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1. Introduction

In this chapter we describe a semi-automatic segmentation method for dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) sequences for renal function assessment.
Among the different MRI techniques aiming at studying the renal function, DCE-MRI with
gadolinium chelates injection is the most widely used (Grenier et al, 2003). Several
parameters like the glomerular filtration rate or the differential renal function can be non-
invasively computed from perfusion curves of different Regions Of Interest (ROI). So
segmentation of internal anatomical kidney structures like cortex, medulla and pelvo-
caliceal cavities is crucial for functional assessment detection of diseases affecting different
parts of this organ. Manual segmentation by a radiologist is fairly delicate because images
are blurred and highly noisy. Moreover the different compartments are not visible during
the same perfusion phase because of contrast changes: cavities are enhanced during late
perfusion phase, whereas cortex and medulla can only be separated near the cortical peak,
when the contrast agent enters the kidney (figure 1); consequently they cannot be delineated
on a single image. Radiologists have to examine the whole sequence in order to choose the
two most suitable frames: the operation is time-consuming and functional analysis can vary
greatly in case of misregistration or through-plane motion. Some classical semi-automated
methods are often used in the medical field but few of them have been tested on renal DCE-
MRI sequences (Michoux et al., 2006). In (Coulam et al., 2002), cortex of pig kidneys is
delineated by simple intensity thresholding during cortical enhancement phase, but
precision is limited essentially because of noise. In (Lv et al., 2008), a three-dimensional
kidney extraction and a segmentation of internal renal structures are performed using a
region-growing technique. Anyway only few frames are used, so problems due frames
selection and non corrected motion remain. As the contrast temporal evolution is different
in every compartment for physiological reasons, pixels can be classified according to their
time-intensity curves: such a method can improve both noise robustness and
reproducibility. In (Zoellner et al., 2006), independent component analysis allows recovering
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some functional regions but does not result in segmentations comparable to morphological
ones: any pixel can actually be attributed to zero, one or more compartment. In (Sun et al.,
2004), a multi-step approach including successive registrations and segmentations is
proposed: pixels are classified using a K-means partitioning algorithm applied to their time-
intensity curves. Nevertheless a functional segmentation using some unsupervised
classification method and resulting in only three ROIs corresponding to cortex, medulla and
cavities seems to be hard to obtained directly. This is mainly due to considerable contrast
dissimilarities between pixels in a same compartment despite some common characteristics
(Chevaillier et al., 2008a).

Concerning validation, very few results for real data have been exposed. In (Rusinek et al.,
2007), a segmentation error is defined in connection with a manual segmentation as the
global volume of false-positive (oversegmented) and false-negative (undersegmented)
voxels. Nevertheless assessment consists mostly in qualitative consistency with manual
segmentations or in comparisons between the corresponding compartment volumes or
between the induced renograms (Song et al., 2005).

We propose to test a semi-automated split (2.1) and merge method (2.2) for renal functional
segmentation. The kidney pixels are first clustered according to their contrast evolution
using a vector quantization algorithm. These clusters are then merged thanks to some
characteristic criteria of their prototype functional curves to get the three final anatomical
compartments. Operator intervention consists only in a coarse tuning of two independent
thresholds for merging, and is thus easy and quick to perform while keeping the
practitioner into the loop. The method is also relatively robust because the whole sequence
is used instead of only two frames as for traditional manual segmentation. In the absence of
ground truth for results assessment, a manual anatomical segmentation by a radiologist is
considered as a reference. Some discrepancy criteria are computed between this
segmentation and functional ones. As a comparison, the same criteria are evaluated between
the reference and another manual segmentation.

This book chapter is an extended version of (Chevaillier et al., 2008b).

2. Method for functional segmentation

2.1 Vector quantization of time-intensity curves

The temporal evolution of contrast for each of the N pixels of a kidney results from a DCE-
MRI registered sequence: examples of three frames for different perfusion phases can be
seen in figure 1.

