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Abstract

This chapter presents the recent progress on structure-induced ultratransparency in
both one- and two-dimensional photonic crystals (PhCs). Ultratransparent PhCs not
only have the omnidirectional impedance matching with the background medium, but
also have the ability of forming aberration-free virtual images. In certain frequency
regimes, such ultratransparent PhCs are the most transparent solid materials on earth.
The ultratransparency effect has many applications such as perfectly transparent lens,
transformation optics (TO) devices, microwave transparent devices, solar cell packag-
ing, etc. Here, we demonstrate that the ultratransparent PhCs with “shifted” elliptical
equal frequency contour (EFC) not only provide a low-loss and feasible platform for
transformation optics devices at optical frequencies, but also enable new degrees of
freedoms for phase manipulation beyond the local medium framework. In addition,
microwave transparent devices can be realized by using such ultratransparent PhCs.

Keywords: ultratransparency, photonic crystals, impedance matching, spatial
dispersion, transformation optics

1. Introduction

Photonic crystals (PhCs), as periodic arrangement of dielectrics, affect the motion of photons

and electromagnetic (EM) waves in much the same way that semiconductor crystals affect the

propagation of electrons, providing a new mechanism to control and manipulate the flow of

light at wavelength scale [1–5]. The key property of the PhCs is the photonic band gap induced

from the periodic modulation of photons and EMwaves, which can block wave propagation in

certain or all directions. As photonic band-gap materials, PhCs play vital roles in light confine-

ment and optical manipulation, promising many important applications, such as omnidirec-

tional reflectors [6, 7], waveguides [8, 9], fibers [10], high-Q nanocavities and laser [11, 12], and

angular filters [13].
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However, little attention has been paid to the effect of enhancing transparency. Although there

are pass bands in PhCs, they are usually reflective and, therefore, not transparent enough. As

we know, transparent media are the foundation of almost all optical instruments, such as

optical lens. However, perfect transparency has never been realized in natural transparent

solid materials such as glass because of the impedance mismatch with free space. On the other

hand, in the past decades, artificial EM materials like metamaterials [14–20] have been pro-

posed to realize unusual EM properties beyond natural materials. However, most of the

researches were focused on the realization of abnormal refractive behaviors such as negative

refraction. Transparency over a large range of incident angle or a large frequency spectrum is

theoretically possible, but the experimental realization is very difficult as complex and unusual

parameters are required.

The photonic band-gap effect is actually induced by the periodic modulation of the reflections

on the surfaces of dielectrics. That is, the periodic modulation strengthens the reflections on the

surfaces of dielectrics to form a complete band gap at particular frequencies. Then, a natural

question is: Is it possible to rearrange the periodic modulation of the reflections on the surfaces

of dielectrics to make them cancel each other for all incident angles, so that omnidirectional

impedance matching and omnidirectional perfect transmission can be realized?

In this chapter, we show the opposite effect of the band-gap effect in PhCs, i.e., the structure-

induced ultratransparency effect [21, 22]. Ultratransparent PhCs not only have the omnidirec-

tional impedance matching with the background medium, but also have the ability of forming

aberration-free virtual images. The equal frequency contours (EFCs) of such ultratransparent

PhCs are designed to be elliptical and “shifted” in the k-space and thus contain strong spatial

dispersions and provide more possibilities for omnidirectional impedance matching. Interest-

ingly, the combination of perfect transparency and elliptical EFCs satisfies the essential require-

ment of ideal transformation optics (TO) devices [23–27]. Therefore, such ultratransparent PhCs

not only provide a low-loss and feasible platform for TO devices at optical frequencies, but also

enable new freedom for phase manipulation beyond the local medium framework. Moreover,

such ultratransparent PhCs have shown enormous potential applications in the designs of

microwave transparent wall, nonreflection lens, omnidirectional polarizer, and so on.

2. Ultratransparency effect: the opposite of the band-gap effect

2.1. Definition of ultratransparency: omnidirectional impedance matching and aberration-

free virtual image

It is well known that the band-gap effect induced by the periodic distribution of dielectrics can

block the propagation of EM waves in certain or all directions, as illustrated in Figure 1(a). The

forbiddance of wave propagation is the result of lacking propagation modes within the PhCs,

which can be seen from the EFCs in Figure 1(a). The circle in the left denotes the EFC of free

space, and there is no dispersion of the PhCs within the band gap. Interestingly, we would like

to rearrange the periodic array of dielectrics to obtain the omnidirectional impedance

matching effect, which allows near 100% transmission of light at all incident angles, as illus-

trated in Figure 1(b).
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Moreover, we expect such media to have the ability of forming aberration-free virtual images,

which is absent in normal transparent media like glass. By using ray optics, it can be easily

shown that transmitted rays from a point source behind a dielectric slab would form a

“blurred” area of virtual image rather than a point image. For demonstration, we placed a

point source on the left side of a glass slab (with a thickness of d and a refractive index of 1.46)

at a distance of d, as shown in Figure 2(a). The virtual image is formed by the back tracing lines

(thin lines) of the transmitted waves in the right side (thick lines), showing evident aberrations.

