))|λ|ndλ
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Explicit symbolic calculus on the Heisenberg group

Here we give a summary of some explicit formulae for symbolic analysis of
concrete operators on the Heisenberg group Hn. We refer to Section 6.3.3 for more
details. We always employ the convention in (B.7) for

√
λ.

Symbols of left-invariant vector fields and the sub-Laplacian

πλ(Xj) =
√
|λ|∂uj

= OpW
(
i
√
|λ|ξj

)

πλ(Yj) = i
√
λuj = OpW

(
i
√
λuj

)

πλ(T ) = iλI = OpW (iλ)

πλ(L) = |λ|∑j(∂
2
uj
− u2

j ) = OpW
(
|λ|∑j(−ξ2j − u2

j )
)

Difference operators

Δxj |πλ
= 1

iλad (πλ(Yj)) = 1√
|λ|

aduj

Δyj
|πλ

= − 1
iλad (πλ(Xj)) = − 1

i
√
λ
ad∂uj

Δt|πλ
= i∂λ+

1
2

∑n
j=1 ΔxjΔyj |πλ

+ i
2λ

∑n
j=1

{
πλ(Yj)|πλ

Δyj+Δxj |πλ
πλ(Xj)

}

Difference operators acting on symbols of left-invariant vector fields

πλ(Xk) πλ(Yk) πλ(T ) πλ(L)
Δxj

−δj=k 0 0 −2πλ(Xj)
Δyj 0 −δj=k 0 −2πλ(Yj)
Δt 0 0 −I 0

Relation between the group Fourier transform and the λ-symbols

κ̂(πλ) ≡ πλ(κ) = OpW (aλ) = OpW (ãλ(
√
|λ|·,
√
λ·))

with
aλ = {aλ(ξ, u) =

√
2πFR2n+1(κ)(

√
|λ|ξ,

√
λu, λ)}

ãλ = {ãλ(ξ, u) =
√
2πFR2n+1(κ)(ξ, u, λ)}

Difference operators in terms of the Weyl quantization of λ-symbols

Δxj
πλ(κ) = iOpW

(
1√
|λ|

∂ξjaλ

)
= iOpW

(
∂ξj ãλ

)

Δyjπλ(κ) = iOpW
(

1√
λ
∂ujaλ

)
= iOpW

(
∂uj ãλ

)

Δtπλ(κ) = iOpW
(
∂̃λ,ξ,uaλ

)
= iOpW (∂λãλ)

(
with ∂̃λ,ξ,u = ∂λ −

1

2λ

n∑

j=1

{uj∂uj
+ ξj∂ξj}

)
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List of quantizations

We refer to Sections 2.2, 5.1.3 and 6.5.1 for the cases of compact, graded,
and Heisenberg groups, respectively.

Quantization on compact Lie groups (for ϕ ∈ C∞(G) and x ∈ G)

Aϕ(x) =
∑

π∈Ĝ

dπ Tr (π(x) σA(x, π) ϕ̂(π))

with the formula for the symbol

σA(x, π) = π(x)∗(Aπ)(x)

Quantization on general graded Lie groups (for ϕ ∈ S(G) and x ∈ G)

Aϕ(x) =

∫

Ĝ

Tr (π(x) σA(x, π) ϕ̂(π)) dμ(π)

Symbols of vector fields σX(π) ≡ dπ(X) = Xπ(e), see (1.22)

In the compact and graded cases, relation with the right-convolution kernel

Aϕ(x) = ϕ ∗ κx(x) =

∫

G

ϕ(y)κx(y
−1x)dy with κ̂x(π) = σA(x, π)

Quantization on the Heisenberg group (for ϕ ∈ S(Hn) and g = (x, y, t) ∈ Hn)

Aϕ(g) = cn

∫

R\{0}

Tr (πλ(g) σA(g, λ) ϕ̂(πλ)) |λ|ndλ

and in terms of λ-symbols ag,λ : Rn × Rn → C,

σA(g, λ) = OpW (ag,λ) (g ∈ Hn, λ ∈ R\{0})

Aϕ(g)

= c′n

∫

R\{0}

Tr
(
πλ(g)OpW (ag,λ) OpW

[
FR2n+1(ϕ)(

√
|λ| ·,

√
λ ·, λ)

])
|λ|ndλ

= c′n

∫

R\{0}

Tr
(
OpW (ag,λ) OpW

[
FR2n+1(ϕ(g ·))(

√
|λ| ·,

√
λ ·, λ)

])
|λ|ndλ
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[DHZ94] J. Dziubański, W. Hebisch, and J. Zienkiewicz. Note on semigroups
generated by positive Rockland operators on graded homogeneous
groups. Studia Math., 110(2):115–126, 1994.

[DiB02] E. DiBenedetto. Real analysis. Birkhäuser Advanced Texts:
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[Puk67] L. Pukánszky. Leçons sur les représentations des groupes. Monogra-
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differential operators on compact Lie groups and global hypoelliptic-
ity. J. Fourier Anal. Appl., 20(3):476–499, 2014.

[Rud87] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New
York, third edition, 1987.

[Rud91] W. Rudin. Functional analysis. International Series in Pure and
Applied Mathematics. McGraw-Hill Inc., New York, second edition,
1991.

[RW13] M. Ruzhansky and J. Wirth. On multipliers on compact Lie groups.
Funct. Anal. Appl., 47(1):87–91, 2013.

[RW14] M. Ruzhansky and J. Wirth. Global functional calculus for operators
on compact Lie groups. J. Funct. Anal., 267(1):144–172, 2014.

[RW15] M. Ruzhansky and J. Wirth. Lp Fourier multipliers on compact Lie
groups. Math. Z., 280(3-4):621–642, 2015.



548 Bibliography

[Saf97] Y. Safarov. Pseudodifferential operators and linear connections. Proc.
London Math. Soc. (3), 74(2):379–416, 1997.

[Sak79] K. Saka. Besov spaces and Sobolev spaces on a nilpotent Lie group.
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L∞(Ĝ), 49
K(G), 50
LL(L

2(G)), 48
of the group, 526

von Neumann bi-commutant theorem,
524

weak type
(p, p), 32
w − Lp(G), 32

Weyl quantization, 435
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