Let /;, be the intensity at time p for the pixel x;, / the mean value for baseline and 7,

the mean value during late phase for the time-intensity curve of entire kidney. Let
& :( il,...,éiNT) be the Nj-components vector associated with each pixel, where

& = ([ » —1p )/ (I . —1 B) (intensity normalization is performed in order to have similar
dynamic for any kidney). The N vectors ¢&; are considered as samples of an unknown

probability distribution over a manifold X < RY" with a density of probability p(f ) .
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Fig. 1. Examples of frames from a DCE-MRI sequence during arterial peak (left), filtration
(middle) and late phase (right)

The aim is to find a set {W»

J }lstK c X of prototypes (or nodes) that maps the distribution

2
with a given distortion. Let be w(:f) =argmin,, |§—-w /" . The Growing Neural Gas with
; :

targeting (GNG-T) (Frezza-Buet, 2008), which is a variant of the classical Growing Neural
Gas algorithm (Fritzke, 1995), minimizes a cost function that tends towards the distortion:

K
E= Lllw((f)— &’ plee - Y E, (1)
j=1

where
By = [ oy~ plebaz ana v, = e xonl) =, @

V; is the so-called Voronoi cell of w; and consists of all points of X that are closer to w;

than to any other w;. The set of {Vj }1<1_< X

is a partition of X .
More precisely, GNG-T algorithm builds iteratively a network consisting in both:
e aset of prototypes,

e a graph structure preserving the topology of the underlying probability
distribution.

This graph is made up of a set of connections between nodes defining a topological
neighbourhood relation in the parameter space. It approximates the induced Delaunay

triangulation of the set {w g }l<j< § on the manifold X (Martinetz et al., 1993). Edges are

drawn up according to a competitive Hebbian learning rule: the basic principle is, for each
input ¢&;, to connect the two best matching prototypes. Two prototypes that are directly
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linked in the final graph should thus have similar temporal behaviour. Both the winner, i.e.
the closest prototype of the current data point, and all its topological neighbours are
adjusted after each iteration. Influence of initialization is thus reduced for GNG-T compared
to on-line K-means for instance.

The number K of prototypes is iteratively determined to reach a given average node
distortion 7" . While a prior lattice has to be chosen for other algorithms like self-organising
map (Kohonen, 2001), no topological knowledge is required here: the graph adapts
automatically to any distribution structure during the building process.

GNG-T is an iterative algorithm that processes successive epochs. During each epoch, N

samples (é‘/ )ISiSN are presented as GNG-T inputs. An accumulation variable e; is

associated with each node w;: it is initialized to zero at the beginning of the epoch and is

2
updated every time w; actually wins by adding the error "5, —wj” . When the cost

function defined in equation (1) is minimal, all the E; reach the same value, denoted 7".

For a given epoch, E; can be estimated by:

E; =2 ©
Y
T" helps to adapt the number of nodes at the end of each epoch. It is then compared to the
desired target 7. If 7'>T , vector quantization is not accurate enough: a new node is thus

added between the node w; with the strongest accumulated error e; ~and its topological

neighbour w; with the strongest error e; , and the edges are adapted accordingly. If

T'< T, the node with the weakest accumulated error is eliminated to reduce accuracy. All
implementation details can be found in (Frezza-Buet, 2008).

Let us note that the aim of the algorithm is not to classify pixels but to perform vector
quantization. For this reason it tends to give a fairly large K value. A given class is actually
represented by a subset of connected nodes, and all points that belong to the union of their
associated Voronoi cells are attributed to this class. As an example, the quantization results
and the boundaries of the clusters for a two-dimensional Gaussian mixture distribution are
given in figure 2 (notice that our problem is N -dimensional). Nevertheless, for real cases, a

single connected network is obtained most of the time because of noise and because the
distributions are not straightforwardly separable. So an additional merging step is
mandatory in order to break non significant edges and then obtain the final segmentation in
three anatomical compartments.
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X
Fig. 2. Results of a vector quantization by GNG-T procedure with final partition (large solid
lines): small dots represent samples of the distribution, large dots are the resulting nodes
linked with edges.