In Figure 2(b), we present the zoom in “blurred” image in the region marked by dashed lines

in Figure 2(a), showing the spatial distribution of the formed virtual image. This implies that

the position of the virtual image will change if we observe from different positions, as illus-

trated in Figure 2(c).

Actually, such aberrations of the virtual image originate from the mismatch between the

EFCs of free space and dielectrics, i.e., their EFCs do not have the same height in the

transverse direction (i.e., the ky direction in Figure 1) [21]. By using ray optics, it can be

demonstrated that a circle or elliptical EFC having the same height of the EFC of free space

in the ky direction enables the formation of aberration-free virtual images [21], i.e., the EFC

has the form of

kx � pð Þ2

q
þ k2y ¼ k20, (1)

Figure 1. (a) Total reflection by a PhC slab with complete photonic band gap. (b) Aberration-free virtual image formation

through an ultratransparent medium without any reflection due to omnidirectional impedance matching. The arrows and

dashed lines in (a) and (b) represent the light rays from a point source, and the back-tracing lines, respectively. The inset

graphs show the corresponding EFCs.

Structure-Induced Ultratransparency in Photonic Crystals
http://dx.doi.org/10.5772/intechopen.71274

73



where k0 is the wave number in air, kx yð Þ is the x yð Þ component of the wave vector, p denotes the

displacement from the Brillouin zone center, and q determines the ratio of the ky and kx axes of

the ellipse, as shown in Figure 1(b). We note that the “shift” of p in the kx direction does not

affect the formation of virtual images, because such a “shift” does not change the refractive

behavior at all in this case.

Supposing that the rearrangement of the periodic array of dielectrics not only makes the whole

structure impedance matched to free space for all incident angles, but also creates the unique

EFC described by Eq. (1); thus, both omnidirectional 100% perfect transmission and

aberration-free virtual imaging are enabled simultaneously. Apparently, such a level of trans-

parency is superior to that of normal transparent media like dielectrics and is thus hereby

denoted as ultratransparency.

2.2. Ultratransparency based on local and nonlocal media

According to Fresnel equations, reflection of light on the surface of dielectrics is inevitable,

except at a single-incident angle referred to as the Brewster angle under transverse magnetic

(TM) polarization, as demonstrated in Figure 3(a). Here, we extend the impedance matching

from one particular angle (i.e., Brewster angle) to all incident angles in a nonlocal or spatial

dispersive medium, whose effective permittivity ε ky
� �

and permeability μ ky
� �

are dependent

on wave vectors.

To begin with, we assume that the nonlocal medium exhibits an irregular-shaped EFC shown

in Figure 3(b). An incident wave of transverse electric (TE) polarization with electric fields

polarized in the z direction is considered. For the TE polarization, the dispersion relation of the

nonlocal medium can be expressed in a general form as,

k2x
μy ky

� �þ
k2y

μx ky
� � ¼ εz ky

� �

k20 , (2)

which determines the relationship between the components of wave vectors kx and ky.

Figure 2. The formation of “blurred” virtual image by a glass slab. (a) The existence of general reflection and aberration in

virtual images behind a glass slab. (b) The zoom in “blurred” image in the region marked by dashed lines in (a). (c) The

position of the virtual image for the observation from different positions.
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In this case, the wave impedance of free space can be derived as Z0 �
Ez

Hy
¼ �

μ0

kx,0
ω for TE

polarization [28–30]. Ez and Hy are the z-component of electric fields and the y-component of

magnetic fields, respectively. kx,0, μ0, and ω are the x-component of wave vector in free space,

the permeability of vacuum, and angular frequency of the EMwave, respectively. Similarly, the

wave impedance of the nonlocal medium can be written as Z ¼ �
μ0μy kyð Þ

kx
ω. Then, the imped-

ance matching of the nonlocal medium and free space requires Z ¼ Z0. By considering disper-

sion relations, the impedance matching condition is obtained as,

μx ky
� �

μy ky
� �

μx ky
� �

εz ky
� �

k20 � k2y
¼

1

k20 � k2y
(3)

If Eq. (3) can be satisfied for all ky
�

�

�

� < k0, then omnidirectional impedance matching can be

achieved, leading to near 100% transmission of light for all incident angles.

An obvious local medium solution of Eq. (3) is that μxμy ¼ 1 and μxεz ¼ 1, which correspond to

elliptical EFCs centered at the Brillouin zone center, are consistent with transformation optics

theory [23–27]. However, this is not the only possible solution for spatially dispersive media.

Now, we consider medium with the EFC described by Eq. (1), i.e., kx ¼ p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q k20 � k2y

� �

r

. By

substituting this relation into Eq. (3) and the spatial dispersion, we obtain the analytical forms of

spatially dispersive parameters as:

μ
2
y ky
� �

¼

p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q k20 � k2y

� �

r� 	2

k20 � k2y
and εz ky

� �

k20 �
k2y

μx ky
� � ¼ � p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q k20 � k2y

� �

r
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � k2y

q

(4)

Eq. (4) shows that when EM parameters possess spatial dispersions, there exist infinite solu-

tions of μy ky
� �

, εz ky
� �

, and μx ky
� �

for the satisfaction of Eq. (4) for all ky
�

�

�

� < k0, indicating

infinite solutions for omnidirectional impedance matching.

Figure 3. (a) There exist reflected waves at the interface of free space and dielectrics except for the Brewster angle for TM

polarization. (b) Nonreflection and total transmission on the surface of ultratransparent nonlocal media for all incident

angles. The thin circle, thick circle, and curves in the inset graphs denote the EFCs of air, dielectrics, and the nonlocal

media, respectively.
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3. Structure-induced ultratransparency in two-dimensional PhCs

3.1. Nonlocal effective medium theory

For the design of ultratransparent PhCs, we first propose a nonlocal effective medium theory

for the homogenization of PhCs. Here, we consider uniform plane wave incidence. In this

situation, the validity of the nonlocal effective medium theory lies in the satisfaction of the

following four premises: (1) single-mode approximation [28], i.e., only one eigen-mode is

excited; (2) the amplitudes of fields at the incident boundary are almost constant; (3) the phases

of fields at the incident boundary obey the trigonometric functions; and (4) the electric and

magnetic fields are in phase at the incident boundary. Although these premises are seemingly

stringent, it turns out that most eigen-modes of the first few bands (e.g., monopolar and

dipolar bands) can indeed satisfy these requirements (Figure 4).

With the assumption of the abovementioned premises, eigen-fields of TE polarization at the

boundary x ¼ 0 can be approximately expressed as F ¼ F0e
i kxxþkyyð Þe�iωt with F0 ¼ E0bz, H0by. E0

and H0 are the amplitudes of eigen-electric and eigen-magnetic fields, respectively, which are

almost independent of y. This indicates that the eigen-fields are the boundary and have the

same formula as those in a uniform medium. Thus, the surface impedance of the PhCs can be

calculated in a similar formula as [28–30],

Zx ¼
Ezh ix¼0

Hy


 �
x¼0

and Zy ¼
Ezh ix¼0

Hxh ix¼0

(5)

where Fh ix¼0 denotes the average of eigen-field F along the unit cell boundary x ¼ 0. Ez,Hx and

Hy are the z-component of eigen-electric fields, x- and y-components of eigen-magnetic fields,

respectively. Based on Eq. (5), the surface impedance of a PhC can be calculated as long as the

eigen-fields of the PhC are solved.

On the other hand, the PhC satisfying previous premises generally can be described as a

uniform medium with effective relative permittivity

εx, eff

εy, eff

εz, eff

0

B@

1

CA, relative

Figure 4. Schematic graph of the unit cell for the nonlocal effective medium theory.
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permeability

μx, eff

μy, eff

μz, eff

0

B@

1

CA, and dispersion
k2x

μy, eff
þ

k2y
μx, eff

¼ εz, eff k
2
0. Thus, the impedance

of the PhC can be rewritten as the function of effective parameters:

Zx ¼ �
μ0μy, eff

kx
ω and Zy ¼

μ0μx, eff

ky
ω (6)

Compared with Eqs. (5) and (6), the effective parameters can be derived as,

εz, eff ¼
1

ε0ω

ky Hxh ix¼0�kx Hyh i
x¼0

Ezh ix¼0
,

μx, eff ¼
ky

μ0ω

Ezh ix¼0

Hxh ix¼0

and μy, eff ¼ �
kx
μ0ω

Ezh ix¼0

Hy


 �
x¼0

(7)

With Eq. (7), the effective parameters of the PhC can be obtained by analyzing the eigen-fields

with Bloch wave vector kB ¼ kxbx þ kyby. We note that the Bloch wave vector is restricted in the

first Brillouin zone, and the choice of the eigen-fields of �kB or þkB depends on the direction

of group velocity. In addition, we find that this method is still valid even for the eigen-modes

far away from the Brillouin center, but the effective parameters are generally k-dependent, i.e.,

nonlocal or spatially dispersive.

3.2. Two-dimensional ultratransparent PhCs

PhCs contain strong spatial dispersions and thus provide the perfect candidate for realization of

ultratransparency effect. Here, we demonstrate a type of PhCs composed of a rectangular array

of dielectric rods in free space, with the unit cell shown in Figure 5(a). Under TE polarization, the

band structure is presented in Figure 5(b), and the EFC of the third band is plotted in the

reduced first Brillouin zone in Figure 5(c). The working frequency is chosen as fa=c ¼ 0:3183,

where f , a, and c are the frequency, the lattice constant, and the speed of light in free space,

respectively. We see that the corresponding EFC (the right dashed lines in Figure 5(c)) is indeed

a “shifted” ellipse that can be described by Eq. (1) with p ≈π=a. And the dispersion can be

approximately written as,

kx � π=a1
0:4541a2=0:5097a1

� 
2

þ k2y ¼
0:5097π

a2

� 
2

(8)

Figure 5(d) shows the impedance difference of the PhC and free space of the third band, i.e.,

Z�Z0

ZþZ0

���
���, where Z is the impedance of the PhC obtained from Eq. (5) and Z0 is the impedance of

free space. From Figure 5(d), it is seen that the impedance difference is very small for a very

large range of ky at the working frequency, indicating impedance matching in a large range of

incidence angles.