2.2 Formation of the three final compartments for real data

Each node has then to be assigned to one of the three anatomical compartments. Typical
time-intensity curves with the main perfusion phases (baseline, arterial peak, filtration,
equilibrium and late phase) are shown in figure 3.

Nevertheless, for a given kidney, noticeable differences can be observed inside each
compartment (see figure 4). The Euclidean distance between curves is therefore not a
criterion significant and robust enough to aggregate nodes. Indeed the distance between two
prototypes of two distinct ROIs may often be smaller than disparity within a single
compartment. This is true even if distance is evaluated only for points of filtration, during
which contrast evolutions should be the most different. It is why some physiology related
characteristics of the contrast evolution have to be used to get the final compartments.

We proceed as follows:

e  First, as cavities should be the brighter structure in the late phase (see figure 3) due
physiological reasons, nodes whose average intensity during this stage is greater
than a given threshold t; and that are directly connected to each other in the GNG
graph are considered as cavities.
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Fig. 3. Typical time-intensity curves for cortex, medulla and cavities
e In a second step, filtration phase is used to separate cortex and medulla. Filtration
rate depends on the tissue nature. So the slope of time-intensity curves during
filtration (see figure 3) is evaluated using standard linear regression for all
remaining prototypes: a node is attributed to the cortex if the corresponding slope
is less than a given threshold t, else it is assigned to the medulla.
The two thresholds 7, and 7, are initialized so that cortex represents approximately 50%

and cavities about 20% of kidney area and are adjusted by an observer. This is the only
manual intervention of the whole operation. As the algorithm is very fast, the tuning step
can be done in real time. Let us stress that the second criterion would not be sufficient to
distinguish cavities from cortex and medulla because of a theoretically unexpected but fairly
high arterial peak that can be observed in figure 4(c): this peak is induced by the great
vascularization of the whole kidney and may appear in all ROIs. Furthermore the use of
topological edges for cavities determination avoids classifying in this compartment some
nodes that have a similar contrast in late phase but whose behaviour differs sufficiently in
other filtration phases.
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Fig. 4. Some examples of time-intensity curves for prototypes attributed to cortex (a),
medulla (b) and cavities (c) of a given kidney

3. Experiment

3.1 Materials

Eight two-dimensional low resolution DCE-MRI sequences of normal kidney perfusion with
256 images were used (acquisition duration: about 12 minutes, temporal resolution: about 3
s). The examinations were performed on a whole-body 1.5T MR-scanner (General Electric
Healthcare). A 3D ultrafast gradient echo LAVA sequence was used with the following
parameters: 15° flip angle, TR/TE 2.3 ms/1.1 ms. The slice that contained the largest surface
of renal tissue was then selected. The initial matrix size was 256x256 with pixel size between
1.172 mm and 1.875 mm (slice thickness: 10 mm). A rectangular area containing kidney was
delineated (size between 47x35 and 84x59). In-plane movements due to respiration were
corrected by a rigid registration algorithm including translations and rotation. Because of
rapid and high contrast changes during perfusion mutual information was chosen as a
similarity criterion (Pluim et al., 2003). Anyway through-plane motions remained and
frames were highly noisy. An example of frames for three different perfusion phases is
shown in figure 1.

3.2 Manual segmentations by radiologists
The different sequences were presented to two experienced radiologists (OP1 and OP2) after
automatic registration. They had to delineate three ROIs, namely the cortex, the medulla and
the pelvo-caliceal cavities as well as a global kidney mask. To do so, the following procedure
was set up:
1. visualization of the complete sequence,
2. selection of a late phase frame were cavities contrast is maximum and manual
segmentation of the cavities,
3. identification of the frame corresponding to the cortical enhancement peak and
manual segmentation of the cortex,
4. segmentation of medulla by difference with cortex and cavities already segmented.