Moreover, in Figure 6(a), we present the effective parameters εz, eff (square dots), μx, eff (circular

dots), and μy, eff (triangular dots) of the PhC based on Eq. (7), showing the k-dependence.
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Interestingly, we find μx, eff ≈ 1, while εz, eff and μy, eff are both dependent on ky. The result of

μx, eff ≈ 1 can be physically understood. Since the resonances are localized in the dielectrics and

far away from the incident boundary, the modes propagating in the y direction are weakly

modulated by the periodicity. As a consequence, μx, eff has the same value as the relative

permeability of the background medium.

Now, by substituting the condition μx, eff ≈ 1 and the dispersion Eq. (8) into Eq. (4), the analyt-

ical form of the effective parameters εz, eff and μy, eff can be solved as,

εz, eff ky
� �

¼ �
π

a1k
2
0

1� 0:4541

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
kya2=π

0:5097

� 
2
s

2

4

3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � k2y

q

þ
k2y

k20

and μy, eff ky
� �

¼ �
π

a1
1� 0:4541

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
kya2=π

0:5097

� 
2
s

2

4

3

5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � k2y

q

(9)

The choice of �kx depends on the direction of group velocity. Here, we choose �kx, because

hereby the band branch in the region �π=a1 < kx < 0 in the first Brillouin zone is excited, as

determined by the direction of group velocity. In Figure 6(a), εz, eff and μy, eff based on Eq. (9)

(dashed lines) show perfect match with those obtained from Eq. (7) for all ky < k0, demonstrating

the omnidirectional impedance matching effect.

For further verification, the transmittance through such a PhC slab consisting ofN (= 4, 5, 6, 15)

layers of unit cells in the x direction is numerically calculated, as presented in Figure 6(b). It is

shown that the transmittance is near unity (>99%) for nearly all incident angles (θ < 89 ∘ ) and is

Figure 5. (a) Illustration of the unit cell of the ultratransparent PhC. (b) The band structure of the PhC. The dashed line

denotes the working frequency fa=c ¼ 0:3183. (c) The EFC of the third band. The left and right dashed lines denote the

EFCs of air and the PhC at the frequency fa=c ¼ 0:3183. (d) The impedance difference of the PhC and free space of the third

band. Reprinted (figure) with permission from Ref. [21]. Copyright (2016) by the American Physical Society.
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almost irrespective of the layer number N, indicating that the total transmission is a result of

impedance matching instead of tunneling effects.

3.3. Microwave experimental verification

In fact, for transparency in a relatively smaller range of incident angles, the design process is

much easier and the effect can exist in much simpler structures. In the following, we demon-

strate a simple ultratransparent PhC, which is verified by proof-of-principle microwave exper-

iments. The PhC consists of rectangular alumina (ε ¼ 8:5) bars in a square lattice, as illustrated

by the inset in Figure 7(a). The lattice constant is set to be a = 12 mm, and the length (W1) and

width (W2) are 9.6 mm and 4.8 mm, respectively, corresponding to 0.8a and 0.4a. We consider

TE polarization with electric fields polarized along the z direction, and the band structure is

presented in Figure 7(a). The normalized frequency is chosen to be fa=c ¼ 0:4723 (marked by a

dashed line), corresponding to a working frequency around 11.8 GHz. In Figure 7(b), we can

see that the shape of EFC of fa=c ¼ 0:4723 is nearly a part of “shifted” ellipse. And the

dispersion can be approximately written as,

kx � π=a1
0:4541a2=0:5097a1

� 
2

þ k2y ¼
0:5097π

a2

� 
2

(10)

In addition, the impedance difference between the PhC and the free space is calculated by

using Eq. (5), as shown in Figure 7(c). Clearly, the impedance difference is very small on the

Figure 6. (a) The effective parameters εz,eff , μx, eff , and μy, eff retrieved from the eigen-fields based on Eq. (7) (symbols) and

predicted by the ultratransparency condition based on Eq. (9) (dashed lines). (b) Calculated transmittance through a PhC

slab withN (= 4, 5, 6, 15) layers of unit cells as the function of incident angles. Reprinted (figure) with permission from Ref.

[21]. Copyright (2016) by the American Physical Society.
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EFC of fa=c ¼ 0:4723 for a large range of ky, demonstrating the wide-angle impedance

matching effect.

Moreover, the effective parameters obtained from Eq. (7) are presented in Figure 8(a) by solid

lines with symbols, showing μx, eff ≈ 1 for ky < 0:818π=a as the result of weakly modulated

Figure 7. (a) Band diagram of the experimental PhC for TE polarization. The dashed line denotes the working frequency

fa=c ¼ 0:4723. The inset is the illustration of the unit cell of the PhC. (b) EFCs in the frequency range 0:397 ≤ fa=c ≤ 0:547.

The left and right dashed lines denote the EFCs of air and the PhC at the frequency fa=c ¼ 0:4723. (c) The impedance

difference of the PhC and the free space in the frequency range 0:397 ≤ fa=c ≤ 0:547.

Figure 8. (a) Effective parameters εz, eff , μx,eff , and μy, eff retrieved from the eigen-fields based on Eq. (7) (solid lines with

symbols) and predicted by the ultratransparency condition based on Eq. (11) (dashed lines). (b) Transmittance through a

N (= 4, 5, 6, 15)-layered PhC slab as the function of incident angles.
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modes propagating in the y direction. By inserting the condition μx, eff ≈ 1 and the dispersion

Eq. (10) into Eq. (4), the analytical expressions of εz, eff and μy, eff can be derived as,

εz, eff ky
� �

¼ �
π

ak20
1:25� 0:8945

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
kya=π

1:0415

� 
2
s

2

4

3

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � k2y

q

þ
k2y

k20

μy:eff ky
� �

¼ �
π

a
1:25� 0:8945

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
kya=π

1:0415

� 
2
s

2

4

3

5=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � k2y

q

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(11)

In Figure 8(a), the dashed lines denote εz, eff and μy, eff based on Eq. (11) (negative sign is

chosen), showing excellent coincidence with those from Eq. (7) for ky < 0:818π=a (i.e., θ < 60 ∘ ).

Furthermore, we calculate the transmittance through the PhC slab with N (= 4, 5, 6, 15) unit

cells, as shown in Figure 8(b). It is clearly seen that there exists near-unity transmittance for all

Figure 9. (a) Photo of the PhC composed of alumina bars (white) placed inside the microwave field mapper. The

measured electric-field distributions for microwave beams with incident angles of (b) 0�, (c) 30�, and (d) 45�. Reprinted

(figure) with permission from Ref. [21]. Copyright (2016) by the American Physical Society.
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incident angles of θ < 60 ∘ (i.e., ky < 0:818π=a) irrespective of N, demonstrating the wide-angle

impedance matching effect.

Next, we show microwave experimental results to verify the above theory. A 23 � 5 array of

such a PhC is assembled in the xy plane inside a parallel-plate waveguide composed of two flat

aluminum plates, as shown in Figure 9(a). The separation between the two aluminum plates is

10.5 mm, slightly larger than the height of the bars (10 mm), but smaller than half of the

wavelength of interest (25.4 mm for 11.8 GHz) to make sure that the whole experimental

chamber can only support transverse EM modes. A microwave beam with a finite width was

launched through a waveguide made of absorbing materials (in black in Figure 9(a)). The

lower metal plate along with the PhC array was mounted on a translational stage. The electric

field was measured via an antenna fixed in a hole in the upper metal plate (not shown here).

Both the emitting and probing antennas are connected to our Agilent E5071C network ana-

lyzer to acquire the transmitted magnitude and phase of microwave signals. Such a setup

allows us to measure the spatial distributions in the xy plane for a series of incident angles

from 0� to 60� at the working frequency of 11.8 GHz.

The measured electric fields for 0�, 30�, and 45� incident angles are displayed in Figure 9(b),

(c), and (d), respectively. Clearly, the reflection is barely noticeable, indicating impedance

matching for all these incident angles. In Figure 10, the measured transmittance (triangular

dots) coincides with simulation results (solid lines) quite well, both showing great enhance-

ment compared with that through an alumina slab with the same thickness (dashed lines).

Although the ultratransparency effect is hereby only verified at the microwave frequency

regime, the principle can be extended to optical frequency regime by using PhCs composed of

silicon or other dielectrics.

Figure 10. Transmittance through the PhC slab in simulations (solid lines) and experiments (triangular dots) and an

alumina slab having the same thickness (dashed lines) as the function of incident angles. Reprinted (figure) with

permission from Ref. [21]. Copyright (2016) by the American Physical Society.
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4. Structure-induced ultratransparency in one-dimensional PhCs

In the above, we have shown the structure-induced ultratransparency in two-dimensional

PhCs. In the following, we demonstrate the structure-induced ultratransparency in one-

dimensional PhCs [22].

The one-dimensional ultratransparent PhC we studied is composed of two dielectric materials

A and B stacked along the x direction (Figure 11(c)). As we know, neither the dielectric

material A nor B is perfectly transparent due to impedance mismatch. As a result, a large

amount of EMwaves are always reflected at the surface of dielectrics, as illustrated in Figure 11

(a) and (b). Interestingly, when we periodically stack the two dielectric slabs with appropriate

filling ratio and lattice constant, the reflection waves on the dielectrics can cancel each other;

thus, wide-angle and even omnidirectional nonreflection can be obtained, as illustrated in

Figure 11(c).

Figure 12(a) presents the band structure of the PhC, whose unit cell is constructed in a

symmetric form, i.e., ABA structure, as shown by the inset in Figure 12(a). The relative

permittivity and filling ratio of the material A (B) are 2 (6) and 0.6 (0.4), respectively. The

dashed line denotes the normalized frequency fa=c ¼ 0:397, which is chosen as the working

frequency.