A global mask was then extracted as the common area of the two manual segmentations,
including the three ROIs delineated by the two radiologists. This mask was subsequently
used for functional segmentation (only pixels inside this mask were used by the GNG-T
algorithm). Two examples of manual segmentations can be seen in figure 5.
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3.3 Discrepancy criteria for segmentation comparison

For each of the eight cases a manual segmentation is considered as a reference. The
functional segmentation obtained thanks to the proposed method or another manual one
will be both compared to this reference.

Every segmentation can be considered as a binary map, with label 1 inside the ROI and
label~0 outside. Let be R the reference segmentation and T the tested one. Four types of
pixels can then be defined, according to their labels in R and T:

Pixel type Label in Label in
R T

True Positive (TP) 1 1

False Negative 1 0

(EN)

False Positive (FP) 0 1

True Negative 0 0

(TN)

Four discrepancy measures between R and T are evaluated for each ROI:

e percentage overlap PO =100xTP /(T P+ FN ), i.e. percentage of pixels of the
reference ROI that are in the test ROI too,

e percentage extra PE =100x FP/ (TP +FN ), i.e. the number of pixels that are in
the test ROI while they are out of reference ROI, divided by the number of pixels in
the reference ROL Perfect segmentation would give PO =100% and PE =0% .
High values for both PO and PE for a given segmentation tend to point out
some oversegmentation of the corresponding compartment. A high PE associated
toa weak PO may indicate that the ROl is globally wrong positioned.

e similarity index ST =2xTP/ (T P+ FN + FP). SI is sensitive to both differences
in size and location (Zijdenbos et al., 1994). For instance two equally sized ROIs
that share half of their pixels would yield S/ =1/2. A ROI covering another that is
twice as little would give S/ =2/3. For a perfect segmentation the S/ value
would be 1.

e mean distance MD (in pixel) between contours of test and reference segmentation:
MD is the average distance between every pixel of the contour in the test
segmentation and the closest pixel of the reference contour.

SI is the only selected criterion that is independent of the chosen reference, however its
values appear twice in the tables in order to facilitate comparisons.

4. Results

Examples of two manual segmentations and of a functional semi-automated one can be seen
in figure 5. For this case, size of ROIs varies between 532 and 700 pixels for cortex, 375 and
559 for medulla, 161 and 217 for cavities. The delineated contours are superimposed on MR
images of the renal pixels (region out of the global kidney mask is black). Frames
correspond to perfusion phases during which each compartment is visible at best:

e arterial peak for cortex and medulla

e late phase for cavities.

www.intechopen.com



Functional semi-automated segmentation of renal
DCE-MRI sequences using a Growing Neural Gas algorithm 77

10 20 30 10 20 30 10 20 30
(a) Anatomical manual segmentation (OP1)
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{b) Anatomical manual segmentation (OP2)
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(¢) Functional semi-automated segmentation

Fig.5. Example of cortex (left), medulla (middle) and cavities (right) segmentations
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For almost all the tested kidneys, a very good visual qualitative consistency between these
frames and functional segmentation is obtained.
For quantitative comparisons the manual segmentation OP1 is first considered as the
reference. Table 1 Part 1 shows for each type of ROI, means over the eight cases of
discrepancy measures between:

e  the semi-automated segmentation (GNG-T) and OP1,

e  the second manual segmentation (OP2) and OP1.
In table 1 Part 2, on the other hand, the reference is OP2. The percentage of well classified
pixels for a given compartment is the sum of TP pixels over the eight cases divided by the
total number of pixels for this type of ROI. For global kidney it is the sum of TP pixels for all
ROIs over the eight cases divided by the total number of pixels of all kidney global masks.
Results for small kidneys have less influence on this percentage than on mean overlap.