In Figure 12(b) and (d), the EFCs at the frequency fa=c ¼ 0:397 for the TE and TM polarizations

are plotted, respectively. It is seen that the EFCs can be approximately regarded as a part of an

ellipse with the center located at the X point. In addition, the impedance difference between

the PhC and air is shown in Figure 12(c) (for the TE polarization) and Figure 12(e) (for the TM

polarization). It is seen that the impedance difference is very small for a large range of ky in the

Figure 11. (a) and (b) show general reflection on the slab made of materials A and B, respectively. (c) Elimination of

general reflection by a one-dimensional ultratransparent PhC composed of ABA unit cells. The orange arrows represent

the rays of light emitted by a point source. Reprinted (figure) with permission from Ref. [22]. Copyright (2016) by the

Optical Society.
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Figure 12. (a) Band structures of the PhC for TE and TM polarizations. The dashed lines denote the working frequency

fa=c ¼ 0:397. The inset denotes the illustration of the unit cell. (b, d) the EFCs of the PhC and (c, e) the impedance

difference between PhC and free space in the second band for (b, c) TE and (d, e) TM polarizations. Reprinted (figure)

with permission from Ref. [22]. Copyright (2016) by the Optical Society.
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reciprocal space for both polarizations, demonstrating a wide-angle and polarization-

insensitive impedance matching effect. Moreover, from Figure 12(b) and (c), it is also seen that

the impedance difference is small in the frequency range from fa=c ¼ 0:376 to fa=c ¼ 0:428,

indicating a broadband impedance matching effect. Therefore, a one-dimensional PhC

exhibiting a broadband, wide-angle, and polarization-insensitive impedance matching effect

is realized.

For further verification, the transmittance through the PhC slab composed of N unit cells is

calculated. The numerical setup for the transmission computation is shown in Figure 13(a). A

TE-polarized plane wave is incident from air in the left side. The upper and lower boundaries

are set as periodic boundary condition. From the electric-field distribution in Figure 13(a), we

see that almost all the waves can propagate through the PhC slab with 6 unit cells under the

incident angle of 45 ∘ . In Figure 13(b), the transmittance is plotted as the functions of the

incident angle and the number of unit cells (N = 4, 5, 6, 15) for the frequency fa=c ¼ 0:397,

showing N-independent almost perfect transmission for all incident angles of θ < 70 ∘ .

Moreover, in Figure 14(a) and (b), the transmittance through a PhC slab (N ¼ 10) as the func-

tions of the incident angle and normalized frequency for TE and TM polarizations is presented,

which clearly demonstrates the broadband, wide-angle, and polarization-insensitive transpar-

ency of the PhC.

Although awide-angle (0–70 ∘ ) rather than omnidirectional impedancematching effect is obtained

in such a one-dimensional PhC, we may still view such a PhC as an ultratransparent PhC. Com-

pared with the two-dimensional ultratransparent PhCs, the one-dimensional ultratransparent

PhCs have the advantages of broadband and polarization-insensitive impedance matching.

Figure 13. (a) The numerical setup for the transmission computation. The color denotes the distribution of electric fields

under θ ¼ 45 ∘ incident angle. (b) Transmittance as the function of the incident angle when EM waves propagate through

the PhC slab composed ofN (= 4, 5, 6, 15) unit cells. Reprinted (figure) with permission from Ref. [22]. Copyright (2016) by

the Optical Society.
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In addition, the easy design and fabrication of the one-dimensional PhCs may lead to more

practical applications.

5. Applications

5.1. For transformation optics

In the above, we have demonstrated the ultratransparency in both one- and two-dimensional

PhCs. In the following, we show some applications of such ultratransparent PhCs. It is inter-

esting to note that the omnidirectional perfect transparency and elliptical EFCs of the

ultratransparent media are essential for ideal TO devices. The theory of TO [23–27] promises

many novel and interesting applications, such as invisibility cloaks [23, 25, 31, 32], concentra-

tors [33], illusion optics devices [34–36], and simulations of cosmic phenomena [37, 38]. Gen-

erally, the TO devices are realized by using metamaterials [14–20], which require complicated

designs of electric and magnetic resonances, hindering the realization and applications in

practice. In fact, most of the previous TO experiments were realized by using the so-called

reduced parameters, which maintain the refractive behavior, but sacrifice the impedance

matching as well as the perfect transparency [25, 39–45]. Moreover, at optical frequencies, the

inherent loss in metallic components of metamaterials makes the realization of perfect trans-

parency as well as the ideal nonreflecting TO devices extremely difficult [46, 47], if not

impossible. Interestingly, we find that the ultratransparent PhCs provide a low-loss and feasi-

ble platform for TO devices at optical frequencies.

To begin with, we consider a TO medium obtained by stretching the coordinate along the x

direction in background medium of air. For TE polarization with electric fields polarized in the

z direction, the parameters of the TO medium have the relationship [48]:

εz ¼ 1=μ
x
¼ μ

y
¼ 1=s (12)

where s is the stretching ratio. εz, μx
and μ

y
are the z component of relative permittivity tensor,

x and y components of relative permeability tensor, respectively.

Figure 14. Transmittance as the functions of the incident angle and the frequency for (a) TE- and (b) TM-polarized waves

propagating through the PhC slab with 10 unit cells. Reprinted (figure) with permission from Ref. [22]. Copyright (2016)

by the Optical Society.
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Considering Eq. (12), the dispersion of the TO medium, i.e.,
k2x
μy
þ

k2y
μx

¼ εzk
2
0, can be rewritten as

k2x
1=s2

þ k2y ¼ k20 (13)

which has the similar form as that of Eq. (1). The EFC of the TO medium is an ellipse having the

same height as the EFC of air in the ky direction (Figure 15(a)), as that of the ultratransparent

media. When the stretching ratio is larger than unity, i.e., s > 1, the EFC of the TO medium (the

right ellipse) seems slimmer than the EFC of air (the left circle) in Figure 15(a), and the coordi-

nate mesh is looser in the x direction in the TO medium region, as illustrated in Figure 15(a).

The only difference of the EFCs between the TO medium and the ultratransparent medium is

that there may exist a “shift” of p in the kx direction (Eq. (1)) for the ultratransparent medium

(Figure 15(b)). Interestingly, such a “shift” does not affect the refractive behaviors, but enables

new freedom for phase manipulation beyond the local medium framework.

For demonstration, we show a specific example in Figure 16. The ultratransparent PhC is one-

dimensional and composed of components I and II. The unit cell is constructed in a symmetric

way with a lattice constant of a, as illustrated by the inset in Figure 16(a). The relative

permittivity and thickness of the component I (II) are 2.132 (5.522) and 0:3a (0:4a), respectively.

In Figure 16(a), the EFC of the PhC at the normalized frequency fa=c ¼ 0:402 for TE polariza-

tion is plotted as the solid lines, which can be viewed as a part of an elliptical located at the X

point. Compared with the EFC of the TO medium with εz;μx;μy

n o

¼ 0:5; 2; 0:5f g (dashed

lines in Figure 16(a)), we see that the EFC of the PhC has the same height in the ky direction,

which satisfies the requirement proposed above.

Moreover, simulations of wave propagation through the TO medium slab with a thickness of 5a

(upper inset) and a PhC slab with 5 unit cells (lower inset) are performed, as shown in Figure 16(b).

Figure 15. (a) Upper inset: the EFCs of air (the left circle) and TO media obtained by stretching air in the x direction (the

right ellipse). Lower inset: scheme of the TOmedium slab (with loose mesh) in the background medium of air (with dense

mesh). (b) Upper: the EFC of the ultratransparent PhC (the right ellipse with solid lines), which has a “shift” in the kx
direction compared with the EFC of the TO media (dashed lines). Lower inset: the ultratransparent PhC is used to replace

the TO medium slab in (a).
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Simulation results show perfect transmission under the incident angle of 45�. Interestingly, we notice

a π phase difference in the transmission waves, which actually is caused by the “shift” of the PhC’s

EFC and odd number of unit cells. On the other hand, if the total number is even, there will be no

phase difference, which is confirmed in the simulation results in Figure 16(c). In Figure 16(c), the

thickness of the TOmedium slab is 6a (upper inset), and the number of unit cells of the PhC slab is 6

(lower inset). Comparing the transmissionwaves, we see identical phases under the incident angle of

45�. The results demonstrate that the ultratransparent PhC can approximately work as the TO

medium with εz;μx;μy

n o

¼ 0:5; 2; 0:5f g.

Next, we show an example of TO device by using one-dimensional ultratransparent PhCs. The

design process is shown in Figure 17(a), in which the original shell of a concentrator [33] is

discretized into four layers and each layer is further replaced by a corresponding

ultratransparent PhC. Figure 17(b) shows the parameters of the discretized layers of TO media

and the ideal profile. The corresponding four types of ultratransparent PhCs are of the same

lattice constant a and of 4, 2, 2, and 1 units for the A, B, C, and D layers, respectively. The EFCs

of PhCs and the discretized layers of TO media are shown in Figure 17(c). It can be seen that

the EFCs of PhCs have almost the same shapes with their corresponding layers, but are

“shifted” by π=a in the k-space.

The detailed parameters of the PhCs are presented in Figure 18. The insets present the illustra-

tions of unit cells, relative permittivities, and thicknesses of each component of the four

different PhCs. Moreover, the transmittance through PhC slabs with 10 unit cells is plotted as

the function of incident angles, as shown by the solid lines in Figure 18(a–d). During the

calculation, the background media are chosen as the discretized TO media (Figure 17(b)) with

the parameters μx;μy; εz

n o

being 1:52; 0:658; 0:793f g, 1:64; 0:61; 0:855f g, 1:84; 0:543; 0:96f g,

and 2:045; 0:489; 1:067f g, respectively. It is clearly seen that the four PhCs all have near-unity

transmittance in a wide-angle range (0� 70 ∘ ).

Figure 16. (a) The EFCs of the PhC for TE polarization. The solid line and dashed line denote the EFCs of the PhC and the

TO medium at the normalized frequency fa=c ¼ 0:402, respectively. (b, c) The snapshot of electric fields for wave propa-

gating through a TO medium slab (upper inset) and a PhC slab (lower inset) under an incident angle of 45�. The thickness

of the TO medium slab is (b) 5a, (c) 6a, and the number of unit cells of the PhC slab is (b) 5, (c) 6.
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Moreover, numerical simulations are performed to demonstrate the functionality of the con-

centrator. Figure 19(a) and (b) corresponds to the concentrator composed of the original

discretized TO media and the ultratransparent PhCs, respectively. It is seen that under an

incident beam of Gaussian wave from the lower left, both concentrators exhibit good concen-

tration effects in the core areas and induce almost no scattering of waves. Interestingly, the

waves inside the core areas exhibit a distinct phase difference of π. This discrepancy is a result

of the new freedom introduced by the “shift” of EFCs in the k-space, i.e., spatial dispersion.