Segmentation by OP2 | GNG-T Segmentation by OPT | GNG-T
Well classified pixels (%) 69.8 837 Well classified pixels (%) 89.7 5.8
Overlap (%) T1.8 8§3.2 Overlap (%) 89.0 85.7
Extra pixels(%) 9.2 219 Extra pixels(%) 36.1 34.8
Similarity index 079 | 081 Similarity index 079 | 0.8
Mean distance to reference contour | 0.6 0.8 Mean distance to reference contour | 0.7 09
(a) Cortex (a) Cortex
Segmentation by OF2 | GNG-T Segmentation by OPI | GNG-T
Well classified pixels (%) 848 730 Well classified pixels (%) 60.3 69.7
Overlap (%) 84.0 73.0 Overlap (%) 60.5 69.9
Extra pixels(%) 56.6 337 Extra pixels(%) 11.8 16.3
Similarity index 070 | 071 Similarity index 070 | 095
Mean distance to reference contour | 1.0 0.8 Mean distance to reference contour | 1.0 09
(b) Medulla (b) Medulla
Segmentation by OP2 | GNG-T Segmentation by OPI | GNG-T
Well classilied pixels (%) 749 68.7 Well classified pixels (%) E1IE 749
Overlap (%) 739 69.8 Overlap (%) 82.2 76.4
Extra pixels(%) 16.1 11.1 Extra pixels(%) 324 12.6
Similarity index 077 | 077 Similarity index 0.77 0.80
Mean distance to reference contour | 0.8 0.7 Mean distance to reference contour | 0.9 0.5
(c) Cavilies (c) Cavilies
I Segmenlation by [ OP2 [ GNG-T | [ Segmentation by [ OPT [ GNG-T |
| Well classified pixels (%) | 749 | 77.6 | | Well classified pixels (%) | 749 [ 76.7 |
(d) Global kidney (d) Global kidney
Part 1 Part 2

Table 1. Discrepancy measures for segmentations of the three ROIs when OP1 (Part 1) or
OP2 (Part 2) are considered as a reference.

Similarity measures between functional segmentation and any manual segmentation are
very similar to those computed between the two manual ones. A better score for overlap is
always compensated by an increase of extra pixels. The percentage of globally well classified
pixels is even higher for the proposed method, and the similarity index and the mean
distance between contours are most of the time better. This was not the case for k-means
clustering of the time-intensity curves, where scores were lower for functional segmentation
(Chevaillier et al., 2008a): for instance an increase of 3 to 6% in the percentage of globally
well classified pixels can be noted for the new method. Furthermore results do not depend
significantly on the type of ROIL The quality of functional segmentation does not change
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with the region size: cavities that are much smaller than the two other ROIs are recovered as
correctly as those. Moreover this technique is fast and user-friendly. The size of the
prototype set stemming from GNG-T varies between 10 and 30 nodes: it depends essentially
on temporal evolution complexity induced in particular by vascularization artefacts and
highly noisy acquisition but little on kidney size. Nevertheless operator has only to adjust
two thresholds: the first allows extracting cavities by adding or taking off the most relevant
nodes, whereas the second is used in the same way to set relative areas of cortex and
medulla. The splitting step with GNG-T allows to consider first the global time-intensity
evolution and to reduce noise effect; the threshold adjustment is then easier because at each
tuning level a relatively numerous set of pixels with homogenous temporal evolution is
added.

5. Conclusion and perspectives

A semi-automated method for functional segmentation of internal kidney structures using
DCE-MRI sequences was tested and compared with manual segmentations by radiologists.
Good qualitative consistency between the two types of segmentation is observed. Similarity
measures between a manual segmentation and a functional one are comparable and often
better than the same criteria evaluated between two manual segmentations. Results are
better than those obtained with the k-means algorithm applied on the same data: for
instance the percentage of well classified pixels is 3 to 6% higher. Let us note that the
derived time-intensity curves of each compartment are almost identical for functional or
manual segmentation. Thus the method is suitable for renal segmentation from DCE-MRIL
Moreover this technique is user friendly because the only manual intervention during the
whole segmentation process consists in the coarse real-time tuning of two independent
thresholds. It offers more reproducibility and is also greatly faster than manual
segmentation: the latter requires 12 to 15 minutes for one sequence, versus about 30 seconds
for the former, including threshold adjustment. To validate the method further tests will be
performed on a larger database including both healthy and pathological kidneys. In the
latter case, an adaptation of the physiological criteria previously used to obtain the final
compartments can be needed because new temporal behaviours may appear.
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