Therefore, we have demonstrated that ultratransparent media can work as the TO media to

realize TO devices. Such ultratransparent media not only provide a low-loss and feasible

platform for TO devices at optical frequencies, but also enable new freedom for phase manip-

ulation beyond the local medium framework.

5.2. For microwave transparency

In the microwave regime, the ultratransparent media are also very useful and may have many

applications in the design of radome, transparent wall, and so on. Here, we show an example

Figure 17. (a) Illustration of the design process from a concentrator composed of discretized layers of TO media (upper)

to one composed of ultratransparent PhCs (lower). (b) Parameters of the discretized layers of TO media and the ideal

profile. (c) EFCs of the discretized layers of TO media (dashed lines) and the corresponding PhCs (solid lines). Reprinted

(figure) with permission from Ref. [21]. Copyright (2016) by the American Physical Society.
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Figure 18. Transmittance through the PhC slabs with 10 unit cells as the function of incident angles. The PhCs in (a), (b),

(c), and (d) correspond to the PhCs in regions A, B, C, and D, respectively. The insets are the structure, the relative

permittivities, and the thicknesses of the components of the PhCs.

Figure 19. Electric field distributions in the concentrators made of (a) discretized TO media and (b) ultratransparent

PhCs. Reprinted (figure) with permission from Ref. [21]. Copyright (2016) by the American Physical Society.
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of microwave transparent wall which allows the WiFi and 4G signals to pass through freely,

and thus may find applications in architectural designs.

The microwave transparent wall is composed of one-dimensional ultratransparent PhCs with

ABA unit cells. Materials A and B are chosen as polypropylene (εA ¼ 2:3) and concrete

(εB ¼ 9). As we know, a wall (with a thickness of 42.5 cm) composed of only material A or B

would lead to Fabry-Pérot resonance-induced oscillation in the transmission spectrum, as

shown by the Figure 20(a) and (b). Interestingly, if we utilize the composite structure with

ABA unit cells, broadband, wide-angle, and polarization-insensitive transparency can be

obtained. Specifically, the lattice constant a of the unit cell is set to be 4.25 cm, and the filling

ratio of the material A (B) is 0.6 (0.4). In Figure 20(c) and (d), the transmittance through a wall

of 10 unit cells is plotted as the function of the incident angle and the working frequency for TE

and TM polarizations, respectively. Obviously, almost 100% transmittance is obtained in a

broad frequency band (from 2.3 GHz to 2.7 GHz) and a wide-angle range (for almost all

θ < 60 ∘ ) for both polarizations. We note that the frequency range covers the working fre-

quency of Wi-Fi signal (with 2.4 GHz) and 4G signal (2.3 GHz~2.7 GHz). Thus, such micro-

wave transparent walls may have applications in architectural designs.

6. Conclusions and outlook

In this chapter, we introduced the recent results of the structure-induced ultratransparency

effect in both one- and two-dimensional PhCs, which allow near 100% transmission of light

Figure 20. Transmittance with respect to the incident angle and the frequency for EM waves propagating through a slab

made of (a) material A for the TE polarization, (b) material B for the TE polarization, (c, d) 10 unit cells of ABA for the (c)

TE and (d) TM polarizations. Reprinted (figure) with permission from Ref. [22]. Copyright (2016) by the Optical Society.

Structure-Induced Ultratransparency in Photonic Crystals
http://dx.doi.org/10.5772/intechopen.71274

91



for all incident angles and create aberration-free virtual images. The ultratransparency

effect is well explained by nonlocal effective medium theory for PhCs and verified by both

simulations and proof-of-principle microwave experiments. The design principle lies in

systematic tuning of the microstructures of the PhCs based on the retrieved nonlocal effec-

tive parameters.

With the ultratransparent media, many applications can be expected such as the perfectly

transparent optical lens, ideal TO devices, microwave transparent devices, and solar cell pack-

aging. Interestingly, the ultratransparent media with “shifted” elliptical EFC not only provides a

low-loss and feasible platform for TO devices at optical frequencies, but also enables new

degrees of freedoms for phase manipulation beyond the local medium framework. In addition,

microwave transparent walls allowing the WiFi and 4G signals to pass through freely can also

be realized.

Although the ultratransparency effect is mainly demonstrated for TE polarization here, the

principle is general and can be extended to TM polarization, or even both polarizations.

Polarization-independent ultratransparency has wide and important applications. On the

other hand, polarization-dependent ultratransparent media could also have some special

applications. For instance, if the PhC is ultratransparent for TE polarization, while the working

frequency falls in an omnidirectional band gap for TM polarization, such a PhC would work as

an omnidirectional polarizer.

The concept and theory of ultratransparency give a guideline for pursuing solid materials with

the ultimate transparency, i.e., broadband, omnidirectional, and polarization-insensitive total

transparency. In the future, ultratransparent solid materials may be optimized to exhibit an

unprecedented level of transparency and find vital applications in various fields.
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